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Chapter 1

Introduction

1.1 Spacecraft Swarm Applications

1.1.1 Constellations, Formation Flying, and Spacecraft Swarms

Multi-spacecraft systems have the potential to achieve a variety of missions that can-

not be realized by monolithic spacecraft [11]. Multi-spacecraft systems can be broadly

divided into constellation and formation flying systems, as conceptually illustrated in Fig-

ure 1.1. [12] In the constellation systems, each spacecraft only takes care of its own state in

terms of navigation and control. However, it provides specific services with the other space-

craft in the system. On the other hand, each spacecraft is managed with the interaction

with the dynamic states of the other spacecraft in the formation flying systems.

Figure 1.1: Constellation and formation flying systems (left: constellation, right: formation fly-

ing).

1



2 CHAPTER 1. INTRODUCTION

Among the formation flying, the systems composed of tens or hundreds of spacecraft

are called spacecraft swarm systems. Figure 1.2 shows a few examples of spacecraft swarm

applications. With a number of spacecraft, swarm systems have the potential to provide

larger space occupancy and higher mission redundancy than small-size formation flying

systems. However, at the same time, it can be more challenging to manage a number of

spacecraft as one coordinated system.

Figure 1.2: Examples of spacecraft swarm systems.

1.1.2 Spacecraft Swarm Missions

In this subsection, we introduce the applications and mission concepts of spacecraft

swarms which are proposed in the related work.

Pseudo Large Aperture

One of the applications of spacecraft swarms is a distributed aperture composed of

multiple spacecraft. By deploying several spacecraft in a specific area, they can behave

like a pseudo large aperture. Figures 1.3 to 1.5 show the examples of distributed aperture

missions by spacecraft swarms.
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Figure 1.3: Sparse aperture missions by Swarms of Silicon Wafer Integrated Femtosatellites

(SWIFT).[1]

Figure 1.4: Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR).[2, 3]

Figure 1.5: CubeSat Array for the Detection of RF Emissions from Exoplanets. [4]
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In-Orbit Assembly

The size of space structures is often constrained by the fairing size of launch vehicles,

payload mass, or durability against launch loading. In-orbit assembly by multiple spacecraft

would solve these launch-related constraints and has the potential to realize large space

systems. Figures 1.6 and 1.7 show the examples of in-orbit assembly missions by spacecraft

swarms and the related technology.

Figure 1.6: Autonomous assembly from heterogeneous modular spacecraft and the ground-based

hardware simulation.[5]

Figure 1.7: Guidance algorithm for autonomous assembly of a large aperture telescope.[6]

Deep Space Exploration

As shown in Figure 1.8, deep space exploration is another field where spacecraft swarms

play an essential role. For instance, by deploying several spacecraft around an asteroid,

they can monitor observation targets, such as gravitational distribution or asteroid mate-

rials, from various locations [13]. Additionally, a swarm system composed of spacecraft

with heterogeneous abilities can significantly improve the mission value while keeping high
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redundancy and scalability.

Figure 1.8: Missions around asteroids and comets (left: Meteoroid Impact Detection for Explo-

ration of Asteroids [7], right: Large constellations and formations for exploring inter-

stellar objects and long-period comets [8]).

Deep Space Infrastructure

Spacecraft swarms have gathered attention for supplemental applications for large space

infrastructure, such as the Lunar Gateway [14]. By exploiting the advantages of spacecraft

swarms, it is possible to realize communication relay and external health monitoring with

appropriate resources, as shown in Figure 1.9.

Figure 1.9: Lunar Gateway infrastructures by spacecraft swarms.[9]

1.1.3 Research Targets

To realize spacecraft swarm systems, various technical challenges need to be solved.

These challenges include the operation of multiple spacecraft, inter-spacecraft data sharing,

collision-free and fuel-efficient trajectory control, and so on [15]. Among those challenges,

relative navigation (swarm localization) is one of the essential technical elements. For

instance, in typical swarm applications, reconfiguration maneuvers are regularly operated,
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as shown in Fig. 1.10, to save thrust fuels for station keeping or optimize the performance

as multi-agent systems [16, 17]. Smart motion planning and collision avoidance algorithms,

which are vital technologies for reconfiguration operations, cannot work without precise

position and velocity information of spacecraft in the swarm systems [18].

Figure 1.10: Reconfiguration operation of a swarm system.

In this paper, we consider a problem to estimate the relative states of spacecraft in

the swarm system as illustrated in Figure 1.11. In the relative navigation for multi-agent

systems such as spacecraft swarms, the available information for each agent is limited by

inter-agent networks for communication and sensing, as shown in Figure 1.12. Therefore,

we investigate an appropriate approach for the swarm navigation under the interaction

constraints.

Figure 1.11: Relative navigation problem of a spacecraft swarm.
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Figure 1.12: Constraints on interaction by communication and sensing networks.

1.2 Related Work

1.2.1 Target Tracking and Cooperative Localization

Multi-agent and multi-sensor localization problems have been widely studied in a variety

of application fields as listed below:

• Sensor network tracking (localization) [19, 20, 21, 22, 23]

• Multi-ground-vehicle localization [10, 24, 25]

• UAV (Unmanned Aerial Vehicles) formation tracking (localization) [26, 27, 28, 29,

30, 31, 32, 33]

• Spacecraft formation flying (swarm) localization [34, 35, 36, 37, 38, 39, 40]

These algorithms can be roughly divided into two categories, target tracking [41] and coop-

erative localization [42]. The main difference between them is the dimensions of estimated

states. In the target tracking problem, the dimensions of estimated states are not pro-

portional to the number of agents or sensors. On the other hand, when it comes to the

cooperative localization problem, the dimensions of the estimated state are typically pro-

portional to the number of agents or sensors. Therefore, the estimated state can be huge,

and an estimator may face challenges to handle a global state in terms of inter-agent com-

munication and computation. The relative navigation problem of a spacecraft swarm is

classified as cooperative localization.
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1.2.2 Relative Navigation Algorithms for Spacecraft Swarm Systems

Table 1.1 summarizes the algorithmic features of representative relative navigation al-

gorithms for spacecraft swarm systems. Although there are various aspects to classify the

algorithms, we focus on sensing information, the size of estimated variables, decentraliza-

tion levels, constraints on network topology, and algorithmic scalability.

Table 1.1: Characteristics of relative navigation algorithms for spacecraft swarms

Method name Sensing
Estimated

Variables

Decentra-

lization

Network

Topology

Scala-

bility

Arambel (2001) [34] relative range full state fully ring shape low

McLouglin (2008) [39]
relative position

relative angle
full state fully ring shape low

Bezouska (2019) [35]

relative position

relative attitude

absolute position

full state fully no constraint low

Burchett (2019) [43]
relative range

absolute position
single state fully no constraint high

Kaputi (2020) [40]

relative range

relative range rate

absolute position

single state fully no constraint high

Matsuka (2021) [38]

relative range

relative angle

absolute position

single state

partial state
fully no constraint high

Here we briefly review each feature to clarify the requirements or preferable character-

istics for spacecraft swarm navigation. In terms of sensing information, whether spacecraft

can access absolute position or not significantly affects the requirements for navigation algo-

rithms. For instance, if spacecraft can receive Global Navigation Satellite System (GNSS)

signals and locate its absolute position, it is straightforward to compute the relative states

of the other spacecraft, and the algorithmic stability is guaranteed even though the esti-

mation accuracy of GNSS is not so high. When a spacecraft swarm system is deployed

in low or middle Earth orbits, each spacecraft can receive positioning service from GNSS,

as shown on the left side of Figure 1.13. However, when it comes to swarm missions for

deep space applications, it is impossible to access to GNSS, and the spacecraft need to

rely solely on relative sensing, as illustrated on the right side of Figure 1.13. In the most
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recent works, it is assumed that all or some of the spacecraft in the swarm can access to

GNSS-based absolute information, and they cannot be applied to swarm missions deployed

on GNSS-denied environments such as GEO or deep space, even though they have strong

features in network topology constraints, scalability, etc.

Figure 1.13: Accessibility to the information of absolute position.

The size of estimated variables can also greatly affect the performance of navigation

algorithms. Figure 1.14 shows rough algorithmic classifications based on the number of

estimation targets. In the case of the single-state estimation, each spacecraft only estimates

its own state. This scheme substantially saves communication and computational costs at

the expense of the global information of the swarm system.

Figure 1.14: Allocation of the estimated targets: (A) single state estimation, (B) partial state

estimation, and (C) full state estimation

Navigation algorithms calculate the estimated states based on sensing information and
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estimation results shared from the other spacecraft. Therefore, depending on the algorith-

mic features, they possibly require some communication and sensing networks constraints.

The performance of swarm navigation is greatly affected by spacecraft configurations,

initial estimation errors, temporary or permanent spacecraft malfunction, and network

structures, as illustrated in Figure 1.15. Therefore, it is essential to prove that a navigation

algorithm can adequately handle a variety of conditions for the practical applications of

swarm navigation. However, in the previous work, sufficient performance verification has

not been carried out against the algorithms proposed in their work as listed in Table 1.2,

though it is mentioned that the algorithms have the potential to handle various conditions

considered in the swarm systems.

Figure 1.15: Various situations which spacecraft swarms may experience in practical operations.

Table 1.2: Performance verification of relative navigation algorithms in the previous work

Method name
Swarm

configurations

Initial

estimation

errors

Fault

tolerance

Network

structure

Comparison

with other

methods

Arambel (2001) [34] fixed fixed none fixed none

McLouglin (2008) [39] fixed fixed none fixed Centralized KF

Bezouska (2019) [35] random fixed none 4 types none

Burchett (2019) [43] several fixed none almost fixed none

Kaputi (2020) [40] fixed fixed none fixed none

Matsuka (2021) [38] fixed fixed none fixed Centralized KF
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1.2.3 Summary of literature review

The previous work has not developed an algorithm that manages the following condi-

tions while keeping high accuracy and stability:

• All the spacecraft in the swarm system cannot access absolute position (except for

the reference spacecraft).

• No constraints on communication and sensing network topology.

as illustrated in Figure 1.16. The relative navigation algorithm with these features will

be indispensable, especially for large-size swarm missions operated in GEO or deep space

environments in the near future.

Figure 1.16: Open problems to be solved in this paper: (A) the absolute position measurements

are not available. (B) No constraints are applied to the network topology.

1.3 Contributions

The main contributions and highlights of this research are as follows:

• We review the representative existing estimation algorithms for swarm navigation

and reformulate them to enable a fair performance comparison with the proposed

algorithms.

• We propose new estimation algorithms achieving high accuracy and high stability

under the realistic conditions of swarm operations.

– ADF: Adaptive Decentralized Filter

– OD-ADF: Observability-Driven Adaptive Decentralized Filter
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• We implement the existing and the proposed algorithms in the spacecraft swarm

simulator and verify the effectiveness of the ADF and the OD-ADF by the numerical

simulations.

1.4 Organization

This dissertation is organized as follows:

• Chapter 1 provides the research background of spacecraft swarm navigation and the

objective of this research.

• Chapter 2 provides the basic conditions assumed in this research.

• Chapter 3 provides the fundamental information of the recursive Bayesian filtering

used as the main estimation algorithm in this research.

• Chapter 4 provides the overview of the spacecraft swarm simulator, developed for

comparative analysis of estimation algorithms for spacecraft swarm navigation.

• Chapter 5 provides the algorithmic details of the existing centralized and decentralized

algorithms. (The robust partially decentralized filter, which is one of the algorithms

introduced in this chapter, is proposed by the author.)

• Chapter 6 provides the algorithmic detail of the proposed algorithm: the adaptive

decentralized filter (ADF).

• Chapter 7 provides the algorithmic detail of the proposed algorithm: the observability-

driven adaptive decentralized filter (OD-ADF).

• Chapter 8 provides the details of the numerical simulations: the simulation conditions,

the simulation results, and the related discussions.

• Chapter 9 provides the summary of this dissertation.



Chapter 2

Problem Formulation for Swarm

Navigation

2.1 Relative Navigation of Spacecraft Swarms

The swarm comprises N ∈ N member spacecraft and a single reference spacecraft. All

the spacecraft estimate the relative states on the common Local-Vertical Local-Horizontal

(LVLH), whose origin is set to the position of the reference spacecraft. The true value of

the state of the i-th spacecraft at the k-th time step is defined as:

x
(i)
k =

[
p
(i)
x,k p

(i)
y,k p

(i)
z,k v

(i)
x,k v

(i)
y,k v

(i)
z,k

]T
(2.1)

p
(i)
k =

[
p
(i)
x,k p

(i)
y,k p

(i)
z,k

]T
(2.2)

v
(i)
k =

[
v
(i)
x,k v

(i)
y,k v

(i)
z,k

]T
(2.3)

where p
(i)
k ∈ R3 is the relative position vector and v

(i)
k ∈ R3 is the relative velocity vector.

Eq. (2.1) is defined with respect to the reference spacecraft. Let the estimated state vector

of the i-th spacecraft, which is computed by the j-th spacecraft, be x̂
(i)j
k , and let the cor-

responding covariance matrix be P
(i)j
k ∈ R6×6. Therefore, for instance, the estimated state

vector of the i-th spacecraft, which is computed by the i-th spacecraft itself, is represented

as x̂
(i)i
k .

The navigation of spacecraft swarms can be roughly divided into three steps, relative

sensing, inter-spacecraft communication, and estimate calculation, as illustrated in Fig-

ure 2.1. One of the influential factors is the availability of measurement data of relative

13
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sensing. One spacecraft needs to obtain the measurement data, which the other spacecraft

acquire with its sensor, by the communication relay.

Figure 2.1: Basic navigation flow of spacecraft swarm systems.

2.2 Dynamics Model

The dynamics of the i-th spacecraft in discrete time is given by:

x
(i)
k+1 = fk

(
x
(i)
k ,w

(i)
k ,∆t

)
, ∆t = tk+1 − tk (2.4)

where fk : R6×R6 → R6 is the possibly nonlinear time-varying function of the state vector,

w
(i)
k ∈ R6 is a process noise, and ∆t ∈ R is the discretization time step size.

We consider a spacecraft swarm system orbiting around a single planet as illustrated

in Figure 2.2. We ignore the other disturbance or perturbation forces for simplicity. The

inertial equation of motion of the reference spacecraft is given by [44]:

r̈(0) = − µ(
r(0)
)3r(0) (2.5)

and the the inertial equation of motion of the i-th spacecraft is also defined in the same

form:

r̈(i) = − µ(
r(i)
)3r(i) (2.6)

where µ ∈ R is the gravitational constant, r(0) ∈ R3 and r(i) ∈ R3 are the inertial position

vectors of the reference and the i-th spacecraft, respectively.
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Figure 2.2: Spacecraft positions in the planet-centered inertial coordinate system.

The relative position vector of the i-th spacecraft with respect to the reference spacecraft

satisfies the following equation.

p(i) = r(i) − r(0) (2.7)

Then, substituting Eq. (2.5) and Eq. (2.6) into Eq. (2.7) yields the following equation of

relative motion.

p̈(i) = −
µ
(
r(0) + p(i)

)∥∥r(0) + p(i)
∥∥3
2

+
µ(

r(0)
)3r(0) (2.8)

We assume the following additional conditions on Eq. (2.7) to simplify the problem.

• The reference spacecraft follows a circular orbit.

• The relative distance between the reference and the i-th spacecraft is much shorter

than than the inertial position vector of the reference spacecraft
(∥∥p(i)

∥∥≪ ∥∥r(0)∥∥).
Based on these two assumptions, the relative orbital dynamics of the i-th spacecraft can

be reduced to the Hill-Clohessy-Wiltshire (HCW) equations represented by.

x
(i)
k+1 = F (i)x

(i)
k +G(i)u

(i)
k +w

(i)
k (2.9)
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F (i) =
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, G(i) =


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(2.10)

where ω ∈ R is the mean anomaly of the reference spacecraft orbit and u
(i)
k ∈ R3 is a

control input. [45] We assume that the process noise follows the Gaussian distribution

w
(i)
k ∼ N

(
0,Q(i)

)
and

Q(i) =



σ2
qp 0 0 0 0 0

0 σ2
qp 0 0 0 0

0 0 σ2
qp 0 0 0

0 0 0 σ2
qv 0 0

0 0 0 0 σ2
qv 0

0 0 0 0 0 σ2
qv



, σ2
qp = αqp∆t, σ2

qv = αqv∆t (2.11)

where αqp and αqv are the proportional constants for position and velocity errors, respec-

tively. Although there are higher fidelity dynamics models [46], we consider the above

simple HCW model to focus on the performance evaluation of navigation algorithms.

2.3 Measurement Models

As relative sensing, each spacecraft can measure the relative distance and bearing angles

of the other spacecraft with its onboard sensors. Figure 2.3 shows the relative sensing of

range and bearing angles between the i-th and the j-th spacecraft.
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Figure 2.3: Relative sensing between the i-th and the j-th spacecraft.

2.3.1 Range Measurements

The range measurement between two spacecraft is a function of their state vectors,

which are represented by:

y(ij)r = hr

(
x(i),x(j)

)
+ vr

hr

(
x(i),x(j)

)
=

∥∥∥p(j) − p(i)
∥∥∥
2

(2.12)

=

√(
p
(j)
x − p

(i)
x

)2
+
(
p
(j)
y − p

(i)
y

)2
+
(
p
(j)
z − p

(i)
z

)2
(2.13)

where hr : R6 → R is a nonlinear function of two state vectors and vr ∈ R is a measurement

noise of ranging. We assume that the range noise follows a Gaussian distribution vr ∼

N (0, σ2
r ), where σr ∈ R is a standard deviation.

Here we derive the Jacobian matrix of hr for the linearization mentioned in the later

part. The Jacobian matrix with respect to x(i) is defined as:

∂hr
(
x(i),x(j)

)
∂x(i)

=

[
∂hr

∂p
(i)
x

∂hr

∂p
(i)
y

∂hr

∂p
(i)
z

∂hr

∂v
(i)
x
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(i)
y

∂hr
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(i)
z

]
∈ R1×6 (2.14)

=

[
∂hr

∂p
(i)
x

∂hr

∂p
(i)
y

∂hr
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(i)
z

0 0 0

]
(2.15)

where the derivatives with respect to the velocity are zero. The derivative with respect to
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the position is formulated as follows.

∂hr
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2.3.2 Bearing Angle Measurements

The bearing angle measurements between two spacecraft is a function of their state

vectors, which are represented by:

y(ij) =

θ(ij)
ϕ(ij)

+ vb = hb

(
x(i),x(j)

)
+ vb (2.17)
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∆p
(ij)
a,k = p

(j)
a,k − p

(i)
a,k (a ∈ {x, y, z}) (2.19)

where hb : R6 → R2 is a nonlinear function of state vectors and vb ∈ R2 is the measurement

noise of bearing angles. We assume that the measurement noise of bearing angles follows

a Gaussian distribution va ∼ N (0,Rb), where Rb = diag
(
σ2
b , σ

2
b

)
∈ R2×2 is the covariance

matrix. These relative angles are defined with respect to the common LVLH frame.

The Jacobian matrix of the bearing angle measurements is defined as:
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where the derivatives with respect to the velocity are zero as with the range measurement.

To express the non-zero terms in simple forms, the following two variables are defined as
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follows.
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The non-zero derivatives are represented by the following equations with the two parameters

ξ, ζ as:
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2.4 Communication and Sensing Networks

We use expressions used in graph theory to represent the inter-spacecraft interaction,

such as communication and sensing [47]. Let G = (V, E) denote a directed graph, with

V = {0, 1, ..., N} the set of spacecraft and E the set of edges between spacecraft. The

node {0} represents the reference spacecraft. The edge (i, j) ∈ E shows that there is some

kind of interaction between the i-th and the j-th spacecraft. The set of spacecraft directly

connected with the i-th spacecraft is defined as Vi = {j ∈ V | (i, j) ∈ E}. The adjacent

spacecraft including the i-th spacecraft itself is defined as Ṽi = Vi ∪ {i}. The number of
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elements in a spacecraft set or an edge set is computed with an operator n(·), for instance,

n(V) = 3 when V = {1, 2, 3}.

This research considers two types of networks: communication and sensing networks.

In addition, the sensing networks can be classified into ranging and bearing angle net-

works as shown in Figure 2.4. These networks are distinguished with the superscripts

such as Gx (x ∈ {c, r, b}), where Gc represents the communication network, Gr represents

the sensing network of ranging, and Gb represents the sensing network of bearing angle

measurements. In addition, networks are possibly time-varying; hence a network at the

k-th time step is expressed with the subscript as Gk. Therefore, for instance, the network

of ranging measurements at the k-th time step is represented as Grk = (V, Erk), where we

assume that the number of spacecraft in the swarm is constant.

Figure 2.4: Communication and sensing networks.

The network connectivity is governed by inter-spacecraft distances limited by commu-

nication signal strength or the field of views of onboard sensors. If the distance between

two spacecraft is shorter than ∆R, defined as the network threshold, the two spacecraft

is connected. Figure 2.5 shows the network topologies corresponding to different network

thresholds. The network connectivity of a graph G = (V, E) can be mathematically ex-

pressed with the adjacency matrix A(G) ∈ R(N+1)×(N+1) defined as:

[A(G)]ij =

1 if (i, j) ∈ E

0 otherwise
(2.31)
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Figure 2.5: Network topologies with different network thresholds.

We can define the ratio of the number of neighbor nodes to the total number of nodes

in the graph as the network connection rate. The network connectivity significantly affects

the estimation performances and communication loads; hence, it is essential to consider

how strongly the communication and sensing networks are connected. The connection rate

of the i-th spacecraft ρ(i) is formulated as:

ρ(i) =
d ({i},G)
n(V)− 1

(2.32)

d ({i},G) =
∑
j∈V

[A(G)]ij (2.33)

where d ({i},G) is an operator to calculate the degree of the i-th node in the network G.

