
博士論文（要約） 

 

 

Developing Effective Code for Building CSL and 

Approximate CSL Interfaces of Any Two Lattices 

and Investigating the Phase Behavior in Interfaces of 

Diamond-structured Materials 
 

(CSL および近似 CSL 粒界作成のための効率的コードの開発とダイヤモンド
構造界⾯における相挙動の研究) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

謝 耀枢 
(Xie Yaoshu) 



 2 

Abstract 

This thesis is about 1/4 and 3/4 for two topics. The first topic is focused on solving two issues 

in atomic simulation for interfaces in crystalline materials. The second topic is to extend the 

research on grain boundary (GB) phases in bcc and fcc metals to diamond-structured materials. 

Chapter 1 is the introduction explaining the reason to propose this work for these two topics. 

Chapter 2 is focused on first topic and Chapters 3-7 are for the second topic. 

 

Most materials with important applications in modern times are crystalline materials. Lacking 

in full understanding of the crystalline interfaces is one of the main barriers to completely 

control the performances of devices and facilities involving crystalline materials. Atomic 

simulation is an effective way to investigate structure-property relationship of crystalline 

interfaces, which has been widely applied to support in studies on both heterogeneous interfaces 

(HTIs) with importance in many modern devices and GBs existing in many important 

engineering polycrystalline materials. Two problems exist in current studies on crystalline 

interfaces. One is lacking in an effective and convenient package capable to build a CSL 

interface by only input crystallographic indices and cif files. This has hindered many interface 

engineers from being capable to simulate arbitrary interfaces they observed experimentally. 

Another is lacking in a package capable to compute the cell of non-identical displacement 

(CNID) of any CSL. This makes it ineffective to explore GB structures by sampling the 

complex energy landscape by applying rigid body translation of one crystal respect to the other. 

 

Chapter 2 discusses the algorithm and usage examples of the generated code to solve the two 

issues mentioned above. The generated code is capable to build an approximate CSL interface 

of two arbitrary lattices. For showing the usage examples, it has been applied to generate a CSL 

GB (twinning GB of CuInSe2) from two crystals forming a three-dimensional CSL and to make 

a CSL (𝛽-Si3N4(0001)/Si(111) interface and a CSL (111)Si/(0001)SiC interface from two 

crystals with only two-dimensional coincidence). These examples presented how this code is 

in principal capable to be applied to generate an arbitrary CSL or approximate CSL interface 

satisfying any cases of engineering application to build an interface close to an interface 
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structure obtained from an experimental observation, or to make a model of any unknown 

conceptual interface. In terms of convenience, the required parameters to input are simply some 

lattice indices and cif files of the two crystals forming the interface. Once the CSL interface is 

generated, the code simultaneously computes its CNID. The importance of applying CNID in 

CSL GBs and HTIs have also been illustrated in this chapter and the results have shown that 

applying the CNID can dramatically improve the efficiency in sampling RBT to determine the 

interface structures especially for asymmetric tilt, twist and mixed GBs, and for HTIs. 

 

Atomic-scaled simulation and experimental observation have suggested that GBs in fcc and bcc 

metals can exist as multi-phases and perform phase transition. Understanding such behaviour 

is of importance to fully figure out the property of GBs while extensive previous studies have 

been only focused on a single phase of GB. Recently, GB complexion has attracted interests 

which is a phenomenon discovered in some multi-elemental GBs to perform structural 

transition at elevated temperature. GB complexion has importance as a better understanding of 

it can help better control the microstructure of these polycrystalline materials. Similar structural 

transition of GBs has been predicted to also exist in elemental GBs including the GBs of fcc & 

bcc metals and a recent study has reported a direct observation of coexistence of two copper 

GB phases under room temperature, providing evidence that elemental GBs can perform phase-

like behaviours. Investigating elemental GB phases is helpful to better understand the GB phase 

(or complexion) phenomenon they are simpler. However, despites that there have been these 

exciting achievements in finding GB phases in fcc and bcc metals, considering their physical 

character of mainly having metallic bonds, it is of both scientific and practical importance to 

extend this research into other elemental materials. Diamond-structured materials are good 

candidates to do so because they not only possess covalent bond character which can make new 

insights of this phenomenon which cannot be obtained from the metallic-bonded GBs. It is also 

of practical importance considering the fact that diamond-structured materials are widely 

applied in many important modern devices where the GBs play a significant role in affecting 

their performances.  



 4 

 

The results from chapter 3 to chapter 7 will be published in journal. 

 

This research is helpful for more effective interface simulation and has made new insights on 

understanding the effects of meta-stable GB phases on the properties of materials with covalent 

bonds. 
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1. Introduction 

This thesis is mainly focused on two topics. One is to develop a code capable to be applied to 

treat some issues of inefficiency and inconveniency existing in current research on simulation 

for interfaces in crystalline materials (ICMs) and to tackle the shortages of previously reported 

similar codes supporting in this purpose. The other is to investigate the ‘phase behavior’ in the 

interfaces (mainly grain boundaries) of the diamond-structured materials. This chapter will 

introduce 1) the scientific importance in understanding ICMs; 2) issues in conducting atomic 

simulation for ICMs; and 3) some well-accepted basic concepts of grain boundary (GB) phases 

and their engineering significances. 

 

1.1 Importance in Understanding Interfaces in Crystalline Materials 

Crystalline materials are materials with repeatable arrangements of atoms or molecules, also 

known as crystals. Crystals well-known in daily life include ice, salt and most metals. They 

possess repeated arrangements of identical building blocks of respectively water molecules, 

sodium ions and chloride ions alternately, and metallic atoms. To satisfy the requirement to 

form ideal perfect crystals, these building blocks in everywhere of the crystals should have 

uniform separation in every spatial direction and for those made by molecules, the molecules 

should also possess identical orientation. Such an order is termed as long-ranged order, which 

is reflected by the ordered shapes of minerals like the cubic ice and salt, the hexagonal emerald 

and the tetragonal diamond. The term ‘long-ranged’ order is to distinguish with the ‘short-

ranged’ order existing in another substance known as amorphous. The most well-known 

amorphous is the glass made of silica (SiO2). Instead of presenting a long-ranged order, silica 

only possesses short-ranged or localized order. In glassy silica, oxygen and silicon atoms form 

localized tetrahedral arrangements but the separation and orientation of these tetrahedrons are 

almost random or they present orders only in a much smaller scale which cannot be detected 

by a diffraction experiment. This difference between the extents of structural order in crystals 

and amorphous contributes to a significant difference in both their mechanical and physical 

properties. In fact, most materials with important application in modern times are crystals. Both 
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the structural metals and alloys to bear loads and the functional ceramics and semiconductors 

serving to provide special functions are mainly existing as crystals. These materials of crystals 

are termed as crystalline materials.  

 

With the development in materials science and technology, people nowadays are capable to not 

only directly observe the atomic scale arrangements in a crystal with a high-resolution 

microscope but also to compute their physical properties using computational simulation to 

obtain results acceptable accuracy if only their structures are known. However, it still seems to 

be a long way to eliminate all the barriers to ultimately understand the mechanism of all the 

materials’ properties. One of the most significant internal and intrinsic barriers is the fact that 

real crystalline materials generally exist as non-perfect crystals. Real crystalline materials have 

defects in different dimensions including the one-dimensional point defects (vacancies and 

interstitials) and two-dimensional defects (dislocations and ICMs). The existence of these 

defects can be a result of the thermodynamic requirement of entropy increase for the crystals 

to be stable; or inevitably generated during the synthesis or processing of the materials. 

