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Abstract

Robots are becoming more accessible and need to become highly autonomous. We believe
that reinforcement learning is one of the promising methods to realize autonomous systems
in dynamic and complex environments. Reinforcement learning can be expected to learn how
to behave in order to achieve the goals set by the designer, even if it does not have sufficient
knowledge of the problem, and this may enable it to solve complex control problems that
could not be solved before. On the other hand, the agent needs to solve the complex task by
trial and error, therefore, large amount of data is required. When considered in the context
of the robot control, additional challenges arise. For example, if the agent tries to collect
data in the real world, a large amount of time is required to execute the robot control and
reset the environment, which adds to the learning cost, and unstable behavior in the early
stages of learning may endanger the robot and its surroundings, which increases the cost of
safety management. In this context, recent research was conducted to improve the learning
efficiency and reduce the risk by using a physical simulation. However, in previous works,
useful information from the simulation and knowledge of control is not utilized enough. Also,
there are some issues that arise by using a physical simulation. Specifically, the reinforcement
learning controller learned in a simulation environment may not work well in a real-world
environment due to the difference in behavior between the simulation environment and the
real-world environment. Therefore, we develop methods for efficient reinforcement learning
by using some information and obtaining the robust controller in a simulation environment.

In Chapter 2, we propose a method to improve the learning efficiency by residual rein-
forcement learning using the control knowledge in a physical simulation. Using the control
knowledge improve the learning efficiency and make learning process stable.

In Chapter 3, we introduce a method to improve the learning efficiency and the performance
of a reinforcement learning controller in a delayed feedback environment by using undelayed
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feedback information.

In Chapter 4, we propose two-stage learning algorithm to learn the policy efficiently in a
domain randomized environment. Domain randomization is a method that randomly samples
textual noise of an image or/and environment parameters (friction, weight, etc.) and helps to
obtain a robust controller. Two-stage learning algorithms includes learning feature extractor
and reinforcement learning.
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Chapter 1

Introduction

1.1 Toward the realization of autonomous robots

The control of robots has become a widespread and indispensable part of the manufacturing
process due to their ability to perform predetermined movements with high precision. On
the other hand, as machines and robots have become more familiar to people in recent years,
there has been an increasing demand for autonomous systems that can function in dynamic
and complex environments. We believe that one of the most promising method for realizing
autonomous robot system is reinforcement learning.

With the advent of deep learning, various machine learning algorithms using neural net-
works have been proposed, and reinforcement learning is one of the areas being studied by
many researchers. In reinforcement learning, the environment is unknown, and an agent
collects data by trial and error and learns a controller in the environment. This property has
the potential to learn a controller for complex tasks that are difficult to model simply.

In recent years, the success of deep reinforcement learning in game area has attracted much
attention. Starting with the Deep Q Network (DQN) [1], which plays the Atari game at first,
various methods have been proposed, and some of them can compete with humans or better
in various games, for example, go and Shogi.

One important development is the emergence of the algorithms for continuous control
tasks [2, 3, 4, 5, 6, 7], which have been applied to a variety of robotic applications. For
example, self-driving cars [8], object grasping [9], object throwing [10], quadrotor [11] ,
quadrupedal walking [12], and navigation [13]. On the other hand, many challenges remain
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Figure.1.1: Problem setting of reinforcement learning

when we try to apply reinforcement learning to robot control. One of them is that the cost
of performing trial and error for learning in the real world is very high. The example of the
solution to this problem is to improve the sampling efficiency (the degree of improvement of
the controller in relation to the amount of experiences) to obtain a good controller efficiently
with a small amount of experiences, or to reduce the cost of gathering experiences by using
a simulation. There have been many studies on reinforcement learning for robots using a
simulation. However, there is a problem that remains from the use of the simulation: the gap
between the simulation environment and the real-world environment. Physical simulations
model the real world and represent its behavior numerically. Therefore, it is not possible to
reproduce the real world perfectly. The controller that works in the simulation may not work
well in the real world because of the difference between the behavior in the simulation and
the behavior in the real world.

While reinforcement learning has the potential to build highly autonomous systems, it faces
many challenges as mentioned above, and a number of major developments are needed before
it can be widely adopted.
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1.2 Reinforcement learning for continuous control

The problem setup for reinforcement learning is shown in Fig. 1.1. The agent acts in the
environment through its behavior at and receives the reward rt and the next state st+1 from
the environment. Most reinforcement learning assumes that the process is a Markov decision
process. A Markov decision process means that the state transitions satisfy Markovianity
(Markovianity is the property that the posterior probability of the next state is determined
from the current state and behavior and does not depend on the past). In this interaction, the
reinforcement learning problem can be formulated as reward maximization. Here, we consider
time-discounted cumulative reward as the objective function of reinforcement learning.

Es∼pπ,a∼π

[
T∑
i=0

γiri

]
. (1.1)

In this case, the time-discounted cumulative reward sum over the future for taking action a in
state s is defined as the state action value function:

Q(s, a) = E
[

T∑
i=t

γi−tri |st = s, at = a

]
, (1.2)

which is called Q-function. In this case, from Markov property, we can be written as

Q(s, a) = r + γE

[
T∑

i=t+1
γi−t−1ri

]
, (1.3)

where r is the reward as the result of action a in state s. Focusing on the expectation operation,
we can be defined as

Q(s, a) = r + γEs′∼p(s′ |s,a),a′∼π(· |s′) [Q(s′, a′)] . (1.4)

where p(s′ |s, a) is the state transition probability, which is conditioned only on the current
state and action due to Markov property.

We first introduce Q-learning [14] to understand the continuous control by reinforcement
learning. We assume that the states and actions are discrete values. That is, there are |S | × |A|
combinations of (s, a) (where |S | is the number of states and |A| is the number of actions),
and each combination can be considered in the form of a table with Q-values. When an agent
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Algorithm 1 DQN [1]

1: Initialize parameter θ and target network parameter θ̄ ← θ

2: Initialize replay memory D
3: s0 ← env.reset()
4: for t = 0, 1, . . . ,T do
5: With probability ϵ select random action at
6: otherwise at = arg max

a
Q(st, a)

7: st+1, rt, done = env.step(at )
8: D.add(st, at, rt, st+1, done)
9: Sample mini-batch (si, ai, ri, si+1, donei) from D (size N)

10: yi = ri + donei · γmaxa Qθ̄ (si+1, a)
11: Lθ =

∑
i (yi −Q(si, ai))2 /N

12: if done then st+1 ← env.reset() end if
13: if t mod C = 0 then θ̄ ← θ

14: end for

observes the state s, it selects the action from the Q table to maximizes the Q-value. In other
words, the action a is defined as

a = arg max
b

Q(s, b), (1.5)

Then, the state-action value function is

Q(s, a) = r + γEs′∼p(s′ |s,a)
[
max
a′

Q(s′, a′)
]
. (1.6)

In Q-learning, the state-action value function is updated each time step the experience
(sn, an, rn, sn+1) is obtained; the equation for the n-th update is

Qn(sn, an) = (1 − αn)Qn−1(sn, an) + αn
[
rn + γmax

a′
Q(sn+1, a′)

]
. (1.7)

where αn is the learning rate. This update equation brings the Q-value closer to [rn +
γmaxa′ Q(sn+1, a′)]. Also, only the element of (sn, an) sampled at this time step are updated
in the Q table.

Deep Q-learning, which uses deep learning and is designed for learning stably, has been
proposed by Mnih et al [1]. One of the innovations in DQN is the use of experience replay.
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Experience replay is a method of learning by storing a certain amount of experiences in
memory and then sampling experiences from it randomly. This weakens the correlation
between the sampled experiences to stabilizes the learning process. Another idea is the target
Q-network. The target [rn + maxa′ Q(sn+1, a′)] in naive Q-learning is always changing, and
if this change is too severe, the learning becomes unstable. Therefore, in the method of the
target Q-network, the target is updated at a certain interval and is fixed at other times. Unlike
Q-learning, in DQN, the states take continuous values, therefore, the state-action value is
approximated by a neural network with the parameter θ. Also, fixing the target means fixing
the parameter. Specifically, this method prepares a parameter θ̄ for the state-action value
function in the target, which copies θ at every C step. Then, the loss function for learning the
parameter θ is

Lθ =
1
N

N∑
i

(
ri + γ arg max

a
Qθ̄ (si+1, a) −Qθ (si, ai)

)2
. (1.8)

The algorithm for DQN is shown in Algorithm 1.

Next, we introduce the reinforcement learning algorithm for continuous control. The
structure used in most of the reinforcement learning for continuous control is actor critic.
Actor critic architecture has two models: actor, which outputs the action, and critic, which
evaluates the action. One of the advantages of having two models is that continuous action
can be easily introduced. In the following, we describe Deep Deterministic Policy Gradient
(DDPG) [2], which has the actor critic architecture.

If the action is represented by a neural network with parameter ϕ, the action a to be taken
in state s is written as

a = πϕ(s). (1.9)

In DQN, when calculating the target of the state-action value, the action is selected by argmax
operator, which is replaced by the policy πϕ . In DDPG, the target is defined as

rt + γQθ̄ (st+1, πϕ̄(st+1)), (1.10)

where ϕ̄ is a parameter of the target network of the policy. The state-action value function is
learned to minimize the mean least square as in DQN.

Lθ =
1
N

N∑
i

(
ri + γQθ̄ (si+1, πϕ̄(si+1)) −Qθ (si, ai)

)2
. (1.11)
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Algorithm 2 DDPG [2]
Output: optimal policy π∗

1: Initialize critic networks Qθ and policy network πϕ
2: Initialize target networks θ̄, ϕ̄← θ, , ϕ

3: Initialize replay buffer D
4: Initialize environment env
5: s0 ← env.reset()
6: for t = 0, 1, . . . ,T do
7: at ← πϕ(st ) + ϵ, ϵ ∼ N(0, σ)
8: st+1, rt, donet ← env.step(at )
9: D.add(st, at, rt, st+1, donet )

10: Sample mini-batch (si, ai, ri, si+1, donei) from D (size N)
11: a′← πϕ̄(si+1)
12: yi ← ri + donei · γQθ̄ (si+1, a′)
13: Update critics by (1.11)
14: Update policy by (1.13) using Qθ

15: Update target networks:
θ̄ ← τθ̄ + (1 − τ)θ
ϕ̄← τϕ̄ + (1 − τ)ϕ

16: if done then st+1 = env.reset() end if
17: end for

Also, unlike in DQN, the target network is updated slowly, following the parameters, rather
than periodically in DDPG. The update equations for the target network of the Q-function and
the policy are

θ̄ ← τθ + (1 − τ)θ̄, ϕ̄← τϕ + (1 − τ)ϕ̄. (1.12)

On the other hand, the policy πϕ is learned to maximize the following objective function.

Jϕ = E
[
Qθ (s, πϕ(s))

]
. (1.13)

The state-action value represents the expected value of how much reward will be obtained in
the future if a certain action a is taken in a certain state s, which shows how appropriate the
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action is in a certain state s. Therefore, the agent can update the policy parameters by the
gradient decent of (1.13). The algorithm for DDPG is shown in Algorithm 2.

1.3 Physical simulation for reinforcement learning in
robotics

In recent years, there are a variety of physical simulators available, and users need to
select a suitable simulator for the control task. For example, AirSim [15] is one of the
suitable simulator for solving the control task of UAVs, and CARLA [16] is one of the
reasonable simulator for auto driving. When we would like to solve the problem of navigation
or manipulation by reinforcement learning, MuJoCo [17], Pybullet [18], V-Rep [19] and
Gazebo [20] are often used.

In terms of what is required for physical simulation, for example, Erez et al. [21] focused on
the relationship between computation time and trajectory error. MuJoCo has shown superior
performance in this study. Also, Collins et al. [22] compared various simulations from a
functional perspective (sensor abundance, rendering, etc.).

On the other hand, there are some works on differentiable physical simulations. In [23],
automatic differentiation was introduced to allow computing fast and accurate approximations
of the derivative in physical simulations. Residual physics models are also proposed to learn
residual elements from analytical physical simulations. In [12], the input-output mapping of
the actuator is learned from real data using supervised learning, which is then used to correct
the behavior in the simulation environment to learn highly accurate real-world control in the
simulation. Heiden et al. [24] proposed a hybrid simulator, which is a combination of an
analytical physical model that is differentiable by automatic differentiation like [23] and a
residual physical model that is defined by a neural network and is also differentiable. Inspired
by Sparse Input Neural Networks (SPINN) [25], this work shows that it is possible to learn a
sparse residual physical model that corrects only the necessary physical quantities.

Improvements in the accuracy, computational speed, and differentiability of physical simu-
lations will enable the collection of large amounts of experiences in a short period of time in
a simulation environment similar to the real-world environment. Therefore, these improve-
ments will accelerate research and development on simulation-based reinforcement learning
for robot control.
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1.4 Summary of remaining chapters

In Chapter 2, we propose a method to efficiently learn a controller for logistics cart trans-
portation by residual and distributed reinforcement learning in a physical simulation. We
show that the proposed method make the improvement of a controller efficient in a simulation
environment, and the policy learned in the simulation realizes a logistics cart transportation
in a real-world environment.

In Chapter 3, we propose a method to deal with a delayed feedback that occurs in the
real-world environment. We use the undelayed observation and reward from the simulation
to learn the policy that works in a delayed feedback environment efficiently.

In Chapter 4, we focus on the study of domain randomization in order to solve the problem
of misalignment caused by using a simulation, and aim to obtain favorable controller in a
domain randomized environment. In this chapter, we propose a method that incorporates
privileged information from simulation and state representation learning to extract essential
information for making the problem setting into simple MDP.

In Chapter 5, we summarize the proposed method and discuss future issues.
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Chapter 2

Residual Reinforcement Learning
for Logistics Cart Transportation

2.1 Introduction

Object transportation is increasingly being automated through the use of automated guided
vehicles (AGVs) in large warehouses. However, this is less common in smaller warehouses,
where objects are typically conveyed by human workers with logistics carts because existing
automation systems by AGVs are not supported to transport existing logistics carts. For
example, a space below a logistics cart is too small to move under and lift it. To address this,
an automated object transportation system for these warehouses [26] was proposed. In this
system, the robot’s position is estimated by utilizing images from a camera on the ceiling,
and two robots grasp a logistics cart and transport it as shown in Fig. 2.1. The strategy
of having two robots hold a logistics cart makes it possible to automate the transportation
without additional equipment. However, control for transporting a logistics cart remains a
difficult problem because robots need to keep holding the cart. There is currently no method
for making a logistics cart track a trajectory.

