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Abstract

The structure generator, which generates molecular structures by computer,

can propose structures satisfying the desired properties by using statistical

models and datasets of the properties of interest. Therefore, structure gener-

ators are expected to streamline the process of compound design. However,

due to experimental costs and other reasons, the available datasets are often

small, and in such situations, the statistical model may overfit and fail to

generate structures with good performance.

In this thesis, we develop a method that can generate structures with

good performance when a statistical model-based structure generator is

trained on a small chemical dataset consisting of about 1000 compounds

with the desired properties. We proposed two methods to avoid overfit-

ting: one is to use DAECS, a structure generator based on a statistical

model without deep learning, and the other is to use data augmentation in

a graph-based deep learning model to enhance the effect of transfer learning.

The structure generator DAECS tended to have low diversity of the

generated structures. For this reason, we added structural modification rules

that reduce the need for multiple applications of structural modification rules

to a single application, and designed a seed structure selection algorithm so

that the seed structures that undergo structural changes become diverse.

Through the case study, it was confirmed that these methods could actually

diversify the generated structures and generate new structures that are not

included in the training dataset.

We also designed a method for JT-VAE, a deep structure generator, to

enhance the effect of transfer learning, which uses a large molecular structure

dataset along with a small chemical dataset to prevent overfitting. Specifi-
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cally, we designed a data augmentation that perturbates the feature vectors

for some vertices with standard normal random numbers during message

passing in GNN. It was confirmed that this data augmentation enhanced

the prediction performance of the QSPR model trained on a small chemi-

cal dataset and the structure generation performance of JT-VAE trained by

transfer learning.

Although there remain some challenges related to the design of the struc-

ture generator and the scalability of the proposed method to training with

a much smaller number of samples, it is expected to contribute to the ef-

ficiency of compound design in situations where only small-scale chemical

datasets are available.
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Chapter 1

General Introduction

1.1 Computer-aided Molecular Design

Chemical products have become an indispensable part of our lives. We

benefit from organic compounds, including pharmaceuticals, organic semi-

conductors, fragrances, and synthetic fibers, and inorganic compounds such

as ceramics, electronic materials, and alloys. The creation of such functional

compounds is of great scientific and industrial significance.

The stage of designing novel functional compounds with desired proper-

ties has been a bottleneck in developing chemical products [1]. Functional

compounds have been developed generally in the following workflow (Fig-

ure 1.1): (1) design a candidate compound; (2) synthesize it; (3) test whether

the synthesized compound has the desired properties; and (4) repeat this

cycle until the synthesized compound has the desired properties. Promis-

ing compounds discovered through this cycle are then further improved and

put to practical use. In the early stages of compound development, consid-

erable trial and error is often required. Therefore, it is expected that the

development cost of functional compounds can be reduced by improving the

efficiency of this stage.

Chemoinformatics is an interdisciplinary field that unites chemistry and

computer science, where informatics-based technologies such as machine

learning are leveraged to solve problems in the field of chemistry. The dis-

cipline has attracted much attention in recent years as it provides compu-
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Figure 1.1: The development workflow of functional compounds.

tational methods to accelerate the development process of functional com-

pounds. In chemoinformatics, for example, statistical models have been pro-

posed to predict whether or not a compound has a particular property [2–

6], generate the structures or compositions of promising candidate com-

pounds [7–10], predict the product of a reaction [11–14] or the synthetic

pathways of compounds [15–18], and suggest experimental designs to dis-

cover compounds with the desired properties efficiently [19]. These methods

are now being used in the actual development of functional compounds [20,

21].

The format and handling of the data differ depending on whether the

target compounds are organic or inorganic. In this thesis, we mainly focus

on the methods for organic compounds.

One of the widely used chemoinformatics tools is the quantitative

structure–property relationship (QSPR) model [22, 23] (Figure 1.2).