We can also define the average connection rate ρ̄ as:

ρ̄ =
1

n(V)
∑
i∈V

ρ(i) =
n(E)

n(V)C2
. (2.34)

Additionally, we define the connection rate averaged over swarm configurations as:

ρ̆ =
1

M

M∑
m=1

mρ̄ (2.35)

where mρ̄ is the connection rate of Eq. (2.34) evaluated for the m-th swarm configuration.

2.5 Variables and Measurements with Network Topology

In an actual navigation process, the collection of spacecraft states is possibly estimated

with the collection of sensor measurements. This section summarizes the representation

of aggregated states and measurements, which are determined by the communication and
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sensing network topologies. We consider a system illustrated in Figure 2.6. The communi-

cation and sensing graphs are mathematically expressed as:

Gc = (V, Ec) (2.36)

Gs = (V, Es) (2.37)

V = {i, j1, j2, j3, j4, j5, j6} (2.38)

Ec = {(i, j1), (i, j2), (j2, j3), (j3, j4), (j4, j5), (j4, j6)} (2.39)

Es = {(i, j1), (i, j2), (j1, j3), (j2, j3), (j3, j4), (j3, j6), (j4, j5), (j4, j6)} (2.40)

where we assume that the ranging network and bearing angle network are the same as

Gs = Gr = Gb.

Figure 2.6: Communication and sensing networks for the handling of aggregated states and mea-

surements.

As the first example, we consider locally available information for the i-th spacecraft

without inter-spacecraft communication. In this case, the i-th spacecraft can obtain relative

sensing information with respect to the j1-th and the j2-th spacecraft. The set of sensing

edges is Esi = {(i, j1), (i, j2)}. Then, the aggregated function of relative measurements for

the i-th spacecraft is defined as:

hEs
i
=



hr
(
x(i),x(j1)

)
hr
(
x(i),x(j2)

)
hb

(
x(i),x(j1)

)
hb

(
x(i),x(j2)

)


(2.41)
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where hEs
i
: Rn(Ṽi)nx → Rny , the functions hr and hb are previously defined as Eq. (2.12)

and Eq. (2.18) respectively. n(Ṽi)nx represents the dimensions of the aggregated state

vector defined as:

x(Ṽi) =

[(
x(i)
)T (

x(j1)
)T (

x(j2)
)T]T (2.42)

and ny means the dimension of the aggregated measurement vector. ny is computed as:

ny = n (Esi )× (nr + nb) (2.43)

where nr = 1 is the dimension of range measurement and nb = 2 is the dimensions of

bearing angle measurements, including azimuth and elevation angles.

As the second example, we consider locally available information for the i-th spacecraft

under one-hop communication. Based on the sensing network, the i-th spacecraft can obtain

the measurements of (i, j1) and (i, j2) in a similar way to the previous example. Through

the communication network, the i-th spacecraft can also receive some information that the

j1-th and j2-th spacecraft possess. The j1-th spacecraft has the measurement (j1, j3) and

the j2-th spacecraft has the measurement (j2, j3); hence, the i-th spacecraft can indirectly

access to the measurements (j1, j3) and (j2, j3). Therefore, the set of sensing edges the i-th

spacecraft can access by one-hop communication is:

Esi = {(i, j1), (i, j2), (j1, j3), (j2, j3)} (2.44)

In this case, the aggregated measurement function is expressed as:

hEs
i
=



hr
(
x(i),x(j1)

)
...

hr
(
x(j2),x(j3)

)
hb

(
x(i),x(j1)

)
...

hb

(
x(j2),x(j3)

)



(2.45)

We can also consider a complete graph where an edge connects every pair of distinct

nodes. The complete graph and its elements are expressed with the superscript ”c” as:
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Gxc = (V, Exc ) where x ∈ {c, s}. For instance, in the complete graph of Figure 2.7, the

aggregated measurement function is formulated as:

hEs[c]
k

=

hEr[c]
k

hEb[c]
k

 =



hr
(
x(j1),x(j2)

)
...

hr
(
x(j3),x(j4)

)
hb

(
x(j1),x(j2)

)
...

hb

(
x(j3),x(j4)

)



(2.46)

where hEs[c]
k

: Rn(V)nx → Rny and n(y) is commputed as:

ny = n
(
Es[c]k

)
× (nr + nb) = n(V)C2 × (nr + nb) (2.47)

hence, ny = 4C2 × (1 + 2) = 18.

Figure 2.7: Example of a complete graph.
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Recursive Bayesian Filtering

3.1 Bayesian Filter

This chapter reviews the fundamental information of the recursive Bayesian filtering

used as the main estimation algorithm in this research. Let an estimated state vector

be x ∈ Rnx and let a measurement vector be y ∈ Rny . These two vectors assumed to

be random variables and the state vector x has a known prior probability function p(x).

Additionally, the condition density (likelihood function) p(y|x) is also pre-known. The

posterior conditional probability is calculated by Bayes’ law as [48]:

p(x|y) = p(y|x)p(x)
p(y)

(3.1)

where the denominator is a scalar normalization constant computed as:

p(y) =

∫
Rnx

p(y|x)p(x)dx (3.2)

Bayesian recursive filters are divided into the prediction and the measurement update.

p(xk|y1:k−1) =

∫
Rnx

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (3.3)

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫

Rnx p(yk|xk)p(xk|y1:k−1)dxk
(3.4)

3.2 Gaussian Filter

3.2.1 Gaussian Probability Density Function

The Gaussian probability density function of the random variable x is defined with the

two moment parameters, the mean vector x̂ and the covariance matrix P , as,

p(x) = N (x| x̂,P ) =
1√

(2π)nx |P |
exp

{
−1

2
(x− x̂)T P−1 (x− x̂)

}
(3.5)

25
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where the operator | · | provides the determinant of a matrix.

3.2.2 Gaussian Assumption

In this section, we summarize the algorithmic background of the Gaussian filters. [49]

We consider the nonlinear filtering problem of the following system expressed as:

xk = f (xk−1) +wk (3.6)

yk = h (xk) + vk (3.7)

where w ∈ Rnx is the process noise and v ∈ Rny is the measurement noise. Here we

assume that the noises are independent from the state vector and they follow the Gaussian

distributions as w ∼ N (w|0,Q) and v ∼ N (v|0,R), where Q ∈ Rnx×nx and Q ∈ Rny×ny .

In the framework of the Gaussian filters, the following conditions are assumed:

• The posterior probability p
(
xk−1|y1:k−1

)
follows the Gaussian distribution.

• The prior probability p
(
xk|y1:k−1

)
follows the Gaussian distribution.

• The posterior probability p (xk|y1:k) follows the Gaussian distribution.

Under these Gaussian assumptions, the above probability density functions are represented

as:

p
(
xk−1|y1:k−1

)
= N

(
xk−1|x̂k−1|k−1,P k−1|k−1

)
(3.8)

p
(
xk|y1:k−1

)
= N

(
xk|x̂k|k−1,P k|k−1

)
(3.9)

p (xk|y1:k) = N
(
xk|x̂k|k,P k|k

)
(3.10)

where the right sides are defined as Eq. (3.5). This research deals with probability as the

Gaussian distributions to enable the onboard computation for the estimation algorithms.

3.2.3 Formulation of the Gaussian Filter

We reformulate the computation process of the Bayesian recursive filter, defined as

Eqs. (3.3) and (3.4), under the Gaussian assumptions of Eqs. (3.8) to (3.10). The detail

of the derivation process is summarized in Appendix A.1.1. The prediction step of the

Gaussian filter is formulated as:

x̂k|k−1 = E [f(xk−1)] =

∫
Rnx

f(xk−1)N (xk−1|x̂k−1,P k−1)dxk−1 (3.11)

P k|k−1 = Cov [f(xk−1),f(xk−1)] = E
[
(xk − f(xk−1))(xk − f(xk−1))

T
]
+Q

=

∫
Rnx

(
f(xk−1)− x̂k|k−1

) (
f(xk−1)− x̂k|k−1

)T
×N (xk−1|x̂k−1,P k−1)dxk−1 +Q (3.12)
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and the measurement update step is formulated as:

ŷk|k−1 = E[h(xk)] =

∫
Rnx

h(xk)N (xk|x̂k|k−1,P k|k−1)dxk (3.13)

P yy
k|k−1 = E

[
(yk − ŷk|k−1)(yk − ŷk|k−1)

T
]
+R

=

∫
Rnx

(
h(xk)− ŷk|k−1

)(
h(xk)− ŷk|k−1

)T
×N (xk|x̂k|k−1,P k|k−1)dxk +R (3.14)

P xy
k|k−1 = E

[
(xk − x̂k|k−1)(yk − ŷk|k−1)

T
]

=

∫
Rnx

(
xk − x̂k|k−1

) (
h(xk)− ŷk|k−1

)T
N (xk|x̂k|k−1,P k|k−1)dxk (3.15)

Kk = P xy
k|k−1

(
P yy

k|k−1

)−1
(3.16)

x̂k = x̂k|k−1 +Kk

(
yk − ŷk|k−1

)
(3.17)

P k = P k|k−1 −KkP
yy
k|k−1K

T
k . (3.18)

where K represents the gain of the measurement update.

3.3 Extended Information Filter

When the system functions f(x) and h(x) are nonlinear, it is difficult to compute the

following integrals appeared in the Gaussian filter:

E [g(x)] =

∫
Rnx

g(x)N (x|x̂,P ) dx (3.19)

Cov [g(x), g(x)] =

∫
Rnx

(g(x)− E [g(x)]) (g(x)− E [g(x)])T N (x|x̂,P ) dx (3.20)

where g(x) ∈ {f(x),h(x)}. In this research, we introduce the linear approximation for the

function g(x) to satisfy the Gaussian assumption mentioned in Section 3.2.2. The detail

of the linear approximation of Eqs. (3.19) and (3.20) are discussed in Appendix A.2.

Additionally, we consider the different parameterizations to formulate the Gaussian

filters. A Gaussian distribution is typically represented by the two moments, mean and

covariance. On the other hand, a Gaussian distribution is also expressed with an infor-

mation matrix and an information vector in the canonical parameterization. The different

parameterization of Gaussian distributions leads to the different formulations of the Gaus-

sian filters in the prediction and the measurement update. [50] The information matrix

Z ∈ Rnx×nx and the information vector ẑ ∈ Rnx of the Gaussian distribution N (x|x̂,P )
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are defined as:

Z = P−1 (3.21)

ẑ = P−1x̂ (3.22)

where the distribution is also expressed by the canonical parameters as N (x|Z−1ẑ,Z−1).

The canonical parameterization provides a simpler formulation of the measurement update

than the moment parameterization. Therefore, it would enable the efficient implementation

of decentralized estimation algorithms introduced in the following chapter.

The Gaussian filter is reformulated as the extended information filter by combining the

above-mentioned linear approximation of probability integrals and the canonical parameter-

ization. The algorithmic detail of the extended information filter is shown in Algorithm 1.

Algorithm 1: Extended Information Filter

1 At the k-th time step;

input : ẑk−1,Zk−1

output: ẑk,Zk

2 Prediction step;

3 F k =
∂f (x)
∂x

∣∣∣
x=Z−1

k−1ẑk−1

;

4 Zk|k−1 =
(
F kZ

−1
k−1F

T
k +Q

)−1
;

5 ẑk|k−1 = Zk|k−1

(
F kZ

−1
k−1ẑk−1 +Gkuk

)
;

6 x̂k|k−1 = Z−1
k|k−1ẑk|k−1;

7 Measurement update step ;

8 Hk = ∂h(x)
∂x

∣∣∣
x=x̂k|k−1

;

9 Zk = Zk|k−1 +HT
kR

−1Hk;

10 ẑk = ẑk|k−1 +HT
kR

−1
[
yk − h

(
x̂k|k−1

)
+Hkx̂k|k−1

]
;
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Spacecraft Swarm Simulator

4.1 Overview of the Simulator

Figure 4.1 illustrates the significant functionalities and the data flow in the simulator.

We briefly summarize the essential points in the simulator. The network manager and the

measurement generator provide the corresponding network and measurement information

based on the true state vectors. The measurement generator adds proper random noises

for the measurement information to simulate actual sensor noises. Then, the measurements

are trimmed based on the network connectivity and delivered to the estimation algorithms.

Each algorithm executes its estimation process and provides the estimated state vectors. In

parallel, the communication manager computes the communication load by monitoring the

network manager and the estimation algorithms. Finally, all the information is collected

to the single visualization platform enabling various performance analyses.

4.2 General Settings for the Simulations

4.2.1 Common Settings

We consider a swarm system composed of 10 spacecraft (N = 9 member spacecraft

and a reference spacecraft). The reference spacecraft moves along a circular orbit around

the Earth at an altitude of 500km. Table 4.1 summarizes the parameters used in the

simulations.

29
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Figure 4.1: Overview of the spacecraft swarm simulator.

4.2.2 Generation of Initial Estimation Errors

The mean value of the initial estimation is randomly generated from the Gaussian

distribution, that is defined as:

p
(
x̂
(i)
0

)
= N

(
x̂
(i)
0

∣∣∣x(i)
0 ,P init

)
(4.1)

where x
(i)
0 represents the true initial state of the i-th spacecraft and P init ∈ R6×6 is the

covariance matrix defined as:

P init = diag
(
σ2
pinit

, σ2
pinit

, σ2
pinit

, σ2
vinit

, σ2
vinit

, σ2
vinit

)
. (4.2)

4.2.3 Network Connectivity

The network connectivity is one of the most influential factors affecting estimation

performance. In the practical operation of spacecraft swarms, the network connectivity is

governed by various constraints, such as the applicable range of onboard sensors or the

communication capacity of transceivers. Based on these constraints, we consider distance-

based connectivity.
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Table 4.1: Common simulation parameters

Parameter Value Units

Number of the member spacecraft (N) 9 [-]

Total simulation time 100.0 [s]

Estimation interval 1.0 [s]

STD of the range measurement noise (σr) 1.0 [m]

STD of the bearing angle measurement noise (σb) 0.01 [rad]

Data size of a single measurement 256 [bit]

Data size of a single state vector 264 [bit]

Data size of a single state covariance 1224 [bit]

STD: standard deviation

When the distance-based connectivity determines the inter-spacecraft links, a pair of

spacecraft is connected if their physical distance is shorter than the threshold ∆R. There-

fore, the degree of each spacecraft is not necessarily identical.

4.3 Performance Evaluation Metrics

4.3.1 Convergence Rate

The estimation stability is assessed with the convergence rate. If the 3σ error range,

which is calculated from the covariance matrix, bounds an estimation error, the result is

regarded as a converged estimate. We introduce the flag variable of convergence mµ
(i)
xf ∈

{0, 1}, that represents the convergence of the filter xf ∈ Xf for the estimate of the i-th

spacecraft under the m-th swarm configuration. Xf is a set of estimation filters to be

evaluated. The value of the convergence flag is defined as:

mµ(i)
xf

=

1 (The estimate is converged.)

0 (The estimate is diverged.)
(4.3)
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In addition, we introduce a gross convergence flag that evaluates whether the estimates are

converged for all the spacecraft or not. The gross convergence flag is defined as:

mµxf
=

1 if mµ
(i)
xf = 1 (∀i ∈ V)

0 otherwise
(4.4)

The judgement of the convergence in Eqs. 4.3 and 4.4 are executed by Algorithm 2, where

ke is the index of the last time step. X 2
ν represents the inverse chi-squared cumulative

distribution function defined as:

X 2
ν (x) =

∫ x

0

t
ν−2
2 e−

t
2

2
ν
2Γ
(
ν
2

)dt (4.5)

where ν is the dimension of the variable x, and Γ represents the gamma function.

Algorithm 2: Convergence judgment

input : x
(i)
ke
, N

(
x
(i)
ke
| x̂(i)

ke
,P

(i)
ke

)
(i ∈ V), xf ∈ Xf

output: mµxf
,mµ

(i)
xf (i ∈ V)

1 mµxf
= 1;

2 for i ∈ V do

3 ∆e
(i)
ke

=
∥∥∥mp̂

(i)
ke
− mp

(i)
ke

∥∥∥
2
;

4 ∆e
(i)
99% =

√
X 2
3 (99%) ·Υ(i)

p

(
P

(i)
ke

)
;

5 if ∆e
(i)
ke

> ∆e
(i)
99% then

6 mµ
(i)
xf = 0;

7 mµxf
= 0;

8 else

9 mµ
(i)
xf = 1;

10 end

11 end

The convergence rate is defined as the ratio of the simulation cases with converged

estimation results to the total number of the simulation cases. With the gross convergence

flag, the convergence rate of a filter xf is expressed as:

CRxf
=

1

M

M∑
m=1

mµxf
(4.6)
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4.3.2 Estimation Accuracy

Secondly, the estimation accuracy is evaluated by the two parameters, root mean square

error (RMSE) and root of the trace of error covariance (RTEC), which are defined as:

RMSE =
1

n(Mc)

∑
m∈Mc

(
1

N

N∑
i=1

∣∣∣mp̂
(i)
k −

mp
(i)
k

∣∣∣) , (4.7)

RTEC =
1

n(Mc)

∑
m∈Mc

(
1

N

N∑
i=1

√
trace

(
mP

(i)
p,k

))
. (4.8)

where m is the index of swarm configurations. Mc represents the set of swarm configura-

tions considered in the performance evaluation of estimation accuracy, which is generated

by Algorithm 3. M is the set of all the swarm configuration to be evaluated, mµxf
is com-

puted by Algorithm 2, Xf is the set of filtering algorithms, and Xex
f is the set of filtering

algorithms which are not considered in the evaluation of estimation accuracy. For instance,

Mc has few swarm configurations, and the meaningful evaluation becomes difficult when

Xf has a filtering algorithm with a remarkably low convergence rate. In such a case, we

set Xex
f to exclude the algorithm with a low convergence rate from the evaluated algorithm

set Xf .

Algorithm 3: Set of swarm configurations for the performance evaluation

input :M, mµxf
, Xf , X

ex
f

output:Mc

1 Mc = ∅;

2 for m ∈M do

3 if mµxf
= 1

(
∀xf ∈ Xf \Xex

f

)
then

4 Mc =Mc ∪ {m};

5 end

6 end

4.3.3 Communication Load

For the evaluation of inter-spacecraft communication load (CL), we assess the to-

tal amount of communicated data. Specifically, we consider three values, the maximum

(maxCL), the minimum (minCL), and the average communication load (aveCL), which are
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defined as:

maxCL =
1

M

M∑
m=1

(
max

(
mCL(i)

))
, (4.9)

minCL =
1

M

M∑
m=1

(
min

(
mCL(i)

))
, (4.10)

aveCL =
1

M

M∑
m=1

(
1

N

N∑
i=1

mCL(i)

)
. (4.11)



Chapter 5

Centralized and Decentralized

Estimation

5.1 Centralized Filter

In the framework of centralized estimation, one leader spacecraft collects measurement

information from all the other spacecraft and runs estimate calculation. Figures 5.1 and

5.2 show the data flow and the algorithmic flow of the centralized filter, respectively.

Figure 5.1: Inter-spacecraft communication in the centralized filter.
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Figure 5.2: Algorithmic flow of the centralized filter.

The centralized filter estimates the aggregated state of all the spacecraft in the swarm.

The aggregated state vector is defined as:

x
(c)
k =

[(
x
(1)
k

)T
· · ·

(
x
(i)
k

)T
· · ·

(
x
(N)
k

)T]T
(5.1)

and the corresponding covariance matrix is

P
(c)
k = E

[(
x
(c)
k − x̂

(c)
k

)(
x
(c)
k − x̂

(c)
k

)T]
. (5.2)

Then, the information vector and the information matrix are computed as z
(c)
k =

(
P

(c)
k

)−1
x
(c)
k

and Z
(c)
k =

(
P

(c)
k

)−1
respectively.

For simplicity, we formulate the centralized estimation as the extended information

filter, reviewed in Section 3.3. The prediction step is formulated as follows.

Z
(c)c
k|k−1 =

(
F (c)

(
Z

(c)c
k−1

)−1 (
F (c)

)T
+Q(c)

)−1

(5.3)

ẑ
(c)c
k|k−1 = Z

(c)c
k|k−1

(
F (c)(Z

(c)c
k−1)

−1ẑ
(c)c
k−1 +G(c)u

(c)
k

)
(5.4)

where the aggregated matrices F (c), G(c), Q(c) are defined as:

X(c) =



X(1) 0
. . .

X(i)

. . .

0 X(N)


, X ∈ {F ,G,Q}. (5.5)

The non-diagonal block elements in Eq. (5.5) are zero since each spacecraft’s motion and

control input are independent.
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To formulate the measurement update step, we firstly consider the measurements under

the complete sensing graph. The measurement vector of the complete sensing graph is

represented as:

y
(c)
k =

[(
y
(01)
k

)T
· · ·

(
y
(ij)
k

)T
· · ·

(
y
((N−1)N)
k

)T]T
(5.6)

= hEs[c]
k

(
x
(c)
k

)
+ v

(c)
k (5.7)

when we consider the range and bearing angle measurements separately, each measurement

vector is represented as:

y
(c)
r,k = hEr[c]

k

(
x
(c)
k

)
+ v

(c)
r,k (5.8)

y
(c)
b,k = hEb[c]

k

(
x
(c)
k

)
+ v

(c)
b,k. (5.9)

The Jacobian matrices of the aggregated measurement functions on the complete sensing

graphs hEr[c]
k

and hEb[c]
k

are defined as:

H
(c)
r,k =

∂hEr[c]
k

∂x
(c)
k

∣∣∣∣∣
x(c)

k =x̂(c)
k|k−1

(5.10)

H
(c)
b,k =

∂hEb[c]
k

∂x
(c)
k

∣∣∣∣∣
x(c)

k =x̂(c)
k|k−1

(5.11)

In actual situations, the sensing networks are possibly incomplete graphs. Hence, some

algebraic processes ignore the sensing information corresponding to the unconnected edges.

