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Abstract

Continuous-variable quantum systems are characterized by physical quantities that
can take continuous values. It appears in many physical systems, such as the position
and momentum of oscillator modes of trapped ions and the complex amplitude of an
optical mode. Especially, the quantum optical system is one of the most important
continuous-variable systems for the quantum information application since light is an
information carrier for telecommunication and behaves quantum mechanically even
in the room-temperature environment. Furthermore, the complex amplitude of the
optical mode can easily be manipulated. However, using a continuous variable, as it
is, in quantum information processing does not work since a continuous variable is
subject to continuous noises in the physical world, and such noises cannot completely
be corrected. In order to perform reliable and fault-tolerant quantum information
processing, information should be encoded in a digitized degree of freedom. In this
thesis, digital quantum information processing with continuous-variables systems is
studied in the quantum key distribution (QKD) and the quantum computation (QC),
two major fields of quantum information processing.

For the QKD, the so-called continuous-variable QKD protocols, in which informa-
tion is encoded on the complex amplitude of an optical pulse and the homodyne or
heterodyne detector is used to measure it, are studied. More specifically, a continuous-
variable QKD protocol that uses discretely modulated signals and the classical digital
information processing is developed, and its security proof against general attacks in
the finite-key case is established. This is achieved by virtually introducing the discrete-
variable quantum system into the continuous-variable system and thereby reducing its
security argument to that of discrete-variable QKDs, which is more mature. This is in
sharp contrast to the previous security analyses on this kind of QKD protocol, where
they directly use continuous variables in the security analyses and thus have difficulty
in extending the analyses to the finite-key case. Another key to our security proof is
the development of the method of estimating a lower bound on the fidelity to the co-
herent states, which eventually leads to the evaluation of how well the discrete-variable
system can be approximated by the continuous-variable one. These security analyses
are further elaborated, and a protocol whose key rate against the loss noise achieves
almost optimal scaling is obtained.

For the QC with the continuous-variable system, the Gottesman-Kitaev-Preskill
(GKP) code, which encodes discrete quantum information into a continuous-variable
system, is studied. This code has many desirable properties for the optical implemen-
tation of QC; e.g., the universal QC is possible using only the Gaussian operations,
which are relatively easy to implement in the quantum optical system, along with
the GKP-encoded states. Because the ideal GKP-encoded state is unphysical, only
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its approximation in some sense is realizable. Thus, several approximations of the
GKP-encoded state have been developed since the first proposal of the GKP code.
In this thesis, these conventionally used approximations are shown to be equivalent,
and the explicit correspondences between the approximation parameters are given.
This enables the direct comparison between the previous studies that were based on
the different approximations. As the final result, an efficient method to implement
the universal fault-tolerant QC using the Gaussian operations and only one type of
the GKP-encoded state is developed. Contrary to the previous method of using the
probabilistic state conversion and the costly distillation, our method can prepare the
necessary elements deterministically. Based on the previous proposals of generating
approximate GKP-encoded states, the physical systems suitable for our method of
realizing the universal QC are investigated. The results in this thesis thus broaden
the possibilities for reliable quantum information processing with continuous-variable
systems.
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Chapter 1

Introduction

1.1 Background of the research
Quantum information processing is an emerging technology having distinct advan-

tages over ordinary information processing that prevails in the real world (referred to
as classical information processing). Quantum key distribution (QKD) [BB84], as an
example, enables distant parties to share the keys that are secret to the adversary even
when the adversary has unlimited computational power and arbitrary eavesdropping
technology allowed in the law of physics. This type of strong security cannot be ob-
tained by classical information processing in a similar setup. Quantum computation
(QC) [Ben80, Fey82, DP85], as another example, can efficiently solve problems that
are considered to be difficult to solve in the classical computer [Sho94]. Not limited to
a matter of new technology, quantum information processing reveals plenty of essential
aspects of quantum theory such as Bell non-locality [Bel64, FC72, ADR82] and entan-
glement, promoting our understanding of quantum theory. For these reasons, quantum
information processing gathers growing interests and attention, and intensive studies
have been made in this field for decades. Recently, the real-world implementation of
quantum information technologies has been progressing. There are varieties of can-
didate materials and physical systems competing for realizing quantum information
processing. Quantum optical system is one of the leading candidates for implementing
quantum communication and quantum computation due to its retention ability of the
quantum nature even in the room-temperature environment and its mobility with the
propagating speed of light. Furthermore, technologies to control the wavy nature of
light are established in the field of classical information processing.

The complex amplitude of the optical mode takes continuous values and is thus
called a continuous-variable quantum system. The relation between quantum informa-
tion processing with the continuous-variable system and that with the discrete-variable
one (qubit or qudit) is similar to the relation between analog and digital classical in-
formation processing. Continuous-variable quantum information processing is fragile
against noises compared to the discrete-variable one, as analog classical information
processing is compared to the digital one. To circumvent this issue, we need to “dig-
itize” information on the continuous-variable quantum system and leave an irrelevant
continuous degree of freedom as a redundancy. The idea is general and natural in
principle, but it is non-trivial how to consistently encode digital information on the
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1.2. What is studied in this thesis 2

continuous-variable system and perform information processing on the encoded digital
information with operations on the continuous-variable system. This thesis aims at
developing quantum information processing on the digitized information encoded on
the continuous-variable system.

1.2 What is studied in this thesis
As explained, the aim of the thesis is to develop digital quantum information pro-

cessing with the continuous-variable system. We treat two topics; continuous-variable
QKD and QC. For continuous-variable QKD, we develop a protocol that is adapted to
digital information processing and prove the finite-size composable security for the pro-
tocol against general attacks. The complete security proof for the discrete-modulation
continuous-variable QKD has been an open problem for a decade; we solve this problem
by a newly developed estimation technique for the quantum state using the continuous-
variable measurement. Our security analysis can easily incorporate the digitization of
the signal processing and thus the finite resolution of the experimental apparatuses
due to the adaptation to digital information processing. The security proof is further
refined, and the protocol with almost optimal key rate scaling against transmission
distance under the pure-loss channel is obtained.

For continuous-variable QC, we study the specific quantum error-correcting code
called Gottesman-Kitaev-Preskill (GKP) code [GKP01]. The GKP code was developed
to encode a qubit into a continuous-variable system, targeting the complex amplitude of
an optical mode. It is suitable for optical QC for several reasons, one of which is that the
important subset of the elementary gate operations on the GKP-encoded qubit can be
realized by reliably implementable operations in the quantum optical experiment. The
GKP code can be implemented on the physical system only approximately, and thus
several conventional approximations for the GKP code have been developed. However,
the correspondence between different approximations for the GKP code is still unclear.
In this thesis, the conventional approximations for the GKP code are shown to be
equivalent by the explicit correspondence between the approximation parameters. This
enables the translation between researches based on the different approximations, which
has been a problem for the analyses of the approximate GKP codes. Further properties
of the approximate GKP codes are also shown. Another result is the development of
a resource-efficient protocol to realize the universal QC with the GKP code. This
protocol relies on direct preparation of only one type of the GKP-encoded state, the
GKP magic state, and requires no probabilistic state conversion process. The feasibility
for the direct preparation of the GKP magic state is discussed for several experimental
proposals that aim to implement the GKP-encoded state.

1.3 The organization of this thesis
In Chapter 2, the basics of quantum information theory that this thesis is based on

are listed (Section 2.1), and the distance measures for quantum states used throughout
the thesis are defined (Section 2.2). In Chapter 3, the definitions and the proper-
ties of the continuous-variable quantum system are reviewed (Section 3.1) with the
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quantum optical system as a prominent example (Section 3.2). Chapters 4 and 5 are
the results of this thesis. In Chapter 4, after the review of the proof approach for
the QKD and of the relevant probability theories, the security proof for a continuous-
variable QKD protocol with digital information processing is developed (Section 4.4).
The security proof is further refined based on the reverse reconciliation, a frequently
used technique in the continuous-variable QKD, which results in the improvement of
the protocol performance (Section 4.5). In Chapter 5, after reviewing the GKP code
(Section 5.2.2), the equivalence of the conventionally-used approximate GKP codes is
proved (Section 5.3). Furthermore, the resource-efficient protocol to realize the univer-
sal QC using the GKP code and experimentally feasible quantum optical operations is
constructed (Section 5.4). Finally, Chapter 6 concludes the thesis.



Chapter 2

Preliminaries

2.1 The basic principles of quantum information
theory

2.1.1 Linear operator and quantum state
In what follows, let H be a (possibly separable infinite-dimensional) Hilbert space.

An element of H is denoted by a ket vector |ψ〉. An element of the dual H∗ of H is
denoted by a bra vector 〈ψ|. The inner product between two elements |ψ〉 and |φ〉 in H
is denoted by 〈ψ|φ〉. Let L(H) be the set of linear operators onH. The dagger operation
† on A ∈ L(H) is defined as follows. Let D be the set of vectors so that for |φ〉 ∈ D,
there exists |φ′〉 ∈ H such that 〈φ|A |ψ〉 = 〈φ′|ψ〉 holds for all |ψ〉 ∈ domA. Then, A† is
defined to satisfy |φ′〉 = A† |φ〉 (i.e., D = domA†). Such an A† can be uniquely defined
as long as domA is dense in H. An operator A ∈ L(H) is called self-adjoint if A = A†.
By definition, domA = domA† in this case. A self-adjoint operator A is called positive
and denoted by A ≥ 0 if 〈ψ|A |ψ〉 ≥ 0 holds for all |ψ〉 ∈ domA. An operator A ∈ L(H)
is called bounded if there exists a constant M > 0 such that ‖A |ψ〉‖ ≤ M‖|ψ〉‖ holds
for all |ψ〉 ∈ H (i.e., domA = H). The set of bounded linear operators on H is denoted
by B(H). An operator A ∈ B(H) is called isometry if ‖A |ψ〉‖ = ‖|ψ〉‖ for all |ψ〉 ∈ H,
and called unitary if A†A = AA† = I, where I denotes an identity operator on H. In
quantum information theory, we frequently consider linear operators from H1 to H2,
denoted by L(H1,H2). The set B(H1,H2) of bounded operators, an isometry, and a
unitary from H1 to H2 can be defined analogously.

For a complete orthonormal system (CONS) {|ej〉}j∈N ⊂ H, the trace Tr of A ∈
B(H) is defined as Tr(A) = ∑

j∈N 〈ej|A |ej〉 if it does not diverge. A bounded operator
A with the trace of

√
A†A convergent is called trace-class, and the set of trace-class

operators is denoted by T(H). A density operator ρ ∈ T(H) is a positive and trace
normalized operator, i.e.,

ρ† = ρ, ρ ≥ 0, Trρ = 1. (2.1)
The set of density operators is denoted by D(H).

A quantum state on a quantum mechanical system S can be uniquely determined
by a density operator ρS ∈ D(HS) on a Hilbert space HS [NC10]. In the following,
therefore, a quantum state is identified with its density operator. A quantum state is
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2.1. The basic principles of quantum information theory 5

called pure if the rank of its density operator ρ is equal to one, i.e. ρ = |ψ〉〈ψ| for a unit
norm vector |ψ〉 ∈ H. The pure state is often denoted by the unit vector for brevity,
e.g., |ψ〉 in the above case. A quantum state is referred to as mixed if it is not pure.
A quantum state on a composite system of systems S1 and S2 are given by a density
operator ρS1S2 ∈ D(HS1⊗HS2) on the tensor product HS1⊗HS2 of Hilbert spaces. For
any density operator ρS ∈ D(HS), there exists a pure state |ψ〉SR ∈ HS ⊗HR with a
reference system R such that TrR |ψ〉〈ψ|SR = ρS, where TrR denotes the partial trace
of the system R. |ψ〉SR is called the purification of the density operator ρS. |ψ〉SR is
uniquely determined up to isometry [Kir06, Wat18].

2.1.2 Quantum operation and quantum channel
A quantum operation on a quantum state of the system S is defined as a completely-

positive (CP) and trace-non-increasing (TNI) linear map (CPTNI map in short) E :
T(HS)→ T(HS), which satisfies

∀ρSE ∈ D(HS ⊗HE), E ⊗ IdE(ρSE) ≥ 0, (Completely-positive), (2.2)
∀ρS ∈ D(HS), Tr [E(ρS)] ≤ 1, (Trace-non-increasing), (2.3)

where IdE : A 7→ A, ∀A ∈ B(HE) denotes the identity map. These conditions are
imposed to ensure the probabilistic interpretation of quantum states. The important
subset of the quantum operations is the quantum channels, which are described as
completely-positive and trace-preserving (TP) maps (CPTP maps in short). For CPTP
maps, the inequality condition (2.3) of the CPTNI map is replaced with the equality.
Roughly speaking, the quantum operation allows post-selection of the events while the
quantum channel is non-selective. In general, the Hilbert spaces on which the input
and the output trace-class operators of the CPTNI map are defined can be different.
For a linear map E : T(H1)→ T(H2), the adjoint map of E denoted by E† from B(H2)
to B(H1) is defined to satisfy

TrH2 [E(ρ)A] = TrH1 [ρ E†(A)], ∀ρ ∈ T(H1), ∀A ∈ B(H2). (2.4)

The adjoint of a CP map is also CP, the adjoint F of a TNI map is contractive,
i.e., F(I) ≤ I, and the adjoint F of a TP map is unital, i.e., F(I) = I. Thus, the
adjoint of a CPTNI map (i.e., a quantum operation) is a contractive CP map, and
the adjoint of a CPTP map (i.e., a quantum channel) is a unital CP map. For a
unital CP map F : B(H2) → B(H1), there exists a Hilbert space K, an isometry
V ∈ B(H1,K), and a homomorphism π : B(H2)→ B(K) such that F(A) = V †π(A)V
for all A ∈ B(H2) [Sti55]. This is called Stinespring dilation of the map F , and the
triple (π, V,K) is unique up to isometry. For the adjoint map E† : B(H2)→ B(H1) of
a CPTP map E : T(H1)→ T(H2), the Stinespring dilation takes a particularly simple
form; K = H2 ⊗HR (where HR can be chosen to be dimHR ≤ dimH1 × dimH2 if H1
and H2 are finite dimensional [Cho75]), and π(A) = A⊗ IR. Equivalently, the CPTP
map E : T(H1)→ T(H2) can be written as

E(ρ) = TrR[V ρV †], ∀ρ ∈ T(H1), (2.5)

which is (also) called Stinespring dilation of the CPTP map E .
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2.1.3 Quantum measurement and quantum instrument
For a Borel-measurable space (X,Σ), a map E : Σ → B(H) is called positive-

operator-valued measure (POVM) if it satisfies

0 ≤ E(χ) ≤ I, ∀χ ∈ Σ, (2.6)
E(∅) = 0, E(X) = I, (2.7)
E
(⋃
k∈N

χk
)

=
∑
k∈N

E(χk), ∀{χk}k∈N ⊆ Σ with χj ∩ χk = ∅ for j 6= k, (2.8)

where the summation of the right-hand side of Eq. (2.8) converges σ-weakly, i.e.,
Tr[ρ∑n

k=1E(χk)] n→∞−−−→ Tr[ρ∑k∈NE(χk)] for all ρ ∈ D(H) [Hol73, Hol11]. A quan-
tum measurement with values in X is modeled by the above POVM if we do not care
about the post-measurement state. Given a POVM E : Σ→ B(H), the probability of
observing χ ∈ Σ when the state of the system is prepared in ρ is given by

Pr [χ ∈ Σ | ρ] = Tr[ρE(χ)], (Born rule). (2.9)

In other words, quantum measurement with values in X can be regarded as a (CPTP)
map from the set of density operators to the set of probability distributions on X.
For a POVM E, if E(χ)2 = E(χ) holds for all χ ∈ Σ, then it is especially called
projection-valued measure (PVM).

If we care about the post-measurement state, a quantum measurement should be
treated as a quantum operation. Such quantum operations Eχ (χ ∈ Σ) called the
quantum instrument is a map from a σ-algebra Σ to the collection of CPTNI maps
that satisfies

E†χ(I) = E(χ), (2.10)
with an identity operator I on the post-measurement space and a POVM E [DL70].

For a measurement with finite number of outcomes {0, . . . , d−1}, one can associate
the outcomes with mutually orthogonal pure states {|0〉〈0| , . . . , |d− 1〉〈d− 1|} on Cd

called the classical states. The quantum channel I composed of the instrument E and
the register C of the outcomes can be defined as

I(ρ) =
d−1∑
i=0
|i〉〈i|C ⊗ Ei(ρ), (2.11)

which is often used in combination with the quantum instrument.

2.1.4 Qubit as an information unit
Qubit is a quantum system characterized by the two-dimensional Hilbert space.

It is an elemental unit of the quantum information theory in analogy with the bit in
the classical information theory. Let {|0〉 , |1〉} be an orthonormal basis of a qubit.
Throughout the thesis, the Pauli operators σX , σY , and σZ are defined in this basis as

σX =
[
0 1
1 0

]
, σY =

[
0 −i
i 0

]
, σZ =

[
1 0
0 −1

]
. (2.12)

In this thesis, {|0〉 , |1〉} is called the Z basis of the qubit and {|0X〉 = |+〉 = (|0〉 +
|1〉)/

√
2, |1X〉 = |−〉 = (|0〉 − |1〉)/

√
2} is called the X basis of the qubit.



2.2. The distance measures of quantum states 7

2.2 The distance measures of quantum states
In this section, the definitions and properties of the trace distance and the fidelity

are listed. The proofs of them are given, for example, in the book [Wil13].

2.2.1 The trace norm and the trace distance
The trace distance is a distance measure of quantum states based on the trace norm

defined below.

Definition 2.2.1 (Trace norm). The trace norm ‖ · ‖1 of a trace-class operator A ∈
T(H) is defined as

‖A‖1 := Tr
√
A†A. (2.13)

As a norm, the trace norm satisfies the following properties.

• (Positive definiteness) The trace norm of a linear operator A ∈ T(H) is positive
semidefinite:

‖A‖1 ≥ 0. (2.14)
The trace norm is null if and only if the operator A is null:

‖A‖1 = 0⇔ A = 0. (2.15)

• (Homogeneity) For any constant c ∈ C,

‖cA‖1 = |c|‖A‖1. (2.16)

.

• (Subaddtivity) For A,B ∈ T(H). Then the following inequality holds:

‖A+B‖1 ≤ ‖A‖1 + ‖B‖1. (2.17)

The following property is given as a corollary.

Corollary 2.2.2 (Convexity). For A,B ∈ T(H) and λ ∈ [0, 1], the following inequality
holds:

‖λA+ (1− λ)B‖1 ≤ λ‖A‖1 + (1− λ)‖B‖1. (2.18)

The trace distance between quantum states ρ and σ is defined using the trace norm.

Definition 2.2.3 (Trace distance). The trace distance d(ρ, σ) between two density
operators ρ and σ is defined as

d(ρ, σ) = 1
2‖ρ− σ‖1 = 1

2Tr
√

(ρ− σ)†(ρ− σ). (2.19)

From the subadditivity property of the trace norm, 0 ≤ d(ρ, σ) ≤ 1 holds. Furthermore,
the following also holds.
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Corollary 2.2.4 (Triangle inequality). For ρ, σ, τ ∈ D(H), the following triangle in-
equality holds for trace distance:

d(ρ, σ) ≤ d(ρ, τ) + d(τ, σ). (2.20)

The trace distance is a measure of how well two quantum states can be distinguished
[Wil13]. The trace distance satisfies the following desirable property in terms of infor-
mation processing.

Proposition 2.2.5 (Monotonicity). For any CPTP map E : D(H) → D(H) and for
any quantum states ρ, σ ∈ D(H), the following condition holds:

d(ρ, σ) ≥ d (E(ρ), E(σ)) . (2.21)

Monotonicity property of the trace distance reflects the fact that the distinguishability
of two quantum states does not increase via any quantum channels. This property is
crucial in the security proof of the QKD.

2.2.2 The quantum fidelity
The fidelity between two quantum states is defined as follows.

Definition 2.2.6 (Fidelity ). Let ρ, σ be quantum states. The fidelity F (ρ, σ) between
ρ and σ is defined as

F (ρ, σ) :=
∥∥∥√ρ√σ∥∥∥ 2

1
. (2.22)

As a direct consequence, the following proposition holds:

Proposition 2.2.7 (Expected fidelity). The fidelity between a pure state |ψ〉 and a
mixed state ρ is given by

F (|ψ〉 , ρ) = 〈ψ| ρ |ψ〉 . (2.23)

The expected fidelity can be seen as the probability of observing “Yes” in the Yes/No
measurement {|ψ〉〈ψ| , I − |ψ〉〈ψ|} performed on the state ρ. One can also check that
0 ≤ F (ρ, σ) ≤ 1. Although the fidelity is also a measure for the distinguishability of
quantum states, one can notice that the distinguishability grows when the fidelity gets
decreased, contrary to the trace distance. The followings are the useful properties of
the fidelity.

Proposition 2.2.8 (Concavity). Let ρ1, ρ2, σ be the quantum states and λ ∈ [0, 1].
Then the following inequality holds:

F (λρ1 + (1− λ)ρ2, σ) ≥ λF (ρ1, σ) + (1− λ)F (ρ2, σ) (2.24)

Proposition 2.2.9 (Monotonicity). For any CPTP map E : D(H) → D(H) and for
any quantum states ρ, σ ∈ D(H), the following condition holds:

F (ρ, σ) ≤ F (E(ρ), E(σ)) . (2.25)
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Theorem 2.2.10 (Uhlmann [Uhl76, HQ11]). Let ρ, σ ∈ D(HA) be quantum states on
the system A, and R be the system with HR

∼= HA. Then, the following expression
holds for the fidelity:

F (ρ, σ) = max{| 〈ψ|φ〉 |2 : |ψ〉 ∈ Pρ, |φ〉 ∈ Pσ}, (2.26)

where Pρ = {|ψ〉 ∈ HA ⊗HR : |ψ〉 is a purification of ρ}.

The following lemma is not very common, so a proof is given here for later use.

Lemma 2.2.11 (Lower bound of the fidelity in the extended system). For any quantum
state τAE ∈ D(HA ⊗HE) and any pure state |0〉〈0|A ∈ D(HA),

(F (τA, |0〉〈0|A))2 ≤ F (τAE, |0〉〈0|A ⊗ τE) ≤ F (τA, |0〉〈0|A) (2.27)

holds, where τE := TrAτAE and τA := TrEτAE.

Proof. The second inequality is the direct consequence of Lemma 2.2.9 applied on the
partial trace TrE. In order ot prove the first inequality, let Q,R be auxiliary systems
withHR

∼= HA, and let |Ψ〉AEQR , |Φ〉AEQR be the purified states of τAE and |0〉〈0|A⊗τE,
respectively, which are given by

|Ψ〉AEQR :=
∑
i

|i〉A |ψi〉EQ |0̃〉R (2.28)

|Φ〉AEQR := |0〉A |φ〉EQR . (2.29)

Here, {|i〉A}i is a CONS in HA that contains |0〉A, |ψi〉s are subnormalized vectors
satisfying ∑i 〈ψi|ψi〉 = 1, and |φ〉EQR is given by

|φ〉EQR =
∑
i

|ψi〉EQ |̃i〉R , (2.30)

where {|̃i〉R}i is a CONS in HR that contains |0̃〉R. One can ensure that |φ〉EQR is a
purification of τE because

TrQR
[
|φ〉〈φ|EQR

]
=

∑
i,j

TrQR
[
|ψi〉〈ψj|EQ ⊗ |̃i〉〈j̃|R

]
(2.31)

=
∑
i

TrQ
[
|ψi〉〈ψi|EQ

]
(2.32)

= τE, (2.33)

from the definition of τE and |ψi〉 in (2.28). By using Uhlmann’s theorem (2.26), we
have

F (τAE, |0〉〈0|A ⊗ τE) ≥
∣∣∣〈Ψ|AEQR |Φ〉AEQR∣∣∣2 (2.34)

=
∣∣∣〈ψ0|EQ 〈0̃|R |φ〉EQR

∣∣∣2 (2.35)

=
∣∣∣〈ψ0|ψ0〉

∣∣∣2, (2.36)
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where we used Eq. (2.30) in the second equality. On the other hand, the following also
holds:

F (τA, |0〉〈0|A) = 〈0|A TrEQR
[
|Ψ〉〈Ψ|AEQR

]
|0〉A (2.37)

=
∑
i,j

〈0|A TrEQR
[
|i〉〈j|A ⊗ |ψi〉〈ψj|EQ ⊗ |0̃〉〈0̃|R

]
|0〉A (2.38)

= TrEQ |ψ0〉〈ψ0|EQ (2.39)
= 〈ψ0|ψ0〉 . (2.40)

Combining these two, the following inequality holds:

(F (τA, |0〉〈0|A))2 ≤ F (τAE, |0〉〈0|A ⊗ τE). (2.41)

Finally, the relation between the trace distance and the fidelity of quantum states
is given as follows [NC10].

Proposition 2.2.12 (Relation between the trace distance and the fidelity). Let ρ, σ
be quantum states. Then,

1−
√
F (ρ, σ) ≤ d(ρ, σ) ≤

√
1− F (ρ, σ). (2.42)



Chapter 3

Continuous-variable quantum
system

Some physical systems, such as an oscillator mode of the trapped ion and a single
optical mode, can be modeled by infinite-dimensional Hilbert spaces. Such a system
has observables with a continuous spectrum, which are unique to the infinite dimension
and can be used in quantum information processing [BvL05, EP03], and thus is called
the continuous-variable quantum system. In this section, the basics of the continuous-
variable quantum system are explained, and the theories of quantum optical systems
are reviewed as a particular example of continuous-variable quantum systems.

3.1 Basics of the continuous-variable quantum sys-
tem

3.1.1 Position and momentum operators
Let L2(R) be the (normed) space of complex square-integrable functions on the

real line R. L2(R) is a Hilbert space with the inner product 〈ψ|φ〉 =
∫∞
−∞ dq ψ(q)φ(q).

Let X(s) and Z(t) be (strongly continuous) one-parameter unitary groups on L2(R)
defined by

[X(s)ψ](q) = ψ(q − s), [Z(t)ψ](q) = eitqψ(q), ∀t, s ∈ R, ∀ψ ∈ L2(R), (3.1)

and therefore satisfying X(s)Z(t) = e−istZ(t)X(s). Due to the Stone’s theorem, X(s)
and Z(t) can be denoted by

X(s) = exp(−isp̂) and Z(t) = exp(itq̂) (3.2)

with self-adjoint operators q̂ and p̂ satisfying

[q̂ ψ](q) = qψ(q), ψ ∈ dom q̂, (3.3)

[p̂ φ](q) = i−1 d

dq
φ(q), φ ∈ dom p̂. (3.4)

11
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Self-adjoint operators q̂ and p̂ are called the position and the momentum operators,
respectively, and can take continuous values. Written in terms of the Dirac’s notation,
they are

q̂ =
∫ ∞
−∞

dq q |q〉〈q| , p̂ =
∫ ∞
−∞

dp p |p〉〈p| , (3.5)

X(s)† q̂ X(s) = q̂ + s, Z(t)† p̂ Z(t) = p̂+ t, (3.6)

〈q|q′〉 = δ(q − q′), 〈p|p′〉 = δ(p− p′), 〈q|p〉 = 1√
2π
eiqp, (3.7)

〈q|ψ〉 = ψ(q), 〈p|ψ〉 = ψ̃(p), (3.8)

|ψ〉 =
∫ ∞
−∞

dq ψ(q) |q〉 =
∫ ∞
−∞

dp ψ̃(p) |p〉 , (3.9)

where δ(x) is the Dirac delta function and the ψ̃ is the Fourier transform of ψ. (Con-
ventionally, ψ(q) is called the position wave function and ψ̃(p) is called the momentum
wave function.) This particular Hilbert space and unitary groups X(s) and Z(t) on
it play an important role, which is explained in the following. Let U(s) and W (t)
(s, t ∈ R) be one-parameter unitary groups satisfying U(s)W (t) = e−istW (t)U(s).
This is called Weyl-Segal canonical commutation relation (CCR). Equivalently, by in-
troducing the vector z = (s, t) and defining the unitary V ′(z) := eist/2U(s)W (t), the
CCR can be denoted by V ′(z1)V ′(z2) = exp(i(t1s2 − s1t2)/2)V ′(z1 + z2). The pair of
the unitary groups X(s) and Z(t) in Eq. (3.1) is an irreducible representation of the
CCR (called the Schrödinger representation). Likewise, the unitary V (z) defined by

V (z) := eist/2X(s)Z(t) = e−ist/2Z(t)X(s) = exp (itq̂ − isp̂) (3.10)

is the Schrödinger representation of V ′(z). The Stone-von Neumann theorem states
that any irreducible representation of CCR is unitarily equivalent to the Schrödinger
representation. Therefore, we can always use the Schrödinger representation to analyze
the continuous variables obeying the CCR. The more commonly known CCR is the
commutation relation [q̂, p̂] = i between the generators q̂ and p̂ (called Heisenberg
CCR). Note that this commutation relation is meaningful only on a certain dense
subset of the Hilbert space.

Now we turn to the multi-variable case. The Heisenberg CCR with N degrees of
freedom can be written as [q̂j, p̂k] = iδj,k, [q̂j, q̂k] = 0, and [p̂j, p̂k] = 0, where δj,k
denotes the Kronecker delta. The corresponding Weyl form of the CCR is given as
follows. Let x = (x1, . . . , xN) and y = (y1, . . . , yN) be N component row vectors.
Define X(x) := exp(−i∑N

k=1 xkp̂k) and Z(y) := exp(i∑N
k=1 ykq̂k). Then, the Weyl

CCR with N degrees of freedom is given by

X(x)Z(y) = exp
(
−i

N∑
k=1

xkyk

)
Z(y)X(x). (3.11)

For an alternative form of the above, let z = (x1, y1, x2, y2, . . . , xN , yN) be a 2N com-
ponent vector, and let ∆(z, z′) be a symplectic form defined as

∆(z, z′) =
N∑
k=1

(x′kyk − xky′k). (3.12)
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Then, an alternative form of the Weyl CCR with N degrees of freedom is given by

V (z)V (z′) = ei∆(z,z′)/2V (z + z′). (3.13)

The generator R̂(z) of V (z) (i.e., V (z) = eiR̂(z)) can be given by

R̂(z) =
∑
k

(ykq̂k − xkp̂k), (3.14)

and satisfies
[R̂(z), R̂(z′)] = i∆(z, z′)I. (3.15)

3.1.2 Characteristic function and Wigner function
The quantum state in the continuous-variable system has convenient representations

as a function of continuous variables. For ρ ∈ D(H⊗N), its characteristic function Fρ(z)
(z ∈ R2N) is defined as

Fρ(z) = Tr[ρV (z)]. (3.16)
The characteristic function Fρ(z) is continuous for all z ∈ R2N and satisfies |Fρ(z)| ≤ 1,
Fρ(0) = 1, and Fρ(−z) = (Fρ(z))∗ [Hol11]. The Wigner function Wρ(r) (r ∈ R2N) is
defined as the (symplectic) Fourier transform of Fρ(z) given by [CG69]

Wρ(r) =
∫ ∞
−∞

dz2N

(2π)2N Fρ(z) exp[−i∆(r, z)]. (3.17)

The characteristic function and the Wigner function has one-to-one correspondence to
the density matrix. For the characteristic function, for example, the inverse transfor-
mation can be explicitly given by

ρ =
∫ ∞
−∞

dz2N

(2π)N Fρ(z)V (−z). (3.18)

TheWigner function is real and satisfies a kind of normalization condition
∫
drWρ(r) =

1. Thus, the Wigner function is called quasi-probability distribution; the only difference
from the usual probability distribution is that the Wigner function can be negative
while any probability distribution is nonnegative.

Similarly to probability distributions, the moment of the Wigner function can be
defined. The first moment, the mean r, is defined as r :=

∫
dr rWρ(r) if it does not

diverge. The second moment, the covariance matrix V = (Vij) is the 2N × 2N matrix
defined as

Vij = Re
[∫

dr (ri − ri)(rj − rj)Wρ(r)
]
, (3.19)

where Re[·] denotes the real part. The higher moment can be defined similarly.
The Wigner function for ρ has the following alternative form:

Wρ(r) = 1
(2π)N

∫ ∞
−∞

dx eipx
>
〈
q − x2

∣∣∣∣ ρ ∣∣∣∣q + x

2

〉
, (3.20)

where > denotes the transposition. This transformation from the density operator to
the function over R2N can be extended to an arbitrary operator A on H⊗N , which is
also called the Wigner function of A.
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3.1.3 Gaussian states, Gaussian channels, and Gaussian mea-
surements

The set of Gaussian states is a distinctive subset of the set of quantum states
in continuous-variable systems; it is closed under the action of Gaussian channels,
and a Gaussian state has lots of similarities to the classical probability distribution
[CLP07, WPGP+12].

A quantum state ρ in the continuous-variable system is called Gaussian if its char-
acteristic function has a Gaussian form, i.e.,

Fρ(z) = exp
(
−1

2z
(
Ω>V Ω

)
z> + irΩz>

)
, (3.21)

where 2N × 2N matrix Ω satisfies xΩz> = ∆(x, z). One can show that its Wigner
function is also Gaussian [WPGP+12], i.e.,

Wρ(r) =
exp

[
−1

2(r − r)V −1(r − r)>
]

(2π)N
√

detV
. (3.22)

Examples of the Gaussian states are the vacuum state, coherent states and thermal
states in the quantum optics. The covariance matrix V must satisfy a physicality condi-
tion V ≥ i

2Ω, which is reduced to the Heisenberg uncertainty principle (∆q)2(∆p)2 ≥ 1
4

in the case of N = 1 [SMD94, EP03, CEGH08, WPGP+12].
A Gaussian unitary U is a unitary that transforms the position and momentum op-

erators linearly. It is generated by self-adjoint operators that are at most quadratic in
the position and momentum operators. The Weyl unitary V (z) is contained in the set
of Gaussian unitary operators since it adds a constant vector to the position and mo-
mentum operators. Other than the addition of a constant vector, the (adjoint) action of
a Gaussian unitary U on the Weyl unitary V (z) leads to U †V (z)U = V (zS−1), where
S denotes a symplectic matrix S ∈ Sp(2N,R) that satisfies ∆(z, z′) = ∆(zS,z′S) or
equivalently SΩS> = Ω [CEGH08, Hol11]. In other words, such unitary operators
form a representation of Sp(2N,R). Examples of the Gaussian unitaries are the phase
rotations, squeezing, and beamsplitter coupling in quantum optics.

A Gaussian channel Φ is a CPTP map whose adjoint map Φ† acts on V (z) as

Φ†(V (z)) = V (zK) exp
[
−1

2z
(
Ω>ΓΩ

)
z> + imΩz>

]
, (3.23)

where K and Γ are 2N×2N real matrices andm ∈ R2N is a row vector [HW01, EP03,
CGH06, Hol07, CEGH08]. Therefore, the characteristic function of a density operator
ρ transforms into

FΦ(ρ)(z) = Fρ(zK) exp
[
−1

2z
(
Ω>ΓΩ

)
z> + imΩz>

]
. (3.24)

For the Gaussian state ρ given in Eq. (3.21), the application of the Gaussian channel
Φ on ρ leads to

r → rK ′> +m, (3.25)
V → K ′V K ′> + Γ, (3.26)
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where K ′ denotes K ′ = ΩKΩ>. Therefore, a Gaussian state is transformed into a
Gaussian state through the Gaussian channel. In fact, Eqs. (3.25) and (3.26) hold for
general quantum states with the first and second moments given respectively by r and
V . The complete positivity of the channel is equivalent to the following inequality for
K ′ and Γ [HW01, CGH06, Hol07, CEGH08]:

Γ ≥ i

2Ω− i

2K
′ΩK ′>. (3.27)

A Gaussian channel is called quantum-limited when the equality in Eq. (3.27) is
achieved [ISS11, GHGP15]. The Gaussian channel Φ can also be written as

Φ(ρ) = TrE
[
U(ρ⊗ ρE)U †

]
, (3.28)

where U is a Gaussian unitary and ρE is a Gaussian state [CG06, CGH06, CLP07,
CEGH08, CEGH11]. Note that this is not the Stinespring dilation of the channel
in general, since ρE can be a mixed state. If the state ρE is the vacuum state, the
corresponding Gaussian channel is quantum-limited.

The classification of Gaussian channels in perspective of its information-theoretic
characteristics has been intensively studied e.g. in Refs. [HW01, CGH06, CG06, Hol07,
WPGG07, CEGH08, PGPBL09, ISS11, GPNBL+12, WHG12, MGH14, GGPCH14,
TGW14, GHGP15, DPTG16, PLOB17, DPTG17, QW17, WQ18, SWAT18, RMG18].
Among others, in the case of N = 1, the following channels are important in the
application [CGH06, Hol07, GPNBL+12].

• The quantum-limited loss (pure-loss) channel: the Gaussian channel withm, K,
and Γ in Eqs. (3.25) and (3.26) being

m = (0, 0), K =
(√

η 0
0 √

η

)
, Γ = 1

2

(
1− η 0

0 1− η

)
, (3.29)

where 0 ≤ η ≤ 1. The parameter η is called the transmissivity of the loss channel.

• The quantum-limited amplifier channel: the Gaussian channel with m, K, and
Γ being

m = (0, 0), K =
(√

G 0
0
√
G

)
, Γ = 1

2

(
G− 1 0

0 G− 1

)
, (3.30)

where G ≥ 1. The parameter G is called the gain of the amplifier.

• The Gaussian random displacement channel: the Gaussian channel with m, K,
and Γ being

m = (0, 0), K =
(

1 0
0 1

)
, Γ =

(
σ2 0
0 σ2

)
. (3.31)

The parameter σ2 is called the variance of the Gaussian random displacement.
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In fact, any phase-covariant single-mode Gaussian channel, that is, the channel in
which the phase rotation transforms covariantly from the input to the output, can be
realized by a composition of the quantum-limited loss and amplifier channels [CGH06,
GHGP15]. For example, the Gaussian random displacement channel with the variance
σ2 can be realized by a quantum-limited loss channel with the transmissivity η =
1/(1 + σ2) followed by a quantum-limited amplifier channel with the gain G = 1 + σ2.

Finally, we introduce the Gaussian measurement. Let M : B(Rm) → B(H⊗N) be
a POVM on the continuous-variable system with N degrees of freedom, where B(Rm)
denotes the Borel σ-algebra of Rm. The probability Prρ[·] that the outcome of the
measurement on ρ is in A ∈ B(Rm) is thus given by

Prρ [A] = Tr
[
ρ
∫
A
M(dmξ)

]
. (3.32)

Define the operator characteristic function φM(ω) as follows:

φM(ω) =
∫
eiωξ

>
M(dmξ), ω ∈ Rm. (3.33)

The POVM M is called Gaussian if its operator characteristic function φM(ω) has the
form [Hol19, Hol21]

φM(ω) = V (ωKΩ>) exp
(
−1

2ωαω
>
)
, (3.34)

where K is a real m× 2N matrix and α is a real symmetric m×m matrix satisfying

α ≥ ± i2KΩK>. (3.35)

Let rα be the rank of the matrix α and rΩK be the rank of KΩK>, which is always
even. Then, the Gaussian POVM M on the system A is known to be written, with
the continuous-variable system C with rα− rΩK/2 degrees of freedom, in the following
form [Hol19, Hol21]:

M(dmξ) = TrC [(I ⊗ ρC)EAC(dmξ)] . (3.36)

Here, ρC is the centered (i.e., mean zero) Gaussian state with the covariance matrix
αC satisfying

KPΛαCΛP>K> = α, (3.37)
where Λ changes the signs of the entries corresponding to the momentum variables and
P denotes the projection onto the subspace spanned by supp(α)K (see [Hol19, Hol21]
for more detail). The PVM EAC is the spectral measure of the vector of self-adjoint
operator:

X̂ = r̂AK
> ⊗ IC + IA ⊗ r̂CΛP>K>. (3.38)

An example of the Gaussian measurement in the case of N = 1 is the PVM E that
is the spectral measure of the position operator q̂ given by

E(dξ) = |(q =)ξ〉〈(q =)ξ| dξ, (3.39)
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where we followed the Dirac’s notation in Eq. (3.5). It is the Gaussian measurement
with K = (1, 0) and α = 0 in its operator characteristic function (3.33) since

φE(ω) =
∫
eiωξ |(q =)ξ〉〈(q =)ξ| dξ = eiωq̂ = V (0, ω), (3.40)

and
Ω =

(
0 −1
1 0

)
. (3.41)

Such a single-outcome measurement with α = 0 is called the ideal homodyne measure-
ment in the quantum optics [CD94]. A Gaussian measurement with K = (1, 0) and
α > 0 can be regarded as a noisy version of the homodyne measurement.

Another example of the Gaussian measurement for N = 1 is the two-outcome
measurement F given by

F (d2ξ) = V (
√

2ξ) |0〉〈0|V (
√

2ξ)†d
2ξ

π
, (3.42)

where |0〉 denotes the vacuum state with its position wave function 〈q|0〉 given by

〈q|0〉 = ψ0(q) = π−
1
4 exp(−q2/2) (3.43)

satisfying
[(q̂ + ip̂)ψ0](q) = 0 (3.44)

from Eqs. (3.3) and (3.4) and its Wigner function W|0〉〈0|(q, p) given by

W|0〉〈0|(q, p) = 1
π

exp(−q2 − p2). (3.45)

The operator characteristic function (3.33) of the POVM F is given by

K = 1√
2

(
1 0
0 1

)
, α = 1

4

(
1 0
0 1

)
. (3.46)

This can be checked as follows. Let us observe that, for s ∈ C,

V (−is, s)V (
√

2ξR,
√

2ξI) |0〉 = e
√

2is(ξR+iξI)V (
√

2ξR,
√

2ξI)V (−is, s) |0〉 (3.47)
= e

√
2is(ξR+iξI)V (

√
2ξR,
√

2ξI) |0〉 , (3.48)

where the last equality follows from V (−is, s) = exp(is(q̂+ip̂)) and Eq. (3.44). Chang-
ing s to −s in the above, we also have

V (is,−s)V (
√

2ξR,
√

2ξI) |0〉 = e−
√

2is(ξR+iξI)V (
√

2ξR,
√

2ξI) |0〉 . (3.49)

Combining these with Eq. (3.42), we have

V (−is, s)F (d2ξ)V (is,−s)† = e
√

2is(ξR+iξI)+
√

2is∗(ξR−iξI)F (d2ξ), (3.50)

where ∗ denotes the complex conjugate. Integrating over R2, we have

V (−is, s) I V (is,−s)† = φF
(
2
√

2 Re[s],−2
√

2 Im[s]
)
. (3.51)
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Using Eq. (3.13), the left-hand side can be reformulated as

V (−is, s) I V (is,−s)† = V (−is, s)V (is∗, s∗) (3.52)
= ei(is

∗s−(−is)s∗)/2V (−is+ is∗, s+ s∗) (3.53)
= e−|s|

2
V (2Im[s], 2Re[s]). (3.54)

Substituting s = (ωR − iωI)/(2
√

2), we have

e−
1
8 (ω2

R+ω2
I )V (−ωI/

√
2, ωR/

√
2) = φF (ωR, ωI), (3.55)

and thus Eq. (3.34) for M = F holds with Ω, K, and α given in Eqs. (3.41) and
(3.46). Using Eq. (3.36), we can rewrite this POVM with the ancillary state ρC being
the vacuum state |0〉 and the PVM EAC being the joint spectral measure of (q̂A+q̂C)/

√
2

and (p̂A − p̂C)/
√

2. This can be checked by comparing Eqs. (3.37) and (3.38) with

P =
(

1 0
0 1

)
, Λ =

(
1 0
0 −1

)
, (3.56)

and the covariance matrix αC of the vacuum being

αC = 1
2

(
1 0
0 1

)
(3.57)

from its Wigner function (3.45). This type of measurement is called the heterodyne
(or dual-homodyne) measurement in the quantum optics [CD94]. Again, a Gaussian
measurement with the same K but a larger value of α can be interpreted as a noisy
heterodyne measurement. The set of Gaussian measurements is essentially composed
of multi-variable generalization of (noisy) symplectic-transformed homodyne and het-
erodyne measurements [Hol19, Hol21].