In the context of robot control by RL, unique methods such as residual reinforcement
learning [27, 28, 10] and control structured policy learning [29], which include a feedback
control structure, have been proposed. These methods improve the learning efficiency by
utilizing prior knowledge.

In this chapter, we propose a method for constructing a residual reinforcement learning
controller that modifies the base controller by reinforcement learning for the logistics cart
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Figure.2.1: System overview.

transportation along a given trajectory. We do not consider trajectory planning. Our main
contributions are as follows.

• We achieve cooperative logistics cart transportation by a reinforcement learning con-
troller.

• We utilize the physical simulator and knowledge of the feedback controller to make the
controller learn the policy efficiently.

• Our proposed controller learned by physical simulator can be transferred to real-world
robots without additional parameter tuning.

2.2 Related works

2.2.1 Deep reinforcement learning for cooperative multi-agent control

Deep reinforcement learning methods that deal with high-dimensional observation for
multi-agent control have been extensively researched (see [30] for a survey). Much research
has focused on discrete action space, with less attention paid to continuous action space.

Lowe et al. [31] implemented an actor-critic model in a cooperative multi-agent system
where each agent has an independent Q-function whose inputs include its own observation,
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other agents’ observations, and the policy. In the training phase, each agent learns the Q-
function with the other agents’ information and the policy learned using this Q-function.
Then, in the execution phase, each agent utilizes the policy with only local information.

Gupta et al. [32] compared three strategies and learning algorithms in various simulations
that request discrete action or continuous action at first. The three strategies are (i) Centralized,
where one model includes joint observation and joint action, (ii) Concurrent, where each agent
has an independent observation and model, and (iii) Parameter Sharing, where each agent has
an independent observation and sharing model parameter. The authors found that Parameter
Sharing was the most scalable to the number of agents and proposed Parameter Sharing TRPO
(PS-TRPO). TRPO is a method of deep reinforcement learning for continuous control [3].

In our system, two robots are controlled as a single agent, however, it is related to centralized
strategy in the context of multi-agent reinforcement learning.

2.2.2 Cooperative object transportation

Cooperative object transportation has been researched since the 90s. The strategies for
solving this problem are mainly divided into three groups: the pushing strategy, the grasping
strategy (where the object is fixed between robots by some equipment or is placed directly on
the robots), and the caging strategy [33]. The pushing-only strategy appears simple strategy,
however, robots can only push an object, therefore, the system requires delicate control. The
grasping strategy has physical connection between robots and an object. Thus, it is easy
to realize stable transportation and robots can exert pulling power on an object. However,
physical connection is required. The caging strategy can realize stable transportation by
caging an object by robots, however, a controller is required to keep caging an object and
caging an object by a few robots is difficult. We adopt the caging strategy because of two
reasons: (i) a logistics cart has casters, therefore, it is easy to keep moving due to inertia,
and (ii) our system is introduced to existing warehouses and transports existing logistics carts,
thus, an additional attachment for physical connection is undesirable.

Research by Ohsaki et al. [34] utilizes the pushing strategy with the object on casters. Two
cooperating robots arrange small dollies under an object and then one robot pushes the object
for transportation. This research focused on arranging the dollies and stabilizing the pushing
robot, and did not discuss the details of the object transportation. Our research differs in that
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we focus specifically on logistics cart transportation. Another difference is that the weight of
the object in [34] was 35 kg, whereas ours is considerably heavier.

As for the grasping strategy, some studies have examined leader-follower systems with two
mobile robots [35, 36, 37]. In a leader-follower system, the leader tracks a given trajectory
and the follower follows the leader for transporting the object. Extended methods where the
object is regarded as a virtual leader and the robots are followers have been proposed [38].

Brown et al. [39] proposed a simple controller for cooperative object transportation by using
the caging strategy with two robots. One of the robots guides the object movement, and the
other pushes the object. Their research assumes that the contact point between the robots and
the object slides for making the guidance robot track an arc trajectory, while in contrast, our
system assumes that the contact point between the logistics cart and the robots does not slide.
Moreover, the object property in [39] is different from that in our research.

With regard to the caging strategy, leader-follower systems that utilize three or more robots
have been proposed. Wang et al. proposed a system featuring one leader and some follow-
ers [40]. Wan et al. [41] proposed a system where the object is regarded as the leader and
robots are followers. Wan et al. developed a leader-follower system featuring a multi-fingered
mechanism [42].

Methods for caging a concave object by means of a two-fingered mechanism have also been
proposed [43, 44, 45]. See the work by Makita et al. for a detailed survey of the methods
utilizing the caging strategy [46].

A reinforcement learning controller for cooperative object transportation by the grasping
strategy has been proposed [47]. In this method, the controller is constructed by a deep Q
network (DQN) that outputs a discrete action. Two robots and an object are arranged in a
fixed environment and their purpose is to arrive at an exit. This research differs from our
own in many respects, including the property of the object, the method of transportation, the
action space, and the concept underlying the processing observation.

While much research has examined cooperative object transportation, there has been no
research on the transportation of a logistics cart by two robots using the caging strategy, to
the best of our knowledge.
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Figure.2.2: Hardware architecture: (a) prototype and (b) holding mechanism.

2.3 Methodology

2.3.1 Hardware architecture

The hardware architecture is shown in Fig. 2.2. The plate that contacts a logistics cart has a
spring mechanism to enable flexible holding. This plate is covered by a high-friction material
to avoid slippage between the robot and the cart. The holding mechanism has a spring-damper
characteristic that rotates to track a circular trajectory. It stays at the center when it is in the
free state, as shown in Fig. 2.2 (a).

This system utilizes two robots: a supporting robot that supports a change in the direction
of the logistics cart, and a pushing robot that pushes the cart. These roles are fixed when the
cooperative logistics cart transportation is started and do not change during transportation.

2.3.2 Problem statements
Observation

The position and orientation of the robots are estimated by the image from the ceiling
camera, which utilizes rectangular recognition. The robot position corresponds to the center
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of rotation and the installation point of the holding mechanism. The position and orientation
of the logistics cart, in contrast, cannot be estimated by the image because of the complexity
of the logistics cart and the loading object.

If the controller utilizes the robots’ position and orientation in global coordinates, it does
not work when the scale of the environment changes. Therefore, we utilize local coordinates
calculated by the estimated position and orientation of the logistics cart. Fig. 2.3 shows the
ideal arrangement of the robots and logistics cart in local coordinates. The orange line is
the ideal trajectory of the logistics cart and is given in advance, i.e., we do not consider
trajectory planning. The true position and orientation of the logistics cart can be calculated
by the pushing robot position, orientation, and rotation angle of the holding mechanism.
The y-axis of local coordinates corresponds to the line from the logistics cart position to
the center of the circular trajectory and the x-axis is the tangent of the circular trajectory.
The position and orientation of the robots in these local coordinates is the observation of the
reinforcement learning controller. However, in real situations, robots often cannot maintain
the ideal holding, so the position and orientation of the logistics cart become estimated values
and local coordinates are calculated by the estimated position and orientation. The reason
we only use the pushing robot for calculating the logistics cart position and orientation is that
the pushing robot is required to contact the logistics cart for transporting it, which means the
estimated logistics of the cart position and orientation are calculated more accurately.

Additionally, the variation of each robot’s touch plate and the rotation angle of the holding
mechanism are included in the observation, and time differentials of these observations are
added. Finally, an action before one step, the trajectory curvature, and the size of the logistics
cart are appended to the observation.

Action
The continuous action space is defined as each robot’s linear velocity and rotational velocity.

Therefore, the action space has four dimensions. The range of the linear velocity of each robot
is [−0.5, 0.5] m/s and the range of the rotational velocity of each robot is [−π/6, π/6] rad/s.
The observation variables and action variables are listed in Table 2.1.

2.3.3 Reward shaping

The reinforcement learning controller is required to make the logistics cart follow the
trajectory as accurately and speedily as possible. Therefore, the reward is shaped by three
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Figure.2.3: Local coordinates for calculating observation.

elements: a) logistics cart’s position and orientation errors from the trajectory, b) logistics
cart’s velocity, and c) each robot’s position and orientation relative to the logistics cart’s
position and orientation. The reward element a) is based on [48, 49] and b) is based on [49],
which are studies on trajectory tracking using reinforcement learning. In the real world,
the true position, orientation, and velocity of the logistics cart cannot be obtained, but in
simulation, the reward calculator can refer to the ground truth and then calculate the reward
by utilizing it.

Logistics cart’s position and orientation errors

First, we introduce the reward for precision of tracking the trajectory. This is divided into
two elements: the position deviation and the orientation deviation. The reward for position
deviation rpd is defined as

rpd = exp
(
−kpd |ylc |

)
, (2.1)
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Table.2.1: Observation variables and action variables. FB obs. means the observations for the feedback
controller.

Observation variables Symbols FB obs.
Supporting robot position xsr, ysr ✓

Supporting robot orientation cos θsr, sin θsr ✓

Pushing distance of grasping mechanism of supporting robot dsr

Rotation angle of rotation mechanism of supporting robot ϕsr

Pushing robot position xpr, ypr ✓

Pushing robot orientation cos θpr, sin θpr ✓

Pushing distance of grasping mechanism of pushing robot dpr

Rotation angle of grasping mechanism of pushing robot ϕpr

Estimated position of logistics cart ŷlc

Estimated orientation of logistics cart cos θ̂lc, sin θ̂lc

Time derivatives of above variables 15 dimensions
Logistics cart size Llc ✓

Curvature ρ ✓

Action before one step vsr,wsr, vpr,wpr

Action variables
Each robot’s velocity and angular velocity vsr,wsr, vpr,wpr

where ylc is the logistics cart’s position in the local y-coordinate and kpd is a coefficient set to
7.5.

The reward for orientation deviation rod is defined as

rod = exp
(
−kod |θlc |

)
, (2.2)

where |θlc | is the logistics cart’s orientation in the local coordinates and kod is a coefficient
set to 13.5/π.
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Logistics cart’s velocity

Ideally, the logistics cart should be transported as speedily as possible. Therefore, the
reward for the logistics cart’s velocity rdv is defined as

rdv = kdvdd, (2.3)

where dd is the amount of the logistics cart’s advancement along a given trajectory and kdv is
a coefficient set to 10. To calculate dd, first, polar coordinates whose origin is the center of a
circular trajectory are defined and the moving angle of the logistics cart in one step is defined
as ∆θd. Then, if the radius of curvature is R, dd is calculated as dd = R∆θd.

Each robot’s position and orientation relative to logistics cart’s position and orienta-

tion

Stable holding of a logistics cart is important for users’ sense of security. Thus, we introduce
the reward for holding it as long as possible. For holding the logistics cart, each robot’s position
and orientation relative to the logistics cart’s position and orientation are required to stay in
a certain area. This area is decided by the range of motion of the touch mechanism dlim,
the width of the touch mechanism W , and the angle range of the rotation mechanism ϕlim.
Therefore, the area is defined as

x-axis : Llc

2 + Lgm − dlim ≤ |r {sr,pr}
x | ≤ Llc

2 + Lgm,

y-axis : |r {sr,pr}
y | ≤ W

5 ,

orientation : |r {sr,pr}
θ | ≤ ϕlim,

(2.4)

where r {sr,pr}
x , r {sr,pr}

y , r {sr,pr}
θ are each robot’s position and orientation relative to the logistics

cart’s position and orientation and Lgm is the length from the robot’s origin to the touch plate
of the holding mechanism. Llc is the length of the logistics cart (see Fig. 2.3). The reward
for relative position and orientation is defined as

rrp=

{
1.0 (both robots are in the area defined by (4))
0.1 (otherwise)

. (2.5)

Finally, the reward is defined by combining all elements:

r =

{
rdvrrp

(
rpd + rod

)
(0 ≤ rdv)

rdv
(
4 − rpd − rod

)
(otherwise)

. (2.6)
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This equation means that not only that the logistics cart tracks a given trajectory but also that
an amount of the logistics cart advancement along a given trajectory is needed for obtaining
the reward. If the logistics cart moves backwards along a given trajectory, the system given a
minus reward even if it tracks a given trajectory perfectly. We calculate the reward shaping
by the product of the error elements and the velocity element as in [49], which is research on
high-speed trajectory tracking control for autonomous driving. This product makes elements
improve for obtaining higher reward. As our research scenario allows a logistics cart to move
backwards, we have added the reward for moving backwards.

2.3.4 Formation-based feedback controller

We utilize the feedback controller proposed in [38] for cooperative logistics cart trans-
portation by formation-based control, which corresponds to the grasping strategy as the base
controller. In this method, the system regards an object as a virtual leader (VL) and the
robots as followers, and the leader-follower system controls the robots by feedback control
for maintaining formation. We show later that the robots’ target orientation can be written
simply.

The robots’ target is calculated as the relative state of VL. VL’s target velocity, posi-
tion, and orientation in local coordinates at time k are vVL

tgt (k) =
[
vVL

tgt , ω
VL
tgt

]⊤
, xVL

tgt (k) =
[0, 0]⊤ , θVL

tgt (k) = 0. Local coordinates are on a given trajectory and x-axis corresponds to
the tangent of a given trajectory, so the logistics cart’s target position and orientation are both
zero. Also, VL’s target position at time k + 1 in local coordinates at time k is

xVL
tgt (k + 1) =


[
R sinωVL

tgt ts, R(1 − cosωVL
tgt ts)

]⊤ (
ωVL

tgt , 0
)[

vVL
tgt ts, 0

]⊤ (
ωVL

tgt = 0
) , (2.7)

where R is the radius of the curvature of a given trajectory. In addition, ts [s] is the time elapsed
in one step, which we set to 0.1 s. The supporting robot’s target position at time k in local
coordinates at time k is xsr

tgt(k) = [L, 0]⊤, and the supporting robot’s target position at time k+1

in local coordinates at time k is written as xsr
tgt(k+1) = xVL

tgt (k+1)+
[
L cosωVL

tgt ts, L sinωVL
tgt ts

]⊤
.