It is possible to adjust the contribution of each measurement by modifying the error co-

variance matrix of measurements. The adjusted covariance matrix is defined as:

R̃
(c)
s,k = Γ

(
R

(c)
s,k, E

s
k

)
, s ∈ {r, b} (5.12)

where Γ is a function to change the element in R
(c)
s,k to the infinity when the corresponding

sensing edge is not included in Esk . The aggregated measurement error covariance matrices

R
(c)
s,k, s ∈ {r, b} are defined as:

R
(c)
r,k =



σ2
r 0

. . .

σ2
r

. . .

0 σ2
r


, R

(c)
b,k =



Rb 0
. . .

Rb

. . .

0 Rb


(5.13)
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where R
(c)
r,k ∈ Rnrny×nrny , R

(c)
b,k ∈ Rnbny×nbny , and ny = (N+1)C2. An infinite element

in the measurement error covariance suggests that the corresponding measurement has

zero information gain and it does not affect the updated estimate result. Finally, the

measurement update step of the centralized extended information filter is formulated as:

Z
(c)c
k|k = Z

(c)c
k|k−1 +

∑
s∈{r,b}

(
H

(c)
s,k

)T (
R̃

(c)
s,k

)−1
H

(c)
s,k (5.14)

ẑ
(c)c
k|k = ẑ

(c)c
k|k−1 +

∑
s∈{r,b}

(
H

(c)
s,k

)T (
R̃

(c)
s,k

)−1 (
y
(c)
s,k − ŷ

(c)
s,k|k−1 +H

(c)
s,kx̂

(c)c
k|k−1

)
. (5.15)

Algorithm 4 summarizes the computational flow of the CF.

Algorithm 4: CF: Centralized Filter

1 At the k-th time step on the leader spacecraft (fusion center) ;

input : ẑ
(c)c
k−1,Z

(c)c
k−1

output: ẑ
(c)c
k ,Z

(c)c
k

2 Prediction step;

3 Z
(c)c
k|k−1 =

(
F (c)

(
Z

(c)c
k−1

)−1 (
F (c)

)T
+Q(c)

)−1

;

4 ẑ
(c)c
k|k−1 = Z

(c)c
k|k−1

(
F (c)(Z

(c)c
k−1)

−1ẑ
(c)c
k−1 +G(c)u

(c)
k

)
;

5 Measurement update step ;

6 Collect the measurements y
(c)
k from all the spacecraft ;

7 Compute the Jacobian matrices H
(c)
r,k and H

(c)
b,k ;

8 H
(c)
r,k =

∂h
Er[c]
k

∂x(c)
k

∣∣∣∣∣
x(c)

k =x̂(c)
k|k−1

, H
(c)
b,k =

∂h
Eb[c]
k

∂x(c)
k

∣∣∣∣∣
x(c)

k =x̂(c)
k|k−1

;

9 Compute the adjusted error covariance based on the sensing networks ;

10 R̃
(c)
s,k = Γ

(
R

(c)
s,k, E

s
k

)
, s ∈ {r, b} ;

11 Z
(c)c
k|k = Z

(c)c
k|k−1 +

∑
s∈{r,b}

(
H

(c)
s,k

)T (
R̃

(c)
s,k

)−1
H

(c)
s,k ;

12 ẑ
(c)c
k|k = ẑ

(c)c
k|k−1 +

∑
s∈{r,b}

(
H

(c)
s,k

)T (
R̃

(c)
s,k

)−1 (
y
(c)
s,k − ŷ

(c)
s,k|k−1 +H

(c)
s,kx̂

(c)c
k|k−1

)
;
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5.2 Fully Decentralized Filter

In the CF introduced in the previous section, all the measurement information should

be collected to a single node in the swarm system. The necessity of information collection

possibly results in huge communication costs and low durability against spacecraft mal-

function, especially for large swarm systems. In such a situation, estimation algorithms

based on decentralized architectures are highly effective.

In this section, we consider a fully-decentralized filter, in which each spacecraft only

estimates its own state with locally available information. Each spacecraft executes the

estimation with measurements obtained by its own sensors and the state information shared

from the adjacent spacecraft. As illustrated in Figure 5.3, each spacecraft only needs

to interact with the adjacent spacecraft; hence the communication cost is significantly

reduced, and high scalability is achieved. Figure 5.4 shows the algorithmic flow of the fully

decentralized filter.

Figure 5.3: Inter-spacecraft communication in the fully decentralized filter

Figure 5.4: Algorithmic flow of the fully decentralized filter.
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Firstly, we consider the prediction step of the fully decentralized filter on the i-th

spacecraft, that is one of the spacecraft (i ∈ V) in the swarm. As previously described, the

i-th spacecraft only takes care of its own state, therefore, the prediction step is formulated

as:

Z
(i)i
k|k−1 =

(
F (i)

(
Z

(i)i
k−1

)−1 (
F (i)

)T
+Q(i)

)−1

(5.16)

ẑ
(i)i
k|k−1 = Z

(i)i
k|k−1

(
F (i)

(
Z

(i)i
k−1

)−1
ẑ
(i)
k−1 +G(i)u

(i)
k

)
. (5.17)

Next, we consider the measurement update step. For the enhanced stability of update

calculation, the range and bearing angle measurements are converted to the single position

measurement as follows.

p̂
(i)j
k|k−1 = g

(
p̂
(j)j
k|k−1,y

(ij)j
k

)
(5.18)

g
(
p
(j)
k|k−1,y

(ij)
k

)
= p

(j)
k|k−1 +


y
(ij)
r,k cosϕ

(ij)
k cos θ

(ij)
k

y
(ij)
r,k cosϕ

(ij)
k sin θ

(ij)
k

y
(ij)
r,k sinϕ

(ij)
k


(5.19)

where y
(ij)j
k is the relative measurements between the i-th and the j-th spacecraft which

the j-th spacecraft obtains. The physical meaning of Eqs. (5.18) and (5.19) is visualized in

Figure 5.5.

Figure 5.5: Position measurement conversion between two spacecraft in the fully decentralized

filter.
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The corresponding error covariance matrix of the estimated i-th position P̃
(i)j
p,k|k−1 ∈

R3×3 is computed as:

P̃
(i)j
p,k|k−1 =

(
∂g(ij)j

∂p
(j)
k

)
P

(j)j
p,k|k−1

(
∂g(ij)j

∂p
(j)
k

)T

+

(
∂g(ij)j

∂y
(ij)
k

)
R

(ij)
k

(
∂g(ij)j

∂y
(ij)
k

)T

(5.20)

∂g(ij)j

∂p
(j)
k

≜
∂g
(
p
(j)
k ,y

(ij)
k

)
∂p

(j)
k

∣∣∣∣∣∣
p(j)

k =p̂(j)j
k

(5.21)

∂g(ij)j

∂y
(ij)
k

≜
∂g
(
p
(j)
k ,y

(ij)
k

)
∂y

(ij)
k

∣∣∣∣∣∣
p(j)

k =p̂(j)j
k

(5.22)

where P
(j)j
p,k|k−1 is the prior error covariance matrix of the j-th spacecraft state estimated

on the j-th spacecraft. R
(ij)
k ∈ R3×3 is the error covariance matrix of the range and bearing

angle measurements between the i-th and the j-th spacecraft, which is defined as:

R
(ij)
k =


σ2
r 0 0

0 σ2
b 0

0 0 σ2
b


. (5.23)

As the superscripts of Eqs. (5.18) to (5.22) suggest, they are calculated on the j-th space-

craft and transferred to the i-th spacecraft through the inter-spacecraft communication

link. Eq. (5.21) is calculated as:

∂g(ij)j

∂p
(j)
k

=


1 0 0

0 1 0

0 0 1


(5.24)

and the first row elements of Eq. (5.22) is calculated as:

∂g(ij)j [1]

∂y
(ij)
r,k

=
∂

∂y
(ij)
r,k

[
p
(j)
x,k + y

(ij)
r,k cosϕ

(ij)
k cos θ

(ij)
k

]
= cosϕ

(ij)
k cos θ

(ij)
k (5.25)

∂g(ij)j [1]

∂θ
(ij)
k

= −y(ij)r,k cosϕ
(ij)
k sin θ

(ij)
k (5.26)

∂g(ij)j [1]

∂ϕ
(ij)
k

= −y(ij)r,k sinϕ
(ij)
k cos θ

(ij)
k (5.27)
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and the second row elements of Eq. (5.22) is calculated as:

∂g(ij)j [2]

∂y
(ij)
r,k

=
∂

∂y
(ij)
r,k

[
p
(j)
y,k + y

(ij)
r,k cosϕ

(ij)
k sin θ

(ij)
k

]
= cosϕ

(ij)
k sin θ

(ij)
k (5.28)

∂g(ij)j [2]

∂θ
(ij)
k

= y
(ij)
r,k cosϕ

(ij)
k cos θ

(ij)
k (5.29)

∂g(ij)j [2]

∂ϕ
(ij)
k

= −y(ij)r,k sinϕ
(ij)
k sin θ

(ij)
k (5.30)

and the third row elements of Eq. (5.22) is calculated as:

∂g(ij)j [3]

∂y
(ij)
r,k

=
∂

∂y
(ij)
r,k

[
p
(j)
z,k + y

(ij)
r,k sinϕ

(ij)
k

]
= sinϕ

(ij)
k (5.31)

∂g(ij)j [3]

∂θ
(ij)
k

= 0 (5.32)

∂g(ij)j [3]

∂ϕ
(ij)
k

= y
(ij)
r,k cosϕ

(ij)
k . (5.33)

Finally, the information contribution matrix U
(i)j
k|k−1 and the information contribution

vector û
(i)j
k|k−1 are computed as:

U
(i)j
k|k−1 =


(
P̃

(i)j
p,k|k−1

)−1
O3×3

O3×3 O3×3

 (5.34)

û
(i)j
k|k−1 =


(
P̃

(i)j
p,k|k−1

)−1
p̂
(i)j
k|k−1

O3×1

 (5.35)

where the velocity-related elements are set as zero since range and bearing angle measure-

ments obtained at a single time step have no information gain for velocity estimates.

We consider the measurement update step based on the converted position measure-

ments expressed as Eqs. (5.34) and (5.35). The i-th spacecraft obtains the measurement

information from the adjacent spacecraft. To acquire the position measurement, both range

and bearing angle measurements must be available. Let the set of the adjacent spacecraft

that can get range and bearing angle measurements with respect to the i-th spacecraft at

the k-th time step be Vrbi,k, that is defined as:

Vrbi,k =
{
j ∈ V | (i, j) ∈ Eri,k ∩ Ebi,k

}
(5.36)
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where Eri,k ∩ Ebi,k represents the set of inter-spacecraft links where both range and bearing

angle measurements are available.

Then, we consider fusing the prior estimate with the information contribution. It is

essential to note that the estimates ẑ
(i)i
k|k−1,Z

(i)i
k|k−1 and û

(i)j
k|k−1,U

(i)j
k|k−1, for the random

variable z
(i)
k , are not independent. If the i-th and the j-th spacecraft have communicated

measurement information before the k-th time step and execute the measurement update,

their estimates are correlated. In the fully decentralized architecture, the cross-correlation

terms for any two spacecraft are not tracked. Therefore, the measurement information

is possibly overcounted if the information contribution probability is purely merged into

the prior estimates. It possibly leads to estimation inconsistency and induces estimate

divergence.

The Covariance Intersection (CI) is highly effective in managing this issue. The CI is

a fusion method taking a convex combination of the means and covariances of the source

estimates. [51] The main advantage of the CI is that it certainly provides consistent fusion

results even if there exists an unknown correlation between source estimates. Then, the

measurement update step based on the CI is formulated as:

Z
(i)i
k|k = ωiZ

(i)i
k|k−1 +

∑
j∈Vrb

i,k

ωjU
(i)j
k|k−1 (5.37)

ẑ
(i)i
k|k = ωiẑ

(i)i
k|k−1 +

∑
j∈Vrb

i,k

ωjû
(i)j
k|k−1 (5.38)

where ωi, ωj are the CI parameters satisfying the condition: ωi+
∑

j∈Vrb
i,k

ωj = 1. These co-

efficient parameters are calculated to minimize the trace of the posterior covariance matrix

(Z
(i)i
k|k )

−1.

Algorithm 5 shows the computational detail of the fully decentralized filter (FDF), and

Algorithm 6 represents one of the robust fully decentralized filters (R-FDF). The main

difference between the FDF and the R-FDF is whether the covariance information of each

spacecraft is transferred or not. In the FDF, each spacecraft sends only measurement

information; hence, the communication cost is kept low. On the other hand, the R-FDF

also sends the covariance information in the form of the relative position measurements for

more consistent estimation though it consumes communication resources.
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Algorithm 5: FDF: Fully Decentralized Filter

1 At the k-th time step on the i-th spacecraft;

2 (The following process equally runs on all the spacecraft.);

input : ẑ
(i)i
k−1,Z

(i)i
k−1

output: ẑ
(i)i
k ,Z

(i)i
k

3 Prediction step;

4 Z
(i)i
k|k−1 =

(
F (i)

(
Z

(i)i
k−1

)−1 (
F (i)

)T
+Q(i)

)−1

;

5 ẑ
(i)i
k|k−1 = Z

(i)i
k|k−1

(
F (i)

(
Z

(i)i
k−1

)−1
ẑ
(i)
k−1 +G(i)u

(i)
k

)
;

6 Measurement update step ;

7 Receive the measurements y
(ij)j
k from the adjacent spacecraft ;

8 Compute the relative position measurements ;

9 p̂
(i)j
k|k−1 = g

(
p
(i)j
k|k−1,y

(ij)j
k

)
;

10 P̃
(j)i
p,k|k−1 =

(
∂g(ij)j

∂y(ij)
k

)
R

(ij)
k

(
∂g(ij)j

∂y(ij)
k

)T

;

11 Convert p̂
(i)j
k|k−1, P̃

(i)j
p,k|k−1 to û

(i)j
k|k−1,U

(i)j
k|k−1 ;

12 Execute the covariance intersection ;

13 Z
(i)i
k|k = ωiZ

(i)i
k|k−1 +

∑
j∈Vrb

i,k
ωjU

(i)j
k|k−1 ;

14 ẑ
(i)i
k|k = ωiẑ

(i)i
k|k−1 +

∑
j∈Vrb

i,k
ωjû

(i)j
k|k−1 ;
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Algorithm 6: R-FDF: Robust Fully Decentralized Filter

1 At the k-th time step on the i-th spacecraft;

2 (The following process equally runs on all the spacecraft.);

input : ẑ
(i)i
k−1,Z

(i)i
k−1

output: ẑ
(i)i
k ,Z

(i)i
k

3 Prediction step;

4 Z
(i)i
k|k−1 =

(
F (i)

(
Z

(i)i
k−1

)−1 (
F (i)

)T
+Q(i)

)−1

;

5 ẑ
(i)i
k|k−1 = Z

(i)i
k|k−1

(
F (i)

(
Z

(i)i
k−1

)−1
ẑ
(i)
k−1 +G(i)u

(i)
k

)
;

6 Measurement update step ;

7 Compute the relative position measurements for the adjacent spacecraft ;

8 p̂
(j)i
k|k−1 = g

(
p
(i)i
k|k−1,y

(ji)i
k

)
;

9 P̃
(j)i
p,k|k−1 =

(
∂g(ji)i

∂p(i)
k

)
P

(i)i
p,k|k−1

(
∂g(ji)i

∂p(i)
k

)T

+

(
∂g(ji)i

∂y(ji)
k

)
R

(ji)
k

(
∂g(ji)i

∂y(ji)
k

)T

;

10 Transfer p̂
(j)i
k|k−1, P̃

(j)i
p,k|k−1 to the j-th spacecraft (∀j ∈ Vrbi,k) ;

11 Receive p̂
(i)j
k|k−1, P̃

(i)j
p,k|k−1 from the j-th spacecraft (∀j ∈ Vrbi,k) ;

12 Convert p̂
(i)j
k|k−1, P̃

(i)j
p,k|k−1 to û

(i)j
k|k−1,U

(i)j
k|k−1 ;

13 Execute the covariance intersection ;

14 Z
(i)i
k|k = ωiZ

(i)i
k|k−1 +

∑
j∈Vrb

i,k
ωjU

(i)j
k|k−1 ;

15 ẑ
(i)i
k|k = ωiẑ

(i)i
k|k−1 +

∑
j∈Vrb

i,k
ωjû

(i)j
k|k−1 ;
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5.3 Partially Decentralized Filter

The partially decentralized filter (PDF) is the intermediate approach between the CF

and the FDF. In the PDF, each spacecraft estimates the subset of states, including its

own state and the states of the adjacent spacecraft, as shown in Figure 5.6. The states of

spacecraft covered by the red region are estimated similarly to the CF. On the other hand,

support spacecraft outside the red area but connected by one-hop communication links

are utilized to leverage measurements between the estimated spacecraft and the support

spacecraft. By estimating the states of several spacecraft simultaneously, the PDF can

explicitly consider the correlations among spacecraft. Figure 5.7 shows the algorithmic

flow of the PDF.

Figure 5.6: Inter-spacecraft communication in the partially decentralized filter

Figure 5.7: Algorithmic flow of the partially decentralized filter.

The PDF manages a collection of spacecraft states defined as x(Ṽc
i,k), where the space-
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craft set Ṽci,k is defined in Section 2.5. On the estimator of the i-th spacecraft, the propa-

gation step is formulated as:

Z
(Ṽc

i,k)i

k|k−1 =

(
F (Ṽc

i,k)

(
Z

(Ṽc
i,k)i

k−1

)−1 (
F (Ṽc

i,k)
)T

+Q(Ṽc
i,k)

)−1

(5.39)

ẑ
(Ṽc

i,k)i

k|k−1 = Z
(Ṽc

i,k)i

k|k−1

(
F (Ṽc

i,k)

(
Z

(Ṽc
i,k)i

k−1

)−1

z
(Ṽc

i,k)i

k−1 +G(Ṽc
i,k)u

(Ṽc
i,k)

k

)
. (5.40)

where the aggregated matrices F (Ṽc
i,k), G(Ṽc

i,k), Q(Ṽc
i,k) are defined as:

X(Ṽc
i,k) =



. . . 0

X(j)

0 . . .


, j ∈ Ṽci,k, X ∈ {F ,G,Q}. (5.41)

Next, we consider the measurement update step. For the preparation, a few node and

edge sets are defined as:

Eci,k ≜
{
(j, l) ∈ Eck | j, l ∈ Ṽci,k

}
(5.42)

Ẽci,k ≜
{
(j, l) ∈ Eck | j ∈ Vci,k, l ∈ M̃c

i,k

}
(5.43)

M̃c
i,k ≜

{
j ∈ V | (j, l) ∈ Eck, j /∈ Ṽci,k, l ∈ Ṽci,k

}
. (5.44)

In the case of Figure 5.8, the node and edge sets are represented as:

Eci,k = {(i, j1), (i, j2), (i, j3), (j2, j3)}

Ẽck = {(j3, j4)}

Vci,k = {j1, j2, j3}

Ṽci,k = {i, j1, j2, j3}

M̃c
i,k = {j4}.

Figure 5.8: Estimation sequence of the partial-state decentralized filter
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As with the CF, we firstly consider that the complete sensing graph is adjusted by

modifying the error covariance matrix of measurements. The adjusted covariance matrix

is computed in the same manner with Eq. (5.12) as:

R̃
(Ṽc

i,k)

s,k = Γ
(
R

(c)
s,k, E

s
i,k

)
, s ∈ {r, b} (5.45)

where the available sensing network of each spacecraft differs as shown in Figure 5.9.

Figure 5.9: Sensing networks in the partially decentralized filter

Therefore, the information contribution matrix U
(Ṽc

i,k)

k and vector u
(Ṽc

i,k)

k are formulated

as:

U
(Ṽc

i,k)i

k =
∑

s∈{r,b}

(
H

(c)
s,k

)T (
R̃

(Ṽc
i,k)

s,k

)−1

H
(c)
s,k (5.46)

u
(Ṽc

i,k)i

k =
∑

s∈{r,b}

(
H

(c)
s,k

)T (
R̃

(Ṽc
i,k)

s,k

)−1 (
y
(c)
s,k − ŷ

(c)
s,k|k−1 +H

(c)
s,kx̂

(c)c
k|k−1

)
(5.47)

In an actual scenario, the elements ofH
(c)
s,k, ŷ

(c)
s,k|k−1, x̂

(c)c
k|k−1 corresponding to spacecraft that

are not included in Ṽci,k cannot be calculated. However, they are ignored when multiplying

the inverse of R̃
(Ṽc

i,k)

s,k , so they can be replaced with some random values, such as zero.

In addition to the inter-spacecraft measurement information expressed as Eqs. (5.46)

and (5.47), the measurements related to the support spacecraft (l ∈ M̃c
i,k) are also available.
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They are integrated as additional likelihood probability in the CI manner since the cross-

correlation is unknown. Finally, the measurement update step of the partially decentralized

filter is summarized as:

Z
(Ṽc

i,k)i

k|k = ωi

(
Z

(Ṽc
i,k)i

k|k−1 +U
(Ṽc

i,k)

k

)
+

∑
(j,l)∈Ẽc

k

ωpU
(j)l
k|k−1 (5.48)

z
(Ṽc

i,k)i

k|k = ωi

(
z
(Ṽc

i,k)i

k|k−1 + u
(Ṽc

i,k)

k

)
+

∑
(j,l)∈Ẽc

k

ωpu
(j)l
k|k−1 (5.49)

where ωi, ωp are the CI parameters satisfying the condition: ωi+
∑n(Ẽc

k)
p=1 ωp = 1. These co-

efficient parameters are calculated to minimize the trace of the posterior covariance matrix

(Z
(Ṽc

i,k)i

k|k )−1.