 

While dislocations and point defects do not significantly break the long-ranged order in a crystal, 

ICMs brings about a remarkably different aspects of effects on the order and regularity in 

crystalline materials. ICMs includes heterogenous interfaces (HTIs) connecting two crystals of 

different materials; and homogeneous interfaces (HMIs) connecting two crystals of identical 

materials with symmetry breaking at the interfaces. Depending on the way of symmetry 

breaking, HMIs can be further divided into stacking faults (SFs), domain boundaries (DBs) and 

grain boundaries (GBs), in which GBs are interfaces between two disoriented-crystals and are 

most popular to exist in real crystalline materials1. On one hand, a HTI generates a physical 

environment distinct from either individual crystal forming this HTI so that HITs themselves 

can be applied as special materials to provide novel performances which does not exist 

individually in any single crystals. When Herbert Kroemer was making the Nobel lecture in 

2001, he coined the famous phrase that “the interface is the device” which emphasized the 
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importance of heterogeneous interfaces in any functional device2. Examples of these significant 

interfaces include not only those in the devices which are already commercialized like 

electrode/electrolyte interface in solid-state lithium batteries3, and the semiconductor/electrode 

interface in thin-film transistors4. Exploring the interface physics like interface 

superconductivity5 is also a key aspect to achieve well-controlled novel quantum materials. On 

the other hand, most real crystalline materials are polycrystallines containing GBs which often 

form complex networks packing disoriented grains and this often results in greatly disparate 

properties from the well-known single crystals1,6. Obviously, compared with other crystalline 

defects, ICMs can exist as much more diverse structures and cause much severer variation from 

a perfect crystal's structure. Therefore, the disparity in properties of a real material from a 

perfect crystal caused by existence of ICMs is often more remarkable than that caused by point 

defects and dislocations. Hence, it is highly desired to understand how interfaces generate 

unpredicted properties absent in any individual perfect crystal and how they make 

polycrystallins behave differently from perfect crystals.  

 

1.2 Atomic Simulation for ICMs and Existing Issues 

1.2.1 Bicrystal Model and CSL Interfaces 

Atomic simulation is an effective way to investigate structure-property relationship of 

interfaces. Simulation in HTIs have been effectively applied to investigate the impact of these 

interfaces on performances of many functional devices7–10. Compared with HTIs, more 

extensive studies has been done in GBs including 1) investigating how the GB geometric 

parameters like disorientation between grains and GB plane orientation affect GB energy 11–14, 

GB segregation energy 15 and GB mobility16; 2) exploring GB phases and simulating phase 

transition processes 17–19; 3) understanding the GB faceting behavior 20,21; and 4) evaluating the 

stabilization effects of GB segregation 22,23. Obviously, simulation for GBs is more flexible than 

that for HTIs. 

A main issue in atomic simulation of materials is the gap between the enormous number of 

atoms in a real material and the limited computing ability of a computer which can only 
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simulate the behaviours of a limited number of atoms. This issue was often tackled by applying 

a supercell with periodic boundary conditions (PBDs). One can simulate the behaviour of an 

ideal material with infinite dimension in certain well-defined directions by applying PBDs in 

those directions. In this way, atomic simulation of an acceptable number of replicas of lattices 

can be applied to make reasonable prediction of properties belonging to an infinitely large 

material once the maximum effective atomic distance in the simulation cell is large enough so 

that they have nearly no interaction. For interfaces, one often utilizes such supercell of a single 

interface to study its physical properties, which is a bicrystal model as can be seen in Figure 

1.2.1. Generally, one desires to apply PBDs at least in the two dimensions parallel to the 

interface plane to simulate an infinitely large two-dimensional interface. As for the other 

dimension perpendicular to the interface, applying a PBD there generates another interface 

made by the two surfaces away from the interface while applying a non-PBD there generates 

two free surfaces. Both the conditions are acceptable depending on the purpose and method of 

simulation. 

 

Applying PBDs parallel to the interface plane brings about requirements that the two crystals 

must coincide at the interface. Such coincident crystalline interfaces were termed as coincident 

site lattice (CSL) interfaces. The discovery of CSL interfaces dates back to 1960s when 

Brandon and Ranganathan reported their work on finding CSL GBs24,25, which inspired 

subsequent extensive mathematical work on the crystallographic aspects of interfaces. Famous 

contributions includes the first textbook on crystalline interfaces from Bollman26 and the 

subsequently proposed Bicrystallography by Pond and Vlachavas27. The well-developed 

mathematic tools and promoted computer science provided possibility for appearance of 

extensive reported atomic simulation of GBs in 1980s, which remarkably promoted 

understanding of GBs’ structure-property relationships28–33. Nowadays combing results of 

atomic observation from high-resolution microscopies and atomic simulation has become a 
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popular method to ultimately reveal the structure and properties of interfaces. In this way, 

making simulation cells has become a frequent task in study interfaces.  

 

 

1.2.2 Issues in Generating Simulation Cells of CSL Interfaces 

Generally, an arbitrary real interface does not have to be a CSL interface. However, CSL 

interfaces are of great practical importance. Firstly, for many important polycrystalline 

materials made by a conventional synthesis method, a large proportion of interfaces are CSL 

interfaces, such as the twinning GBs in many fcc metals. Also, in terms of GB engineering, the 

performances of polycrystallines can be promoted by manipulate the distribution of CSL 

GBs34,35. Secondly, the CSL HTIs are exact models of epitaxial thin films applied in many 

Figure 1.2.1 Bicrystal model of a single interface. Blue and red frames represent two 
crystals forming the interface. Orange frames are the supercell for simulation. For 
visualization the orange cell was slightly separated with the two crystals while this 
separation does not exist in the real simulation. The shaded surfaces of the simulation cell 
can be set as periodic boundaries or non-periodic boundaries while the other for surfaces 
were often set as periodic. 
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important functional devices36–39. Thirdly, a non-CSL interface is possible to be simulated by 

an approximate CSL interface. 

 

Making a bicrystal simulation cell for a CSL interface requires to define a parallelepiped and 

specify two sets of lattice directions along the three distinct edges of this parallelepiped. There 

are two popular cases one desires to conduct simulation of using such cells. One is to simulate 

discovered interface with information of diffraction pattern or direct observation of atomic 

structures. The other is to compute a bunch of different GBs in the same materials to reveal the 

structure-property of GBs distributed in a ‘GB space’ of two macroscopic parameters including 

the disorientation D of the two crystals and the GB plane orientation n. D can be represented 

as a linear transformation referring to a rotation operation of one crystal making it identical to 

the other with 3 degrees of freedom; and n is a unit vector perpendicular to the GB plane with 

2 degrees of freedom. The term macroscopic parameters means that they have no information 

about the atomic structure near the GB and can be known by a diffraction experiment. What is 

important is that the macroscopic parameters uniquely define a single flat. It is obvious that this 

single flat GB can further present as different structures. The plane position can shift along the 

normal of GB plane orientation by a distance d; the two crystals can have relative rigid body 

translation by a vector t. d and t are termed as microscopic parameters with totally 4 degrees of 

freedom. GBs of identical macroscopic parameter but different in microscopic parameters can 

be thought as different ‘states’ or ‘phases’ of a GB. After specifying all these parameters, the 

atoms near the GBs will generally be relaxed to a structure which cannot be determined simply 

from the information of the perfect crystals. Obviously, the proposed possibility of existence of 

GBs with different microscopic parameter is to say there exist multiplicity of the atomic 

structures at GBs, which will be one of the main topics of this thesis. Programmes have been 

reported to make interface supercells while there still exist limitations and usage inconvenience 

which should and can be promoted by using different computation routines40–43. Firstly, most 

of the generated codes are only available for cubic lattices. For non-cubic lattices, the 

complexity originates from the fact that deformation of crystals is often needed to form an exact 
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CSL interface. The package named Pymatgen43 provide generation of non-cubic CSL GBs 

while it requires the users to deform the crystals themselves by inputting some rational numbers 

and the input requirement even varies by different lattice systems which is a non-

straightforward and inconvenient usage. Another package named MPInterfaces is capable to 

find and build the epitaxial interface with lowest mismatch of any two crystal surfaces which 

provides an effective usage to find the best epitaxial growth conditions. However, it cannot be 

directly used to make an interface with determined geometry information from a diffraction 

experiment or build a GB by inputting the macroscopic parameters.  