The supporting robot’s target velocity is | |xsr
tgt(k +1) − xsr

tgt(k)| |/ts. The result of calculating
this equation is

vsr
tgt(k) =

√
vVL

tgt
2
+ 2L2

(
1 − cosωVL

tgt ts
)
/t2

s . (2.8)
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Additionally, the supporting robot’s target orientation in local coordinates at time k is calcu-
lated from its positions at times k − 1 and k as

θsr
tgt(k) = π + tan−1

ysr
tgt(k) − ysr

tgt(k − 1)
xsr

tgt(k) − xsr
tgt(k − 1) = π + ρL −

ωVL
tgt ts
2

, (2.9)

where ρ is the curvature of a given trajectory, which means the target orientation can be
calculated simply. The details of the calculation process are shown in the Appendix. The first
item π is added so that the supporting robot moves backwards. From the above, the supporting
robot’s targets in local coordinates at time k are

vsr
tgt(k) =

[
vsr

tgt, ω
sr
tgt

]⊤
=

[√
vVL

tgt
2
+ 2L2

(
1 − cosωVL

tgt ts
)
/t2

s , ω
VL
tgt

]⊤
,

xsr
tgt(k) = [L, 0]⊤ , θsr

tgt(k) = π + ρL − ωVL
tgt ts/2.

(2.10)

The pushing robot’s targets are calculated in the same way.

v
pr
tgt(k) =

[
v

pr
tgt, ω

pr
tgt

]⊤
=

[√
vVL

tgt
2
+ 2L2

(
1 − cosωVL

tgt ts
)
/t2

s , ω
VL
tgt

]⊤
,

x
pr
tgt(k) = [−L, 0]⊤ , θpr

tgt(k) = −ρL − ωVL
tgt ts/2.

(2.11)

After calculating each robot’s targets, each robot’s position and orientation errors between the
targets and the observations are calculated as

x
{sr,pr}
e =

[
x {sr,pr}
e y

{sr,pr}
e

]⊤
={sr,pr} Ttrj

(
x
{sr,pr}
tgt − x

{sr,pr}
obs

)
θ
{sr,pr}
e = θ

{sr,pr}
tgt − θ {sr,pr}

obs

, (2.12)

where {sr,pr}Ttrj is the transformation matrix from local coordinates to each robot’s coor-
dinates. x

{sr,pr}
obs , θ

{sr,pr}
obs are the observation value of each robot’s position and orientation.

Following [50], each robot’s velocity is calculated as

π
{sr,pr}
fb (ofb)=

[
v
{sr,pr}
fb
ω
{sr,pr}
fb

]
=

[
v
{sr,pr}
tgt cos θ {sr,pr}

e + Kx x {sr,pr}
e

ωVL
tgt + v

{sr,pr}
tgt

(
Ky y

{sr,pr}
e + Kθ sin θ {sr,pr}

e

) ]
, (2.13)

where Kx,Ky,Kθ are the feedback gains and ofb is the observation for calculating the feedback
controller output (refer to Table 2.1). In our work, the feedback gains are decided by the Tree-
structured Parzen Estimator Approach (TPE) [51] (a Bayesian optimization method) so that the
reward for one episode is maximized. For the implementation of TPE, we utilize Optuna [52].
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This feedback controller is locally stable from the perspective of Lyapunov function, but it is
not enough for transporting the logistics cart, as discussed later in section 2.4.

2.3.5 Residual reinforcement learning

Here, we introduce our cooperative logistics cart transportation controller using residual
reinforcement learning.

In residual reinforcement learning, the control output is calculated as the sum of the
base controller output and the reinforcement learning controller output. The output of the
reinforcement learning controller is defined as each robot’s linear velocity v

{sr,pr}
res and rotation

velocityω{sr,pr}
res ; thus, the reinforcement learning controller outputs four dimensions of action:

πres (ofb, orl) →
[
vsr

res, ω
sr
res, v

pr
res, ω

pr
res,

]⊤
, (2.14)

where orl is the observation that is used for reinforcement learning. Finally, each robot’s
control output is calculated as

π (ofb, orl) = [vsr, ωsr, vpr, ωpr]⊤ = πfb (ofb) + πres (ofb, orl) , (2.15)

where πfb (ofb) = [πsr
fb (ofb) , πpr

fb (ofb)]⊤.

2.3.6 Learning algorithm

We use Twin Delayed DDPG (TD3) [7] as the learning algorithm. We considered using
another promising method, Soft-Actor Critic [6], which utilizes the stochastic action and
maximizes the trade-off objective between the expected sum of rewards and the entropy of the
stochastic action. However, in residual reinforcement learning, we think that exploitation is
more important than exploration, so we adopt TD3, which is exploration by fixed distributed
noise.

The reinforcement learning objective is to maximize the expected reward, defined as

J(ϕ) = Esi∼pπ,ai∼π

[
T∑
i=0

γiri

]
, (2.16)

where π is the policy, ϕ is the parameters in the policy, and γ is the time discount factor. Also,
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the state-action value function Q is defined as

Qπ
θ (st, at ) = Esi∼pπ,ai∼π

[
T∑
i=t

γiri |st, at

]
, (2.17)

which means that the action at causes the time-discounted and cumulated reward when the
state is st . Q-learning minimizes the temporal differential error (TD error). Q-function is
written as follows based on a Bellman equation:

Qπ
θ (st, at ) = rt + γEst+1,at+1

[
Qπ
θ (st+1, at+1)

]
. (2.18)

We utilize multi-step learning, which is a method for stabilizing the learning process by using
the forward-view n-step rewards. In Q-learning, the parameters of the target network are
defined as θ̄ and the target value is defined as

y = rt + γrt+1 + · · · + γnQπ
θ̄
(st+n, at+n). (2.19)

Therefore, the objective for minimizing the TD error is written as

LQ(θ) =
1
N

∑
i

HuberLoss
(
y −Qπ

θ (si, ai)
)
, HuberLoss(δ) =

{
δ2/2 (|δ | < 1)
|δ | − 0.5 (otherwise)

,

(2.20)
where Huber loss is used for robustness to outliers. Also, θ̄, which is the parameter of the
target network, is updated for tracking θ. Concretely, θ̄ is updated as θ̄ ← (1 − τ) θ̄+τθ,where
τ is the hyper-parameter and the smaller τ is, the more slowly the target network is updated.
Additionally, TD3 utilizes two methods for Q-learning: (i) clipped double Q-learning, where
two Q-functions are used and a small value of the two Q-functions is adopted as the target
value for avoiding overestimation, and (ii) target policy smoothing, where noise is added to
the action when the Q value of the target network in the target value calculation is calculated
for stabilizing learning.

Then, for optimizing the policy, we utilize the deterministic policy gradient method proposed
by Silver et al. [53]. The gradient is calculated for maximizing J(ϕ), so it is obtained by using
the Q-function as follows:

∇ϕJ(ϕ) = Es∼pπ

[
∇aQ(s, a)|a=π(· |s)∇ϕπϕ(·|s)

]
. (2.21)

The basic policy gradient method updates the Q-function and the policy in one learning step,
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but TD3 makes the policy update once every multiple steps of learning, which is called a
delayed policy update. In addition, we utilize prioritized experience replay [54] and distributed
learning for learning efficiently.

Prioritized experience replay is a method where the experience that has a large TD error is
sampled with priority, which makes it possible to learn efficiently. The priority is defined as

pi =
��y −Qπ

θ (si, ai)
�� + ϵ, (2.22)

where ϵ is a small value for avoiding the priority becoming zero. Then, the probability of the
i-th experience is

P(i) =
pαi∑
i pαi

, (2.23)

where α is the hyper-parameter. Also, importance sampling is applied for compensating the
biased sampling. The weight for the importance sampling is defined as

wi =

(
1
N
· 1

P(i)

)β
, (2.24)

where β is the hyper-parameter for deciding the degree of importance sampling and its bias
is corrected if β = 1. N is the size of replay memory. Also, for stabilizing, the weight is
normalized to 1/maxi wi . By using equation (23), the weight is written simply as

wi ←
wi

wmax
=

(
1
N
·
∑

i pαi
pαi

)β (
1
N
·
∑

i pαi
pαmin

)−β
=

(
pmin

pi

)αβ
. (2.25)

For distributed learning, eight actor modules and one learner module are executed in
parallel. The algorithm using prioritized experience replay and distributed learning is similar
to the one in [55]. In [55], a large number of actors (∼ 256) is executed in parallel, so in the
actor module, the priority is calculated. However, our implementation does not calculate the
priority in the actor module because paralleled actor modules are not large. The pseudo codes
are shown in Algorithms 3 and 4.
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Algorithm 3 Actor
Input: index of Actor i, Learner, policy update interval K , multi-step learning size n,

standard deviation of action noise σ, time discount factor γ, feedback policy πfb:
1: Initialize policy network πϕ
2: Initialize Environment env
3: Initialize local replay memory LR

4: for episode = 0, 1, . . . do
5: env.reset(i)
6: so ← env.observation()
7: for t = 0, 1, . . . do
8: if t mod K = 0 then πϕ ← Learner.copy_policy() end if
9: at ← πϕ(st ) + ϵ, ϵ ∼ N(0, σ)

10: a′t = πfb(st ) + at
11: rt, done = env.step(a′t )
12: st+1 ← env.observation()
13: LR.add(st, at, rt, st+1, done)
14: if LR.size() ≥ n or done then
15: p← Learner.pmax
16: (st, at,

∑n
τ=0 γ

τrt+τ−1, st+n, done) ← LR.make_n_step_return()
17: Learner.add_to_replay_memory(p, (st, at,

∑n
τ=0 γ

τrt+τ−1, st+n, done))
18: end if
19: if done then break end if
20: end for
21: end for
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Algorithm 4 Learner
Input: standard deviation of target policy smoothing noise σ̄, noise clipping coefficient c,

time discount factor γ, multi-step return size n,target network update coefficient τ,
policy update frequency F, mini-batch size N:

Output: optimal policy π∗

1: Initialize critic networks Qθ1,Qθ2 and policy network πϕ
2: Initialize target networks θ̄1, θ̄2, ϕ̄← θ1, θ2, ϕ

3: Initialize ReplayMemory R

4: pmax ← 1.0
5: for i = 0, 1, . . . do
6: mini-batch(p,w, (s, a, r, s′, done)) ← R.prioritized_sample()
7: a′← πϕ(·|s) + ϵ, ϵ ∼ clip(N(0, σ̃),−c, c)
8: y ← r + γn minj=1,2 Qθ̄ j (s′, a′)
9: update p by TD error

10: if p > pmax then pmax ← p end if
11: update critics θ j by LQ(θ j) = N−1 ∑

wHuberLoss(y,Qθ j (s, a))
12: if i mod F = 0 then
13: update policy ϕ by Jπ(ϕ) = N−1 ∑

Qθ1 (s, πϕ(·|s))
14: update target networks:

θ̄ j ← τθ̄ j + (1 − τ)θ j
ϕ̄← τϕ̄ + (1 − τ)ϕ

15: end if
16: end for
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Figure.2.4: (a) Robot model. (b) Logistics cart model (size: 0.6 m). (c) Logistics cart model (size:
0.795 m). (d) Logistics cart model (size: 0.8 m).

2.4 Experiments

2.4.1 Simulation setting

We utilize Pybullet [18] which is python module for constructing the simulation environ-
ment. Three logistics cart sizes {0.6, 0.785, 0.8} m are prepared. These models and the robot
model, which are based on real-world logistics carts and robots, are shown in Fig. 2.4. The
weight of the load is sampled from uniform distribution between 120 and 130 kg at the start
of the episode if the size of the logistics cart is {0.785, 0.8} m or between 100 and 110 kg
if the size of the logistics cart is 0.6 m. The range of the curvature is [−0.06, 0.66] m−1 and
this is divided into eight areas uniformly. Each area is allocated to one of the actor modules.
The value of the curvature is sampled from uniform distribution in the allocated area at the
start of the episode. The frequency of the observation and control is 10 Hz. The termination
conditions of the episode are that 30 s has passed or one or more of the following conditions
have persisted for 1 s.
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Figure.2.5: Network architecture.

• The deviation from the trajectory is larger than 0.4 m
• The orientation deviation from the reference is larger than π/4.5 rad
• Moving distance along the trajectory is smaller than 0.005 m
• At least one of the robots has been out of a certain area (refer to equation (2.4))

If the episode satisfies at least one of the termination conditions (except that time is up), the
reinforcement learning controller receives a reward of −10.

2.4.2 Implementation details of proposed methodology

The output of the feedback controller is calculated by equation (13). The target velocity of
the feedback controller vVL

tgt is set to 0.5 m/s. The feedback gains are set to the same values as
the feedback controller in section 2.4.3. The policy network and the Q network architectures
are shown in Fig. 2.5. In training, we use the Adam [56] optimizer, and hyper-parameters
are set as follows: learning rate of 3 × 10−4, replay memory size of 105, target network
update coefficient τ of 0.005, time discount factor γ of 0.99, policy update interval K of
100, multi-step learning size n of 4, batch size of 256, standard deviation of action noise σ of
0.1×(amax − amin), standard deviation of target policy smoothing noise σ̄ of 0.2×(amax − amin),
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noise clipping coefficient c of 0.5 × (amax − amin), policy update frequency F of 2, and the
hyper-parameters of prioritized experience replay α, ϵ, β of 0.6, 0.01, 0.4.

2.4.3 Baselines

RL-only

RL-only has each robot’s linear velocity and angular velocity, both of which are four
dimensions of continuous action. The network architecture and hyper-parameters are the same
as the residual reinforcement learning implementation. RL-only does not use knowledge and
instead learns from scratch.

Feedback controller

The output of the feedback controller is calculated by equation (2.13). The target velocity
of the logistics cart is set to 0.5 m/s and the target angular velocity of the logistics cart is set to
ωVL

tgt = ρv
VL
tgt = 0.5ρ, where ρ is the curvature. The feedback gains Kx,Ky,Kθ are explored in

the range [0, 10] by TPE with 100 steps and are set to values that maximize the expected total
reward of one episode. The expected total reward for one episode is calculated by running
15 episodes that are a combination of three logistics cart sizes {0.6, 0.785, 0.8} m and five
curvatures {0, 0.15, 0.3, 0.45, 0.6}m−1. The weight of the load is set to 120 kg at the start of the
episode if the size of the logistics cart is {0.785, 0.8} m or to 100 kg if the size of the logistics
cart is 0.6 m. As a result, the feedback gains are set to (Kx,Ky,Kθ ) = (3.82, 6.02, 1.43) and
these are fixed during evaluation.