In the partially decentralized filter, the set of estimated spacecraft may change over time

along with the update of the communication network. We consider the network update

as shown in Figure 5.10. At the k-th time step, the adjacent set of the i-th spacecraft

changes from {1, 2, 3, 4} to {1, 2, 4, 5}. In this case, the estimator on the i-th spacecraft

stops estimating the state of the 3-rd spacecraft and starts to track the state of the 5-th

spacecraft alternatively. The estimated information vector is updated as:

z
1(−)
k =

[
z
(1)1
k z

(2)1
k z

(3)1
k z

(4)1
k

]T
(5.50)

z
1(+)
k =

[
z
(1)1
k z

(2)1
k z

(4)1
k z

(5)1
k

]T
, z

(5)1
k = z

(5)5
k|k−1 (5.51)

and the information matrix is updated as:

Z
1(−)
k =



Z
(11)1
k Z

(12)1
k Z

(13)1
k Z

(14)1
k

Z
(21)1
k Z

(22)1
k Z

(23)1
k Z

(24)1
k

Z
(31)1
k Z

(32)1
k Z

(33)1
k Z

(34)1
k

Z
(41)1
k Z

(42)1
k Z

(43)1
k Z

(44)1
k


(5.52)

Z
1(+)
k =



Z
(11)1
k Z

(12)1
k Z

(14)1
k O

Z
(21)1
k Z

(22)1
k Z

(24)1
k O

Z
(41)1
k Z

(42)1
k Z

(44)1
k O

O O O Z
(55)1
k


, Z

(55)1
k = Z

(55)5
k|k−1 (5.53)
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Figure 5.10: Network update in the partially decentralized filter

We consider the two types of algorithms: the partially decentralized filter (PDF) defined

as Algorithm 7 and the robust partially decentralized filter (R-PDF) defined as Algorithm 8.
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Algorithm 7: PDF: Partially Decentralized Filter

1 At the k-th time step on the i-th spacecraft ;

2 (The following process equally runs on all the spacecraft.) ;

input : ẑ
(Ṽc

i,k)i

k−1 ,Z
(Ṽc

i,k)i

k−1

output: ẑ
(Ṽc

i,k)i

k ,Z
(Ṽc

i,k)i

k

3 Grouping step;

4 Check the update of the communication network. ;

5 Prediction step;

6 Z
(Ṽc

i,k)i

k|k−1 =

(
F (Ṽc

i,k)

(
Z

(Ṽc
i,k)i

k−1

)−1 (
F (Ṽc

i,k)
)T

+Q(Ṽc
i,k)

)−1

;

7 ẑ
(Ṽc

i,k)i

k|k−1 = Z
(Ṽc

i,k)i

k|k−1

(
F (Ṽc

i,k)

(
Z

(Ṽc
i,k)i

k−1

)−1

ẑ
(Ṽc

i,k)i

k−1 +G(Ṽc
i,k)u

(Ṽc
i,k)

k

)
;

8 Measurement update step ;

9 Compute the adjusted error covariance based on the local sensing networks ;

10 R̃
(Ṽc

i,k)

s,k = Γ
(
R

(c)
s,k, E

s
i,k ∪ Ẽsi,k

)
, s ∈ {r, b} ;

11 Compute the information contribution in the estimated subset ;

12 U
(Ṽc

i,k)i

k =
∑

s∈{r,b}

(
H

(c)
s,k

)T (
R̃

(Ṽc
i,k)

s,k

)−1

H
(c)
s,k ;

13 u
(Ṽc

i,k)i

k =
∑

s∈{r,b}

(
H

(c)
s,k

)T (
R̃

(Ṽc
i,k)

s,k

)−1 (
y
(c)
s,k − ŷ

(c)
s,k|k−1 +H

(c)
s,kx̂

(c)c
k|k−1

)
;

14 Execute the measurement update ;

15 Z
(Ṽc

i,k)i

k|k = Z
(Ṽc

i,k)i

k|k−1 +U
(Ṽc

i,k)

k ;

16 ẑ
(Ṽc

i,k)i

k|k = ẑ
(Ṽc

i,k)i

k|k−1 + u
(Ṽc

i,k)

k ;
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Algorithm 8: R-PDF: Robust Partially Decentralized Filter

1 At the k-th time step on the i-th spacecraft ;

2 (The following process equally runs on all the spacecraft.) ;

input : ẑ
(Ṽc

i,k)i

k−1 ,Z
(Ṽc

i,k)i

k−1

output: ẑ
(Ṽc

i,k)i

k ,Z
(Ṽc

i,k)i

k

3 Grouping step;

4 Check the update of the communication network. ;

5 Prediction step;

6 Z
(Ṽc

i,k)i

k|k−1 =

(
F (Ṽc

i,k)

(
Z

(Ṽc
i,k)i

k−1

)−1 (
F (Ṽc

i,k)
)T

+Q(Ṽc
i,k)

)−1

;

7 ẑ
(Ṽc

i,k)i

k|k−1 = Z
(Ṽc

i,k)i

k|k−1

(
F (Ṽc

i,k)

(
Z

(Ṽc
i,k)i

k−1

)−1

ẑ
(Ṽc

i,k)i

k−1 +G(Ṽc
i,k)u

(Ṽc
i,k)

k

)
;

8 Measurement update step ;

9 Compute the adjusted error covariance based on the local sensing networks ;

10 R̃
(Ṽc

i,k)

s,k = Γ
(
R

(c)
s,k, E

s
i,k

)
, s ∈ {r, b} ;

11 Compute the information contribution in the estimated subset ;

12 U
(Ṽc

i,k)i

k =
∑

s∈{r,b}

(
H

(c)
s,k

)T (
R̃

(Ṽc
i,k)

s,k

)−1

H
(c)
s,k ;

13 u
(Ṽc

i,k)i

k =
∑

s∈{r,b}

(
H

(c)
s,k

)T (
R̃

(Ṽc
i,k)

s,k

)−1 (
y
(c)
s,k − ŷ

(c)
s,k|k−1 +H

(c)
s,kx̂

(c)c
k|k−1

)
;

14 Compute the information contribution of the support spacecraft

(l ∈ M̃c
i,k, j ∈ Ẽck) ;

15 p̂
(j)l
k|k−1 = g

(
p
(l)l
k|k−1,y

(jl)l
k

)
;

16 P̃
(j)l
p,k|k−1 =

(
∂g(jl)l

∂p(l)
k

)
P

(l)l
p,k|k−1

(
∂g(jl)l

∂p(l)
k

)T

+

(
∂g(jl)l

∂y(jl)
k

)
R

(jl)
k

(
∂g(jl)l

∂y(jl)
k

)T

;

17 Convert p̂
(j)l
k|k−1, P̃

(j)l
p,k|k−1 to û

(j)l
k|k−1,U

(j)l
k|k−1 ;

18 Execute the covariance intersection ;

19 Z
(Ṽc

i,k)i

k|k = ωi

(
Z

(Ṽc
i,k)i

k|k−1 +U
(Ṽc

i,k)

k

)
+
∑

(j,l)∈Ẽc
i,k

ωpU
(j)l
k|k−1 ;

20 ẑ
(Ṽc

i,k)i

k|k = ωi

(
ẑ
(Ṽc

i,k)i

k|k−1 + u
(Ṽc

i,k)

k

)
+
∑

(j,l)∈Ẽc
i,k

ωpu
(j)l
k|k−1 ;
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5.4 Performance Comparison of Existing Algorithms

In this section, we evaluate the performances of the estimation algorithms with the

different levels of decentralization: the centralized filter, the fully decentralized filter, and

the partially decentralized filter, as summarized in Table 5.1. The detailed information

on simulation conditions is summarized in Chapter 4. In the performance verification, we

evaluate the convergence rate, the estimation accuracy, and the communication load.

Table 5.1: Estimation algorithms with the different levels of decentralization

No. Acronym Full name Detail

(i) CF Centralized Filter Algorithm 4

(ii) R-FDF Robust Fully Decentralized Filter Algorithm 6

(iii) R-PDF Robust Partially Decentralized Filter Algorithm 8

Figure 5.11 shows the relationship between the connection rate and the network thresh-

old. We evaluate various metrics with respect to the average connection rate instead of the

network threshold.

Figure 5.11: Network connection rate (the performance comparison of the existing algorithms).

Figure 5.12 shows the convergence rate with respect to the average connection rate

defined as Eq. (2.35). In this evaluation, if the distance between two spacecraft is shorter

than the network threshold, there exists the communication or sensing link between them
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regardless of any other limitation, such as communication window number. As shown in

Figure 5.12, all the filters achieve a 100% convergence rate when the average connection rate

is higher than 90%. However, when the connection rate is lower than 90%, the performances

differ among the three filters. The fully decentralized filter achieves a 100% convergence

rate regardless of the average connection rate. On the other hand, the centralized and

partially decentralized filters provide a lower convergence rate as the network connection

rate decreases.

Figure 5.12: Convergence rate (the performance comparison of the existing algorithms).

We consider the estimation results with the same conditions for the fair performance

comparison. Figure 5.13 shows the gross convergence flags mµxf
of Eq. (4.4).

Figure 5.13: Gross convergence flags (the performance comparison of the existing algorithms).

Regarding estimation accuracy, as shown in Figures 5.14 and 5.15, the centralized filter
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provides the best results. On the other hand, the estimation accuracy of the fully decen-

tralized filter is lower than the other two filters though it achieves the highest stability.

Another remarkable point is that the partially decentralized filter provides the same re-

sult as the centralized filter when the network is fully connected. In that condition, the

algorithm of the partially decentralized filter gets identical to that of the centralized filter.

(a) Overall view (b) Extended view

Figure 5.14: Root mean square errors of the estimated positions (the performance comparison of

the existing algorithms).

(a) Overall view (b) Extended view

Figure 5.15: Root of the trace of the position error covariance matrix (the performance comparison

of the existing algorithms).
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As shown in Figure 5.16, the centralized filter takes much higher costs for inter-spacecraft

communication than the other decentralized filters. In the framework of the centralized fil-

ter, all the information related to the estimation process should be collected to the leader

spacecraft by inter-spacecraft communication; therefore, it leads to the high communica-

tion cost. This is one of the main reasons to make the estimation process decentralized

in large multi-agent systems such as spacecraft swarms. When comparing the fully and

the partially decentralized filters, the fully decentralized filter interacts with fewer adjacent

spacecraft than the partially decentralized filter. Therefore, the fully decentralized filter

needs the smallest costs for inter-spacecraft communication.

Figure 5.16: Communication load (the performance comparison of the existing algorithms).

Finally, the advantages and the disadvantages of the three estimation filters are sum-

marized in the following tables with respect to the accuracy, stability, and communication

load. Table 5.2 shows the features of estimation performances when the communication

and sensing networks are dense, that is ρ̄ ≥ 70%. When the spacecraft in the swarm are

strongly connected by the networks, high stability is achieved regardless of the decentraliza-

tion levels. However, the stability of the centralized and the partially decentralized filters

are notably degraded when the networks are sparse, that is ρ̄ < 70%, as shown in Fig-

ure 5.12 and Table 5.3. If the fully decentralized filter is applied for the swarm navigation,

high stability is achieved even with the sparse networks. However, the estimation accuracy

is much worse than the centralized and the partially decentralized filters, as shown in Fig-

ures 5.14 and 5.15. In summary, it is demanded to develop a new algorithm to realize the
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feature listed in the last row of Table 5.3.

Table 5.2: Characteristics of the three estimation algorithms for dense networks

Decentralization level Accuracy Stability Communication load

Centralized high high high

Fully decentralized low high low

Partially decentralized high ∼ medium high low ∼ medium

Color meanings: advantage ← medium → disadvantage

Table 5.3: Characteristics of the three estimation algorithms for sparse networks

Decentralization level Accuracy Stability Communication load

Centralized high medium ∼ low high

Fully decentralized low high low

Partially decentralized high ∼ medium medium ∼ low low

Desired algorithm high ∼ medium high low

Color meanings: advantage ← medium → disadvantage





Chapter 6

Adaptive Decentralized Filter

6.1 Overview of Adaptive Decentralized Filter

As we analyze in Section 5.4, the fully decentralized filters have the advantage of high

estimation stability; however, the estimation accuracy is relatively low. On the other hand,

the centralized and partially decentralized filters have a challenge in estimation stability

while achieving high estimation accuracy. Although both accuracy and stability are de-

manded in practical swarm applications, the existing algorithms do not satisfy both require-

ments with sufficient levels. To solve this issue, we propose a new estimation algorithm,

the adaptive decentralized filter (ADF), that combines the advantages of the centralized

and the decentralized estimation filters and realizes high accuracy and high stability at the

same time.

The basic algorithmic flow of the ADF is illustrated in Figure 6.1. The ADF indepen-

dently executes two filtering algorithms, the internal fully decentralized filter (iFDF) and

the internal partially decentralized filter (iPDF). The ADF properly merges two estimates

from the iFDF and the iPDF to make use of the advantages of two filters, the high stability

of the iFDF and the high accuracy of the iPDF.

59
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Figure 6.1: Algorithmic flow of the adaptive decentralized filter.

6.2 Algorithmic Details of Adaptive Decentralized Filter

This section summarizes the algorithmic detail of the ADF. The algorithm of the ADF

can be divided into two phases, the pre-filtering phase and the fusing phase.

6.2.1 Pre-filtering Phase

Prediction

Before staring the measurement update, the prediction step is executed as a common

process for both the iFDF and the iPDF. On the i-th spacecraft, its ADF only takes care

of its own state in the prediction step, that is formulated as:

Z
(i)i
k|k−1 =

(
F (i)

(
Z

(i)i
k−1

)−1 (
F (i)

)T
+Q(i)

)−1

, (6.1)

ẑ
(i)i
k|k−1 = Z

(i)i
k|k−1

(
F (i)

(
Z

(i)i
k−1

)−1
ẑ
(i)i
k−1 +G(i)u

(i)
k

)
. (6.2)
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Internal Fully Decentralized Filtering (iFDF)

In the iFDF, the prior estimates of Eqs. (6.1) and (6.2) are updated with the measure-

ments obtained on the local sensing network. Figure 6.2 shows the local sensing networks

that are visible from the iFDF on the i-th spacecraft. The i-th spacecraft communicates

with the set of adjacent spacecraft in Vrbi,k =
{
j ∈ V | (i, j) ∈ Eri,k ∩ Ebi,k

}
. The measurement

update step of the iFDF is formulated as:

fZ
(i)i
k|k = ωiZ

(i)i
k|k−1 +

∑
j∈Vrb

i,k

ωjZ
(i)j
k|k−1, (6.3)

f ẑ
(i)i
k|k = ωiẑ

(i)i
k|k−1 +

∑
j∈Vrb

i,k

ωj ẑ
(i)j
k|k−1, (6.4)

ω =

[
ωi ωj1 · · · ωjm

]
= arg min

ω

[
trace

(
fZ

(i)i
k|k

)−1
]
,

{j1, · · · , jm} ∈ Vrbi,k. (6.5)

where ωi, ωj are the CI parameters satisfying the condition: ωi +
∑

j∈Vrb
i,k

ωj = 1. The

left-superscript f represents the value computed by the iFDF. The likelihood function

N
(
(Z

(i)j
k|k−1)

−1ẑ
(i)j
k|k−1, (Z

(i)j
k|k−1)

−1
)
is provided from the adjacent spacecraft in Vrbi,k by the

inter-spacecraft communication.

Figure 6.2: Sensing networks for the iFDF on the i-th spacecraft.

Internal Partially Decentralized Filtering (iPDF)

In the iPDF, to increase the information gain, the probability of the aggregated multi-

spacecraft state is considered. The aggregated state vector managed by the i-th spacecraft
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is defined as:

x(Ṽc
i,k) =

[(
x
(i)
k

)T
· · ·

(
x
(j)
k

)T
· · ·
]T

, j ∈ Vci,k (6.6)

hence the corresponding estimated probability of the iPDF on the i-th spacecraft is repre-

sented with the canonical parameters as:

p
(
x(Ṽc

i,k)
)
= N

((
Z(Ṽc

i,k)
)−1

ẑ(Ṽc
i,k),

(
Z(Ṽc

i,k)
)−1

)
. (6.7)

The prior probability of the i-th spacecraft state is computed on the i-th spacecraft

itself; therefore, no communication is required. On the other hand, the prior probability

of the adjacent spacecraft in Vci,k is transferred to the i-th spacecraft through the inter-

spacecraft communication links.

The posterior probability expressed in the canonical parameterization is computed as:

pZ
(Ṽc

i,k)i

k|k = ωi

(
Z

(Ṽc
i,k)i

k|k−1 +U
(Ṽc

i,k)

k

)
+

∑
j∈M̃c

i,k

ωjZ
(j)i
k|k−1 (6.8)

pẑ
(Ṽc

i,k)i

k|k = ωi

(
ẑ
(Ṽc

i,k)i

k|k−1 + u
(Ṽc

i,k)

k

)
+

∑
j∈M̃c

i,k

ωj ẑ
(j)i
k|k−1 (6.9)

where the left-superscript p represents the value of the iPDF and the information contri-

bution is expressed as:

U
(Ṽc

i,k)i

k =
∑

s∈{r,b}

(
H

(c)
s,k

)T (
R̃

(Ṽc
i,k)

s,k

)−1

H
(c)
s,k (6.10)

u
(Ṽc

i,k)i

k =
∑

s∈{r,b}

(
H

(c)
s,k

)T (
R̃

(Ṽc
i,k)

s,k

)−1 (
y
(c)
s,k − ŷ

(c)
s,k|k−1 +H

(c)
s,kx̂

(c)c
k|k−1

)
. (6.11)

The final output of the iPDF is the posterior probability of the i-spacecraft state. This

is obtained by extracting the corresponding part of the i-th spacecraft, that is expressed

as:

pZ
(i)i
k|k = Υ(i)

[
Z

(Ṽc
i,k)i

k|k

]
(6.12)

pẑ
(i)i
k|k = Υ(i)

[
ẑ
(Ṽc

i,k)i

k|k

]
(6.13)

where Υ(i) is an operator to extract the i-th spacecraft related part from an argument

vector or matrix.
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Figure 6.3: Sensing networks for the iPDF on the i-th spacecraft.

6.2.2 Fusing Phase

In the fusing phase succeeding the pre-filtering phase, the two probabilities from the

iFDF and the iPDF are appropriately merged, and the posterior probability is generated

as the final output of the ADF. The ADF has two fusion modes to balance the estimation

accuracy and stability, the stability-oriented mode and the accuracy-oriented mode. In

the early phase of the estimation process, the stability-oriented mode is activated. In this

mode, the estimator only relies on the result of the iFDF to ensure that the estimation is

undoubtedly converged.

aZ
(i)i
k|k = fZ

(i)i
k|k (6.14)

aẑ
(i)i
k|k = f ẑ

(i)i
k|k (6.15)

Once satisfying the mode switching criteria, the stability-oriented mode is switched to

the accuracy-oriented mode. As the switching criteria, we focus on the time variation of

the posterior probability in the iFDF. If the following relationship is satisfied, the accuracy-

oriented mode is activated.

∆k∑
l=1

DKL

(
fP(i)i

k

∥∥∥ fP(i)i
k−l

)
≤ ∆P (6.16)

fP(i)i
k = N

(
f x̂

(i)i
k , fP

(i)i
k

)
(6.17)

where the operator DKL(·) denotes the Kullback-Leibler divergence, which measures the

difference between two probability distributions. The definition of the KL-divergence is
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summarized in Appendix A.5. This assessment process of error covariances is visualized in

Figure 6.4.

Figure 6.4: Error covariance assessment for the mode switching.

After the accuracy-oriented mode is activated, the fusion process of the iFDF and the

iPDF starts. To fuse the two filtering results, we adopt the Covariance Intersection (CI)

technique for the consistent merging of two estimates. [51] The CI-based fusion process of

two estimation results is formulated as

aZ
(i)i
k = ω

(
fZ

(i)i
k

)
+ (1− ω)

(
pZ

(i)i
k

)
, (6.18)

aẑ
(i)i
k = ω

(
f ẑ

(i)i
k

)
+ (1− ω)

(
pẑ

(i)i
k

)
, (6.19)

ω = arg min
ω

[
trace

(
aZ

(i)i
k|k

)−1
]
. (6.20)

6.2.3 Summary

Algorithm 9 summarizes the computational flow of the ADF.