The QSPR model is a statistical model that represents the statistical re-

lationship f between the numerical vector x which describes information

about a compound, and its label y, which is a numerical value that indi-

cates the compound’s property:

y ≈ f(x).
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Feature
extraction

Structure
Numerical
vector QSPR model

Prediction

Figure 1.2: The QSPR model. The QSPR model f captures the statistical rela-

tionship between a numerical vector x extracted from the structure

of a compound and its property y. The QSPR model can output the

predicted property ŷ of a compound.

In order to construct a vector x from the information of a compound, it

is customary to calculate several descriptors, which are the characteris-

tics of the compound (e.g., molecular weight and the number of specific

substructures in the compound), or compound’s fingerprint, which is a

binary vector expressing the presence or absence of specific substructures

in the compound. By training the QSPR model with a chemical dataset

containing information on the physical properties of interest, i.e., by deter-

mining the model’s parameters, we can predict the presence or absence of

the physical properties of the compounds input to the trained QSPR model.

In addition to the QSPR model, molecular simulations such as quan-

tum chemical calculations and molecular dynamics calculations can also be

used to predict certain properties. Although it takes longer time to output

the calculation results than the QSPR model, the molecular simulation can

predict the properties more accurately by following the principles of physics.

One of the methods to find promising compounds with the desired prop-

erties using a trained QSPR model is the inverse QSPR. The inverse QSPR is

a method that finds the descriptor vector x mapped to a given label y by the

QSPR model f . When we obtain the set of descriptor vectors corresponding

to the given y by the inverse QSPR, we can then obtain target compounds

by recovering the structures of the compounds from their descriptor vec-

tors. Although it is generally difficult to obtain the inverse image of y by
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the QSPR model, f−1(y) = {x | f(x) = y }, or to obtain the structure of a

compound corresponding to a given numerical vector x, various efforts have

been made so far [24–27].

Meanwhile, virtual screening using the QSPR model is another method

to discover compounds with the desired properties. Virtual screening is

a method to sift through many candidate compounds by various criteria

such as molecular weight and the presence of specific substructures. We can

efficiently discover novel compounds that may have the desired properties by

using the QSPR model’s predictions as the screening criterion and applying

the virtual screening to a group of newly designed compounds.

In order to obtain many new molecular structures for virtual screening,

structure generators are often used to generate molecular structures in

silico (Figure 1.3). Many structure generators have been proposed so far.

For example, the MOLGEN [28, 29] and the EnuMol [30] can enumerate

the structural isomers of organic compounds. In addition, the GDB [31–33]

generates an extensive range of organic compounds that contain 17 or less

carbon, oxygen, nitrogen, sulfur, and halogen atoms. Because the structure

generators listed here do not generate structures considering the physical

properties, virtual screening is essential to find compounds that satisfy the

desired properties from the compounds generated by these generators.

Meanwhile, some structure generators have been proposed to generate

only promising compounds with the desired properties. For example, Lig-

Builder [34–36] can generate compounds that bind to a protein by using

the structural information of the protein. In addition, Molgilla [37] has suc-

ceeded in generating compounds with desired properties [38] by using inverse

QSPR [26]. Such structure generators are more efficient than those which

enumerate all possible structures because they can restrict the generated

structures by using statistical models constructed for the target properties

in the generation.

In recent years, researches on deep structure generators, which use

neural networks as statistical models, have been actively conducted, and

promising results have been obtained [39–44]. While ordinary structure

generators produce structures according to predetermined generation rules,

deep structure generators model the data distributions of the training sam-
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Figure 1.3: Exploration of promising molecular structures using a structure gen-

erator and virtual screening. The structure generator can produce

many new molecular structures. Promising molecular structures with

desired properties can be obtained by the virtual screening with suit-

able filters.
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ples and generate molecular structures by sampling from these distributions.

For this reason, the deep structure generator is more likely to generate com-

pounds that capture the characteristics of the molecular structures in the

training dataset.