 

1.2.3 Issues in Determining Interface Structures 

As mentioned above, due to the multiplicity of interface structures, a main task is often to tailor 

the initial bicrystal model to obtain many non-identical and non-relaxed GB structures for 

subsequent relaxation to explore the GB energy landscape and to obtain the most stable GB 

structure at 0 K. The operations to tailor the bicrystal often includes applying rigid body 

translation (RBT) of one crystal respect to the other and others like deleting atoms near the GB 

which are too close 44. RBT is an important operation and it is necessary not only in traditional 

methods for GB structure optimization like the 𝛾-surface method 1, but also in novel methods 

including Monte-Carlo method 45, generic algorithm 46, and machine learning 14,47,48.  

The effects from applying RBT of one crystal respect to the other on varying the interface 

structure was firstly discussed by Pond 49 on a tilt CSL GB of aluminium, where the RBT was 

decomposed to be expressed by two vectors e and p. e is normal to the GB and p is confined in 

the GB plane. RBTs by e and p adjust the GB structure in different ways. While RBT by e 

simply adjusts the length of vacuum spacing the two crystals, RBT by p changes the 

overlapping two-dimensional pattern that it can introduce remarkable variation of the GB 

structure. According to Pond 49, if the GB structure possesses a two-dimensional periodicity in 

Figure 1.2.3 CSL and DSC lattices. The blue and orange cells are the two overlapping lattices 
forming the black CSL lattice. The green points belong to the DSC lattice. (This figure will be 
published in journal) 
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the GB plane, p has translational symmetry in cases that the translation by p does not relocate 

the position of GB plane so that it should be reduced into a two-dimensional minimum 

symmetric unit (MSU). When the GB plane contains only coincident sites (for symmetric tilt 

GBs), MSU is the Wigner-Seitz (W.-S.) cell of the two-dimensional atomic arrangement of one 

of the crystals’ planes. For more general cases where the GB is not a symmetric tilt GB and its 

GB plane possesses non-coincident sites, MSU is a displacement shift complete (DSC) lattice 

26 of the two overlapping two-dimensional lattices terminated at the GB plane. The general 

definition of DSC can be understood by Figure 1.2.3 (a), which shows the DSC lattice formed 

by two overlapping two-dimensional direct lattices. Displacing one of the lattices by a DSC 

vector presents an identical overlapping pattern with simply a shift of its origin, and therefore 

displacement included in one DSC unit cell provides all the possible patterns to be non-identical. 

The DSC in Figure 1.2.3 (a) is a general case where the overlapping lattices do not have to be 

identical while for symmetric tilt and twist GBs they are identical. Note that for symmetric tilt 

GBs, their W.-S. cells are equivalent to their DSC lattices. As can be seen, as the DSC is no 

larger than the Wigner-Seitz (W.-S.), the two-dimensional DSC lattice was also termed as cell 

of non-identical displacement (CNID) 1. CNID is important to make effective simulation of 

CSL interfaces in general cases and it is also essential for understanding other interface-

involved concepts and properties such as the GB kinetics 50.  

 

Although CNID belonging to a kind of DSC lattice has a straightforward definition that it is a 

lattice including both the two disoriented lattices 26, finding a method capable to determine a 

primitive basis of CNID in general cases can be non-trivial. In some simple cases where the 

two lattices forming the interface are different only in orientation (e.g. for symmetric tilt and 

twist GBs), a primitive basis of CNID can be found by directly getting the two shortest non-

collinear distance vectors between the two lattices. However, this direct method is not analytic 

and can be problematic in some complex cases. Up to now, there exists no packages capable to 

be applied to compute the CNID of an arbitrary CSL interface. 

 



 16 

1.3 Introduction of Grain Boundary Phases 

Since there exists multiplicity in GB structures, it is plausible to consider whether GBs can 

behave like a bulk material to exist as multi-phases and perform phase transition. There did 

exist evidences of GB phases including indirect ones where discontinuous variation of 

properties were discovered which cannot be explained by phase transitions of the bulk 

materials51–53. Direct evidence for existence of GB phases has also been reported that 

coexistences of GB phases were directly observed under an atomic-scale-resolution 

microscopy54. Investigation of such phase behaviour is of engineering importance not only 

because it is related to the synthesis and processing of materials for property promotion but also 

because it is of great scientific interest to understand the physical importance of the frequently 

appearing multiplicity of GB structures obtained in atomic simulation. 

 

To avoid confusion, it is necessary to make a definition of GB phases. Here a GB phase is 

defined as an infinitely large flat single GB which possesses an identical and well-defined set 

of macroscopic parameters and a uniform distribution of structural identities. Figure 1.3.1 

illustrates several cases of coexisting GB phases. This thesis will be focused on the cases of GB 

phases with the same macroscopic parameter (the same disorientation and GB plane orientation) 

because such cases have been reported54–56 and because they present monophase-to-monophase 

phase transitions which is less complex to investigate. If not specifically specified, all the GB 

phases mentioned in this article later belong to this case. 

 

Some GB phases can present tiny faceting structures such as one of the well-known silicon GB 

shown in Figure 1.3.2. Although it possesses faceting structure, it should still be regarded as a 

single flat GB or a monophase because the faceting steps are not apparent enough to present 

two well-defined GB plane orientations and neither the steps can individually exist as a single 

flat GB. 
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1.4 Thesis Structure and Objectives 

In Chapter 2, I will illustrate the mathematics, algorithm and applications of the developed code. 

The two main usages including 1) generating a (an approximate) CSL interface of two arbitrary 

crystals; and 2) computing its CNID will be presented. In Chapter 3, I will explain why this 

study is focused on the GB phases of diamond-structured GBs. I will present how I apply two 

methods to explore the phases of the <110>Σ9(22&1&) GB and compare explored phases with 

GB phases in the fcc and bcc metals explored by similar methods and discuss the reason causing 

the difference between them. Since I explored an enormous number of meta-stable GB phases, 

Figure 1.3.1 Cases of coexisting GB phases. (a) GB phases with the same disorientation 
and GB plane orientation; (b) GB phases with the same disorientation and different GB 
plane orientation (faceting); (c) GB phases with different disorientation and the same GB 
plane orientation. 