3.1.4 Gaussian operations
Gaussian operations are the important subset of operations that can be performed

on the continuous-variable quantum system. It is composed of the preparation of
Gaussian states, the action of Gaussian unitaries, Gaussian measurements, and the
ignorance of a subsystem. Gaussian channels are contained in Gaussian operations,
which is obvious from the expression (3.28). Note that in terms of the transformation
law as in Eq. (3.23), the ignorance Φtr of a subsystem is given by Φ†tr(V (z)) = V (z ⊕
(0, 0)), where ⊕ denotes the direct sum. Implementation of Gaussian operations in
quantum optical systems is relatively easy, which will be explained in the next section.
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3.2 Quantum optical system as a continuous-variable
system

In this section, the quantum optical system is reviewed as a prominent example of
the continuous-variable system. For detail, see e.g. [MW95, KL10].

3.2.1 Quantization of electromagnetic field
The vector potential A(r, t) of the free electromagnetic field satisfies the homoge-

neous wave equation
∇2A(r, t)− 1

c2
∂2

∂t2
A(r, t) = 0, (3.58)

in the Coulomb gauge
∇ ·A = 0, Φ = 0. (3.59)

The electric field E(r, t) and the magnetic field B(r, t) are given by

E(r, t) = − ∂

∂t
A(r, t), (3.60)

B(r, t) = ∇×A(r, t). (3.61)

The Maxwell equation for electromagnetic fields follows from these equations. The
solution of the wave equation (3.58) can be written as

A(r, t) =
∑
λ

∫ dk
√
ε0

[eλ(k)Aλ(k)u(k; r, t) + e∗λ(k)A∗λ(k)u∗(k; r, t)] , (3.62)

where Aλ(k) denotes the amplitude of the mode with the wave vector k and polarization
λ, eλ denotes the direction of the polarization, and u(k; r, t) denotes the “normalized”
solution of the wave equation (3.58), i.e.,

u(k; r, t) = eik·r−iωkt√
(2π)32ωk

, (3.63)

with ωk = c|k|. Due to the condition of Coulomb gauge (3.59), we have k · eλ(k) = 0.
When the electromagnetic fields are quantized, the classical amplitude Aλ(k) and its
complex conjugate A∗λ(k) is replaced with

√
~ times the operators âλ(k) and â†λ(k) that

satisfies
[âλ(k), â†λ′(k′)] = δλ,λ′δ

3(k − k′). (3.64)
(These are not operators in the usual sense but rather the operator-valued distribu-
tions.) The resulting quantized vector potential as well as electromagnetic fields are
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given by

Â(r, t) =
∑
λ

∫
dk

√
~
ε0

[
eλ(k)âλ(k)u(k; r, t) + e∗λ(k)â†λ(k)u∗(k; r, t)

]
, (3.65)

Ê(r, t) =
∑
λ

∫
dk i

√
~
ε0

[
eλ(k)âλ(k)ωku(k; r, t)− e∗λ(k)â†λ(k)ωku∗(k; r, t)

]
, (3.66)

B̂(r, t) =
∑
λ

∫
dk i

√
~
ε0

[
(k × eλ(k))âλ(k)u(k; r, t)− (k × e∗λ(k))â†λ(k)u∗(k; r, t)

]
.

(3.67)

The energy H of the (quantized) electromagnetic field is given by

H = ε0

2

∫
dr
[
Ê2(r, t) + c2B̂2(r, t)

]
(3.68)

=
∑
λ

∫
dk

~ωk
2 [âλ(k)â†λ(k) + â†λ(k)âλ(k)], (3.69)

where we used e∗λ(k) · eλ′(k) = δλ,λ′ and

2
∫
dr ωku

∗(k; r, t)u(k′; r, t) = δ3(k − k′). (3.70)

Next we construct a well-defined mode functions vj,λ(r, t). This can be made by taking
an orthonormal system of weight functions fj(k), and define the mode function vj,λ(r, t)
by

vj,λ(r, t) =
∫
dk f ∗j (k)eλ(k)ωku(k; r, t) (3.71)

and the mode annihilation operators âj,λ by

âj,λ =
∫
dk fj(k)âλ(k). (3.72)

Due to the relation ∑j f
∗
j (k)fj(k′) = δ3(k − k′), we have

Ê(r, t) = i

√
~
ε0

∑
λ

∑
j

[
vj,λ(r, t)âj,λ − v∗j,λ(r, t)â

†
j,λ

]
. (3.73)

The electromagnetic field can thus be decomposed into the well-defined mode functions.
By carefully designing the weight function fj(k) and the polarization vector eλ(k), we
can obtain a pulse-shaped mode function. In this thesis, we assume that an optical
pulse emitted by a light source can be treated as a single pulse-shaped mode. The
mode annihilation and creation operators satisfy the commutation relation

[âj,λ, âk,λ′ ] = 0, [â†j,λ, â
†
k,λ′ ] = 0, [âj,λ, â†k,λ′ ] = δjkδλλ′ . (3.74)

The electromagnetic field has the pure vacuum state |0〉 satisfying

âj,λ |0〉 = 0, ∀j, λ. (3.75)
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Since the electromagnetic field can be decomposed into the mode functions vj,λ(r, t),
the vacuum state |0〉 can be interpreted an infinite tensor product of the vacua |0〉j,λ
for each mode j and the polarization λ satisfying âj,λ |0〉j,λ = 0. We can define the
Fock state |n〉j,λ for the mode j and the polarization λ by

|n〉j,λ = 1√
n!

(â†j,λ)n |0〉j,λ , (3.76)

that satisfies
n̂j,λ |n〉j,λ = â†j,λâj,λ |n〉j,λ = n |n〉j,λ , (3.77)

where n̂j,λ := â†j,λâj,λ is called the photon number operator. The set of vectors {|n〉j,λ}
forms a CONS of the Hilbert space associated with the mode j and the polarization
λ. Finally, by setting q̂j,λ = 1√

2(âj,λ + â∗j,λ) and p̂j,λ = −i 1√
2(âj,λ − â∗j,λ), we have the

commutation relation

[q̂j,λ, q̂k,λ′ ] = 0, [p̂j,λ, p̂k,λ′ ] = 0, [q̂j,λ, p̂k,λ′ ] = iδjkδλλ′ . (3.78)

This is nothing but the multi-mode generalization of the Heisenberg CCR explained
in the previous section. One can also check the consistency between âj,λ |0〉j,λ = 0 and
Eq. (3.44) for the vacuum state. All the equations given in this section are formal and
not mathematically rigorous. More rigorous treatments are given in e.g. [BCRV16].

3.2.2 Operations in quantum optics
In the following, we suppress the indices for the mode and polarization degrees of

freedom and add them only when needed. Linear optics is composed of optical media
that responds linearly to the electric field. Linear optical unitaries are unitaries that
can be realized by the combination of beamsplitter Bij(θ) and the phase shifter R(φ)
[RZBB94], given respectively by

Bij(θ) := exp
[
−θ(â†i âj − â

†
j âi)

]
, (3.79)

R(φ) := exp(iφâ†â). (3.80)

They respectively transform the annihilation operators into

Bij(θ)†
(
âi
âj

)
Bij(θ) =

(
cos θ − sin θ
sin θ cos θ

)(
âi
âj

)
, (3.81)

R(φ)†âR(φ) = eiφâ, (3.82)

by the adjoint actions. (Note that Bij(θ)† = Bij(−θ) as well as R(φ)† = R(−φ)
holds.) In particular, R(π/2) corresponds to the Fourier transform between quadrature
operators, i.e.,

R(−π/2)q̂R(π/2) = −p̂, R(−π/2)p̂R(π/2) = q̂. (3.83)

For the beamsplitter Bij, cos2 θ and sin2 θ are respectively called the transmissivity
and the reflectivity. Contrary to linear optics, nonlinear optics can be realized by a
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nonlinear optical media whose polarization density responds nonlinearly to the electric
field. An example of the (second-order) nonlinear optical process is optical squeezing.
The squeezing unitary S(ξ) (ξ ∈ C) is given by

S(ξ) := exp
(1

2(ξ∗â2 − ξâ†2)
)
. (3.84)

The combination of linear optical unitary (that contains phase space displacement) and
squeezing unitary forms the Gaussian unitary operations introduced in the previous
section.

An example of the optical single-mode Gaussian state is the coherent state |α〉
defined as

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉 . (3.85)

It is known that the laser light is well described by the coherent state. Its position
wave function is given by

〈q|α〉 = π−
1
4 exp

[
−(q −

√
2αR)2

2 + iq
√

2αI − iαRαI
]
, (3.86)

where α = αR + iαI . The displacement operator D(α) transforms the vacuum state
into a coherent state with the amplitude α ∈ C, i.e.,

D(α) |0〉 = |α〉 . (3.87)

In terms of the creation and annihilation operators, it is given by

D(α) = exp(αâ† − α∗â). (3.88)

The operator V (z) introduced in the previous section is related to the displacement
operator by

V (x, y) = D
(
(x+ iy)/

√
2
)
. (3.89)

Using this, the POVM F of the heterodyne measurement Eq. (3.42) can be rewritten
by the coherent state vector |α〉 as

F (d2α) = |α〉〈α| d
2α

π
. (3.90)

Another example of the Gaussian state is the squeezed state given by

S(ξ) |0〉 = 1√
cosh r

∞∑
n=0

√
(2n)!
2nn!

(
−eiϕ tanh r

)n
|2n〉 , (3.91)

where ξ = reiϕ. Written in terms of the position wave function, it is given by

〈q|S(ξ) |0〉 =
(
2π(∆q)2

)− 1
4 exp

[
−1 + i sinh(2r) sinϕ

4(∆q)2 q2
]
, (3.92)

where
(∆q)2 := 1

2
[
e2r sin2(ϕ/2) + e−2r cos2(ϕ/2)

]
. (3.93)
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Figure 3.1: The schematics of the homodyne detector. The signal light is coupled with
the local oscillator |α〉 by the 50:50 beamsplitter and successively measured by the
photo-diodes. The difference I1−I2 of the photo-currents is the output of the detector.

A single-mode pure Gaussian state is in fact given by the squeezed coherent state
D(α)S(ξ) |0〉.

The homodyne detector is a detector that is frequently used in quantum optics
and can be implemented by linear optical elements. The experimental setups of the
homodyne detector are presented in Figure 3.1. First, the optical signal is coupled with
the local oscillator (that is, the strong coherent light used as a phase reference) by the
50:50 beamsplitter. The coupled modes are successively put into the photo-diodes.
In photo-diodes, the photo-currents proportional to the intensity of the input electric
field are generated. Since the intensity of the electric field is proportional to the photon
number n̂, the photo-currents I1 and I2 are proportional to

I1 ∝ n̂1 = 1
2(â†s + α∗)(âs + α), (3.94)

I2 ∝ n̂2 = 1
2(â†s − α∗)(âs − α), (3.95)

where âs denotes the annihilation operator of the signal mode. Taking the difference
I1 − I2 of the photo currents, we have

I1 − I2 ∝ |α|(e−iθâs + eiθâ†s) (3.96)
∝ |α|(cos θ q̂s + sin θ p̂s). (3.97)

In the actual experiment, photo-diodes have electric noise, which makes the mea-
surement carried out by the above setups unsharp. However, taking the intensity
of the local oscillator infinitely strong, i.e., |α| → ∞, the homodyne measurement
gets close to the quadrature measurement with its PVM given by |qθ〉〈qθ| dqθ, where
q̂θ := cos θ q̂s + sin θ p̂s. (The case of θ = 0 is exactly equal to the one in Eq. (3.39).)
Another detector that is frequently used in quantum optics is the heterodyne detector
(also known as the dual-homodyne detector) depicted in Figure 3.2. In this detector,
the signal light is split into two by the 50:50 beamsplitter, and each of the two split
modes is measured by the homodyne detector. One of the optical phases of the local
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Figure 3.2: The schematics of the heterodyne (dual-homodyne) detector. The signal
light is split into two (i.e., is coupled with the vacuum) by the 50:50 beamsplitter
and then measured by the homodyne detectors. One of the optical phases of the
local oscillators is π/2-rotated, and thus two homodyne detectors measure orthogonal
quadratures.

oscillators for the homodyne detectors is π/2-rotated so that the two homodyne detec-
tors measure the orthogonal quadratures, e.g., q̂ and p̂. Precisely speaking, the first
50:50 beamsplitter couples the signal light and the external vacuum. Since the 50:50
beamsplitter transforms quadrature operators as

B12(−π/4)†q̂1B12(−π/4) = (q̂1 + q̂2)/
√

2, B12(−π/4)†p̂2B12(−π/4) = (p̂1 − p̂2)/
√

2,
(3.98)

the 50:50 beamsplitter followed by the homodyne measurements for q̂1 and p̂2 in Fig-
ure 3.2 is equivalent to the measurement for the joint spectral measure of (q̂1 + q̂2)/

√
2

and (p̂1 − p̂2)/
√

2. Combining these with Eq. (3.36), one can notice that the POVM
for the detector in Figure 3.2 is equal to the heterodyne POVM in Eq. (3.42) or equiv-
alently (3.90) as explained in Section 3.1.3. An alternative derivation for this fact is
as follows. The operator characteristic function of the two homodyne measurements
at the end in Figure 3.2 is given by V (0, ωR,−ωI , 0). The transformation law for the
operator V (x1, y1, x2, y2) by the adjoint of the channel ΦB(ρ) := B(−π/4)ρB(−π/4)†
is given as follows:

Φ†B(V (x1, y1, x2, y2)) = V

(
x1 − x2√

2
,
y1 − y2√

2
,
x1 + x2√

2
,
y1 + y2√

2

)
. (3.99)

Thus, the operator characteristic function before the first 50:50 beamsplitter that cou-
ples the signal light and the external vacuum |0〉 in Figure 3.2 is given by

〈0|V
(
ωI√

2
,
ωR√

2

)
|0〉V

(
− ωI√

2
,
ωR√

2

)
= exp

[
−1

8(ω2
R + ω2

I )
]
V

(
− ωI√

2
,
ωR√

2

)
= φF (ωR, ωI),

(3.100)

where φF (ωR, ωI) is the operator characteristic function of the heterodyne POVM.
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We finally comment on the photon detectors used in quantum optics. On-off detec-
tors (also called threshold detectors) distinguish zero and non-zero photons. Photon-
number-resolving detectors distinguish up to a few photons (with current technology).
Both detectors should distinguish photons with sufficiently high probability; i.e., the
efficiency of the detector should be high. These detectors respond to the input pho-
ton number very non-linearly and thus are non-Gaussian operations. An example of
the high-efficiency on-off detector used in quantum optics experiments is the super-
conducting nanowire single-photon detector (SNSPD), and an example of the photon-
number-resolving detector is the transition edge sensor (TES). Both detectors utilize
the transition event of the superconductor when absorbing photons. For details, see
e.g. [IH05, NTH12] and the references therein.



Chapter 4

Quantum key distribution with
continuous-variable systems

4.1 Introduction for this chapter
Quantum key distribution (QKD) aims at generating a secret key shared between

two remote legitimate parties with information-theoretic security. QKD combined with
the one-time pad [Sha49] provides secure communication against an adversary with ar-
bitrary computational power and hardware technology. Since the first proposal in
1984 [BB84], various QKD protocols have been proposed with many varieties of encod-
ing and decoding schemes. These protocols are typically classified into two categories
depending on the detection methods. One of them is called discrete-variable QKD,
which uses photon detectors and includes earlier protocols such as BB84 [BB84] and
B92 [Ben92] protocols. The other is called continuous-variable QKD, which uses ho-
modyne and heterodyne measurements with photodetectors [Ral99, Hil00, GKP01,
CLA01, GG02, GVAW+03, WLB+04]. See Refs. [XMZ+20, PAB+20] for recent com-
prehensive reviews on the topic.

Although discrete-variable QKD is more mature and achieves longer-distant key
distribution if photon detectors with low dark count rates are available, continuous-
variable QKD has its own distinct advantages for a short distance. It can be im-
plemented with components common to coherent optical communication technology
and is expected to be cost-effective. Excellent spectral filtering capability inherent in
homodyne/heterodyne measurements suppresses crosstalk in wavelength division mul-
tiplexing (WDM) channels. This allows multiplexing of hundreds of QKD channels into
a single optical fiber [ELP+20] as well as co-propagation with classical data channels
[HLW+15, KQA15, HHL+16, KCB+17, KBF+18, EHO+18, EHP+19, MVL+20], which
makes integration into an existing communication network easier.

One major obstacle in putting continuous-variable QKD to practical use is the gap
between the employed continuous variables and mandatory digital signal processing.
The continuous-variable QKD protocols using coherent states are divided into two
branches depending on whether the modulation of the encoder is also continuous or
discrete. The continuous modulation protocols usually adopts Gaussian modulation,
in which the sender chooses the complex amplitude of a coherent-state pulse according
to a Gaussian distribution [Ral99, Hil00, GG02, GVAW+03, WLB+04] (see Ref. [DL15,

26
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LPF+18] for a review). This allows powerful theoretical tools of the de Finetti theorem
[LKGC09, Lev17b], and complete security proofs for a finite-size key and against general
attacks have been given [LGPRC13, Lev15, Lev17a]. In order to implement Gaussian
protocols with a digital random-number generator and digital signal processing, it is
necessary to approximate the continuous distribution with a constellation composed of
a finite number of complex amplitudes. It turns out that an overwhelming number of
coherent states is needed to directly approximate the Gaussian ensemble in order for the
security condition to be satisfied [JKJDL12, Lup20]. If we try to mitigate the required
number, additional assumptions are needed, which makes it difficult to apply it in the
finite-size regime [KGW21]. The other branch gives priority to the simplicity of the
modulation and uses a very small (usually two to four) number of amplitudes [SRLL02,
HYA+03, LG09, LG11]. As for the security analysis, the status is more or less similar to
the Gaussian constellation case, and current security proofs are either in the asymptotic
regime against collective attacks [ZHRL09, BW18, LUL19, GGDL19, DBL21, LLX+21]
or in the finite-size regime but against more restrictive attacks [PP21, POP21]. Hence,
regardless of approaches, a complete security proof of continuous-variable QKD in the
finite-size regime against general attacks has been a milestone yet to be achieved.

Here, we achieve the above milestone by proposing a binary phase-modulated
continuous-variable QKD protocol with a composable security proof in the finite-size
regime against general attacks. The key ingredient is an estimation method of the
fidelity to the coherent states we develop here using the heterodyne measurement and
the classical post-processing, which is suited for the analysis in the finite-size regime.
Once the estimation method is developed, the security proof is accomplished by a
reduction to the entanglement distillation, which is the established technique in the
discrete-variable QKD.

The so-obtained security proof is further refined based on the reverse reconciliation,
aiming at improving the performance of the protocol at the cost of more complexity in
the security analysis. With a refined proof and no additional experimental requirement,
we obtain a significant improvement in the key gain rate against loss. In fact, it achieves
near-optimal scaling against transmission distance in the limit of infinite code length.
These results accelerate the real-world implementation of reliable and provably-secure
continuous-variable QKDs.

This chapter is organized as follows. In Section 4.2, the notations and preliminaries
used in this chapter are summarized. In Section 4.3, the definition of the composable
security of the QKD is stated, and an approach for the security proof is reviewed. Sec-
tions 4.4 and 4.5 are the results of this thesis. In Section 4.4, the composable security
for a binary modulation continuous-variable QKD protocol is proved against general
attacks in the finite-size regime. Our security proof is adapted to digital information
processing and thus allows the use of the binned homodyne and heterodyne measure-
ments (i.e., measurements with finite resolutions). The security proof is further refined
in Section 4.5 based on the reverse reconciliation, and, as a result, the asymptotic key
rate of the protocol achieves almost optimal scaling against transmission distance for
the pure-loss channel. (Section 4.4 is based on the publication [MMSK21].)
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4.2 Notations and preliminaries
In what follows, the base of the logarithm is taken to be 2.

4.2.1 Finite field F2

Classical information processing is done on binary numbers. Binary numbers 0, 1
forms a finite field F2 with the addition ⊕ and the multiplication · that are defined as
follows:

0⊕ 0 = 1⊕ 1 = 0, 0⊕ 1 = 1⊕ 0 = 1, (4.1)
0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1. (4.2)

In what follows, arithmetics of binary numbers (i.e., bits) follow the above.
An N -bit row vector u is an element of FN2 . The inner product uv> of two N -bit

row vectors u,v ∈ FN2 is defined as

uv> =
N⊕
i=1

ui · vi. (4.3)

For a N ×N binary matrix C, uC is also an N -bit row vector. The Hamming weight
wt(u) of u ∈ FN2 is defined as

wt(u) =
∣∣∣{i ∈ {1, . . . , N} : ui = 1}

∣∣∣. (4.4)

4.2.2 Classical linear information processing as a quantum op-
eration

Let u be an N -bit row vector and C be a N ×N non-singular binary matrix. Let
|u〉 := |u1〉 ⊗ · · · ⊗ |uN〉 be the pure quantum state on the N qubit system, where
each qubit is in one of the Z-basis states {|0〉 , |1〉}. If |u〉 is measured on the Z basis,
the binary string u is obtained with unit probability. The unitary operation that
corresponds to the action of C on the Z basis of |u〉 is defined as

U(C) =
∑

z∈{0,1}N
|zC〉〈z| =

∑
x∈{0,1}N

|x(C>)−1
X〉〈xX | . (4.5)

Then, if U(C) |u〉 is measured on the Z basis, uC is obtained with unit probability.
One can derive the second equality of Eq. (4.5) by the following Fourier transform
between the Z- and X-basis:

|z〉 = 1√
2N

∑
x∈{0,1}N

(−1)zx> |xX〉 . (4.6)

An example of U(C) is the Controlled-NOT (CNOT) operation with C being

C =
(

1 1
0 1

)
= C−1. (4.7)
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Let |u〉 = |u1〉 |u2〉 and |vX〉 = |v1X〉 |v2X〉 be pure quantum states with the binary
strings u and v encoded on the Z and X basis, respectively. Then, the above CNOT
gate acts as

CNOT |u〉 = |u1〉 |u1 ⊕ u2〉 , (4.8)
where the first qubit is the control qubit and the second qubit is the target qubit.
Using Eq. (4.5), we also have

CNOT |vX〉 = |(v1 ⊕ v2)X〉 |v2X〉 . (4.9)

Let v be another N -bit row vector. Then, u ⊕ v is also a N -bit row vector. The
unitary that corresponds to the addition of v on the Z basis is given by

U⊕(v) =
∑

z∈{0,1}N
|z ⊕ v〉〈z| , (4.10)

If U⊕(v) |u〉 is measured on the Z basis, u⊕ v is obtained with unit probability. One
can also check from (4.6) that this unitary acts as an identity on the X basis (up to the
irrelevant global phase). In the same way, U⊕X (v′) is the unitary that corresponds to the
addition of v′ on the X basis. The simple examples of U⊕(v) and U⊕X (v′) when N = 1
are the Pauli-X σX and the Pauli-Z σZ operators, which can be written respectively
as

σX = |0〉〈1|+ |1〉〈0| , σZ = |0X〉〈1X |+ |1X〉〈0X | . (4.11)
To sum up, one can rewrite classical linear information processing such as multi-

plying C and adding v on the binary sequence u as the unitary actions such as acting
U(C) and U⊕(v) on the quantum state |u〉 (followed by the Z-basis measurement).

4.2.3 Definitions and properties of the entropic quantities
The definitions and properties of the entropic quantities used in this chapter are

listed. EP [X̌] denotes the expectation value of X̌, where X̌ : Ω → R denotes the
random variable for the probability space (Ω,Σ, P ). Throughout the chapter, random
variables are denoted with the symbol .̌ In this section, only the discrete random
variable is treated, and thus PX denotes the probability mass function of X̌ and satisfies
PX(x) = P (X̌ = x) = P (X̌−1(x)).

Definition 4.2.1 (Entropy function). Let X̌ be a random variable with possible values
in X := {x1, . . . , xn}, and PX be the probability mass function of X̌. Then, the entropy
function H(X̌)PX of PX is defined as

H(X̌)PX := EPX [− logPX ] =
n∑
i=1
−PX(xi) logPX(xi). (4.12)

The entropy function is non-negative. The entropy function is concave; i.e., for prob-
ability mass functions P1, P2 of X̌ and a number p ∈ [0, 1], the following inequality
holds:

H(X̌)pP1+(1−p)P2 ≥ pH(X̌)P1 + (1− p)H(X̌)P2 . (4.13)
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Definition 4.2.2 (Binary entropy function). The binary entropy function is defined
as

h(p) := −p log p− (1− p) log(1− p). (4.14)

The binary entropy function h(p) is a special case of the entropy function; i.e., for a
binary random variable X̌ (X = {0, 1}) with PX(0) = p, we have H(X̌)PX = h(p).
It can be shown that 0 ≤ h(p) ≤ 1. The following lemma with respect to the binary
entropy function is proved here for later use.

Lemma 4.2.3 (Upper-bound on the number of possible patterns). Let e ∈ {0, 1}n be
the n-bit sequence and wt(e) be the Hamming weight of e. For 0 ≤ m ≤ n, let Tm
be the set of n-bit sequences defined as Tm := {e ∈ {0, 1}n : wt(e) ≤ m}. Then, the
following inequality holds:

|Tm| ≤ 2nh(p), p := min {m/n, 1/2} , (4.15)

where |Tm| denotes the cardinality of the set Tm.

Proof. It is trivial when p = 1/2 (i.e., m/n ≥ 1/2). Therefore, we prove the case p =
m/n < 1/2. Let Pr(e) be defined as Pr(e) := pwt(e)(1 − p)n−wt(e). Since, for p < 1/2,
Pr(e) monotonically decreases with respect to wt(e), Pr(e) ≥ pm(1−p)n−m = 2−nh(m/n)

holds. From this, 1 ≥ ∑e∈Tm Pr(e) ≥ |Tm|2−nh(m/n) follows, which proves the statement
of the proposition.

Definition 4.2.4 (Kullback-Leibler divergence (relative entropy function)). Let X̌ be
a random variable that takes value in the set X := {x1, . . . , xn}. Let PX and QX be
probability mass functions of X̌. Then the Kullback-Leibler divergence D(PX‖QX) is
defined as

D(PX‖QX) :=
n∑
i=1

PX(xi) log PX(xi)
QX(xi)

= −
n∑
i=1

PX(xi) log QX(xi)
PX(xi)

. (4.16)

Lots of important properties and inequalities for entropic functions can be derived from
the properties of the Kullback-Leibler divergence. Examples of such properties are:

• (Asymmetry)D(PX‖QX) is in general asymmetric; i.e.D(PX‖QX) = D(QX‖PX)
does not necessarily hold. This is obvious from the definition.

• (Non-negativity) D(PX‖QX) satisfies D(PX‖QX) ≥ 0. This can be proved by
applying Jensen’s inequality to the logarithmic function:

D(PX‖QX) = −
n∑
i=1

PX(xi) log QX(xi)
PX(xi)

≥ − log
(

n∑
i=1

PX(xi)
QX(xi)
PX(xi)

)
= 0.

(4.17)

• (Joint convexity) For probability mass functions P1, P2, Q1, Q2 and a number
p ∈ [0, 1], the Kullback-Leibler divergence satisfies the following inequality:

D (pP1 + (1− p)P2‖pQ1 + (1− p)Q2) ≤ pD(P1‖Q1) + (1− p)D(P2‖Q2). (4.18)

The proof of this property is given in e.g. [CT12].
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• (Data processing) Let X̌ and Y̌ be random variables that take values in X and Y ,
respectively, and let (Λ(y | x))x∈X ,y∈Y be the transition matrix for the stochastic
process X̌ → Y̌ , that is, each matrix element Λ(y | x) is non-negative and∑
y∈Y Λ(y | x) = 1. Let PX , QX be probability mass functions of X̌. Then the

following inequality holds (data processing inequality):
D(PX‖QX) ≥ D(PY ‖QY ), (4.19)

where PY (y) := ∑
x∈X Λ(y | x)PX(x), QY (y) := ∑

x∈X Λ(y | x)QX(x). The
proof is given in e.g. [CT12]. The data processing inequality is a very important
property in information theory.

Now we move on to the quantum entropic quantities, which are not directly used in
this chapter but nevertheless important in the theory of security proof of quantum key
distribution. Here, we assume that the quantum system we treat is finite-dimensional.
First, we define a generalization of the fidelity to subnormalized states.
Definition 4.2.5 (Generalized fidelity). For subnormalized states ρ, σ (i.e., ρ, σ ≥ 0
and Tr(ρ),Tr(ρ) ≤ 1), the generalized fidelity F̃ (ρ, σ) is defined as

F̃ (ρ, σ) :=
(
‖√ρ
√
σ‖1 +

√
(1− Tr(ρ))(1− Tr(σ))

)2
. (4.20)

By definition, the generalized fidelity is reduced to the usual fidelity (Def. 2.2.6) when
the states are normalized.
Definition 4.2.6 (Conditional min- and max-entropies [RK05, Ren08, KRS09, TCR09,
Tom12]). Let ρAB be a subnormalized state on HA⊗HB (i.e., Tr[ρAB] ≤ 1). Then, the
min- and max-entropies of A conditioned on B of ρAB are given respectively by

Hmin(A|B)ρ := max
σ∈D(HB)

sup{λ ∈ R : ρAB ≤ 2−λIA ⊗ σB} (4.21)

= − log min
σ≥0
{Tr(σ) : ρAB ≤ IA ⊗ σB}, (4.22)

Hmax(A|B)ρ := max
σ∈D(HB)

log
(
dA F̃ (ρAB, d−1

A IA ⊗ σB)
)
, (4.23)

where dA denotes the dimension of HA.
In order to introduce the smoothed version of the conditional min- and max- entropies,
we introduce another distance measure for the subnormalized states.
Definition 4.2.7 (Purified distance [Tom12]). For subnormalized states ρ, σ, the pu-
rified distance P (ρ, σ) is defined as

P (ρ, σ) :=
√

1− F̃ (ρ, σ). (4.24)
Definition 4.2.8 (Smooth conditional min- and max-entropies [Tom12]). For a sub-
normalized state ρAB and ε ≥ 0, the ε-smooth min- and max-entropies of A conditioned
on B of ρAB are given respectively by

Hε
min(A|B)ρ := max

ρ̃∈Bε(ρAB)
Hmin(A|B)ρ̃, (4.25)

Hε
max(A|B)ρ := max

ρ̃∈Bε(ρAB)
Hmax(A|B)ρ̃, (4.26)

where the ε-ball Bε(ρAB) is defined as
Bε(ρAB) := {τ ∈ T(HAB) : τ ≥ 0,Tr(τ) ≤ 1, P (τ, ρ) ≤ ε}. (4.27)
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4.2.4 Concentration inequalities
In this section, concentration inequalities used in this thesis are listed. The prob-

ability space (Ω,Σ, P ) and the associated random variable X̌ we treat here can be
continuous. The first one is the so-called Chernoff bound, which is a tail bound for the
binomial distribution.
Theorem 4.2.9 (Tail bound for the binomial distribution [Che52, Hoe63, Hoe94]).
Let X̌1, . . . , X̌n be independent and identically distributed binary random variables with
P (X̌i = 1) = p, for i = 1, . . . , n. Then, for any δ ∈ [0, 1 − p], the following inequality
holds:

P

(
1
n

n∑
i=1

X̌i > p+ δ

)
< 2−nD(p+δ‖p), (4.28)

where D(p+ δ‖p) denotes

D(p+ δ‖p) := (p+ δ) log p+ δ

p
+ (1− p− δ) log 1− p− δ

1− p . (4.29)

The above is the bound of the probability for the upper tail. The bound for the lower
tail can be obtained similarly by exchanging the values of the random variables as well
as changing p to 1− p. The following corollary of the above theorem is suitable for our
applications.
Corollary 4.2.10 (Alternative form of the tail bound). Let X̌1, . . . , X̌n be independent
and identically distributed binary random variables with P (X̌i = 1) = p, for i =
1, . . . , n. Given ε ∈ (0, 1), we have

P

(
1
n

n∑
i=1

X̌i > p+ δ(ε;n)
)
< ε, (4.30)

where δ(ε;n) is defined to satisfyD(p+ δ(ε;n)‖p) = − 1
n

log ε (ε > pn)
δ(ε;n) = 1− p (ε ≤ pn)

. (4.31)

Proof. Since D(p+ δ‖p) increases monotonically from 0 to − log p when δ varies from
0 to 1, Theorem 4.2.9 can be applied for ε > pn by the suitable choice of δ(ε;n). On
the other hand, P ( 1

n

∑n
i=1 X̌i > 1) = 0(< ε) always holds. These prove the statement

of the above Corollary.

The Chernoff-type bound also holds for the hypergeometric distribution. The fol-
lowing is the statement.
Theorem 4.2.11 (Tail bound for the hypergeometric distribution [Chv79]). Let
X1, . . . , XN be a binary sequence, and M be the number of elements with Xi = 1,
i.e, M := ∑N

i=1Xi. Let Y̌1, . . . , Y̌n be randomly sampled from X1, . . . , XN without re-
placement. Let m̌ := ∑n

i=1 Y̌i be the number of ones in Y̌1, . . . , Y̌n. Then, for any
δ ∈ [0,M/N ], the following inequality holds:

P

(
m̌

n
≤ M

N
− δ

)
≤ 2−nD(MN −δ‖MN ), (4.32)

where D(·‖·) is defined in Eq. (4.29).
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Figure 4.1: The definition of the function fN,n,ε(M̃) or equivalently M̂N,n,ε(m) in Corol-
lary 4.2.12. The real number M∗ is the intercept of the function M̂N,n,ε(m), i.e.,
M∗ = M̂N,n,ε(0). Given N , n, and ε, the failure event for eachM , i.e., M̂N,n,ε(m̌) ≤M ,
occurs when m̌ ≤ fN,n,ε(M). In order to bound the probability of such events, we can
use the tail bound for the hypergeometric distribution in Theorem 4.2.11.

The above is the bound of the probability for the lower tail. The bound for the
upper tail can be obtained similarly. The following corollary is useful for the bit error
sampling.

Corollary 4.2.12 (Estimation by the simple random sampling without replacement).
Let X1, . . . , XN be a binary sequence with M := ∑N

i=1Xi. Let Y̌1, . . . , Y̌n be randomly
sampled from X1, . . . , XN without replacement, and define m̌ := ∑n

i=1 Y̌i. Then, for
any ε ∈ (0, 1), the following inequality holds:

P
(
dM̂N,n,ε(m̌)e ≤M

)
≤ ε, (4.33)

where the function M̂N,n,ε(m) is defined to satisfy

m

n
≤ M̂N,n,ε(m)

N
and D

(
m/n

∥∥∥M̂N,n,ε(m)/N
)

= − 1
n

log ε. (4.34)

Proof. Let f(M) be a function of M satisfying 0 ≤ f(M)/n ≤ M/N . Then, from
Theorem 4.2.11, we have

P

(
m̌

n
≤ M

N
−
(
M

N
− f(M)

n

))
≤ 2−nD( f(M)

n ‖MN ). (4.35)
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We set the function f(M) to the restriction of the function fN,n,ε(M̃) of the real number
M̃ that satisfies

D
(
fN,n,ε(M̃)/n‖M̃/N

)
= − 1

n
log ε, (4.36)

for M̃ ≥M∗(= (1− n
√
ε)N) (see Figure 4.1). (The case M̃ = N for fN,n,ε(M̃) is singular,

so we take the limit of the case M̃ = N − δ, δ → 0, which leads to fN,n,ε(N − δ)→ n.)
The function fN,n,ε(M̃) is monotonically increasing, and its range lies in [0, N ]. Thus,
from Eq. (4.35), we have

P
(
f−1
N,n,ε(m̌) ≤M

)
≤ ε (4.37)

for any M . Combining these, defining M̂N,n,ε(m) := f−1
N,n,ε(m) leads to Eq. (4.33)

while M̂N,n,ε(m) satisfies Eq. (4.34) by construction. Note that, as has already been
explained, M̂N,n,ε(n) := limδ→0 M̂N,n,ε(n− δ) = N .

The Chernoff-type bound is tight in many cases, but its applicability is restricted.
The following inequality is looser than the Chernoff-type bound but can be applied to
more general distributions.
Theorem 4.2.13 (Hoeffding’s inequality [Hoe63, Hoe94]). Let X̌1, . . . , X̌n be inde-
pendent random variables with each X̌i bounded by the intervals [ai, bi] almost surely.
Then, for t ≥ 0, we have

P

(
n∑
i=1

(X̌i − E[X̌i]) ≥ t

)
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
. (4.38)

Note that, for two random variables X̌1 and X̌2, the condition that X̌1 ≥ X̌2 holds
almost surely means that P (X̌1 ≥ X̌2) = 1. Equivalently, X̌1 ≥ X̌2 holds almost
surely if and only if

∫
A(X̌1 − X̌2)dP ≥ 0 for any A ∈ Σ. Lots of refinement of

the Hoeffding’s inequality (e.g., by using the information of higher moments of the
probability distributions) have been studied [Hoe63, Hoe94].

In the following, we explain Azuma’s inequality, which has a wide range of appli-
cations since, contrary to the previous bounds, the random variable can be neither
independent nor identically distributed. First, we introduce the following notion.
Definition 4.2.14 (F -measurable). Let (Ω,Σ, P ) be a probability space. Let F be a
σ-subalgebra of Σ. The random variable X̌ is called F -measurable if, for any Borel set
A ∈ B(R) (where B(R) denotes the Borel σ-algebra of R), it satisfies

X̌−1(A) := {y ∈ Ω | X̌(y) ∈ A} ∈ F . (4.39)

In the case of the discrete probability space, the following condition is equivalent to
the above. For x ∈ Ω, let F(x) be the smallest set in F containing x i.e.,

F(x) :=
⋂
S∈F
x∈S

S. (4.40)

Then, the random variable X̌ is F -measurable if X̌(x) = X̌(y) for any x ∈ Ω and
y ∈ F(x). Note that, if X̌ is G-measurable for G ⊂ F , then it is trivially F -measurable.
Note also that a constant random variable is measurable with respect to the trivial σ-
algebra {∅,Ω}.

Next we introduce the conditional expectation.
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Definition 4.2.15 (Conditional expectation). Let (Ω,Σ, P ) and F be the same as
above. Let X̌ : Ω → R be a random variable with a finite expectation. Then, the
conditional expectation E[X̌ | F ] : Ω → R is defined as an F -measurable function
satisfying ∫

F
E[X̌ | F ]dP =

∫
F
X̌ dP, ∀F ∈ F . (4.41)

The definition of the conditional expectation is more tractable in the case of the discrete
probability space; E[X̌ | F ] : Ω→ R is given by

E[X̌ | F ](x) = 1∑
y∈F(x) P (y)

∑
y∈F(x)

X̌(y)P (y). (4.42)

This can be regarded as a derivative form of Eq. (4.41). In fact, the conditional
expectation can be given by the Radon-Nikodym derivative of probability measures.
The conditional expectation has several important properties. Here we list some of
them that are relevant to this thesis.

• (Linearity) For two random variables X̌1, X̌2, a σ-algebra F , and a ∈ R, the
following holds:

E[X̌1 + aX̌2 | F ] = E[X̌1 | F ] + aE[X̌2 | F ]. (4.43)

• (Monotonicity) For X̌1 ≤ X̌2 (almost surely), we have

E[X̌1 | F ] ≤ E[X̌2 | F ]. (4.44)

• (Stability) For an F -measurable random variable X̌, we have

E[X̌ | F ] = X̌. (4.45)

• (Tower property) For σ-algebras G ⊂ F , the following holds:

E
[
E[X̌ | F ]

∣∣∣ G] = E[X̌ | G]. (4.46)

Note that E
[
E[X̌ | G]

∣∣∣ F] = E[X̌ | G] also holds from the stability.

Now we introduce the following.

Definition 4.2.16 (Filtration). A sequence of σ-algebras F0,F1, . . . ,Fn is called the
filtration if

{∅,Ω} = F0 ⊆ F1 ⊆ · · · ⊆ Fn. (4.47)

We finally introduce the following notion.

Definition 4.2.17 (Martingale). Let {∅,Ω} = F0 ⊆ F1 ⊆ · · · ⊆ Fn be a filtration.
The sequence of random variables (X̌1, . . . , X̌n) is called a martingale with respect to
this filtration if X̌i is Fi-measurable, and

E[X̌i | Fi−1] = X̌i−1 (4.48)

holds (almost surely) for 1 ≤ i ≤ n. Here, X̌0 is a constant function satisfying X̌0 =
E[X̌1 | F0] = E[X̌1].
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Eq. (4.48) is an equality as functions of Ω. An example of the Fi-measurable sequence
in the case of the discrete probability space is as follows. Let Y be a finite set. Let
Ω = Y×n be an n-ary Cartesian product and Fi = {X × Y×(n−i) | X ∈ P(Y×i)} be a
σ-subalgebra, where P(Y×i) is the power set of Y×i. Given the sequence of outcomes
(y1, . . . , yn) ∈ Ω, the random variable X̌i should depend only on (y1, . . . , yi) to be Fi-
measurable; that is, X̌i is fixed when given an element of Fi. On the other hand, X̌i is
in general still random when given an element of Fi−1. Note that, by definition, X̌i is
Fk-measurable for k ≥ i if it is Fi-measurable.

Now we can state Azuma’s inequality as follows.