6.2. ALGORITHMIC DETAILS OF ADAPTIVE DECENTRALIZED FILTER 65

Algorithm 9: ADF: Adaptive Decentralized Filter

1 At the k-th time step on the i-th spacecraft;

2 (The following process runs on all the spacecraft.);

input : ẑ
(i)i
k−1,Z

(i)i
k−1

output: aẑ
(i)i
k , aZ

(i)i
k

3 Prediction step;

4 Z
(i)i
k|k−1 =

(
F (i)

(
Z

(i)i
k−1

)−1 (
F (i)

)T
+Q(i)

)−1

;

5 ẑ
(i)i
k|k−1 = Z

(i)i
k|k−1

(
F (i)

(
Z

(i)i
k−1

)−1
ẑ
(i)
k−1 +G(i)u

(i)
k

)
;

6 Inter-spacecraft communication step;

7 Collect the estimates and the related measurement data from the adjacent

spacecraft.;

8 Internal Fully Decentralized Filtering (iFDF);

9 Compute the estimated positions by ;

10 Convert them to the information forms by ;

11 fZ
(i)i
k|k = ω(i)Z

(i)i
k|k−1 +

∑
j∈V(i)

k

ω(j)Z
(i)j
k|k−1;

12 f ẑ
(i)i
k|k = ω(i)ẑ

(i)i
k|k−1 +

∑
j∈V(i)

k

ω(j)ẑ
(i)j
k|k−1;

13 where ω(i) +
∑

j∈V(i)
k

ω(j) = 1 is satisfied.;

14 P(i)i
k = N

((
fZ

(i)i
k|k

)−1
f ẑ

(i)i
k|k ,

(
fZ

(i)i
k|k

)−1
)
;

15 (... continues to the next page... )
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16 Internal Partially Decentralized Filtering (iPDF);

17 Compute the adjusted error covariance based on the local sensing networks ;

18 R̃
(Ṽc

i,k)

s,k = Γ
(
R

(c)
s,k, E

s
i,k

)
, s ∈ {r, b} ;

19 Compute the information contribution in the estimated subset ;

20 U
(Ṽc

i,k)i

k =
∑

s∈{r,b}

(
H

(c)
s,k

)T (
R̃

(Ṽc
i,k)

s,k

)−1

H
(c)
s,k ;

21 u
(Ṽc

i,k)i

k =
∑

s∈{r,b}

(
H

(c)
s,k

)T (
R̃

(Ṽc
i,k)

s,k

)−1 (
y
(c)
s,k − ŷ

(c)
s,k|k−1 +H

(c)
s,kx̂

(c)c
k|k−1

)
;

22 Compute the information contribution of the support spacecraft

(l ∈ M̃c
i,k, j ∈ Ẽck) ;

23 p̂
(j)l
k|k−1 = g

(
p
(l)l
k|k−1,y

(jl)l
k

)
;

24 P̃
(j)l
p,k|k−1 =

(
∂g(jl)l

∂p(l)
k

)
P

(l)l
p,k|k−1

(
∂g(jl)l

∂p(l)
k

)T

+

(
∂g(jl)l

∂y(jl)
k

)
R

(jl)
k

(
∂g(jl)l

∂y(jl)
k

)T

;

25 Convert p̂
(j)l
k|k−1, P̃

(j)l
p,k|k−1 to û

(j)l
k|k−1,U

(j)l
k|k−1 ;

26 Execute the covariance intersection ;

27 Z
(Ṽc

i,k)i

k|k = ωi

(
Z

(Ṽc
i,k)i

k|k−1 +U
(Ṽc

i,k)

k

)
+
∑

(j,l)∈Ẽc
i,k

ωpU
(j)l
k|k−1 ;

28 ẑ
(Ṽc

i,k)i

k|k = ωi

(
ẑ
(Ṽc

i,k)i

k|k−1 + u
(Ṽc

i,k)

k

)
+
∑

(j,l)∈Ẽc
i,k

ωpu
(j)l
k|k−1 ;

29 Extract the i-th spacecraft related part;

30 pZ
(i)i
k|k = Υ(i)

[
Z

(Ṽc
i,k)i

k|k

]
, pẑ

(i)i
k|k = Υ(i)

[
ẑ
(Ṽc

i,k)i

k|k

]
;

31 Fusing Phase;

32 if
∑∆k

l=1KL
(
fP(i)i

k , fP(i)i
k−l

)
≤ ∆P then

33 aZ
(i)i
k = ω

(
fZ

(i)i
k|k

)
+ (1− ω)

(
pZ

(i)i
k|k

)
;

34 aẑ
(i)i
k = ω

(
f ẑ

(i)i
k|k

)
+ (1− ω)

(
pẑ

(i)i
k|k

)
;

35 ω = arg min
ω

[
trace

(
aZ

(i)i
k|k

)−1
]
;

36 else

37 aZ
(i)i
k = fZ

(i)i
k|k ,

aẑ
(i)i
k = f ẑ

(i)i
k|k ;

38 end



Chapter 7

Observability-driven

Decentralization

7.1 Overview of Observability-driven Decentralization

The adaptive decentralization introduced in Chapter 6 improves the estimation accu-

racy and stability. However, in the ADF, it is not guaranteed that the iPDF can execute

measurement updates without divergence, even if the estimation results of the iFDF get

stable. If the extended sensing networks considered in the iPDF do not have enough mea-

surement information gain to estimate the probability of the aggregated spacecraft state,

the measurement update, including the estimate of the partially decentralized filter, results

in convergence to wrong estimates or divergence. Therefore, to improve the stability of

the ADF, additional care for the estimate convergence would be necessary, especially when

switching from the stability-oriented mode to the accuracy-oriented mode, as illustrated in

Figure 7.1.

67
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Figure 7.1: Observability change associated with switching from the iFDF to the iPDF.

As a quantitative parameter to evaluate the information sufficiency, we propose the

evaluation of the observability of the sensing networks in the iPDF. For example, if the

spacecraft is located in a low-observability configuration, the ADF should only rely on the

estimate of the iFDF. Alternately, if the swarm is configured well in terms of observability,

the ADF can safely start to fuse the estimate of the iPDF.

Figure 7.2 illustrates the concept of the observability-driven decentralization for the

ADF. As a switching criterion between the stability-oriented mode and the accuracy-

oriented mode, the observability assessment of the sensing network for the iPDF is in-

troduced. The following items should be discussed and solved to implement this new

functionality in the ADF.

• How to define the observability of the sensing networks? (discussed in Section 7.2)

• How to evaluate the observability with the onboard resources? (discussed in Sec-

tion 7.3)

• How to decide the timing of switching decentralization based on the observability

evaluation? (discussed in Section 7.4)

We discuss the above items in the following sections and propose the observability-driven

adaptive decentralized filter (OD-ADF).
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Figure 7.2: Observability-driven decentralization for the ADF.

7.2 Definition of Observability

State observability is defined as whether the system state can be properly estimated

given a specific output. [52] In the context of spacecraft swarm navigation, the observability

represents whether the spacecraft states in the swarm can be estimated with the measure-

ment information of the onboard sensors. Although there are various observability metrics,

we focus on the condition number of the observability Gramian.

Here we look into the meanings of the observability based on the condition number

through the linear perturbed theory. We consider a simple linear system equation:

Ax = b (7.1)

where A ∈ Rn×n is a square nonsingular matrix. If the system of Eq. (7.1) suffers from a

certain perturbation, the equation is formulated as:

(A+∆A) (x+∆x) = b+∆b. (7.2)

As a state estimation problem, x corresponds to the states to be estimated, b corresponds to

measurement-related values, and A corresponds to the matrix representing the relationship

between the states and the measurements. Here we are interested in how the perturbations

of A and b affects the estimates of x. Solving Eq. (7.2) for ∆x, one obtains:

∆x =
(
I +A−1∆A

)−1
A−1 (∆b−∆Ax) (7.3)
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where the relationships ∆A∆x ≃ 0 and Ax = b are used. Considering the norms of the

elements in Eq. (7.3), the following inequality equation is satisfied:

∥∆x∥ ≤
∥∥∥(I +A−1∆A

)−1
∥∥∥ · ∥∥A−1

∥∥ (∥∆b∥+ ∥∆A∥ · ∥x∥) . (7.4)

When assuming b ̸= 0 and x ̸= 0, one obtains the inequality equation for the relative state

error as:

∥∆x∥
∥x∥

≤
∥∥∥(I +A−1∆A

)−1
∥∥∥ · ∥∥A−1

∥∥(∥∆b∥
∥x∥

+ ∥∆A∥
)

(7.5)

≤
∥∥A−1

∥∥ · ∥A∥
1−

∥∥A−1
∥∥ · ∥A∥ ∥∆A∥

∥A∥

(
∥∆A∥
∥A∥

+
∥∆b∥
∥b∥

)
. (7.6)

Therefore, the system and the measurement errors are amplified by ∥A−1∥ · ∥A∥ for small

perturbation cases, in which the denominator is not further from 1. This amplification

factor ∥A−1∥ · ∥A∥ is defined as the condition number of the matrix A. When considering

the L2 norm, the condition number is defined as:

∥A−1∥2 · ∥A∥2 = max
[
σ
(
A−1

)]
·max [σ (A)] =

max [σ (A)]

min [σ (A)]
(7.7)

where the operator σ(·) returns the singular value of a matrix, and the L2 norm of the

matrix is identical to the maximum singular value of the matrix.

7.3 Probabilistic Evaluation of Network Observability

To assess the observability of the sensing network, information on spacecraft location

is necessary. However, considering an actual swarm operation, the spacecraft position is

obtainable only by the onboard estimation. Therefore, in a practical operation, the observ-

ability needs to be evaluated with the estimated results of the spacecraft location. Figure 7.3

shows the observability assessed based on the true states and the estimated states. Though

this is an exaggerated case, it is difficult to precisely evaluate the observability based on the

estimated mean value of the spacecraft position, especially when the estimation uncertainty

is relatively large. Therefore, it is demanded to assess the observability in a probabilistic

manner considering the uncertainty of the estimated positions.
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Figure 7.3: Observability assessment based on the true states or the estimated states.

To examine the observability of the sensing network for the iPDF, we consider the

observability Gramian W defined as:

W

(
x
(Vc

i,k)

k

)
=

∑
s∈{r,b}

(
∂hEs[c]

k

∂x
(c)
k

)T

Γ
(
R

(c)
s,k, E

s
i,k

)
·
∂hEs[c]

k

∂x
(c)
k

. (7.8)

With the observability Gramian of Eq. (7.8), the observability metric of the iPDF on the

i-th spacecraft κik is formulated as:

κik = fobs

(
x
(Vc

i,k)

k

)
= − log10

max

[
W

(
x
(Vc

i,k)

k

)]
min

[
W

(
x
(Vc

i,k)

k

)]
 . (7.9)

where we adopt the logarithmic value for the convenience of numerical processing. As

mentioned in the beginning of this chapter, the spacecraft needs to compute Eq. (7.9) with

the estimated value of x
(Vc

i,k)

k . To take the estimation uncertainty in consideration, we

probabilistically evaluate Eq. (7.9). Let the estimated probability of the aggregated state

as p(x
(Vc

i,k)

k ), then the observability is evaluated as:

κik =

∫
fobs

(
x
(Vc

i,k)

k

)
p

(
x
(Vc

i,k)

k

)
dx

(Vc
i,k)

k . (7.10)

Figure 7.4 shows the result comparison of the following two cases. The left figure shows

the result of evaluating Eq.(7.9) with the mean value of spacecraft states, and the right

figure shows the probabilistically evaluated value by Eq.(7.10). When the Gaussian filter

is applied as the navigation algorithm, the probability is approximated with the Gaussian

distribution, hence:

κik ≃
∫

fobs

(
x
(Vc

i,k)

k

)
N
(
x
(Vc

i,k)

k

∣∣∣∣ x̂(Vc
i,k)i

k|k−1 ,P
(Vc

i,k)i

k|k−1

)
dx

(Vc
i,k)

k . (7.11)
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Figure 7.4: Observability computed only with the mean values and one computed considering the

estimation uncertainty.

Additionally, we adopt the sigma point sampling to compute Eq. (7.11) as:

κ̂ik ≃
∑
s

wsfobs

(
sx̂

(Vc
i,k)i

k|k−1

)
(7.12)

where we utilize the unscented transform introduced in Appendix A.3 for practical imple-

mentation. Figure 7.5 shows the result of probabilistic observability evaluation based on

the sigma point sampling.

Figure 7.5: Observability evaluated by the sigma point sampling.
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7.4 Threshold for Observability-Driven Decentralization

Each adaptive decentralized filter obtains the observability of the sensing network in

the iPDF by computing Eq. (7.12). For the next step, we need to consider assessing the

obtained observability. One solution is to define a threshold value, which is used for the

decision to select the stability-oriented mode or the accuracy-oriented mode, and evaluate

whether the computed observability exceeds the threshold or not.

The values of the observability defined by Eq. (7.9) highly depend on the system of

an evaluated target, including the dimensions of an estimated variable, the types of sensor

measurements, and so on. Therefore, it would be impractical to find some reasonable

threshold values theoretically. Consequently, we consider deciding the threshold value by

a heuristic approach.

To begin with, we evaluate the observability values of swarm configurations listed in

Figure 7.6, which has 50 configurations for each number of spacecraft ranging from 2 to

9. The number of spacecraft whose states are evaluated in the iPDF can range from 2

to N ; hence, we need to consider the cases with the different number of spacecraft. The

observability values are computed based on the following conditions.

• Eq. (7.9) is used to calculate the observability. (This is the off-line evaluation; hence

there is no need to assess the value in a probabilistic manner.)

• The sensing network for each swarm configuration is a complete graph.

• The inter-spacecraft range and bearing angle are considered as the sensor measure-

ments.

The solid blue line in Figure 7.7 shows the evaluated values of the observability with

respect to the swarm configurations in Figure 7.6. The circle represents the average value,

and the edges of error bars mean the maximum and the minimum values. We can see

that the observability values range from −4 to −8. Based on this result, we investigate the

performances of the OD-ADF with different thresholds. With the spacecraft swarm simula-

tor introduced in Chapter 4, we compare the performances of three estimation algorithms:

the iFDF-only ADF, the iPDF-only ADF, and the OD-ADF with a constant threshold.

The OD-ADF is evaluated with the different thresholds, κthr = −4, −5, −6, −7, and −8,

expressed with the dashed pink lines in Figure 7.7. The observability threshold should be

designed to take advantages of the iFDF and the iPDF effectively, as shown in Figure 7.8.
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Figure 7.6: Swarm configurations and the networks to be evaluated for the observability threshold

analysis.
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Figure 7.7: Observability pre-evaluation for the swarm configurations in Figure 7.6.

Figure 7.8: Requirements for the design of observability threshold.

Figures 7.9 to 7.13 show the simulation results with the different observability thresholds

for the OD-ADF. When the threshold is around −4 to −5, the OD-ADF achieves the 100%

convergence rate. However, when the threshold is −6, the convergence rate of the OD-ADF

is degraded where the number of estimated spacecraft in the iPDF n(Ṽci,k) is around 2 to

4. This fact implies that the threshold should be higher than −5 when n(Ṽci,k) is 4 to take

advantage of the high stability of the iFDF. The solid red line in Figure 7.10 represents

this requirement. When it comes to the position estimation error, we can find the upper

bounds for the observability threshold. Firstly, when the threshold is −4, the estimation
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accuracy of the OD-ADF is worse than that of the iPDF-only ADF regardless of n(Ṽci,k).

However, when the threshold is −5, the estimation error of the OD-ADF matches that

of the iPDF-only ADF where n(Ṽci,k) is around 5.5. This fact means that the threshold

should be lower than −5 when n(Ṽci,k) is 5.5 to take advantage of the high accuracy of the

iPDF. The solid blue line in Figure 7.10 represents this requirement. We can find other

requirements for convergence rate and estimation accuracy in Figures 7.11 and 7.12.

(a) Convergence rate (b) Position estimation error

Figure 7.9: Convergence rate and the position estimation error in the case of κthr = −4.

(a) Convergence rate (b) Position estimation error

Figure 7.10: Convergence rate and the position estimation error in the case of κthr = −5.

(a) Convergence rate (b) Position estimation error

Figure 7.11: Convergence rate and the position estimation error in the case of κthr = −6.
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(a) Convergence rate (b) Position estimation error

Figure 7.12: Convergence rate and the position estimation error in the case of κthr = −7.

(a) Convergence rate (b) Position estimation error

Figure 7.13: Convergence rate and the position estimation error in the case of κthr = −8.

Based on the results of Figures 7.9 to 7.13 and the following discussions, we can draw

the requirement for the observability threshold as Figure 7.14.

Figure 7.14: Requirements for the observability threshold and the designed linear threshold.
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It is considered that the observability threshold should be adjusted according to the

number of spacecraft estimated in the iPDF. In essential expression, the threshold should

be adjusted by the dimensions of the variable estimated by the iPDF in the OD-ADF. We

adopt the threshold of a linear function, which is expressed as:

κthr = a · n
(
Ṽci,k
)
+ b (7.13)

where a, b ∈ R are constants for a linear function and n(Ṽci,k) is the number of spacecraft

estimated in the iPDF. We set these constants as a = −0.5 and b = −2.5, expressed as

the black line in Figure 7.14. We evaluate the performance of the OD-ADF with the linear

observability threshold of Eq. (7.13), whose result is shown in Figure 7.15. The OD-ADF

with the tuned linear threshold successfully provides high accuracy and stability regardless

of the number of spacecraft considered in the iPDF.

(a) Convergence rate (b) Position estimation error

Figure 7.15: Convergence rate and the position estimation error in the case of the linear threshold.

7.5 Summary of OD-ADF

We summarize the algorithmic detail of the OD-ADF in Algorithm 10. The observabil-

ity evaluation phase is added to the algorithm of the ADF in Algorithm 9. The switching

between the iFDF and the iPDF is executed based on the observability evaluation in addi-

tion to the KL-divergence evaluation.
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Algorithm 10: OD-ADF: Observability-Driven Adaptive Decentralized Filter

1 At the k-th time step on the i-th spacecraft;

2 (The following process runs on all the spacecraft.);

input : ẑ
(i)i
k−1,Z

(i)i
k−1

output: aẑ
(i)i
k , aZ

(i)i
k

3 Prediction step;

4 Z
(i)i
k|k−1 =

(
F (i)

(
Z

(i)i
k−1

)−1 (
F (i)

)T
+Q(i)

)−1

;

5 ẑ
(i)i
k|k−1 = Z

(i)i
k|k−1

(
F (i)

(
Z

(i)i
k−1

)−1
ẑ
(i)
k−1 +G(i)u

(i)
k

)
;

6 Inter-spacecraft communication step;

7 Collect the estimates and the related measurement data from the adjacent

spacecraft.;

8 Internal Fully Decentralized Filtering (iFDF);

9 Compute the estimated positions by ;

10 Convert them to the information forms by ;

11 fZ
(i)i
k|k = ω(i)Z

(i)i
k|k−1 +

∑
j∈V(i)

k

ω(j)Z
(i)j
k|k−1;

12 f ẑ
(i)i
k|k = ω(i)ẑ

(i)i
k|k−1 +

∑
j∈V(i)

k

ω(j)ẑ
(i)j
k|k−1;

13 where ω(i) +
∑

j∈V(i)
k

ω(j) = 1 is satisfied.;

14 P(i)i
k = N

((
fZ

(i)i
k|k

)−1
f ẑ

(i)i
k|k ,

(
fZ

(i)i
k|k

)−1
)
;

15 (... continues to the next page... )
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16 Internal Partially Decentralized Filtering (iPDF);

17 Compute the adjusted error covariance based on the local sensing networks ;

18 R̃
(Ṽc

i,k)

s,k = Γ
(
R

(c)
s,k, E

s
i,k

)
, s ∈ {r, b} ;

19 Compute the information contribution in the estimated subset ;

20 U
(Ṽc

i,k)i

k =
∑

s∈{r,b}

(
H

(c)
s,k

)T (
R̃

(Ṽc
i,k)

s,k

)−1

H
(c)
s,k ;

21 u
(Ṽc

i,k)i

k =
∑

s∈{r,b}

(
H

(c)
s,k

)T (
R̃

(Ṽc
i,k)

s,k

)−1 (
y
(c)
s,k − ŷ

(c)
s,k|k−1 +H

(c)
s,kx̂

(c)c
k|k−1

)
;

22 Compute the information contribution of the support spacecraft

(l ∈ M̃c
i,k, j ∈ Ẽck) ;

23 p̂
(j)l
k|k−1 = g

(
p
(l)l
k|k−1,y

(jl)l
k

)
;

24 P̃
(j)l
p,k|k−1 =

(
∂g(jl)l

∂p(l)
k

)
P

(l)l
p,k|k−1

(
∂g(jl)l

∂p(l)
k

)T

+

(
∂g(jl)l

∂y(jl)
k

)
R

(jl)
k

(
∂g(jl)l

∂y(jl)
k

)T

;

25 Convert p̂
(j)l
k|k−1, P̃

(j)l
p,k|k−1 to û

(j)l
k|k−1,U

(j)l
k|k−1 ;

26 Execute the covariance intersection ;

27 Z
(Ṽc

i,k)i

k|k = ωi

(
Z

(Ṽc
i,k)i

k|k−1 +U
(Ṽc

i,k)

k
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pẑ

(i)i
k|k

)
;

38 ω = arg min
ω

[
trace

(
aZ

(i)i
k|k

)−1
]
;

39 else

40 aZ
(i)i
k = fZ

(i)i
k|k ,

aẑ
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Chapter 8

Verification by Numerical

Simulations

8.1 Overview of Simulation-based Verification

To compare the performance of the proposed algorithms with the existing estimation

algorithms and clarify their effectiveness, we evaluate their performances by numerical

simulations. Table 8.1 shows seven estimation algorithms whose performances will be

evaluated in this chapter. The set of filters to be assessed is defined as:

Xf = {CF,FDF,R-FDF,PDF,R-PDF,ADF,OD-ADF} . (8.1)

The simulation conditions in this chapter follow the parameters listed in Table 4.1.

We assume that the network structures for one simulation scenario are identical, that is

Gc = Gr = Gb, regardless of the evaluation in Section 8.5.

8.2 Dependency on Swarm Configurations

The performance of relative navigation for spacecraft swarms is greatly affected by

swarm configurations. The information gain of relative measurements is a function of

spacecraft positions; hence, swarm configurations possibly have negative impacts on nav-

igation algorithms. Furthermore, as shown in Figure 1.10, a swarm configuration would

dynamically change with time, especially for reconfiguration maneuvers. Therefore, a nav-

igation algorithm needs to handle various swarm configurations to ensure safe operations

like this type of dynamical maneuvers.