Figure 1.3.2 A silicon GB phase with tiny faceting steps 
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in Chapter 4, I will show the results of DFT simulation of some selected GB phases including 

one with the lowest grain boundary energy denominated as the Ground GB and three meta-

stable GBs as Meta-1, Meta-2 and Meta-3 GBs. They commonly exist in silicon, germanium 

and carbon. The DFT results will show that they are reasonable structures and thus possible to 

exist in the real materials. In Chapter 5, I will firstly discuss the thermodynamic stability of the 

four selected GB phases of silicon through their GB free energy computed by quasi-harmonic-

approximation. I will also illustrate the temperature-induced structural variation starting from 

these phases at 0K through computing the free energy of the system by Frenkel-Ladd-Path and 

through monitoring their structural similarity by excess Steinhart order parameters. Through 

the results, I will discuss how to understand the effects of meta-stable phases on the 

thermodynamic property of a real GB in the diamond-structured materials through the 

difference in the temperature-induced behavior of selected silicon GBs. These results will also 

show that the Meta-2 GB is capable to transform to a structure similar with the Ground GB. In 

Chapter 6, I will show the mechanism of this transition. In Chapter 7, I will show how the phase 

transition affects the electronic structures to make insights on the effects of GB phases on their 

polycrystalline physical properties.  
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2. Developing an effective python package generating any CSL interfaces. 

In this Chapter, the algorithms and usages will be explained of the generated python code 

supporting in generating CSL or approximate CSL interfaces and computing CNID 

 

2.1 Operations on lattices 

For better understanding, before introducing the algorithms, some linear operations which will 

frequently present latter is explained here. There are mainly two operations involved including 

Linear Transformation (LT) and Supercell Extraction (SE). 

 

In this thesis, we will describe all the lattices by a matrix with three column vectors 𝑳 =

[𝒂, 𝒃, 𝒄]. Without special notification, all the vectors are represented in a global cartesian 

coordination. For an arbitrary lattice defined by three lattice vectors 𝑳 = [𝒂, 𝒃, 𝒄], a LT is to 

left-multiply it by a 3x3 matrix 𝑻 which ends up with a new lattice 𝑳𝑻 = [𝑻𝒂, 𝑻𝒃, 𝑻𝒄]. As can 

be seen, the LT operation is applied to all the vectors independently giving the lattice vectors 

forming the new lattice. On the other hand, a (SE) operation is to right-multiply the lattice by a 

3x3 matrix U. The resulting lattice 𝑳𝑬 is: 

 
𝑳𝑬 = 	𝑳𝑼 = [𝒂, 𝒃, 𝒄] 4

ℎ# ℎ$ ℎ%
𝑙# 𝑘$ 𝑘%
𝑘# 𝑙$ 𝑙%

8 = [𝒂𝑬, 𝒃𝑬, 𝒄𝑬] 2-1 

 

where 

 𝒂𝑬 = ℎ#𝒂 + 𝑙#𝒃 + 𝑘#𝒄 
𝒃𝑬 = ℎ$𝒂 + 𝑙$𝒃 + 𝑘$𝒄 
𝒄𝑬 = ℎ%𝒂 + 𝑙%𝒃 + 𝑘%𝒄 

 

2-2 

Therefore, the resulting vectors by (SE) are three sets of linear combinations of the old lattice 

vectors where the coefficients are column vectors of the SE operation matrix. 
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2.2 Principles and algorithms finding a CSL or approximate CSL for any two lattices with 

a determined disorientation. 

2.3 Computation of CNID 

This part will be published in journal. 

2.4 Examples of the Generated Interfaces 

This part will be published in journal. 

2.4.1 Generating non-cubic CSL GBs with known geometric information – 𝚺𝟑 CuInSe2 

twinning 

This part will be published in journal. 

2.4.2 Generating two-dimensional CSL interfaces - 𝜷-Si3N4(0001)/Si(111) 

This part will be published in journal. 

2.5 Efficiency Promoted by Using CNID 

This part will be published in journal. 

2.5.1 Division of GBs in the FZ-GBP 

This part will be published in journal. 

2.5.2 Evaluation of the Efficiency Using CNID 

This part will be published in journal. 
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2.6 Summary 

In this Chapter, the generated code building an approximate CSL interface of two arbitrary 

lattices have been applied to generate CSL GBs from a 3D-CSL (twinning GB of CuInSe2) and 

2D-CSL (𝛽-Si3N4(0001)/Si(111) interface and (111)Si/(0001)SiC interface). In principle this 

code can be applied to generate an approximate CSL interface satisfying any cases of 

engineering application to build an interface close to an interface structure obtained from an 

experimental observation; or for any unknown interface by simply input lattice indices and cif 

files with comprehensive usage. 

 

Once the CSL interface is generated, the code simultaneously computes its CNID. The 

importance of applying CNID in CSL GBs and HTIs have been illustrated and the results have 

shown that applying the CNID can dramatically improve the efficiency in sampling RBT to 

determine the interface structures especially for asymmetric tilt, twist and mixed GBs, as well 

as for HTIs. 
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3. Exploring Phases (meta-states) of Diamond-Structured GBs at 0K 

This chapter discuss the methods and results for exploring GB phases in diamond-structured 

materials including silicon, germanium and diamond-carbon. I will also compare my results 

with previously reported GB phases in fcc and bcc GBs. 

 

3.1 Importance and Inspiration to Study Diamond-Structured GB Phases 

An interesting discovery of GB phases is that according to the results from atomic simulation, 

multiple GB phases seem to commonly exist in GBs of fcc metals17,57. Inspired from fcc metals, 

GB phases were subsequently discovered in bcc metals by simulation as well. Successful 

discovery of GB phases by atomic simulation were later supported by an direct observation of 

coexisting GB phases of copper under room temperature54. Studies on GB phases of elemental 

materials avoid complexity from involving effects of composition and can individually 

investigate the GB behaviours under a unique species of chemical bonds. Despites the exciting 

achievements in fcc and bcc metals mainly with metallic bonds, relevant work has not been 

reported in other elemental materials, in which one of the most important species includes the 

diamond-structured materials with covalent bonds whose GBs also have notable effects on 

performances of many functional devices like solar cells and transistors58–60.  

 

Although compared with fcc and bcc GBs, few reported studies have applied the term ‘GB 

phases’ on diamond-structured GBs, some properties related to phase behaviors have been 

discussed. Firstly, computational work has suggested that silicon GBs have enormous meta-

stable states61 and their most stable structures can be obtained by reconstruction from those of 

certain meta-stable GBs62. Secondly, molecular dynamics simulations have shown that several 

different twist GBs of silicon whose structures were optimized at 0K by a molecular dynamic 

(MD) simulation63 have different temperature-induced transitions, where some GBs disorder as 

the temperature raises while some can possess a highly ordered structure even at a high 

temperature close to pre-melting of the GB64. Considering these two aspects, there still exist 

interesting properties which have not been revealed yet. While previous studies by applying 
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empirical atomic potentials have explored many GB states or phases of silicon at 0K61,65, only 

the reasonability of the most stable GBs were verified by first-principles computation. As for 

the explored meta-stable GBs as the by-product, they were often ignored and were thought to 

be unstable in a real material. However, there has been reported experiments verifying existence 

of meta-stable GBs. For example, one has observed a meta-stable GB containing a 5-fold 

coordinated atom in a Σ3 twinning GB of silicon66. Also, while the reconstruction from meta-

stable GBs to the most stable GBs were predicted by comparing their atomic structures, rare 

previous studies have deeply investigated this reconstruction process. The integrated behavior 

of the localized reconstruction of each unit structures belonging to a two-dimensional GB still 

remains unknown. Therefore, it is of importance to investigate the reasonability of these meta-

stable GBs and the transition process from them to the most stable GBs for the diamond-

structured GBs. 