Theorem 4.2.18 (Azuma’s inequality [Azu67, RS13, McD98]). Let (X̌1, . . . , X̌n) be
a martingale sequence with respect to the filtration {∅,Ω} = F0 ⊆ F1 ⊆ · · · ⊆ Fn.
Suppose there are predictable processes (a1, . . . , an) and (b1, . . . , bn) with respect to F0 ⊆
F1 ⊆ · · · ⊆ Fn (i.e., ai and bi are Fi−1-measurable for 1 ≤ i ≤ n), such that

ai ≤ X̌i − X̌i−1 ≤ bi (4.49)

holds (almost surely). Then, for t ≥ 0, we have

P (X̌n − X̌0 ≥ t) ≤ exp
(
− 2t2∑n

i=1(bi − ai)2

)
. (4.50)

The following corollary combines Azuma’s inequality with the technique called the
Doob decomposition.

Corollary 4.2.19 (Azuma’s inequality combined with the Doob decomposition). Let
{∅,Ω} = F0 ⊆ F1 ⊆ · · · ⊆ Fn be a filtration. Let (a1, . . . , an) and (b1, . . . , bn) be
predictable processes with respect to this filtration. Let (X̌1, . . . , X̌n) be the sequence of
random variables such that for 1 ≤ i ≤ n, X̌i is Fi-measurable and satisfies

ai ≤ X̌i ≤ bi, (almost surely). (4.51)

Then, for t ≥ 0, we have

P

(
n∑
i=1

(X̌i − E[X̌i | Fi−1]) ≥ t

)
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
. (4.52)

Proof. For 1 ≤ i ≤ n, let Y̌i be defined as

Y̌i :=
i∑

k=1
(X̌k − E[X̌k | Fk−1]). (4.53)

Then, the sequence (Y̌1, . . . , Y̌n) is a martingale with respect to the filtration F0 ⊆
F1 ⊆ · · · ⊆ Fn, since Y̌i is Fi-measurable and satisfies

E[Y̌i | Fi−1] =
i∑

k=1

(
E[X̌k | Fi−1]− E

[
E[X̌k | Fk−1]

∣∣∣ Fi−1
])

(4.54)

=
i−1∑
k=1

(X̌k − E[X̌k | Fk−1]) (4.55)

= Y̌i−1. (4.56)
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The second equality follows from the fact that X̌k is Fi−1 measurable for 1 ≤ k ≤
i − 1 and the stability Eq. (4.45) of the conditional expectation. Note that Y0 := 0.
Furthermore, (Y̌1, . . . , Y̌n) satisfies

ai − E[X̌i | Fi−1] ≤ Y̌i − Y̌i−1 ≤ bi − E[X̌i | Fi−1], (4.57)

(almost surely) for 1 ≤ i ≤ n. Since ai − E[X̌i | Fi−1] and bi − E[X̌i | Fi−1] are Fi−1-
measurable, we can apply Theorem 4.2.18 to the sequence (Y̌1, . . . , Y̌n) and prove the
statement.

At the cost of versatility, Azuma’s inequality is not tight for most practical ap-
plications. The recent refinement of Azuma’s inequality that is suitable for QKD
applications is given in Ref. [Kat20].



4.3. The basics of the QKD 38

4.3 The basics of the QKD

4.3.1 The goal of the QKD
The goal of the QKD is to distribute the secret key between the distant two parties

connected by a quantum channel and an authenticated public classical channel while
ensuring that the key is secure against any eavesdropping attacks allowed by the law
of quantum mechanics. The “secret key” here means a shared sequence of random
numbers, and the “security” needs to meet the following two conditions; (1) two parties
share the coincident keys (correctness condition), and (2) the key is secret against all
except two parties (secrecy condition). With these two conditions, the two parties
can communicate in the information-theoretically secure way, using the one-time pad
[Sha49].

4.3.2 The general procedures of the QKD
In what follows, “Alice” and “Bob” denote the two parties that carry out a quantum

key distribution protocol, and “Eve” denotes the eavesdropper, following the convention
of the information theory. The common procedures of QKD protocols are given as
follows.

Setups: Alice and Bob share the quantum channel in which they transmit quantum
states as well as the authenticated public classical channel for the announcement. Eve
can perform arbitrary attacks allowed by the law of quantum mechanics in the quantum
channel and listen to all the announcements in the public channel.

Protocol:

1. Quantum communication:
Alice and Bob encode classical information onto quantum states, send them
through the quantum channel, and perform measurement on the quantum states
they receive to read out the encoded information. Eve may perform arbitrary
attacks in the quantum channel.

2. Sifting:
Alice and Bob generate the binary strings zA and zB, which are selected or
“sifted” from measurement outcomes according to the conditions defined in each
protocol. zA and zB are called the sifted keys of Alice and Bob, respectively.

3. Information reconciliation:
The obtained sifted keys zA and zB do not coincide in general due to noises or
Eve’s attacks in the quantum channel. Therefore, they have to correct the errors
in their sifted keys. One way is that Alice sends the syndrome bits of her sifted
key encrypted by a pre-shared secret key, and Bob corrects the errors on his sifted
key zB according to it. As a result, Bob obtains the reconciled key zrec

B . This
is called the “direct reconciliation”. Alternatively, we can exchange the role of
Alice and Bob in the above procedure. This alternative is called the “reverse
reconciliation”.
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4. Privacy amplification:
Eve may have part of the information of the (reconciled) keys zA and zrec

B . Alice
and Bob estimate the amount of information leakage. Depending on the esti-
mated leakage, they generate shorter keys zfin

A and zfin
B by acting a suitable linear

hash function on zA and zrec
B (in the case of the direct reconciliation). These are

the final keys.

Note that zA, zB, zrec
B , zfin

A , and zfin
B are actually random variables and thus denoted

with the symbol ˇ in the following. Various types of QKD protocols mainly differ in
the first line, i.e., the method of quantum communication. The sifting, the information
reconciliation, and the privacy amplification after the quantum communication are
referred to as (classical) post-processing. In most cases, the information reconciliation
procedure does not differ so much among different QKD protocols. On the other
hand, the privacy amplification procedure, or more precisely, the necessary amount of
shortening the sifted key depends on which protocol to use. Thus, the development of
the new QKD protocols requires both the procedure of quantum communication and
the evaluation of the amount of privacy amplification.

4.3.3 The security condition of the key in the QKD
In this section, the definition of security in the QKD is given. Let HABE := HA ⊗

HB ⊗HE be the Hilbert space of the joint system of Alice’s and Bob’s final keys and
Eve’s quantum system. Let Pr(·) be the probability distribution for all the random
variables defined in the protocol and Ňfin be the length of the final key. Let ρfin

ABE|N ∈
D(HABE) be the density operator of the state of Alice’s and Bob’s N -bit final keys as
well as Eve’s quantum state after all the attacks, given Ňfin = N . When Alice and Bob
abort the protocol, the final key length Ňfin is set to be zero. Then the definition of
the ε-security is given by∑

N≥1
Pr(Ňfin = N) d(ρfin

ABE|N , ρ
ideal
ABE|N) ≤ ε, (4.58)

where d(·, ·) denotes the trace distance in Definition 2.2.3, and

ρideal
ABE|N :=

∑
z∈{0,1}N

1
2N |zz〉〈zz|AB ⊗ TrAB

[
ρfin
ABE|N

]
. (4.59)

The parameter ε is an arbitrary positive constant and is referred to as the security
parameter. This condition means that the final keys obtained in the protocol are,
measured by the trace distance, ε-close to the ideal secret keys in which Alice’s and
Bob’s keys perfectly coincide and are completely random for Eve. The trace distance
is used in the security condition to ensure the monotonicity and the composability
[MQR09]. The monotonicity is necessary because the distinguishability between the
final state of the protocol and the ideal state should not increase under quantum
channels, i.e., CPTP maps. Since the trace distance is a CPTP monotone as shown in
Proposition 2.2.5, the condition is satisfied. The composability is the requirement that,
if Alice and Bob use an ε-secure key to perform an ε′-secure cryptographic protocol, the
composite protocol should be at least (ε + ε′)-secure. The composability is necessary
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because the security of a complex composite cryptographic protocol should be ensured
by the security of its component protocols. In QKD, the composability follows from
the triangle inequality (Corollary 2.2.4) of the trace distance.

4.3.4 An approach to prove the security condition
There are several approaches to prove the security of the QKD [LC99, SP00a,

Ren08, HHHO09, Koa09, Tsu20b, Tsu20a]. One of the approaches for the security
proof is to use the leftover hash lemma [Ren08, Tsu20b], which utilizes the information-
theoretic property of the universal2 hash function [CW79, TH13]. In this approach,
we aim to evaluate the ε-smooth conditional min-entropy in Definition 4.2.8 of Alice’s
or Bob’s sifted key conditioned on the adversary Eve. An advantage of this approach
is the applicability to protocols in which the sifted keys are not binary numbers; the
Gaussian-modulation continuous-variable QKD is an example.

Another approach, which is the main topic in this thesis, proves the security using
complementarity between the bit (Z) and phase (X) bases [Koa09]. By explicitly
constructing a virtual procedure for correcting the phase errors of Alice’s or Bob’s sifted
key that should be compatible with the actual protocol, we can ensure that the obtained
final key is secret to Eve. Furthermore, if we find an optimal phase-error-correction
procedure, the resulting key gain is optimal for the protocol [Tsu20b, Tsu20a]. In this
section, we review the approach in Refs. [Koa09, MSK19] with a slight generalization.
Without loss of generality, we here treat the direct reconciliation scenario. The case of
reverse reconciliation can be treated similarly.

As shown in [Koa09], the condition (4.58) can be divided into the following two
conditions by applying triangle inequality to the trace distance. The first condition,
the εcor-correctness condition, is the following:

Pr(žfin
A 6= žfin

B ) =
∑
N≥1

Pr(Ňfin = N)
∑

z,z′∈{0,1}N ,z 6=z′
〈zz′|AB ρ

fin
AB|N |zz′〉AB ≤ εcor, (4.60)

where ρfin
AB|N := TrE[ρfin

ABE|N ]. Eq. (4.60) means that the probability of disagreement of
Alice’s and Bob’s final keys is required to be no larger than εcor. The second condition,
the εsec-secrecy condition, is defined as follows:∑

N≥1
Pr(Ňfin = N) d(ρfin

AE|N , ρ
ideal
AE|N) ≤ εsec, (4.61)

where ρfin
AE|N := TrB[ρfin

ABE|N ] and ρideal
AE|N := TrB[ρideal

ABE|N ]. With these two conditions,
the protocol is ensured to be (εcor + εsec)-secure.

The εcor-correctness condition is ensured if the failure probability of the information
reconciliation is no larger than εcor; i.e., the reconciled keys žA and žrec

B satisfy the
following:

Pr(Ňfin ≥ 1, žA 6= žrec
B )

=
∑
N ′≥1

∑
z,z′∈{0,1}N′ ,z 6=z′

Pr(Ňfin ≥ 1, Ňsift = N ′, žA = z, žrec
B = z′) (4.62)

≤ εcor, (4.63)
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where Ňsift is the length of the sifted key or equivalently the length of the reconciled
key. In order for this condition to be satisfied, the protocol has to be aborted with a
high probability when the reconciliation fails.

In order to prove the εsec-secrecy condition along with [Koa09], a compatible virtual
protocol is constructed as follows. First, Ňsift (virtual) register qubits are introduced
for Alice, and Alice’s procedure of determining each bit of her sifted key in the ac-
tual protocol is replaced with the Z-basis measurement. The measurement is then
postponed by replacing the privacy amplification procedure with the corresponding
quantum operations as shown in Section 4.2.2. Thus Alice’s Ňfin-bit final key is gen-
erated by the Z-basis measurements on Ňfin qubits among Alice’s register qubits in
the virtual protocol. In constructing such a virtual protocol, Alice (and Bob) can do
arbitrary quantum operations in the virtual protocol before the Z-basis measurements
as long as the following condition is satisfied; for any attack by Eve in the actual pro-
tocol, there exists a corresponding attack in the virtual protocol such that the state
on Alice’s final key obtained by the Z-basis measurements and Eve’s system is the
same as that of the actual protocol; i.e., the probability Pr(Ňfin = N) and ρfin

AE|N are
the same as the actual protocol. The condition for ρfin

AE|N can be rephrased as follows.
Given Ňfin = N , let ρvirt

AE|N be a quantum state on Alice’s N register qubits and Eve’s
system just before Alice’s Z-basis measurement in the virtual protocol. Let Emeas

A|N be a
CPTP map of Alice’s Z-basis measurement in the virtual protocol given by

Emeas
A|N (ρ) =

∑
z∈{0,1}N

〈z|ρ|z〉 |z〉〈z| . (4.64)

Then, they must satisfy Emeas
A|N ⊗ IdE(ρvirt

AE|N) = ρfin
AE|N for Eve’s corresponding attack

in the virtual protocol. With Emeas
A|N and ρvirt

AE|N , the secrecy condition (4.61) can be
rewritten as follows:∑

N≥1
Pr(Ňfin = N) d

(
Emeas
A|N ⊗ IdE(ρvirt

AE|N), Emeas
A|N

(
|0X〉〈0X |⊗NA

)
⊗ ρfin

E|N

)
≤ εsec, (4.65)

where ρfin
E|N := TrA

[
ρfin
AE|N

]
.

Now we find a sufficient condition in order for Eq. (4.65) to hold. The left-hand
side of Eq. (4.65) is bounded from above as follows:

(L.H.S. of Eq. (4.65)) (4.66)
≤
∑
N≥1

Pr(Ňfin = N) d
(
ρvirt
AE|N , |0X〉〈0X |

⊗N
A ⊗ ρfin

E|N

)
(4.67)

≤
∑
N≥1

Pr(Ňfin = N)
√

1− F
(
ρvirt
AE|N , |0X〉〈0X |

⊗N
A ⊗ ρfin

E|N

)
(4.68)

≤ Pr(Ňfin = 0)
√

1− 12 +
∑
N≥1

Pr(Ňfin = N)
√

1−
[
F
(
ρvirt
A|N , |0X〉〈0X |

⊗N
A

)]2
(4.69)

≤
√√√√1−

[
Pr(Ňfin = 0) +

∑
N≥1

Pr(Ňfin = N)F
(
ρvirt
A|N , |0X〉〈0X |

⊗N
A

)]2
(4.70)

=
√√√√1−

[
1−

∑
N≥1

Pr(Ňfin = N)
(
1− 〈0X |⊗NA ρvirt

A|N |0X〉
⊗N
A

)]2
(4.71)



4.3. The basics of the QKD 42

where ρvirt
A|N := TrE

[
ρvirt
AE|N

]
. Here, the first inequality follows from Proposition 2.2.5,

the second inequality follows from Proposition 2.2.12, the third inequality follows from
Lemma 2.2.11, and the last inequality follows from the concavity of the function f(x) =√

1− x2. If ∑
N≥1

Pr(Ňfin = N)
(
1− 〈0X |⊗NA ρvirt

A|N |0X〉
⊗N
A

)
≤ η′ (4.72)

is satisfied for a (small) parameter η′, then the left-hand side of Eq. (4.61) (or equiva-
lently Eq. (4.65)) is bounded from above by

∑
N≥1

Pr(Ňfin = N) d
(
ρfin
AE|N , ρ

ideal
AE|N

)
≤
√

1− (1− η′)2 ≤
√

2η′, (4.73)

and thus the protocol is εsec =
√

2η′-secret. Furthermore, the inequality (4.72) means
that, if Alice measured ρvirt

A|N on the X bases and obtained a (random) sequence x̌fin
A , it

satisfies
Pr(Ňfin ≥ 1, x̌fin

A 6= 0) ≤ η′. (4.74)
In other words, it suffices to show that Alice succeeded in correcting the “phase errors”
on her register qubits with high probability. With these arguments, the privacy am-
plification can be regarded as the virtual phase-error-correction procedure on Alice’s
register qubits.

To sum up, in order to ensure the (εsec + εcor)-security of the final key defined
in Eq. (4.58), the following two conditions have to be satisfied. The first is the εcor-
correctness condition (4.60); Alice’s sifted key žA and Bob’s reconciled key žrec

B after
the information reconciliation coincides with probability no smaller than 1− εcor, i.e.,

Pr(Ňfin ≥ 1, žA 6= žrec
B ) ≤ εcor (4.75)

The second is the εsec-secrecy condition (4.61). This condition can be replaced with
the condition (4.65) by constructing a compatible virtual protocol that satisfies the
followings. For any attack by Eve in the actual protocol, there exists a corresponding
attack by Eve in the virtual protocol and Alice’s quantum operations that result in the
state ρvirt

AE|N satisfying
Emeas
A|N ⊗ IdE

(
ρvirt
AE|N

)
= ρfin

AE|N (4.76)
and ∑

N≥1
Pr(Ňfin = N)

(
1− 〈0X |⊗NA ρvirt

A|N |0X〉
⊗N
A

)
≤ ε2

sec
2 (= η′) (4.77)

at the same time, where Emeas
A|N is defined in Eq. (4.64). Note that the second condi-

tion (4.77) is equivalent to Eq. (4.74).

4.3.5 The privacy amplification using dual universal2 hashing
In this section, the privacy amplification using dual universal2 hashing is reviewed

[TH13, MSK19]. Let N and N ′ be the length of the final key and the sifted key,
respectively. For the privacy amplification, multiplying the (randomly generated) N ′×
N matrix Ǧ on the sifted key žA to obtain the final key žfin

A = žAǦ in the actual
protocol is replaced with acting the unitary U(Č) of Eq. (4.5) on Alice’s register qubits
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followed by the Z-basis measurements Emeas
A|N on the first N qubits of the N ′-qubit

register. Here, N ′ ×N ′ full-rank matrix Č satisfies Ǧ = Č(IN O)>, where In denotes
the n× n identity matrix and O denotes a zero matrix with the appropriate size. Let
ρAE|N ′ be the state of Alice’s N ′-qubit register and Eve’s system just before the privacy
amplification in the virtual protocol. Then for N ≥ 1, we set

ρvirt
AE|N =

∑
y∈{0,1}N′−N

U⊕X (v(y))TrN ′\N
[
(IN ⊗ |yX〉〈yX |)U(Č)ρAE|N ′U(Č)†

]
U⊕X (v(y))†,

(4.78)
where U⊕X (v) is defined in Section 4.2.2, and all the unitaries act on Alice’s N ′-qubit
register while act as identity on Eve’s system. The state ρvirt

AE|N in Eq. (4.78) satisfies
the condition (4.76) since U⊕X (v) does not change the Z-basis values of Alice’s N ′-qubit
register, i.e.,

Emeas
A|N ⊗ IdE

(
ρvirt
AE|N

)
= Emeas

A|N ⊗ IdE
(
TrN ′\N

[
U(Č)ρAE|N ′U(Č)†

])
. (4.79)

The role of U⊕X (v) as well as the y dependency of v in Eq. (4.78) will be revealed in
the following. At this point, we recall the condition (4.77) or equivalently (4.74) for
the secrecy. Suppose we performed X-basis measurement on ρA|N ′ := TrE[ρAE|N ′ ] and
obtained a random sequence x̌A. Then from Eqs. (4.5) and (4.78), it is related to the
random sequence x̌fin

A in Eq. (4.74) with ρA|N ′ not measured on the X basis by

x̌fin
A = x̌AȞ

′ + v(x̌AȞ), (4.80)

where the matrices Ȟ ′ and Ȟ are defined as

Ȟ ′ := (Č>)−1(IN O)>, (4.81)
Ȟ := (Č>)−1(O IN ′−N)>. (4.82)

Then, the condition (4.74) can be reinterpreted as

Pr(Ňfin ≥ 1, x̌AȞ ′ 6= v(x̌AȞ)) ≤ η′. (4.83)

We set v as follows. Given the (N ′−N)-bit sequence x̌AȞ and other random variables ζ̌
that can be defined in the virtual protocol (but not necessarily be observed in the actual
protocol), we determine an estimate x∗A(N ′, ζ̌, x̌AȞ) of the sequence x̌A and set v =
x∗A(N ′, ζ̌, x̌AȞ)Ȟ ′. (Thus, v also depends on N ′ and ζ̌.) Then, the condition (4.83)
can be ensured if the following condition holds:

Pr(Ňfin ≥ 1, x̌A 6= x∗A(Ňsift, ζ̌, x̌AȞ)) ≤ η′. (4.84)

This condition is nothing but the identifiability of the random sequence x̌A, given the
(N ′ − N)-bit syndrome x̌AȞ with the hash function Ȟ and other random variables
ζ̌ that can be defined in the virtual protocol. As the next step, suppose that, given
Ňsift and ζ̌, we can find a set T (Ňsift, ζ̌) of candidates of the sequence x̌A so that x̌A
belongs to T (Ňsift, ζ̌) with a high probability, i.e.,

Pr(Ňsift ≥ 1, x̌A /∈ T (Ňsift, ζ̌)) ≤ η. (4.85)
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In general, the random variables ζ̌ consist of ones that can be observed in the actual
protocol denoted by α̌ and ones that cannot be in the actual protocol denoted by β̌.
Thus we write ζ̌ = (α̌, β̌). As will be shown later, the required amount of the privacy
amplification is determined by the cardinality |T (Ňsift, ζ̌)| of the set T (Ňsift, ζ̌). Since
we need to know the amount of the privacy amplification in the actual protocol, we
define an integer-valued function NPA(Ňsift, α̌) that depends on α̌ of ζ̌ and satisfies the
following:

Pr(log |T (Ňsift, ζ̌)| ≤ NPA(Ňsift, α̌) | Ňsift ≥ 1) = 1. (4.86)
Suppose further that for each final key length N and sifted key length N ′, the N ′ ×
N matrix Ȟ is randomly chosen from the universal2 hash function family; i.e., the
following holds [CW79, Ren08, TH13]:

∀x,x′ ∈ {0, 1}N ′ ,x 6= x′, Pr(xȞ = x′Ȟ) ≤ 2−(N ′−N). (4.87)

We then construct x∗A(Ňsift, ζ̌, x̌AȞ) as follows. Given the syndrome x̌AȞ, if there is
only one element in T (Ňsift, ζ̌) that is consistent with the syndrome x̌AȞ, then that
element is chosen as x∗A(Ňsift, ζ̌, x̌AȞ). Otherwise, an arbitrary sequence is chosen
as x∗A(Ňsift, ζ̌, x̌AȞ). With this construction and in the case Ňsift = N ′, Ňfin = N ,
ζ̌ = ζ ′ = (α′,β′), and x̌A = x ∈ T (N ′, ζ ′), the condition x∗A(N ′, ζ ′,xȞ) = x holds if
xȞ 6= yȞ holds for any y ∈ T (N ′, ζ ′)\{x}. Combining this with Eq. (4.86), we have,
for Pr(Ňsift = N ′, ζ̌ = ζ ′) > 0 and x ∈ T (N ′, ζ ′),

Pr(x 6= x∗A(N ′, ζ ′,xȞ)) ≤ 2NPA(N ′,α′)−(N ′−N). (4.88)

Then, unless the protocol is aborted before the privacy amplification step, we set

Ňfin = max{Ňsift −NPA(Ňsift, α̌)− s, 0}, (4.89)

which leads to

Pr(Ňfin = Ňsift −NPA(Ňsift, α̌)− s | Ňfin ≥ 1) = 1. (4.90)

Combining this with Eqs. (4.85) and (4.88), we have

Pr(Ňfin ≥ 1, x̌A 6= x∗A(Ňsift, ζ̌, x̌AȞ)) (4.91)
≤ Pr

(
Ňfin ≥ 1, x̌A /∈ T (Ňsift, ζ̌) ∪

[
x̌A ∈ T (Ňsift, ζ̌) ∩ x̌A 6= x∗A(Ňsift, ζ̌, x̌AȞ)

])
(4.92)

≤ η + 2−s. (4.93)

Setting η′ = η + 2−s leads to Eq. (4.84) and thus Eq. (4.74). Finally, it is known that
randomly choosing Ȟ from the universal2 hash function family amounts to randomly
choosing Ǧ from the dual universal2 hash function family [TH13]. (These two relate
through the matrix Č.) Therefore, we perform the dual universal2 hashing in the
privacy amplification step of the actual protocol in order for the argument in this
section to hold. Note that Ȟ can be chosen from the almost universal2 hash function
families, which is more general than the universal2 hash function families, at the cost
of the additional amount of the syndrome extraction in the virtual protocol. In this
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case, the almost dual universal2 hashing will be performed in the actual protocol at the
cost of the additional amount of the privacy amplification. See Ref. [TH13] for more
details.

To sum up, if all of the following conditions are satisfied, the privacy amplification
using the dual universal2 hashing ensures εsec-secrecy with εsec =

√
2(η + 2−s).

• Given Ňsift ≥ 1, let x̌A be the outcome of the X-basis measurement on Alice’s
Ňsift-qubit register just before the privacy amplification step in the virtual proto-
col. There exists a set-valued function T (Ňsift, ζ̌) and an integer-valued function
NPA(Ňsift, α̌) of the sifted-key length Ňsift and other random variables ζ̌ = (α̌, β̌)
defined in the virtual protocol, where α̌ is observable in the actual protocol, such
that

Pr(Ňsift ≥ 1, x̌A /∈ T (Ňsift, ζ̌)) ≤ η, (4.94)
and

Pr(log |T (Ňsift, ζ̌)| ≤ NPA(Ňsift, α̌) | Ňsift ≥ 1) = 1. (4.95)

• Unless the protocol is aborted before the privacy amplification step, the final key
length is chosen to be

Ňfin = max{Ňsift −NPA(Ňsift, α̌)− s, 0} (4.96)

at the privacy amplification step.

4.3.6 Key rate of the QKD protocol
In general, secret keys may be consumed in the QKD protocol in order to, for

example, authenticate the announcement or send encrypted messages such as the bit
error syndromes. Therefore, if the number of the consumed secret keys in the whole
protocol is denoted by ŇKC, the net key gain is given by Ňfin−ŇKC. If the total number
of communication rounds between Alice and Bob is Ntot, then the key rate per pulse
is defined as (Ňfin − ŇKC)/Ntot. This quantity shows an efficiency for the key gain of
the protocol and thus is the performance index for the QKD protocol. It is implied in
the previous section that (NPA(Ňsift, α̌) + s)-bit privacy amplification is sufficient to
ensure the secrecy condition when we use the dual universal2 hashing. Therefore, the
key rate can alternatively be given by

(Ňsift − ŇKC −NPA(Ňsift, α̌)− s)/Ntot. (4.97)
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4.4 Finite-size security of continuous-variable QKD
with digital signal processing

In this section, the composable security of a binary-modulation continuous-variable
QKD protocol is proved against arbitrary attacks in the finite-size regime. The pro-
posed security proof can be applied to the case in which the binned homodyne and
heterodyne measurements are used (see also [LO21]). The key to our security proof is
an estimation method we develop in Section 4.4.1 using the heterodyne measurement
and classical post-processing, which is suited for analysis of confidence region in the
finite-size regime. The outcome of the heterodyne measurement, which is unbounded,
is converted to a bounded value by a smooth function such that its expectation is
proved to be no larger than the fidelity of the input pulse to a coherent state. This
allows us to use a standard technique to derive a lower bound on the fidelity with a
required confidence level in the finite-size regime. The fidelity as a measure of distur-
bance in the binary modulation protocol is essentially the same as what is monitored
through bit errors in the B92 protocol [Ben92, TKI03, Koa04]. Using this similarity,
we derive an operator inequality through which we construct a security proof based
on a reduction to the distillation of entangled qubit pairs [SP00b, LC99], a technique
frequently used for discrete-variable QKD protocols.

4.4.1 Estimation of the fidelity to a coherent state
We first introduce a test scheme to estimate the fidelity between an optical state

ρ and the vacuum state |0〉〈0| through a heterodyne measurement. For a state ρ
of a single optical mode, the heterodyne measurement (with its POVM defined in
Eq. (3.90)) produces an outcome α̌ ∈ C with a probability density

qρ(α) d2α := 〈α| ρ |α〉 d
2α

π
, (4.98)

where the coherent state |α〉 is defined in Eq. (3.85). We refer to the expectation
associated with the distribution qρ(α) simply as Eρ. To construct a lower bound on
the fidelity 〈0| ρ |0〉 from α̌, we will use the associated Laguerre polynomials which are
given by

L(k)
n (ν) := (−1)k d

kLn+k(ν)
dνk

, (4.99)

where
Ln(ν) := eν

n!
dn

dνn
(e−ννn) (4.100)

are the Laguerre polynomials. Our test scheme is based on the following theorem.

Theorem 4.4.1. Let Λm,r(ν) (ν ≥ 0) be a bounded function given by

Λm,r(ν) := e−rν(1 + r)L(1)
m ((1 + r)ν), (4.101)

for an integer m ≥ 0 and a real number r > 0. Then, for any density operator ρ, we
have

Eρ[Λm,r(|α̌|2)] = 〈0| ρ |0〉+
∞∑

n=m+1

〈n| ρ |n〉
(1 + r)n In,m, (4.102)
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where In,m are constants satisfying (−1)mIn,m > 0.

Proof. From Eq. (4.98), the expectation value of Λm,r(|α̌|2) when given a measured
state ρ is given by

Eρ[Λm,r(|α̌|2)] =
∫
α∈C

Λm,r

(
|α|2

)
qρ(α) d2α

=
∫ ∞

0
dν Λm,r(ν)

(∫ 2π

0

dθ

2π 〈
√
νeiθ| ρ |

√
νeiθ〉

)

=
∫ ∞

0
dν Λm,r(ν)

( ∞∑
n=0

νne−ν

n! 〈n| ρ |n〉
)

=
∞∑
n=0

〈n| ρ |n〉 In,m
(1 + r)n , (4.103)

where
In,m := 1

n!

∫ ∞
0

dν e−ννnL(1)
m (ν) (4.104)

for integers n,m ≥ 0.
The following three properties hold for In,m:

(i) In,m = 0 for m ≥ n ≥ 1.

This results from orthogonality relations of the associated Laguerre polynomials, that
is, ∫ ∞

0
L(1)
n (ν)L(1)

m (ν)νe−ν dν = (n+ 1)δn,m. (4.105)

Since the polynomial νn−1 can be written as a linear combination of lower order poly-
nomials {L(1)

l (ν)}0≤l≤n−1, In,m vanishes whenever m ≥ n ≥ 1.

(ii) (−1)mIn,m > 0 for n > m ≥ 0.

This property is shown as follows. First, the associated Laguerre polynomials satisfy
the following recurrence relation for m ≥ 1 [AS48]:

mL(1)
m (ν) = ν

dL(1)
m

dν
(ν) + (m+ 1)L(1)

m−1(ν). (4.106)

Substituting this to Eq. (4.104) and using integration by parts, we have

In,m = n+m

n
In−1,m −

m+ 1
n

In−1,m−1. (4.107)

for n ≥ 1 and m ≥ 1. The property (ii) is then proved by induction over m. For
m = 0, it is true since In,0 = 1 > 0. When (−1)m−1In,m−1 > 0 for n > m − 1, we can
prove (−1)mIn,m > 0 for n > m by using Eq. (4.107) recursively with Im,m = 0 from
the property (i).

(iii) I0,m = 1 for m ≥ 0.
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Figure 4.2: Example of the test functions Λm,r used in the estimation. The values
of r in the figure are chosen so that the range of Λm,r is minimized for given m. In
general, the minimum range of the function Λm,r becomes larger as m increases. The
pair (m, r) = (1, 0.4120) was used in the numerical simulation of key rates below.

This also follows from property (i) and Eq. (4.107) for n = 1 and m ≥ 1, which leads
to I0,m = I0,0 = 1.

Combining properties (i), (ii), and (iii) shows Eq. (4.102).

Note that Eq. (4.102) can also be interpreted as an operator equality
∫
α∈C

d2α

π
Λm,r(|α|2) |α〉〈α| = |0〉〈0|+

∞∑
n=m+1

In,m
(1 + r)n |n〉〈n| , (4.108)

which converges σ-weakly.
As a corollary, we obtain the following.

Corollary 4.4.2. Let |β〉 (β ∈ C) be the coherent state with the amplitude β. Then,
for any β ∈ C and for any odd positive integer m, we have

Eρ[Λm,r(|α̌− β|2)] ≤ 〈β| ρ |β〉 . (4.109)

Proof. From Eq. (4.102) of Theorem 4.4.1, for any odd positive integer m, we have

Eρ[Λm,r(|α̌|2)] ≤ 〈0| ρ |0〉 . (4.110)

Let Dβ be a displacement operator satisfying

Dβ |0〉〈0|D†β = |β〉〈β| , (4.111)
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and D†β = D−β. With ρ̃ := DβρD
†
β, we have qρ̃(α) = qρ(α − β) for probability density

function of heterodyne measurement outcome, which implies that

Eρ̃[Λm,r(|α̌− β|2)] = Eρ[Λm,r(|α̌|2)]
≤ 〈0| ρ |0〉
= 〈β| ρ̃ |β〉 . (4.112)

Since this holds for any ρ̃, we proved Eq. (4.109).

As seen in Figure 4.2, the absolute value and the slope of the function Λm,r are
moderate for small values of m and r, which is advantageous in executing the test
in a finite duration with a finite resolution. Later we will see that the range of the
function Λm,r affects the speed of convergence to the expectation value in the case of
a finite number of repetitions (i.e., a finite duration). Furthermore, when the outcome
of the heterodyne measurement is digitized (i.e., has a finite resolution), assume that a
digitized outcome α̌dig ensures that the true value α̌ lies in a range Ω(α̌dig). Then, we
need only to replace Λm,r(|α̌± β|2) with its worst-case value, min{Λm,r(|α̌± β|2) | α̌ ∈
Ω(α̌dig)}, in order for the inequality (4.109) to be satisfied. As seen in Figure 4.2, the
slope of the function Λm,r(ν) is moderate and goes to zero for ν →∞. This means that
the worst-case value can be made close to the true value, leading to a small influence
on the tightness of the estimation.

Compared to a similar method proposed in [CDG+19], our method excels in its
tightness for weak input signals; we see from Eq. (4.102) that, regardless of the value
of r, the inequality (4.110) saturates when ρ has at most m photons. This is crucial
for the use in the QKD protocols in which tightness directly affects the efficiency of
the key generation. Furthermore, from Eq. (4.102), the inequality (4.109) can be made
arbitrarily tight by taking arbitrarily large m and r. Therefore, our estimation method
is asymptotically sharp. See Ref. [CGKM21] for further generalizations.

4.4.2 Proposed protocol
Based on this fidelity test, we propose the following discrete-modulation QKD pro-

tocol (see Figure 4.3). Prior to the protocol, Alice and Bob determine the number
of rounds N , the acceptance probability of the homodyne measurement fsuc(q) for
q ∈ R satisfying fsuc(q) + fsuc(−q) ≤ 1, the parameters for the test function (m, r)
with m being positive odd integer and r being positive real, and the protocol parame-
ters (µ, psig, ptest, ptrash, β, s) with psig + ptest + ptrash = 1, where all the parameters are
positive. Alice and Bob then run the following protocol.

— Actual protocol —

1. Alice generates a random bit a ∈ {0, 1} and sends an optical pulse C̃ in a coherent
state with an amplitude (−1)a√µ to Bob. She repeats it N times.

2. For each of the received N pulses, Bob chooses a label from {signal, test, trash}
with probabilities psig, ptest, and ptrash, respectively. According to the label, Alice
and Bob do one of the following procedures.
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Figure 4.3: The proposed continuous-variable quantum key distribution protocol. Alice
generates a random bit a ∈ {0, 1} and sends a coherent state with an amplitude
(−1)a√µ. Bob chooses one of the three measurements based on the predetermined
probability. In the signal round, Bob performs the homodyne measurement on the
received optical pulse and obtains an outcome q̌. In the test round, Bob performs the
heterodyne measurement on the received optical pulse and obtains an outcome α̌. In
the trash round, he produces no outcome.

[signal] Bob performs the homodyne measurement (defined in Eq. (3.39)) on the
received optical pulse C, and obtains an outcome q̌ ∈ R. Bob defines a bit b
as b = 0 with a probability fsuc(q̌) and b = 1 with a probability fsuc(−q̌), and
otherwise regards the round as “failure”. The round in which Bob defines the
bit b is regarded as “success”. He announces success/failure of the detection.
In the case of a success, Alice (resp. Bob) keeps a (b) as a sifted key bit.

[test] Bob performs the heterodyne measurement on the received optical pulse C,
and obtains an outcome α̌. Alice announces her bit a. Bob calculates the
value of Λm,r(|α̌− (−1)aβ|2). (See Figure 4.4.)

[trash] Alice and Bob produce no outcomes.

3. We refer to the numbers of “success” and “failure” signal rounds, test rounds,
and trash rounds as Ň suc, Ň fail, Ň test, and Ň trash, respectively. (N = Ň suc +
Ň fail + Ň test + Ň trash holds by definition. Note also that the sifted key length of
this protocol is equal to Ň suc.) Bob calculates the sum of Λm,r(|α̌ − (−1)aβ|2)
obtained in the Ň test test rounds, which is denoted by F̌ .

4. For the information reconciliation, they use (NEC + s′)-bits of encrypted com-
munication consuming a pre-shared secret key to do the following. Alice sends
Bob an NEC-bit syndrome of a linear code for her sifted key. Bob reconciles his
sifted key accordingly. Alice and Bob verify the correction by comparing s′ bits
via universal2 hashing [CW79].
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Figure 4.4: A schematic description of the usage of obtained outcomes in the heterodyne
measurement. In order to estimate the lower bound on the fidelity to the coherent states
|±β〉, the squared distance between the outcome α̌ and the objective point (−1)aβ (i.e.,
|α̌− (−1)aβ|2) is put into the test function Λm,r.

5. Bob computes and announces the final key length Ňfin according to

Ňfin = max
{
Ň suc − dŇ such(p̌)e − s, 0

}
(4.113)

with
p̌ := min{U(F̌ , Ň trash)/Ň suc, 1/2}, (4.114)

where h(x) := −x log(x)− (1−x) log(1−x) is the binary entropy function, d·e is
the ceiling function, and the function U(F̌ , Ň trash) will be specified later. Alice
and Bob then apply the privacy amplification with dual universal2 hashing to
obtain the final key. The net key gain Ǧ per pulse is thus given by

Ǧ = (Ňfin −NEC − s′)/N.

The acceptance probability fsuc(q) should be chosen to post-select the rounds with
larger values of q, for which the bit error probability is expected to be lower. It is
ideally a step function, but our security proof is applicable to any form of fsuc(q).
The parameter β is typically chosen to be √ηµ with η being a nominal transmissivity
of the quantum channel, but the security proof itself holds for any choice of β. The
parameters s and s′ are related to the overall security parameter in the security proof
below.
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4.4.3 Security proof
We prove the security of this protocol based on the approach summarized in Sec-

tion 4.3; i.e., prove the εcor-correctness Eq. (4.75) and εsec-secrecy Eq. (4.61) of the
protocol, which results in (εcor +εsec)-security in Eq. (4.58). Due to the property of the
universal2 hashing [CW79, Ren08, TH13] (see also Eq. (4.88)), our protocol achieves
εcor-correctness with εcor = 2−s′ via the verification in Step 4. In order to prove the
εsec-secrecy, we determine a sufficient amount of the privacy amplification according
to Shor and Preskill [SP00b, HT12], which can be regarded as a special case of the
security proof summarized in Section 4.3.4. We consider a coherent version of Steps 1
and 2, in which Alice and Bob share an entangled pair of qubits for each success signal
round, such that their Z-basis-measurement outcomes correspond to the sifted key bits
a and b. For Alice, we introduce a qubit A and assume that she entangles it with an
optical pulse C̃ in a state

|Ψ〉AC̃ :=
|0〉A |

√
µ〉

C̃
+ |1〉A |−

√
µ〉

C̃√
2

. (4.115)

Then, Step 1 is equivalent to the preparation of |Ψ〉AC̃ followed by a measurement of
the qubit A on Z basis {|0〉 , |1〉} to determine the bit value a. For Bob, we construct
a process of probabilistically converting the received optical pulse C to a qubit B (See
Figure 4.5). Consider a completely positive (CP) map defined by

FC→B(ρC) :=
∫ ∞
−∞

dq K(q)ρCK
(q)† (4.116)

with
K(q) :=

√
fsuc(q) (|0〉B〈q|C + |1〉B〈−q|C) , (4.117)

where 〈q| maps a state vector to the value of its wave function at q (see Eq. (3.8)).
When the pulse C is in a state ρC , the corresponding process succeeds with a probability
psuc and then prepares the qubit B in a state ρB, where psucρB = FC→B(ρC). If the
qubit B is further measured on Z basis, probabilities of the outcomes b = 0, 1 are given
respectively by

psuc 〈0| ρB |0〉 =
∫ ∞
−∞

fsuc(q)dq 〈q| ρC |q〉 , (4.118)

psuc 〈1| ρB |1〉 =
∫ ∞
−∞

fsuc(q)dq 〈−q| ρC |−q〉 , (4.119)

which shows the equivalence to the signal round in Step 2. This is illustrated in
Figure 4.5.

To clarify the above observation, we introduce an entanglement-sharing protocol
defined in the following.

— Entanglement-sharing protocol —

1′. Alice prepares a qubit A and an optical pulse C̃ in a state |Ψ〉AC̃ defined in
(4.115). She repeats it N times.
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Figure 4.5: Bob’s qubit extraction in the entanglement-sharing protocol. Bob per-
forms on the optical pulse a non-demolition projective measurement with which
the absolute value |q| of the outcome of the homodyne measurement q̌ is deter-
mined. Then, Bob prepares a qubit B in a state determined by the operation
(K(|q|)(·)K(|q|)† + K(−|q|)(·)K(−|q|)†)dq with K(|q|) defined in Eq. (4.117). The Z-basis
measurement on this qubit gives the same sifted key bit b as that in the actual protocol.
On the other hand, the X-basis measurement on this qubit reveals the parity of photon
number of the received optical pulse.

2′. For each of the received N pulses, Bob announces a label in the same way as
that in Step 2. Alice and Bob do one of the following procedures according to
the label.

[signal] Bob performs a quantum operation on the received pulse C specified by the
CP map FC→B to determine success/failure of detection and to obtain a
qubit B upon success. He announces success/failure of detection. In the
case of a success, Alice keeps her qubit A.

[test] Bob performs a heterodyne measurement on the received optical pulse C,
and obtains an outcome α̌. Alice measures her qubit A on the Z basis and
announces the outcome a ∈ {0, 1}. Bob calculates the value of Λm,r(|α̌ −
(−1)aβ|2).

[trash] Alice measures her qubit A on the X basis to obtain a′ ∈ {+,−}, where
+ := 0X and − := 1X .
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3′. Ň suc, Ň fail, Ň test, Ň trash, and F̌ are defined in the same way as those in Step 3.
Let Q̌− be the number of rounds in the Ň trash trash rounds with a′ = −.