Using structure generators can accelerate the process of structure de-

sign, which has so far been done only by the experience and intuition of

chemists. In addition, the structure generator can sometimes generate inter-

esting structures that chemists overlook. Therefore, the structure generator

is expected to act as a strong supporter for chemists in the discovery of new

functional compounds.

1.2 Challenges in Computer-aided Molecular De-

sign

The performance of a structure generator should be defined by how effi-

ciently it can improve the process of structural design. There are four desired

features that a structure generator should achieve.

(a) The ability to generate many molecular structures with the desired

properties. If this property is satisfied, it is easy to discover candidate

compounds by virtual screening using a QSPR model.

(b) The diversity of the generated structures. If this property is satisfied,

the generated structures are likely to include novel molecular scaffolds.

(c) The stability and synthesizability of the generated structures. If this

property is satisfied, it is easy to test the physical properties of the

selected candidate compounds.

(d) The high computational efficiency in generating molecular structures.

If this property is satisfied, the time required for structure generation

is shortened, and thus the method is easy to use.

It is not easy to satisfy these four properties simultaneously, but feature

(a) can be achieved by using a statistical model. In the ordinary rule-

based structure generator, by utilizing the predicted values of the QSPR
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model in structure generation, we can focus mainly on promising structures.

Meanwhile, the deep structure generator can also generate compounds likely

to have the target properties by training with compounds having the de-

sired property, because compounds with similar structures often have sim-

ilar properties. Also, optimization methods have been developed to search

for promising structures after combining a deep structure generator with a

QSPR model and training them simultaneously [45].

In structure generators using statistical models, the performance of the

statistical model used determines the generator’s quality. In order to con-

struct a statistical model with good performance, it is necessary to prepare

a sufficient number of training samples to determine the model parameters.

In particular, when we use a deep learning model, more training samples are

usually required than for a model without deep learning because the number

of model parameters to be adjusted is large.

However, it is not always possible to prepare enough training samples to

build a model with good performance. If the data of the properties we are

interested in do not exist in any database, we need to collect the data to

build the model first. In this case, it is unlikely that a large amount of data

can be obtained because of the considerable time and financial costs involved

in the experiments when synthesizing and testing compounds. In addition, if

molecular simulations can generate data on the properties of the compounds,

the computational cost for a variety of compounds is enormous, and thus it is

still time-consuming to obtain a large amount of data. Although it is possible

to collect some data on the properties by conducting a literature survey, the

number of samples obtained by this method will be a few hundred, or at

most about a few thousand.

In the situation where the number of training samples is remarkably

small compared to the number of model parameters, the statistical model is

prone to overfit. This situation is typical especially when deep learning mod-

els are employed as statistical models. In the overfitted QSPR model, the

prediction performance for the training samples will be good, but contrarily

the prediction performance for the unknown samples, which are not used in

training, will become poor, so that the predictions by the QSPR model are

useless and property (a) above is not satisfied. In addition, the overfitted
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deep structure generator tends to generate only the identical samples as the

training samples or generate similar samples, and thus property (b) above

is not satisfied. Hence, even if we obtain many compounds generated by a

structure generator using an overfitted model, it will be difficult to discover

promising compounds among them, and the compound development process

will not be efficient. Therefore, in order to improve the efficiency of com-

pound development using a statistical model-based structure generator, it is

necessary to avoid overfitting of the model even when the dataset available

for training is small.

1.3 Objective of This Thesis

This thesis aims to develop methods that enable statistical model-based

structure generators to perform well even when trained on small chemical

datasets (Figure 1.4). Here, we define a small chemical dataset as a

dataset consisting of

(1) approximately 1000 samples and

(2) samples that are known to have properties of interest.

Considering the problems described in Section 1.2, this definition should be

justified. If this objective can be achieved, it is expected that the applica-

tion of the structure generator will be broadened, and thus it will be possible

to discover new compounds with substantially improved functionality effi-

ciently.