 

3.2 Methods 

The methods exploring GB phases are similar to extensive previous studies applied for GB 

structure optimization, where many different initial configurations obtained by manipulating 

the CSL GBs by certain operations. These operations are conducted to sample as much as wide 

area of the phase filed of a GB where many local minimums exist in order to find the local 

minimum corresponding to the most stable GB structure. For bcc and fcc metals, these 

operations often include RBT of which the importance has been discussed in Introduction and 

deletion of atoms near the GB. The deletion of atoms is often controlled by varying the cut-off 

distance that atoms near the GB from different crystals which are closer than this distance will 

be deleted. However, recent reports have shown that some important GB states or GB phases 

can only be explored with a special method to control this atom deletion operation, which is to 

delete the atom so that the atomic density with respecting to a complete GB plane (denoted as 

planal-atomic-density (PAD)) can be varied. In a simulation cell of a symmetric tilt CSL GB, 

the number of atoms in the cell n must divide by the number of atoms in a complete GB N. If 

the atom deletion is controlled by the cut-off distance, for a symmetric tilt CSL GB, the deletion 
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operation always delete complete planes of atoms so that the PAD n’%N/N is always 0. 

Therefore, previous studies exploring fcc and bcc GB phases17,54,55  applied other methods to 

manipulate PAD and they found that when expressing GB energy as a function of PAD, there 

exist different cusps in the function figure where these cusps are corresponding to different GB 

phases which can perform phase transition. In this research, I applied both methods with and 

without varying PAD to explore GB phases in diamond-structured materials. All the initial 

structures generated to explore GB phases were relaxed through LAMMPS67 with atomic 

interactions modeled by with a modified Tersoff potential by Pun and Mishin for silicon70 , and 

Tersoff potential for germanium71 and a long-range bond-order potential for diamond-carbon72.  

 

3.2.1 Exploring GB Phases without varying PAD 

Different from fcc and bcc metals, diamond structured materials have covalent bonds so that 

the atoms in a reasonable defected structure are expected to have four-fold coordination. 

Therefore, it is plausible to assume that many reasonable GB phases can be explored without 

deleting atoms. Note that deleting atoms controlled by cut-off distance can change the 

coordinate number of atoms to be not four-fold without changing PAD, because number of 

atoms in a complete GB plane can be not a multiple of four. Therefore, deleting atoms without 

PAD can result in some coordinate-defected structure. Such coordinate-defected structure has 

been previously reported in silicon GBs while most previous studies conducting GB simulations 

often regarded them as non-reasonable structures. Their reasonability remains to be investigated 

and there for the explored defected GBs by this method provided possibility to do so. Another 

advantage not to vary PAD is that because all the atoms in the same GB plane of a symmetric 

tilt GB are in equivalent positions, this method guarantees that every the relax structure have a 

well-defined structural unit. This is crucial to define GB phases because different GB phases 

can be identified by their own structural units that only pure phases were generated without 

mixed phases. This method was applied to explore GB states of silicon, germanium and carbon 

by relaxing a series of non-identical initial configurations obtained by tailoring a bicrystal 

model of the <110>Σ9(22&1&) GB in molecular dynamics (MD) simulation at 0 K. This S9 GB 
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was selected because it not only is a popular GB in polycrystallines73 of silicon but also has its 

most stable structures well studied by simulation62,65. Before conducting atom deletion, RBT in 

one periodicity of CNID is sampled in a mesh size of about 0.03 lattice parameter. The 

exploring process is nearly identical for all the three different elements with different lattice 

parameters, each resulting in about 33700 initial configurations to be relaxed. 

 

3.2.2 Exploring GB Phases with varying PAD 

This research also explored different GB states with varying PAD for silicon GBs. Previous 

studies for fcc GBs do this through merging atoms one-by-one17 near the GB or using more 

advanced methods like generic algorithms54,55,74. Here, I applied the merging-atom method. The 

process of this method is shown in Figure 3.2.2 (a). For each operation, the two closest atoms 

near the GB are merged at the equivalent middle-point of them. This operation runs until the 

distances between all the atoms is larger than 0.99 times the closest atomic distance in a perfect 

diamond structure. Like that in 3.1.1, RBT in the CNID was also sampled. Specially, 

considering the fact that in diamond-structured crystal, there exist two motifs per lattice point, 

denoted as A and B. Therefore, three different terminating conditions of A plane - A plane, A 

plane – B plane, and B plane – B plane were applied as shown in Figure 3.2.2 (b) 
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Figure 3.2.2 (a) The process emerging atoms one-by-one to vary PAD. 
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Figure 3.2.2 (b) Three different terminating conditions. 
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3.2.3 GB Properties and Simulation Model 

If a GB is assumed to be a multi-phase system, it is of high importance to investigate the 

property distribution at 0K of these different phases. As will be shown later, this is even 

important for diamond-structured GBs because compared with fcc and bcc metals they possess 

far more GB states or phases. On one hand, due to effects of entropy, the free energy of unstable 

state at 0K can appear in elevated temperature. On the other hand, due to existence of kinetic 

barriers, some meta-stable states can be kinetically trapped at certain temperature. Therefore, 

the GB property distribution at 0K can be regarded as a pool of accessible states or phases of 

this GB system in a real environment. Similar to the method applied in previous studies on fcc 

and bcc GB phases17,55 and according to the work of Frolov & Mishin75, for each relaxed GB, I 

computed several GB excess properties including the excess GB energy [E], the excess order 

parameters [Q3] [Q6] [Q7], the GB stress [𝜏##], [𝜏$$], and the excess volume [V]. The definition 

of excess property [Z] is 

 [𝑍] = (𝑍& −𝑁&/𝑁'𝑍')/𝐴 3-1 

where Z& is the sum of property Z in a region with a size large enough to contain the complete 

GB structure and its affecting neighboring atoms which are in different environment from in a 

bulk; 𝑁& is the number of atoms in this GB region; 𝑍' , 𝑁' are the sum of the property Z in a 

perfect bulk and the number of atoms in it; . Therefore, the excess property [Z] of a GB is the 

‘excess value' of property Z caused by existence of that GB. For all the selected excess 

properties, [Q3] [Q6] [Q7] were computed to quantify the structural similarity of computed GBs 

(see Appendix 2 for more details about order parameters) and other intensive parameters [E] 

[𝜏##] [𝜏$$] [V] are computed because they are intrinsic properties of each GB corresponding 

to the adsorption equation of a symmetric tilt GB in an elemental material under stress75: 

 𝑑(𝛾𝐴) = 	−𝐴[𝑆]𝑑𝑇 − 𝐴[𝑉]𝑑𝜎%% − 𝐴 K 𝐵(
()#,$

𝑑𝜎%(

+ 𝐴 K 𝜏(+𝑑𝑒(+
()#,$

 
3-2 

𝐵(, 𝜎%(, 𝑒(+ are parameters to describe the stress and strain condition of a bicrystal model of a 

symmetric tilt GB, for which the 1-axis is the tilt axis; 2-axis is along the direction constrained 

in the GB plane and perpendicular to the 1-axis; 3-axis is perpendicular to the GB plane, as 
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shown in Figure 3.2.3 (a). 𝐵( is the relative shear distance of the two 3-surfaces; 𝜎%( is the 

shear stress applied in the two 3-surfaces; 𝑒(+ is the strain constrained in the GB plane. 𝜏(+ is 

a complex parameter which according to Frolov & Mishin75 is ‘the excess of lateral components 

of the stress tensor relative to their values inside the grains’. When there is no stress applied to 

the 3-surfaces (𝜎%( = 0), which is true for our simulation exploring GB phases at 0K, 3-2 

becomes 

 𝑑(𝛾) = 	−[𝑆]𝑑𝑇 − [𝑉]𝑑𝜎%% + K [𝜏(+]𝑑𝑒(+
()#,$

 3-3 

where  

 O𝜏(+P = Q𝜎,-&&&&&𝑉& −
𝑁&
𝑁'
𝜎(+'𝑉'R /𝐴 3-3 

𝜎,-&&&&&  is the ‘averaged stress’ of the GB region with volume 𝑉& , 𝜎(+'  is the stress of a 

homogeneous bulk region in the simulation cell with volume 𝑉'. 