This protocol leaves Ň suc pairs of qubits shared by Alice and Bob. If they measure these
qubits on the Z bases to define the sifted key bits, the whole procedure is equivalent
to Steps 1 through 3 of the actual protocol (see Figure 4.6). Alice’s measurements on
the X basis {|±〉 := (|0〉 + |1〉)/

√
2} in the trash rounds are added for later security

argument, and they do not affect the equivalence.
The Shor-Preskill argument proceeds the security proof as follows. Suppose that,

after the entanglement-sharing protocol, the Controlled-NOT operation CNOT is ap-
plied on each pair of qubits, where CNOT := |0〉〈0|A ⊗ IB + |1〉〈1|A ⊗ σXB . Alice then
performs the quantum-mechanical version of the privacy amplification in Step 5 of the
actual protocol as in Section 4.2.2 and successively measures the qubits on the Z bases
to obtain the final key. Since CNOT does not affect the Z-basis value of Alice’s qubit,
the resulting Ňfin-bit final key in this scenario is equivalent to that in the actual pro-
tocol. Although CNOT prevents Bob from obtaining an equivalent final key, he can
still simulate the reconciliation and the verification process in Step 4 since the Z-basis
value of each of his Ň suc qubits corresponds to absence/presence of a bit error between
Alice’s and Bob’s sifted key bits. Hence, Bob can equivalently carry out all the an-
nouncements in Steps 4 and 5 of the actual protocol. As a result, this scenario leads to
exactly the same distribution Pr(Ňfin = N) and the same states ρfin

AE|N as those of the
actual protocol, and thus corresponds to a virtual protocol in the sense of Section 4.3.4;
i.e., Eq. (4.76) is satisfied with ρvirt

AE|N being the state of Alice’s qubits and Eve’s system
just before Alice’s Z-basis measurement.

The secrecy condition (4.77) of Alice’s final key can now be determined from the
X-basis property of her Ň suc = N ′ qubits after the application of CNOT, whose state
is denoted by ρA|N ′ . Since CNOT can be rewritten as CNOT = IA ⊗ |+〉〈+|B + σZA ⊗
|−〉〈−|B, the X-basis values of ρA|N ′ correspond to absence/presence of a phase error
σXA ⊗ σXB = ±1 just before the application of CNOT. Let x̌A be the sequence obtained
by the X-basis measurement on ρA|N ′ , and Ň suc

ph be the number of ‘−’ symbols in x̌A.
If we can have a good upper bound ěph on the phase error rate Ň suc

ph /Ň
suc, shortening

by fraction h(ěph) via privacy amplification in the actual protocol achieves the security
in the asymptotic limit [SP00b].

To cover the finite-size case as well, we need a more rigorous statement on the upper
bound. For that purpose, we define an estimation protocol in the following (see also
Figure 4.6).

— Estimation protocol —

1′′–3′′. Same as Steps 1′, 2′, and 3′ of the entanglement-sharing protocol.

4′′. Alice and Bob measure each of their Ň suc pairs of qubits on the X basis and
obtain outcomes a′ and b′, respectively. Let x̌A be the binary sequence with each
bit value being zero if a′ = b′ and one otherwise. Define Ň suc

ph := wt(x̌A), where
wt(·) is defined in Eq. (4.4).
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Figure 4.6: Relation between the three protocols. The actual protocol and the
estimation protocol are related through the entanglement-sharing protocol. After
the entanglement-sharing protocol, Alice and Bob are left with the observed data
(Ň suc, Ň fail, Ň test, Ň trash, F̌ , Q̌−) and Ň suc pairs of qubits. If Alice and Bob ignore Q̌−
and measure their qubits on the Z basis to determine their Ň suc-bit sifted keys, it be-
comes equivalent to the actual protocol. On the other hand, if Alice and Bob measure
their Ň suc pairs of qubits on the X basis, they can count the number Ň suc

ph of phase
errors, which we call the estimation protocol. If we can find a reliable upper bound U
on Ň suc

ph in the estimation protocol, it restricts the property of the state of Ň suc pairs
of qubits after the entanglement-sharing protocol, which in turn limits the amount of
leaked information on the sifted keys in the actual protocol. The security proof is thus
reduced to finding such an upper bound U in the estimation protocol, represented as
a function of the variables that are commonly available in the three protocols.

The task of proving the security of the actual protocol is then reduced to construction
of a function U(F̌ , Ň trash) that satisfies

Pr
[
Ň suc

ph ≤ U(F̌ , Ň trash)
]
≥ 1− ε (4.120)

for any attack in the estimation protocol. In fact, this condition implies

Pr
[
Ň suc ≥ 1, x̌A /∈ T (Ň suc, F̌ , Ň trash)

]
≤ ε, (4.121)

where T (Ň suc, F̌ , Ň trash) denotes the set of all the possible patterns with wt(x̌A) ≤
U(F̌ , Ň trash). Furthermore, from Lemma 4.2.3, it satisfies

log |T (Ň suc, F̌ , Ň trash)| ≤ Ň such(p̌) ≤ dŇ such(p̌)e, (4.122)

with
p̌ := min

{
U(F̌ , Ň trash)/Ň suc, 1/2

}
. (4.123)
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Therefore, from Eqs. (4.94), (4.95), and (4.96), setting the final key length to

Ňfin = max{Ň suc − dŇ such(p̌)e − s, 0} (4.124)

achieves the εsec =
√

2(ε+ 2−s)-secrecy.
To construct the function U(F̌ , Ň trash) that satisfies Eq. (4.120), it is beneficial to

clarify what property of the optical pulse C is measured by Bob’s X-basis measure-
ment in the estimation protocol (see Figure 4.5). Let Πev(od) be the projection to the
subspace with even (resp. odd) photon numbers. (Πev + Πod = IC holds by definition.)
Furthermore, since Πev − Πodd is the operator for an optical phase shift of π, we have
〈q| (Πev − Πodd) = 〈−q|. Eq. (4.117) is then rewritten as

K(q) =
√

2fsuc(q) (|+〉B〈q|CΠev + |−〉B〈q|CΠod) . (4.125)

Therefore, when the state of the pulse C is ρC , the probability of obtaining +(−) in
the X-basis measurement in the estimation protocol is given by

〈+(−)| FC→B(ρC) |+(−)〉 = Tr
(
ρCM

suc
ev(od)

)
, (4.126)

where
M suc

ev(od) :=
∫ ∞
−∞

2fsuc(q)dqΠev(od) |q〉〈q|CΠev(od). (4.127)

This shows that Bob’s X-basis measurement distinguishes the parity of the photon
number of the received pulse. In this sense, the secrecy of our protocol is assured by
the complementarity between the sign of the quadrature and the parity of the photon
number.

As an intermediate step toward our final goal of Eq. (4.120), let us first derive an
upper bound on the expectation value E[Ň suc

ph ] in terms of those collected in the test
and the trash rounds, E[F̌ ] and E[Q̌−], in the estimation protocol. Let ρAC be the state
of the qubit A and the received pulse C averaged over N pairs, and define relevant
operators as

M suc
ph := |+〉〈+|A ⊗M

suc
od + |−〉〈−|A ⊗M

suc
ev , (4.128)

Πfid := |0〉〈0|A ⊗ |β〉〈β|C + |1〉〈1|A ⊗ |−β〉〈−β|C , (4.129)
Πtrash
− := |−〉〈−|A ⊗ IC . (4.130)

Then we immediately have

Eρ[Ň suc
ph ] = psigN Tr

(
ρACM

suc
ph

)
(4.131)

and
Eρ[Q̌−] = ptrashN Tr

(
ρACΠtrash

−

)
, (4.132)

while application of the property of Eq. (4.109) leads to

Eρ[F̌ ] ≤ ptestN Tr
(
ρACΠfid

)
. (4.133)

Let us denote Tr (ρACM) simply by 〈M〉 for any operator M . The set of points(
〈M suc

ph 〉 , 〈Πfid〉 , 〈Πtrash
− 〉

)
for all the density operators ρAC form a convex region. Rather
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than directly deriving the boundary of the region, it is easier to pursue linear constraints
in the form of

〈M suc
ph 〉 ≤ B(κ, γ)− κ 〈Πfid〉+ γ 〈Πtrash

− 〉 , (4.134)
where B(κ, γ), κ, γ ∈ R.

It is expected that a meaningful bound is obtained only for κ, γ ≥ 0. Decreasing
the fidelity 〈Πfid〉 should allow more room for eavesdropping, leading to a larger value
of phase error rate 〈M suc

ph 〉. Hence Eq. (4.134) will give a good bound only when κ ≥ 0.
As for 〈Πtrash

− 〉, it only depends on the marginal state of Alice’s qubit A, which is
independent of the adversary’s attack. We thus have

〈Πtrash
− 〉 = q− := ‖ 〈−|A |Ψ〉AC̃ ‖

2 = (1− e−2µ)/2. (4.135)

Since Alice’s use of a stronger pulse leads to more leaked information, γ ≥ 0 should be
chosen for a good bound.

To find a function B(κ, γ) satisfying Eq. (4.134), let us define an operator

M [κ, γ] := M suc
ph + κΠfid − γΠtrash

− . (4.136)

Then Eq. (4.134) is rewritten as

Tr (ρACM [κ, γ]) ≤ B(κ, γ). (4.137)

This condition holds for any ρAC iff M [κ, γ] satisfies an operator inequality

M [κ, γ] ≤ B(κ, γ)IAC . (4.138)

SinceM [κ, γ] is a bounded operator, such B(κ, γ) always exists. If the operatorM [κ, γ]
were represented by a matrix of small size, the tightest bound would be found by
computing the largest eigenvalue of the matrix. But here, M [κ, γ] may not be a finite-
rank operator (not even be a compact operator), and therefore it is difficult to compute
the tightest bound. We thus compromise and heuristically find a computable bound
B(κ, γ) which is not necessarily tight; we reduce the problem to finding the largest
eigenvalues of small-size matrices by replacing M [κ, γ] with a constant upper bound
except in a relevant finite-dimensional subspace spanned by |±β〉 and M suc

ev(od) |±β〉.
For the detailed derivation of B(κ, γ), see the next section, Section 4.4.4.

With B(κ, γ) computed, we can rewrite Eq. (4.134) using Eqs. (4.131)–(4.133) to
obtain a relation between E[Ň suc

ph ], E[F̌ ], and E[Q̌−]. It is concisely written as

E
[
Ť [κ, γ]

]
≤ NB(κ, γ) (4.139)

with
Ť [κ, γ] := p−1

sigŇ
suc
ph + p−1

testκF̌ − p−1
trashγQ̌−. (4.140)

This relation leads to an explicit bound on the phase error rate as E[Ň suc
ph ]/psigN ≤

B(κ, γ) + γq−− κE[F̌ ]/ptestN , which is enough for the computation of asymptotic key
rates.

The security in the finite-size regime is proved by evaluating the fluctuations of
Ť [κ, γ] around the expectation value as follows. In the estimation protocol, the follow-
ing random variables labeled by the number i of the round can be defined;
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(i) Ň suc,(i)
ph is defined to be unity only when “signal” is chosen in the i-th round,

the detection is a “success”, and a pair of outcomes (a′, b′) is (+,−) or (−,+).
Otherwise, Ň suc,(i)

ph = 0. We have

Ň
suc,(i)
ph =

1
(
signal, success, (+,−) or (−,+)

)
0 (otherwise)

, (4.141)

and Ň suc
ph = ∑N

i=1 Ň
suc,(i)
ph .

(ii) F̌ (i) is defined to be Λm,r(|α̌ − (−1)aβ|2) only when “test” is chosen in the i-th
round. We have

F̌ (i) =
Λm,r(|α̌− (−1)aβ|2) (test)

0 (otherwise)
, (4.142)

and F̌ = ∑N
i=1 F̌

(i).

(iii) Q̌(i)
− is defined to be unity only when “trash” is chosen in the i-th round and

a′ = −. Otherwise, Q̌(i)
− = 0. We have

Q̌
(i)
− =

1 (trash, −)
0 (otherwise)

, (4.143)

and Q̌− = ∑N
i=1 Q̌

(i)
− .

(iv) We also define

Ť (i) := p−1
sigŇ

suc,(i)
ph + p−1

testκF̌
(i) − p−1

trashγQ̌
(i)
− , (4.144)

which leads to Ť [κ, γ] = ∑N
i=1 Ť

(i).

Let σ(Y ) be a σ-algebra generated by a random vector Y (composed of n random
variables), i.e.,

σ(Y ) := {Y −1(A) | A ∈ B(Rn)}. (4.145)
Let

{∅,Ω} ⊆ σ(Ť (≤1)) ⊆ · · · ⊆ σ(Ť (≤N)) (4.146)

be a filtration, where Ť (≤i) :=
(
Ť (1), . . . , Ť (i)

)
are random vectors. Then, we can apply

Corollary 4.2.19 to the sequence
(
Ť (1), . . . , Ť (N)

)
with respect to the filtration (4.146)

if we can find constants cmin and cmax that satisfy

cmin ≤ Ť (i) ≤ cmax (4.147)

for any i ∈ {1, . . . , N}. We define cmin and cmax as follows. In each round, at most one
of Ň suc,(i)

ph , F̌ (i), and Q̌(i)
− takes non-zero value; Ň suc,(i)

ph and Q̌(i)
− are either zero or unity,
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and inf Λm,r ≤ F̌ (i) ≤ sup Λm,r. Since κ, γ ≥ 0, Eq. (4.147) holds when cmin and cmax
are defined as

cmin := min{p−1
testκ inf Λm,r, −p−1

trashγ}, (4.148)
cmax := max{p−1

sig , p
−1
testκ sup Λm,r}. (4.149)

Applying Corollary 4.2.19 to the sequence
(
Ť (1), . . . , Ť (N)

)
with respect to the filtra-

tion (4.146), we have, with a probability no smaller than 1− ε/2,

Ť [κ, γ] ≤
N∑
i=1

E
[
Ť (i)

∣∣∣ σ(Ť (≤i−1))
]

+ δ1(ε/2), (4.150)

where

δ1(ε) := (cmax − cmin)
√
N

2 ln
(1
ε

)
. (4.151)

Furthermore, for any state ρAC , we have

Eρ[Ň suc,(i)
ph ] = psigTr

(
ρACM

suc
ph

)
, (4.152)

Eρ[Q̌(i)
− ] = ptrashTr

(
ρACΠtrash

−

)
, (4.153)

Eρ[F̌ (i)] ≤ ptestTr
(
ρACΠfid

)
, (4.154)

and thus
Eρ[Ť (i)] ≤ Tr(ρACM [κ, γ]) ≤ B(κ, γ), (4.155)

for i ∈ {1, . . . , N}. Since the above inequality holds for any state ρAC , the following
holds for each i ∈ {1, . . . , N} and for any D ∈ σ(Ť (≤i−1)):∫

D
E
[
Ť (i)

∣∣∣ σ(Ť (≤i−1))
]
(x)P (≤i−1)(dx) ≤ Tr

[(
E(≤i−1)(D)⊗M [κ, γ]⊗ I⊗(N−i)

)
ρtot

]
(4.156)

≤ B(κ, γ)
∫
D
P (≤i−1)(dx), (4.157)

where E(≤i−1) denotes the POVM for the random variables Ť (≤i−1), ρtot denotes the
density operator for the total round with which the probability measure for Azuma’s
inequality is defined, and the probability measure P (≤i−1)(dx) is defined as

P (≤i−1)(dx) := Tr
[(
E(≤i−1)(dx)⊗ I⊗(N−i+1)

)
ρtot

]
. (4.158)

The inequality (4.157) implies that the following inequality holds almost surely:

E
[
Ť (i)

∣∣∣ σ(Ť (≤i−1))
]
≤ B(κ, γ). (4.159)

Combining this with Eq. (4.150), we have

Ť [κ, γ] ≤ NB(κ, γ) + δ1(ε/2), (4.160)

which holds with a probability no smaller than 1 − ε/2. We remark that the reason
for including the trash rounds in the actual protocol is to circumvent a technical issue
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which would arise in this step. Without measurement of Q̌− in the estimation protocol,
we would obtain an inequality E[p−1

sigŇ
suc
ph + p−1

testκF̌ ] ≤ NB(κ, γ) + γq−. In contrast to
Eq. (4.139), the new inequality is true only when ρAC satisfies 〈Πtrash

− 〉 = q−, which is
too stringent for the application of Azuma’s inequality.

Although Eq. (4.140) includes Q̌− which is inaccessible in the actual protocol, we
can derive an upper bound by noticing that it is an outcome from Alice’s qubits and
is independent of the adversary’s attack. In fact, given Ň trash = n, it is the tally of n
Bernoulli trials with a probability q−, i.e., Pr(Q̌− | Ň trash = n) is a binomial distribu-
tion. Thus from Corollary 4.2.10, the following inequality holds with a probability no
smaller than 1− ε/2:

Q̌− ≤ Ň trashq− + δ2(ε/2; Ň trash), (4.161)
where

δ2(ε/2; Ň trash) := Ň trashδ(ε/2; Ň trash) (4.162)
with δ(ε, n) defined in Corollary 4.2.10. Note that when Ň trash is equal to zero, Q̌− is
also equal to zero, and thus Eq. (4.161) also holds.

Combining Eqs. (4.140), (4.160), and (4.161), we obtain U(F̌ , Ň trash), satisfying
Eq. (4.120) by the union bound, as follows:

U(F̌ , Ň trash) = psig(NB(κ, γ) + δ1(ε/2))− psig

ptest
κF̌+ psig

ptrash
γ
(
Ň trashq− + δ2(ε/2; Ň trash)

)
.

(4.163)
We finally remark that the encryption ofM := NEC+s′ bits in Step 4 can be omitted

as long as each bit linearly depends on Alice’s sifted key over GF(2). In such a case,
the virtual and the estimation protocol must include measurements on Alice’s qubits to
simulate the announcement of the M bits in Step 4. (Otherwise, the condition (4.76)
cannot be met.) The back-action on the X basis caused by the measurement for each
bit amounts to doubling the number of probable patterns x̌A. We can thus redefine the
set T (Ň suc, F̌ , Ň trash) by enlarging its size by factor of 2M so that Eq. (4.121) holds.
This leads to adding M to NPA := dŇ such(p)e, which eventually reduces the length of
Ňfin by M -bits. This means that we achieve the same net key gain rate Ǧ with the
same level of security.

4.4.4 Derivation of the operator inequality
The goal of this section is to explicitly construct B(κ, γ) satisfying (4.138), which

was the heuristic part of the security proof in the previous section. Let λsup(O) de-
note the supremum of the spectrum of a bounded self-adjoint operator O. Although
B(κ, γ) = λsup(M [κ, γ]) would give the tightest bound satisfying Eq. (4.138), it is hard
to compute it numerically since system C has an infinite-dimensional Hilbert space.
Instead, we derive a looser but simpler bound. We first prove the following lemma.

Lemma 4.4.3. Let Π± be orthogonal projections satisfying Π+Π− = 0. Suppose that
the rank of Π± is no smaller than two or infinite. Let M± be self-adjoint operators
satisfying Π±M±Π± = M± ≤ α±Π±, where α± are real constants. Let |ψ〉 be an
unnormalized vector satisfying (Π+ + Π−) |ψ〉 = |ψ〉 and Π± |ψ〉 6= 0. Define the
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following quantities with respect to |ψ〉:

C± := 〈ψ|Π± |ψ〉 (> 0), (4.164)
D± := C−1

± 〈ψ|M± |ψ〉 , (4.165)
V± := C−1

± 〈ψ|M2
± |ψ〉 −D2

±. (4.166)

Then, for any real numbers γ+ and γ−, we have

λsup
(
M+ +M− + |ψ〉〈ψ| − γ+Π+ − γ−Π−

)
≤ λsup

(
M4d

)
, (4.167)

where four dimensional matrix M4d is defined as

M4d :=


α+ − γ+

√
V+ 0 0√

V+ C+ +D+ − γ+
√
C+C− 0

0
√
C+C− C− +D− − γ−

√
V−

0 0
√
V− α− − γ−

 . (4.168)

Proof. We choose orthonormal vectors
{
|e(1)
± 〉 , |e

(2)
± 〉

}
in the domain of Π±, respectively,

to satisfy √
C± |e(1)

± 〉 = Π± |ψ〉 , (4.169)

M± |e(1)
± 〉 = D± |e(1)

± 〉+
√
V± |e(2)

± 〉 , (4.170)

which is well-defined due to Eqs. (4.164)–(4.166) and Π±M±Π± = M±. From (Π+ +
Π−) |ψ〉 = |ψ〉, we have

|ψ〉 =
√
C+ |e(1)

+ 〉+
√
C− |e(1)

− 〉 . (4.171)

Let us define the following projection operators:

Π(j)
± := |e(j)

± 〉〈e
(j)
± | (j = 1, 2), (4.172)

Π(≥2)
± := Π± − Π(1)

± , (4.173)
Π(≥3)
± := Π(≥2)

± − Π(2)
± . (4.174)

Since Eq. (4.170) implies Π(≥3)
± M±Π(1)

± = 0, we have

M± = Π(1)
± M±Π(1)

± + Π(≥2)
± M±Π(≥2)

± + Π(1)
± M±Π(2)

± + Π(2)
± M±Π(1)

± . (4.175)

The second term in the right-hand side of Eq. (4.175) is bounded as

Π(≥2)
± M±Π(≥2)

± ≤ α±Π(≥2)
± , (4.176)

since M± ≤ α±Π±. Combining Eqs. (4.165), (4.175), and (4.176), we have

M± − γ±Π± ≤ (D± − γ±) |e(1)
± 〉〈e

(1)
± |+ (α± − γ±) |e(2)

± 〉〈e
(2)
± |

+
√
V±
(
|e(1)
± 〉〈e

(2)
± |+ |e(2)

± 〉〈e
(1)
± |
)

+ (α± − γ±)Π(≥3)
± .

(4.177)
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Combining Eqs. (4.171) and (4.177), we have

M+ +M− + |ψ〉〈ψ| − γ+Π+ − γ−Π−
≤M4d ⊕ (α+ − γ+)Π(≥3)

+ ⊕ (α− − γ−)Π(≥3)
− ,

(4.178)

where M4d is given in Eq. (4.168) with the basis {|e(2)
+ 〉 , |e

(1)
+ 〉 , |e

(1)
− 〉 , |e

(2)
− 〉}. Since

α± − γ± = 〈e(2)
± |M4d |e(2)

± 〉 ≤ λsup
(
M4d

)
, supremum of the spectrum of the right-hand

side of Eq. (4.178) is equal to the largest eigenvalue of the four-dimensional matrix
M4d. We thus obtain Eq. (4.167).

As a corollary, we derive Eq. (4.138) as follows.

Corollary 4.4.4. Let |β〉 be a coherent state. Let Πev(od), M suc
ev(od), and M [κ, γ] be as

defined in the main text, and define following quantities:

Cev := 〈β|Πev |β〉 = e−|β|
2 cosh |β|2, (4.179)

Cod := 〈β|Πod |β〉 = e−|β|
2 sinh |β|2, (4.180)

Dev(od) := C−1
ev(od) 〈β|M

suc
ev(od) |β〉 , (4.181)

Vev(od) := C−1
ev(od) 〈β|

(
M suc

ev(od)

)2
|β〉 −D2

ev(od). (4.182)

Let M err
4d [κ, γ] and M cor

2d [κ, γ] be defined as follows:

M err
4d [κ, γ] :=


1

√
Vod√

Vod κCod +Dod κ
√
Cod Cev

κ
√
Cod Cev, κCev +Dev− γ

√
Vev√

Vev 1− γ

 , (4.183)

M cor
2d [κ, γ] :=

(
κCev κ

√
Cev Cod

κ
√
Cev Cod κCod − γ

)
. (4.184)

Define a convex function

B(κ, γ) := max
{
λsup

(
M err

4d [κ, γ]
)
, λsup

(
M cor

2d [κ, γ]
)}
. (4.185)

Then, for κ, γ ≥ 0, we have

M [κ, γ] ≤ B(κ, γ)IAC . (4.186)

Proof. Let us first observe that the operator Πfid defined in Eq. (4.129) can be rewritten
as follows:

Πfid = |φerr〉〈φerr|AC + |φcor〉〈φcor|AC , (4.187)
where orthogonal vectors |φerr〉AC and |φcor〉AC are defined as

|φerr〉AC := |+〉A ⊗ Πod |β〉C + |−〉A ⊗ Πev |β〉C , (4.188)
|φcor〉AC := |+〉A ⊗ Πev |β〉C + |−〉A ⊗ Πod |β〉C . (4.189)

Next, using Eqs. (4.187), (4.128), and (4.130), we rearrange the operator M [κ, γ] de-
fined in Eq. (4.136) as follows:

M [κ, γ] = M err[κ, γ]⊕M cor[κ, γ], (4.190)
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where
M err[κ, γ] := |+〉〈+|A ⊗M

suc
od + |−〉〈−|A ⊗M

suc
ev

+ κ |φerr〉〈φerr|AC− γ |−〉〈−|A ⊗ Πev,
(4.191)

M cor[κ, γ] := κ |φcor〉〈φcor|AC− γ |−〉〈−|A ⊗ Πod. (4.192)

We can apply Lemma 4.4.3 to M err[κ, γ] by the following substitutions

M± = |±〉〈±|A ⊗M
suc
od(ev), (4.193)

|ψ〉 =
√
κ |φerr〉AC , (4.194)

Π± = |±〉〈±|A ⊗ Πod(ev), (4.195)
α± = 1, (4.196)
γ+ = 0, γ− = γ. (4.197)

Here, M± ≤ Π± (i.e., α± = 1) holds because M suc
od(ev) are POVM elements. The other

prerequisites of Lemma 4.4.3 are easy to be confirmed. Thus, we obtain

λsup
(
M err[κ, γ]

)
≤ λsup

(
M err

4d [κ, γ]
)
. (4.198)

In the same way, we can apply Lemma 4.4.3 to M cor[κ, γ] via

M± = 0, (4.199)
|ψ〉 =

√
κ |φcor〉AC , (4.200)

Π± = |±〉〈±|A ⊗ Πev(od), (4.201)
α± = 0, (4.202)
γ+ = 0, γ− = γ. (4.203)

Since M± = 0 implies D± = V± = 0 in Lemma 4.4.3, this time we can reduce the
dimension of relevant matrix Eq. (4.168) by separating known eigenvalues 0 and −γ.
Therefore, we have

λsup
(
M cor[κ, γ]

)
≤ max

{
λsup

(
M cor

2d [κ, γ]
)
, 0,−γ

}
= λsup

(
M cor

2d [κ, γ]
)
, (4.204)

where the last inequality holds since γ ≥ 0 and κCev ≥ 0. We then obtain Eq. (4.186)
from Eqs. (4.190), (4.198), and (4.204). Since M err

4d [κ, γ] and M cor
2d [κ, γ] are symmetric

and their elements linearly depend on κ and γ, λsup
(
M err

4d [κ, γ]
)
and λsup

(
M cor

2d [κ, γ]
)

are convex functions over κ and γ, and so is B(κ, γ).

4.4.5 Numerical simulations

We simulated the net key gain per pulse Ǧ as a function of the transmission distance
L in the optical channel. We assume a channel model with a loss with the transmissivity
η = 10−0.02L (including the efficiency of Bob’s apparatus) and an excess noise at channel
output; Bob receives Gaussian states obtained by randomly displacing coherent states
|±√ηµ〉 to increase their variances by a factor of (1 + ξ) [NH04, HIM+17]. The states
that Bob receives dependent on Alice’s bit value a are thus given by

ρ
(a)
model :=

∫
C
pξ(γ) |(−1)a√ηµ+ γ〉〈(−1)a√ηµ+ γ| d2γ, (4.205)
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where pξ(γ) is given by
pξ(γ) := 1

πξ
e−|γ|

2/ξ. (4.206)

The parameter ξ is the excess noise relative to the vacuum, i.e.,〈
(∆q̂)2

〉
ρ

(a)
model

= (1 + ξ)/2, (4.207)

where 〈(∆q̂)2〉 = 1/2 for the vacuum state from Eq. (3.86). The expected amplitude
of coherent state β is chosen to be √ηµ. The actual fidelity between Bob’s objective
state |(−1)a√ηµ〉 and the model state ρ(a)

model is given by

F (ρ(a)
model, |(−1)a√ηµ〉〈(−1)a√ηµ|)

=
∫
C
pξ(γ)| 〈(−1)a√ηµ|(−1)a√ηµ− γ〉 |2dγ

= 1
1 + ξ/2 . (4.208)

We assume a step function with a threshold qth(> 0) as the acceptance probability,
i.e., fsuc(q) = Θ(q−qth). In this case, the quantities defined in Eqs. (4.181) and (4.182)
are given by

Dev =
∫ ∞
−∞

2C−1
ev fsuc(q)

∣∣∣〈q|Πev |β〉
∣∣∣2dq (4.209)

= 1
4Cev

[
erfc

(
qth −

√
2β
)

+ erfc
(
qth +

√
2β
)

+ 2e−2β2erfc
(
qth
)]
, (4.210)

Dod =
∫ ∞
−∞

2C−1
od fsuc(q)

∣∣∣〈q|Πod |β〉
∣∣∣2dq (4.211)

= 1
4Cod

[
erfc

(
qth −

√
2β
)

+ erfc
(
qth +

√
2β
)
− 2e−2β2erfc

(
qth
)]
, (4.212)

Vev(od) =
∫ ∞
−∞

2C−1
ev(od)

(
fsuc(q)

)2∣∣∣〈q|Πev(od) |β〉
∣∣∣2dq −D2

ev(od) (4.213)

= Dev(od) −D2
ev(od), (4.214)

where β = √ηµ and the complementary error function erfc(x) is defined as

erfc(x) := 2√
π

∫ ∞
x

dt e−t
2
. (4.215)

For the derivation of Eq. (4.213), we used the fact that Πev + Πod = I and (Πev −
Πod) |β〉 = |−β〉.

We assume that the number of “success” signal rounds Ň suc is equal to its expec-
tation value,

E[Ň suc] =
(∫ ∞
−∞

f(q) 〈q| ρ(a)
model |q〉 dq

)
psigN

= psigN(P+ + P−), (4.216)
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a) b)

Figure 4.7: The net key gain per pulse Ǧ (key rate) vs. the transmission distance L
of the optical channel. We assumed that the optical pulse that Bob receives is given
by randomly displacing a coherent state to increase its variance by a factor of (1 + ξ).
a) The asymptotic key rate for various values of ξ. b) The key rate for various values
of ξ when the pulse number is finite (N = 1012).

where

P± :=
∫ ∞
qth
〈±(−1)aq| ρ(a)

model |±(−1)aq〉 dq (4.217)

= 1
2 erfc

(
(qth ∓

√
2√ηµ)

√
1

1 + ξ

)
. (4.218)

We also assume that the number of test rounds Ň test is equal to ptestN and the number
of trash rounds Ň trash is equal to ptrashN . The test outcome F̌ is assumed to be equal
to its expectation value E[F̌ ], which is given by

E[F̌ ] = ptestN E
ρ

(a)
model

[Λm,r(|α̌− (−1)a√ηµ|2)]

= ptestN
∫
C

d2α

π
〈α| ρ(a)

model |α〉Λm,r(|α− (−1)a√ηµ|2)

= ptestN

1 + ξ/2

1− (−1)m+1
(

ξ/2
1 + r(1 + ξ/2)

)m+1
 . (4.219)

We adopted m = 1 and r = 0.4120 for Λm,r, which leads to (sup Λm,r, inf Λm,r) =
(2.824,−0.9932). The cost of the bit error correction NEC is assumed to be 1.1 ×
Ň such(ebit), where the bit error rate ebit is given by

ebit = P−

P+ + P−
. (4.220)

We set εsct(:= εcor+εsec) = 2−50 for the overall security parameter, and set ε = 2−s =
ε2

sec/4 = ε2
sct/16 and 2−s′ = εcor = εsct/2. We thus have two coefficients (κ, γ) and four

protocol parameters (µ, qth, psig, ptest) to be determined. For each transmission distance
L, we determined (κ, γ) via a convex optimization using the CVXPY 1.0.25 [DB16,
AVDB18] and (µ, qth, psig, ptest) via the Nelder-Mead in the scipy.minimize library in
Python, in order to maximize the key rate.
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a) b)

Figure 4.8: The net key gain per pulse Ǧ (key rate) vs. the transmission distance L
of the optical channel. We assumed that the optical pulse that Bob receives is given
by randomly displacing a coherent state to increase its variance by a factor of (1 + ξ).
a) The key rate in a pure-loss channel (ξ = 0) for various pulse numbers N . The solid
black line shows the fundamental limitation of the one-way repeater-less secure key
distribution called the PLOB bound [PLOB17]. b) The key rate in a channel with the
excess noise ξ = 10−3.0 for various pulse numbers N .

Figures 4.7 and 4.8 show the key rates of our protocol in the asymptotic limit
N → ∞ and finite-size cases with N = 109–1012 for ξ = 10−2.0–10−3.0 and 0. (Note
that from the results of the recent experiments [JKJL+13, HIM+17, ELP+20], excess
noise with ξ = 10−2.0–10−3.0 at the channel output seems reasonable. Furthermore, the
state-of-the-art experiments [ELP+20] work at 0.5 GHz repetition rate, which implies
that total number of rounds N = 109–1012 can be achieved in a realistic duration.)
For the noiseless model (ξ = 0) in Figure 4.7 a, the asymptotic rate reaches 8 dB. In
the case of ξ = 10−3.0, it reaches 4 dB, which is comparable to the result of a similar
binary modulation protocol proposed in Ref. [ZHRL09].

As for finite-size key rates, we see that the noiseless model shows a significant finite-
size effect even for N = 1012 in Figure 4.8 a. On the other hand, with the presence of
noises (ξ = 10−3.0), the effect becomes milder, and N = 1011 is enough to achieve a
rate close to the asymptotic case, as can be seen in Figure 4.8 b. This may be ascribed
to the cost of the fidelity test. In order to make sure that the fidelity is no smaller
than 1− δ, the statistical uncertainty of the fidelity test must be reduced to O(δ). As
a result, approaching the asymptotic rate of ξ = 0 will require many rounds for the
fidelity test.

Examples of optimized parameters are shown in Table 4.1. Typical optimized values
of the threshold qth range from 0.7 to 2.0. They are larger than those in other analyses
of protocols with post-selection (e.g., [LUL19]). A possible reason is that the latter
protocols use more than two states to monitor the eavesdropping action, which may
lead to a lower cost of privacy amplification and higher tolerance against bit errors.
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4.4.6 Discussion
Numerically simulated key rates above were computed on the implicit assumption

that Bob’s observed quantities are processed with infinite precision. Even when these
are approximated with a finite set of discrete points, we can still prove the security
with minimal degradation of key rates. We have already explained in Section 4.4.1 the
capability to incorporate finite precision for the heterodyne measurement used for the
test in the protocol. For the homodyne measurement used for the signal, finite precision
can be treated through appropriate modification of the acceptance probability fsuc(q).
Aside from a small change in the success rate and the bit error rate, this function
affects the key rate only through integrals in Eqs. (4.209), (4.211), and (4.213) in the
previous section, and hence influence on the key rate is expected to be small. We
thus believe that the fundamental obstacles associated with the analog nature of the
continuous-variable protocol have been settled by our approach.

In comparison with recent asymptotic analyses [GGDL19, LUL19] of continuous-
variable QKD with the discrete modulation, our protocol achieves lower key rates and
much shorter distance. Since ours is the first attempt to apply the proof technique of
discrete-variable QKD to continuous-variable QKD, there is much room for possible
improvement. We sacrificed the optimality for simplicity in deriving the operator
inequality. The definition of the phase error is not unique, and there may be a better
choice, which will be sought in the next section. The trash rounds were introduced for
technical reasons, but we are not sure whether they are really necessary. The protocols
considered in Ref. [GGDL19, LUL19] use four or more states in signal or test modes,
while ours use only two states. In fact, the binary protocol analyzed in Ref. [ZHRL09]
has the key rate comparable to ours when the excess noise ξ is around 10−3.

In order to improve the presented finite-size key rate especially under the existence
of excess noise, a promising route may be increasing the number of states from two. Our
fidelity test can be straightforwardly generalized to the monitoring for such a larger
constellation of signals, and we will be able to confine the adversary’s attacks more
tightly than in the present binary protocol. As for the proof techniques to determine the
amount of privacy amplification, there are two possible directions. One is to generalize
the present discrete-variable-QKD-inspired approach of estimating the number of phase
errors in qubits to the case of qudits. The other direction is to seek a way to combine the
existing analyses [GGDL19, LUL19, DW05] of discrete-modulation continuous-variable
QKD protocols, which have been reported to yield high key rates in the asymptotic
regime, to our fidelity test. Although either of the approaches is nontrivial, we believe
that the present results will open up a new direction toward exploiting the expected
high potential of continuous-variable QKD with an improved security level.
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Table 4.1: Examples of optimized parameters
Parameters for N = 1011 and ξ = 0
L [km] Key rate Ǧ (κ, γ) µ qth psig ptest

5 1.38× 10−1 (32.4, 1.38) 0.514 0.752 0.821 0.172
10 5.36× 10−2 (20.3, 0.741) 0.442 1.02 0.831 0.160
15 1.75× 10−2 (14.6, 0.381) 0.451 1.21 0.767 0.227
20 4.15× 10−3 (12.6, 0.175) 0.442 1.46 0.624 0.371
25 3.23× 10−4 (9.98, 0.059) 0.438 1.77 0.370 0.626

Parameters for N = 1011 and ξ = 10−3.0

L [km] Key rate Ǧ (κ, γ) µ qth psig ptest

5 1.13× 10−1 (17.9, 1.19) 0.466 0.802 0.853 0.138
10 4.07× 10−2 (11.9, 0.666) 0.442 1.02 0.831 0.160
15 1.02× 10−2 (8.85, 0.345) 0.440 1.27 0.758 0.233
20 5.29× 10−4 (6.70, 0.147) 0.463 1.57 0.484 0.505

Parameters for N = 1012 and ξ = 0
L [km] Key rate Ǧ (κ, γ) µ qth psig ptest

5 1.69× 10−1 (54.9, 1.56) 0.556 0.713 0.874 0.123
10 6.76× 10−2 (31.3, 0.798) 0.493 0.948 0.868 0.128
15 2.41× 10−2 (23.2, 0.408) 0.466 1.18 0.829 0.168
20 6.93× 10−3 (17.7, 0.184) 0.443 1.43 0.772 0.226
25 1.14× 10−3 (14.6, 0.065) 0.427 1.71 0.596 0.402
30 3.23× 10−5 (10.8, 0.017) 0.421 2.05 0.240 0.759

Parameters for N = 1012 and ξ = 10−3.0

L [km] Key rate Ǧ (κ, γ) µ qth psig ptest

5 1.32× 10−1 (21.7, 1.25) 0.482 0.783 0.909 0.086
10 4.92× 10−2 (13.8, 0.689) 0.450 1.01 0.899 0.096
15 1.36× 10−2 (9.82, 0.355) 0.442 1.25 0.858 0.137
20 1.17× 10−3 (7.13, 0.151) 0.458 1.56 0.701 0.293

Examples of the parameters for a given pair of the total pulse number N
and the excess noise parameter ξ defined in Eq. (4.207). The variance of
the quadrature operator q̂ for the vacuum state is 〈(∆q̂)2〉 = 1/2. Given
(N, ξ), protocol parameters (κ, γ, µ, qth, psig, ptest) are optimized for each
transmission distance L [km] so that the net key gain per pulse (key rate)
Ǧ is maximized.
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4.5 Finite-size analysis for the binary-modulation
protocol based on the reverse reconciliation

Although the security proof developed in the previous section, Section 4.4, realizes
the finite-size security against general attacks in a composable fashion, the obtained
key rate has very bad scaling against transmission distance. A possible reason for this
bad performance is the way of security proof based on the entanglement distillation
[SP00b, LC99]. There are alternative types of security proofs [Ren08, Koa09, Tsu20a]
that can approach necessary and sufficient conditions for security. In particular, for
continuous-variable QKD protocols, it has been shown that the security proof based
on the reverse reconciliation provides better performance than that based on the direct
reconciliation [SRLL02].

In this section, we develop a refined security proof based on the reverse reconciliation
(see Section 4.3 for its definition) for the binary-modulation protocol proposed in the
previous section. With a refined proof and no additional experimental requirement, we
obtain a significant improvement in the key gain against pure loss; in fact, it achieves
near-optimal scaling against transmission distance in the asymptotic limit.

4.5.1 Alternative protocol
Our refined security proof is for almost the same protocol as that in Section 4.4.2 but

with a slight change. Prior to the protocol, Alice and Bob determine the number N of
total rounds, the acceptance probability fsuc(q) (q ∈ R) of the homodyne measurement
satisfying fsuc(q) + fsuc(−q) ≤ 1, the parameters for the test function (m, r), and the
protocol parameters (µ, psig, ptest, ptrash, β, s) with psig + ptest + ptrash = 1, where all
the parameters are positive. Alice and Bob then run the protocol described in the
following.

— Actual protocol —

1. Alice generates a random bit a ∈ {0, 1} and sends an optical pulse C̃ in a coherent
state with an amplitude (−1)a√µ to Bob. She repeats it N times.

2. For each of the received N pulses, Bob chooses a label from {signal, test, trash}
with probabilities psig, ptest, and ptrash, respectively. According to the label, Alice
and Bob do one of the following procedures.

[signal] Bob performs a homodyne measurement on the received optical pulse C, and
obtains an outcome q̌ ∈ R. Bob defines a bit b as b = 0 with a probability
fsuc(q̌) and b = 1 with a probability fsuc(−q̌), and otherwise regards the
round as “failure”. The round in which Bob defines the bit b is regarded as
“success”. He announces success or failure of the detection. In the case of a
success, Alice (resp. Bob) records a (b) as a sifted key bit.

[test] Bob performs a heterodyne measurement on the received optical pulse C,
and obtains an outcome α̌. Alice announces her bit a. Bob calculates the
value of Λm,r(|α̌− (−1)aβ|2).
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[trash] Alice and Bob produce no outcomes.

3. We refer to the numbers of “success” and “failure” signal rounds, test rounds,
and trash rounds as Ň suc, Ň fail, Ň test, and Ň trash, respectively. (N = Ň suc +
Ň fail + Ň test + Ň trash holds by definition. Note also that the sifted key length of
this protocol is equal to Ň suc.) Bob calculates the sum of Λm,r(|α̌ − (−1)aβ|2)
obtained in the Ň test test rounds, which is denoted by F̌ .

4. For the information reconciliation, they use ŇEC-bits of encrypted communication
consuming a pre-shared secret key to do the following. According to (the upper
bound on) the bit error rate ěub, Bob randomly chooses an error-correcting code
and sends it with ŇEC bits of syndrome to Alice. Alice reconciles her sifted key
accordingly.

5. Bob computes and announces the final key length Ňfin according to

Ňfin = max
{
Ň suc − dŇ such(p̌′)e − s, 0

}
, (4.221)

where
p̌′ := min

{
U ′(F̌ , Ň trash)/Ň suc, 1/2

}
. (4.222)

The function U ′(F̌ , Ň trash) will be specified later. Alice and Bob apply the privacy
amplification using the dual universal2 hashing to obtain the final key.