One of the simple ways to avoid model overfitting when training on

small chemical datasets is to use a non-deep statistical model. When we

do not use deep learning, it is easier to avoid overfitting the model because

the number of model parameters is relatively small. Thus, a rule-based

structure generator with a non-deep QSPR model is easier to satisfy the

property (a) described in Section 1.2 by using the predictions of the model

during structure generation. By improving the remaining properties (b)–

(d), we can generate structures with good performance. In particular, we

aim to improve property (b) to facilitate the generation of novel structures,

considering the development of new compounds.
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Small chemical dataset
(~1000 samples of interest)

Training Generate
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High-quality
generated structures

Need to
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overfitting

Figure 1.4: The objective of this thesis. We seek to develop methods with

which statistical model-based structure generators can produce a

high-quality set of generated structures by avoiding models’ overfit-

ting to the small chemical dataset.

Meanwhile, deep structure generators are prone to overfitting when trained

on small chemical datasets due to many model parameters. However, the

advantage of the deep structure generators is that it does not require the ex-

plicit design of the structure generation rules and can be used for any design

target by simply changing the training dataset. Therefore, it is desirable to

have a method to avoid overfitting even when the deep structure generator

is trained on a small chemical dataset.

Transfer learning [46, 47] is one of the promising methods for train-

ing a deep structure generator on a small chemical dataset. It is a training

method in which the deep statistical model is pre-trained on a large dataset

other than the small chemical dataset and then trained on the target small

dataset (Figure 1.5). By pre-training on the large dataset, overfitting to the

small dataset can be suppressed. For the deep structure generator, training

on many molecular structures that can be obtained from a database such as

PubChem [48] or ZINC [49] allows the model to learn how molecular struc-

tures can be constructed. The deep structure generator is expected to be

tuned to generate structures similar to the samples in the target dataset by

training it on smaller chemical datasets afterward. In fact, some research [9]

achieved successful generation of structures similar to the samples of the

target dataset in this way.

In this thesis, we propose a method to enhance the effectiveness of trans-

fer learning for deep structure generators. Specifically, we design a new data

augmentation method for the training dataset. Data augmentation [50]
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Figure 1.5: The overview of transfer learning for a deep structure generator. The

deep structure generator is pre-trained on a large-scale dataset to

learn how molecular structures can be constructed. The pre-trained

deep structure generator is then re-trained on a small-scale chemical

dataset to adapt the model parameters to the small dataset.

Training
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Deep statistical
model

Training

Random
deformations
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Figure 1.6: The overview of data augmentation. Data augmentation increases

the apparent number of training samples by adding some random

deformations to the inputs.
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       　to transfer learning of JT-VAE

Chapter 5 | General Conclusion and Future Perspectives
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high-performance structure generation even with a small-scale dataset

Figure 1.7: The structure of this thesis.

is an operation to increase the apparent number of samples in a training

dataset by randomly deforming the samples, and it is known to be effective

for training on small datasets (Figure 1.6). In particular, since the model is

trained to make good predictions even when random deformations are added

to the input samples, it is believed that the model can be constructed so

that the essential features of the samples can be extracted. Therefore, if the

data augmentation method is used for training the deep structure generator,

it is expected that it will be easier to capture the features of the training

dataset and generate a typical structure of the training samples.

1.4 Structure of This Thesis

This thesis is composed of five chapters (Figure 1.7). In Chapter 1 (this

chapter), we describe the techniques used in computer-aided molecular de-

sign and their challenges. In order to achieve the main goal of this thesis,

which is to generate structures with good performance using a small-scale

chemical dataset, we use two methods: a rule-based structure generator

without deep learning and a data-oriented deep structure generator using

deep learning.
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A Rule-based Structure Generator In Chapter 2, we propose a method

that can generate diverse structures using a structure generator that does

not use deep learning [51]. We choose to modify the de novo design

algorithm for exploring chemical space (DAECS) [52, 53] because it

has convenient features for chemists. DAECS generates a set of structures

based on the given structures by repeating structural changes and structure

selections. In order to increase the diversity of the structures generated by

DAECS, we design new structural modification rules and structure selection

algorithm.