 

The simulation cell is shown in 3.1.3 (b). The dimension in the direction perpendicular to the 

GB plane is consistent to be multiples of minimum orthogonal CSL lattice until reaching a 

length over 100 angstroms for each crystal. For exploring method mentioned in 3.1.1 the 

dimension in the GB plane is a multiple of 6×6 the minimum orthogonal CSL lattice while for 

the method in 3.1.2, a range of different dimensions including [Ny, Nz] = [2, 1], [6, 1], [7, 2], 

[9, 2], [11, 2], [13, 2] are applied to sampling as many as values of PAD. 
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 Figure 3.2 .3 (a) Assigning stress & strain descriptions in a bicrystal mode of GB. 
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3.2 Results and Discussion 

3.2.1 Resulting GB Phases By the Exploring Method Without Varying PAD 

This part will be published in journal. 

3.2.2 Resulting GB States By the Exploring Method With Varying PAD 

3.3 Summary 

This part will be published in journal. 

 

 

 

 

 

  

Figure 3.1.3 (b) The simulation cell. 
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4. Verifying Reasonability of the Explored Meta-stable GBs by First-Principles 

Simulation 

Considering that the empirical atomic potential applied for MD simulation is often based on the 

perfect crystal model and can be questionable when being applied to the GB structure which is 

defected, I conducted first-principles simulation using density-functional-theory (DFT) method 

to verified for some explored GBs by MD simulation. This chapter will discuss the method and 

result of this simulation, which well verified the reasonability of some explored meta-stable 

GBs. 

 

4.1 Method 

This part will be published in journal. 

4.2 Results and Discussion 

This part will be published in journal. 

4.3 Summary 

This part will be published in journal.  
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5. Computing GB Free Energy and Monitoring GB Structural Variation at Elevated 

Temperature 

As I have verified the reasonability of the meta-stable GBs to exist in diamond-structured 

materials, it is then of interest to reveal their phase behaviors. In previous studies, the meta-

stable GBs have not been considered as important structures because they were often thought 

unstable and will transform to the ‘ground’ state in a real environment. However, this might be 

problematic. Firstly, due to the entropy effects, the difference between the free energy of meta-

stable GBs and the ground-stable GB is possible to be compensated at elevated temperature. 

Secondly, the process of a meta-stale GB accidently generated during the synthesis or 

processing of materials transforming to the ground-stable GB is possible to be kinetically 

trapped which is especially highly like to be the case in diamond-structured materials. As I have 

discussed in 3.2.1, the localized instability in diamond-structured materials is difficult to be 

relaxed if the relaxation involves diffusion. This chapter discuss the GB free energy of the four 

selected GBs shown in 4.1 at elevated temperature by quasi-harmonic approximation (QHA) 

and Frenkel-Ladd-path method; and the variation of their excess order parameters. The free 

energy computed by QHA is capable to show the relative stability of different GB phases at 

elevated temperature. The free energy computed by Frenkel-Ladd-path method and the 

variation of excess order parameters are used to illustrate the structural variation of them. The 

method applied for GB free energy computation was proposed by Rodrigo82. 

 

5.1 Method 

All the MD simulations involved in this part applied a Langevin benchmark for simulating 

atomic vibrations at elevated temperature. The time step is 1 fs. Without specification, all the 

simulations were done in a fixed volume condition. 

5.1.1 GB Free Energy Computation by QHA 

For a system described by a Hamiltonian as 

 
𝐻. =K

𝒑($

2𝑚
+ 𝑈(𝒓#,

/

()#

𝒓$, … , 𝒓/) 5-1 
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Its free energy by quasi-harmonic-approximation can be analytically determined as 

 
𝐹(𝑁, 𝑉, 𝑇) ≈ 𝑈(𝑁, 𝑉, 𝑇) + K ln	(

ℏ𝜔0(𝑇)
𝑘1𝑇

)	
%(/3#)

0)#

 5-2 

𝜔0(𝑇)  are the phonon frequencies which are functions of temperature. For harmonic 

approximation (HA), 𝜔0(𝑇) is a constant determined by 𝜔0(0). For QHA, the temperature 

dependency of 𝜔0  is reflected by manipulating lattice parameter to accompany thermal 

expansion, and it is computed through a static system using the dynamic matrix with 

components computed using LAMMPS: 

 𝐷(,+
5,6(𝑇) =

1
𝑚
(

𝜕$𝑈
𝜕𝑟(,5𝜕𝑟(,6

)7)7!(8) 5-3 

 

𝜔0(𝑇) are eigenvalues of 𝑫(𝑇). 

 

The GB free energy was computed as excess free energy 

 𝐹91 =
𝐹& −𝑁&𝐹:

𝐴
 5-4 

where 𝐹& is the free energy of a large enough region in the simulation cell including the GB; 

𝑁& is the number of atoms included in that region; 𝐹: is the free energy per atom in the perfect 

lattice; 𝐴 is the GB area. 

 

The advantage of QHA is that it is capable to compute the free energy of different phases at 

temperature ranges where the phases are unstable. Therefore, it can well illustrate the relative 

stability of different GB phases at different elevated temperatures. 

 

5.1.2 GB Free Energy Computation by Frenkel-Ladd-Path – Complexity of Temperature 

Induced Behaviors of the Meta-Stable GBs 

Frenkel-Ladd-Path (FLP) is a nonequilibrium method to compute the free energy of a system 

at elevated temperature in a MD simulation. Unlike QHA, it is a process of dynamic simulation 

to perform thermodynamic integration through a simulated time range. This method has been 

applied in some systems and proved to have higher accuracy than QHA83. However, as the 
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system is annealed, this method is not capable to compute the free energy of an unstable phase 

because it will perform phase transition and therefore the computed free energy is no longer of 

the original phase but of the transformed phase. Therefore, I utilized this method as one of the 

characters to determine whether GB phases perform phase transition at elevated temperature. 