2.4.4 Effect of Residual RL’s action scale

Three action scales of residual reinforcement learning are compared. When the action
scale is 1.0, the linear velocity range of residual reinforcement learning is [−1.0, 1.0]m/s and
its rotation velocity is [−π/3, π/3] rad/s. The results of five trials of each action scale are
shown in Fig. 2.6. The left side of the figure plots the smoothed reward during training. The
right side plots the results evaluated by executing 15 episodes that are a combination of three
logistics cart sizes {0.6, 0.785, 0.8} m and five curvatures {0, 0.15, 0.3, 0.45, 0.6} m−1 with
models that are stored for each of 105 experiences. The rule for sampling the weight of the
load is the same as in section 2.4.3. The results on the left are evaluated with exploration
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Figure.2.6: Learning curves of action scales’ residual RL (a) with exploration noise and (b) without
exploration noise.

Figure.2.7: Learning curve of residual RL, residual RL (state only), and feedback controller (a) with
exploration noise and (b) without exploration noise.

noise and those on the right without exploration noise. The lines mean the average and the
shaded region represents half standard deviation.

From Fig. 2.6, we can see that the large action scale delays improvement of the policy. The
maximum reward without exploration noise is obtained when the action scale is 0.5 and the
timestep is 5 × 105; therefore, the action scale is set to 0.5.
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Figure.2.8: Learning curve of residual RL, RL-only, and feedback controller (a) with exploration noise
and (b) without exploration noise.

2.4.5 Effect of time derivative component

We verify what happens when the velocity component is removed from the input to residual
reinforcement learning. Fig. 2.7 shows the results of learning. The left side of the figure plots
the smoothed reward during training. The evaluation method for the curve on the right is the
same as in 2.4.4. The results of the feedback controller are also plotted, where those on the
right side do not have a shaded area because Pybullet is the deterministic simulator.

Figure shows that the added information about the time derivative component contributes
to the improvement of the performance. In addition, the standard deviation of residual RL is
smaller than that of residual RL (state only).

2.4.6 Feedback Controller vs RL-only vs Residual RL

Fig. 2.8 shows the learning curves. The left side of the figure shows the training results and
the right side shows the results of running episodes without exploration noise.

Residual reinforcement learning achieves more efficient learning and a smaller standard
deviation than reinforcement learning. Final reward of residual reinforcement learning is
slightly higher than that of reinforcement learning. Also, from the results on the right, it is
clear that the reinforcement learning controllers acquire a higher reward than the feedback
controller.
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Figure.2.9: Example of feedback controller simulation experiment results. Logistics cart size is 0.8 m
and trajectory curvature is 0.6 m−1. Red line is the given trajectory and green line is actual
trajectory of the logistics cart.
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Figure.2.10: Example of residual RL controller simulation experiment results. Logistics cart size is
0.8 m and trajectory curvature is 0.6 m−1. Red line is the given trajectory and green line
is actual trajectory of the logistics cart.
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Figure.2.11: History of the residual RL controller’s output for 10 s in the simulation experiment, where
logistics cart size is 0.8 m and trajectory curvature is 0.6 m−1. Dashed lines mean the
output of the feedback controller and shaded regions mean the amount of the compensation
by residual RL.

Table.2.3: Results of real-world experiments: (the number of successes) / (the number of experiments).

Method Logistics cart size [m]
Curvature [/m]

0 0.15 0.30 0.45 0.60

Feedback controller

0.6 2/2 2/2 2/2 2/2 0/2

0.795 2/2 2/2 2/2 1/2 0/2

0.8 2/2 2/2 2/2 1/2 0/2

Residual RL controller

0.6 2/2 2/2 2/2 2/2 2/2

0.795 2/2 2/2 2/2 2/2 2/2

0.8 2/2 2/2 2/2 2/2 2/2
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Figure.2.12: Example of real-world experiment results. (a) Feedback controller, where logistics cart
size is 0.8 m and trajectory curvature is 0.6 m−1. (b) Residual RL controller, where
logistics cart size is 0.8 m and trajectory curvature is 0.6 m−1.
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2.4.7 Simulation experiments

Next, we compare the reinforcement learning controllers and the feedback controller in
a simulation environment. For this evaluation, each model of the reinforcement learning
controllers at 5× 105 steps is utilized. The expected total reward for one episode is calculated
by running 15 episodes that are a combination of three logistics cart sizes {0.6, 0.785, 0.8} m
and five curvatures {0, 0.15, 0.3, 0.45, 0.6} m−1. The weight of the load is set to 120 kg at the
start of the episode if the size of the logistics cart is {0.785, 0.8} m or to 100 kg if the size of
the logistics cart is 0.6 m.

Metrics
We evaluate the simulation results with the following five metrics. Reward is the total

reward for one episode calculated by equation (6). Average velocity is the average velocity
of the logistics cart for one episode. Trajectory error is the average deviation from the
trajectory for one episode, which is defined as the shortest distance between the logistics cart
and the trajectory. Orientation error is the average deviation from the reference orientation
that is the tangential direction of the trajectory for one episode. Holding ratio is the average
ratio of holding the logistics cart with the robots for one episode. If the robots stay in area
defined by equation (4), holding is considered to be maintained.

Simulation results
The results of the simulation experiments are shown in Table 2.2. Metrics without rewards

are set to “–” if the reward is smaller than 0, as metrics without rewards cannot be evaluated
precisely when the logistics cart is not transported far enough. The results of the learning-
based controllers are represented by the average values of five learned models.

The feedback controller cannot make the logistics cart track the trajectory when the curvature
is large, so its reward is lower than that of the learning-based controller. Also, the residual
reinforcement learning controller improves the transportation performance compared to the
feedback controller in many conditions. The reinforcement learning controller only performed
better than the other methods in Holding ratio.

Figs. 2.9 and 2.10 show snapshots of the simulation experiments. The feedback controller
cannot keep holding the logistics cart, while in contrast, the residual reinforcement learning
controller keeps holding it and achieves stable transportation.
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Fig. 2.11 shows the residual reinforcement learning controller’s output in simulation ex-
periments. The amount of compensation of linear velocity is large in the beginning of the
movement. That of angular velocity is large throughout the episode.

2.4.8 Real-world experiments

Next, in real-world experiments, we compare the feedback controller and the residual
reinforcement learning controller that obtained a higher reward than RL-only controller. We
use the residual reinforcement learning controller learned in the simulation environment with
no additional parameter tuning.

We run the experiment twice for each of 15 conditions that are a combination of three
logistics cart sizes {0.6, 0.785, 0.8} m and five curvatures {0, 0.15, 0.3, 0.45, 0.6} m−1. The
weight of the load is set to 120 kg if the size of the logistics cart is {0.785, 0.8} m or to 100 kg
if the size of the logistics cart is 0.6 m. Also, the error rate of the robot localization by camera
on ceiling is up to 1%, which is evaluated by a total station as a measurement instrument.

Real-world results

The results of the real-world experiments are shown in Table 2.3. The residual reinforcement
learning controller has a better performance for the logistics cart transportation than the
feedback controller, the same as in the simulation experiments. A snapshot of the real-
world experiment is shown in Fig. 2.12. In this figure, when the curvature is 0.6 m−1, the
feedback controller cannot transport the logistics cart because the holding mechanism becomes
unfastened. This behavior is similar to the results of the simulation experiments shown in
Fig. 2.12. In contrast, the residual reinforcement learning controller can keep holding the
logistics cart and achieves stable transportation.

2.5 Discussion

2.5.1 Effect of residual RL’s action scale

The larger the action scale becomes, the worse the learning efficiency gets, as the high
cost of exploration makes the action space large. In contrast, a small action scale reduces the
better local minima in the action space, so the reward may be small. The fact that the reward
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becomes small if the action scale is 0 reinforces this consideration. Thus, the appropriate
action scale has the potential for accelerating learning speed. In our work, we consider that
robots basically do not need to move backward, so we can adopt a small action scale. As a
result, the action scales 0.2 and 0.5 acquire the highest reward, with 0.5 obtaining a slightly
higher one.

2.5.2 Effect of time derivative component

Fig. 2.7 indicates that the performance of the reinforcement learning controller is dete-
riorated by the lack of the time derivative information. This means the importance of that
information in achieving proper logistics cart transport. Also, the standard deviation increases
by removing the time derivative component. This results means that the learning becomes
unstable. We consider that the problem is not regarded as an MDP because of the lack of time
derivative information, therefore, it is difficult to solve as a reinforcement learning problem.

2.5.3 Learning curve of Residual RL and RL-only

Residual reinforcement learning has a better learning efficiency than reinforcement learn-
ing. One reason for this result is that utilizing the feedback controller as a base controller
prompts the gathering of more varied experiences. Also, residual reinforcement learning
has the smaller standard deviation than reinforcement learning. This means that residual
reinforcement learning is stable learning method. The reason of this result is that it is hard
to stagnate on an unfavorable local optimum because of base controller. These advantages
of residual reinforcement learning are important because they accelerate learning speed and
reduce the number of trials.

From Fig. 2.8, in the early period of learning, the residual reinforcement learning controller’s
reward is lower than that of the feedback controller. This is presumably because the Q-function
does not acquire an accurate model, so it cannot evaluate the controller precisely and the
controller cannot be improved. One idea for coping with this problem is that initial output of
residual is set to 0. However, the results in previous research [28] indicates that this idea does
not avoid the deterioration of the controller. We tried this idea in our environment, although
it did not avoid this deterioration. The method to avoid this deterioration is future work.
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2.5.4 Simulation experiments

Table 2.2 shows that the residual reinforcement learning controller has a better performance
than both the reinforcement learning controller and the feedback controller under many
conditions. In particular, when the curvature is large, the feedback controller cannot transport
the logistics cart, while the residual and reinforcement learning controllers can.

The reason the learning-based controller is better than the feedback controller is that it can
utilize information that is not used by the feedback controller and its output is nonlinearized.
The feedback controller utilizes only each robot’s position and orientation, whereas the
learning-based controller utilizes the additional information shown in Table 2.1.

On the other hand, in some cases with a small curvature’s trajectory, the feedback controller
has a better performance than the residual reinforcement learning controller. This means
that the residual reinforcement learning controller deteriorates the policy when it acquires the
control law for transporting the logistics cart with a large curvature’s trajectory. Avoiding
this deterioration and creating a controller that has a better performance than the feedback
controller in all available states remain issues for future work.

From Fig. 2.9, the logistics cart cannot track the trajectory and so orientation error is
accumulated. Then, when the robots try to modify this error, they cannot keep holding the
logistics cart. This occurs because the feedback controller controls the robots’ state and
does not consider the logistics cart’s state. Another reason for this result is that the feedback
controller makes only current errors become 0. In contrast, the residual reinforcement learning
controller learns the policy for reducing the errors of the logistics cart and considers the long-
period accumulated reward, so it can keep holding the logistics cart, as shown in Fig. 2.10.

Fig. 2.11 shows that residual reinforcement learning compensates the output of the feedback
controller. The reason the amount of compensation of angular velocity is large is that the
residual helps to change the orientation of the logistics cart for making it track the trajectory.

2.5.5 Real-world experiments

The results of the real-world experiments show that the residual reinforcement learning
controller learned in simulation environments can be transferred to real-world control. How-
ever, the results of the real-world experiments differ slightly from the results of the simulation
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experiments. This difference presumably stems from some gap between the simulation and the
real world, e.g., the friction of the wheels of the logistics cart, the gap of the holding position
of the robots, and/or observation noise. The results of the real-world experiments suggest that
the residual reinforcement learning controller absorbs the gap between the simulation and the
real world. Randomization may be one cause of this, e.g., exploration noise and the noise
added to the load weight. While reducing the gap between the simulation and the real world
was not considered in our work, it is important to clarify how to transfer the reinforcement
learning controller learned in a simulation environment to real-world tasks more robustly.

2.6 Summary

We proposed a system for cooperative logistics cart transportation with a residual reinforce-
ment learning controller. The proposed controller is more sample efficient than a reinforce-
ment learning controller trained from scratch and has a higher performance than the feedback
controller. We showed that using simulation reduces the cost of gathering experiences, and the
results of real-world experiments suggest that the residual reinforcement learning controller
learned in a simulation environment can be transferred to real-world control.

As future work, we will investigate how to make the controller higher performance than the
feedback controller in all available states and reduce the difference between simulation and
real world.
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Chapter 3

Efficient Reinforcement Learning
for Delayed Feedback
Environments

3.1 INTRODUCTION

In the context of robot control, a lot of research on reinforcement learning in simulation
environments of real-world control have been proposed. In a simulation environment, an agent
obtains an observation and applies a control output to environment instantaneously. However,
in the real world, delayed feedback from an environment can occur, for example, due to
preprocessing for an observation, communication delays, calculating a control output, control
via wireless network communication, and centralized control in a large system. In [57], it was
shown that observation delay and control delay are equivalent mathematically; therefore, we
consider only observation delay to be the sum of control delay and observation delay in a real-
world system. In [58], it was shown experimentally that it is one of the most important factors
for transferring RL controller training in a simulation environment to real-world execution to
incorporate the effect of delayed feedback into the simulation environment.

However, an RL controller’s performance and learning efficiency degrade because of de-
layed feedback. The longer delayed feedback is, the worse an RL controller’s performance
and learning efficiency are. Therefore, the significant issue is how to acquire a better RL
controller in a delayed feedback environment.
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Figure.3.1: Problem setting of reinforcement learning in delayed feedback environment.

In this chapter, we propose an actor-critic reinforcement learning algorithm for achieving
better performance and learning efficiency for RL controllers in delayed feedback environ-
ments. We assume that using undelayed feedback for training helps to acquire a better policy
in delayed feedback environment. Also, in training phase, an agent can obtain undelayed
feedback from simulator. Therefore, key idea of our algorithm is training a policy using un-
delayed feedback from simulator. First, we evaluate the proposed method in some continuous
control task: pendulum swing up task [59], Hopper and HalfCheetah in Pybullet [18]. Then,
we evaluate it with a logistics cart transportation system [26] as a real-world robot-control
situation in a simulation environment. Finally, RL controllers learned in this simulation envi-
ronment are transferred to real-world control without additional parameter tuning to evaluate
the performance of the controllers.

3.2 RELATED WORK

3.2.1 Reinforcement learning in delayed feedback environment

Reinforcement learning methods for delayed feedback environments have been proposed.
Many general reinforcement learning methods assume a Markov decision process (MDP);
however, in a delayed feedback environment, if an agent uses only delayed observation, this
setting assumes a partial observable Markov decision process (POMDP). Therefore, in [57],
an extended observation was defined that includes delayed observation and an action history
of the length of delay steps, and this setting was regarded as an MDP one.
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Walsh et al. proposed a reinforcement learning method for constant delayed observation
environments [60]. An agent has a state transition and reward predictor for model-based
reinforcement learning.