81
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Table 8.1: Evaluated estimation algorithms

No. Acronym Full name Detail

(1) CF Centralized Filter Algorithm 4

(2) FDF Fully Decentralized Filter Algorithm 5

(3) R-FDF Robust Fully Decentralized Filter Algorithm 6

(4) PDF Partially Decentralized Filter Algorithm 7

(5) R-PDF Robust Partially Decentralized Filter Algorithm 8

(6) ADF Adaptive Decentralized Filter Algorithm 9

(7) OD-ADF Observability-Driven Adaptive Decentralized Filter Algorithm 10

8.2.1 Randomly Generated Configurations

To validate whether the navigation algorithms can manage various swarm configura-

tions, we ran the simulations on 50 types of configurations (M = 50) as illustrated in

Figure 8.1. The values of initial states are generated from continuous uniform distribu-

tions, which are expressed as Up(−∆pu,∆pu) for positions and Uv(−∆vu,∆vu) for veloc-

ities. When we define the probability density functions of Up and Uv as f(p) and f(v)

respectively, these functions are formulated as:

f(pα) =


1

2∆puα
if −∆puα ≤ pα ≤ ∆puα

0 otherwise
(8.2)

f(vα) =


1

2∆vuα
if −∆vuα ≤ vα ≤ ∆vuα

0 otherwise
(8.3)

where α = {x, y, z} and ∆puα,∆vuα > 0. In the simulations, these parameters for the uniform

distributions are set as ∆puα = 1000[m] and ∆vuα = 10[m].

Estimation stability

Figure 8.2 shows the convergence rate of each estimation algorithm with respect to the

average connection rate defined by Eq. (2.35). As a general tendency, the convergence rate
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Figure 8.1: Swarm configurations and the corresponding networks (∆R = 1500m in this figure)

evaluated in the numerical simulations.
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gets lower when the network density is low. This is mainly because the observability tends

to be insufficient when the sensing networks are sparse. The ADF provides meaningfully

higher estimation performance than the CF, the FDF, the PDF, and the R-PDF. This

result represents that the fusing process of the ADF significantly improves the estimation

stability of the partially decentralized filters. However, the estimates of the ADF results in

divergence in some cases when the sensing networks are sparse. On the other hand, the R-

FDF runs its estimation process without divergence regardless of the network thresholds.

By relying on the high stability of the R-FDF when the sensing networks do not hold

sufficient observability, the OD-ADF achieves a higher convergence rate than the ADF.

Figure 8.2: Convergence rate (the dependency on swarm configurations).

Figure 8.3 shows the average connection rate for each network threshold. When the

network threshold is longer than 2500m, the network connection rate reaches 100%, meaning

that the communication and sensing networks are complete graphs.
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Figure 8.3: Network connection rate (the dependency on swarm configurations).

Estimation accuracy

Next, we investigate the estimation accuracy. To realize the meaningful comparison

of the estimation error of each algorithm, it is essential to compare the results under

the same conditions, including swarm configurations, network thresholds, and convergence.

Figure 8.4 shows whether the estimation results of all the filters are converged or not for the

specific network threshold and swarm configuration. The results of the FDF and the PDF

are excluded since their convergence rate is remarkably lower than the other algorithms, as

shown in Figure 8.2.

Figure 8.4: Gross convergence flags (the dependency on swarm configurations).

Figures 8.5 and 8.6 respectively show the average RMSE and the average RTEC of the
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position estimation. The estimation accuracy of the CF is higher than those of the other

filters since the CF can leverage all the information to update the state probability. On the

other hand, the R-FDF provides the estimation results with remarkably lower estimation

accuracy than the other filters. These facts follow the evaluation results in Section 5.4.

The R-PDF, the ADF, and the OD-ADF generate slightly less accurate estimate results

than the CF.

(a) Overall view (b) Extended view

Figure 8.5: Root mean square errors of the estimated positions (the dependency on swarm con-

figurations).

(a) Overall view (b) Extended view

Figure 8.6: Root of the trace of the position error covariance matrix (the dependency on swarm

configurations).
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Figure 8.7 shows the RMSE of the estimated position of each spacecraft computed by

all the algorithms. The result shows the case of the 43rd swarm configuration with the

1500m network threshold. The estimation error of each algorithm is defined by the formula

listed in Table 8.2.

Figure 8.7: Position estimation error for every spacecraft in the 43rd swarm configuration with

the 1500m network threshold (the dependency on swarm configurations).

Table 8.2: Definition of the position estimation error for each algorithm

Algorithm Definition

(1) CF
∥∥∥Υ(i)

p

(
x̂
(c)
k

)
− p

(i)
k

∥∥∥
2

(2) FDF, (3) R-FDF
∥∥∥p̂(i)

k − p
(i)
k

∥∥∥
2

(4) PDF, (5) R-PDF

∥∥∥∥Υ(i)
p

(
x̂
(Ṽc

i,k)i

k

)
− p

(i)
k

∥∥∥∥
2

(6) ADF, (7) OD-ADF
∥∥∥ap̂(i)

k − p
(i)
k

∥∥∥
2

Figure 8.8 shows the position estimation error of the 1st spacecraft evaluated by the

ADF on the 1st spacecraft. In this case, the ADF changes its estimation mode from the

stability-oriented mode to the accuracy-oriented mode, which are defined in Section 6.2, at
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t = 11[sec]. After the mode is switched, the estimation errors remarkably get smaller.

Figure 8.8: Position estimation error of the 1st spacecraft calculated by the ADF in the 43rd

swarm configuration with the 1500m network threshold (solid line: the difference

between the true and the estimated mean values, dashed line: 3-sigma error bound).

Communication load

Figures 8.9 and 8.10 show the average communication load of each estimation algorithm,

which is defined by Eqs. (4.9) to (4.11). The CF requires a significantly higher commu-

nication load than the other decentralized filters since it needs the large-data transfer to

perform the estimation computation on the leader spacecraft. The FDF takes much less

communication load than the other filters because it does not send the covariance informa-

tion. However, the FDF provides unacceptable estimation stability, as shown in Figure 8.2.

In the same way, the R-PDF requires more communication resources than the PDF since

an estimator receives the additional covariance information from support spacecraft in the

R-PDF. Although the partially decentralized filters (the PDF, the R-PDF) take a higher

communication load than the fully decentralized filters (the FDF, the R-FDF), the addi-

tional load for the partially decentralized filters is within the allowable range. As shown

in Figure 8.10, the adaptive decentralized filters (the ADF, the OD-ADF) take the same

amount of communication load as the R-PDF.
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Figure 8.9: Communication load analysis (the top edges of the bars: maxCL, the bottom edges

of the bars: minCL, and the circles on the lines: aveCL).

Figure 8.10: Communication load analysis: the extended view of Figure 8.9 (the top edges of the

bars: maxCL, the bottom edges of the bars: minCL, and the circles on the lines:

aveCL).

Discussion on the estimation results of the R-PDF and the ADF

Here we discuss the relationship of the estimation accuracy between the R-PDF and the

ADF. When comparing the estimation accuracy of these filters, it is intuitively expected

that the R-PDF provides more accurate estimates than the ADF for swarm configurations

in which both filters are converged. That is because the ADF uses the estimation result
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of the fully decentralized filter, which typically provides less accurate estimates than the

partially decentralized filter. However, Figures 8.5 and 8.6 show that the estimated position

of the ADF is more accurate than that of the R-PDF.

Figure 8.11 shows the RMSE of estimation position of each spacecraft for the 44th swarm

configuration, which is one of the configurations whose estimation results are included in

Figures 8.5 and 8.6. For the 1st to 7th spacecraft, the R-PDF and the ADF provide the

estimated values with almost the same accuracy. However, for the 8th and 9th spacecraft,

the estimation accuracy of the R-PDF is remarkably worse than that of the ADF.

Figure 8.11: Position estimate error for every spacecraft in the 44th swarm configuration with the

1500m network threshold.

Figures 8.12 and 8.13 show the position estimation errors of the 8th spacecraft, com-

puted by the R-PDF and the ADF. As seen in Figure 8.12, the R-PDF executes the mea-

surement update of the partially decentralized estimation at the beginning. Due to the

approximation of the nonlinear measurement equation, the likelihood with non-negligible

error would be used for the measurement update in the early estimation phase. On the

other hand, the ADF starts the estimation from the fully decentralized estimation and

then switches to the partially decentralized estimation. In other words, the ADF executes

the conservative measurement update when the evaluated likelihood possibly has large

errors and starts more aggressive measurement updates after the accurate evaluation of
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likelihood is available. Therefore, it is considered that the ADF enables more accurate

estimation than the R-PDF by preventing the likelihood evaluation that possibly generates

linearization errors, especially for the early estimation phase.

(a) R-PDF (b) ADF

Figure 8.12: Position estimation errors of the 8th spacecraft calculated by (a) R-PDF and (b)

ADF in the 44th swarm configuration with the 1500m network threshold (solid line:

the RMSE, dashed line: 3-sigma error bound).

(a) R-PDF (b) ADF

Figure 8.13: Extended view of Figure 8.12.
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Figure 8.14 plots the trajectories of the 8th spacecraft estimated by the R-PDF and

the ADF. As we discussed above, it can be seen that the estimation result of the R-PDF

is converged to the position with more estimation errors than that of the ADF.

(a) Overall view (b) Extended view

Figure 8.14: Trajectory of 8th spacecraft estimated by the R-PDF and the ADF.

8.2.2 Coordinated Configurations

For the practical applications of spacecraft swarms, spacecraft are typically controlled

to form coordinated configurations for mission purposes. Although the main targets of

this dissertation are complex configurations during the reconfiguration maneuvers such as

Figure 1.10, we also investigate the performances of the estimation algorithms for repre-

sentative configurations, including the in-train geometry and the general circular orbit.

In-train geometry

Firstly, we consider an in-train configuration as shown in Figure 8.15-(a). Each space-

craft is connected by a single communication/sensing link with the adjacent spacecraft.

Figures 8.15-(b) and (c) illustrate the three-dimensional visualization of the estimated po-

sitions by the CF and the OD-ADF, respectively. Figure 8.16 shows the RMSE of all the

filters. Except for the FDF and the PDF, all the filters provide reasonable estimation

results without divergence.
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(a) In-train geometry (b) Estimates by the CF (c) Estimates by the OD-ADF

Figure 8.15: In-train configuration and the estimated positions by the CF and the OD-ADF.

Figure 8.16: Position estimation errors for the in-train configuration.

General Circular Orbit

We consider the General Circular Orbit (GCO) as the second example of coordinated

configurations [44]. As shown in Figure 8.17, all the spacecraft are located on the three-

dimensional circular orbit. The spacecraft arrangement on the GCO is typically applied

for pseudo large apertures, as illustrated in Figure 1.2.
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(a) t = 0[sec] (b) t = 200[sec] (c) t = 400[sec]

Figure 8.17: Spacecraft on the General Circular Orbit (GCO).

Firstly, we consider the ring-shaped network of Figure 8.18-(a), in which each space-

craft is connected to the adjacent spacecraft with the network threshold ∆R = 1000[m].

Figure 8.19 shows the RMSE of estimated positions. The estimation results of the CF con-

verge to incorrect values as visualized in Figure 8.18-(b); on the other hand, the OD-ADF

successfully provides reasonable estimated positions as visualized in Figure 8.18-(c).

(a) ring-shaped network (b) Estimates by the CF (c) Estimates by the OD-ADF

Figure 8.18: ring-shaped network for the GCO (∆R = 1000[m]), and the estimated positions by

the CF and the OD-ADF.
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Figure 8.19: Position estimation errors for the GCO configuration (∆R = 1000[m]).

As shown in Figure 8.20-(a), we consider adding more communication and sensing links.

In this case, the CF provides reasonable estimates since it can compute more accurate

likelihood with additional sensing information, though it still has non-negligible offset error

as shown in Figure 8.20-(b) and Figure 8.21. On the other hand, the OD-ADF successfully

estimates the positions as visualized in Figure 8.20-(c), similar to the sparse ring-shaped

network of Figure 8.18-(a).

(a) ring-shaped network (b) Estimates by the CF (c) Estimates by the OD-ADF

Figure 8.20: ring-shaped network for the GCO (∆R = 1500[m]), and the position estimates by

the CF and the OD-ADF..
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Figure 8.21: Position estimation errors for the GCO configuration (∆R = 1500[m]).

8.3 Sensitivity to Initial Estimation Errors

Initial estimation errors also have a significant influence on estimation performances,

especially when dealing with nonlinear propagation and measurement update. We consider

several scenarios with different amounts of initial estimation errors to evaluate adaptability

for a wide range of initial estimation errors, as illustrated in Figure 8.22.

Figure 8.22: Initial position estimation errors of Case-A, Case-B, and Case-C, showing the case

of the 1st swarm configuration.

The covariance parameters for the initial estimation error σpinit and σvinit , which are
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defined in Section 4.2.2, are set as the values summarized in Table 8.3.

Table 8.3: Parameters to generate initial estimation errors

Parameter Value Units

Case-A: Small initial estimation errors

position error (σpinit) 100.0 [m]

velocity error (σvinit) 1.0 [m/s]

Case-B: Large initial estimation errors

position error (σpinit) 1000.0 [m]

velocity error (σvinit) 10.0 [m/s]

Case-C: Very large initial estimation errors

position error (σpinit) 10000.0 [m]

velocity error (σvinit) 100.0 [m/s]

For the values of the initial estimation errors listed in Table 8.3, we have evaluated the

convergence rate of all the estimation algorithms in Table 8.1. The parameter settings are

the same as the parameters stated in Section 4.2. For the swarm configurations, the analysis

in this section also considers various swarm configurations as Figure 8.1. Figures 8.23, 8.24,

and 8.25 show the convergence rates for the initial estimation errors: Case-A, Case-B, and

Case-C, respectively. When the initial estimation error is small, the existing algorithms

like the CF, the PDF, and the R-PDF provide relatively high estimation stability, as shown

in Figure 8.23. However, when the initial estimation errors get large, these algorithms no

longer provide a sufficiently high convergence rate, as shown in Figures 8.24 and 8.25. On

the other hand, the proposed algorithms, the ADF and the OD-ADF, keep high estimation

stability even with large initial estimation errors.
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Figure 8.23: Convergence rate of the Case-A: small initial estimation errors.

Figure 8.24: Convergence rate of the Case-B: large initial estimation errors.

Figure 8.25: Convergence rate of the Case-C: very large initial estimation errors.
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Figures 8.26, 8.27, and 8.28 show the gross convergence flags for Case-A, Case-B, and

Case-C, respectively. In these figures, the results of the FDF and the PDF are excluded.

Figure 8.26: Gross convergence flags (Case-A: small initial estimation errors).

Figure 8.27: Gross convergence flags (Case-B: large initial estimation errors).

Figure 8.28: Gross convergence flags (Case-C: very large initial estimation errors).
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8.4 Fault Tolerance Performance

In a practical situation, a swarm system would experience the malfunction of one of the

member spacecraft or its onboard sensors. Therefore, the fault tolerance of an estimation

algorithm is another essential performance metric for safe and stable operation. In this

section, we evaluate the durability of estimation algorithms against onboard failures by

simulating possible malfunctions.

8.4.1 Node Fault Case

As illustrated in Figure 8.29, we consider the case where one of the member space-

craft faces some operational problems. Here we define this type of malfunctioning as the

node fault. We assume that the malfunctioning spacecraft under the node fault cannot

communicate with the other spacecraft or provide the inter-spacecraft sensing.

Figure 8.29: Simulation of a failure mode: the malfunction of a single spacecraft (node fault).

The node fault is mathematically expressed by modifying the adjacency matrix of the

communication and sensing networks. We assume that the jf -th spacecraft (jf ∈ V) get

malfunctioning at the kf -th time step. Then, the adjacency matrix is defined as:

A =

A (Gxk ) (k0 ≤ k < kf )

A
(
Ğxk
)

(kf ≤ k ≤ ke)
(8.4)

where x ∈ {c, r, b}, Gxk = (V, Exk ), and Ğxk = (V, Ĕxk ). The edge set Ĕxk is generated by

extracting all the edges connected to the jf -th spacecraft from Exk . The time steps k0

and ke represent the initial and the end time of the simulation, respectively. Table 8.4

summarizes the parameters used in the simulation for the node fault case.
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Table 8.4: Parameters for simulating the node fault.

Parameter Value Units

Initial estimation error (identical to Case-A in Table 8.3)

position error (σpinit) 100.0 [m]

velocity error (σvinit) 1.0 [m/s]

Timing of the failure mode (tf : corresponding to the kf -th time step) 50 [s]

Malfunctioning spacecraft (the jf -th spacecraft) 1 [-]

Other parameters Table 4.1 [-]

Figure 8.30 shows the convergence rate with a single node fault. Figure 8.31 shows

whether the estimation results of all the filters are converged or not for the specific network

threshold and the swarm configuration. When comparing the convergence rate with the

result of the non-fault case (Figure 8.23), the estimation stability is slightly worse than the

non-fault case. When a spacecraft is completely separated from the other spacecraft, its

state is not modified in the measurement update step. Therefore, it is considered that the

degradation of the convergence rate is not so high when a node fault occurs.

Figure 8.30: Convergence rate (the node fault case).
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Figure 8.31: Gross convergence flags (the node fault case).

Figures 8.32 and 8.33 respectively show the average RMSE and the average RTEC of

the estimated positions. The figures plot the average values removing the estimation result

of the malfunctioning spacecraft. Even with the node fault, all the filters can continue to

provide the estimated positions with almost the same accuracy as the non-fault cases of

Figures 8.5 and 8.6.

(a) Overall view (b) Extended view

Figure 8.32: Root mean square errors of the estimated positions (the node fault case: the estima-

tion result of the malfunctioning spacecraft i = 1 is excluded).
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(a) Overall view (b) Extended view

Figure 8.33: Root of the trace of the position error covariance matrix (the node fault case: the

estimation result of the malfunctioning spacecraft i = 1 is excluded).

Figure 8.34: Position estimation error for every spacecraft for the 13th swarm configuration with

the 1500m network threshold (the node fault case).

Figure 8.34 shows the RMSE of the estimated positions for the 13th swarm configura-

tion with the 1500m network threshold. Since the 1st spacecraft get malfunctioning, the

measurement update of its state stops at 50sec and the estimation error increases with
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time. The estimation results imply that the R-PDF falls into divergence since its RMSE of

the estimation positions rapidly increase from 50sec. Figure 8.35 shows the RMSE of the

estimation position of the 9th spacecraft, which the R-PDF and the OD-ADF compute.

(a) R-PDF (b) OD-ADF

Figure 8.35: Position estimation error of the 9th spacecraft calculated by (a) R-PDF and (b) OD-

ADF for the 13th swarm configuration with the 1500m network threshold (solid line:

the RMSE of the estimated positions, dashed line: 3-sigma error bound).

8.4.2 Edge Fault Case

In a practical situation, a spacecraft would experience the malfunction of the onboard

sensors or communication devices. Alternatively, inter-spacecraft communication and sens-

ing get unavailable due to the temporary attenuation of sensor sensitivity. We define this

type of malfunctioning as the edge fault, as illustrated in Figure 8.36.
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Figure 8.36: Simulation of a failure mode: the malfunction of inter-spacecraft links (edge fault).

The edge fault is mathematically expressed by modifying the adjacency matrices as

with the node fault. We assume that Nf links between spacecraft, which are randomly

selected from the edge set, get malfunctioning at the kf -th time step.

A =

A (Gxk ) (k0 ≤ k < kf )

A
(
Ğxk
)

(kf ≤ k ≤ ke)
(8.5)

where x ∈ {c, r, b}, Gxk = (V, Exk ), and Ğxk = (V, Ĕxk ). The edge set Ĕxk is generated by

extracting randomly selected Nf edges from Exk . Table 8.5 summarizes the parameters

used in the simulation for the edge fault case.

Table 8.5: Parameters for simulating the edge fault.

Parameter Value Units

Initial estimation error (identical to Case-A in Table 8.3)

position error (σpinit) 100.0 [m]

velocity error (σvinit) 1.0 [m/s]

Timing of the failure mode (tf : corresponding to the kf -th time step) 50 [s]

Number of malfunctioning edges (Nf ) 3 [-]

Other parameters Table 4.1 [-]

Figure 8.37 shows the convergence rate with three edge faults, and Figure 8.38 shows

whether the estimation results of all the filters are converged or not for the specific network
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threshold and the swarm configuration. When comparing the convergence rate of the edge

fault case with that of the node fault case, the edge fault case results in lower convergence

rate. In the node fault case, the state of the malfunctioning spacecraft is not estimated.

Therefore, the estimation algorithms are likely to keep sufficient measurement informa-

tion for the estimated states even if several measurements linked with the malfunctioning

spacecraft get unavailable. On the other hand, in the edge fault case, the inter-spacecraft

measurements are purely lost while keeping the number of estimated spacecraft. Hence,

the edge fault can be more severe fault modes for the estimation algorithms, especially for

the FDF, the PDF, and the R-PDF.

Figure 8.37: Convergence rate (the edge fault case).

Figure 8.38: Gross convergence flags (the edge fault case).
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Figures 8.39 and 8.40 show the average RMSE and the average RTEC of the estimated

positions. As with the node fault case, all the filters can keep almost the same estimation

accuracy as the non-fault cases in the converged scenarios.

(a) Overall (b) Extended view

Figure 8.39: Root mean square errors of the estimated positions (the edge fault case).

(a) Overall (b) Extended view

Figure 8.40: Root of the trace of the position error covariance matrix (the edge fault case).

8.5 Sensitivity to Network Structures

For the simulations in Sections 8.2 to 8.4, it is assumed that the three networks are

identical: Gc = Gr = Gb. Practically, this is realized by setting the distance thresholds

as ∆Rc = ∆Rr = ∆Rb. However, the network structures can be easily different due

to some implementation constraints like sensors’ field of view and the limited number of
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simultaneous communication links.

In this section, we evaluate the performances of the estimation algorithms under con-

ditions with different types of network structures. Figures 8.41, 8.42, and 8.43 show three

variations of network structures to be evaluated, in which the case of the 4th swarm con-

figuration is illustrated. The simulation condition follows Table 8.6.