 

Assume a system with all its atoms doing harmonic vibration near their equilibrium positions 

𝒓(.. Its Hamiltonian: 

 
𝐻; =K
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 5-5 

This system is also called an Einstein crystal. Using 5-1 and 5-5, construct a new Hamiltonian: 

 𝐻(𝜆) = (1 − 𝜆)𝐻. + 𝜆𝐻; 5-6 

𝜆  is a parameter between 0 and 1. 𝐻(𝜆 = 0) = 𝐻.  and 𝐻(𝜆 = 1) = 𝐻; . Therefore, 

switching 𝜆 between 0 and 1 manipulates the system to be more like its original state or be 

like an Einstein crystal. The free energy of this 𝜆 − system is: 

 𝐹(𝑁, 𝑉, 𝑇; 	𝜆) = 	−𝑘1𝑇𝑙𝑛[
1
ℎ%/

g𝑑𝒓/𝑑𝒑/𝑒3
<(=)
>"8 ] 5-7 

The derivative of 𝐹(𝑁, 𝑉, 𝑇; 	𝜆) to 𝜆 is the canonical ensemble average of ?<(=)
?=

 

 𝜕𝐹
𝜕𝜆

= 〈
𝜕𝐻(𝜆)
𝜕𝜆

〉= 5-8 

Therefore, the free energy difference between 𝜆( and 𝜆@ – characterized systems is 

 ∆𝐹 = 𝐹k𝜆@l − 𝐹(𝜆() = g 〈
𝜕𝐻(𝜆)
𝜕𝜆

〉=
=#

=$
𝑑𝜆 5-9 

In an equilibrium thermodynamic integration method, the system is equilibrated at a series of 

discrete values of 𝜆 , which is costing. Applying the nonequilibrium method proposed by 

Rodrigo 83 saves much expense. This method relates ∆𝐹 to irreversible work which can be 

effectively computed in a dynamic simulation. 

 ∆𝐹 = 𝑊((7 − 𝑄 5-10 

where 𝑊((7 and 𝑄 are the irreversible work done to the system and heat dissipated from a 

specific realization transforming from 𝜆@ to 𝜆(. When 𝜆@ and 𝜆( is very close satisfying a 
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linear-response nonequilibrium process, 𝑄(→@ ≈	𝑄@→(. According to the relationship in Figure 

5.1.2 (a), we have 

 

 ∆𝐹 = 𝐹k𝜆@l − 𝐹(𝜆() ≈
1
2
(𝑊(→@ −𝑊@→() 5-11 

 

The irreversible work 𝑊(→@ can be computed along a single simulation where 𝜆(𝑡) explicitly 

varies with time 𝑡: 

 𝑊(→@ = g 𝑑𝑡
𝑑𝜆
𝑑𝑡
(
𝜕𝐻
𝑑𝜆
)𝒓%,𝒑%

D&

.
 5-12 

where 𝒓/ , 𝒑/ represents the phase-space trajectory of the system experiencing this process. 

Using 5-6, rewrite 5-12 as 

 𝑊(→@ = g 𝑑𝑡
𝑑𝜆
𝑑𝑡
[(𝐻;)𝒓%,𝒑% − (𝐻.)𝒓%,𝒑%]

D&

.
 5-13 

Figure 5.1.2 (a) Relationship between free energy difference, irreversible work and 

dissipated heat. 
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In a real simulation 5-12 is computed numerically: 

 
𝑊(→@ = K ∆𝜆0[(𝐻;)𝒓%,𝒑% − (𝐻.)𝒓%,𝒑%]

/3#

0).

 5-14 

The process computing 𝑊(→@ under molecular simulation is described as below: 

1) Manipulate the formula of potential energy as  

 𝑈(𝜆) = (1 − 𝜆)𝑈. + 𝜆𝑈;; 5-15 

with 𝜆 varying from 0 to 1 in a time range of 𝑡E which is divided into time step of 𝑑𝑡; 

2) At each time step, compute ∆𝜆0 = 𝜆(𝑡) − 𝜆(𝑡 − 𝑑𝑡); as the forms of kinetic energy in 

𝐻; and 𝐻. are the same: 

 (𝐻;)𝒓%,𝒑% − (𝐻.)𝒓%,𝒑% = (𝑈;)𝒓%,𝒑% − (𝑈.)𝒓%,𝒑% 5-16 

where (𝑈;)𝒓%,𝒑% and (𝑈.)𝒓%,𝒑% is the potential energy computed by regarding the atoms in 

the system as interacted by its original atomic potential and as an Einstein crystal respectively 

with the current atomic positions. 

3) Integrate using 5-12. 

Figure 5.1.2 (b) illustrates the full process using MD simulation to collect data used to compute 

𝑊(→@ and 𝑊@→( following the steps above by a single simulation. The initial system at 0K 

were annealed and maintained to a target temperature T. Then the forward path to compute 

𝑊<!→<' is executed by varying 𝜆 from 0 to 1 in 40000 fs reaching an Einstein crystal state, 

which is subsequently held by 1000fs. Finally, the backward path to compute 𝑊<'→<! is done 

varying 𝜆 from 1 to 0 returning to the 𝐻. state. Using the data generated by the two paths, 

the free energy of the system 𝐻. can be computed following the routine above. 
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5.1.3 GB Structure Variation Monitored by Steinhart Order Parameters 

When being annealed at elevated temperatures, the GB structure with vibrating atoms can be 

characterized by excess Steinhart Order Parameters84 (SOPs). The SOPs were proposed by 

Steinhart which is capable to describe the structural information of an atom with its neighboring 

atoms. SOPs appear as a set of parameters 𝑄F and each of them can present a specific atomic 

environment, which has the form as: 

 
𝑌FG =

1
𝑁
K𝑌FG(𝜃(𝐫(+), 𝜙(𝐫(+)
/

+)#

)

𝑄F = t
4𝜋

2𝑙 + 1 K 𝑌FG𝑌FG
∗

G)F

G)3F

 5-17 

𝑄F is the summation of the contribution of the 𝑁 atoms surrounding a central atom to their 

position projections on the spherical harmonics 𝑌FG . Therefore, a specific 𝑄F  parameter 

characterized by the number 𝑙 can be applied to analyze the similarity of the distribution of 

the surrounding atoms to be like a specific type of coordination. For example, a central atom 

Figure 5.1.2 (b) FLP process in a single MD simulation. 
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with a tetragonal coordination environment often has a high 𝑄% value. As can be seen in Figure 

5.1.3, the averaged 𝑄F can be applied to monitoring the melting process of a silicon bulk. 𝑄% 

has an abrupt decrease at the melting point, which illustrates an ‘abrupt disorder’ of the 

tetragonal coordinated silicon crystal by melting. Also, 𝑄I and 𝑄J also have an apparent drop 

at melting point and they can also be applied to characterize certain structural information of 

silicon lattice. To compute the excess SOPs, the GBs were annealed and maintained at each 

target temperature for 10000 fs and held by a following 10000 fs to compute the average and 

standard deviation of the excess SOPs. 

 

 

5.2 Results and Discussion 

5.2.1 Simulated Thermal Expansion of Silicon Lattice and the Lattice Free Energy by 

QHA 

Figure 5.2.1 (a) shows the thermal expansion of supercell of 18×18×18 replicas of the silicon 

unit cell including 46656 atoms, which is expressed as a linear CTE respect to the lattice 

parameter at 300K. As discussed by Purja and Mishin70, the simulated CTE result is close to 

the experiment done by Okada & Tokumaru85. Though the negative slope over about 1250K is 

Figure 5.1.3 Variation of the averaged SOPs annealing a silicon bulk to melt 
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unphysical, Purja and Mishin have suggested that this will not be a serious limitation because 

the thermodynamic properties often only depend on the absolute value of the lattice parameter 

instead of the slope. Indeed, compared with other empirical potentials of silicon, this optimized 

tersoff potential reflects closer lattice parameters with the experimental results. Figure 5.2.1(b) 

illustrated the silicon lattice free energy per-atom computed by QHA and HA. Obviously, the 

effects of thermal expansion on the free energy is not significant.  For mediate temperatures, 

the Tersoff potential well simulate the thermal expansion close to the experiment results. At 

high temperature, the effects of lattice parameter change on free energy is negligible. Therefore, 

the computed QHA free energy can be considered as reasonable. 
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Figure 5.2.1(a) Simulated linear CTE of silicon lattice compared with experiment 

Figure 5.2.1(b) Silicon lattice free energy by QHA and HA 
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5.2.2 Thermodynamic Stability of GB Phases at Elevated Temperature 

This part will be published in journal. 