Bouteiller et al. a proposed reinforcement learning method for random delayed observation
and action environments [61]. An agent uses an n-step future sub-trajectory of observations
and actions to reduce the estimation bias of a state-action value function and updates an action
history in sub-trajectory sampling from a replay buffer by using the current policy. This
processing helps learning by using new information whenever possible. However, updating
an action history in a sub-trajectory is computationally expensive if the sub-trajectory length,
which is defined in terms of delay steps, is long.

Our method utilizes undelayed feedback from simulator. This not only improves learning
efficiency but also reduces the increase of learning cost.

3.2.2 Reinforcement learning using additional information for critic
learning

Recently, efficient reinforcement learning methods using simulation information have been
proposed. In the multi-agent actor-critic reinforcement learning domain, algorithms that use
other agents’ information as input to critics have been proposed [31, 62]. Also, Pinto et al.
proposed a reinforcement learning algorithm for controlling robots from input images. This
method uses the state from a simulator that is not obtained in the real world for training
state-action value functions, and images for training policy. This improves the RL controller’s
performance [63].

As a similar idea, two-stage learning algorithms were proposed [64, 65]. First, a teacher
policy is trained by using privileged information from a simulator. Then, a student policy is
learned by imitating the teacher policy.

Our method is inspired by these research. We utilize undelayed feedback as input to critic in
training phase for solving a reinforcement learning problem in delayed feedback environment.
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Figure.3.2: Overview of proposed method.

3.3 METHODOLOGY

In actor-critic reinforcement learning, it is probable that a Q-function trained by delayed
feedback will lead to an unstable policy evaluation; therefore, the trained policy will probably
be degraded. Thus, we propose a method for accurately estimating the Q-function using
undelayed feedback as privileged information, which can lead to obtaining a better policy.
We assume that the an agent know the amount of delay. Fig. 3.2 shows the overview of our
proposed method.
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3.3.1 Actor with delayed feedback and critic with undelayed feedback

The policy needs to calculate a control output from delayed observation st−n in a simulation
environment in order to transfer the policy to a real-world delayed feedback environment.
Thus, we use extended observation ot = (st−n, at−1, . . . , at−n) ∈ R |S |+n |A | . |S | is a observation
space dimension, and |A| is an action space dimension. This extended observation is based
on [57]. For implementation of the extended observation, the action at−i in the extended
observation is a zero vector if t − i < 0. In this research, all models are approximated by a
neural network and optimized by gradient descent. The policy maps extended observation ot
to action at :

at = πϕ (ot ) , (3.1)

where ϕ is a parameter of the policy.

The critic can utilize undelayed observations and rewards because it is only used in the
training phase. First, the Q-function is defined as

Qθ (st, at ) = Esi∼pπ,ai∼π

[
T∑
i=t

γiri |st, at

]
. (3.2)

By approximating the expected value operation by means of an N mini-batch, we define the
loss function of the Q-function based on deep Q learning [1]

Lθ = (2N)−1
∑
(y −Qθ (st, at ))2 , (3.3)

where θ is a parameter of the Q-function, rt is a reward, and γ is a discount factor. Also,
y = rt + γQθ̄ (st+1, at+1), and θ̄ is a parameter of the target network, which is updated as
θ̄ ← (1 − τ) θ̄ + τθ for tracking θ slowly, where τ is the hyper-parameter. The gradient of the
loss function Lθ is calculated:

∇θLθ = −N−1
∑
(y −Qθ (st, at )) ∇θQθ (st, at ) , (3.4)

Also, the objective function of the actor is defined as:

Jϕ = E
[
Qπ
θ (st, πϕ (ot ))

]
(3.5)

When the Q-function evaluates a policy with (5), it can use the undelayed observation.
Therefore, it can be expected to use an accurate gradient and obtain a better policy. Under
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implementation, the algorithm minimizes the loss function Lϕ = −Jϕ . The gradient of the
policy is calculated as:

∇ϕLϕ = −N−1
∑
∇aQθ (st, a)|a=πϕ (ot )∇ϕπϕ(ot ). (3.6)

A gradient of a policy calculated via a Q-function is known as a deterministic policy gradi-
ent [53].

Our algorithm uses delayed observations and undelayed states and rewards. Thus, the tuple
of the replay buffer becomes (ot, st, at, rt, ot+1, st+1, donet ). If the termination condition is
satisfied, then donet = 1, otherwise donet = 0.

3.3.2 Predicting undelayed observation as input of actor

When the delay step is large, the extended observation space is large, and the policy is
difficult to extract the information of the undelayed observation from the extended observation.
Therefore, we consider an undelayed observation predictor for helping the policy learning.
The predictor model’s output is calculated in residual form:

ŝt = ot [0] + fψ (ot ) , (3.7)

where ψ is a parameter of the predictor, and ot [0] = st−n.

Then, an action is defined as:
at = πϕ (ot, ŝt ) , (3.8)

The policy’s input includes the extended observation for mitigating the effect of the shift of
the predicted undelayed observation because of learning the predictor simultaneously with
reinforcement learning. The loss function of the critic is the same as (3). The gradient of the
loss function of the actor is

∇ϕLϕ = −N−1
∑
∇aQθ (st, a)|a=πϕ (ot, ŝt )∇ϕπϕ(ot, ŝt ). (3.9)

Next, we introduce the learning of the undelayed observation predictor. Using tuple
(ot, st, at, rt, ot+1, st+1, done) sampling from the replay buffer, the estimated observation ŝt+1

is calculated from ot+1 as follows.

ŝt+1 = ot+1[0] + fψ (ot+1) . (3.10)
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Algorithm 5 Actor Undelayed Feedback Critic with Predictor (AUFCP)
Input: time discount factor γ, target network update rate τ, standard deviation of action noise

σ, standard deviation of target policy smoothing noise σ̄, noise clipping coefficient c,
policy update frequency d, batch size N:

Output: optimal policy π∗
1: Initialize critic networks Qθ1,Qθ2 and policy network πϕ
2: Initialize target networks θ̄1, θ̄2, ϕ̄← θ1, θ2, ϕ
3: Initialize predict network fψ
4: Initialize replay buffer B
5: Initialize environment env
6: cum_step = 0
7: for episode = 0, 1, . . . do
8: s0 ← env.reset()
9: o0 ← (s0, 0, . . . , 0)

10: for t = 0, 1, . . . do
11: ŝt ← ot [0] + fψ (ot )
12: at ← πϕ(ot, ŝt ) + ϵ, ϵ ∼ N(0, σ)
13: st−n+1, st+1, rt, donet ← env.step(at )
14: ot+1 ← (st−n+1, at, . . . , at−n+1)
15: B.add(ot, st, at, rt, ot+1, st+1, donet )
16:
17: Sample mini-batch (o, s, a, r, o′, s′, done) from B
18: ŝ′← o′[0] + fψ (o′)
19: ŝ← o[0] + fψ (o)
20: Update predict network by (12)
21: a′← πϕ̄(o′, ŝ′) + ϵ, ϵ ∼ clip(N(0, σ̄),−c, c)
22: y ← r + γmini=1,2 Qθ̄i (s′, a′)
23: Update critics by (4)
24: if cum_step mod d then
25: Update policy by (6) or (9) using Qθ1

26: Update target networks:
θ̄ j ← τθ̄ j + (1 − τ)θ j
ϕ̄← τϕ̄ + (1 − τ)ϕ

27: end if
28:
29: cum_step← cum_step + 1
30: if done then break end if
31: end for
32: end for
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Then, the loss function of the undelayed observation predictor is calculated as follows.

Lψ = (2N)−1
∑
{(st − ŝt )2 + (st+1 − ŝt+1)2}/2. (3.11)

Therefore, the gradient of the loss function Lψ is

∇ψLψ = (2N)−1
∑
(st − ŝt )∇ψ fψ(ot ) + (st+1 − ŝt+1)∇ψ fψ(ot+1). (3.12)

3.3.3 Learning algorithm

We use Twin Delayed DDPG (TD3) [7] as the learning algorithm. TD3 is one of the state
of the art algorithm in the off-policy reinforcement learning. Our algorithm can be applied
to other RL algorithms. The pseudo code of the proposed algorithm is shown in Algorithm 5.
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Table.3.1: Implementation details

Hyper-parameter
Pendulum

swing up

Hopper

HalfCheetah

Logistics cart

transportation

Optimizer Adam [56]

Learning rate 3 × 10−4

Batch size 64 256

Replay buffer size 105 106 2 × 105

Target network update rate 0.005

Time discount factor 0.99

Action noise N(0, 0.1)

Target policy smoothing noise N(0, 0.2)

Noise clipping coefficient 0.5 0.1

Policy update frequency 2

Network architecture

Actor

[input_dim, 256]

[256,128]

[128, action_dim]

[input_dim, 256]

[256,256]

[256, action_dim]

[input_dim, 256]

[256,128]

[128, action_dim]

Critic

[input_dim, 256]

[256,128]

[128, 1]

[input_dim, 256]

[256,256]

[256, 1]

[input_dim, 256]

[256,128]

[128, 1]

Predictor

[input_dim, 128]

[128,64]

[64, state_dim]

[input_dim, 128]

[128,128]

[128, state_dim]

[input_dim, 128]

[128,64]

[64, state_dim]

Activation function ReLU [66]
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3.4 EXPERIMENTS

3.4.1 Methods for comparison

We compare three baseline methods with our method.

Simple reinforcement learning (Simple-RL)
The Q-function is learned with the delayed reward and extended observation
(st−n, at−1, . . . , at−n), and the policy is evaluated by the Q-function and improved.
Q-function and the policy is defined as Qθ (ot, at ), πϕ(ot ).

Reinforcement learning using prediction model (Predict-RL)
Predict-RL learns the predictors of the undelayed observation and reward simultaneously,

and it uses the predicted undelayed observation and reward to learn the Q-function and
the policy. This algorithm is similar to [60]. Q-function and the policy is defined as
Qθ (ŝt, at ), πϕ(ŝt ). Also, this method has state predictor and reward predictor. Predicted state
and reward are calculated as residual form:

ŝt = st−d + fψ(ot, at ), (3.13)

r̂t = rt−d + gξ (ot, at ). (3.14)

These predictors fψ, gξ are optimized by minimizing the mean squared error.

Reinforcement learning with undelayed feedback and prediction model (Predict/True-RL)
Predict/True-RL separates reinforcement learning and learning prediction model. Rein-

forcement learning module learns the policy using the undelayed feedback, and the predictor
learns the prediction of the current observation from experiences gathering during learning
the policy. The policy uses the predicted undelayed observation during the execution.

Proposed method (AUFCP-RL)
AUFCP-RL is the full model of our proposed algorithm.

We use four continuous control tasks for comparison: pendulum swing up, HopperBul-
letEnv-v0, HalfCheetahBulletEnv-v0 and logistics cart transportation. Details on the imple-
mentation of each control task are given in Table 3.1.
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Figure.3.3: Pendulum swing up task [59]. Purpose is to keep pendulum standing upright.

3.4.2 Pendulum swing up

Fig. 3.3 shows the environment of the pendulum swing up. This task is implemented in
OpenAIGym which is an open source Python library. The purpose is to keep the pendulum
standing upright. Each controller issues a control output at 20 Hz. The time step of one
episode is 200 , and the time of one episode is 10 s.

Observation

The state is three dimensions and defined as

s =
(
cos θ, sin θ, Ûθ

)
, (3.15)

where θ is the angle of the pendulum. When the pendulum is kept standing upright, θ = 0. Ûθ
is limited to [−8, 8]rad/s.

Action

The action is torque force placed on the rotation axis of the pendulum, and its value is
limited to [−2, 2]Nm.

Reward shaping

The reward function is defined as:

r = cos θ − 0.01 Ûθ2 − 0.001a2. (3.16)
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If the pendulum is standing upright, and the values of the angular velocity and control input
are small, the reward approaches the highest reward of 1.

Figure.3.4: Learning curves of each method in pendulum swing up task under four delay step conditions
[4, 8, 12, 16] steps. Lines mean average rewards, and shaded areas correspond to half
standard deviation over 10 trials.
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Figure.3.5: Max average rewards of each method under four delay step conditions [4, 8, 12, 16] steps in
pendulum swing up task.

Figure.3.6: The Examples of the pendulum swing up task in 16 steps delayed feedback environment. The
results show that our proposed method acquires a better policy than that of a conventional
method in delayed feedback environment.
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Figure.3.7: The example of the errors between true observation and delayed observation or predicted
one of each experiments in pendulum swing up task with AUFCP-RL.

Results

Each controller was trained for 10k time steps over 10 trials under 4 delay step conditions
[4, 8, 12, 16] steps. The performance of each controller was evaluated on the basis of the
average reward over 10 episodes. Fig. 3.4 shows the learning curves under four delay step
conditions [4, 8, 12, 16] steps, and the max average rewards of each delay step and each method
are plotted in Fig. 3.5. In all delay step conditions, AUFCP-RL had better learning efficiency
and reached a better policy. Simple-RL degrades the learning efficiency as the delay step
increases. Also, Predict-RL obtains the better policy than Simple-RL, however, the learning
efficiency and the final performance of Predict-RL are worse than AUFCP-RL.

Fig. 3.6 shows the example of the pendulum swing up task in 16 steps delayed feedback
environment with each method. Only AUFCP-RL succeeded to keep the pendulum swing up.

Fig. 3.7 shows the example of the error between true observation and delayed or predicted
one in pendulum swing up task with AUFCP-RL. In early steps, the error between true
observation and delayed one (Observation error) was large.
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Figure.3.8: HopperBulletEnv-v0 [18]. This task environment is implemented in Pybullet.

3.4.3 Hopper

Fig. 3.8 shows the environment of Hopper. It is implemented in Pybullet and named
"HopperBulletEnv-v0". The purpose of this agent is to walk to forward as fast as possible.
Each controller issues a control output at 60 Hz. The max time step of one episode is 1000.

Observation

The observation is 15 dimensions. The observation includes height, target direction (sin,
cos), linear velocity, attitude (roll, pitch), joints angle (three dims.), joints angular velocity
and foot contact (whether the foot contact with the floor or not).

Action

The action is torques to be applied to each joint of the foot and three dimensions.

Reward

The reward function is defined as

r = ralive + v +
N∑
i

ce |aiωi | + cta2
i

N
+ cjlNjl . (3.17)
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Figure.3.9: Learning curves of HopperBulletEnv-v0. Lines mean average rewards, and shaded areas
correspond to half standard deviation over five trials.

ralive is the reward for maintaining the robot in a state where it can move forward, 1 if it can,
-1 otherwise. If ralive < 0, the episode is terminated. v is the approach speed to the target.
Also, a is the action, ω is the angular velocity of the driving joint, i is the joint’s number, and
the third term is defined as the penalty for power consumption. Njl is the number of actuating
joints that are bent to the limit. For the constant terms, ce is −2 and ct and cjl are −0.1.