Figure 8.41: Network structures (A) (m = 4, ∆Rc = 1000[m], ∆Rr = 2000[m], ∆Rb = 2000[m]).

Figure 8.42: Network structures (B) (m = 4, ∆Rc = 2000[m], ∆Rr = 2000[m], ∆Rb = 1000[m]).

Figure 8.43: Network structures (C) (m = 4, ∆Rc = 1000[m], ∆Rr = 2000[m], ∆Rb = 1000[m]).
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Table 8.6: Parameters for the evaluation of the sensitivity to network structures.

Parameter Value Units

Initial estimation error (identical to Case-A in Table 8.3)

position error (σpinit) 100.0 [m]

velocity error (σvinit) 1.0 [m/s]

Other parameters Table 4.1 [-]

Table 8.7 summarizes the convergence rate of each filter for the three types of network

structures. The values in the table show the result assessed with respect to the 50 swarm

configurations of Figure 8.1. The first thing to notice is that the CF provides almost

100% estimation stability. In the simulation results of Figure 8.2 with the uniform network

structures, the CF achieves a 100% convergence rate when the network threshold is above

2000m. Therefore, the result of Table 8.7 implies that the CF still be able to perform a

stable estimation with the sparse bearing angle network (corresponding to ∆Rb = 1000[m]).

In the partially decentralized filters, especially for the PDF, the R-FDF, and the ADF,

the number of estimated states is decided by the communication network. Therefore,

their convergence rates of the case (A) are higher than the other two cases. However, the

estimation stability of these filters is remarkably lower than the CF and the R-FDF.

Finally, the OD-ADF achieves high stability with an almost 100% convergence rate as

with the CF and the R-FDF. Although the non-identical network structures degrade the

estimation stability of the ADF, the OD-ADF is able to provide highly stable estimation

by evaluating the observability of the non-identical sensing networks.
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Table 8.7: Convergence rate for the different network structures

Thresholds CF FDF R-FDF PDF R-PDF ADF OD-ADF

(A)

∆Rc = 1000[m]

∆Rr = 2000[m]

∆Rb = 2000[m]

100% 12% 100% 18% 40% 76% 100%

(B)

∆Rc = 2000[m]

∆Rr = 2000[m]

∆Rb = 1000[m]

100% 2% 100% 2% 38% 58% 96%

(C)

∆Rc = 1000[m]

∆Rr = 2000[m]

∆Rb = 1000[m]

98% 2% 100% 4% 34% 62% 100%

8.6 Summary of Performance Evaluation

This section summarizes the main results and discussions of the numerical simulations.

Based on the review of the related work in Table 1.2, we evaluate the performance of the

proposed algorithms by comparing them with the other existing methods while considering

the influential factors: swarm configurations, initial estimation errors, fault tolerance, and

network structures.

Firstly, we evaluated the performances of whether each algorithm successfully handles

a variety of swarm configurations in Section 8.2. It is proved that the proposed methods,

the ADF and the OD-ADF, provide the high estimation stability than the other partially

decentralized filters while keeping reasonably high estimation accuracy. Secondly, we in-

vestigate the influence of initial estimation errors in Section 8.3. The simulation results

show that the initial estimation errors significantly impact the estimation stability. Al-

most all the filters result in a low convergence rate when the initial estimation errors are

substantially large. However, the OD-ADF and the R-FDF keep nearly 100% convergence

rate regardless of initial estimation errors. Section 8.4 investigates whether each estimation
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Table 8.8: Correspondence between the evaluation conditions and the sections

Evaluation condition Section

Swarm configurations Section 8.2

Initial estimation errors Section 8.3

Fault tolerance Section 8.4

Network structures Section 8.5

Comparison with other methods Table 8.1

algorithm can handle malfunctioning scenarios, including the node fault and the edge fault.

The simulation results show that the OD-ADF can keep an almost 100% convergence rate

even with malfunctioning and sparse networks. Finally, we evaluate the performance sen-

sitivity of the estimation algorithms to the network structures. Although the estimation

stability of several filters (the PDF, the R-FDF, and the ADF) are governed by the most

sparse network, the OD-ADF keeps almost the 100% convergence rate. As with the uniform

network structure cases, the OD-ADF can evaluate the observability of the non-identical

network structures and judge whether the integration of the iPDF estimation is safe or

not.





Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this dissertation, we proposed the new estimation algorithms, the adaptive decentral-

ized filter (ADF) and the observability-driven adaptive decentralized filter (OD-ADF), for

the relative navigation of spacecraft swarms. The ADF achieves the estimation with high

accuracy and high stability by adjusting the decentralization levels of estimation algorithms.

Additionally, the OD-ADF introduces the observability evaluation for the adjustment pro-

cess of decentralization in the ADF and realizes a more stable estimation than the ADF.

The performances of these algorithms are evaluated for a variety of conditions, including

multiple swarm configurations, initial estimation errors, spacecraft malfunctioning, and

inter-spacecraft network structures. The numerical simulations show that the proposed

algorithms provide well-balanced performances in terms of estimation accuracy, estimation

stability, and communication load.

In Chapter 1, we presented the background of spacecraft swarms and reviewed various

relative navigation algorithms. We clarify the problems to be solved in this dissertation by

analyzing the related work.

In Chapter 2, we presented the problem formulation for the relative navigation of space-

craft swarms. We gave the definitions of the estimated states, the dynamics models, and

the inter-spacecraft measurement models. We also stated the mathematical treatment of

communication and sensing networks.

In Chapter 3, we summarized the basic ideas and formulations of the recursive Bayesian

filtering, which is the core estimation approach in this dissertation. We also mentioned the

canonical parameterization of estimation algorithms, represented by the information vector

113
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and matrix. It is an appropriate representation of probability distributions for decentralized

estimation algorithms, specifically for numerical implementation.

In Chapter 4, we presented the overview of the spacecraft swarm simulator and its

relevant parameters and performance metrics. The simulator is widely used to evaluate

estimation algorithms introduced in this dissertation.

In Chapter 5, we presented the representative estimation algorithms compared with the

proposed algorithms. The algorithms introduced in this chapter include the centralized

filter (CF), the fully decentralized filter (FDF, R-FDF), and the partially decentralized

filter (PDF). We also proposed a new algorithm called the robust partially decentralized

filter (R-PDF) by modifying the PDF to improve the estimation stability. We executed

the performance analysis for three algorithms (the CF, the R-FDF, and the R-PDF) and

clarified that these algorithms have challenges to balance high accuracy and stability when

the communication and sensing networks are sparse.

In Chapter 6, we presented the algorithmic details of the proposed ADF. The ADF

is roughly divided into three sections, the internal fully decentralized filter (iFDF), the

internal partially decentralized filter (iPDF), and the fusion process of the estimation results

of the iFDF and the iPDF.

In Chapter 7, we presented the algorithmic details of the proposed OD-ADF. We stated

the key elements to enable the observability-driven decentralization, including the defini-

tion of the observability for sensing networks, the probabilistic on-board evaluation of the

observability, and the decision process of the observability threshold.

In Chapter 8, we presented the performance verification of the proposed algorithms by

the numerical simulations. For the comprehensive analysis, we evaluated the algorithms un-

der various conditions: multiple swarm configurations, initial estimation errors, spacecraft

malfunctioning, and inter-spacecraft network structures. The numerical simulations show

that the proposed algorithms provide well-balanced performances in terms of estimation

accuracy, estimation stability, and communication load.
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9.2 Future Work

The proposed algorithms achieve high performances; however, they have the potentials

to be improved and need further considerations for the practical implementation on real

spacecraft swarms. The following problems are possible research targets, which would be

addressed in the future.

• Theoretical observability threshold: We decide the observability threshold of the

OD-ADF by the heuristic approach as stated in Section 7.4. However, the heuristic

approach should be reapplied when the OD-ADF is used for swarm systems with dif-

ferent implementations, such as sensor devices or the number of spacecraft. Therefore,

it is highly demanded to develop a theoretical approach to decide the observability

threshold.

• Active sensing and the information-based decentralization: We can consider

the following aspects to enhance the effectiveness of the proposed navigation algo-

rithms. The preliminary discussion on this topic is summarized in Appendix B.

– How to select the target spacecraft which each spacecraft communicates with or

senses to, in decentralized estimation architectures

– How to decide the size of the aggregated state vector considered in the par-

tially/adaptive decentralized filter

• Communication delay and time synchronization: Although we consider the

data availability limited by the communication network, we assume that the space-

craft experience no communication delay and their onboard timers are perfectly syn-

chronized. However, in practical implementations, the above assumptions are not

realistic, and navigation algorithms need to handle the communication delay and

consider the quality of time synchronization.

• Hardware demonstration: The proposed algorithms and the other existing algo-

rithms are evaluated in the full software simulator in this dissertation. Hardware-

based performance evaluations would be beneficial to find out significant factors for

the navigation algorithms, for instance, constraints on computational resources, a

real anomaly for fault tolerance evaluation, etc.
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Appendix A

Probability

A.1 Derivation of Gaussian Filters

A.1.1 Derivation of the Measurement Update in the Gaussian Filter

We summarize the derivation of the measurement update in the Gaussian filter. The

exponential term of p(yk|xk)p(xk|y1:k−1) in Eq. (3.4), which is defined as X, can be rep-

resented as:

X = (xk − x̂k|k−1)
TP−1

k|k−1(xk − x̂k|k−1) + (yk − h(x))TR−1(yk − h(x)) (A.1)

If we assume that h(x) follows the Gaussian distribution with the mean ŷk|k−1 and the

covariance P yy
k|k−1, X can be reformulated as:

X = (xk − x̂k|k−1)
TP−1

k|k−1(xk − x̂k|k−1)

+(yk − P−1
k|k−1P

xy
k|k−1xk)

T
(
P yy
k|k−1 − (P xy

k|k−1)
TP−1

k|k−1P
xy
k|k−1

)−1

×(yk − P−1
k|k−1P

xy
k|k−1xk)

= (xk − x̂k|k−1)
TP−1

k|k−1(xk − x̂k|k−1)

+
{
yk − ŷk|k−1 − (P xy

k|k−1)
TP−1

k|k−1(xk − x̂k|k−1)
}T

×
(
P yy
k|k−1 − (P xy

k|k−1)
TP−1

k|k−1P
xy
k|k−1

)−1

×
{
yk − ŷk|k−1 − (P xy

k|k−1)
TP−1

k|k−1(xk − x̂k|k−1)
}
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and then,

X = (xk − x̂k|k−1)
T
{
P−1
k|k−1 + P−1

k|k−1P
xy
k|k−1

×
(
P yy
k|k−1 − (P xy

k|k−1)
TP−1

k|k−1P
xy
k|k−1

)−1
(P xy

k|k−1)
TP−1

k|k−1

}
(xk − x̂k|k−1)

+(yk − ŷk|k−1)
T
(
P yy
k|k−1 − (P xy

k|k−1)
TP−1

k|k−1P
xy
k|k−1

)−1
(yk − ŷk|k−1)

−(xk − x̂k|k−1)
TP−1

k|k−1P
xy
k|k−1

×
(
P yy
k|k−1 − (P xy

k|k−1)
TP−1

k|k−1P
xy
k|k−1

)−1
(yk − ŷk|k−1)

−(yk − ŷk|k−1)
T
(
P yy
k|k−1 − (P xy

k|k−1)
TP−1

k|k−1P
xy
k|k−1

)−1

×(P xy
k|k−1)

TP−1
k|k−1(xk − x̂k|k−1)

Due to the following matrix relationship (Woodbury matrix identity) [53]:

(A+BDC)−1 = A−1 −A−1B
(
D−1 +CA−1B

)−1
CA−1 (A.2)

Then, X is reformulated as:

X = (xk − x̂k|k−1)
T
(
Pk|k−1 − P xy

k|k−1(P
yy
k|k−1)

−1(P xy
k|k−1)

T
)−1

(xk − x̂k|k−1)

+(yk − ŷk|k−1)
T
(
P yy
k|k−1 − (P xy

k|k−1)
TP−1

k|k−1P
xy
k|k−1

)−1
(yk − ŷk|k−1)

−(xk − x̂k|k−1)
TP−1

k|k−1P
xy
k|k−1

(
P yy
k|k−1 − (P xy

k|k−1)
TP−1

k|k−1P
xy
k|k−1

)−1
(yk − ŷk|k−1)

−(yk − ŷk|k−1)
T
(
P yy
k|k−1 − (P xy

k|k−1)
TP−1

k|k−1P
xy
k|k−1

)−1

×(P xy
k|k−1)

TP−1
k|k−1(xk − x̂k|k−1) (A.3)

By defining Pk|k ≜ Pk|k−1−P
xy
k|k−1(P

yy
k|k−1)

−1(P xy
k|k−1)

T , Σk|k ≜ P yy
k|k−1−(P

xy
k|k−1)

TP−1
k|k−1P

xy
k|k−1,

X can be expressed as:

X =
[
(xk − x̂k|k−1) + Pk|kP

−1
k|k−1P

xy
k|k−1Σ

−1
k|k(yk − ŷk|k−1)

]T
P−1
k|k

×
[
(xk − x̂k|k−1) + Pk|kP

−1
k|k−1P

xy
k|k−1Σ

−1
k|k(yk − ŷk|k−1)

]
+(yk − ŷk|k−1)

T
(
Σ−1
k|k − Σ−1

k|k(P
xy
k|k−1)

TP−1
k|k−1Pk|kP

−1
k|k−1P

xy
k|k−1Σ

−1
k|k

)
(yk − ŷk|k−1)
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Therefore, the mean of the posterior probability is:

x̂k|k = x̂k|k−1 + Pk|kP
−1
k|k−1P

xy
k|k−1Σ

−1
k|k(yk − ŷk|k−1)

= x̂k|k−1 +
(
Pk|k−1 − P xy

k|k−1(P
yy
k|k−1)

−1(P xy
k|k−1)

T
)
P−1
k|k−1P

xy
k|k−1

×
(
P yy
k|k−1 − (P xy

k|k−1)
TP−1

k|k−1P
xy
k|k−1

)−1
(yk − ŷk|k−1)

= x̂k|k−1 +
(
I − P xy

k|k−1(P
yy
k|k−1)

−1(P xy
k|k−1)

TP−1
k|k−1

)
P xy
k|k−1

×
(
I − (P yy

k|k−1)
−1(P xy

k|k−1)
TP−1

k|k−1P
xy
k|k−1

)−1
(P yy

k|k−1)
−1(yk − ŷk|k−1)

= x̂k|k−1 + P xy
k|k−1

(
I − (P yy

k|k−1)
−1(P xy

k|k−1)
TP−1

k|k−1P
xy
k|k−1

)
×
(
I − (P yy

k|k−1)
−1(P xy

k|k−1)
TP−1

k|k−1P
xy
k|k−1

)−1
(P yy

k|k−1)
−1(yk − ŷk|k−1)

= x̂k|k−1 + P xy
k|k−1(P

yy
k|k−1)

−1(yk − ŷk|k−1) (A.4)

Finally, the measurement update step of the Gaussian filter can be summarized as:

Kk ≜ P xy
k|k−1(P

yy
k|k−1)

−1 (A.5)

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1) (A.6)

Pk|k = Pk|k−1 −KkP
yy
k|k−1K

T
k (A.7)

where Kk is the Kalman gain at the k-th time step.

A.1.2 Derivation of the Measurement Update in the Gaussian Informa-

tion Filter

We summarize the derivation of the measurement update in the Gaussian informa-

tion filter. Firstly, we summarize the derivation of the posterior information matrix. By

Eq. (3.18) and Woodbury matrix identity formula of Eq. (A.2):

Zk = P−1
k =

(
Pk|k−1 − P xy

k|k−1(P
yy
k|k−1)

−1(P xy
k|k−1)

T
)−1

= P−1
k|k−1 + P−1

k|k−1P
xy
k|k−1

(
P yy
k|k−1 − (P xy

k|k−1)
TP−1

k|k−1P
xy
k|k−1

)−1
(P xy

k|k−1)
TP−1

k|k−1

= Zk|k−1 +HT
k

(
P yy
k|k−1 − (P xy

k|k−1)
TP−1

k|k−1P
xy
k|k−1

)−1
Hk (A.8)
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where a pseudo measurement matrix is difined as HT
k ≜ P−1

k|k−1P
xy
k|k−1. The term P yy

k|k−1 −

(P xy
k|k−1)

TP−1
k|k−1P

xy
k|k−1 in Eq. (A.8) is calculated as:

P yy
k|k−1 − (P xy

k|k−1)
TP−1

k|k−1P
xy
k|k−1 =

∫
Rnx

AN (xk|x̂k|k−1, Pk|k−1)dxk +R (A.9)

A = (yk − ŷk|k−1)(yk − ŷk|k−1)
T − (yk − ŷk|k−1)(xk − x̂k|k−1)

T

× 1

(xk − x̂k|k−1)(xk − x̂k|k−1)T
(xk − x̂k|k−1)(yk − ŷk|k−1)

T = 0 (A.10)

P yy
k|k−1 − (P xy

k|k−1)
TP−1

k|k−1P
xy
k|k−1 = R (A.11)

Therefore, the measurement update of the information matrix can be expressed in the

following simple form.

Zk = Zk|k−1 +HT
kR

−1Hk (A.12)

Secondly, we summarize the derivation of the posterior information vector. Eq. (3.22)

is reformulated as:

ẑk = Zkx̂k

= {Zk|k−1 +HT
kR

−1Hk}{x̂k|k−1 +Kk(yk − ŷk|k−1)}

= Zk|k−1x̂k|k−1 +HT
kR

−1Hkx̂k|k−1 + (Zk|k−1 +HT
kR

−1Hk)Kk(yk − ŷk|k−1)

= ẑk|k−1 +HT
kR

−1Hkx̂k|k−1 + (Zk|k−1 +HT
kR

−1Hk)Kk(yk − ŷk|k−1)

where the third term, which is defined as Y here, can be formulated as:

Y = (Zk|k−1 +HT
kR

−1Hk)Kk(yk − ŷk|k−1)

= (P−1
k|k−1 +H

T
kR

−1P xy
k|k−1P

−1
k|k−1)P

xy
k|k−1(P

yy
k|k−1)

−1(yk − ŷk|k−1)

= P−1
k|k−1P

xy
k|k−1(P

yy
k|k−1)

−1(yk − ŷk|k−1)

+HT
kR

−1P xy
k|k−1P

−1
k|k−1P

xy
k|k−1(P

yy
k|k−1)

−1(yk − ŷk|k−1)

= HT
k (P

yy
k|k−1)

−1(yk − ŷk|k−1) +HT
kR

−1(P yy
k|k−1 −R)(P yy

k|k−1)
−1(yk − ŷk|k−1)

= HT
k

(
I +R−1P yy

k|k−1 −R−1R
)
(P yy

k|k−1)
−1(yk − ŷk|k−1)

= HT
kR

−1(yk − ŷk|k−1) (A.13)

Therefore, the measurement update of the information vector is formulated as:

ẑk = ẑk|k−1 +HT
kR

−1Hkx̂k|k−1 +HTR−1(yk − ŷk|k−1)

= ẑk|k−1 +HT
kR

−1
(
yk − ŷk|k−1 +Hkx̂k|k−1

)
(A.14)
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A.2 Linear Approximation for Probability Integrals

In this section, we summarize how to calculate the following integral of probability

distributions with reference to [54].∫
Rnx

F (x)
1

(2π)nx/2|P |1/2
exp

(
1

2
(x− x̂)TP−1(x− x̂)

)
dx (A.15)∫

Rnx

(
F 1(x)− I[F̃ 1]

)(
F 2(x)− I[F̃ 2]

)T
× 1

(2π)nx/2|P |1/2
exp

(
1

2
(x− x̂)TP−1(x− x̂)

)
dx (A.16)

where F (x) is a possibly nonlinear function. Let P = STS, and substitute x = x̂ + ST ξ,

and Eq. (A.15) is expressed as:∫
Rnx

F (x)
1

(2π)nx/2|P |1/2
exp

(
1

2
(x− x̂)TP−1(x− x̂)

)
dx

=
1

(2π)nx/2|P |1/2

∫
Rnx

F (x̂+ ST ξ) exp

(
1

2
ξTS(STS)−1ST ξ

)
dξ · ST

=
1

(2π)nx/2

∫
Rnx

F (x̂+ ST ξ) exp

(
1

2
ξT ξ

)
dξ

=
1

(2π)nx/2

∫
Rnx

F̃ (ξ) exp

(
1

2
ξT ξ

)
dξ

=

∫
Rnx

F̃ (ξ)N (ξ|0, I)dξ ≜ I[F̃ ] (A.17)

and Eq. (A.16) is expressed as:∫
Rnx

(
F 1(x)− I[F̃ 1]

)(
F 2(x)− I[F̃ 2]

)T
× 1

(2π)nx/2|P |1/2
exp

(
1

2
(x− x̂)TP−1(x− x̂)

)
dx

=
1

(2π)nx/2|P |1/2

∫
Rnx

F 1(x̂+ ST ξ)F T
2 (x̂+ ST ξ) exp

(
1

2
ξT ξ

)
dξ · ST

−I[F̃ 1]I[F̃ 2]
T − I[F̃ 1]I[F̃ 2]

T + I[F̃ 1]I[F̃ 2]
T

=
1

(2π)nx/2|P |1/2

∫
Rnx

F̃ 1(ξ)F̃
T
2 (ξ) exp

(
1

2
ξT ξ

)
dξ − I[F̃ 1]I[F̃ 2]

T

=

∫
Rnx

F̃ 1(ξ)F̃ 2(ξ)N (ξ|0, I)dξ − I[F̃ 1]I[F̃ 2]
T

= I[F̃ 1F̃
T
2 ]− I[F̃ 1]I[F̃ 2]

T ≜ J [F̃ 1, F̃
T
2 ] (A.18)

Eqs. (A.17) and (A.18) cannot be calculated analytically when F̃ (x) is a nonlinear function.