5.2.3 Temperature-Induced Structural Variation of GB Phase and Pre-melting 

This part will be published in journal. 

5.3 Summary 

This part will be published in journal. 
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6. Phase Transition Mechanism From the Meta-2 to Ground GB Though Localized 

Structural Reconstruction 

As presented in Chapter 5, the Meta-2 GB is capable to transform to a structure being similar 

like the Ground GB at elevated temperature while the transformed structure was proved to be 

not identical with the Ground GB. This chapter will explain the reason of this phenomenon by 

discussing in detail the transformed structure of Meta-2 GB and its transform mechanism. 

6.1 Method 

6.1.1 Visualizing the Transformed Meta-2 GB 

This part will be published in journal. 

6.1.2 Computing Transition Barrier by Nudged-Elastic-Band (NEB) 

This part will be published in journal. 

6.2 Results and Discussion 

6.2.1 Phase Transition Mechanism by Localized Structural Reconstruction 

This part will be published in journal. 

6.2.2 Effects of Neighboring Structural Units on The Kinetic Barrier of Reconstruction 

This part will be published in journal. 

6.2.3 Effects of disorientation on the GB free energy and entropy 

This part will be published in journal. 

6.2.4 Dynamic Simulation of the Phase Transition 

This part will be published in journal. 

6.3 Summary 

This part will be published in journal. 
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7. Electronic Structures of GB Phases 

This part will be published in journal. 

7.1 Method 

This part will be published in journal. 

7.2 Result and Discussion 

This part will be published in journal. 

7.3 Summary 

This part will be published in journal. 
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8. Conclusion 

Most materials with important applications in modern times exist as crystalline materials. It 

still seems to be a long way to eliminate all the barriers to ultimately understand the mechanism 

of all the crystalline materials’ properties due to lacking in a full understand of the effects of 

crystalline interfaces, which often cause more extensive disparity in properties from the perfect 

crystal than other defects like point defects or dislocations. Atomic simulation is an effective 

way to investigate structure-property relationship of interfaces, which is generally needed for 

both heterogeneous interfaces in modern devices and GBs in many engineering and other 

cutting-edge applications.  

 

In chapter 2, I introduced a python code which is capable to eliminate two barriers existing in 

simulation interfaces. One is lacking in an effective and convenient package capable to build a 

CSL interface by only input crystallographic indices and cif files. Another is lacking in a 

package capable to compute the cell of non-identical displacement (CNID) of any CSL 

interface. For the simulation of an interface, it is often required to manipulate the rigid body 

translation of one crystal respect to the other to sample as wide as possible the GB phase space 

to avoid only discussing in a narrow region of meta-states. CNID is important because it is the 

minimum cell including all the rigid body translation (RBT) confined in the interface plane of 

one crystal respect to the other giving non-identical patterns. The results in this chapter have 

shown that this package can be conveniently applied to generate both heterogeneous interfaces 

and grain boundaries of non-cubic lattice system; and the computed CNID can apparently lower 

the cost of some previous simulations on interfaces and GBs. 

 

An interesting discovery of GB phases is that according to the results from atomic simulation, 

multiple GB phases seem to commonly exist in GBs of fcc metals. One is capable to explore 

the GB phases by varying the atomic density near the GB respect to the atomic number in a 

whole GB plane (GB energy – PAD relationship). The cusps in the GB energy – PAD figure 

correspond to GB phases which are capable to transform between each other. Similar studies 
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were subsequently reported in bcc GBs as well. Such a phenomenon was also verified by 

experimental observation in atomic-scale in an aluminium GB. Despites the exciting 

achievements in fcc and bcc metals mainly with metallic bonds, it is of both scientific and 

practical importance to extend this research into other elemental materials. Diamond-structured 

materials are good candidates to do so. On one hand, their covalent bond character can make 

new insights of this phenomenon different from the metal GBs. On the other hand, the diamond-

structured materials are widely applied in many important modern devices. 

 

Although compared with fcc and bcc GBs, few reported studies have applied the term ‘GB 

phases’ on diamond-structured GBs, some properties related to phase behaviors have been 

discussed. Most atomic simulation explore GB structures at 0 K where a bunch of GB states 

are often explored. The GB with the lowest GB energy is the most-stable GB while others are 

meta-stable GBs. Firstly, experiment and simulation results have suggested that silicon GBs 

can exist as meta-stable states. Secondly, different temperature-induced structural variations 

have been revealed through atomic simulation in silicon GBs. While compared with fcc and 

bcc GBs, the atomic simulation often explored far more meta-stable GBs of the diamond-

structured GBs, few previous studies have discussed the physical importance of these meta-

stable GBs. While it was well accepted that the meta-stable GBs can always transform to the 

most-stable GB, the temperature-induced behaviors of these meta-stable GBs are still not well 

investigated. In this situation, some questions remain to be answered. Are these meta-stable 

GBs explored by an empirical atomic interaction reasonable to exist? Can they become stable 

at elevated temperature? If not, can they always transform to the most-stable GB? What is the 

effects of the transition on the physical properties?  

 

Conclusion of the chapters 3-7 will be published in journal. 

This research is helpful for more effective interface simulation and has made new insights on 

understanding the effects of meta-stable GB phases on the properties of materials with covalent 

bonds. 
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Appendix 

 

Transformation of Miller indices of the same lattice plane expressed by different bases 

It is sometimes convenient to describe lattice planes in a conventional non-primitive lattice 

while for computation we desire it expressed in a primitive basis. For example, for lattice planes 

specified by indices (sc1, sc2, sc3) in a conventional lattice Sc = [qc1, qc2, qc3], we need to derive 

its indices (sp1, sp2, sp3) expressed in primitive lattice Sp = [qp1, qp2, qp3].  

1) Find three lattice points Pc1, Pc2, Pc3 belonging to one of the  (sc1, sc2, sc3) lattice planes. 

Firstly, select one index sKL ≠ 0 with its corresponding vector 𝐪KL and one of the three 

points 𝐏K# as: 

𝐏K# =	
𝐪KL
sKL
	(sKL ≠ 0)	(i = 1,2,3) 

Then 

𝐏K$, 𝐏K% =	|
𝐏K# + 𝐪KM									ksKM = 0l
𝐪KM
sKM
																				ksKM 	≠ 0l				(j = 1,2,3	&	j ≠ i)	 

The normal to the plane 𝐧 is: 

𝐧 = (𝐏K# − 𝐏K$) × (𝐏K# − 𝐏K%) 

For any points Px located in this plane we have: 

(𝐏N −	𝐏K#) ∙ 𝐧 = 0 

2) Determined sOL	by substitute 𝐏N by qpi/spi into (𝐏N −	𝐏K#) ∙ 𝐧 = 0 

sOL =	
𝐪OL ∙ 𝐧
𝐏K# ∙ 𝐧

	 

Note that this method can be used to convert the Miller indices of certain lattice plane expressed 

in any two overlapping lattices.  
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