For simplicity, we omitted the bit error sampling rounds in the above protocol. In
order to estimate an upper bound ěub on the bit error rate with required correctness,
Alice and Bob randomly insert Nsmp sampling rounds among N rounds in which Bob
performs the same measurement as that of the signal round. According to the observed
discrepancies between Alice’s and Bob’s bits in the sampling rounds, Bob estimates the
upper bound ěub on the bit error rate with a failure probability no more than εcor/2
and decides whether he aborts the protocol or not. The required amount of the error
syndrome, ŇEC, that Bob sends to Alice in the information reconciliation step (Step 4)
depends on the error correction method. Here we assume

ŇEC = Ň suc (fh(ěub) + (1− f)) , (4.223)

where f ∈ [0, 1] denotes a reconciliation efficiency of an error-correcting code [LBGP+07,
JEKJ14, GGDL19, LUL19, LLX+21, WLM+21] that succeeds with a probability no
smaller than 1− εcor/2, when given the upper bound ěub on the bit error rate. (To sat-
isfy the condition, the error-correcting code with which one can show an upper bound
on the failure probability has to be used.) The net key gain Ǧ per pulse is thus given
by

Ǧ = (Ňfin − ŇEC)/(N +Nsmp). (4.224)
We do not use verification in the post-processing, unlike Section 4.4, due to subtleties to
incorporate it in our security proof. The acceptance probability fsuc(q) should be chosen
to post-select the rounds with larger values of q, for which the bit error probability
is expected to be lower. Note that the encryption of the ŇEC-bit syndrome at the
information reconciliation step can be replaced with the ŇEC-bit additional privacy
amplification as long as the syndrome bits Bob sends to Alice in the protocol linearly
depend on Bob’s sifted key. See the previous section for a detailed explanation.
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4.5.2 Security proof based on the reverse reconciliation
We determine a sufficient amount of the privacy amplification according to the

complementarity summarized in Sections 4.3.4 and 4.3.5 with the reverse reconciliation.
To do so, we consider a virtual protocol in which Bob has a qubit for each success signal
round such that the outcome of the Z-basis measurement on it coincides with his sifted
key bit b. Alice can do arbitrary quantum operations in the virtual protocol as long as
all the statistics and available information to the adversary Eve are the same as those
in the actual protocol.

For Alice, we assume that a qubit A is introduced and the state in Eq. (4.115)
is prepared in each round of the virtual protocol. Then, the optical quantum state
emitted by Alice is the same as that in the actual protocol. For Bob, we adopt the
same CP map FC→B defined in Eq. (4.116) to obtain a qubit B from the receive optical
pulse C.

If the qubit B is successively measured on the Z basis, the obtained bit is equivalent
to that in the signal round of the actual protocol.

At this point, one has the degree of freedom to perform quantum operations that
do not change the value of the Z basis of the qubit B. Suppose that, after the qubit
extraction map FC→B defined in Eq. (4.116), Alice and Bob performed a controlled-
isometry VBA→BA′ that is defined as

VBA→BA′ := |0〉〈0|B ⊗ V
(0)
A→A′ + |1〉〈1|B ⊗ V

(1)
A→A′ , (4.225)

where V (i)
A→A′ denotes an isometry from the system A to another system A′ that is no

smaller than A 1. (Note that this corresponds to the twisting operation on the shield
system [HLLO06, RS07, HHH+08, HHHO09, BPLL20] since what we will show in the
following is equivalent to showing that the system B is private (i.e., secret) to Eve with
the shield system A′.) We thus introduce a virtual protocol in the sense of Section 4.3.4
that explicitly incorporates the action of VBA→BA′ in the following.

— Virtual protocol —

1′. Alice prepares a qubit A and an optical pulse C̃ in a state |Ψ〉AC̃ defined in
(4.115). She repeats it N times.

2′. For each of the received N pulses, Bob announces a label in the same way as
that in Step 2. Alice and Bob do one of the following procedures according to
the label.

[signal] Bob performs a quantum operation on the received pulse C specified by the
CP map FC→B to determine success or failure of detection and to obtain
qubit B upon success. He announces success or failure of detection. In
the case of a success, Alice keeps her qubit A. Alice and Bob perform the
controlled-isometry VBA→BA′ defined in Eq. (4.225).

1Here, the subtleties for using the verification come in. In order to know whether verification
succeeds or not, Alice has to confirm the syndrome bits for the verification. However, this confirmation
procedure may not commute with the action of VBA→BA′ . Therefore, unless we evaluate how much
the verification affects the secrecy condition, we cannot use the verification in this security proof.
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[test] Bob performs a heterodyne measurement on the received optical pulse C,
and obtains an outcome α̌. Alice measures her qubit A on Z basis and
announces the outcome a ∈ {0, 1}. Bob calculates the value of Λm,r(|α̌ −
(−1)aβ|2).

[trash] Alice measures her qubit A on X basis to obtain a′ ∈ {+,−}.

3′. Ň suc, Ň fail, Ň test, Ň trash, and F̌ are defined in the same way as those in Step 3.
Let Q̌− be the number of rounds in the Ň trash trash rounds with a′ = −.

4′. According to (the upper bound on) the bit error rate ěub, Bob uses ŇEC bits of
encrypted communication consuming a pre-shared secret key to send a dummy
message to Alice.

5′. Bob computes and announces the final key length Ňfin according to Eq. (4.221).
Bob acts a randomly chosen unitary on his qubits and measures the first Ňfin

qubits on the Z bases.

To follow the security proof in Sections 4.3.4 and 4.3.5, suppose that, at the end of
Step 3′ in the virtual protocol, Bob measured his Ň suc qubits on the X basis {|+〉 , |−〉},
and obtained a sequence x̌ of ‘+’ and ‘−’. The ‘−’ in x̌ is regarded as a phase error.
If we can bound the number of possible phase-error patterns, then we can show the
security from the argument in Section 4.3.5. In order to make the argument more
rigorous, we define an estimation protocol as follows.

— Estimation protocol —

1′′–3′′. Same as Steps 1′, 2′, and 3′ of the virtual protocol.

4′′. For every success signal round, Bob measures his qubit on the X basis and
obtain an outcome b′ ∈ {+,−}. Regarding + as zero and − as unity in the Ň suc

outcomes, define the Ň suc-bit sequence x̌. Let Ň ′suc
ph := wt(x̌), where wt(·) is

defined in Eq. (4.4).

The task of proving the security of the actual protocol is then reduced to the construc-
tion of a function U ′(F̌ , Ň trash) that satisfies

Pr
[
Ň ′suc

ph ≤ U ′(F̌ , Ň trash)
]
≥ 1− ε (4.226)

for any attack in the estimation protocol. In order to show that this is sufficient for the
security proof, let T (Ň suc, F̌ , Ň trash) be the set of all the possible patterns for x̌ with
wt(x̌) ≤ U ′(F̌ , Ň trash). Then from Lemma 4.2.3, we have log |T (Ň suc, F̌ , Ň trash)| ≤
NPA(Ň suc, F̌ , Ň trash) with

NPA(Ň suc, F̌ , Ň trash) = dŇ such(p̌′)e, (4.227)

where p̌′ is defined in Eq. (4.222). With the same reasoning as the previous section,
the condition (4.226) implies εsec =

√
2(ε+ 2−s)-secrecy. Therefore, from now on, we

focus on the estimation protocol.
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4.5.3 Phase error operator
The number of phase errors depends on the choice of the controlled-isometry VBA→BA′

in the virtual and estimation protocol, and thus we aim to reduce the number of phase
errors with a good choice of VBA→BA′ . Here we heuristically choose VBA→BA′ so that
the probability of the phase error event b′ = − in the estimation protocol is minimized
for an ideal pure-loss channel (introduced in Section 3.1.3), which can be analytically
investigated. We then use the same VBA→BA′ under the existence of excess noises,
which is suboptimal but may still be a good choice when the excess noise is small.

When the state |Ψ〉AC̃ in Eq. (4.115) is put into a pure-loss channel and the channel
output is |±β〉C , the resulting state |Φ〉ACE on systems A,C, and an adversary’s system
E (i.e., environment of the pure-loss channel) is given by

|Φ〉ACE = 1√
2

(
|0〉A |β〉C

∣∣∣∣√µ− β2
〉
E

+ |1〉A |−β〉C
∣∣∣∣−√µ− β2

〉
E

)
. (4.228)

Tracing out the system E, the reduced state ΦAC is given by

ΦAC = e−(µ−β2)

2
(
cosh(µ− β2) P̂

(
|0〉A |β〉C + |1〉A |−β〉C

)
+ sinh(µ− β2) P̂

(
|0〉A |β〉C − |1〉A |−β〉C

)) (4.229)

= e−(µ−β2)
(
cosh(µ− β2) P̂

(
|+〉A Πev |β〉C + |−〉A Πod |β〉C

)
+ sinh(µ− β2) P̂

(
|+〉A Πod |β〉C + |−〉A Πev |β〉C

))
,

(4.230)

where P̂ (φ) := φφ† (and thus P̂ (|φ〉) = |φ〉〈φ|). After Bob acts the qubit-extraction
map FC→B defined in (4.116) to the state ΦAC and obtains the subnormalized state
τAB := FC→B(ΦAC) with psuc := Tr(τAB), he performs a controlled-isometry VBA→BA′
on τAB. The phase error probability can thus be given by

Tr[|−〉〈−|B VBA→BA′τABV
†
BA→BA′ ] (4.231)

= 1
2Tr

[
〈0|B τAB |0〉B + 〈1|B τAB |1〉B

− V (1)†
A→A′V

(0)
A→A′ 〈0|B τAB |1〉B − 〈1|B τAB |0〉B V

(1)
A→A′V

(0)†
A→A′

] (4.232)

= 1
2psuc − Re

[
Tr
(
V

(1)†
A→A′V

(0)
A→A′ 〈0|B τAB |1〉B

)]
(4.233)

≥ 1
2psuc − ‖ 〈0|B τAB |1〉B ‖1, (4.234)

where V (i)
A→A′ (i = 0, 1) are defined in Eq. (4.225), and the last inequality follows from

the matrix Hölder inequality. If we write the polar decomposition of 〈0|B τAB |1〉B by
WA

∣∣∣〈0|B τAB |1〉B∣∣∣, the equality in (4.234) can be achieved by setting V (1)†
A→A′V

(0)
A→A′ =

W †
A. One can also check that 〈0|B τAB |1〉B is a real matrix on the Z basis, and therefore,

WA can be taken to be an orthogonal matrix on the Z basis (and thus on the X basis).
We will derive an explicit form of WA as a function of µ and β. We first observe
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that

σXA 〈0|B τAB |1〉B
= 1

2
√
π

∫ ∞
−∞

fsuc(q)dq
[
e−2(µ−β2)(e−(q+

√
2β)2 |0〉〈0|A + e−(q−

√
2β)2 |1〉〈1|A)

+ e−q
2−2β2(|1〉〈0|A + |0〉〈1|A)

] (4.235)

= 1
2 [a(µ, β) |0〉〈0|A + b(µ, β) |1〉〈1|A + c(β) (|1〉〈0|A + |0〉〈1|A)] (4.236)

with real positive functions a(µ, β), b(µ, β), and c(β) defined as

a(µ, β) = e−2(µ−β2)G 1
2
∗ fsuc(−

√
2β), (4.237)

b(µ, β) = e−2(µ−β2)G 1
2
∗ fsuc(

√
2β), (4.238)

c(β) = e−2β2
G 1

2
∗ fsuc(0), (4.239)

where G 1
2
(q) := exp(−q2)/

√
π denotes the normal distribution with variance 1/2, and

f ∗ g denotes the convolution of the functions f and g. The matrix σXA 〈0|B τAB |1〉B is
thus hermitian. If a(µ, β)b(µ, β)− c(β)2 ≥ 0 or equivalently µ ≤ µth(β) with

µth(β) := 2β2 − 1
4 ln


[
G 1

2
∗ fsuc(0)

]2[
G 1

2
∗ fsuc(

√
2β)

] [
G 1

2
∗ fsuc(−

√
2β)

]
 , (4.240)

then the matrix σXA 〈0|B τAB |1〉B is positive, which leads us to setting WA = σXA .
When WA = σXA , the controlled-isometry VBA→BA′ is chosen to be the CNOT, and
thus the security proof is completely reduced to the previous analysis in Section 4.4
with the operator inequality (4.253) given by Corollary 4.4.4. On the other hand, when
µ > µth(β) (i.e., a(µ, β)b(µ, β)− c(β)2 < 0), we rewrite Eq. (4.236) as

σXA 〈0|B τAB |1〉B = D(µ, β)
4

[
a(µ, β) + b(µ, β)

D(µ, β) IA + cos θ(µ, β)σXA + sin θ(µ, β)σZA
]
,

(4.241)
where D(µ, β) :=

√
[a(µ, β)− b(µ, β)]2 + 4c(β)2(> 0), [a(µ, β) + b(µ, β)]/D(µ, β) < 1,

and θ(µ, β) satisfies

|θ(µ, β)| < π/2 and tan θ(µ, β) = a(µ, β)− b(µ, β)
2c(β) . (4.242)

It shows that we may choose WA as

WA = σXA
(
cos θ(µ, β)σXA + sin θ(µ, β)σZA

)
= cos θ(µ, β)IA − i sin θ(µ, β)σYA (4.243)

because

W †
A 〈0|B τAB |1〉B

= a(µ, β) + b(µ, β)
4

[
D(µ, β)

a(µ, β) + b(µ, β)IA + cos θ(µ, β)σXA + sin θ(µ, β)σZA
] (4.244)
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is positive. From Eq. (4.242), the condition θ(µ, β) = 0 and thus WA = IA holds only
when a(µ, β) = b(µ, β), i.e.,

G 1
2
∗ fsuc(

√
2β) = G 1

2
∗ fsuc(−

√
2β), (4.245)

which is false for reasonable choices of the acceptance probability fsuc(q) that post-
select larger values of q. Thus, in the following, we consider the case µ > µth(β) and
0 < |θ(µ, β)| < π/2.

As we explained previously, we set V (1)†
A→A′V

(0)
A→A′ = W †

A also for arbitrary channels,
i.e., arbitrary coherent attacks by Eve. This choice of VBA→BA′ is not optimal for
general channels but is expected to be close to the optimal for channels that are close
to the pure loss. Now that the controlled-isometry VBA→BA′ is fixed, we can clarify
using Eq. (4.231) what combination of measurement events on Alice’s qubit A and
the optical pulse C leads to the phase error b′ = − in the estimation protocol. The
operator M ′suc

ph on the system A and C that corresponds to the phase error event is
given by

M ′suc
ph := F †C→B

(
V †BA→BA′(|−〉〈−|B ⊗ IA′)VBA→BA′

)
, (4.246)

where F †C→B denotes the adjoint map of FC→B given explicitly by

F †C→B(MB) =
∫ ∞
−∞

dq K(q)†MBK
(q). (4.247)

Using the expression (4.117) of K(q), we have

M ′suc
ph = 1

2F
†
C→B

(
P̂
(
V

(0)†
A→A′ ⊗ |0〉B − V

(1)†
A→A′ ⊗ |1〉B

))
(4.248)

= 1
2F
†
C→B

(
IAB −WA ⊗ |0〉〈1|B −W

†
A ⊗ |1〉〈0|B

)
(4.249)

= 1
4F
†
C→B

(
P̂
(
IA ⊗ (|+〉B + |−〉B)−W †

A ⊗ (|+〉B − |−〉B)
))

(4.250)

=
∫ ∞
−∞

2fsuc(q)dq P̂
(
IA −W †

A

2 ⊗ Πev |q〉C + IA +W †
A

2 ⊗ Πod |q〉C

)
. (4.251)

Once the phase error operator can be defined on systems A and C, we can follow
essentially the same analysis as that in Section 4.4, replacing M suc

ph with M ′suc
ph . This

also leads to replacing M [κ, γ] with M ′[κ, γ] defined as
M ′[κ, γ] := M ′suc

ph + κΠfid − γΠtrash
− , (4.252)

where Πfid and Πtrash
− are defined in Eqs. (4.129) and (4.130). Then, the only difference

to proceed the security proof is the operator inequality (4.138); we alternatively need
to show

M ′[κ, γ] ≤ B′(κ, γ)IAC , (4.253)
with a computable function B′(κ, γ). Eq. (4.253) will be shown in the next section.

Once we obtain B′(κ, γ), following the same line of argument as that in Section 4.4
leads to the definition of
U ′(F̌ , Ň trash) = psig(NB′(κ, γ) + δ1(ε/2))− psig

ptest
κF̌+ psig

ptrash
γ
(
Ň trashq− + δ2(ε/2; Ň trash)

)
,

(4.254)
which achieves

√
2(ε+ 2−s)-secrecy. Thus, we complete the finite-size security proof

based on the reverse reconciliation for this alternative protocol.
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4.5.4 Proof of the operator inequality
In this section, we prove the inequality (4.253) used in the security proof. We first

prove the following lemma.

Lemma 4.5.1. Let Π± be orthogonal projections which have rank no smaller than three
or infinite. Let M be a self-adjoint operator satisfying M = (Π+ + Π−)M(Π+ + Π−) ≤
α(Π+ + Π−), where α is a real constant. Let |ψ〉 be a vector satisfying (Π+ + Π−) |ψ〉 =
|ψ〉 and Π± |ψ〉 6= 0. Assume Π+ |ψ〉 is not proportional to the eigenvectors of Π±MΠ+
(if they have). Define the following quantities with respect to |ψ〉:

C± := 〈ψ|Π± |ψ〉 (> 0), (4.255)
λ±± := C−1

± 〈ψ|M±± |ψ〉 , (4.256)
λ+− := (C+C−)− 1

2 〈ψ|M+− |ψ〉 , λ−+ := λ∗+−, (4.257)

σ±+ :=
(
C−1

+ ‖M±+ |ψ〉 ‖2 − |λ±+|2
) 1

2 (> 0), (4.258)

σ±− := σ−1
±+

(
(C+C−)− 1

2 〈ψ|M+±M±− |ψ〉 − λ+−λ±±
)
, (4.259)

∆±− :=
(
C−1
− ‖M±− |ψ〉 ‖2 − |λ±−|2 − |σ±−|2

) 1
2 , (4.260)

where M++,M−−,M+−, and M−+ are given respectively by

M±± := Π±MΠ±, M+− := Π+MΠ−, M−+ := M †
+−. (4.261)

Then, for any real numbers γ±, we have

λsup(M + |ψ〉〈ψ| − γ+Π+ − γ−Π−) ≤ λsup(M6d), (4.262)

where M6d is given by

M6d :=



α− γ+ 0 0 ∆+− 0 0
0 α− γ+ σ++ σ+− 0 0
0 σ++ C+ + λ++ − γ+

√
C+C− + λ+− σ−+ 0

∆+− σ∗+−
√
C+C− + λ−+ C− + λ−− − γ− σ∗−− ∆−−

0 0 σ−+ σ−− α− γ− 0
0 0 0 ∆−− 0 α− γ−


.

(4.263)

Proof. We choose orthonormal vectors {|e(1)
± 〉 , |e

(2)
± 〉 , |e

(3)
± 〉} in the domains of Π±, re-

spectively, to satisfy √
C±

∣∣∣e(1)
±

〉
= Π± |ψ〉 , (4.264)

M
∣∣∣e(1)

+

〉
= (M++ +M−+)

∣∣∣e(1)
+

〉
= λ++

∣∣∣e(1)
+

〉
+ σ++

∣∣∣e(2)
+

〉
+ λ−+

∣∣∣e(1)
−

〉
+ σ−+

∣∣∣e(2)
−

〉
,

(4.265)
M
∣∣∣e(1)
−

〉
= (M+− +M−−)

∣∣∣e(1)
−

〉
= λ+−

∣∣∣e(1)
+

〉
+ σ+−

∣∣∣e(2)
+

〉
+ ∆+−

∣∣∣e(3)
+

〉
(4.266)

+ λ−−
∣∣∣e(1)
−

〉
+ σ−−

∣∣∣e(2)
−

〉
+ ∆−−

∣∣∣e(3)
−

〉
, (4.267)
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which is well-defined due to Eqs. (4.255)–(4.261) and M = (Π+ + Π−)M(Π+ + Π−).
Actually, Eqs. (4.258)–(4.260) are derived by taking inner product of appropriate pairs
among M±± |ψ〉 and M±∓ |ψ〉. Overall phases of |e(2)

± 〉 and |e(3)
± 〉 are taken so that σ±+

and ∆±− are non-negative. Since Π+ |ψ〉 is not proportional to the eigenvectors of
Π±MΠ+ by assumption, we have σ±+ > 0. From (Π+ + Π−) |ψ〉 = |ψ〉, we have

|ψ〉 =
√
C+

∣∣∣e(1)
+

〉
+
√
C−

∣∣∣e(1)
−

〉
. (4.268)

Let us now define following projection operators:
Π(j)
± :=

∣∣∣e(j)
±

〉〈
e

(j)
±

∣∣∣ (j = 1, 2, 3), (4.269)

Π(≥2)
± := Π± − Π(1)

± , (4.270)
Π(≥4)
± := Π(≥2)

± − Π(2)
± − Π(3)

± . (4.271)

Since Eqs. (4.265) and (4.267) imply (Π(≥4)
+ + Π(≥4)

− )M(Π(1)
+ + Π(1)

− ) = 0, we have
M = (Π+ + Π−)M(Π+ + Π−) (4.272)

= (Π(1)
+ + Π(1)

− )M(Π(1)
+ + Π(1)

− ) + (Π(2)
+ + Π(3)

+ + Π(2)
− + Π(3)

− )M(Π(1)
+ + Π(1)

− )
+ (Π(1)

+ + Π(1)
− )M(Π(2)

+ + Π(3)
+ + Π(2)

− + Π(3)
− ) + (Π(≥2)

+ + Π(≥2)
− )M(Π(≥2)

+ + Π(≥2)
− )

(4.273)
≤ λ++Π(1)

+ + λ−−Π(1)
− + λ+−

∣∣∣e(1)
+

〉〈
e

(1)
−

∣∣∣+ λ−+

∣∣∣e(1)
−

〉〈
e

(1)
+

∣∣∣
+
(
σ++

∣∣∣e(2)
+

〉〈
e

(1)
+

∣∣∣+ σ−+

∣∣∣e(2)
−

〉〈
e

(1)
+

∣∣∣+ σ+−

∣∣∣e(2)
+

〉〈
e

(1)
−

∣∣∣
+∆+−

∣∣∣e(3)
+

〉〈
e

(1)
−

∣∣∣+ σ−−
∣∣∣e(2)
−

〉〈
e

(1)
−

∣∣∣+ ∆−−
∣∣∣e(3)
−

〉〈
e

(1)
−

∣∣∣)+ ( h.c. )

+ α(Π(≥2)
+ + Π(≥2)

− ),

(4.274)

where h.c. denotes the hermitian conjugates of the terms in the preceding parenthesis.
The last inequality comes from M ≤ α(Π+ + Π−). Using Eq. (4.274), we have

M + |ψ〉〈ψ| − γ+Π+ − γ−Π− ≤M6d ⊕ (α− γ+)Π(≥4)
+ ⊕ (α− γ−)Π(≥4)

− , (4.275)

whereM6d is given in Eq. (4.263) with the basis {|e(3)
+ 〉 , |e

(2)
+ 〉 , |e

(1)
+ 〉 , |e

(1)
− 〉 , |e

(2)
− 〉 , |e

(3)
− 〉}.

Since α−γ± = 〈e(3)
± |M6d |e(3)

± 〉 ≤ λsup(M6d), the supremum of the spectrum of the right-
hand side of Eq. (4.275) is equal to the maximum eigenvalue of the six-dimensional
matrix M6d. We then obtain Eq. (4.262).

As a corollary of this lemma, we obtain the following.
Corollary 4.5.2. Let |β〉 be a coherent state. Let µth(β) and θ(µ, β) be as defined in
Eqs. (4.240) and (4.242), respectively. Suppose µ > µth(β) and θ(µ, β) 6= 0. Let Πev(od)
and M ′[κ, γ] be as defined in Section 4.5.3 with WA given in Eq. (4.243). Let M suc

ee ,
M suc

oo , M suc
eo , and M suc

oe be defined as follows:

M suc
ee :=

∫ ∞
−∞

2fsuc(q)dqΠev |q〉〈q|Πev, (4.276)

M suc
oo :=

∫ ∞
−∞

2fsuc(q)dqΠod |q〉〈q|Πod, (4.277)

M suc
eo :=

∫ ∞
−∞

2fsuc(q)dqΠev |q〉〈q|Πod, (4.278)

M suc
oe := M suc†

eo . (4.279)
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Define the following (real) parameters:

w+ := 1 + cos θ(µ, β)
2 , w− := 1− cos θ(µ, β)

2 , wz := sin θ(µ, β)
2 , (4.280)

Co := 〈β|Πod |β〉 = e−|β|
2 sinh |β|2, Ce := 〈β|Πev |β〉 = e−|β|

2 cosh |β|2, (4.281)

λoo := w+

Co
〈β|M suc

oo |β〉 , λee := w−
Ce
〈β|M suc

ee |β〉 , (4.282)

λoe := wz√
CoCe

〈β|M suc
oe |β〉 , λeo := wz√

CoCe
〈β|M suc

eo |β〉 = λ∗oe, (4.283)

σoo :=
(
w2

+
Co
‖M suc

oo |β〉 ‖2 − λ2
oo

) 1
2

, σeo :=
(
w2
z

Co
‖M suc

eo |β〉 ‖2 − λ2
eo

) 1
2

, (4.284)

σoe := σ−1
oo

(
w+wz√
CoCe

〈β|M suc
oo M

suc
oe |β〉 − λooλoe

)
, (4.285)

σee := σ−1
eo

(
w−wz√
CoCe

〈β|M suc
oe M

suc
ee |β〉 − λoeλee

)
, (4.286)

∆oe :=
(
w2
z

Ce
‖M suc

oe |β〉 ‖2 − λ2
oe − σ2

oe

) 1
2

, ∆ee :=
(
w2
−
Ce
‖M suc

ee |β〉 ‖2 − λ2
ee − σ2

ee

) 1
2

.

(4.287)

Define the following two matrices M (0)
6d and M (1)

6d .

M
(0)
6d :=



1 0 0 ∆oe 0 0
0 1 σoo σoe 0 0
0 σoo κCo + λoo κ

√
CoCe + λoe σeo 0

∆oe σoe κ
√
CoCe + λeo κCe + λee − γ σee ∆ee

0 0 σeo σee 1− γ 0
0 0 0 ∆ee 0 1− γ


, (4.288)

M
(1)
6d :=



1− γ 0 0 ∆oe 0 0
0 1− γ σoo −σoe 0 0
0 σoo κCo + λoo − γ κ

√
CoCe − λoe σeo 0

∆oe −σoe κ
√
CoCe − λeo κCe + λee −σee ∆ee

0 0 σeo −σee 1 0
0 0 0 ∆ee 0 1


. (4.289)

Define a convex function

B′(κ, γ) := max{λsup(M (0)
6d ), λsup(M (1)

6d )}. (4.290)

Then, for κ, γ ≥ 0, we have

M ′[κ, γ] ≤ B′(κ, γ)IAC . (4.291)
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Proof. From the form of WA in Eq. (4.243), we have∥∥∥∥I +WA

2 |+〉
∥∥∥∥2

=
∥∥∥∥I +WA

2 |−〉
∥∥∥∥2

= 1 + cos θ(µ, β)
2 = w+, (4.292)∥∥∥∥I −WA

2 |−〉
∥∥∥∥2

=
∥∥∥∥I −WA

2 |+〉
∥∥∥∥2

= 1− cos θ(µ, β)
2 = w−, (4.293)

− 〈−| I +W †
A

2
I −WA

2 |+〉 = −〈+| I −W
†
A

2
I +WA

2 |−〉

= 〈+| I +W †
A

2
I −WA

2 |−〉 = 〈−| I −W
†
A

2
I +WA

2 |+〉 = sin θ(µ, β)
2 = wz,

(4.294)

where w± are positive due to 0 < |θ(µ, β)| < π/2. Since σXAWA = W †
Aσ

X
A holds, the

operator acted by F †C→B(·) in Eq. (4.249) commutes with σXA ⊗σXB . Due to the form of
F †C→B(·), this means that M ′suc

ph commutes with σXA ⊗ exp(πin̂C), and so does M ′[κ, γ].
Therefore, we have

M ′[κ, γ] = Π(+,od),(−,ev)
AC M ′[κ, γ]Π(+,od),(−,ev)

AC +Π(−,od),(+,ev)
AC M ′[κ, γ]Π(−,od),(+,ev)

AC , (4.295)

where two orthogonal projections Π(+,od),(−,ev)
AC and Π(−,od),(+,ev)

AC are defined as

Π(+,od),(−,ev)
AC := |+〉〈+|A ⊗ Πod + |−〉〈−|A ⊗ Πev (4.296)

Π(−,od),(+,ev)
AC := |−〉〈−|A ⊗ Πod + |+〉〈+|A ⊗ Πev. (4.297)

Then we apply Lemma 4.5.1 to the operators Π(+,od),(−,ev)
AC M ′[κ, γ]Π(+,od),(−,ev)

AC and
Π(−,od),(+,ev)
AC M ′[κ, γ]Π(−,od),(+,ev)

AC , respectively. For Π(+,od),(−,ev)
AC M ′[κ, γ]Π(+,od),(−,ev)

AC , we
set

Π± = |±〉〈±|A ⊗ Πod(ev), (4.298)
M = Π(+,od),(−,ev)

AC M suc
ph Π(+,od),(−,ev)

AC (4.299)
= w+ |+〉〈+| ⊗M suc

oo + w− |−〉〈−| ⊗M suc
ee + wz (|+〉〈−| ⊗M suc

oe + |−〉〈+| ⊗M suc
eo ) ,

(4.300)
|ψ〉 =

√
κ |φerr〉AC , (4.301)

α = 1, γ+ = 0, γ− = γ, (4.302)

where |φerr〉AC is defined in Eq. (4.188). Since so-defined M only has continuous spec-
trum, we can apply Lemma 4.5.1 and obtain

λsup
(
Π(+,od),(−,ev)
AC M ′[κ, γ]Π(+,od),(−,ev)

AC

)
≤ λsup(M (0)

6d ). (4.303)

In the same way, we apply Lemma 4.5.1 to Π(−,od),(+,ev)
AC M ′[κ, γ]Π(−,od),(+,ev)

AC by setting

Π± = |∓〉〈∓|A ⊗ Πod(ev), (4.304)
M = Π(−,od),(+,ev)

AC M suc
ph Π(−,od),(+,ev)

AC (4.305)
= w− |−〉〈−| ⊗M suc

oo + w+ |+〉〈+| ⊗M suc
ee − wz (|−〉〈+| ⊗M suc

oe + |+〉〈−| ⊗M suc
eo ) ,

(4.306)
|ψ〉 =

√
κ |φcor〉AC , (4.307)

α = 1, γ+ = γ, γ− = 0, (4.308)
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where |φcor〉AC is defined in Eq. (4.189). Then, we observe

λsup
(
Π(−,od),(+,ev)
AC M ′[κ, γ]Π(−,od),(+,ev)

AC

)
≤ λsup(M (1)

6d ). (4.309)

Combining inequalities (4.303) and (4.309) completes the proof.

4.5.5 Numerical simulations

We compute (the lower bound of) the net key gain per pulse (i.e., key rate Ǧ)
against the transmission distance L with various values of excess noise ξ at the channel
output. The channel model is the same as that in Section 4.4. For simplicity, the
number Nsmp of the sampling rounds is set to be N/100, and the bit error correction
efficiency f is to be 0.95. The acceptance probability fsuc(q) is assumed to be a step
function with the threshold qth(> 0), i.e., Θ(q − qth). The expected amplitude of
coherent state β is chosen to be √ηµ. We set the security parameter εsct = 2−50, and
set εcor = εsec = εsct/2 and ε = 2−s = ε2

sec/4.
We set Ň suc, F̌ , Ň test, and Ň trash in the same way as in Section 4.4. We adopted

m = 1 and r = 0.4120 for the function Λm,r, which leads to (sup Λm,r, inf Λm,r) =
(2.824,−0.9932). We assume that the number of “success” sampling rounds Ň suc

smp is
equal to its expectation value (P+ + P−)Nsmp, where P± are defined in Eq (4.217).
We further assume that the number of bit errors Ěobs observed in the sampling rounds
is equal to its expectation value P−Nsmp. The upper bound ěub on the bit error rate
is thus set to be

ěub =
(
dM̂Ňsuc+Ňsuc

smp,Ň
suc
smp,εcor/2(Ěobs)e − Ěobs

)
/Ň suc, (4.310)

where M̂N,n,ε is defined in Corollary 4.2.12.
Under these assumptions, remaining parameters to be determined are two coeffi-

cients (κ, γ) and four protocol parameters (µ, qth, psig, ptest), which is the same as in
Section 4.4. We determined (κ, γ) via a convex optimization using CVXPY 1.0.25 and
(µ, qth, psig, ptest) via the Nelder-Mead in the scipy.minimize library in Python, for each
transmission distance L.

Figures 4.9 and 4.10 show the key rates against transmission distance over an op-
tical fiber with the attenuation rate η assumed to be 10−0.02L. Figure 4.9 shows that
under the condition of low excess noise (ξ = 0–10−4.0), our refined analysis offers higher
key rates and longer transmission distance than that of the previous section even in the
finite-key case. Furthermore, as shown in Figure 4.10 a, the logarithm of the asymp-
totic key rate in the pure-loss case (i.e., ξ = 0) achieves almost linear scaling against
transmission distance, which is known to be an optimal scaling allowed in the pure-loss
channel. However, when the excess noise ξ is as high as 10−3.0, the improvements in our
refined analysis are almost lost as shown in Figures 4.9 b and 4.10 b. Compared to four-
state variants of the protocol that are previously studied [GGDL19, LUL19, LLX+21],
our binary-modulation protocol is still fragile against excess noises.

Examples of optimized parameters are shown in Table 4.2. Overall, the key rates
in Table 4.2 are better than those in Table 4.1 especially for the long transmission
distances. Typical optimized values of the threshold qth range from 0.7 to 1.2, which
are larger than those of other analyses of protocols with post-selection (e.g., [LUL19])
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a) b)

Figure 4.9: The net key gain per pulse Ǧ (key rate) against the transmission distance L
of the optical channel with the refined security analysis in this section and the previous
analysis in Section 4.4. We assumed that the optical pulse that Bob receives is given
by randomly displacing a coherent state to increase its variance by a factor of (1 + ξ).
a) The asymptotic key rate for various values of ξ. In the figure, “Prev” denotes the
key rate computed with the previous analysis in Section 4.4 while ŇEC is given in
Eq. (4.223). b) The key rate for various values of ξ when the pulse number is finite
(N = 1012). “Prev” denotes that with the previous analysis.

but smaller than those in Section 4.4. The intensities µ of the input coherent states
are smaller in Table 4.2 than those in Table 4.1 for the longer transmission distances.
Taking smaller intensities for longer transmission distances may be the characteristic
feature of this analysis; optimal intensities for other asymptotic analyses are around
0.1–0.4 for over 100 km transmission distances [GGDL19, LUL19, LLX+21].

4.5.6 Discussion
We proposed a refined security analysis for the protocol proposed in Section 4.4

based on the reverse reconciliation. The motivating ideas of our refinement come
from the facts that the secret key can be distilled from the states from which the
entanglement cannot be distilled [HLLO06, RS07, HHH+08, Ren08, HHHO09, Koa09]
and the reverse reconciliation can increase the key rate for continuous-variable QKD
protocols [SRLL02]. To exploit the ideas, we developed the procedure of “twisting”
Alice’s system with the isometry VBA→BA′ controlled by the Z basis of Bob’s qubit,
while the techniques derived from similar ideas have already appeared in previous
works [HLLO06, Ren08, HHH+08, HHHO09, Koa09, BPLL20]. Our finding is that,
by using the twisting operation that minimizes the phase error probability for the
pure-loss channel, the protocol has asymptotically almost optimal scaling in the key
rates. This is the clear distinction from the result in Section 4.4; there, the logarithm
of the asymptotic key rate non-linearly decreases against transmission distance. The
improvement in the performance remains in the finite-key case but is lost under the
existence of excess noise as high as ξ = 10−3.0 at the channel output. This may limit the
feasibility of our binary-modulation protocol. In fact, weakness against excess noises
may be universal for binary-modulation continuous-variable QKD protocols [ZHRL09].
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a) b)

Figure 4.10: The net key gain per pulse Ǧ (key rate) against the transmission distance
L of the optical channel with our refined security analysis. We assumed that the optical
pulse that Bob receives is given by randomly displacing a coherent state to increase its
variance by a factor of (1+ξ). a) The key rate in a pure-loss channel (ξ = 0) for various
pulse numbers N . The solid black line shows the PLOB bound [PLOB17]. b) The key
rate in a channel with the excess noise ξ = 10−3.0 for various pulse numbers N .

Current theoretical progress in the continuous-variable QKD reveals that the discrete-
modulation continuous-variable QKD protocols with four types of modulation have
more tolerance against excess noise than those with binary modulation [GGDL19,
LUL19, LLX+21]. What is important is that our security proof can be extended to
the four-state protocols with binary outcomes, such as Protocol 2 in Ref. [LUL19] and
a protocol in Ref. [LLX+21], by replacing the bit-extracting measurements of these
protocols with the qubit-extracting maps as shown in Eq. (4.116) and defining the
corresponding phase error operator. This is, however, much more complicated than
the previous analysis, and we leave the problem as future work.

About the practicality of the protocol, reducing the total number 1012 of rounds
may be desired to save the cost of classical information processing. The finite-size per-
formance of our protocol may be improved by applying recently developed refinement
[Kat20] of the Azuma’s inequality [Azu67] that utilizes unconfirmed knowledge. What
is non-trivial for applying this is that the random variable in our application of Azuma’s
inequality can not directly be observed even at the end of the protocol. Whether we
can obtain a tighter bound using the refined concentration inequality [Kat20] with the
information accessible in our protocol is an open problem.
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Table 4.2: Examples of optimized parameters for the reverse reconciliation
Parameters for N = 1011 and ξ = 0
L [km] Key rate Ǧ (κ, γ) µ qth psig ptest

5 1.25× 10−1 (25.8, 1.09) 0.435 0.714 0.824 0.169
10 5.38× 10−2 (14.6, 0.527) 0.327 0.851 0.811 0.182
15 2.22× 10−2 (10.4, 0.262) 0.240 0.964 0.759 0.235
20 8.48× 10−3 (8.07, 0.129) 0.161 1.04 0.661 0.334
25 2.99× 10−3 (6.25, 0.068) 0.104 1.07 0.548 0.448
30 9.07× 10−4 (5.03, 0.039) 0.072 1.09 0.413 0.582
35 1.77× 10−4 (4.22, 0.024) 0.053 1.12 0.248 0.748

Parameters for N = 1011 and ξ = 10−3.0

L [km] Key rate Ǧ (κ, γ) µ qth psig ptest

5 1.03× 10−1 (14.9, 0.949) 0.389 0.750 0.849 0.142
10 4.10× 10−2 (9.14, 0.492) 0.305 0.890 0.830 0.162
15 1.31× 10−2 (6.47, 0.252) 0.233 1.03 0.765 0.226
20 1.91× 10−3 (4.80, 0.122) 0.164 1.15 0.561 0.428

Parameters for N = 1012 and ξ = 0
L [km] Key rate Ǧ (κ, γ) µ qth psig ptest

5 1.53× 10−1 (42.2, 1.21) 0.473 0.692 0.878 0.119
10 6.72× 10−2 (21.3, 0.553) 0.343 0.833 0.878 0.119
15 2.94× 10−2 (13.0, 0.266) 0.244 0.949 0.879 0.119
20 1.32× 10−2 (11.4, 0.132) 0.164 1.01 0.782 0.215
25 5.87× 10−3 (8.48, 0.070) 0.107 1.04 0.733 0.265
30 2.67× 10−3 (7.09, 0.040) 0.076 1.05 0.367 0.709
35 1.17× 10−3 (5.91, 0.025) 0.057 1.07 0.538 0.460
40 4.68× 10−4 (4.96, 0.016) 0.045 1.09 0.454 0.544
45 1.58× 10−4 (4.45, 0.011) 0.038 1.11 0.306 0.692
50 2.76× 10−5 (3.90, 0.0074) 0.032 1.13 0.165 0.834

Parameters for N = 1012 and ξ = 10−3.0

L [km] Key rate Ǧ (κ, γ) µ qth psig ptest

5 1.20× 10−1 (17.9, 0.996) 0.405 0.735 0.908 0.087
10 4.94× 10−2 (10.3, 0.502) 0.311 0.878 0.909 0.087
15 1.73× 10−2 (7.09, 0.255) 0.234 1.01 0.864 0.132
20 3.48× 10−3 (5.03, 0.123) 0.162 1.13 0.769 0.225

Examples of the parameters for a given pair of the total pulse number
N and the excess noise parameter ξ in the refined security analysis. The
variance of the quadrature operator q̂ for the vacuum state is 〈(∆q̂)2〉 = 1/2.
Given (N, ξ), protocol parameters (κ, γ, µ, qth, psig, ptest) are optimized for
each transmission distance L [km] so that the net key gain per pulse (key
rate) Ǧ is maximized.
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4.6 Conclusion for this chapter
In this chapter, the finite-size security of the binary-modulation continuous-variable

QKD protocol is established. The key to our achievement is the newly developed fidelity
estimation for the channel output using the heterodyne measurement in Section 4.4.1.
The fidelity as a measure of disturbance is essentially the same as what is monitored
through bit errors in the B92 protocol [Ben92, TKI03, Koa04], and thus we can apply
the proof techniques of the discrete-variable QKDs. This reduction has, however, non-
triviality in the operator inequality (4.138) or (4.253) due to its infinite dimensionality.
This is circumvented in Section 4.4.4 or 4.5.4 by constructing the heuristic but fairly
good upper bound that is essentially finite-dimensional on the considered operator.
These analyses are adapted to the digitization of the classical information processing;
the detectors with finite resolution can be treated in our security analysis with minimal
degradation to the protocol performance. In this sense, our security analysis is for
digital information processing while the information itself is carried by the continuous-
variable system.

While it is simple, the entanglement-distillation-based security proof developed in
Section 4.4 turns out not to be tight. A tighter analysis with improved performance
for the same protocol can be obtained via the reverse reconciliation in Section 4.5 at
the cost of an additional complication for the operator inequality (Section 4.5.4). This
refined analysis gives an almost optimal scaling of the asymptotic key rate against
transmission distance. Our refined analysis is still fragile against the excess noise;
Figure 4.10 b shows that the improvement of the performance with our refined analysis
is lost by the excess noise as high as ξ = 10−3.0 at the channel output. The key rates
under the higher excess noise shown in Figure 4.7 are not practical. This may be a fate
of the binary modulation protocol; the similar protocol considered in Ref. [ZHRL09]
shows similar behaviors under the existence of the excess noise.