In the linear approximation, F (x) is approximated by the first-order Taylor polynomial as:

F̃ (ξ) ≃ F̃ (0) + F̃
′
(0)ξ. (A.19)
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With this linear approximation, Eq. (A.17) is reformulated as:

I[F̃ ] =
1

(2π)nx/2

∫
Rnx

(
F̃ (0) + F̃

′
(0)ξ

)
exp

(
1

2
ξT ξ

)
dξ

= F̃ (0) = F (x̂), (A.20)

and Eq. (A.18) is also reformulated as:

J [F̃ 1, F̃ 2] =
1

(2π)nx/2

∫
Rnx

(
F̃ 1(0) + F̃

′
1(0)ξ

)(
F̃ 2(0) + F̃

′
2(0)ξ

)T
exp

(
1

2
ξT ξ

)
dξ

−F̃ 1(0)F̃ 2(0)

= F̃
′
1(0)F̃

′T
2 (0) =

∂

∂ξ
F̃ 1(ξ)

∣∣∣∣
ξ=0

∂

∂ξ
F̃

T
2 (ξ)

∣∣∣∣
ξ=0

=
∂

∂x
F 1(x)

∣∣∣∣
x=x̂

∂x

∂ξ

(
∂

∂x
F 2(x)

∣∣∣∣
x=x̂

∂x

∂ξ

)T

=
∂

∂x
F 1(x)

∣∣∣∣
x=x̂

STS

(
∂

∂x
F 2(x)

∣∣∣∣
x=x̂

)T

= F ′
1(x̂)PF ′T

2 (x̂). (A.21)

A.3 Spherical Cubature Integration

In this section, we summarize the overview of the spherical cubature integration with

reference to [55]. For the mathematical simplicity, we consider the following integral of the

normal Gaussian distribution as:

∫
F̃ (ξ)N (ξ|0, I) dξ. (A.22)

As an example, we consider the unscented transform [51]. The integral calculation is

approximated as:

∫
Rn

F̃ (ξ)N (ξ|0, I) dξ ≃W0F̃ (0) +W

2n∑
i=1

F̃ (cu(i)) (A.23)
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where W is a weight coefficient, c is a parameter yet to be determined, and points u(i)

belong to the symmetric set [1] defined as:

[1] =





1

0

0

...

0


,



0

1

0

...

0


, · · · ,



−1

0

0

...

0


,



0

−1

0

...

0


, · · ·



. (A.24)

In order that this rule is exact for all monomials of degree up to three, it requires that the

rule is exact for all monomials for which
∑n

i=1 di = 0, 2. To find the unknow parameters,

it suffices to consider monomials F̃j(ξ) = 1, and F̃j(ξ) = ξ2j because of the fully symetric

cubature rule. ∫
Rn

1 · N (ξ|0, I) dξ = 1 (A.25)∫
Rn

ξ2j · N (ξ|0, I) dξ = 1 (A.26)

Considering the approximation of Eq.(A.23), the weight coefficients should sarisfy the fol-

lowing conditions:

W0 · 1 +W ·
2n∑
i=1

1 = W0 + 2nW = 1, (A.27)

W0 · 0 +W ·
2n∑
i=1

[
cu

(i)
j

]2
= 2c2W = 1. (A.28)

By solving Eqs.(A.27) and (A.28), we obtain

W0 =
κ

n+ κ
(A.29)

W =
1

2(n+ κ)
(A.30)

c =
√
n+ κ (A.31)

where κ is a free parameter. Finally, with the approximation based on the unscented

transform, the integral is analytically computed as:∫
Rnx

F (x)N (x|x̂, P ) dx ≃ κ

n+ κ
F (x̂) +

1

2(n+ κ)

2n∑
i=1

F
(
x̂+
√
Pξ(i)

)
. (A.32)
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A.4 Covariance Intersection

The Covariance Intersection algorithm is a data fusion algorithm that takes a convex

combination of the means and covariances in the information space. [51] We consider two

probabilities N (µa,Σaa) and N (µb,Σbb), which are assumed to follow the Gaussian dis-

tributions. The problem is to fuse these two distributions and to yield a new probability

N (µc,Σcc). The Covariance Intersection algorithm is formulated as

Σ−1
cc = ωΣ−1

aa + (1− ω)Σ−1
bb (A.33)

Σ−1
cc µc = ωΣ−1

aa µa + (1− ω)Σ−1
bb µb (A.34)

where ω ∈ [0, 1]. The free parameter ω can be selected with different performance criteria

such as minimizing the trace or the determinant of Σcc.

Figure A.1: Covariance ellipsoids Σaa, Σbb, and Σcc (left: the updated Σcc with different values

of Σab, right: the CI updated Σcc) [10]

The consistency of Eqs. (A.33) and (A.34) are proved by the following discussion, that

is cited from [51]. The actual error in the estimate by the CI is represented as:

µc = Σcc

{
ωΣ−1

aa µa + (1− ω)Σ−1
bb µb

}
(A.35)

Then, the actual mean squared error is calculated by taking expectations as:

E
[
µcµ

T
c

]
= Σcc

{
ω2Σ−1

aa Σ̄aaΣ
−1
aa + ω(1− ω)Σ−1

aa Σ̄abΣ
−1
bb

+ω(1− ω)Σ−1
bb Σ̄baΣ

−1
aa + (1− ω)2Σ−1

bb Σ̄bbΣ
−1
bb

}
(A.36)

where Σ̄pq ≜ E[µ̃pµ̃
T
q ] and µ̃p ≜ xp−µp (p, q ∈ {a, b}). Here, it is assumed that we do not

have information on Σ̄ab, hence, we consider evaluating the upper bound of this quantity.
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The consistency condition is formulated as:

Σ−1
cc − ω2Σ−1

aa Σ̄aaΣ
−1
aa − ω(1− ω)Σ−1

aa Σ̄abΣ
−1
bb

−ω(1− ω)Σ−1
bb Σ̄baΣ

−1
aa − (1− ω)2Σ−1

bb Σ̄bbΣ
−1
bb ≥ 0 (A.37)

From the consistency condition of xa and xb:

Σaa − Σ̄aa ≥ 0, Σbb − Σ̄bb ≥ 0 (A.38)

Then, we have another inequality conditions of Σcc as:

Σ−1
cc = ωΣ−1

aa + (1− ω)Σ−1
bb

≥ ωΣ−1
aa Σ̄aaΣ

−1
aa + (1− ω)Σ−1

bb Σ̄bbΣ
−1
bb (A.39)

By substituting this lower bound to Eq. (A.37),

ω(1− ω)
(
Σ−1
aa Σ̄aaΣ

−1
aa +Σ−1

aa Σ̄abΣ
−1
bb +Σ−1

bb Σ̄baΣ
−1
aa +Σ−1

bb Σ̄bbΣ
−1
bb

)
≥ 0 (A.40)

then we finally get:

ω(1− ω)E
[{

Σ−1
aa µ̃a − Σ−1

bb µ̃b

}{
Σ−1
aa µ̃a − Σ−1

bb µ̃b

}T ] ≥ 0 (A.41)

As obviously known from the above discussion, the consistency holds for any choices of Σ̄ab

and ω ∈ [0, 1].

A.5 Kullback-Leibler Divergence of Gaussian Distributions

The Kullback-Leibler (KL) divergence is the statistical distance between two probabil-

ity distributions, how one probability distribution is different from the other probability

distribution [56, 57]. The KL divergence for the continuous probability distributions is

defined as:

DKL(p||q) =
∫
Rnx

p(x) log
p(x)

q(x)
dx (A.42)

where x ∈ Rnx . When we assume that the probability distributions follow the multivariate

Guassian distributions, p(x) and q(x) are represented as:

p(x) =
1

(2π)nx/2 |Σp|1/2
exp

(
−1

2

(
x− µp

)T
Σ−1
p

(
x− µp

))
(A.43)

q(x) =
1

(2π)nx/2 |Σq|1/2
exp

(
−1

2

(
x− µq

)T
Σ−1
q

(
x− µq

))
(A.44)
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where p(x) = N
(
x|µp,Σp

)
and q(x) = N

(
x|µq,Σq

)
. Eq. (A.42) is reformulated with

Eqs. (A.43) and (A.44) as:

DKL(p||q) = E [log p(x)− log q(x)]

=
1

2
log
|Σq|
|Σp|

− 1

2
E
[(
x− µp

)T
Σ−1
p

(
x− µp

)]
+
1

2
E
[(
x− µq

)T
Σ−1
q

(
x− µq

)]
(A.45)

The second term of Eq. (A.45) is rewritten with the matrix trace as:

(the 2nd term) =
1

2
E
[
trace

{(
x− µp

) (
x− µp

)T
Σ−1
p

}]
=

1

2
trace

{
E
[(
x− µp

) (
x− µp

)T
Σ−1
p

]}
=

1

2
trace

{
E
[(
x− µp

) (
x− µp

)T ]
Σ−1
p

}
=

1

2
trace

{
ΣpΣ

−1
p

}
=

nx

2
(A.46)

where the relationship trace(ABC) = trace(BCA) = trace(CAB) is used for the refor-

mulation. The third term of Eq. (A.45) is simplified as:

(the 3rd term) =
(
µp − µq

)T
Σ−1
q

(
µp − µq

)
+ trace

{
Σ−1
q Σp

}
(A.47)

Finally, the KL-divergence of the multivariate Gaussian distributions is derived as:

DKL(p||q) =
1

2

[
log
|Σq|
|Σp|

− nx +
(
µp − µq

)T
Σ−1
q

(
µp − µq

)
+ trace

{
Σ−1
q Σp

}]
(A.48)

Figure A.2 shows the examples of the KL-divergence.

(a) Small difference (b) Large difference

Figure A.2: Examples of the KL-divergence.



Appendix B

Evaluation of Information Gain

B.1 Measurement Information Gain

To compute the belief of the estimated states based on the measurements from other

spacecraft, it is required to pay costs for communicating that information. This fact is

one of the primary motivations to make the estimation process decentralized to reduce

the amount of data transmitted among spacecraft. In this subsection, we consider how to

evaluate the values of inter-spacecraft measurements.

B.1.1 Information Gain of Inter-spacecraft Measurements

The evaluation metrics of measurement information gain can be roughly divided into

two categories: the evaluation based on covariance and the evaluation based on information

matrix, that are summarized in Appendix B.2. Firstly, we consider the information contri-

bution of the range and bearing angle measurements for the i-th spacecraft are represented

as:

trace
(
U

r(ij)
k

)
=

1

σ2
r

(B.1)

trace
(
U

θ(ij)
k

)
=

1

σ2
b

· 1(
p
(j)
x − p

(i)
x

)2
+
(
p
(j)
y − p

(i)
y

)2 (B.2)

trace
(
U

ϕ(ij)
k

)
=

1

σ2
b

· 1(
p
(j)
x − p

(i)
x

)2
+
(
p
(j)
y − p

(i)
y

)2
+
(
p
(j)
z − p

(i)
z

)2 (B.3)

where the measurement noise variances are assumed to be identical for the same type of

sensors. U
r(ij)
k , U

θ(ij)
k , and U

ϕ(ij)
k represent the contribution information matrices of the

range, azimuth angle, and elevation angle measurements respectively. The derivations of

129
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Eqs.(B.1) to (B.3) are provided in Appendix B.3.

If assuming that the information matrix of the prior probability is Z
(i)i
k|k−1, the informa-

tion utility metric is computed as:

Ψ(i)
(
y
(ij)
k

)
= trace

Z
(i)i
k|k−1 +

∑
s∈{r,θ,ϕ}

U
s(ij)
k

− trace
(
Z

(i)i
k|k−1

)
=

∑
s∈{r,θ,ϕ}

trace
(
U

s(ij)
k

)
. (B.4)

where Ψ(i)(y
(ij)
k ) represents the information gain of y

(ij)
k with respect to the state estimate

of the i-th spacecraft. As obviously seen in Eq.(B.4), the measurement information gain

evaluated in the canonical parameterization is assessed regardless of the prior probability.

This evaluation is effective for conditions where information contribution values vary, such

as heterogeneous sensor networks. However, in the swarm navigation relying solely on

relative sensing, the information contribution is highly uniform as represented in Eqs.(B.1)

to (B.3). There is difficulty exploiting the evaluation in the canonical parameterization

since it would provide a meaningless assessment.

As an alternative way, we can consider the covariance-based evaluation. The informa-

tion utility metric is formulated as:

Ψ(i)
(
y
(ij)
k

)
= −trace

Z
(i)i
k|k−1 +

∑
s∈{r,θ,ϕ}

U
s(ij)
k

−1

+ trace
(
Z

(i)i
k|k−1

)−1
. (B.5)

As mentioned in Appendix B.2, the trace of a covariance matrix is proportional to the cir-

cumference of the rectangular region enclosing the covariance ellipsoid. Therefore, Eq.(B.5)

represents the difference of circumferences between the posterior and the prior covariance

ellipsoids.

B.1.2 Example of Information Gain Evaluation

For evaluating information gain, we consider a small swarm system as shown in Fig-

ure B.1. In this scenario, the 1st spacecraft estimates its own state with the states of

the adjacent spacecraft (the 2nd and the 3rd spacecraft). At the k-th time step, the 1st

spacecraft already have measurement data expressed as the green edges in Figure B.1. We

consider adding another inter-spacecraft measurement and evaluating its information gain

based on this condition.
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Figure B.1: Problem setting for the information gain analysis

The aggregated state vector is represented as:

x(Ṽ1) =

[(
x(1)

)T (
x(2)

)T (
x(3)

)T]T (B.6)

where the aggregated information vector and information matrix are ẑ(Ṽ1) and Z(Ṽ1) re-

spectively. As shown in Figure B.2, we consider adding the measurement (3,4) or the

measurement (3,5). The information gains of these measurements for the i-th spacecraft

are evaluated as:

Ψ(i)
(
y(lm)

)
=

− trace

Υ(i)
p

Z
(Ṽ1)i
k|k−1 +

∑
s∈{r,θ,ϕ}

∑
i,j∈Ṽ1,i ̸=j

U
s(ij)
k

+
∑

s∈{r,θ,ϕ}

U
s(lm)
k

−1
+ trace

Υ(i)
p

Z
(Ṽ1)i
k|k−1 +

∑
s∈{r,θ,ϕ}

∑
i,j∈Ṽ1,i ̸=j

U
s(ij)
k

−1 (B.7)

where Ṽ1 = {1, 2, 3}, l ∈ {3} ⊆ Ṽ1 and m ∈ {4, 5} ∈ V.
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(a) (3,4) is added to the sensing network. (b) (3,5) is added to the sensing network.

Figure B.2: Information gain of an additional measurement.

Table B.1 shows the evaluated information gains in the case of Figure B.2. In this

case, the measurement (3,4) has higher information gain for all the spacecraft than the

measurement (3,5).

Table B.1: Information gain in the case of Figure B.2

Added edge 1st spacecraft 2nd spacecraft 3rd spacecraft

(3, 4) Ψ(1)
(
y(3,4)

)
= 15.1 Ψ(2)

(
y(3,4)

)
= 13.2 Ψ(3)

(
y(3,4)

)
= 18.8

(3, 5) Ψ(1)
(
y(3,5)

)
= 8.8 Ψ(2)

(
y(3,5)

)
= 12.9 Ψ(3)

(
y(3,5)

)
= 17.1

As the next example, we consider the information gain of the measurement (3.5) after

already adding the measurement (3,4). The information gain is expressed as:

Ψ(i)
(
y(lm)

)
=

− trace

Υ(i)
p

Z
(Ṽ1)i
k|k−1 +

∑
s∈{r,θ,ϕ}

∑
i,j∈Ṽ1,i ̸=j

U
s(ij)
k +

∑
s∈{r,θ,ϕ}

U
s(lm)
k

−1
+ trace

Υ(i)
p

Z
(Ṽ1)i
k|k−1 +

∑
s∈{r,θ,ϕ}

∑
i,j∈Ṽ1,i ̸=j

U
s(ij)
k +

∑
s∈{r,θ,ϕ}

U
s(3,4)
k

−1 (B.8)

where Ṽ1 = {1, 2, 3}, l ∈ {3} ⊆ Ṽ1 and m ∈ {4, 5} ∈ V. In this case, we consider two

locations of the 5th spacecraft as shown in Figure B.3.
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(a) Pattern 1 (b) Pattern 2

Figure B.3: The edge (3,5) is added after the edge (3,4) is added against the complete graph.

Table B.2 shows the information gain of the measurement (3,5) for both locations of

the 5th spacecraft. The configuration of Pattern 1 provides slightly higher information gain

than the configuration of Pattern 2.

Table B.2: Information gain in the case of Figure B.3

Pattern 1st spacecraft 2nd spacecraft 3rd spacecraft

Pattern 1 Ψ(1)
(
y(3,5)

)
= 4.84 Ψ(2)

(
y(3,5)

)
= 2.83 Ψ(3)

(
y(3,5)

)
= 5.62

Pattern 2 Ψ(1)
(
y(3,5)

)
= 4.85 Ψ(2)

(
y(3,5)

)
= 2.78 Ψ(3)

(
y(3,5)

)
= 5.56

Finally, we consider adding the measurement (3,5) on the incomplete graph, in which the

measurements (0,3) and (1,2) are removed from the complete graph as shown in Figure B.4.

The information gain of the measurement (3,5) is evaluated after adding the measurement

(3,4) on the above-mentioned incomplete graph. Eq. (B.8) is used for the calculation of the

information gain.
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(a) Pattern 1 (b) Pattern 2

Figure B.4: The edge (3,5) is added after the edge (3,4) is added against the complete graph.

Table B.3 shows the evaluation results. In contrast to the case of Figure B.3, the con-

figuration of Pattern 2 provides remarkably higher information gain than the configuration

of Pattern 1.

Table B.3: Information gain in the case of Figure B.4

Pattern 1st spacecraft 2nd spacecraft 3rd spacecraft

Pattern 1 Ψ(1)
(
y(3,5)

)
= 3.43 Ψ(2)

(
y(3,5)

)
= 1.35 Ψ(3)

(
y(3,5)

)
= 7.44

Pattern 2 Ψ(1)
(
y(3,5)

)
= 6.30 Ψ(2)

(
y(3,5)

)
= 3.31 Ψ(3)

(
y(3,5)

)
= 10.0

B.1.3 Discussion on Measurement Information Gain

As the above-mentioned numerical evaluation shows, the information gain of the inter-

spacecraft measurements heavily relies on the already obtained measurements. Therefore,

it would be meaningless to consider the information of a single measurement. In addition,

it is considered to evaluate the information gain with the onboard resources for an active

selection of transferred measurement data to reduce inter-spacecraft communication load.

To assess the information gain on a particular spacecraft, it needs to receive the related

information, including measurement data and the estimation result of the communication

target. However, if the spacecraft receives those data to evaluate the information gain, the

original purpose of reducing the communication load is no longer achieved. Therefore, the

onboard evaluation of the information gain is fundamentally difficult, especially for multi-
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agent systems like spacecraft swarms. Based on the above analysis, it would be reasonable

to decide the policy of measurement selection heuristically and develop a high-performance

estimation algorithm working well under that policy.

B.2 Information Utility Metrics

To enable quantitative evaluation of the information gain provided by sensor measure-

ments, it is required to define the measure of information utility. The intuition is that the

information content is inversely related to the size of the uncertain region of the estimate

of the random variable x [58]. We consider an estimate following the Gaussian distribution

N (x|µ,Σ). The determinant of the covariance matrix is proportional to the volume of the

rectangular region enclosing the covariance ellipsoid. In the case of x ∈ R3, the covariance

matrix is defined as:

Σ =


Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33


(B.9)

Let the eigenvalues of Σ be λ1, λ2, and λ3. The determinant of Σ is calculated with the

following equation:

det(Σ) =
3∏

i=1

λi (B.10)

The standard form of the covariance ellipsoid is expressed as:

x2

λ2
1

+
y2

λ2
2

+
z2

λ2
3

= 1 (B.11)

Hence, the information utility function for this approximation is chosen as:

Ψ (p(x)) = −det(Σ) (B.12)

Although the volume of the high probability region seems to be a helpful measure, there

are cases in which this measure underestimates the residual uncertainty. If the smallest

principal axis shrinks to zero, the volume of the uncertainty ellipsoid is zero, while the un-

certainties along the remaining principal axes might remain large. An alternative measure

using only the covariance of a distribution p(x) would be the trace, which is proportional
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to the circumference of the rectangular region enclosing the covariance ellipsoid. That is

because the summation of the eigenvalues equals to the trace as:

trace(Σ) =

3∑
i=1

λi (B.13)

Then, the information utility function is defined as:

Ψ (p(x)) = −trace(Σ) (B.14)

B.3 Information Gain of Range and Bearing Angle Measure-

ments

We summarize the information metrics of range and bearing angle measurements. Here

we consider the information gain of the measurements between the i-th and the j-th space-

craft for the state estimation of the i-th spacecraft. Firstly, the information contribution

matrix of the range measurement is defined as:

U
r(ij)
k =

1

σ2
r

(
H

(i)
r,k

)T
H

(i)
r,k (B.15)

H
(i)
r,k =

∂hr
(
x(i),x(j)

)
∂x(i)

=

[
∂hr

∂p
(i)
x

∂hr

∂p
(i)
y

∂hr

∂p
(i)
z

0 0 0

]
. (B.16)

Then, the trace of the information contribution matrix is computed as:
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where the Jacobian terms are replaced with Eq.(2.16).

Next, the information contribution matrix of the range measurement is defined as:
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where the Jacobian matrices are defined as:
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The trace of the information contribution matrix of the azimuth angle measurement is

formulated as:
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and the trace of the information contribution matrix of the elevation angle measurement

is formulated as:
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where the Jacobian terms are replaced with Eqs.(2.24) to (2.30).
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