Results
Each controller was trained for 1 million steps over five trials under two delay step conditions
[5, 10]. Fig. 3.9 shows the learning curves. AUFCP-RL has better learning efficiency and
higher reward than other methods. State prediction in Predict-RL is working effectively,
therefore, the reward of Predict-RL is higher that of Simple-RL. When the delay step is 5,
Simple-RL obtains the lowest reward. However, when the delay step is 10, Predict/True-RL
is the worst performance.

3.4.4 HalfCheetah

Fig. 3.10 shows the environment of HalfCheetah. It is implemented in Pybullet and named
"HalfCheetahBulletEnv-v0". The purpose of this agent is to walk to forward as possible.
Each controller issues a control output at 60 Hz. The time step of one episode is 1000.
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Figure.3.10: HalfCheetahBulletEnv-v0 [18]. This task environment is implemented in Pybullet.

Observation
The observation is 26 dimensions. The observation includes height, target direction (sin,

cos), linear velocity, attitude (roll, pitch), joints angle (six dims.), joints angular velocity and
feet contact ("feet" mean front and back feet, shins and thighs).

Action
The action is torques to be applied to each joint of the front and back feet and six dimensions.

Reward
The reward is defined by the same formula as Hopper’s. As opposed to Hopper environment,

the episode does not terminate even if ralive < 0. The number of HalfCheetah’s feet and joints
are more than those of Hopper’s, therefore, HalfCheetah is more likely to be penalized.

Results
Each controller was trained for 1 million steps over five trials under two delay step conditions
[5, 10]. Fig. 3.11 shows the learning curves. AUFCP-RL has the best learning efficient and
obtain the best performance. When the delay step is 5, the performance of Predict-RL is worse
than that of Predict/True-RL. On the other hand, when the delay step is 10, the performance
of Predict-RL is better than that of Predict/True-RL. Simple-RL has the lowest reward in all
methods.
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Figure.3.11: Learning curves of HalfCheetahBulletEnv-v0. Lines mean average rewards, and shaded
areas correspond to half standard deviation over five trials.

3.4.5 Logistics cart transportation

This task is the same as logistics cart transportation in Chapter 2. A system overview is
shown in Fig. 2.1.

Observation

Observation is the robots’ states and estimated logistics cart state in the local coordinates.
The detail is shown in Table. 2.1.

Action

The continuous action space is defined as each robot’s linear velocity and rotational velocity
(|A| = 4). The range of the linear velocity of each robot was [−0.5, 0.5] m/s, and the range of
the rotational velocity of each robot was [−π/6, π/6] rad/s.

Reward shaping

The reward is calculated as:

r =

{
cdddvrrp

(
rpd + rod

)
− ca Ûa2 (0 ≤ ddv)

cdddv
(
4 − rpd − rod

)
− ca Ûa2 (otherwise)

. (3.18)
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As a difference the reward in Chapter 2, we add a penalty regarding the differentiation of RL
output Ûa. The coefficient cd is set to 10 and the coefficient ca is set to 10−4.

If an episode satisfies the termination condition except when the time is up, the reward
becomes −10.

Residual reinforcement learning
To improve the learning efficiency, we used residual reinforcement learning [10, 27, 28].

In residual reinforcement learning, the control output is calculated as the sum of the base
controller output and the reinforcement learning controller output:

a = πh(oh) + πϕ(orl), (3.19)

where πh is a given base controller (e.g., feedback controller), and πϕ is the residual element
and optimized by reinforcement learning. oh and orl mean the observation for the base
controller and that of residual reinforcement learning controller, and do not have to be identical.

Base controller for residual reinforcement learning
We used a feedback controller proposed in [38] for cooperative object transportation done

using formation-based control as the base controller. In this method, an object is regarded as
a virtual leader, and the robots are regarded as followers. Then, the robots are controlled by
feedback control to maintain the relative positions and orientations on the basis of the object.
See section 2.3.4 for more information on the base controller.

Evaluation setting
In the simulation environment, each controller was trained for 50k time steps over five trials,

and the number of delay steps was set to 4. The performance of each controller was measured
on the basis of the average reward over 15 episodes.

Then, we transferred the top two controllers of each method trained in the simulation to
a real-world experiment without additional parameter tuning. The real-world experiment is
executed 15 trials and each trial is for 7 s. Therefore, each method was evaluated on the basis
of the average normalized reward over 30 trials. The normalized reward was calculated by
dividing the cumulated reward by time steps.

Simulation Results
As shown in Fig. 3.12, the proposed methods obtained higher rewards and more learning

efficiency than the conventional methods. Simple-RL, which uses an extended observation
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Figure.3.12: Learning curve of logistics cart transportation. Lines mean average rewards, and shaded
areas correspond to half standard deviation over five trials.

Figure.3.13: The examples of the errors between true observation and delayed observation or predicted
observation (a) in simulation, and (b) in real world. The error means the norm between
true observation and delayed observation or predicted observation.
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Figure.3.14: Results of real-world experiment. Normalized rewards of real-world experiment are
average over 30 trials and visualized as orange bars in figure. Blue bars show average
normalized reward in simulation under same conditions as real-world experiment. Black
error bars show half standard deviation.

space, obtained a lower reward, the same as with the result for the pendulum swing up
task. Also, the standard deviations of Predict-RL and Simple-RL were larger than that of
AUFCP-RL.

Fig. 3.13 (a) shows the example of the error of delayed or predicted observation, which
is the result of the execution by AUFCP-RL in simulation experiment. The error of delayed
observation had some magnitude continuously. The error of predicted observation was smaller
than that of delayed observation.
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Figure.3.15: The example of the results of real-world experiments for 3 s. (a) Simple-RL, (b) Predict-
RL, (c) Predict/True-RL, and (d) AUFCP-RL.



62 Chapter 3 Efficient Reinforcement Learning for Delayed Feedback Environments

Real-world experiment

The controllers trained in the simulation were transferred to a real-world experiment and
evaluated on the basis of the average normalized rewards. Fig. 3.14 shows the average
normalized reward of each RL controller in the simulation and real world. The improvements
of the proposed RL controllers in the simulation environment were reflected in the real-world
experiment, and the proposed methods performed better than the conventional methods.

Fig. 3.13 (b) shows the example of the error of delayed or predicted observation, which is
the result of the execution by AUFCP-RL in real-world experiment. The errors in real-world
experiment were larger than the errors in simulation environment. The error of predicted
observation was smaller than that of delayed observation.

Fig. 3.15 shows that the RL controllers of conventional methods did not keep holding the
logistics cart. Simple-RL did not hold the logistics cart at 1.0 s, and Predict-RL did not hold
the logistics cart at 0.5 s. Predict/True-RL made the robots move vibrationally. On the other
hand, AUFCP-RL kept to hold the logistics cart.

3.4.6 Ablation study

Ablation study is conducted to confirm the proper functioning of the elements included in
the proposed method. We evaluates each element in pendulum swing up with [8, 16] steps of
delays, Hopper and HalfCheetah with [5, 10] steps of delays, and logistics cart transportation
with 4 steps of delay in simulation environments. Specifically, we compare the full model
with one without the predictor module (no-pred), one using only the predict state (no-concat)
and one without the undelayed feedback critic (no-ufc).
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Figure.3.16: Ablation study in pendulum swing up at delay steps of 12 and 16. Lines mean average
rewards, and shaded areas correspond to half standard deviation over 10 trials.

Figure.3.17: Ablation study in HopperBulletEnv-v0 at delay steps of 5 and 10. Lines mean average
rewards, and shaded areas correspond to half standard deviation over five trials.
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Figure.3.18: Ablation study in HalfCheetahBulletEnv-v0 at delay steps of 5 and 10. Lines mean average
rewards, and shaded areas correspond to half standard deviation over five trials.

Figure.3.19: Ablation study in logistics cart transportation at delay step of 4. Lines mean average
rewards, and shaded areas correspond to half standard deviation over five trials.
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Figure.3.20: Robustness to the shift of the delay step from the learned delay step of each controller.
Lines mean average rewards, and shaded areas correspond to half standard deviation.

Results

Figs. 3.16 - 3.19 show that full model is superior in all tasks. The results of pendulum
swing up and HalfCheetah show that the predictor and concatenating the predict state and the
extended observation are effective. In the other tasks, Full model obtains the same rewards
compared to the one without these elements. Especially, predictor model contributes to
improve performance in pendulum swing up and HalfCheetah.
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3.4.7 Robustness to the shift of the delay step

In this study, the delay is assumed to be constant and the amount of delay is known. On
the other hand, in the real world, the amount of delay is not always known, and random
delays often occur. Therefore, in this section, we test how the controllers learned by each
method behave under delays that deviate from the learned delay step. Specifically, we use
the controller trained with the delay of 16 steps for pendulum swing up, the controller trained
with the delay of 4 steps for logistics cart transportation and the controller trained with the
delay of 10 steps for Hopper and HalfCheetah. We execute each controller under some delay
conditions that deviate from the learned delay step, and plot the means and standard deviations
of the rewards.

Results
Fig. 3.20 shows the results of the experiments with some delay steps including the delay

steps deviated from the learned delay step. In logistics cart transportation and HalfCheetah,
each controller are relatively robust to the shift of the delay step. On the other hand, in other
tasks, all controllers are not robust to the shift of the delay step. While Simple-RL does
not perform well with learned delay step, it is relatively robust to the shift of delay step. In
logistics cart transportation and HalfCheetah, AUFCP-RL outperforms the other methods in
all the delay steps evaluated.

3.5 DISCUSSION

The four simulation experiments showed that evaluating the policy with the undelayed
feedback critic improves the performance of the policy and learning efficiency.

3.5.1 Results of simulated continuous control tasks

In some simulated continuous tasks, using the predicted undelayed observations as input of
the policy improved the performance of the policy.

Fig. 3.7 shows that the error between the true undelayed observation and the delayed one
was large when the pendulum was swung to stand upright. This causes the difficulty to select a
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suitable action for controlling an agent and to evaluate the action for learning the policy based
on the delayed observation because of the difference from the undelayed observation. Also,
the dimension of the extended observation space increases in proportion to the number of delay
steps and the action history becomes dominant in the extended observation space when the
the number of delay steps is large. These makes extracting an essential undelayed observation
information from the extended observation and mapping from the extended observation to the
action difficult.

The reason why the performance of AUFCP-RL outperform is that using the undelayed
feedback helps the accurate evaluation by the Q-function in these situations. Also, Predict-RL
and AUFCP-RL can use the predicted observations which is near to the undelayed observation.
Therefore, we consider that Predict-RL and AUFCP-RL improve the performances of the
policies effectively when the error between the true observation and delayed one.

We consider that the deterioration of Predict/True-RL was caused by the difference between
the true undelayed observation and the predicted undelayed observation. Thus, we consider
that the performance deterioration of the Predict/True-RL controller was larger than that of
other methods when the delay step is large.

Fig. 3.12 shows that the standard deviations of baseline methods were larger than that of
AUFCP-RL. We believe that this result indicates that the Q-functions of these methods did not
use the undelayed observation; thus, the Q-functions had large uncertainty, and this caused
the policies update to be unstable.

3.5.2 Real-world experiments

The real-world experiment used the top two controllers of each method; therefore, Fig. 3.14
shows better situations. The large standard deviations of the baseline methods means that the
probability of obtaining undesirable RL controllers with these methods was larger than with
AUFCP-RL. The reason of the smaller reward of Predict/True-RL in the real-world experiment
is that its policy was sensitive to the noise because it only used the true undelayed observation
during training.

Fig. 3.13 (a) and (b) show that the results of the simulation experiment and the results of
real-world experiment had similar features: (i) the error of predicted observation was smaller
than that of delayed observation, and (ii) the error of delayed observation had some magnitude
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continuously. These suggest that the simulator approximated the real world to some extent.
However, the errors in real world was larger than the errors in simulation, and the normalized
reward in real world was degraded from that in simulation shown in Fig. 3.14. These also
indicate that the simulator was still not sufficient to approximate the real world. The difference
between the simulator and the real-world is important research topic called Sim2Real. In order
to improve the performance of our method in real world, we need to work on Sim2Real.

3.5.3 Ablation study

We consider that the results of ablation study shows that elements included in the proposed
model were effective because these rarely reduced the performance of the policy and often
contributed to improve the performance of the policy.

The fact that the predictor module worked effectively suggests that it was often difficult
to extract essential information from the extended observation and learned the appropriate
policy. The reason for the effectiveness of concatenation is that it mitigated the change of input
distribution to reinforcement learning because of learning the predictor module in parallel
with reinforcement learning.

Investigating the results of ablation study in detail, the tasks in which the predictor module
was effective are pendulum swing up and HalfCheetah. The difference between these tasks
and the other two tasks is whether their tasks include transition from a low reward state to a
high reward state or not. For example, in pendulum swing up task, the controller is required
to swing up the pendulum from its lowered position, and in HalfCheetah, the controller is
required to get up from a kneeling position. On the other hand, in Hopper, the episode is
terminated if the agent cannot maintain the standing state, and in logistics cart transportation,
the episode is terminated if the robots cannot keep holding the logistics cart. Recovery from a
low reward state to a high reward state is likely to include dramatic change of a state, therefore,
it is difficult to calculate an appropriate action from a delayed observation.

3.5.4 Robustness to the shift of the delay step

In pendulum swing up and Hopper, the reinforcement learning controller cannot deal with
the shift of delay step, therefore, it is important to know the number of delay step in advance.
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The robustness to the amount of the delay may be affected by the instability of high reward
states. In other words, it might be more difficult for pendulum swing up and Hopper to
maintain a rewarding state compared to the other two tasks. Due to the delay gap, we consider
that the agents more prone to unstable states, and the inability to recover from such a state
prevent them from obtaining the reward.