A Data-oriented Deep Structure Generator In Chapter 3, we design

a data augmentation method that can be used to train deep learning models

on small chemical datasets. In particular, we develop a new data augmen-

tation method for deep learning models that take molecular graph data as

input. We construct QSPR models using the proposed method for regres-

sion task and classification task, respectively, and verify the effectiveness of

the proposed method by checking their prediction performance.

In Chapter 4, we propose a method to enhance the effectiveness of trans-

fer learning for deep structure generators. We choose to modify the junction

tree variational autoencoder (JT-VAE) [54], which is known to be able

to generate structures with good performance when using large datasets. In

this thesis, we apply the data augmentation method designed in Chapter 3

to the feature extraction part of JT-VAE to capture the features of train-

ing samples more efficiently. To validate structure generation, we prepare a

target small-scale chemical dataset and a large-scale dataset similar to the

target dataset, and train the model by transfer learning using these datasets.

The performance of the structure generation is then evaluated by metrics

such as novelty and diversity of the generated structures and similarity to

the datasets used for training.

Finally, in Chapter 5, we summarize the entire study in this thesis. We

clarify the contributions of this thesis and discuss the remaining challenges

and future perspectives. Despite some limitations of this work, we expect

that this study will improve the efficiency of compound design with structure
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generators that utilize small chemical datasets.



Chapter 2

Rule-based Generation with

the Structure Generator

DAECS

2.1 Introduction

In this chapter, we propose a statistical model-based structure generator

that can successfully generate structures by utilizing a small chemical dataset.

In such a structure generator, structures are generated according to prede-

termined generation rules while using the property prediction of the QSPR

model for the generated structures. Using a non-deep statistical model with

fewer parameters for the QSPR model, we can avoid overfitting the model to

small chemical datasets and generate many compounds with desired prop-

erties.

Although there are many such structure generators, we chose to modify

the de novo design algorithm for exploring chemical space (DAECS) de-

veloped by Mishima et al. [52] and improved by Takeda et al. [53] for two

reasons: DAECS can generate compounds with desired properties, and users

can control the structures generated by DAECS to some extent.

DAECS first visualizes the prediction results of the objective properties

by the QSPR model in a two-dimensional (2D) map. Then, the user sets

the coordinate of interest as a target in the visualized 2D map and gives an

14
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initial structure to DAECS. DAECS prefers to generate compounds located

near the given target coordinate on the map by repeatedly modifying the ini-

tial structure. In DAECS, the property distribution can be grasped thanks

to the visualization by the 2D map. Therefore, it is easy to select a region

that is predicted to have the desired property, and by setting the target co-

ordinates to such a position, many promising compounds can be generated.

In fact, when the target was set to the coordinates of the existing ligand for

the histamine H1 receptor, the docking simulation confirmed that the bind-

ing energies of some generated structures were comparable to that of the

existing ligand [52], suggesting that DAECS is capable of generating molec-

ular structures with the desired properties. Also, since DAECS generates

structures based on the given initial structure, it is particularly beneficial

for structural optimization, in which the input structure is modified to have

the desired properties.

Among the problems of DAECS are the low diversity of the set of gen-

erated structures and the low stability and synthesizability of the gener-

ated structures. In particular, improving the diversity of DAECS-generated

structures is an urgent issue because novelty in the molecular structures is

necessary to develop new compounds with novel molecular skeletons.