To improve the performance under the existence of the excess noise, therefore, we
need to extend our finite-size analysis to protocols with more constellations. Among
other things, the four-state protocols have been shown to be more robust against the
excess noise [GGDL19, GGDL19, LLX+21]. Our analysis can, in principle, be extended
to the four-state protocols with binary outputs [LUL19, LLX+21], i.e., protocols that
use homodyne measurement to distinguish signals, by replacing the bit extraction with
the qubit extraction as shown in Eqs. (4.116). However, developing the operator in-
equalities that keep the robustness against excess noise of these protocols still has non-
triviality. A more challenging problem is to apply our finite-size security proof to the
four-state protocols with more than two outputs, such as a protocol in Ref. [GGDL19]
and Protocol 1 in Ref. [LUL19]. In this case, the definition of phase errors is already
non-trivial as opposed to those with binary outputs, and we have to develop more
elaborated finite-size security proof. Whether we can extend our techniques to these
protocols or protocols with even more constellations is still open. The results in this
chapter can thus be regarded as a first step for the complete security proofs for the
continuous-variable QKD with digitized information processing.



Chapter 5

Quantum computation with
continuous-variable systems

5.1 Introduction for this chapter
Quantum computation (QC) brings advantages over conventional classical compu-

tation in terms of computational speedups [HM17, AAB+19, BGK18] and stronger
security [BFK09, BFK10]. Continuous-variable systems, especially quantum optical
systems, have attracted growing interest as promising candidates for implementing QC.
Compared to other matter-based candidates for implementing QC such as supercon-
ducting qubits [Wen17, KKY+19] and ion traps [HRB08, BCMS19], characteristics of
the quantum optical architectures are scalability in generating quantum entanglement
among more than one million photonic modes [YYK+16] and flexibility in interacting
photons that fly in space, being free from geometrical constraints of two-dimensional
surfaces of the matters.

For fault-tolerant quantum computing, one needs to construct an error-correcting
routine to fight against the inevitable noise in the real world. Intensive research has thus
been made on continuous-variable error-correcting codes [LS98, Bra98, GKP01, Men14,
KKW+16, CMM99, NAC08, LKV+13, LRS16, LRS17, CLY97, KLM01, RHG05, WB07,
BvL16, MSB+16, NCS18, AND+18]. Among them, the Gottesman-Kitaev-Preskill
(GKP) code [GKP01], which encodes a qudit into an oscillator, gathers much atten-
tion in terms of both fault-tolerant continuous-variable QC [Men14, DMK+17, FTO17,
FTOF18, VAW+19, WMBM19, Wan19, NC20, TBMS20, HHK20] and continuous-
variable quantum communication [HP01, AND+18, NAJ18]. It needs only Gaussian
operations, which is tractable in the quantum optical experiments, to implement Clif-
ford gates (or even the universal gate set using protocols with a single type of GKP-
encoded state [BPA+19]), and it is highly robust against loss errors as well as random
displacement errors [FTO17, NAJ18].

In this chapter, we first show the equivalence between different conventional ap-
proximations of the GKP code. (The reason why approximations are needed will be
explained in detail later.) This bridges the gap of previous studies that were based
on different approximations. We then develop the strategy of efficiently implement-
ing the universal QC with the GKP code and Gaussian operations, which is suited
for optical systems. The chapter is organized as follows. Section 5.2.2 summarizes
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the preliminaries about the GKP code. Sections 5.3 and 5.4 are the results of this
thesis. In Section 5.3, the equivalence between the conventional approximations of
the GKP code is proved, and the standard form of the approximate GKP codes is
introduced. Furthermore, the explicit forms of the normalization constants and the
average photon numbers of the approximate GKP code are derived in terms of the
standard form. In Section 5.4, a resource-efficient implementation of the universal QC
with a single type of GKP-encoded state and the Gaussian operations is constructed.
A comparison between our construction and the previous proposal is discussed from a
resource-theoretic perspective. Especially, the degree of non-Gaussianity of the approx-
imate GKP-encoded state is computed numerically using the standard form developed
in Section 5.3. Based on the existing proposals of preparing GKP-encoded states, we
further discuss the feasibility of our constructed protocol. (Sections 5.3 and 5.4 are
based on the publications [MYK20] and [YMK20] 1.)

5.2 Notations and preliminaries

5.2.1 Qudit, the Pauli group, and the Clifford group
Qudit is a quantum system characterized by the d-dimensional Hilbert space. It is

the generalization of the qubit. Let {|j〉 : j = 0, . . . , d− 1} be an orthonormal basis of
a qubit. Then, we can define the (generalized) Pauli-Z and -X operators by

Z |j〉 = exp(2πij/d) |j〉 , X |j〉 = |j + 1〉 , (5.1)

where the summation is modulo d. The commutation relation between Z and X are
thus given by ZX = exp(2πi/d)XZ. The group generated by Z, X, and iI is called
the (generalized) Pauli group. Note that the global phase factor iI is irrelevant in
quantum theory.

In QC, the normalizer of the Pauli group called the Clifford group plays an impor-
tant role. In the case of the qubit, the Clifford group is generated by the Hadamard
gate H, the phase gate S, and the CNOT gate given respectively by

H = 1√
2

(
1 1
1 −1

)
, (5.2)

S =
(

1 0
0 i

)
, (5.3)

CNOT = |0〉〈0|1 ⊗ I2 + |1〉〈1|1 ⊗ σ
X
2 . (5.4)

These gates transform the Pauli-Z and -X operators by the adjoint actions as follows:

H†σZH = σX , H†σXH = σZ , (5.5)
S†σZS = σZ , S†σXS = −σY = iσZσX , (5.6)

CNOT†(σZ1 ⊗ I2)CNOT = σZ1 ⊗ I2, CNOT†(σX1 ⊗ I2)CNOT = σX1 ⊗ σX2 , (5.7)
CNOT†(I1 ⊗ σZ2 )CNOT = σZ1 ⊗ σZ2 , CNOT†(I1 ⊗ σX2 )CNOT = I1 ⊗ σX2 . (5.8)
1Copyright (2020) by The American Physical Society



5.2. Notations and preliminaries 87

It is known that all the unitaries on an N -qudit system can be approximately gen-
erated by the combination of Clifford gates and a non-Clifford gate in an arbitrary ac-
curacy [NC10, KSVV02, DN05], while cannot be by only Clifford gates [Got98, AG04].
The set of gates that can approximately generate an arbitrary N -qudit unitary is called
the universal gate set.

5.2.2 The Gottesman-Kitaev-Preskill code
In this chapter, we add a subscript of the basis choice instead of the system to a

state vector for clarity, e.g., |ψ〉f for the Fock basis and |q〉q̂ for the quadrature “basis”
in the sense of Eq. (3.9). (Strictly speaking, |·〉q̂ is not an element of the Hilbert space
for the oscillator mode, so it should be regarded as a weak limit of the squeezed coherent
state as the squeezing parameter, i.e., ξ in Eq. (3.91), goes to infinity.) Exceptionally,
the state vector with no subscripts denotes the GKP-encoded state. The GKP code
[GKP01] is an error-correcting code that encodes a qudit into an oscillator mode. It
has a lattice-like periodic structure when represented in the phase space; the Wigner
function of the code states |j〉 and |j + 1〉 have the same period, but |j + 1〉 is shifted
from |j〉 by 1

d
of the period in position, where j ∈ {0, . . . , d − 1}. The ideal (square

lattice) GKP logical basis states {|j(ideal)〉 : j = 0, . . . , d− 1} are defined as [GKP01]

|j(ideal)〉 :=
√
αd

∑
s∈Z
|α(ds+ j)〉q̂ , (5.9)

where |·〉q̂ denotes the position “basis”, and the pre-factor
√
αd is for later convenience.

It is not actually an element of the Hilbert space; how to treat it is explained later. In
the position wave function representation, it has a comb-like shape consisting of the
Dirac delta functions (i.e., a Dirac comb) at intervals αd, and |j + 1(ideal)〉 is shifted
from |j(ideal)〉 by α. In the momentum representation, the logical basis states are given
by

|j(ideal)〉 =
∫
dy
√
αd

∑
s∈Z
|y〉〈y|p̂ |α(ds+ j)〉q̂ (5.10)

=
√
αd

2π

∫
dy

∑
s∈Z

e−iα(ds+j)p |y〉p̂ (5.11)

=
√

2παd
∫
dy

∑
t∈Z

δ(αdy − 2πt)e−ijαp |y〉p̂ (5.12)

=
√

2π
αd

∑
t∈Z

e−i
2πjt
d |2πt/(αd)〉p̂ , (5.13)

where we used the Poisson summation formula ∑s∈Z e
−isx = 2π∑t∈Z δ(x − 2πt). The

parameter α is often chosen to be

α =
√

2π
d

=: αd, (5.14)

in order to symmetrize the code space in position and momentum coordinates in the
phase space [GKP01], where the “symmetric code” is defined as follows.
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Definition 5.2.1 (The code that is symmetric in position and momentum coordinates
in the phase space). Let {|j〉 : j = 0, . . . , d − 1} be the logical qudit basis encoded in
an oscillator mode. The code is symmetric in position and momentum coordinates if
it satisfies

span{|j〉 : j = 0, . . . , d− 1} = span{R(π/2) |j〉 : j = 0, . . . , d− 1}, (5.15)

where R(π/2) denotes the Fourier transform defined in Eq. (3.83).

Note that we can use R(−π/2) instead of R(π/2) in the definition. We also adopt
Eq. (5.14) in the following. The symmetric code is beneficial if we aim at not bias-
ing logical-level errors caused by physical-level phase-insensitive errors, that is, errors
that occur symmetrically in position and momentum coordinates in the phase space.
Furthermore, this definition implies that the Fourier transform R(π/2) is an element
of the stabilizer or a logical operator of the code since it preserves the code space.
This symmetrization of the code is meaningful even when the logical basis states are
nonorthogonal, which is the case in approximate GKP codes.

The ideal GKP code can be regarded as a stabilizer code. The stabilizer generators
are given by the two commuting displacement operators Xst := X(αdd) and Zst :=
Z(2π/αd) = Z(αdd), where X(s) := exp(−isp̂) and Z(t) := exp(itq̂) are introduced
in Eq. (3.2). The logical Pauli-X and Z operators can be defined as XL := X(αd)
and ZL := Z(2π/(αdd)) = Z(αd), which satisfy ZLXL = exp(2πi/d)XLZL as expected.
The GKP-encoded states defined in Eq. (5.9) are stabilized by Xst and Zst, and are the
eigenstates of the logical operator ZL. The logical Clifford operators on the GKP code
can be realized by the (symplectic) linear transformation of the quadrature operators
q̂ and p̂ since logical Pauli operators are of the form exp[i(aq̂ + bp̂)] (a, b ∈ R) up to
a global phase. As explained in Section 3.1, the symplectic linear transformation of
the quadrature gates can be implemented by Gaussian unitaries. Therefore, the logical
Clifford gates on the GKP-encoded states can be realized by the Gaussian unitaries,
which are reliably implementable in the quantum optical system. This is one of the
advantages of using the GKP code in quantum optical systems.

For the GKP code with d = 2, the Gaussian unitaries that correspond to the logical
H, S, and CNOT gates are given respectively by [GKP01]

H −→ exp(πin̂/2)(= R(π/2)), (5.16)
S −→ exp(iq̂2/2), (5.17)

CNOT −→ exp(−iq̂1p̂2). (5.18)

These relations are understood by noticing that the following transformation rules hold:

R(−π/2)ZLR(π/2) = XL, R(−π/2)XLR(π/2) = Z(−αd) = Z†L = ZLZ
†
st,
(5.19)

e−iq̂
2/2ZLe

iq̂2/2 = ZL, e−iq̂
2/2XLe

iq̂2/2 = e−iαdq̂−iαdp̂ = iZLX
†
L = iZLXLX

†
st,

(5.20)
eiq̂1p̂2(ZL ⊗ IL)e−iq̂1p̂2 = ZL ⊗ IL, eiq̂1p̂2(XL ⊗ IL)e−iq̂1p̂2 = XL ⊗X†L = XL ⊗XLX

†
st,

(5.21)
eiq̂1p̂2(IL ⊗ ZL)e−iq̂1p̂2 = ZL ⊗ ZL, eiq̂1p̂2(IL ⊗XL)e−iq̂1p̂2 = IL ⊗XL, (5.22)
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where we used Eqs. (3.6) and (3.83). We see that they are equivalent to Eqs. (5.5)–
(5.8) up to the stabilizer elements Xst and Zst. The logical Z-basis measurement for
the GKP code should distinguish |0(ideal)〉 and |1(ideal)〉 state. This can be achieved by
performing the q-homodyne measurement, which always outputs an integer multiple
of
√
π for the GKP-encoded state. If the outcome is an even(odd) integer multiple of√

π, then we know that |0(1)(ideal)〉 is observed. In fact, all the Pauli measurements can
be realized by the homodyne measurements with appropriate directions in the phase
space.

Using the stabilizer generators and logical Pauli operators, we have an alternative
expression of the ideal GKP logical state as follows [GKP01, AND+18]:

|j(ideal)〉 = (2d)− 1
4

ϑ(0, id)
∑
s1∈Z
s2∈Z

X(αd(ds1 + j))Z(αds2) |0〉f (5.23)

= (2d)− 1
4

ϑ(0, id)XL
j

(
d−1∑
l=0

ZL
l

) ∑
s1∈Z
s2∈Z

Xst
s1Zst

s2 |0〉f (5.24)

=: XL
j

(
d−1∑
l=0

ZL
l

)
PGKP |0〉f , (5.25)

where ϑ(0, id) = ∑
s∈Z exp(−πds2) is the theta function, which will be explained later,

and the last line defines an operator PGKP, which is interpreted as the projection onto
the code space ignoring the normalization. The consistency with Eq. (5.9) can be
confirmed as follows [AND+18]:

(2d)− 1
4

ϑ(0, id)
∑
s1∈Z
s2∈Z

X(αd(ds1 + j))Z(αds2) |0〉f

= (2d)− 1
4

ϑ(0, id)
∑
s1∈Z
s2∈Z

∫
dq eiqαds2 |q + αd(ds1 + j)〉〈q|q̂ |0〉f (5.26)

= (2πd)− 1
4

ϑ(0, id)
∑
s1∈Z
s2∈Z

∫
dq e−

1
2 q

2+iqαds2 |q + αd(ds1 + j)〉q̂ (5.27)

=
√

2παd
ϑ(0, id)

∑
s1∈Z
s′2∈Z

∫
dq e−

1
2 q

2
δ(qαd + 2πs′2) |q + αd(ds1 + j)〉q̂ (5.28)

=
√
αdd

ϑ(0, id)
∑
s1∈Z
s′2∈Z

e−πds
′2
2
∣∣∣q + αd

(
d(s1 − s′2) + j

)〉
q̂

(5.29)

=
√
αdd

∑
s′1∈Z
|q + αd(ds′1 + j)〉q̂ (5.30)

= |j(ideal)〉 , (5.31)

where we used 〈q|0〉f = π−
1
4 exp(−q2/2) in the second equality, used the Poisson sum-

mation formula ∑s2∈Z e
−is2x = 2π∑s′2∈Z δ(x− 2πs′2) in the third equality, and defined

s′1 := s1 − s′2 in the fifth equality.
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p
⇡

2
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W|0ih0|
<latexit sha1_base64="MsIveH2HKVz2cg7zlCED4pY8524=">AAACN3icbVBNT8JAEN3iF6Io4NFLIzHxRFo00SPRi8YLJvKRACHbZYAN226zOzWShr/iVf+CP8WTN+PVf+AWehBwks2+vDeTN/O8UHCNjvNhZTY2t7Z3sru5vf38wWGhWGpqGSkGDSaFVG2PahA8gAZyFNAOFVDfE9DyJjeJ3noCpbkMHnEaQs+no4APOaNoqH6h1OrH3XvA2Jl1rxU136xfKDsVZ172OnBTUCZp1ftFK98dSBb5ECATVOuO64TYi6lCzgTMct1IQ0jZhI6gY2BAfdC9eL78zD41zMAeSmVegPac/TsRU1/rqe+ZTp/iWK9qCfmf1olweNWLeRBGCAFbGA0jYaO0kyTsAVfAUEwNoExxs6vNxlRRhiavJRdP0Qng0h1x4odSCr1Me56fBOiuxrUOmtWKe16pPlyUa3dplFlyTE7IGXHJJamRW1InDcLIM3khr+TNerc+rS/re9GasdKZI7JU1s8vriusog==</latexit>

p
⇡

2
<latexit sha1_base64="RtjMvSY5+nEjVlzpuYOpTnak0SY=">AAACEXicbZA7SwNBEMfnfMb4Oh+dzWEQBCHcxULLgBaWEcwDkiPsbfaSJXt75+6eEI77CjZ+BnsLGwuD2FoIdn4XETeXFJo4y8Jv/zPD7Py9iFGpbPvTmJtfWFxazq3kV9fWNzbNre2aDGOBSRWHLBQND0nCKCdVRRUjjUgQFHiM1L3+2ShfvyFC0pBfqUFE3AB1OfUpRkpLobkL9+CDAAQYEs0SrvVLZRwBhVSfBEqQts2CXbSzsGbBmUChfPQ1RO/fD5W2+dHqhDgOCFeYISmbjh0pN0FCUcxImm/FkkQI91GXNDVyFBDpJtlGqXWglY7lh0JfrqxM/d2RoEDKQeDpygCpnpzOjcT/cs1Y+aduQnkUK8LxeJAfM0uF1sgeq0MFwYoNNCAsqP6rhXtIIKy0iXltgjO98izUSkXnuFi6dArlcxhHDvZgHw7BgRMowwVUoKoNv4VHeIahcWc8GS/G67h0zpj07MCfMN5+AMzKnIU=</latexit>

W|HihH|
<latexit sha1_base64="GKQbYEiZ0NfGvPQTXohnqamQSVo=">AAACN3icbVBNT8JAEN36iSgKePTSSEw8kRZN9Ej0gvGCiXwkQMh2GWDDttvsTo2k6V/xqn/Bn+LJm/HqP3ALHAScZLMv783kzTwvFFyj43xYG5tb2zu7mb3s/kHu8ChfKDa1jBSDBpNCqrZHNQgeQAM5CmiHCqjvCWh5k9tUbz2B0lwGjzgNoefTUcCHnFE0VD9fbPXj7j1gXEu6N4qaL+nnS07ZmZW9DtwFKJFF1fsFK9cdSBb5ECATVOuO64TYi6lCzgQk2W6kIaRsQkfQMTCgPuhePFs+sc8MM7CHUpkXoD1j/07E1Nd66num06c41qtaSv6ndSIcXvdiHoQRQsDmRsNI2CjtNAl7wBUwFFMDKFPc7GqzMVWUoclrycVTdAK4dEec+qGUQi/TnuenAbqrca2DZqXsXpQrD5el6t0iygw5IafknLjkilRJjdRJgzDyTF7IK3mz3q1P68v6nrduWIuZY7JU1s8vA0Ks0g==</latexit>

p
⇡

2
<latexit sha1_base64="RtjMvSY5+nEjVlzpuYOpTnak0SY=">AAACEXicbZA7SwNBEMfnfMb4Oh+dzWEQBCHcxULLgBaWEcwDkiPsbfaSJXt75+6eEI77CjZ+BnsLGwuD2FoIdn4XETeXFJo4y8Jv/zPD7Py9iFGpbPvTmJtfWFxazq3kV9fWNzbNre2aDGOBSRWHLBQND0nCKCdVRRUjjUgQFHiM1L3+2ShfvyFC0pBfqUFE3AB1OfUpRkpLobkL9+CDAAQYEs0SrvVLZRwBhVSfBEqQts2CXbSzsGbBmUChfPQ1RO/fD5W2+dHqhDgOCFeYISmbjh0pN0FCUcxImm/FkkQI91GXNDVyFBDpJtlGqXWglY7lh0JfrqxM/d2RoEDKQeDpygCpnpzOjcT/cs1Y+aduQnkUK8LxeJAfM0uF1sgeq0MFwYoNNCAsqP6rhXtIIKy0iXltgjO98izUSkXnuFi6dArlcxhHDvZgHw7BgRMowwVUoKoNv4VHeIahcWc8GS/G67h0zpj07MCfMN5+AMzKnIU=</latexit>
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Figure 5.1: The Wigner function of the ideal GKP state |0(ideal)〉, where each blue filled
circle represents a positive delta function δ(r) with r = (q, p) and each red circled
X represents a negative delta function −δ(r). This Wigner function has periodicity,
where the gray region shows a period.

In the phase space, the Wigner function of the state |j(ideal)〉 is given by [GKP01]

W|j(ideal)〉〈j(ideal)|(q, p)

= 1
2
∑
t∈Z
t′∈Z

e−πitt
′
δ

(
p− αdt

2

)
δ

(
q − αddt

′

2 − αdj
)

(5.32)

= 1
2
∑
t∈Z
t′∈Z

δ

(
p+ αdt

2

)[
δ

(
q − αdd

(
t′ + j

d

))
+ (−1)t δ

(
q − αdd

(
t′ + j

d
+ 1

2

))]
.

(5.33)

Figure 5.1 shows the schematics of the ideal GKP logical basis state |0(ideal)〉. This
shows that the Wigner function of the ideal logical basis states forms a square lattice
consisting of Dirac delta functions, which has half the period of the Dirac comb in the
position and momentum representations. Since its sublattice formed of the odd periods
starting from (q, p) = (αdj, 0) consists of the Dirac delta functions with negative signs,
the comb for the odd periods in position cancels out when integrated over momentum,
and vice versa.
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5.3 On the equivalence of approximate Gottesman-
Kitaev-Preskill codes

As defined so far, the ideal GKP-encoded states are non-normalizable and thus
unphysical. (All the relations described so far are formal.) The ideal GKP code
should be regarded as a limit of physically meaningful approximate codes. Vari-
ous approximations of the GKP-encoded states are considered in the past literature
[GKP01, PMVT04, GK06, VSG10, Men14, AND+18, NAJ18, WT18]. The following
three approximations are conventionally used.

(Approximation 1)

|j(1)
κ,∆〉 := 1√

N
(1)
κ,∆,j

∑
s∈Z

e−
1
2κ

2α2
d(ds+j)2

X(αd(ds+ j))S(− ln ∆) |0〉f , (5.34)

where κ,∆ > 0, N (1)
κ,∆,j is a normalization constant, and S(ξ) is the squeezing operator

defined in Eq. (3.84). This approximate code state approaches the ideal one as the
limit of κ,∆→ 0. This approximation first appeared in the original paper of the GKP
code [GKP01]. The idea of this approximation is to replace the position “eigenstates”
with squeezed coherent states with a squeezing parameter ln(1/∆) and superpose them
with a Gaussian weight of the width 1/κ. This gives us an insight on how to generate
the GKP-encoded state experimentally [MBGM17].

(Approximation 2)

|j(2)
γ,δ〉 := 1√

N
(2)
γ,δ,j

∫∫ dr1dr2

2πγδ e
−

r21
2γ2−

r22
2δ2 V (r) |j(ideal)〉 , (5.35)

where γ and δ satisfy 0 < γδ < 2, and V (r) := exp(−ir1r2/2)Z(r1)X(r2). This ap-
proximate code state approaches the ideal one as γ, δ → 0. This approximation also
appeared in the original paper to regard the approximation as an error, and treat

1
2πγδe

−
r21

2γ2−
r22
2δ2 as an error “wave function” [GKP01]. They use the term “wave func-

tion” because the state given in Eq. (5.35) is not an ideal code state subject to the
error caused by the random displacement channel, but a coherent superposition of ran-
domly displaced ideal code states. The error “wave function” later turned out to have
more profound meanings; it is actually a wave function in the “grid representation”
[GM96, KKW+16, TW16, DTW17, WT18], which is an analogous representation to the
position representation, but with respect to the so-called “shifted grid states” instead
of position eigenstates. In Appendix A, we make remarks on the “grid representation”
in terms of the representation theory of the Heisenberg group.

(Approximation 3)
|j(3)
β 〉 := 1√

N
(3)
β,j

e−β(n̂+ 1
2) |j(ideal)〉 , (5.36)

where β satisfies β > 0, and it approaches the ideal code state as β → 0. Contrary
to the former two approximations, Approximation 3, first appearing in Ref. [Men14],
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Figure 5.2: The theta function in the form of Eq. (5.39) with respect to x when b = 1/2
and t = 1/15 (blue solid line), and when b = 1/2 and t = 1/3 (yellow dashed line). The
theta function in this form is a sequence of the same Gaussian functions with respect
to x which has peaks at b, b±1, b±2, . . ., and the width of each Gaussian is determined
by t as shown in the figure. Note that Eq. (5.39) approaches the Dirac comb as t→ 0.

only deals with symmetric envelope in position and momentum coordinates. Since the
approximation factor e−β(n̂+ 1

2) is diagonal in the Fock basis, this approximation may
be useful for computing the statistical properties of operators which are diagonal in
the Fock basis, as shown in Ref. [Men14]. On the other hand, though this approximate
code state could conceptually be prepared by feeding the ideal code states to the
beamsplitter followed by post-selecting the vacuum click at the idler port [NAJ18], it
provides few implications about their realistic experimental generation.

In this section, we prove that all the three approximations listed above are equiv-
alent up to the squeezing. Before going into the proofs, we summarize the relevant
functions used in this chapter. For z ∈ C and τ ∈ C satisfying Im(τ) > 0, let
ϑ(z, τ) := ∑

s∈Z exp(πiτs2 + 2πizs) be the theta function (we follow the notation in
Ref. [MM07]), and

ϑ
[a
b

]
(z, τ) :=

∑
s∈Z

exp[πiτ(s+ a)2 + 2πi(z + b)(s+ a)] (5.37)

= exp[πiτa2 + 2πia(z + b)]ϑ(z + τa+ b, τ) (5.38)

be the theta function with rational characteristics (a, b) [MM07]. The theta functions
which we mainly use are in the form

ϑ
[0
b

]
(x, it), (5.39)

where x, t ∈ R, and b ∈ Q. The theta function in this form is a sequence of the same
Gaussian functions with respect to x which has peaks at b, b ± 1, b ± 2, . . ., and the
width of each Gaussian is determined by t as shown in Fig. 5.2. Note that Eq. (5.39)
approaches the Dirac comb as t → 0. Let Gσ2(x) be a probability density function of
the normal distribution with variance σ2, which is defined as

Gσ2(x) := 1√
2πσ2

exp
(
− x2

2σ2

)
. (5.40)
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Finally, let f ∗ g(x) :=
∫
dy f(y)g(x − y) denote the convolution of two functions f(x)

and g(x).

5.3.1 Position and momentum representations
In order to determine the relationship among the three approximations, we derive

the position and momentum representations of the approximate code states. Note that
the position and momentum representations of Approximation 1 have already appeared
in the past literature [GKP01, TM02, PMVT04, VSG10, KKW+16, TW16, MBGM17,
DMK+17, WT18, PBM20], but we rewrite them for completeness. For this purpose,
we define the following functions.

Definition 5.3.1. Define Eµ,Γ,a(x) and Ẽµ,Γ,a(x) as

Eµ,Γ,a(x) :=
∑
s∈Z

exp
(
−(s+ a)2Γ2

2µ

)
δ(x− (s+ a)Γ) , (5.41)

Ẽµ,Γ,a(x) :=
∑
s∈Z

exp
(
−s

2Γ2

2µ + 2πias
)
δ(x+ sΓ) . (5.42)

The function Eµ,Γ,a(x) is a Dirac comb with its interval given by Γ, which is
shifted by the rational a of the interval from the origin and weighted by the Gaus-
sian exp(−x2/(2µ)) of the width µ. It can also be interpreted as a Fourier transform
of the theta function in the form of 1√

2πϑ
[a

0

](
Γ
2πx,

iΓ2

2πµ

)
with respect to x, which can

be confirmed by its definition Eq. (5.37). On the other hand, the function Ẽµ,Γ,a(x),
a Dirac comb with the Gaussian weight which has a phase factor for each peak, is a
Fourier transform of the theta function in the form of 1√

2πϑ
[0
a

](
− Γ

2πx,
iΓ2

2πµ

)
, which can

also be confirmed by Eq. (5.37).
Now, under Definition 5.3.1, we show the following proposition.

Proposition 5.3.2 (The position representation). Let κ,∆, β > 0 and 0 < γδ < 2.
Define λ(γ, δ) := 1 + γ2δ2

4 . Then, the position representations of the states Eqs. (5.34),
(5.35), and (5.36) are given as follows:

• (Approximation 1)

〈q|j(1)
κ,∆〉 =

2
√
π∆2

N
(1)
κ,∆,j

 1
2

E 1
κ2 ,αdd,

j
d
∗G∆2(q) (5.43)

=
 2
√
π∆2

κ2dN
(1)
κ,∆,j

 1
2

G 1+κ2∆2
κ2

(q) ϑ
[

0

j/d

](
− q

αdd(1 + κ2∆2) ,
i∆2

d(1 + κ2∆2)

)
.

(5.44)
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• (Approximation 2)

〈q|j(2)
γ,δ〉 =

 αdd

λ(γ, δ)N (2)
γ,δ,j

 1
2

E
λ(γ,δ)
γ2

(
1− γ2δ2

2λ(γ,δ)

)2
, αdd

(
1− γ2δ2

2λ(γ,δ)

)
, j
d

∗G δ2
λ(γ,δ)

(q) (5.45)

=
αdγ−2

N
(2)
γ,δ,j

 1
2

Gλ(γ,δ)
γ2

(q) ϑ
[

0

j/d

](
− q

αdd

[
1− γ2δ2

2λ(γ, δ)

]
,

iδ2

dλ(γ, δ)

)
. (5.46)

• (Approximation 3)

〈q|j(3)
β 〉 =

 αdd

cosh β N (3)
β,j

 1
2

E 1
sinh β cosh β ,

αdd

cosh β ,
j
d

∗Gtanhβ(q) (5.47)

=
 αd

sinh β N (3)
β,j

 1
2

G 1
tanh β

(q) ϑ
[

0

j/d

](
− q

αdd cosh β ,
i tanh β

d

)
. (5.48)

For each approximation, we gave the two expressions in which we smear the Dirac
delta functions in the definition of the ideal GKP-encoded state with the Gaussian
functions in different orders. In the expressions (5.43), (5.45), and (5.47), each peak
of the Dirac comb, which is weighted by a Gaussian as shown in the definition of
Eµ,Γ,a, is convoluted with another GaussianGν(q). In the alternative expressions (5.44),
(5.46), and (5.48), the infinite sequence of Gaussian spikes as defined in ϑ

[0
a

]
(q, it) is

multiplied by another Gaussian function Gν′(q) which works as an overall envelope.
The expressions (5.43), (5.45), and (5.47) are suited for understanding the physical
structure of the approximation such as the interval of the neighboring Gaussian peaks.
The alternative expressions (5.44), (5.46), and (5.48) are convenient for numerical
calculations because algorithms to calculate the theta function with arbitrary precision
are well known [DHB+04].
Sketch of the proof. We derive Eqs. (5.43), (5.45), and (5.47) with straightforward but
cumbersome calculations, and then apply the following lemma to derive Eqs. (5.44),
(5.46), and (5.48).

Lemma 5.3.3. For µ, ν > 0, Γ ∈ R, and a ∈ Q, the following equality holds:

Eµ,Γ,a ∗Gν(q) =
√

2πµ
Γ2 Gµ+ν(q) ϑ

[0
a

](
− q

(1 + ν/µ)Γ ,
2πiν

(1 + ν/µ)Γ2

)
, (5.49)

Ẽµ,Γ,a ∗Gν(q) =
√

2πµ
Γ2 Gµ+ν(q) ϑ

[a
0

](
− q

(1 + ν/µ)Γ ,
2πiν

(1 + ν/µ)Γ2

)
(5.50)

The full proof of Proposition 5.3.2 as well as the proof of Lemma 5.3.3 is in Ap-
pendix B.1.

Under Definition 5.3.1, the momentum representations of the approximate code
states can also be given by the following corollary.

Corollary 5.3.4 (The momentum represenation). Let κ,∆, β > 0 and 0 < γδ < 2. Let
λ(γ, δ) := 1 + γ2δ2

4 . Then, the momentum representations of the states (5.34), (5.35),
and (5.36) are given as follows:
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• (Approximation 1)

〈p|j(1)
κ,∆〉 =

 2
√
π∆2

(1 + κ2∆2)dN (1)
κ,∆,j

 1
2

Ẽ 1
∆2(1+κ2∆2)

,
αd

1+κ2∆2 ,
j
d
∗G κ2

1+κ2∆2
(p). (5.51)

• (Approximation 2)

〈p|j(2)
γ,δ〉 =

 αd

λ(γ, δ)N (2)
γ,δ,j

 1
2

Ẽ
λ(γ,δ)
δ2

(
1− γ2δ2

2λ(γ,δ)

)2
, αd

(
1− γ2δ2

2λ(γ,δ)

)
, j
d

∗G γ2
λ(γ,δ)

(p). (5.52)

• (Approximation 3)

〈p|j(3)
β 〉 =

 αd

cosh β N (3)
β,j

 1
2

Ẽ 1
sinh β cosh β ,

αd
cosh β ,

j
d
∗Gtanhβ(p). (5.53)

Here, we only write the expressions in terms of Ẽµ,Γ,a, but the expressions in terms of
the theta function can also be obtained by applying Lemma 5.3.3 to these expressions.

Proof. We use the fact that the momentum representation of a state is a Fourier trans-
form of its position representation, i.e., 〈p|j〉 = 1√

2π
∫
dq e−ipq 〈q|j〉. We can thus derive

Eqs. (5.51), (5.52), and (5.53) as Fourier transforms of Eqs. (5.44), (5.46), and (5.48),
respectively, exploiting the fact that the Fourier transform of the product of two func-
tions is given by the convolution of the Fourier transforms of the respective functions,
and the Fourier transform of 1√

2πϑ
[0
a

](
− Γ

2πx,
iΓ2

2πµ

)
is Ẽµ,Γ,a while the Fourier transform

of Gν is
√

1/ν G 1
ν
.

5.3.2 Explicit relations among the three approximations
The position and momentum representations of the three different approximate

GKP logical basis states lead to conditions for equivalence of these approximations.
Since Eµ,Γ,a ∗Gν(x) denotes the array of the Gaussian spikes Gν(x) at intervals Γ, one
can notice from Eqs. (5.45) and (5.47) that the intervals of the Gaussian spikes of the
approximate code states are narrower than those of the ideal one, αdd, in the case of
Approximations 2 and 3. Furthermore, from Eqs. (5.52) and (5.53), the intervals of
the Gaussian spikes of each of these approximate code states in the momentum rep-
resentations get narrower in the same proportion as that of their respective position
representations. With this observation, Approximation 3, which has symmetric enve-
lope functions in position and momentum representations, Eqs. (5.47) and (5.53), is
expected to be a symmetric case (γ = δ) of Approximation 2 in the sense of “symmet-
ric” in Definition 5.2.1. This can be confirmed by the following.
Corollary 5.3.5 (The symmetric code). Let R(π/2) be the Fourier operator defined
in Eq. 3.83. Then, the following relation holds for the logical basis states of the Ap-
proximation 3:

R(−π/2) |j(3)
β 〉 =

d−1∑
j′=0

√√√√√N
(3)
β,j′

N
(3)
β,j

|j′ (3)
β 〉 . (5.54)
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The same relation holds for Approximation 2 iff γ = δ, i.e.,

R(−π/2) |j(2)
γ,γ〉 =

d−1∑
j′=0

√√√√√N
(2)
γ,γ,j′

N
(2)
γ,γ,j

|j′ (2)
γ,γ 〉 . (5.55)

Proof. It can be observed by combining 〈x|q̂ R(−π/2) = 〈x|p̂ with Eqs. (5.45), (5.47),
(5.46), and (5.53).

In contrast with Approximations 2 and 3, the interval of Gaussian spikes in the
position representation (5.43) of Approximation 1 is the same as that in the position
representation of the ideal code state, and the interval in the momentum representation
(5.51) of Approximation 1 is narrower than that in the momentum representation of the
ideal code state. This means that Approximation 1 narrows the lattice spacing of the
code space asymmetrically in position and momentum. This suggests that Approxima-
tion 1 may be related to Approximation 2 and Approximation 3 by a transformation
that symmetrizes the interval of the lattice spacing in position and momentum.

We confirm this by applying the squeezing operation S(ln
√

1 + κ2∆2) for sym-
metrizing the intervals of the Gaussian spikes of the code state |j(1)

κ,∆〉 in position and
momentum coordinates:

〈q|q̂ S
(
ln
√

1 + κ2∆2
)
|j(1)
κ,∆〉 = (1 + κ2∆2) 1

4 〈
√

1 + κ2∆2q|j(1)
κ,∆〉 (5.56)

=
√
m E 1

κ2(1+κ2∆2)
,

αdd√
1+κ2∆2 ,

j
d

∗G ∆2
(1+κ2∆2)

(q), (5.57)

〈p|p̂ S
(
ln
√

1 + κ2∆2
)
|j(1)
κ,∆〉 = (1 + κ2∆2)− 1

4 〈p/
√

1 + κ2∆2|j(1)
κ,∆〉 (5.58)

=
√
m

d
Ẽ 1

∆2 ,
αd√

1+κ2∆2 ,
j
d
∗Gκ2(p), (5.59)

where m = 2
N

(1)
κ,∆,j

√
π∆2

1+κ2∆2 . In order to derive Eqs. (5.57) and (5.59), we used Eµ,Γ,a ∗

Gν(bx) = 1
b
E µ

b2
,Γ
b
,a ∗G ν

b2
(x) and Ẽµ,Γ,a ∗Gν(bx) = 1

b
Ẽ µ

b2
,Γ
b
,a ∗G ν

b2
(x), which can be ob-

tained from the definition of the functions Eµ,Γ,a(x), Ẽµ,Γ,a(x), and Gν(x). Comparing
the position representation (5.57) of the squeezed version of Approximation 1 with the
position representation (5.45) of Approximation 2 and (5.47) of Approximation 3, we
arrive at the following theorem.
Theorem 5.3.6 (Equivalence of the approximate GKP logical basis states). By choos-
ing the parameters in Approximations 1 and 2 as

κ2 = γ2

λ(γ, δ) = tanh β, (5.60)

∆2 = δ2

λ(γ, δ)

(
1− γ2δ2

2λ(γ, δ)

)−2

= sinh β cosh β, (5.61)

γ2 = δ2 = 2 tanh β2 , (5.62)

where λ(γ, δ) := 1 + γ2δ2

4 , we have

S
(
ln
√

1 + κ2∆2
)
|j(1)
κ,∆〉 = |j(2)

γ,δ〉 = |j(3)
β 〉 . (5.63)
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Proof. It directly follows from Eqs. (5.45), (5.47), and (5.57).

Theorem 5.3.6 together with Corollary 5.3.5 shows that up to a squeezing of the
factor ln(

√
1 + κ2∆2) for Approximation 1 in order to make the code symmetric in

the sense of Definition 5.2.1, the logical basis states of the symmetric code of Approx-
imations 1, 2, and 3 are exactly the same quantum state. This squeezing becomes
negligible in the limit of good approximation. In this sense, all these approximations
are equivalent up to a squeezing that is ignorable in the limit of good approximation.
This definition of equivalence is well-motivated since single-mode Gaussian unitary op-
erations are easy to implement compared to non-Gaussian operations on continuous-
variable systems such as optical systems, and among displacement, phase rotation, and
squeezing for decomposing Gaussian unitaries [EP03], only squeezing can change the
lattice spacing.

The converse of the theorem is also true; the choice of parameters in Theorem 5.3.6
is the only choice for the logical basis states of these approximations to be the same
quantum states. This fact can be seen by the following remark.

Remark 5.3.7. So far, we followed the convention to fix the lattice spacing parameter as
α = αd, and derived equivalence relations among symmetric approximate codes. Such
an exact correspondence between approximate codes can be generalized to asymmetric
case. Let us remove the constraint of Eq. (5.14) and regard α as a free parameter in
each approximation, and define states |j(1)

κ,∆,α〉 , |j
(2)
γ,δ,α〉 , and |j

(3)
β,α〉 (see Appendix B.1).

We can observe from Eqs. (B.4) and (B.11) in Appendix B.1 that |j(1)
κ,∆,α〉 = |j(2)

γ,δ,α′〉
with the following choice of parameters:

κ2 = γ2

λ(γ, δ)

(
1− γ2δ2

2λ(γ, δ)

)−2

, (5.64)

α = α′
(

1− γ2δ2

2λ(γ, δ)

)
, (5.65)

∆2 = δ2

λ(γ, δ) . (5.66)

Compared to |j(1)
κ,∆,α〉 and |j

(2)
γ,δ,α〉, the third approximation |j(3)

β,α〉 has fewer parameters
and cannot always be made equivalent to |j(1)

κ,∆,α〉 and |j
(2)
γ,δ,α〉. It is because each Gaus-

sian spike of the third approximation |j(3)
β,α〉 always has the same variance in position and

momentum. If we apply the squeezing S(ln ζ) to |j(3)
β,α〉 so that the variances of Gaussian

spike in position and momentum can differ, we have |j(1)
κ,∆,α〉 = |j(2)

γ,δ,α′〉 = S(ln ζ) |j(3)
β,α′′〉

with the following correspondence of the parameters in addition to Eqs. (5.64), (5.65),
and (5.66):

κ2 = ζ2 sinh β cosh β, (5.67)

α = α′′

ζ cosh β , (5.68)

∆2 = tanh β
ζ2 . (5.69)
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This can be confirmed from the fact that 〈q|S(ln ζ) |j〉 =
√
ζ 〈ζq|j〉, and Eµ,Γ,a ∗

Gν(ζq) = ζ−1E µ

ζ2
,Γ
ζ
,a ∗G ν

ζ2
(q).

Remark 5.3.8. The equivalence of Approximation 2 with γ = δ and Approximation 3
can also be proved from Eqs. (1.4) and (7.12) in Ref. [AND+18] by setting l = l′ = 0,
while Ref. [AND+18] does not prove the equivalence. Our contribution here is to derive
their position wave functions in Proposition 5.3.2 and to show the equivalence using
these position wave functions.

5.3.3 The standard form
Now that we have shown the equivalence of Approximations 1, 2, and 3, we intro-

duce a standard form of the approximate GKP logical basis state, which we will use in
the rest of the paper.