3.6 Summary

In this chapter, we proposed a method for efficient learning in a delayed feedback environ-
ment. The performance of the proposed method was evaluated in four simulation experiments.
The proposed method realized efficient learning and obtaining the superior policy. Real-world
experiments showed that the improvement of the policy by the proposed method in the simu-
lation environment can be reflected in the real-world execution.
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Chapter 4

Feature extraction for Domain
Randomized Environment

4.1 Introduction

A lot of research on reinforcement learning for robot control using some physical simulation
were proposed, including those in the previous chapters. In Chapters 2 and 3, we assumed
that we could use the accurate physical simulation, but we do not always have access to
such simulation. When we do not have the accurate simulator, we need a method to reduce
the performance degradation of the policy transferred from a simulation in a real-world
environment. Domain adaptation and domain randomization have been proposed as the two
main methods to realize the sim-to-real transfer. In domain adaptation, the agent extracts a
feature from a simulation and a real world and trains the extractor so that the features of a
simulation and a real world are close. For learning the extractor, standard domain adaptation
methods in a reinforcement learning domain require the data collected real-world execution.
Therefore, the learning cost increases. In domain randomization, image textures and/or
environment parameters are randomized. By randomizing these, the learned policy is made
robust and is expected to work well in the real-world environment. One of the challenges of
this method is that randomization makes the problems more difficult.

In this chapter, we propose a method for efficiently extracting important feature as state rep-
resentation from observation and action histories in a domain randomized environment. This
method is interpreted as performing domain adaptation in a domain randomized environment.
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Also, privileged information obtained from a simulation uses for evaluating the policy by the
Q-function accurately.

4.2 Related Works

4.2.1 Domain Adaptation

Domain Adaptation is an attempt to acquire a reinforcement learning controller learned in
a simulation environment that work in a real-world environment. For realizing it, this idea
learns to bring the representation of the real-world environment and that of the simulation
environment closer together.

The attempt to obtain the controller that work in the real-world environment under the
simulation environment by tuning environment parameters of the simulation based on data
gathered in the real world can be considered as a kind of domain adaptation and is often called
system identification.

Kaspar et al. [67] proposed a method to adjust the parameters of the simulation to match the
real-world environment in a peg insertion task with an articulated arm robot. The parameters
are identified by CMA-ES [68] so that the trajectories of the robots in the simulation and
the real-world environment are close. Golemo et al. [69] uses a behavior policy to learn
the difference between the state transitions of the real-world environment and the simulation
environment. The simulation is corrected with the learned differences, and the policy is
learned in the corrected simulation environment.

4.2.2 Domain Randomization

Domain randomization is the idea that by randomizing the parameters of the training
environment, the generalization performance of the controller is improved, and thus the
controller is expected to function when it is transferred to the real-world environment.

One of the domains to be randomized is an image. Tobin et al. [70] studied image-based
object grasping and trained on simulated images that were transitioned to real images by
randomizing the rendering in the simulation. The task is to estimate the position of an object
from an image, and after estimating its position, a controller is used to grasp it.
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Higgins et al. [71] proposed a method to extract essential information and obtain the robust
policy in a domain randomized environment with β-VAE [72]. In this work, training β-VAE
for estimating the latent variables and reinforcement learning are decoupled. Xing et al. [73]
used Cycle-Consist VAE [74] to separate the latent variables from the image into domain-
specific and domain-general ones, and only use the domain-general information. Similar to
[71], learning Cycle-Consist VAE and reinforcement learning are decoupled. James et al. [75]
realizes sim-to-real in an object grasping task by learning a generator that transforms an image
into a canonical image. In this work, the learning process is decomposed into a generator
that generates a canonical image from a simulated or real image and reinforcement learning.
The canonical image generator uses the image-conditioned generative adversarial network
(cGAN) [76] by U-Net [77]. Input to the reinforcement learning includes the canonical
image, the randomized image in the simulation or the image in the real world, whether the
gripper is open or not, and the height of the gripper.

These studiesexpect to acquire essential information as latent representations in the domain
randomized environment. This can be interpreted as performing domain adaptation in the
domain randomized environment.

There is also environment parameters as the domain to be randomized. In the work of
Tan et al. [58], a reinforcement learning model transfer of a quadruped robot was attempted.
This paper shown that accurate robot models, motor behaviors, and delay of the observation
were reflected in the simulation is important for transferring the policy, and using a compact
observation space and randomizing environment parameters are also effective. Peng et al. [78]
and Andrychowicz et al. [79] proposed to use Long Short Term Memory (LSTM) [80] to
implicitly respond to changes of environment parameters. However, these studies used an
on-policy reinforcement learning algorithm to use the LSTM layer and runs a large parallel
computation to ensure the diversity of experiences, which is computationally expensive. Yu et
al. [81] learns the estimator for environment parameters from historical data and the estimated
environment parameters are input to reinforcement learning to acquire the better policy.

The less information we have about the real-world environment, the larger the domain
range to be randomized in the simulation environment needs to be, which may make learning
more difficult. Therefore, Chebotar et al. [82] proposed a method to adaptively change the
randomization range in the simulation environment through a loop between the simulation
and the real-world environment. In this study, the distributions of the environment parameters
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in the simulation are modified to minimize the misalignment of trajectories between the
simulation and the real world, however, since the simulation is not differentiable, the sampling-
based optimization method relative entropy policy search [83] is used. This is the method
that combines domain randomization and system identification.

Another direction of research on domain randomization is to consider how to randomly
sample from a domain [84]. The basic idea in [84] is to focus on sampling regions of the
environment parameter space where it is difficult to obtain the reward. Specifically, two en-
vironments are run, a reference environment and a sampled environment, and a discriminator
that identifies whether it is a reference or sampled environment is trained. The environment
parameter sampler is designed so that the more the discriminator determines that the envi-
ronment is sampled, the higher the reward. When the policy is well trained, it is expected
that the reference environment and the sampled environment are indistinguishable. There-
fore, environment parameter sampler is likely to sample environment parameters that are
distinguishable, and the agent is expected to have not acquired the appropriate policy in that
environment.

4.2.3 State representation learning in reinforcement learning

In [85], a feature extractor learns a low-dimensional representation that can predict the next
state from a high-dimensional observation in advance, and connects it before the reinforcement
learning network. This paper shown that this improves the performance of the reinforcement
learning controller by efficiently extracting important feature from observations.

Also, Ota et al. [86] built on the work of Munk et al. to test whether learning high-
dimensional representation from states improves the performance of the reinforcement learn-
ing controller. The experimental results showed that the high-dimensional feature is effective
for reinforcement learning.
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Figure.4.1: Feature extractors using LSTM.
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4.3 Methodology

In this section, we describe the method for efficiently extracting features and obtaining the
better controller in a domain randomized environment. We expect that this method leads to
obtain the robust controller against the change of environment parameters and observation
noise and stabilizes transferring the controller from the simulation to the real world.

4.3.1 Feature extraction to approach the MDP problem

Next, we introduce state representation learning to estimate the next state st+1 from the
feature zt extracted by the network in Fig. 4.1. The feature for the actor is defined by
concatenating the observation and action histories ho

t = (ot−l+1, at−l+1, . . . , ot−1, at−1, ot )with
the output of LSTM. Feature extractor for the actor is defined as

zat = fψa (ho
t ). (4.1)

where ψa is the parameter of the feature extractor for the actor. The network architecture is
shown in Fig. 4.1 (a)

As introduced in Chapter 3, we use true observations and environment parameters as
privileged information. By using these variables as input to the feature extractor for the
critic, we can expect that the evaluation of the policy can be more accurate, and thus the
policy can be better. Specifically, the input to the feature extractor for the critic is hs

t =

(st−l+1, at−l+1, . . . , st−1, at−1, st ), at and µ which is the values of environment parameters.
Therefore, state representation for the critic is calculated as

zct = fψc (hs
t , at, µ). (4.2)

where ψc is the parameter of the feature extractor for the critic. The network architecture is
shown in Fig. 4.1 (b)
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Figure.4.2: Feature extractor using LSTM for predicting the next state in the actor.

Figure.4.3: Actor architecture with feature extraction. FC means fully connected layer.
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Figure.4.4: Critic architecture with feature extraction.

Predicting the next state from state representation for the actor is defined as

ŝt+1 = gξa (z̃at ). (4.3)

where gξa is the linear transformation function, and z̃at is calculated by the architecture in
Fig. 4.2. The network parameters for calculating z̃at is ψa. The difference from Fig. 4.1 (a) is
that at is added and one additional calculation is performed by LSTM using (ot, at ) as input.
Also, predicting the next state from state representation for the critic is defined as

ŝt+1 = gξc (zct ). (4.4)

where gξc is also the linear transformation function.

The loss function for feature extractors are defined as

L f e = E
[
∥st+1 − ŝt+1∥2

]
. (4.5)

This forces the learned state representation to be such that the transition to the next state
can be estimated. In other words, the fact that the next state can be obtained only from the
current state representation and behavior means that it is Markovian, which is consistent with
the assumptions of reinforcement learning and is expected to facilitate the policy training.
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Algorithm 6 Reinforcement Learning with Learning Feature Extractor
Input: time discount factor γ, target network update rate τ, standard deviation of action noise

σ, standard deviation of target policy smoothing noise σ̄, noise clipping coefficient c,
policy update frequency d, batch size N , length of history l:

Output: optimal policy π∗
1: Initialize critics Qθ1,Qθ2 , policy πϕ and feature extractors fψa, fψc

2: Initialize target networks θ̄1, θ̄2, ϕ̄← θ1, θ2, ϕ
3: Initialize replay buffer D
4: Initialize environment env
5: Initialize history queue (FIFO) ho

0 and hs
0 of length l by zero padding

6: o0, s0, µ← env.reset()
7: ho

0 .append(0, o0), hs
0.append(0, s0)

8: for t = 0, 1, . . . do
9: zt ← fψ

(
ho
t

)
10: at ← πϕ(zt ) + ϵ, ϵ ∼ N(0, σ)
11: ot+1, st+1, rt, donet ← env.step(at )
12: ho

t+1 ← ho
t .append((at, ot+1)), hs

t+1 ← hs
t .append((at, st+1))

13: D.add
(
ho
t , h

s
t , at, rt, h

o
t+1, h

s
t+1, donet, µ

)
14:
15: Sample mini-batch (ho, hs, a, r, h′o, h′s, done, µ) from D
16: za ← fψa (ho), zc ← fψc (hs, a)
17: Update state representation networks by (4.5)
18:
19: Resample mini-batch (ho, hs, a, r, h′o, h′s, done, µ) from D
20: za ← fψo (ho), zc ← fψs (hs, a, µ), z′a ← fψo (h′o)
21: a′← πϕ̄(z′a) + ϵ, ϵ ∼ clip(N(0, σ̄),−c, c)
22: z′c ← fψs (h′s, a′, µ)
23: y ← r + γmini=1,2 Qθ̄i (z′c)
24: Update critics by (4.6)
25: if t mod d then
26: Update policy by (4.7) using Qθ1

27: Update target networks:
θ̄ j ← τθ̄ j + (1 − τ)θ j
ϕ̄← τϕ̄ + (1 − τ)ϕ

28: end if
29:
30: if donet then
31: Initialize history queue (FIFO) ho

t+1 and hs
t+1 by zero padding

32: ot+1, st+1, µ← env.reset()
33: ho

t+1.append((0, ot+1)), hs
t+1.append((0, st+1))

34: end if
35: end for
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Table.4.1: Network architecture

Actor

[input_dim, 256]

[256,256]

[256, action_dim]

Critic

[input_dim, 256]

[256, 256]

[256, 1]

Feature extractor
FC: [input_dim, 128]

LSTM: [128, 128]

Activation function ReLU [66]

The structure of the actor and the critic are Fig. 4.3 and Fig. 4.4. The loss functions for
training the reinforcement learning controller are defined as

Lactor = −E
[
Qθ

(
fψa

(
ho
t , πϕ

(
zat

) ) ) ]
, (4.6)

Lcritic = E
[
∥y −Qθ (zct )∥2

]
. (4.7)

where y = rt + γQθ̄ (zct ). State representation learning and reinforcement learning are per-
formed independently. Therefore, the gradient information of the actor and critic losses do
not affect the feature extractor module. The pseudo code of the proposed method is shown in
Algorithm. 6.

4.4 Experiment

4.4.1 Methods for comparison

Simple-RL

It is the simple reinforcement learning controller that learns the policy from a one step of
the observation.
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Figure.4.5: The randomized parameters in pendulum swing up task. l is the length of the pendulum,
and m is the weight of the pendulum.

RL with privileged critic and history of 4 steps(PCHIST-RL)

In this method, the true observation and environment parameters are used to learn the
critic. Also, the controller is learned from the historical observation and action of 4 steps for
acquiring environment information implicitly.

RL with privileged critic and LSTM (PCLSTM-RL)

The true observation and environment parameters are used to learn the critic. We also expect
to acquire environment information implicitly through using LSTM. Similar to the idea of
Peng et al. [78], but they use the on-policy reinforcement learning method and learn from
the history of the entire episode, while we learn from the historical observation and action
of 4 steps to realize off-policy reinforcement learning. We adopt the network architecture of
[87], which is a study of applying LSTM to the historical data as a way to deal with the noise
or missing observations.

Proposed model (Proposed-RL)

This is the proposed model described in section 4.3. The implementation details is shown
in Table. 4.1.
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Figure.4.6: Learning curves of pendulum swing up in domain randomized environment. Lines mean
average rewards, and shaded areas correspond to half standard deviation over 10 trials.

4.4.2 Pendulum swing up

Problem setting

We randomize some environment parameters of the pendulum swing up environment in
Section 3.4.2. Specifically, we randomize the weight and length of the pendulum, and add
Gaussian noise to the observations for constructing a domain randomized environment. The
length of the pendulum is in the range [0.5, 1.5] (default: 1.0), and the weight of the pendulum
is in the range [0.8, 1.8] (default: 1.0). The randomized parameters are sampled based on the
uniform distribution. The reward, action, and observation are the same as in section 3.4.2.

Results

Fig. 4.6 shows that the rewards obtained by PCHIST-RL and Proposed-RL were almost the
same and higher than the others. Also, sample efficiency of Proposed-RL was better than
that of PCHIST-RL. PCLSTM-RL had large standard deviation. This result indicates that
some PCLSTM-RL controllers fell into local optimum. Simple-RL had the lowest learning
efficiency and reward.
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Figure.4.7: The randomized parameters in pendulum swing up task. µ is the floor friction coefficient,
F is the amount of the force applied to the body, and x is the position to apply the force.

Figure.4.8: Learning curves of HalfCheetah in domain randomized environment. Lines mean average
rewards, and shaded areas correspond to half standard deviation over five trials.
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Table.4.2: Environment parameters of logistics cart transportation.