In this study, we aimed to diversify the set of DAECS-generated struc-

tures by modifying the structure generation algorithm of DAECS. Specifi-

cally, we added the structural modification rules used in the structure gen-

eration of DAECS and modified the selection algorithm for selecting the

structures to undergo a structural change from the set of generated struc-

tures. A case study using the activity data of ligands for the histamine H1

receptor was conducted to verify whether the proposed method improves

the diversity of the set of generated structures.

2.2 Methods

In this section, we first describe the generative topographic mapping, a

method for dimension reduction, and then overview the DAECS algorithm.

We then describe the proposed methods in detail.
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2.2.1 Generative Topographic Mapping

Generative Topographic Mapping (GTM) [55] is an unsupervised learning

method for dimension reduction. GTM finds the optimal nonlinear embed-

ding from a 2D latent space into a D-dimensional descriptor space. Here,

the variable belonging to the latent space is referred to as a latent variable.

GTM reduces dimension of the input by finding a suitable latent variable

embedded in the descriptor space. Four hyperparameters have to be deter-

mined for the GTM:

• the number of the latent grid points Ngrid,

• the regularization parameter (for preventing overfitting) λ,

• the number of the Gaussian kernels Nkernel, and

• the width of the Gaussian kernels γ.

The GTM model first generates Ngrid latent variables arranged in a grid.

The model assumes that a given descriptor vector x is stochastically gener-

ated as follows. First, a latent variable s is selected out of Ngrid variables

with equal probability p(s) = 1/Ngrid. Next, the selected latent variable

s is mapped to the descriptor space with the mapping PW (s) = Wϕ(s),

where ϕ is nonlinear mapping and W is a parameter matrix. The map-

ping ϕ consists of Nkernel Gaussian kernels of width γ, with each center

being arranged in a grid. The model assumes that the descriptor vector x

is normally distributed with mean PW (s) and covariance matrix β−1I:

p(x | s,W , β) = N (x |PW (s), β−1I).

Here, β is a learning parameter. Given the training dataset, the learning

parameters W , β can be determined with the EM algorithm [56].

After obtaining the optimal parameters W ∗ and β∗, the probability that

each grid point si (i = 1, . . . , Ngrid) had generated the descriptor vector x

can be calculated by Bayes’ theorem:

p(si |x,W ∗, β∗) =
p(x | si,W ∗, β∗)p(si)∑
k p(x | sk,W ∗, β∗)p(sk)

.
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The 2D coordinates z(x) for the descriptor vector x can be calculated with

the expectation of the grid point:

z(x) = E[s] =
∑
k

sk p(sk |x,W ∗, β∗).

Note that dimension reduction with GTM can be applied to the arbitrary

descriptor vector x, regardless of whether x is in the training dataset or

not. Additionally, proj(x) = PW ∗(z(x)) gives a projection of x onto the

embedded 2D map in the descriptor space.

2.2.2 Overview of DAECS

In this section, we briefly review DAECS. See the original paper [52] for more

detail. DAECS generates structures in two steps: the 2D map construction

and the iterative structure generation (Figure 2.1).

2D Map Construction

The first step is the 2D map construction (Figure 2.2). It constructs a

GTM-created 2D map to capture the distribution of training samples in

the descriptor space, and then visualizes the QSPR-predicted property onto

the 2D map. The algorithm trains the GTM model with the dataset for

map construction to obtain the mapping PW ∗ . With the mapping PW ∗ , the

descriptor vector PW ∗(z) for any latent variable z can be calculated. The

predicted property for PW ∗(z) by the QSPR model, which is trained sepa-

rately by using the same descriptors as the GTM model, is visualized at z

with color, resulting in a 2D heatmap reflecting the QSPR-predicted prop-

erty. Note that different descriptor vectors can be mapped to the same latent

variable z, but the visualized value on z are represented by the predicted

value for PW ∗(z). Subsequently, a user determines the target coordinate t

in the 2D map. The target t can be set at the arbitrary position around

which they want to obtain structures, seeing the property landscape in the

2D map.