Definition 5.3.9 (Standard form of the approximate GKP logical basis states). Given
three parameters σ2

q , σ2
p, and Γ with 0 < σ2

q , σ
2
p < 1/2, the standard form of the

approximate GKP code is defined as the code which is spanned by a logical qudit basis
{|jσ2

q ,σ
2
p,Γ〉 : j = 0, . . . , d− 1} with its position representation given by

〈q|jσ2
q ,σ

2
p,Γ〉 :=

2Γ
(
Λ(σ2

q , σ
2
p)
)− 1

2

Nσ2
q ,σ

2
p,Γ,j


1
2

EΛ(σ2
q ,σ

2
p)

2σ2
p

,Γ, j
d

∗G2σ2
q
(q), (5.70)

where Λ(σ2
q , σ

2
p) is defined as

Λ(σ2
q , σ

2
p) := 1− 4σ2

qσ
2
p, (5.71)

and Nσ2
q ,σ

2
p,Γ,j is a normalization constant. For the symmetric code, the logical basis

{|jσ2〉 : j = 0, . . . , d− 1} is parametrized by only one parameter σ2 (0 < σ2 < 1/2) as

〈q|jσ2〉 :=
(

2αdd
Nσ2,j

) 1
2

EΛ(σ2)
2σ2 ,αdd

√
Λ(σ2), j

d

∗G2σ2(q), (5.72)

where
Λ(σ2) := 1− 4σ4. (5.73)

Note that |jσ2〉 is equal to |j
σ2,σ2,αdd

√
Λ(σ2)〉. The momentum representation of |jσ2

q ,σ
2
p,Γ〉

is given by

〈p|jσ2
q ,σ

2
p,Γ〉 =

4π
√

Λ(σ2
q , σ

2
p)

ΓNσ2
q ,σ

2
p,Γ,j


1
2

ẼΛ(σ2
q ,σ

2
p)

2σ2
q

,
2πΛ(σ2

q ,σ
2
p)

Γ , j
d

∗G2σ2
p
(p), (5.74)

and thus, for the symmetric code, it is given by

〈p|jσ2〉 =
(

2αd
Nσ2,j

) 1
2

ẼΛ(σ2)
2σ2 ,αd

√
Λ(σ2), j

d

∗G2σ2(p). (5.75)
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We can also write Eqs. (5.70), (5.72), (5.74), and (5.75) in terms of the theta function
by using Lemma 5.3.3.

The physical meanings of the parameters σ2
q , σ

2
p, and Γ of the state |jσ2

q ,σ
2
p,Γ〉 (and

hence σ2 of the state |jσ2〉) will be clarified in Section 5.3.4. Furthermore, an explicit
form of the normalization constant Nσ2

q ,σ
2
p,Γ,j (and hence Nσ2,j) is given in Proposi-

tion 5.3.11. The expressions corresponding to Approximations 1–3 can be obtained
simply by substituting the corresponding parameters:

|j(1)
κ,∆〉 = |j

σ2
q= ∆2

2 ,σ2
p= κ2

2(1+∆2)
,Γ=αdd

〉 , (5.76)

|j(2)
γ,δ〉 = |j

σ2
q= δ2

2λ(γ,δ) ,σ
2
p= γ2

2λ(γ,δ) ,Γ=αdd
(

1− γ2δ2
2Λ(γ,δ)

)〉 , (5.77)

|j(3)
β 〉 = |jσ2= tanh β

2
〉 , (5.78)

where λ(γ, δ) = 1 + γ2δ2

4 .

5.3.4 Explicit expressions of the Wigner function, inner prod-
ucts, and average photon number

In this section, we derive the expressions of the Wigner function, inner products,
and the average photon number for the standard form of the approximate code state
|jσ2

q ,σ
2
p,Γ〉 in Definition 5.3.9. Those for |jσ2〉 can also be obtained by substituting σ2

q =
σ2
p = σ2 and Γ = αdd

√
Λ(σ2). They also have expressions in terms of the Riemann theta

function [MM07] (also known as the Siegel theta function), which is a multi-variable
generalization of the theta function. These alternative expressions are relatively neat,
but for the later analyses of the asymptotic behaviors (5.89) and (5.90), the expressions
in terms of the theta function are more convenient. Thus we give the alternative
expressions in terms of the Riemann theta function in Appendix C.

We will first derive the Wigner function of the operators |jσ2
q ,σ

2
p,Γ〉 〈j

′
σ2
q ,σ

2
p,Γ|. The

Wigner function of the approximate GKP code can be used for the analyses of quantum
error correction, as shown in Refs. [Men14, FTO17, FTOF18].

Proposition 5.3.10 (Wigner function). For the approximate code states |jσ2
q ,σ

2
p,Γ〉 and

|j′σ2
q ,σ

2
p,Γ〉 in Definition 5.3.9, the Wigner function W|j

σ2
q ,σ

2
p,Γ
〉〈j′

σ2
q ,σ

2
p,Γ
|(q, p) of the operator

|jσ2
q ,σ

2
p,Γ〉 〈j

′
σ2
q ,σ

2
p,Γ| is given by

W|j
σ2
q ,σ

2
p,Γ
〉〈j′

σ2
q ,σ

2
p,Γ
|(q, p)

= 1√
Nσ2

q ,σ
2
p,Γ,jNσ2

q ,σ
2
p,Γ,j′

EΛ(σ2
q ,σ

2
p)

4σ2
p

,Γ, j+j′2d

∗Gσ2
q
(q)
ẼΛ(σ2

q ,σ
2
p)

4σ2
q

,
πΛ(σ2

q ,σ
2
p)

Γ , j−j
′

2d

∗Gσ2
p
(p)


+
EΛ(σ2

q ,σ
2
p)

4σ2
p

,Γ, j+j′2d + 1
2

∗Gσ2
q
(q)
ẼΛ(σ2

q ,σ
2
p)

4σ2
q

,
πΛ(σ2

q ,σ
2
p)

Γ , j−j
′

2d + 1
2

∗Gσ2
p
(p)
 ,

(5.79)

where E and Ẽ are defined in Definition 5.3.1, and Λ(σ2
q , σ

2
p) is defined in Eq. (5.71).
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Figure 5.3: The Wigner function of the symmetric code state |0σ2〉 in the case d = 2
with σ2 = 0.05, which is calculated from Eq. (5.79) along with the explicit form of the
normalization constant given in Proposition 5.3.11.

Calculations for deriving the Wigner function are similar to those for deriving the po-
sition and momentum representations but are more complicated. The proof of Propo-
sition 5.3.10 is in Appendix B.2. We can also write Eq. (5.79) in terms of the theta
function by applying Lemma 5.3.3 to Eq. (B.35) in Appendix B.2.

The Wigner function in Proposition 5.3.10 shows the physical meanings of σ2
q , σ2

p,
and Γ. The first term in the square bracket of Eq. (5.79) with j = j′ denotes an infi-
nite sequence of Gaussian spikes each of which has variance σ2

q in position and σ2
p in

momentum with periods Γ and πΛ(σ2
q , σ

2
p)Γ−1, respectively, and has overall Gaussian

envelopes with variances (4σ2
p)−1Λ(σ2

q , σ
2
p) and (4σ2

q )−1Λ(σ2
q , σ

2
p), respectively. The sec-

ond term shows that the same structure is also at the places shifted by half periods in
position, but with positive and negative signs alternately in momentum. The Gaussian
spikes in the first and second terms with different signs interfere destructively when
projected onto position or momentum, while constructively with the same signs. Since
Eµ,Γ,a(x) → ∑

s∈Z δ (x− (s+ a)Γ) and Ẽµ,Γ,a(x) → ∑
s∈Z e

2πiasδ (x+ sΓ) as µ → ∞,
and Gν(x)→ δ(x) as ν → 0, we can observe that Eq. (5.79) with Γ = αdd approaches
Eq. (5.33) as σ2

q , σ
2
p → 0, as expected. Note that for the symmetric code state |jσ2〉,

the intervals of the neighboring Gaussian peaks αdd
√

Λ(σ2) is smaller than αdd of the
ideal one. The change in the interval is O(σ4), and thus may be negligible for small σ2.
However, in experiments, we cannot always make σ2 small enough to keep the change
in the intervals negligible. With our results, we can quantitatively analyze the code
performance even for not necessarily small σ2.

Using Eq. (5.79) with the explicit form of the normalization constant given in
Proposition 5.3.11, we plot the Wigner function of the GKP logical basis state in
Figure 5.3. Note that a similar expression has already been used in Ref. [Men14]
with a more intuitive explanation. Our contribution here is to derive the Wigner
function corresponding to the approximate code states explicitly, which we will use in
the detailed analysis of the average photon number.

Next, using the Wigner function (5.79), we provide a closed-form expression for the
normalization constant Nσ2

q ,σ
2
p,Γ. The normalization constants were calculated numer-

ically in previous works [Men14, TW16, AND+18, SCC19], but here we can provide
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their analytical expressions in terms of the theta functions. Furthermore, since the
logical basis states of the approximate GKP codes are nonorthogonal, their inner prod-
ucts are nonzero in general, which we quantitatively analyze in the following. Since
the theta functions used in the following proposition can be calculated with arbitrary
precision by a method in, e.g., Ref. [DHB+04], the results are useful for evaluating the
code performance reliably, as demonstrated in Section 5.4.

Proposition 5.3.11 (Normalization constant and inner product). The normalization
factor Nσ2

q ,σ
2
p,Γ,j of the approximate code state |jσ2

q ,σ
2
p,Γ〉 in Definition 5.3.9 is given in

terms of the theta functions by

Nσ2
q ,σ

2
p,Γ,j = ϑ

[
j
d

0

](
0,

2iΓ2σ2
p

πΛ(σ2
q , σ

2
p)

)
ϑ
[0

0

](
0,

2πiσ2
qΛ(σ2

q , σ
2
p)

Γ2

)

+ ϑ
[
j
d

+ 1
2

0

](
0,

2iΓ2σ2
p

πΛ(σ2
q , σ

2
p)

)
ϑ
[0

1
2

](
0,

2πiσ2
qΛ(σ2

q , σ
2
p)

Γ2

)
.

(5.80)

Furthermore, the inner product between |jσ2
q ,σ

2
p,Γ〉 and another approximate code state

|j′σ2
q ,σ

2
p,Γ〉 is given by

〈j′σ2
q ,σ

2
p,Γ|jσ2

q ,σ
2
p,Γ〉

= 1√
Nσ2

q ,σ
2
p,Γ,jNσ2

q ,σ
2
p,Γ,j′

{
ϑ
[
j+j′
2d

0

](
0,

2iΓ2σ2
p

πΛ(σ2
q , σ

2
p)

)
ϑ
[ 0

j−j′
2d

](
0,

2πiσ2
qΛ(σ2

q , σ
2
p)

Γ2

)

+ ϑ
[
j+j′
2d + 1

2

0

](
0,

2iΓ2σ2
p

πΛ(σ2
q , σ

2
p)

)
ϑ
[ 0

j−j′
2d + 1

2

](
0,

2πiσ2
qΛ(σ2

q , σ
2
p)

Γ2

)}
.

(5.81)

Proof. We exploit the following facts:

〈j′|j〉 = Tr [|j〉〈j′|] =
∫∫

dqdp W|j〉〈j′|(q, p), (5.82)∫
dx f ∗ g(x) =

∫
dx f(x)

∫
dy g(y), (5.83)∫

dxEµ,Γ,a(x) =
∑
s∈Z

exp[−(s+ a)2Γ2/2µ] = ϑ
[a

0

](
0, iΓ

2

2πµ

)
, (5.84)

∫
dx Ẽµ′,Γ′,a′(x) =

∑
s∈Z

exp[−Γ′2s2/2µ′ + 2πia′s] = ϑ
[ 0

a′

](
0, iΓ

′2

2πµ′

)
, (5.85)∫

dx Gσ2(x) = 1. (5.86)

Combining the above with the Wigner function of W|j
σ2
q ,σ

2
p,Γ
〉〈j′

σ2
q ,σ

2
p,Γ
| in Eq. (5.79), we

obtain Eqs. (5.80) and (5.81).

The expressions in Proposition 5.3.11 are exact and applicable to any σ2, but at
the same time complicated. Thus, we investigate their asymptotic behaviors in order
to obtain intuitive relations with respect to the degree of approximation. As shown in
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Ref. [BK11], the asymptotic behavior of the theta function in the form of ϑ
[a

0

]
(0, it) as

t→ +0 is given by

ϑ
[a

0

]
(0, it) =

∞∑
s=0

e−πt(s+a)2 +
∞∑
s=0

e−πt(s+1−a)2 = 1√
t

+O
(
t

1
2
)
. (5.87)

Furthermore, the asymptotic behavior of ϑ
[0
a

]
(0, it) as t→ +0 is given by

ϑ
[0
a

]
(0, it) = 1√

t
ϑ
[a

0

]
(0, it−1) = 1√

t

∞∑
s=−∞

e−
π
t

(s+a)2 ' 1√
t
e−

π
t
a2
, (5.88)

where we used Eq. (B.25) in Appendix B.1 in the first equality. The last approximation
takes the dominant term as t→ +0 up to a constant coefficient.

Now the asymptotic form of the logarithm of the normalization constant Nσ2
q ,σ

2
p,Γ,j

in Eq. (5.80) as σ2
q , σ

2
p → +0 is given by

lnNσ2
q ,σ

2
p,Γ,j → − ln

√
4σ2

qσ
2
p. (5.89)

In the same way, the asymptotic behavior of the logarithm of | 〈j′σ2
q ,σ

2
p,Γ|jσ2

q ,σ
2
p,Γ〉 | in

Eq. (5.81) as σ2
q , σ

2
p → +0 is given by

ln | 〈j′σ2
q ,σ

2
p,Γ|jσ2

q ,σ
2
p,Γ〉 | → −

(j′ − j)2Γ2

8d2σ2
q

. (5.90)

The overlap between logical basis states thus decreases exponentially with respect to
σ−2
q .
Along with the asymptotic behavior, we numerically calculate Eqs. (5.80) and (5.81)

to see how the overlaps between code states change with respect to the degree of
approximation. Figure 5.4 shows the logarithms of the absolute values of an inner
product

∣∣∣〈0σ2|1σ2〉
∣∣∣ of the approximate code states (5.72) in Definition 5.3.9 with d =

2, 3, and 6, with respect to a squeezing level in decibels −10 log10(2σ2), which is a
quality measure of an approximate code state and explained later. One can observe
that, in the region where the squeezing level is over 5 dB for d = 3 and 6, the minus
of the logarithm of the inner product increases linearly with respect to the squeezing
level in the log plot, that is, − ln

∣∣∣〈0σ2|1σ2〉
∣∣∣ ∝ σ−2, as expected in the asymptotic

behavior (5.90). In the case of d = 2, the inclination of the plot is larger than those
in the case of d = 3 and 6, which may be caused by a constant factor in Eq. (5.90)
when j+j′

2d . 1
2 . Note that the squeezing levels of the GKP-encoded states when d = 2

in the recent experiments are 5.5–7.3 dB with the position and momentum degrees
of freedom in trapped ion system [FNM+19], and 7.4–9.5 dB with the cavity mode
of the superconducting system [CIET+20]. The required squeezing level for the fault-
tolerant threshold of the universal QC is considered to be 8–16 dB [FTOF18, VAW+19,
WMBM19, NC20, HHK20], depending on experimental setups and noise models.

“Squeezing level” of the (symmetric) GKP-encoded state was first considered in
Ref. [Men14] in order to characterize the variance σ2 of each convoluted Gaussian
spike Gσ2 in the Wigner function of the approximate code state, which directly af-
fects the performance of the error correction with approximate GKP codes. Since the
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Figure 5.4: The logarithms of the absolute values of an inner product − ln
(∣∣∣〈0σ2|1σ2〉

∣∣∣)
for the code state (5.72) in Definition 5.3.9 with d = 2, 3, and 6. The horizontal axis,
−10 log10(2σ2), is a squeezing level in decibels, which is a convention to express the
degree of squeezing. The vertical axis is in the log scale. One can observe that, in the
region where the squeezing level is over 5 dB for d = 3 and 6, the negative logarithm of
the inner product increases linearly with respect to the squeezing level in the log plot,
that is, − ln

∣∣∣〈0σ2|1σ2〉
∣∣∣ ∝ σ−2, as expected in the asymptotic behavior (5.90).

squeezing level of a squeezed state is the logarithm of the ratio of the variances of the
position quadrature (∆q̂)2 of that state and the vacuum state, Ref. [Men14] defines
the squeezing level of the symmetric GKP logical basis state by −10 log10(2σ2). In
the case of an asymmetric code state, there are two parameters −10 log10(2σ2

q ) and
−10 log10(2σ2

p), where σ2
q and σ2

p denote the variance of Gaussian spike in position and
momentum, respectively, in the Wigner function of the standard form (5.79). This
definition leads us to identifying −10 log10 ∆2 (' −10 log10 κ

2) as the squeezing param-
eter for Approximation 1 [FTO17, FTOF18, VAW+19, WMBM19, CIET+20] due to
the relation (5.76). Note that there also exists another definition of “effective squeez-
ing parameter”, motivated by quantum metrology [DTW17, WT18, FNM+19]. In this
paper, we adopt the former definition as a “squeezing level” in order to observe the
relation between the performance of error correction and the average photon number
of the approximate code states.

Finally, using the Wigner function (5.79) of the approximate code state |jσ2
q ,σ

2
p,Γ〉,

we can calculate the average photon number of the code state. Below we write
〈A〉|j

σ2
q ,σ

2
p,Γ
〉 := 〈jσ2

q ,σ
2
p,Γ|A |jσ2

q ,σ
2
p,Γ〉 for an operator A.

Proposition 5.3.12 (Average photon number). The average photon number 〈n̂〉|j
σ2
q ,σ

2
p,Γ
〉

of the approximate code state |jσ2
q ,σ

2
p,Γ〉 in Definition 5.3.9 is given as follows:

〈n̂〉|j
σ2
q ,σ

2
p,Γ
〉 =

σ2
q + σ2

p − 1
2 −

(
∂

∂x
+ ∂

∂y

)
ln Ñσ2

q ,σ
2
p,Γ,j(x, y)

∣∣∣∣∣∣
x=

4σ2
p

Λ(σ2
q ,σ

2
p)
, y=

4σ2
q

Λ(σ2
q ,σ

2
p)

, (5.91)
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where Ñσ2
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Sketch of proof. Using the Wigner function (5.79), we can derive the expectation values
of the square of the position and momentum quadrature, 〈q̂2〉|j

σ2
q ,σ

2
p,Γ
〉 and 〈p̂2〉|j

σ2
q ,σ

2
p,Γ
〉.

Then we can derive the explicit expression of 〈n̂〉|j
σ2
q ,σ

2
p,Γ
〉 by exploiting the fact that

〈q̂2 + p̂2〉|j
σ2
q ,σ

2
p,Γ
〉 = 〈2n̂+ 1〉|j

σ2
q ,σ

2
p,Γ
〉. The full proof is in Appendix B.3.

As an application of the results, we observe the relation between the squeezing
level and the average photon number of approximate code states. The squeezing level
has a direct connection to the performance of the quantum error correction using
GKP codes [Men14, FTO17, FTOF18, VAW+19, WMBM19, HHK20]. On the other
hand, the average photon number of the encoded state is relevant to the capacity of
the continuous-variable quantum channel [NAJ18, HSH99, WQ18], which works as an
effective dimension of the Hilbert space. Since it is found that the GKP code has high
performance in the channel coding for bosonic Gaussian channels [AND+18, NAJ18],
the connections between these two notions are important for further analyses of the
Gaussian channel coding.

Previous literature estimates the average photon number of the encoded state as
' 1

4σ2 − 1
2 for the symmetric code for given squeezing level −10 log10(2σ2)� 1 [GKP01,

GK06, Men14, TW16, NAJ18, AND+18]. This is because the variance of the envelope
Gaussian in the Wigner function of the approximate code states is roughly equal to

1
4σ2 , and the average photon number relates to the expectation values of the squares
of the position and momentum quadratures by 〈q̂2 + p̂2〉|jσ2 〉 = 〈2n̂+ 1〉|jσ2 〉. It is also
consistent with the expression of the average photon number given in Eq. (5.91) when
the asymptotic form Ñσ2

q ,σ
2
p,Γ,j(x, y) ∝ 1√

xy
is considered. However, this estimation is no

longer valid in the case of a low squeezing level. Here we are interested in the squeezing
level at which this estimation deviates from the exact value.

We compute the average photon number of the code state |jσ2〉 defined in Eq. (5.72)
in Definition 5.3.9 with d = 2, by using the formula (5.91). As mentioned above,
the squeezing level of |jσ2〉 is given by −10 log10(2σ2). Figure 5.5 shows the average
photon number of |0σ2〉 and |1σ2〉 with respect to the squeezing level −10 log10(2σ2). In
Figure 5.5, we compare our result with a conventionally used estimate of the average
photon number 1

4σ2 − 1
2 . The figure reveals that when the squeezing level is less than

10 dB, the conventionally used estimate of the average photon number deviates from
the exact values. Note that 10 dB squeezing is in a range of the expected thresholds for
fault-tolerant continuous-variable QC [FTOF18, VAW+19, WMBM19, NC20, HHK20],
which is a curious coincidence.

5.3.5 Discussion
In this section, we explicitly showed conditions under which the conventional ap-

proximations of the GKP code, Approximations 1, 2, and 3, defined in Eqs. (5.34),
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Figure 5.5: The average photon number of the code state (5.72) in Definition 5.3.9
with d = 2. “Estimate” denotes the function 1

4σ2 − 1
2 . These three are in good accor-

dance when the squeezing level is over 10 dB, but our rigorous calculations provide
better estimates at the squeezing levels in the recent experiments, that is, 5.5–7.3 dB
in the trapped ion system [FNM+19] and 7.4–9.5 dB in the superconducting system
[CIET+20].

(5.35), and (5.36), are made equivalent. We observed that up to a slight squeezing
for Approximation 1, Approximations 1, 2, and 3 are equivalent for the symmetric
code, in which the logical basis states and their Fourier transforms span the same code
space. Furthermore, we quantitatively showed that in all these approximations, the
lattice spacing of the Gaussian spikes in phase space appearing in the description of
the approximate code states is narrower than that of the corresponding ideal GKP
code state. Although this effect may be negligible in the limit of large squeezing levels,
it potentially affects the performance of the error correction. It is because the error
correction strategy explicitly depends on the lattice spacing of the code states in the
GKP code. Quantitatively, in the case of approximate code state of d = 2 with 8 dB
squeezing, the lattice spacing is about 1% narrower than that of the ideal one. It is thus
needed to investigate error correction schemes taking the change in lattice spacing into
account, especially at a moderate squeezing level relevant to experimental realizations
of GKP codes.

Exploiting the equivalence, we also gave the standard form of the approximate
code states in terms of the position representation. Furthermore, we derived the ex-
plicit formulas of the Wigner function, normalization constant, inner product, and the
average photon number of the logical basis states. These tools given in this section
may accelerate further theoretical developments of continuous-variable quantum in-
formation processing based on quantum error correction and channel coding with the
GKP error-correcting code.
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5.4 Cost-reduced all-Gaussian universality with the
GKP code

In the QC with qubits (or more generally qudits), the Clifford operations, i.e.,
the operations realized by the combinations of the Pauli-eigenstate preparations, the
Clifford gates, and the Pauli measurements, cannot realize the universal QC [Got98,
AG04]. This no-go statement is known as the Gottesman-Knill theorem. In order to
perform the universal QC, one needs to implement a non-Clifford gate [NC10] such as
the T -gate defined as

T =
(

e−π8 i 0
0 eπ8 i

)
. (5.93)

The same is true for the GKP code. For the GKP code, the GKP-logic Clifford gates,
i.e., the logical Clifford gates on qubits encoded in the continuous-variable system by
the GKP code, can be realized only by Gaussian operations (defined in Section 3.1.4)
as stated in the previous section. In order to realize the universality, a GKP-logic non-
Clifford gate is necessary. In the original paper [GKP01], the GKP-logic non-Clifford
gate is shown to be implementable either by using the optical non-Gaussian operation
or by using the GKP-encoded magic states such as |H〉 and |π8 〉, where these magic
states are defined as

|H〉 := cos(π/8) |0〉+ sin(π/8) |1〉 , (5.94)
|π8 〉 := (e−π8 i |0〉+ eπ8 i |1〉)/

√
2. (5.95)

Here we remark that Gaussian operations and logical Clifford operations on the GKP
qubits are different in that Pauli eigenstates of the GKP code, such as |0〉 and |1〉, are
non-Gaussian; i.e., initialization of GKP qubits requires non-Gaussian operations.

Ref. [BPA+19] has recently shown that the noisy GKP-encoded magic state can
be probabilistically generated if one has the ability to prepare the GKP |0〉 states
and to perform Gaussian operations. It is known that a higher-fidelity magic state
can be distilled from many low-fidelity ones if the fidelity of lower ones is above a
certain threshold. Therefore, the proposed method of probabilistically preparing noisy
|H〉 means that we need only one type of a GKP-encoded state |0〉 with Gaussian
operations to realize the universal QC. It is no longer required to develop technologies
for preparing both |0〉 and |H〉 of the GKP code. However, in contrast to the majority
of qubit-based codes in which the preparation of the magic state is much more costly
than the preparation of the Pauli eigenstate, both |0〉 and |H〉 of the GKP code are
non-Gaussian, and hence the preparation of them is equally costly compared to the
realization of Gaussian operations in the quantum optical system. Thus, the overhead
of consuming many expensive |0〉s for the distillation of |H〉 may become a bottleneck
for the optical quantum computer.

In order to overcome the obstacle arising from the magic state distillation and
achieve a fundamental cost reduction in implementing optical QC, we propose an idea
of preparing only the GKP-logic magic state |H〉. We show a scheme that realizes the
universal QC by combining Gaussian operations only with |H〉 instead of |0〉. Com-
pared to the previous scheme, our scheme does not suffer from the overhead of the magic
state distillation because |0〉 can be deterministically prepared from only two |H〉s by
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the state-injection protocol [BK05]. While the scheme itself is pretty simple, our con-
tribution is a fundamental cost reduction of non-Gaussian resources for implementing
the optical quantum computer. Furthermore, we introduce a simple method for obtain-
ing a fundamental limit on the transformation between |H〉 and |0〉 of the GKP code
by any Gaussian operations, utilizing the resource theory of non-Gaussianity [TZ18,
AGPF18], one of quantum resource theories [CG19] for continuous-variable QC. We
also show the feasibility of the direct preparation of |H〉 of the GKP code. The ex-
isting proposals [PMVT04, VSG10, EBKTB14, ABI+18, FMA+20, TM02, MBGM17,
WT18, ENP19, TBMS20, PMVT06a, PMVT06b, BKP13, TW16, FNMH18, LSW20,
CIET+20, SCC19, WT20, FNM+19, LGMS19, HPB+21, HA21, FTE+21, FEA+21] for
the preparation of the GKP-encoded state mostly focus on the preparation of |0〉 state,
but we discuss possibilities to generalize these proposals to the preparation of |H〉 state
with a comparable technological cost.

5.4.1 Deterministic all-Gaussian universality using the GKP
magic states

In the following, the logical qubit encoded in a physical continuous-variable system
by the GKP code is referred to as a GKP qubit, and a physical state of a GKP qubit
as a GKP state. Towards realizing fault-tolerant QC with quantum optical systems, it
is promising to combine Gaussian operations with the GKP qubits [Men14, FTOF18,
NC20, VAW+19]. It is because Gaussian errors on the continuous-variable systems,
which frequently occur in quantum optical systems, cannot be corrected solely by
Gaussian operations [NFcvC09] but can be by combining Gaussian operations with
an approximate GKP code concatenated with a multi-qubit quantum error-correcting
code [Men14].

The GKP code can be used not only for correcting errors on the continuous-variable
system but also for realizing the universal QC with its non-Gaussianity. The protocol
developed in Ref. [BPA+19] that realizes the universal QC utilizing the non-Gaussianity
of the GKP-encoded state is based on the magic state distillation [BK05, Rei05] that
probabilistically and approximately transforms GKP qubits prepared in |0〉⊗ |0〉⊗ · · ·
into a magic state |H〉 only using Gaussian operations. This protocol suggests that
when Gaussian operations are available, the ability to prepare only one type of the
GKP-encoded state |0〉 suffices to implement universal QC. However, this protocol has
the significant overhead arising from the magic state distillation; whenever we need
to obtain one GKP magic state |H〉 with a sufficiently high fidelity, many |0〉s will be
consumed. More precisely, the required number of |0〉s to prepare a GKP magic state
|H〉 up to an infidelity ε with the scheme in Ref. [BPA+19] amounts to [BH12, Jon13,
HHPW17]

O
(

polylog
(1
ε

))
as ε→ 0. (5.96)

This overhead per the preparation of |H〉 pushes up the implementation cost of the
fault-tolerant logical non-Clifford gate on a qubit-based quantum error-correcting code
concatenated with the GKP code and thus raise the total cost of the fault-tolerant QC.

In order to reduce the mass consumption of GKP qubits, here we propose choosing
|H〉 instead of |0〉 as the single GKP state along with Gaussian operations for realizing
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Figure 5.6: A quantum circuit of state injection for applying the T gate to any
one-qubit input state |ψ〉 by Clifford operations assisted by an auxiliary input qubit
prepared in |π8 〉 at the top, and that for converting a two-qubit input state |π8 〉

⊗2 to
|0〉 at the bottom. The latter conversion circuit can be implemented only by adap-
tive Gaussian operations on the GKP qubits, namely, performing the Clifford gates
(CNOT, S, S†, and H) that are implemented with Gaussian unitary operations, and
conditioning on an outcome of the Z-basis measurement that is implemented with a
homodyne detection.

the universal QC. Note that |H〉 and |π8 〉 defined in Eqs. (5.94) and (5.95) are Clifford
equivalent, i.e., related by |H〉 = SH |π8 〉 with the Clifford gates H and S given in
Eqs. (5.2) and (5.3), which can thus be interchanged by Gaussian operations in the
GKP code. Therefore, in the following we use these states interchangeably. Our cost-
reduced scheme use a well-known quantum circuit for the T -gate teleportation [GKP01,
BK05, NC10] given at the top of Figure 5.6. This circuit can apply the T gate to an
arbitrary input state |ψ〉 by the combination of an ancillary magic state |π8 〉 and Clifford
operations. When we set |ψ〉 = |π8 〉, we have

T |π8 〉 = e−πi/4(|0〉+ i |1〉)/
√

2 = e−πi/4SH |0〉 , (5.97)

and can thus prepare the GKP |0〉 with additional Gaussian operations as shown at
the bottom of Figure 5.6. We can thus deterministically transform two GKP qubits
prepared in |π8 〉

⊗2 into |0〉 only by Gaussian operations. Our deterministic protocol
transforming two |H〉 states to a |0〉 state can be advantageous over the probabilistic
protocol developed in Ref. [BPA+19] transforming many |0〉 states to a |H〉 state; given
the target infidelity ε, the number of the consumed GKP-encoded states in our protocol
is bounded by a constant in contrast to (5.96), which essentially reduces the overhead.
In fact, in the ideal case, |0〉 state can be exactly (ε = 0) prepared in our protocol while
it cannot be in Ref. [BPA+19].

Notice that this cost reduction may be unique to quantum optical architectures
in which preparing non-Gaussian states such as the GKP-encoded states is more
costly than performing Gaussian operations. It does not necessarily hold for other
continuous-variable systems than the quantum optical system, such as superconduct-
ing cavities [CIET+20] and trapped-ion mechanical oscillators [FNM+19], where Gaus-
sian operations are not necessarily reliable to implement compared to non-Gaussian
operations.
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Figure 5.7: The schematics of the Wigner functions of the ideal GKP states |0〉 on
the left and |H〉 on the right, where each blue filled circle represents a positive delta
function δ(r) with r := (q, p), each red circled X represents a negative delta function
−δ(r), each yellow filled circle represents a weighted positive delta function 1√

2δ(r),
and each black circled X represents a weighted negative delta function − 1√

2δ(r). These
can be derived from Eq. (5.79) with the limit σ2

q , σ
2
p → 0. The gray region shows the

periodicity of these Wigner functions.

5.4.2 A resource-theoretical analyses for fundamental limita-
tions on GKP state conversion

Since the convertibility between the GKP states |H〉 and |0〉 under Gaussian opera-
tions is crucial for the argument so far, we here develop a simple method for obtaining
fundamental bounds on the convertibility between the GKP states. For this analysis,
we use the resource theory of non-Gaussianity in which Gaussian operations are con-
sidered to be free and non-Gaussian states, unitaries, and measurements are regarded
as resources for assisting Gaussian operations [TZ18, AGPF18, LRW+18, ZSS18]. Fol-
lowing the rule of the convex resource theories [TZ18, AGPF18], we include adaptive
Gaussian operations conditioned on the outcomes of Gaussian measurements in the
free operations. Note that the resource theories of magic [VMGE14, HC17], where
Clifford operations are considered to be free, are inapplicable to our case because Pauli
eigenstates of the GKP qubits, e.g., |0〉, are the resourceful states while they are free
in the resource theories of magic.

Resource theories of non-Gaussianity introduce a measure that quantifies the non-
Gaussianity of a state on the continuous-variable system. We may be able to convert a
state with high non-Gaussianity into that with low non-Gaussianity but cannot in the
reverse direction. One way to quantify the non-Gaussianity of a given state ψ is to use
the logarithmic negativity [TZ18, AGPF18] of the Wigner function Wψ of ψ defined
as NL(ψ) := ln

(∫∫∞
−∞ dqdp |Wψ(q, p)|

)
. For the pure Gaussian state ρ, for example, we

have NL(ρ) = 0 since the Wigner function Wρ of the pure Gaussian state ρ is always
nonnegative [Hud74, SC83]. The logarithmic negativity NL does not increase under
any Gaussian operations (monotonicity).

Although the logarithmic negativity is well-defined for the Wigner functions of
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approximate GKP states, it is not for the Wigner functions of the ideal GKP states,
where infinitely many Dirac delta functions are arranged according to a square lattice
in concept, as depicted in Figure 5.7. We can compute the logarithmic negativity
for the Wigner functions of approximate GKP states in principle, but we would like
more intuitive ways of comparing the non-Gaussianity and analyzing the convertibility
between ideal GKP states. For this, we develop an alternative measure to quantify
the non-Gaussianity of the ideal GKP states exploiting the periodicity of the Wigner
functions as shown in Figure 5.7 and replacing the improper integral of NL from −∞
to ∞ with an integral over a period. More precisely, in place of NL, we define

ÑL(ψ) := ln
(∫∫

I dqdp |Wψ(q, p)|∫∫
I dqdpWψ(q, p)

)
, (5.98)

where I := [0 + ε, 2
√
π + ε] for any fixed ε ∈ (0,

√
π/2) represents the period shown

in Figure 5.7. It is defined so that ÑL(ψ) = 0 for a state ψ whose Wigner function is
nonnegative. Then, by counting delta functions in Figure 5.7, we have

ÑL(|0〉〈0|) = ln 8
4 = ln 2, (5.99)

ÑL(|H〉〈H|) = ln
4 + 8×

(
1/
√

2
)

4 = ln(1 +
√

2). (5.100)

Thus, we quantitatively compare the non-Gaussianity of |H〉 and |0〉 by

ÑL(|H〉〈H|)− ÑL(|0〉〈0|) = ln 1 +
√

2
2 > 0, (5.101)

which implies that |H〉 has more non-Gaussianity than |0〉, and hence no Gaussian
operation can deterministically transform |0〉 into |H〉.

In order to justify the use of ÑL instead of NL for the ideal GKP states, we carried
out a numerical simulation of the negativity NL of approximate GKP states. More pre-
cisely, we performed the numerical integration using Mathematica 11.2.0 for the abso-
lute values of theWigner functions of |0σ2〉 and |Hσ2〉 ∝ (cos(π/8) |0σ2〉+ sin(π/8) |1σ2〉)
with the approximate GKP states |jσ2〉 defined in Eq. (5.72). Figure 5.8 plots the log-
arithmic negativities of the Wigner functions of |0σ2〉 and |Hσ2〉 against the squeezing
level −10 log10(2σ2). The figure indicates that the logarithmic negativity of |0σ2〉 ap-
proaches to ÑL(|0〉〈0|) = ln(2) = 0.69 · · · as −10 log10(2σ2)→∞ and that of |Hσ2〉 to
ÑL(|H〉〈H|) = ln(1 +

√
2) = 0.88 · · · , as expected from our arguments.

With ÑL defined, we can provide an upper bound on the conversions from the
GKP |0〉s to the GKP |H〉s or the conversions in the reverse direction. In the same
way as the additivity of the logarithmic negativity NL [TZ18, AGPF18], ÑL is additive,
i.e., ÑL(ψ⊗n) = n ÑL(ψ). Although we have developed the protocol converting |H〉⊗2

into |0〉 under Gaussian operations, the additivity of ÑL shows that |H〉⊗2 cannot be
transformed into |0〉⊗3 under any Gaussian operations because of the inequality

ÑL(|H〉〈H|⊗2)− ÑL(|0〉〈0|⊗3) = ln (1 +
√

2)2

23 < 0. (5.102)
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Figure 5.8: The logarithmic negativities of the Wigner functions of |0σ2〉 (blue solid
line) and |Hσ2〉 ∝ (cos(π/8) |0σ2〉+ sin(π/8) |1σ2〉) (orange dashed line) with respect
to the squeezing level −10 log10(2σ2). The logarithmic negativity of |0σ2〉 approaches
to ln(2) = 0.69 · · · , and that of |Hσ2〉 to ln(1 +

√
2) = 0.88 · · · , as expected from the

calculations (5.99) and (5.100).

Whether the one-to-one transformation from |H〉 to |0〉 is possible or not is unknown.
On the other hand, the conversion from |0〉⊗2 to |H〉 is not prohibited in terms of the
logarithmic negativity since

ÑL(|0〉〈0|⊗2)− ÑL(|H〉〈H|) = ln 22

1 +
√

2
> 0, (5.103)

whereas it is still open whether a deterministic or exact Gaussian transformation from
a constant number of |0〉s to |H〉 is possible or not. We here remark that the es-
timation on the required resource for the state conversion made by the logarithmic
negativity is in general very loose; the state with larger logarithmic negativity does
not necessarily mean the convertibility to the state with smaller logarithmic negativ-
ity [TZ18, AGPF18].

Note that the measure ÑL was also introduced in Ref. [GÁFF21], which is done
independently. In contrast to Ref. [GÁFF21], we justified the use of ÑL by numerically
calculating the original logarithmic negativity NL for the approximate GKP states and
then taking the limit of the infinite squeezing level as shown in Figure 5.8. Furthermore,
we explicitly show an example for the transformation under Gaussian operations in
Figure 5.6, which supports the usefulness of the resource theory.

To obtain further insight on the convertibility between GKP states, more sophis-
ticated resource-theoretic analyses may be needed. For example, an interesting possi-
bility is that Gaussian operations combined with post-selection may increase the neg-
ativity of a GKP state with nonzero probability. Such a possibility is not covered by
the analysis using the logarithmic negativity. Our resource-theoretical arguments and
methods are thus starting points for tackling questions on the GKP-state conversion.
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5.4.3 Feasibility of preparing a GKP magic state
Since Gaussian operations combined with a GKP magic state |H〉 can be ad-

vantageous in implementing QC over those with |0〉 of GKP qubits, we here dis-
cuss possible protocols for directly preparing |H〉. Note that choosing |H〉 among
GKP-encoded magic states may not just be a matter of convention; the |H〉 state
has the symmetry of π

2 -rotation in the phase space as seen in Figure 5.7 and thus
lies in an eigenspace of the photon number operator modulo four. Some propos-
als exploit this symmetry for the preparation [GKP01]. Our following discussion is
based on the proposals for the quantum optical implementation of approximate GKP
qubits [TM02, PMVT04, VSG10, EBKTB14, MBGM17, ABI+18, WT18, ENP19,
FMA+20, TBMS20, HA21, FTE+21, FEA+21], while there also exist other propos-
als and experimental demonstrations of generating approximate GKP states in various
systems [PMVT06a, PMVT06b, BKP13, TW16, FNMH18, LSW20, CIET+20, SCC19,
WT20, FNM+19, LGMS19, HPB+21]. Note that architectures such as superconducting
cavities [CIET+20] and trapped-ion mechanical oscillators [FNM+19] are also promis-
ing candidates to realize the GKP code, but we here focus on quantum optical im-
plementations since Gaussian operations are not necessarily easier to implement than
non-Gaussian operations on the superconducting cavities and the trapped-ion mechan-
ical oscillators. We remark that these existing proposals mostly focus on preparing |0〉
or |1〉 of the GKP code.

Some of the proposals, such as those in Refs. [PMVT04, FEA+21, HA21], may not
be suitable for the direct preparation of |H〉. References [PMVT04, FEA+21] consid-
ers using the cross-Kerr non-linearity to couple two optical modes initially prepared in
a coherent state and a squeezed coherent state, respectively, followed by performing
homodyne measurement of the mode initialized as the coherent state, which results in
generating approximate GKP-Pauli eigenstate |0〉 or |1〉. In this scheme, |H〉 cannot
be directly prepared as long as Gaussian states are fed into the cross-Kerr interaction
followed by the homodyne detection. Reference [HA21] considers using the optical
displacement and the controlled-π rotation controlled by the state of the two-level
atom. This setup cannot directly prepare the |H〉 state since the controlled-π rota-
tion cannot add relative phases between superposed peaks. As for other proposals,
Ref. [ABI+18] analyzes optimization of parametrized non-Gaussian optical circuits by
machine learning, and Ref. [FMA+20] uses time-frequency degrees of freedom. These
proposals do not fit our current settings for preparing the quantum optical GKP qubits
where Gaussian operations are easy compared to non-Gaussian operations, while they
are also interesting research directions.

There are, however, some existing proposals that can be used for preparing |H〉.
One approach is to breed the peaks of the approximate GKP states by the controlled-
displacement operation using the interaction with the discrete-variable system in the
cavity QED setups [TM02, MBGM17, HPB+21] or by the interference between two pre-
mature approximate GKP states in the all-optical setups [VSG10, EBKTB14, WT18].
Another approach is to use linear optical circuits followed by photon-number-resolving
(PNR) detectors and post-select certain outcome patterns [ENP19, TBMS20, FTE+21].

For the former approach, |H〉 can be prepared if the circuit given in Figure 5.9 can
be implemented by the same experimentally allowed operations that prepare |0〉. Refer-
ence [WT18] develops a refinement of the proposals in Refs. [VSG10, EBKTB14] of the
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Figure 5.9: A quantum circuit for preparing a GKP π
8 -phase state |π8 〉 from an input

GKP |0〉 state using the breeding-like (phase-estimation-like) circuit.

all-optical interference-based breeding protocol. The method proposed in Ref. [WT18]
can realize the circuit equivalent to that in Figure 5.9 by post-selecting the homodyne
outcome and adjusting the relative phase between |0〉 and |1〉. (In principle, an arbi-
trary superposition of |0〉 and |1〉 can be prepared with the method in Ref. [WT18].)
Reference [HPB+21], which uses the recursive interaction between a discrete-variable
system and a continuous-variable system, can also realize the circuit equivalent to that
in Figure 5.9 by adjusting the interaction terms. (The explicit methodology is given in
the literature.) Thus in these protocols, the technological requirements for preparing
|0〉 and |H〉 are at the same level. Note that if we are allowed to use an interaction
between a qubit and a continuous-variable system beyond the controlled-displacement
gate, an additional controlled-Fourier operation between the qubit and the continuous-
variable system can also prepare |H〉 from |0〉 as already shown in Ref. [GKP01].