Randomized parameters Range

maximum torque of the motor [0.5, 1.5]

friction coefficient of the holding surface [0.17, 1.0]

damping coefficient of the rotating part of

the holding mechanism
[0.6, 1.0]

resistance force of the rotation of the wheel of

the logistics cart
[0.8, 1.2]

resistance force of the wheel axle of the logistics cart [0.8, 1.2]

weight of the load [0.7, 1.3]

floor friction coefficient [0.8, 1.2]

4.4.3 HalfCheetah
Problem setting

We randomize some environment parameters of the HalfCheetahBulletEnv-v0. Specifically,
we randomize the floor friction coefficient and the external force to the randomized position
of the body and Gaussian noise to the observations for constructing a domain randomized
environment. The floor friction coefficient is in the range [0, 3.0], the force is in the range
[0, 50.0] N and the position to apply the force is in the range [−0.5, 0.5] m. The randomized
parameters are sampled based on the uniform distribution. The reward, action, and observation
are the same as in section 3.4.4.

Results
Fig. 4.8 shows that Proposed-RL obtained the highest reward in all methods. Also, the

reward of PCLSTM-RL was better than that of PCHIST-RL, unlike the experimental results
of pendulum swing up. On the other hand, Simple-RL acquired the lowest reward as well as
the experimental results of pendulum swing up.
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Figure.4.9: Learning curves of logistics cart transportation in domain randomized environment. Lines
mean average rewards, and shaded areas correspond to half standard deviation over five
trials.

4.4.4 Cooperative Logistics cart transportation

Problem setting

Based on the logistics cart transportation system in section 3.4.5, the maximum torque
of the motor, the friction coefficient of the holding surface, the damping coefficient of the
rotating part of the holding mechanism, the resistance force of the rotation of the wheels
of the logistics cart and the resistance force of the wheel axle, the weight of the load, and
the floor friction coefficient are randomized, and observation is added Gaussian noise. The
randomized parameters are shown in Table 4.2. This table shows the randomization range of
the environment parameters. A value of 1.0 means that the value of its environment parameter
is equal to that in Chapter 3. In other words, the values of randomized ranges in Table 4.2
mean the ratios from the default values.

In logistics cart transportation system, delayed feedback is assumed to occur as in Chapter
3. Therefore, we use the extended observation (ot, at−d, . . . , at−1) as the observation at time t.
Here, ot is the state with d steps delayed and added gaussian noise. The state used as input to
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Figure.4.10: Results of real-world experiment. Black error bars show half standard deviation.

the critic is (st, at−d, . . . , at−1), where st is the state at time t and not added any observation
noise.

We also evaluate sim-to-real transfer performance of the proposed controller trained in
domain randomized environment. Specifically, we compare the proposed method with the
controller that is trained in the deterministic environment and calculates the action from the
one step observation because of Markov property (NoRand-RL). We transferred the top one
controller of the proposed method trained in domain randomized environment to a real-world
experiment without additional parameter tuning. The real-world experiment is executed 10
trials and each trial is for 7 s. The normalized reward is calculated by dividing the cumulated
reward by time steps.

Results of simulation experiments

Fig. 4.9 shows that Simple-RL did not obtain the better policy as appropriate as that in
other tasks. PCLSTM-RL obtained higher rewards than PCHIST-RL slightly. Proposed-RL
had the highest reward and the most sample efficiency in all methods.
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Figure.4.11: Robustness to the history length. Lines mean average rewards, and shaded areas correspond
to half standard deviation over five trials.

Results of real-world experiments
Fig. 4.10 shows the results of the real-world experiments. Each controller has three exper-

imental results. Blue bars are normalized rewards of deterministic simulation experiments
which are average over 50 trials. Orange bars are these of domain randomized simulation
experiments which are average over 50 trials. Also, green bars shows normalized rewards
of real-world experiments which are average over 10 trials. The normalized rewards in the
deterministic simulation were almost the same. However, in the domain randomized and
real-world environments, Proposed-RL outperformed NoRand-RL.

4.4.5 Robustness to the length of the history
Problem setting

We evaluate PCHIST-RL, PCLSTM-RL, and Proposed-RL under three history’s lengths
[2, 4, 8] in the HalfCheetah task. The detail of the experimental environment is the same as in
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section 4.4.3.

Results
Fig. 4.11 shows the result of the experiments under some history’s length in the HalfCheetah

task. Proposed-RL had the robustness to the change of the history’s length and the highest
performance in all conditions. The performance of PCHIST-RL degrades as the history length
increases.

4.5 Discussion

The fact that the proposed method could efficiently construct the controller with high
performance indicates that it could extract useful features for control. The reason why
Simple-RL did not acquire the better policy was that it could not obtain essential information
about randomized domain from only one step observation, therefore, it learned the overly
generic controller for domain randomized environments. While PCHIST-RL achieved the
better performance than PCLSTM-RL in pendulum swing up, it was inferior to PCLSTM-RL
in HalfCheetah and logistics cart transportation. This might be influenced by the complexity
of the environment. In other words, it is possible that in pendulum swing up, sufficient features
could be extracted without using LSTM, while in HalfCheetah or logistics cart transportation,
LSTM could extract favorable features to learn the better controller. PCLSTM-RL failed in
some seeds and worked well in others, indicating that it was stuck in a local optimum. Some
researchers suggested that deepening the neural network layer naively often deteriorates the
performance of the policy [88, 89, 90]. It is possible that the performance deterioration of
PCLSTM-RL controller was caused by increasing the number of layers in the network because
of LSTM architecture. On the other hand, our architecture decoupled the reinforcement
learning module and the feature extractor module, therefore, we consider that it avoided the
performance deterioration and extracting the features by LSTM improved the performance of
the controller.

The results of experiments for logistics cart transportation in Fig. 4.10 indicates that
Proposed-RL controller was more robust than NoRand-RL controller. Also, blue bars in
Fig. 4.10 suggests that degradation due to domain randomization of the controller was small.

The performance degradation of PCHIST-RL with longer history in Fig. 4.11 suggests that
long history makes it difficult to extract essential information from it. We consider that the
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results of other methods show that using LSTM helped to extract essential information from
long history.

4.6 Summary

In this chapter, we proposed a efficient reinforcement learning method in a domain ran-
domized environment. Through three simulation experiments, we confirmed that the feature
extractor could extract favorable features by LSTM from historical data and learned the policy
efficiently.

In addition, we shown that using historical data and privileged information could obtain
the better policy, while previous methods of on-policy reinforcement learning in a domain
randomized environment have compared the policy using only one step observation with the
LSTM-based policy and shown the effectiveness of LSTM architecture.

One of the future challenges is how to determine the range of the randomized domain, and
how to acquire the controller appropriately without collapsing its performance because of the
large domain randomization.
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Chapter 5

Conclusion

5.1 Summary of contributions

In this dissertation, we have introduced the methods for efficient reinforcement learning in a
simulation environment for robot control. The goal of this research is to make it easier to apply
reinforcement learning to real robotic systems by reducing the learning cost of reinforcement
learning. For efficient learning, a lot of research used a physical simulation. However, in
previous works, useful information from simulation and knowledge of control is not utilized
enough. Although using a simulation reduces learning cost, the difference between simulation
and real-world often make it difficult to transfer a reinforcement learning controller from a
simulation to real-world. Therefore, we developed efficient reinforcement learning methods
utilizing various information. Also, we evaluated these through logistics cart transportation
task and some simulation task. The following is a summary of contributions.

In Chapter 2, we have proposed a method to improve the learning efficiency by residual
reinforcement learning using control knowledge in a physical simulation. Using the control
knowledge improved the learning efficiency and made learning process stable. Furthermore,
the use of the simulation reduced the cost of data collection. The results of experiments shown
that the reinforcement learning controller learned in the physical simulation environment can
be transferred to control robots in a real-world environment.

In Chapter 3, we have introduced a method to improve the learning efficiency and the
performance of a reinforcement learning controller in a delayed feedback environment. The
delayed feedback occurs in robot control in a real-world environment and deteriorates the
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reinforcement learning efficiency. Many general reinforcement learning methods assume
a Markov decision process (MDP). However, in a real-world environment, an agent can
only obtain a delayed observation. In the proposed method, the agent uses the undelayed
observations and rewards as privileged information and incorporate them into the learning
process to make learning the controller more efficient. In the experiments, we applied the
proposed method to the three simulation task and logistics cart transportation as in Chapter 2.
The results of experiments shown that the proposed method can efficiently learn and obtain
the controller stably.

In Chapter 4, we have introduced two-stage learning algorithm to learn the policy efficiently
in a domain randomized environment for transferring it to a real-world environment. Domain
randomization is a method that randomly samples textual noise of an image and/or environment
parameters (friction, weight, etc.). Learning in randomly sampled environment prompts to
obtain a robust controller. However, randomization makes the problem more complicated, and
it may not be possible to obtain the controller that can use in a practical situation. Our two-
stage learning algorithms includes learning the feature extractor and the reinforcement learning
controller. Our proposed method adopted LSTM for extracting the environment feature from
observation and action histories. We evaluated the proposed method in the pendulum swing
up, HalfCheetah and logistics cart transportation tasks. The results of simulation experiments
shown that agents learned by the proposed method obtained the favorable policy more efficient
than other methods. Also, the results of real-world experiments suggests that our proposed
architecture with domain randomization is useful for sim-to-real transfer.

We proposed efficient reinforcement learning methods in the simulation environment for
realizing robot control in the real-world environment. This dissertation makes it easy to
introduce reinforcement learning into real robot control.

5.2 Future works

Finally, we discuss remaining challenges related to this dissertation and to reinforcement
learning research using a physical simulation for robot control.

Different formulations for residual reinforcement learning
We have formulated the output of the residual reinforcement learning controller as the sum

of the output of the base controller and the output of the reinforcement learning controller.
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However, other architecture, for example, the output of the residual reinforcement learning
controller as the product of the output of the base controller and the output of the reinforce-
ment learning controller or adding a gate mechanism is possibly effective to improve the
performance.

Accurate state predictor for a delayed feedback environment

We have shown that undelayed feedback and using predictor can efficiently learn a rein-
forcement learning controller with higher performance than conventional methods, however,
performance degradation is inevitable. To minimize the performance degradation, an accurate
predictor model is necessary. In this dissertation, we used the simple fully connected neural
network, but we believe that there is room for improvement this degradation.

Model-based reinforcement learning is based on learning models that generate state tran-
sitions, and various models for generating state transitions can be candidates. There are two
main directions: models that consider all previous observations and models that consider only
one previous step. In SimPLe [91], the next observation is estimated from the observations
of the past four steps. It also incorporates a stochastic latent variable and discretizes it. The
generative model Z-forcing [92] for series data used in [93] is a model that considers all past
observations and incorporates stochastic latent variables and deterministic latent variables
by Recurrent Neural Networks (RNNs). It also improves performance by forcing the system
to consider future series data when training the probabilistic latent variables so that they
contain meaningful information and useful information for estimating the long-term future.
In PlaNet [94], the authors propose the Recurrent State-Space Model (RSSM), which learns
probabilistic latent representations by Variational Auto Encoder (VAE) from deterministic
latent representations by RNNs. They also propose a method for learning to estimate the
state of multiple steps in the future. On the other hand, [95] is a model-based reinforcement
learning that uses a model that considers only one past step. In this study, the authors showed
that a 1-step state-transition generation model with stochastic latent variables can achieve the
same or better performance faster than RNNs. The algorithm used to obtain the controller is
Imagination-Augmented Agents (I2A) [96].

Comparison with on-policy method with recurrent neural network

In this dissertation, we have focused on off-policy reinforcement learning, however, an
on-policy reinforcement learning method can be more suitable for learning a controller with
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time series data. On-policy reinforcement learning is a method in which a behavioral policy
and a learning policy are matched, and it does not use experience replay. Therefore, on-policy
reinforcement learning is considered to be less sample efficiency than off-policy reinforce-
ment learning. However, it works well with RNNs because it does not use experience replay.
In Chapter 4, we used short observation and action histories for training the off-policy rein-
forcement learning controller, however, we consider that it is necessary to compare on-policy
and off-policy methods from various perspectives such as computational resources and the
performance of the policy.

Robustness to the amount of the delay step and random delay

In Chapter 3, we have proposed an efficient reinforcement learning algorithm in an envi-
ronment with a constant step of delay. On the other hand, a random step of delay is often
encountered in a real-world environment. Our proposed method had some robustness to the
shift of delay step in some tasks. However, as shown in Chapter 3, the proposed method
was insufficient to deal with the shift of delay step in the others. Therefore, it is necessary to
develop an algorithm that deal with a random delayed feedback environment, and an algorithm
that is robust to the shift of the delay step.

Selection of the model architecture for extracting feature

In Chapter 4, we have adopted the feature extractor based on LSTM, however, there are
various choices for extracting feature representation, for example, a model that focuses on
a local part of observation and action histories, such as Convolutional Neural Networks
(CNNs) [97]. Also, we believe that methods extracting stochastic feature representation
is promising. It is possible that stochastic feature representation can represent incomplete
information. It is necessary to examine these models and find a model that is more suitable
for extracting state representation from the observation and action histories.

Randomized range and selection of environment parameters

In Chapter 4, we have focused on domain randomization to improve the transfer to the
real-world environment. We believe that the remaining major work in domain randomization
are the selection of appropriate environment parameters for randomization and the setting
of the randomization ranges. We consider that the performance in the domain randomized
simulation is likely to be poor and the transfer to the real environment will not be successful if
the randomization is inappropriate. Alternatively, it is possible to develop a method to select
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an appropriate range that can be solved from a large randomization range and learn within
this range.
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AppendixA

Details of formation-based
feedback controller formulation

The calculation process of the formation-based feedback controller is written below. The
positions defined in the below equation are in local coordinates at time k.

θsr
tgt(k) = π + tan−1

ysr
tgt(k) − ysr

tgt(k − 1)
xsr

tgt(k) − xsr
tgt(k − 1)

= π + tan−1
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tgt(k − 1)
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tgt(k − 1) − tan−1
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(A.1)

The calculation from lines 4 to 5 utilizes the sum of angle identities. L is defined as in Fig. 2.3
and the positions are defined as

xsr
tgt(k) =

[
xsr

tgt(k), ysr
tgt(k)

]
= [L, 0]⊤ ,

xsr
tgt(k − 1) = xVL

tgt (k − 1) +
[
L cosωVL

tgt ts,−L sinωVL
tgt ts

]⊤
=

[
−R sinωVL

tgt ts + L cosωVL
tgt ts, R(1 − cosωVL

tgt ts) − L sinωVL
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]⊤
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