For the latter approach, generating the non-Gaussian states with linear optical cir-
cuits followed by the PNR detectors as proposed in Refs. [ENP19, TBMS20, FTE+21]
can implement |0〉 and |H〉 on an equal footing with almost the same resource require-
ments, as pointed out in Ref. [TBMS20]. Furthermore, preparing only one type of
GKP state in this protocol may be desired since optical circuits and PNR detectors to
generate the GKP state need to be finely tuned to keep the fidelity high. These proto-
cols indicate that it is feasible to prepare |H〉 of the GKP qubits with a technological
requirement comparable to preparing |0〉 in some cases.

5.4.4 Discussion
We have proposed the implementation of the universal continuous-variable QC

based on the preparation of |H〉 rather than |0〉 of the GKP code combined with
the Gaussian operations. Our main contribution is the fundamental cost reduction of
the non-Gaussian resources compared to the existing proposal [BPA+19] by the direct
preparation of |H〉. This can avoid the costly distillation in [BPA+19] for converting
|0〉 states into a |H〉 state, and achieve a constant overhead in converting |H〉 states
into a |0〉 state. This cost reduction holds under the condition that the preparation of
the non-Gaussian states such as the GKP |0〉 and |H〉 states are equally costly com-
pared to Gaussian operations, which is true in the quantum optical system. It holds
neither for qubit error-correcting codes in which the preparation of the magic state
is much more costly than that of the Pauli eigenstate nor for the continuous-variable
systems other than the quantum optical system in which Gaussian operations are not
necessarily easy compared to the non-Gaussian operations.

In addition to the development of the cost-reduced protocol, we have introduced
the measure ÑL to quantify the non-Gaussianity of the ideal GKP states and ad-
dressed the fundamental limitation on the convertibility between GKP |H〉 and |0〉
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under Gaussian operations. Our findings of the usefulness of the resource theory
of non-Gaussianity in the continuous-variable QC may open up new directions for
the applications of the resource theory in continuous-variable systems. We have also
discussed two promising protocols for the direct preparation of |H〉 in the quantum
optical system; one is based on the breeding of peaks of approximate GKP states
(Refs. [WT18, HPB+21]), and the other is on the photon-number-resolving measure-
ment (Refs. [ENP19, TBMS20, FTE+21]). We point out that not much attention has
been paid to the direct preparations of the GKP magic state |H〉. Our results thus put
forward an argument on which of the GKP-encoded state should be used for the initial-
ization to implement the fault-tolerant optical QC, while more concrete comparisons
for the implementation cost may require further assumptions on advances in quantum
optical technologies and hence are left for future work.
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5.5 Conclusion for this chapter
In this chapter, we focus on the GKP code, which encodes a digitized degree of free-

dom into a continuous-variable system. The GKP code can correct displacement errors
in the continuous-variable system up to half the lattice spacing of the GKP-encoded
state. The ideal GKP code, however, assumes the use of an unphysical state and should
thus be regarded as the limit of its approximations. There are several conventional ap-
proximations of the GKP states, which are thought to be equivalent at least in the
limit of good approximation, but the lack of explicit correspondence prevents the accu-
rate comparison between researches based on the different conventions. In Section 5.3,
we showed that these conventional (symmetric) approximations of the GKP states are
equivalent by showing the exact correspondence between approximation parameters.
This result motivates us to introduce the standard form of approximate GKP codes,
and for the standard form, we derived their Wigner functions, the inner products, and
the average photon numbers. Our results bridge the gap for the past studies based
on different approximations and may be useful to analyze the recent and near-future
experimental realizations of the approximate GKP-encoded states.

There are several reasons why the GKP code is suitable for the optical fault-tolerant
continuous-variable QC. The foremost reason is that Gaussian operations, which can
be reliably implemented in quantum optical systems, are sufficient, in addition to the
preparation of the GKP-encoded states, to achieve the fault-tolerant universal QC.
In Section 5.4, we showed that, in addition to Gaussian operations, the ability to
prepare only one type of the GKP-encoded magic state is sufficient to realize the
fault-tolerant universality in a cost-efficient way. The cost-efficiency is achieved by
the deterministic state conversion from the GKP magic states to the GKP Pauli state
with Gaussian operations, while the known state conversion from the GKP Pauli states
to the GKP magic state is probabilistic. To analyze the state convertibility between
the GKP-encoded states under Gaussian operations, we apply the resource theory
of non-Gaussianity. Our argument of cost efficiency is implicitly based on the fact
that the required cost for generating the GKP magic state is comparable to that for
generating the GKP Pauli state, which is not true for the majority of the qubit-based
quantum error-correcting codes. To justify this, we proposed possible ways to directly
prepare the GKP magic state with slight modifications to the existing proposals for
the experimental GKP Pauli state realization.

With the results in Sections 5.3 and 5.4 combined, the (approximate) GKP code is
shown to be a powerful tool to realize the optical fault-tolerant continuous-variable QC
[BAV+21, TMA+21]. Our results thus show rich potentials of the continuous-variable
system for realizing the fault-tolerant universal QC by encoding the digitized quantum
information into the continuous-variable system such as the GKP code.



Chapter 6

Conclusion

For experimental implementations of quantum information processing, a promising
candidate for the hardware is a continuous-variable system, a quantum optical system
as a prominent example. In this thesis, we studied digital quantum information process-
ing with continuous-variable systems. More specifically, we studied continuous-variable
quantum key distribution (QKD) and continuous-variable quantum computation (QC)
based on digitized information processing.

For continuous-variable QKD, we developed a binary-modulation protocol that is
adapted to digital signal processing and proved its composable security against gen-
eral attacks in the case of a finite number of communication rounds. This complete
security proof was obtained by the newly developed fidelity estimation to an arbitrary
coherent state using the heterodyne measurement and the classical post-processing.
Using the fidelity as the measure of disturbance, we obtained an upper bound on the
number of phase errors that reflect the information leakage to the eavesdropper by
the heuristic operator inequality. The finite-size security against general attacks for
discrete-modulation continuous-variable QKD protocols had been an open problem;
our result partially solves the problem and can be a milestone for the ultimate goal.
The obtained key rate with our security proof did not, however, achieve the asymp-
totically optimal scaling rate estimated in previous studies. Therefore, we further
refined the proof based on the reverse reconciliation, the frequently used technique
in the field of the continuous-variable QKD, with a slight modification to the clas-
sical post-processing in the original protocol while keeping the original experimental
setups unchanged. As a result, under the pure-loss channel, the protocol asymptoti-
cally achieves an almost optimal key-rate scaling against the transmissivity. Thus, the
developed protocol turns out to have fairly good performance for quantum channels
that are close to the pure loss. Based on the results in this thesis, the next step is to
generalize the security proof to more general discrete-modulation continuous-variable
QKD protocols and obtain higher tolerance against excess noises, which has practical
as well as theoretical importance.

For continuous-variable QC, we gave several results on the GKP code, which en-
codes a qudit into a continuous-variable system and has many desirable properties for
optical QC. The GKP code can be implemented in a physical system only approx-
imately, and thus several approximations of the GKP code have been widely used.
We showed that these conventional approximations are equivalent by showing the ex-
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plicit correspondence between the approximation parameters. This result bridges the
gap of previous studies that were based on different approximations. Furthermore,
we constructed a resource-efficient protocol to realize the universal QC, requiring the
preparation of only one type of the GKP-encoded magic state and Gaussian opera-
tions. We showed the deterministic GKP state conversion from the two GKP-encoded
magic states to the GKP-encoded Pauli state while only the probabilistic conversion
is known for the converse direction. We deepened the analysis for the convertibility of
the GKP-encoded states using the resource theory of non-Gaussianity. Our resource
estimation implicitly assumed that the preparation of the GKP magic states was as
costly as the preparation of the GKP Pauli states. We justified this by showing that
the slight modifications to some of the existing proposals for implementing GKP Pauli
states can realize the GKP magic state preparation. Notably, for the proposals of using
parametrized linear optical circuits followed by photon-number-resolving detectors to
implement the GKP-encoded states, it is already known that the GKP magic state can
be implemented on equal footing with the GKP Pauli state. Our results thus show
the rich potentials of the GKP code for realizing fault-tolerant continuous-variable
QC and may lead to mitigating the implementation cost of the optical fault-tolerant
continuous-variable QC.

Throughout the thesis, we have developed information processing of quantum and
classical digital information encoded in continuous-variable quantum systems. Thus,
the contributions of this thesis are to elaborate the theory and enhance the experimental
feasibility for digital information processing with the continuous-variable system, which
opens up new possibilities for this field.



Appendix A

The grid representation

The grid representation appeared in the paper by Zak [Zak68], and was later elab-
orated upon [Jan82, GM96] and used in the context of quantum information the-
ory [KKW+16, TW16, DTW17, WT18]. Here we make a brief review. Let (u, v) ∈
[0, 1)× [0, 1), and V(u, v) := V

(
(2πv/(αdd), αddu)>

)
. Then, e−πitV forms a Heisenberg

group e−πitV(u, v) · e−πit′V(u′, v′) = e−πi(t+t
′+uv′−u′v)V(u+u′, v+ v′). Define |u, v〉grid as

|u, v〉grid := V(u, v) |0(ideal)〉 (A.1)
= e−πiuvZ(2πv/(αdd))X(αddu) |0(ideal)〉 . (A.2)

In Refs. [TW16, DTW17, WT18], |u, v〉grid with d = 1 is called the “shifted grid state”.
The generalized “shifted grid state” |u, v〉grid with arbitrary d satisfies an orthogonality
and completeness relation in the following sense [KKW+16, WT18]:

〈u, v|u′, v′〉grid = δ(u− u′)δ(v − v′),∫ 1

0
du
∫ 1

0
dv |u, v〉〈u, v|grid = I.

The “wave function” φf (u, v) of a state |f〉 with respect to the “shifted grid states”,
i.e., the grid representation of |f〉, is defined as φf (u, v) := 〈u, v|f〉, which satisfies∫ 1

0
du
∫ 1

0
dv
∣∣∣φf (u, v)

∣∣∣2 = 1. (A.3)

The “wave function” of the ideal GKP logical basis state |j(ideal)〉 can be regarded as a
Dirac delta function centered at (j/d, 0), which does not satisfy Eq. (A.3) and therefore,
cannot be regarded as a physical state. However, functions satisfying Eq. (A.3) and
localized at (j/d, 0) are well-defined approximate logical basis states.

Given the position representation ψf (q) := 〈q|f〉 of a (pure) state |f〉, its grid
representation φf (u, v) can be given by

φf (u, v) := 〈u, v|f〉 (A.4)

=
∫
dq 〈u, v|grid |q〉〈q|q̂ |f〉 (A.5)

=
√
αdd

∑
s∈Z

e−2πiv(s+u
2 )ψf (αdd(u+ s)) . (A.6)
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Using the last equality, we can expand the domain [0, 1)× [0, 1) of the “wave function”
of the grid representation φ to R2. This redefined “wave function” φ : R2 → C satisfies
Eq. (A.3) and the following:

∀(n1, n2)> ∈ Z2, φ(u+ n1, v + n2) = e−πi(n1n2+un2−vn1)φ(u, v), (A.7)

which can be confirmed from Eq. (A.6). The functions φ : R2 → C that satisfy
Eqs. (A.3) and (A.7) form a representation space of the Heisenberg group called
L2(R2/Z2) [MNN07], where the action of the group element Op(·) on φ is given by

Op(e−πiV(u, v))φf (x, y) := 〈x, y|grid e
−πitV(u, v) |f〉 (A.8)

= e−πi(t+xv−yu)φf (x− u, y − v). (A.9)

The formulation can easily be generalized to the g-mode case by considering the rep-
resentation space L2(R2g/Z2g) [MNN07].



Appendix B

Proofs of the propositions and
lemmas in Section 5.3

B.1 Proof of Proposition 5.3.2 and Lemma 5.3.3
First, we derive Eqs. (5.43), (5.45), and (5.47) in Proposition 5.3.2. In the main

text, α is fixed to αd for |j(ideal)〉 and all the approximations, but here, for later use,
we perform calculation for a general α; that is, we derive the position representation
of |j(1)

κ,∆,α〉 , |j
(2)
γ,δ,α〉 , and |j

(3)
β,α〉. We start with the derivation of Eq. (5.43). We have

〈q|j(1)
κ,∆,α〉 = 1√

N
(1)
κ,∆,j

∑
s∈Z

e−
1
2κ

2α2(ds+j)2 〈q|q̂X(α(ds+ j))S (− ln ∆) |0〉f (B.1)

=
∑
s∈Z

e−
1
2κ

2α2(ds+j)2√
∆N (1)

κ,∆,j

〈(q − α(ds+ j))/∆|0〉f (B.2)

=
(√

π∆2N
(1)
κ,∆,j

)− 1
2
∑
s∈Z

e−
1
2κ

2α2d2(s+ j
d)

2
− 1

2∆2 (q−αd(s+ j
d))

2

(B.3)

=
2
√
π∆2

N
(1)
κ,∆,j

 1
2

E 1
κ2 ,αd,

j
d
∗G∆2(q), (B.4)

where we used 〈q|q̂X(a) = 〈q − a|q̂ and 〈q|q̂ S(r) = 〈erq|q̂ er/2 in the second equality,
and 〈q|0〉f = π−

1
4 exp(−q2/2) in the third equality. Substituting α with αd in Eq. (B.4),

we obtain Eq. (5.43).
The derivation of Eq. (5.45) is similar. We have

〈q|j(2)
γ,δ,α〉 = 1√

N
(2)
γ,δ,j

∫∫ dr1dr2

2πγδ e
−

r21
2γ2−

r22
2δ2 〈q|q̂ V (r) |j(ideal)〉 (B.5)

= 1√
N

(2)
γ,δ,j

∫∫ dr1dr2

2πγδ e
−

r21
2γ2−

r22
2δ2
− ir1r22 +ir1q 〈q − r2|j(ideal)〉 , (B.6)

where we used V (r) := exp(−irprq/2)Z(rp)X(rq), 〈q|q̂ Z(rp) = 〈q|q̂ e−irpq, and 〈q|q̂X(rq) =
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〈q − rq|q̂. Using 〈q − r2|j(ideal)〉 = ∑
s∈Z δ (α(ds+ j)− q + r2), we have

(B.6) =
(

αd

N
(2)
γ,δ,j

) 1
2 ∫∫ dr1dr2

2πγδ e
−

r21
2γ2−

r22
2δ2
− ir1r22 +ir1q∑

s∈Z
δ (r2 − q + α(ds+ j)) (B.7)

=
(

αd

N
(2)
γ,δ,j

) 1
2 ∑
s∈Z

∫ dr1

2πγδ e
− 1

2γ2

[
r1− iγ

2
2 (q+α(ds+j))

]2
− γ

2
8 (q+α(ds+j))2− 1

2δ2
(q−α(ds+j))2

(B.8)

=
 αd

2πδ2N
(2)
γ,δ,j

 1
2

e−
λ(γ,δ)q2

2δ2
∑
s∈Z

e
−α

2d2λ(γ,δ)
2δ2 (s+ j

d)
2
+αdq

δ2

(
λ(γ,δ)− γ

2δ2
2

)
(s+ j

d) (B.9)

=
 αd

2πδ2N
(2)
γ,δ,j

 1
2∑
s∈Z

e
−λ(γ,δ)

2δ2

[
q−αd

(
1− γ2δ2

2λ(γ,δ)

)
(s+ j

d)
]2
−α

2d2λ(γ,δ)
2δ2

[
1−
(

1− γ2δ2
2λ(γ,δ)

)2]
(s+ j

d)
2

(B.10)

=
 αd

λ(γ, δ)N (2)
γ,δ,j

 1
2

E
λ(γ,δ)
γ2

(
1− γ2δ2

2λ(γ,δ)

)2
, αd

(
1− γ2δ2

2λ(γ,δ)

)
, j
d

∗G δ2
λ(γ,δ)

(q), (B.11)

where we used a Gaussian integral in the third equality, and used

1−
(

1− γ2δ2

2λ(γ, δ)

)2

=
(

γδ

λ(γ, δ)

)2

(B.12)

in the last equality. Substituting α with αd in Eq. (B.11) leads to Eq. (5.45).
The derivation of Eq. (5.47) needs a trick. We have

〈q|j(3)
β,α〉 = 1√

N
(3)
β,j

〈q|q̂
∑
n∈N
|n〉〈n|f e

−β(n+ 1
2) |j(ideal)〉 (B.13)

=
 αd

N
(3)
β,j

 1
2 ∑
s∈Z

∑
n∈N

e−β(n+ 1
2)ψn(q)ψ∗n(α(ds+ j)), (B.14)

where ψn(x) := (2nn!
√
π)−1/2e−x

2/2Hn(x) denotes the wave function of the Fock state.
Using Mehler’s Hermite polynomial formula [Wei]

∑
n∈N

(u/2)n
n! Hn(x)Hn(y) exp

(
−x

2 + y2

2

)
= 1√

1− u2
exp

[
−(1 + u2)(x2 + y2)− 4uxy

2(1− u2)

]
,

(B.15)
we obtain

〈q|j(3)
β 〉 =

 π−1e−βαd

(1− e−2β)N (3)
β,j

 1
2 ∑
s∈Z

e
−

(1+e−2β)(q2+α2(ds+j)2)
2(1−e−2β)

− 4e−βα(ds+j)q
2(1−e−2β) (B.16)

=
 (2π)−1αd

sinh βN (3)
β,j

 1
2 ∑
s∈Z

e−
α2d2

2 tanh β (s+ j
d)

2
+ αdq

sinh β (s+ j
d)− q2

2 tanh β (B.17)
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=
 (2π)−1αd

sinh βN (3)
β,j

 1
2 ∑
s∈Z

e−
1

2 tanh β (q− αd
cosh β (s+ j

d))
2
−α

2d2 tanh β
2 (s+ j

d)
2

(B.18)

=
 αd

cosh β N (3)
β,j

 1
2

E 1
sinh β cosh β ,

αd
cosh β ,

j
d
∗Gtanhβ(q). (B.19)

Substituting α with αd in Eq. (B.19) leads to Eq. (5.47).
Next, we prove Lemma 5.3.3 to derive Eqs. (5.44), (5.46), and (5.48) from Eqs. (5.43),

(5.45), and (5.47), respectively. From the definition of Eµ,Γ,a and Ẽµ,Γ,a in Defini-
tion 5.3.1 as well as the definition of Gν in Eq. (5.40), we have

Eµ,Γ,a ∗Gν(q) = 1√
2πν

∑
s∈Z

exp
[
−(s+ a)2Γ2

2µ − (q − (s+ a)Γ)2

2ν

]
(B.20)

= e−
1
2ν q

2

√
2πν

ϑ
[a

0

]( Γq
2πiν ,

i(1 + ν/µ)Γ2

2πν

)
, (B.21)

Ẽµ,Γ,a ∗Gν(q) = 1√
2πν

∑
s∈Z

exp
[
−s

2Γ2

2µ −
(q + sΓ)2

2ν + 2πias
]

(B.22)

= e−
1
2ν q

2

√
2πν

ϑ
[0
a

]( iΓq
2πν ,

i(1 + ν/µ)Γ2

2πν

)
. (B.23)

The theta function has the following identity [MM07]

ϑ(z/τ,−1/τ) = (−iτ) 1
2 exp(πiz2/τ)ϑ(z, τ), (B.24)

which leads to

ϑ
[0
a

]
(z/τ,−1/τ) = (−iτ) 1

2 exp(πiz2/τ)ϑ
[a

0

]
(z, τ). (B.25)

Applying this to Eqs. (B.21) and (B.23), we have

(B.21) = e(−
1
2ν+ 1

2ν(1+ν/µ))q2√
(1 + ν/µ)Γ2

ϑ
[0
a

](
− q

(1 + ν/µ)Γ ,
2πiν

(1 + ν/µ)Γ2

)
(B.26)

=
√

2πµ
Γ2 Gµ+ν(q) ϑ

[0
a

](
− q

(1 + ν/µ)Γ ,
2πiν

(1 + ν/µ)Γ2

)
, (B.27)

(B.23) =
√

2πµ
Γ2 Gµ+ν(q) ϑ

[a
0

](
− q

(1 + ν/µ)Γ ,
2πiν

(1 + ν/µ)Γ2

)
, (B.28)

which proves Lemma 5.3.3. Then, as mentioned above, we obtain Eqs. (5.44), (5.46),
and (5.48) by applying Lemma 5.3.3 to Eqs. (5.43), (5.45), and (5.47), respectively.
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B.2 Proof of Proposition 5.3.10
We compute W|j

σ2
q ,σ

2
p,Γ
〉〈j′

σ2
q ,σ

2
p,Γ
| as follows:

W|j
σ2
q ,σ

2
p,Γ
〉〈j′

σ2
q ,σ

2
p,Γ
|

= 1
π

∫
dx e2ipx 〈q − x|jσ2

q ,σ
2
p,Γ〉 〈j

′
σ2
q ,σ

2
p,Γ|q + x〉 (B.29)

=
2Γ
(

Λ(σ2
q ,σ

2
p)
)− 1

2

π
√
N
σ2
q ,σ

2
p,Γ,j

N
σ2
q ,σ

2
p,Γ,j′

∫
dx e2ipx

EΛ(σ2
q ,σ

2
p)

2σ2
p

,Γ, j
d

∗G2σ2
q
(q − x)


×

EΛ(σ2
q ,σ

2
p)

2σ2
p

,Γ, j′
d

∗G2σ2
q
(q + x)


(B.30)

= (2π2σ2
q

√
Λ(σ2

q ,σ
2
p))−1

Γ√
N
σ2
q ,σ

2
p,Γ,j

N
σ2
q ,σ

2
p,Γ,j′

∫
dx e2ipx∑

s

exp

−
(
s+ j

d

)2
Γ2σ2

p

Λ(σ2
q , σ

2
p)

− 1
4σ2

q

(
q − x−

(
s+ j

d

)
Γ
)2


×
∑
s′

exp

−
(
s′ + j′

d

)2
Γ2σ2

p

Λ(σ2
q , σ

2
p)

− 1
4σ2

q

(
q + x−

(
s′ + j′

d

)
Γ
)2


(B.31)

= (2π2σ2
q

√
Λ(σ2

q ,σ
2
p))−1

Γ√
N
σ2
q ,σ

2
p,Γ,j

N
σ2
q ,σ

2
p,Γ,j′

∫
dx

∑
s,s′

exp
− 1

2σ2
q

{
x− i

[
2σ2

qp+ iΓ
2

(
s+ j

d
− s′ − j′

d

)]}2


× exp
− 1

2σ2
q

[
2σ2

qp+ iΓ
2

(
s+ j

d
− s′ − j′

d

)]2

− 1
2σ2

q

[
q2 − Γq

(
s+ j

d
+ s′ + j′

d

)]
× exp

−Γ2

2

(
σ2
p

Λ(σ2
q , σ

2
p)

+ 1
4σ2

q

)(s+ j

d
+ s′ + j′

d

)2

+
(
s+ j

d
− s′ − j′

d

)2


(B.32)

=

(
2π3σ2

qΛ(σ2
q ,σ

2
p)
)− 1

2
Γ√

N
σ2
q ,σ

2
p,Γ,j

N
σ2
q ,σ

2
p,Γ,j′

∑
s,s′

exp
− Γ2σ2

p

2Λ(σ2
q , σ

2
p)

(s+ j

d
+ s′ + j′

d

)2

+
(
s+ j

d
− s′ − j′

d

)2


× exp
− 1

2σ2
q

[
q − Γ

2

(
s+ j

d
+ s′ + j′

d

)]2

− 2σ2
qp

2 − iΓp
(
s+ j

d
− s′ − j′

d

)
(B.33)

where we used the standard form (5.70) in the second equality. At this stage, we will
change the variables for the summation from s and s′ to s + s′ and s − s′. Since
s + s′ and s− s′ have the same parity, the summation splits into two parts: one with
s+ s′ = 2t, s− s′ = 2t′, (t, t′ ∈ Z) and the other with s+ s′ = 2t+ 1, s− s′ = 2t′ + 1.
Thus, we have

(B.33)
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=

(
2π3σ2

qΛ(σ2
q ,σ

2
p)
)− 1

2
Γ√

N
σ2
q ,σ

2
p,Γ,j

N
σ2
q ,σ

2
p,Γ,j′

∑
t,t′

exp
− 1

2σ2
q

[
q − Γ

(
t+ j + j′

2d

)]2

− 2σ2
qp

2− 2iΓp
(
t′ + j − j′

2d

)
× exp

− 2Γ2σ2
p

Λ(σ2
q , σ

2
p)

(t+ j + j′

2d

)2

+
(
t′ + j − j′

2d

)2


+ exp
− 1

2σ2
q

[
q − Γ

(
t+ j + j′

2d + 1
2

)]2

− 2σ2
qp

2 − 2iΓp
(
t′ + j − j′

2d + 1
2

)
× exp

− 2Γ2σ2
p

Λ(σ2
q , σ

2
p)

(t+ j + j′

2d + 1
2

)2

+
(
t′ + j − j′

2d + 1
2

)2



(B.34)

=

(
π2Λ(σ2

q ,σ
2
p)
)− 1

2
Γ√

N
σ2
q ,σ

2
p,Γ,j

N
σ2
q ,σ

2
p,Γ,j′


(
EΛ(σ2

q ,σ
2
p)

4σ2
p

,Γ, j+j′2d

∗Gσ2
q
(q)
)
e−2σ2

qp
2
ϑ
[
j−j′
2d

0

](
−Γp
π
,

2iΓ2σ2
p

πΛ(σ2
q , σ

2
p)

)

+
(
EΛ(σ2

q ,σ
2
p)

4σ2
p

,Γ, j+j′2d + 1
2

∗Gσ2
q
(q)
)
e−2σ2

qp
2
ϑ
[
j−j′
2d + 1

2

0

](
−Γp
π
,

2iΓ2σ2
p

πΛ(σ2
q , σ

2
p)

)
(B.35)

= (2πσ2
p)−

1
2√

N
σ2
q ,σ

2
p,Γ,j

N
σ2
q ,σ

2
p,Γ,j′


(
EΛ(σ2

q ,σ
2
p)

4σ2
p

,Γ, j+j′2d

∗Gσ2
q
(q)
)
e
− p2

2σ2
p ϑ
[ 0

j−j′
2d

](ipΛ(σ2
q , σ

2
p)

2Γσ2
p

,
πiΛ(σ2

q , σ
2
p)

2Γ2σ2
p

)

+
(
EΛ(σ2

q ,σ
2
p)

4σ2
p

,Γ, j+j′2d + 1
2

∗Gσ2
q
(q)
)
e
− p2

2σ2
p ϑ
[ 0

j−j′
2d + 1

2

](ipΛ(σ2
q , σ

2
p)

2Γσ2
q

,
πiΛ(σ2

q , σ
2
p)

2Γ2σ2
p

)
(B.36)

= (2πσ2
p)−

1
2√

N
σ2
q ,σ

2
p,Γ,j

N
σ2
q ,σ

2
p,Γ,j′

×
∑
t


(
EΛ(σ2

q ,σ
2
p)

4σ2
p

,Γ, j+j′2d

∗Gσ2
q
(q)
)
e2πit j−j

′
2d e

− 1
2σ2
p

(
p+

πtΛ(σ2
q ,σ

2
p)

Γ

)2
−

2π2t2σ2
qΛ(σ2

q ,σ
2
p)

Γ2

+
(
EΛ(σ2

q ,σ
2
p)

4σ2
p

,Γ, j+j′2d + 1
2

∗Gσ2
q
(q)
)
e

2πit
(
j−j′
2d + 1

2

)
e
− 1

2σ2
p

(
p+

πtΛ(σ2
q ,σ

2
p)

Γ

)2
−

2π2t2σ2
qΛ(σ2

q ,σ
2
p)

Γ2


(B.37)

= 1√
N
σ2
q ,σ

2
p,Γ,j

N
σ2
q ,σ

2
p,Γ,j′

(EΛ(σ2
q ,σ

2
p)

4σ2
p

,Γ, j+j′2d

∗Gσ2
q
(q)
)(

ẼΛ(σ2
q ,σ

2
p)

4σ2
q

,
πΛ(σ2

q ,σ
2
p)

Γ , j−j
′

2d

∗Gσ2
p
(p)
)

+
(
EΛ(σ2

q ,σ
2
p)

4σ2
p

,Γ, j+j′2d + 1
2

∗Gσ2
q
(q)
)(

ẼΛ(σ2
q ,σ

2
p)

4σ2
q

,
πΛ(σ2

q ,σ
2
p)

Γ , j−j
′

2d + 1
2

∗Gσ2
p
(p)
),

(B.38)

where we used Eq. (B.25) in the third equality.
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B.3 The proof of Proposition 5.3.12
In order to derive the average photon number of the approximate code state |jσ2

q ,σ
2
p,Γ〉

in Definition 5.3.9, we first calculate the expectation values 〈q̂2〉|j
σ2
q ,σ

2
p,Γ
〉 and 〈p̂2〉|j

σ2
q ,σ

2
p,Γ
〉

of the squares q̂2 and p̂2 of the quadrature operators with respect to |jσ2
q ,σ

2
p,Γ〉, using its

Wigner function (5.79). Then, one can obtain the average photon number 〈n̂〉|j
σ2
q ,σ

2
p,Γ
〉

of the state |jσ2
q ,σ

2
p,Γ〉 by exploiting the fact that 〈q̂2 + p̂2〉|j

σ2
q ,σ

2
p,Γ
〉 = 〈2n̂+ 1〉|j

σ2
q ,σ

2
p,Γ
〉.

We frequently use Eqs. (5.83), (5.84), (5.85), and (5.86) in the following calculation.
Let pr(q) and p̃r(p) be the probability density functions to obtain the values q and p
in the q̂- and p̂-quadrature measurements, respectively. Then, they can be given by

pr(q) =
∫
dpW|j

σ2
q ,σ

2
p,Γ
〉〈j

σ2
q ,σ

2
p,Γ
|(q, p) (B.39)

= 1
Nσ2

q ,σ
2
p,Γ,j

c1EΛ(σ2
q ,σ

2
p)

4σ2
p

,Γ, j
d

+ c2EΛ(σ2
q ,σ

2
p)

4σ2
p

,Γ, j
d

+ 1
2

 ∗Gσ2
q
(q), (B.40)

p̃r(p) =
∫
dqW|j

σ2
q ,σ

2
p,Γ
〉〈j

σ2
q ,σ

2
p,Γ
|(q, p) (B.41)

= 1
Nσ2

q ,σ
2
p,Γ,j

c3ẼΛ(σ2
q ,σ

2
p)

4σ2
q

,
πΛ(σ2

q ,σ
2
p)

Γ ,0
+ c4ẼΛ(σ2

q ,σ
2
p)

4σ2
q

,
πΛ(σ2

q ,σ
2
p)

Γ , 12

 ∗Gσ2
p
(p), (B.42)

where c1, c2, c3, and c4 are defined as

c1 := ϑ
[0
0

](
0, 2πiΓ−2σ2

qΛ(σ2
q , σ

2
p)
)
, (B.43)

c2 := ϑ
[0

1
2

](
0, 2πiΓ−2σ2

qΛ(σ2
q , σ

2
p)
)
, (B.44)

c3 := ϑ
[
j
d

0

](
0, 2π−1iΓ2σ2

p

[
Λ(σ2

q , σ
2
p)
]−1

)
, (B.45)

c4 := ϑ
[
j
d

+ 1
2

0

](
0, 2π−1iΓ2σ2

p

[
Λ(σ2

q , σ
2
p)
]−1

)
. (B.46)

Note that the normalization constant Nσ2
q ,σ

2
p,Γ,j satisfies Nσ2

q ,σ
2
p,Γ,j = c1c3+c2c4 as shown

in Eq. (5.80). Using pr(q), we calculate the expectation value of q̂2 as follows:

〈q̂2〉|j
σ2
q ,σ

2
p,Γ
〉

=
∫
dq q2 pr(q) (B.47)

=
∫
dq
∫
dr q2

N
σ2
q ,σ

2
p,Γ,j

c1EΛ(σ2
q ,σ

2
p)

4σ2
p

,Γ, j
d

(r) + c2EΛ(σ2
q ,σ

2
p)

4σ2
p

,Γ, j
d

+ 1
2

(r)
Gσ2

q
(q − r) (B.48)

=
∫
dq
∫
dr r

2+2r(q−r)+(q−r)2

N
σ2
q ,σ

2
p,Γ,j

c1EΛ(σ2
q ,σ

2
p)

4σ2
p

,Γ, j
d

(r) + c2EΛ(σ2
q ,σ

2
p)

4σ2
p

,Γ, j
d

+ 1
2

(r)
Gσ2

q
(q − r)

(B.49)

=
∫
dq′ q′2Gσ2

q
(q′) +

∫
dr r2

N
σ2
q ,σ

2
p,Γ,j

c1EΛ(σ2
q ,σ

2
p)

4σ2
p

,Γ, j
d

(r) + c2EΛ(σ2
q ,σ

2
p)

4σ2
p

,Γ, j
d

+ 1
2

(r)
 (B.50)
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= σ2
q +

∫ dr

Nσ2
q ,σ

2
p,Γ,j

c1

∑
s∈Z

Γ2
(
s+ j

d

)2
e−

Γ2
2µ (s+ j

d)
2

δ
(
r − Γ

(
s+ j

d

))
+ c2

∑
s∈Z

Γ2
(
s+ j

d
+ 1

2

)2
e−

Γ2
2µ (s+ j

d
+ 1

2)2

δ
(
r − Γ

(
s+ j

d
+ 1

2

))
∣∣∣∣∣∣
µ=

Λ(σ2
q ,σ

2
p)

4σ2
p

(B.51)

= σ2
q − 2

N
σ2
q ,σ

2
p,Γ,j

∂
∂(µ−1)

[
c1ϑ

[
j
d

0

](
0, iΓ

2

2πµ

)
+ c2ϑ

[
j
d

+ 1
2

0

](
0, iΓ

2

2πµ

)]∣∣∣∣∣
µ=

Λ(σ2
q ,σ

2
p)

4σ2
p

, (B.52)

where we used the fact that Gσ2
q
(x) has zero mean in the fourth and the fifth equality.

In the same way, for the expectation value of p̂2, we have

〈p̂2〉|j
σ2
q ,σ

2
p,Γ
〉 (B.53)

= σ2
p − 2

N
σ2
q ,σ

2
p,Γ,j

∂
∂(µ′−1)

[
c3ϑ

[0
0

](
0,
πi[Λ(σ2

q , σ
2
p)]2

2µ′Γ2

)
+ c4ϑ

[0
1
2

](
0,
πi[Λ(σ2

q , σ
2
p)]2

2µ′Γ2

)]∣∣∣∣∣
µ′=

Λ(σ2
q ,σ

2
p)

4σ2
q

.

(B.54)

Now we define Ñσ2
q ,σ

2
p,Γ,j(x, y) as

Ñσ2
q ,σ

2
p,Γ,j(x, y) := ϑ

[
j
d

0

](
0, iΓ

2

2π x
)
ϑ
[0

0

](
0,
πi[Λ(σ2

q , σ
2
p)]2

2Γ2 y

)

+ ϑ
[
j
d

+ 1
2

0

](
0, iΓ

2

2π x
)
ϑ
[0

1
2

](
0,
πi[Λ(σ2

q , σ
2
p)]2

2Γ2 y

)
,

(B.55)

where Nσ2
q ,σ

2
p,Γ,j = Ñσ2

q ,σ
2
p,Γ,j

(
4σ2

p[Λ(σ2
q , σ

2
p)]−1, 4σ2

q [Λ(σ2
q , σ

2
p)]−1

)
. Then, the average

photon number is given by
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2
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∂
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q ,σ

2
p)]−1, y=4σ2

q [Λ(σ2
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2
p)]−1

,

(B.56)

which proves Eq. (5.91).



Appendix C

Alternative expressions for the
Wigner function, inner products,
and average photon number of the
approximate GKP code

In this appendix, we derive alternative expressions for the Wigner function, inner
products, and the average photon number of the standard form |jσ2

q ,σ
2
p,Γ〉 in terms of

multi-variable generalization of the theta function, the Riemann theta function (also
called Siegel theta function) [MM07]. For a row vector z ∈ Cn and a matrix τ ∈ Cn×Cn

with τ = τ> and Im(τ ) > 0, the Riemann theta function Θ
[a
b

]
(z, τ ), is defined as

Θ
[a
b

]
(z, τ ) :=

∑
s∈Zn

exp
[
πi(s+ a)τ (s+ a)> + 2πi(z + b)(s+ a)>

]
. (C.1)

We also define multivariate normal distribution Ḡ[ν](x) as

Ḡ[ν](x) := 1√
2πdet(ν)

exp
(
−1

2xν
−1x>

)
. (C.2)

Now we define a multi-variable function combining Eµ,Γ,a(x) and Ẽµ,Γ,a(x) as follows.
Definition C.0.1. For a symmetric 2 × 2 matrix µ satisfying Re(µ) > 0 and 2-
dimensional row vectors Γ,a, and b, let Ē

[
µ,Γ,a, b

]
(x) be defined as

Ē
[
µ,Γ,a, b

]
(x) := exp

(
−1

2xµ
−1x>

) ∑
s∈Z2

e2πib(s+a)> δ(x− (s+ a) ◦ Γ) , (C.3)

where ◦ denotes an Hadamard product (A ◦B)ij = (A)ij(B)ij.

C.1 An alternative expression of the Wigner func-
tion

Under Definition C.0.1, we have an alternative expression of the Wigner function
(5.79), which is relatively concise.
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Corollary C.1.1 (Alternative expression of the Wigner function). The Wigner func-
tion given in Eq. (5.79) is alternatively represented as

W|j
σ2
q ,σ

2
p,Γ
〉〈j′

σ2
q ,σ

2
p,Γ
|(q, p)

= 1√
N
σ2
q ,σ

2
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N
σ2
q ,σ

2
p,Γ,j′
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[
Λ(σ2

q , σ
2
p)
(

4σ2
p 2i

2i 4σ2
q
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,
(

Γ
2 ,

πΛ(σ2
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2
p)

Γ

)
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(
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d
, 0
)
,
(
0, j′

d

)]

~∗ Ḡ
[(

σ2
q 0
0 σ2

p

)]
(q, p),

(C.4)

where Ē is defined in Definition C.0.1, and ~∗ denotes a convolution in a multivariate
sense.

Proof. Comparing Eqs. (5.79) and (C.4), it is sufficient to show the following equality.(
Eµ,Γ,a ∗Gσ2

q
(q)
)(

Ẽµ′,Γ′,a′ ∗Gσ2
p
(p)
)
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(
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2
∗Gσ2

q
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(C.5)

This follows from the following rearrangement of the summation.(
Eµ,Γ,a ∗Gσ2

q
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(C.6)

=
∫∫

dxdy
∑
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exp
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)
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(C.7)
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=
∫∫

dxdy
∑
s′,s′′

exp
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−x

2

2µ −
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2µ′ − πis
′′s′ − 2πia′s′

]
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(C.8)

=
∫∫

dxdy
∑
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exp
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−1
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= Ē

[(
µ−1 2πi

ΓΓ′
2πi
ΓΓ′ µ

′−1

)−1
,
(

Γ
2 ,Γ

′
)
,
(
2a, 0

)
,
(
0, a− a′
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~∗ Ḡ

[(
σ2
q 0
0 σ2

p

)]
(q, p). (C.10)

Note that the right-hand side of Eq. (C.4) approaches the right-hand side of Eq. (5.32)
as σ2

q , σ
2
p → 0. Equation (C.4) fits a viewpoint that a state corresponding to the Wigner

function Ē(q, p) is subject to Gaussian random displacement channel [CGH06], since
random displacement can be represented as a convolution in the Wigner function pic-
ture. This viewpoint is utilized in numerical simulations of error analyses using approx-
imate GKP codes [Men14, FTOF18, VAW+19, NC20, Wan19]. It should be noted that
an operator corresponding to Ē(q, p) with parameters chosen as in Eq. (C.4) is neither
a density operator nor a limit of density operators. There is thus no contradiction
with the observation that an approximate GKP state differs from an ideal code state
subject to random displacement noise, as stated in the explanation below the definition
of Approximation 2.

C.2 Alternative expressions of normalization con-
stant and inner product

The alternative expression of the Wigner function in Corollary C.1.1 leads to the fol-
lowing alternative concise expressions of the normalization constant and inner product
with the Riemann theta function.

Corollary C.2.1 (Alternative expressions of normalization constant and inner prod-
uct). The normalization factor given in Eq. (5.80) is alternatively represented as
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2
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. (C.11)

Furthermore, the inner product given in Eq. (5.81) is alternatively represented as
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(C.12)



C.3. Alternative expression of average photon number 130

Proof. We combine Eq. (5.82) with the followings:∫
dx f(x)~∗ g(x) =

∫
dx f(x)

∫
dy g(y), (C.13)∫

dx Ē[µ,Γ,a, b](x) =
∑
s∈Z2
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1 Γ1Γ2
Γ1Γ2 Γ2
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,

(C.14)∫
dx Ḡ[ν](x) = 1. (C.15)

C.3 Alternative expression of average photon num-
ber

The alternative expression of the normalization constant leads to the following
alternative expression of the average photon number with the Riemann theta function.

Corollary C.3.1 (Alternative expression of average photon number). The average
photon number given in Eq. (5.91) is alternatively represented as
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〉 =
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where Ňσ2
q ,σ

2
p,Γ,j(µ−1) is given by
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Proof. We give a more intuitive proof rather than direct calculation given in Sec. B.3.
We see that 〈q̂2 + p̂2〉|j

σ2
q ,σ

2
p,Γ
〉 denotes a second moment of the (quasi)probability dis-

tribution W|j
σ2
q ,σ

2
p,Γ
〉〈j

σ2
q ,σ

2
p,Γ
|, which is a convolution of “normalized” Ē and Ḡ[ν]. Since

Ḡ[ν](x) has zero mean, the second moment of W|j
σ2
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2
p,Γ
〉〈j

σ2
q ,σ

2
p,Γ
| is a summation of the

second moment of “normalized” Ē and that of Ḡ[ν]. (Eq. (B.50) also shows this fact.)
The second moment of Ḡ[ν] is simply given by σ2

q +σ2
p. On the other hand, the second
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moment of normalization times Ē is given by
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where we used Eq. (C.14) in the last equality. Combining these with the relation
〈q̂2 + p̂2〉|j
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2
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〉 = 〈2n̂+ 1〉|j
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〉 proves the statement.
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