CHAPTER 2. RULE-BASED GENERATION 18

Dataset of
molecular
structures
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Structure
generation

Generated
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Combine
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Initial
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filtering,
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Figure 2.1: The overview of the DAECS algorithm. DAECS first constructs the

2D map from the given datasets. Then, DAECS utilizes the 2D map

to generate structures by iterative modification of the given initial

seed structure.
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Figure 2.2: The 2D map construction step. GTM is used to capture the distribu-

tion of training samples in the descriptor space with the 2-dimensional

surface. The QSPR-predicted property for each point in the surface

is visualized by the 2D map with color. A user can set a target at

the arbitrary position around which they want to obtain structures,

seeing the property landscape in the 2D map.
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Iterative Structure Generation

The second step is the iterative structure generation (Figure 2.3). DAECS

prefers to generate structures around t based on some structures prepared

arbitrarily by the user (we refer to these as the initial seed structures). Here,

the user can select the initial seed structures by checking their coordinates

on the 2D map. The algorithm for structure generation consists of three

procedures:

(1) applying structural modification rules in an exhaustive manner;

(2) filtering the generated structures; and

(3) selecting the next seed structures.

The algorithm iterates these three procedures and terminates when a suffi-

cient number of structures are obtained.

The following ten types of structural modification rules were applied (the

numbers in the parentheses indicate the number of subtypes).

• Atom addition (8)

• Atom replacement (3)

• Atom insertion (3)

• Atom deletion (1)

• Bond replacement (3)

• Bond rearrangement (2)

• Ring formation (1)

• Ring dissociation (1)

• Ring aromatization (1)

• Ring saturation (1)
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Initial seed structure
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③ Select
　 seed structures
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　 modification
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Add
structures
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Figure 2.3: The iterative structure generation step. Blue curved arrows indicate

the structure generation procedures in the second step of DAECS.
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DAECS exhaustively generates new structures from each seed structure: as

long as they are applicable (i.e., the resultant structure is chemically valid),

these rules are applied to each part of a seed structure. Note that the rules

we apply do not necessarily correspond to actual chemical reactions.

The generated structures include some unwanted structures, including

those that are redundant and stereochemically unstable. These structures

are discarded with some filtering rules. After filtering the structures, the re-

maining structures (we refer to these as candidate structures) were subjected

to the seed selection algorithm (explained later) to choose K structures (K

is a hyperparameter), which were used as the seed structures in the next

iteration. The probability that a structure is selected is set to be higher

if its descriptor is nearer to the target t on the 2D map and has a smaller

projection error onto the embedded 2D map. This is because DAECS aims

to generate structures whose coordinates on the 2D map are near the tar-

get t. Note that a structure that is distant from the target or has a large

projection error can be selected, although the probability is low.

2.2.3 Proposed Methods

In DAECS, generated structures are obtained by applying some structural

modification rules. In addition, the generated structures primarily depend

on the selected seed structures in each iteration. In this study, to diversify

the structures generated by DAECS, we made the following modifications

in the structure generation step of DAECS:

(1) addition of structural modification rules, and

(2) change of the seed selection algorithm.

The overview of the proposed methods is given in Figure 2.4, and the detailed

explanation is given in the following sections.

Addition of Structural Modification Rules

Suppose that n structural modification rules are applied to a seed structure

S until we obtain a chemical structure T . This means that n − 1 inter-

mediates are generated from S to T . DAECS generates T from S if and



CHAPTER 2. RULE-BASED GENERATION 23

Initial seed structure
Structure generation

algorithm
Generated structures

③ Select
　 seed structures

② Filter
　 structures

① Apply
　 modification
　 rules

Add
structures

Seed structures

(1) Addition of
      rules

(2) Change of
      the algorithm

Figure 2.4: Overview of the proposed methods. Blue curved arrows indicate the

structure generation procedures in the second step of DAECS. The

proposed method is involved in the first and third procedure.
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Figure 2.5: A example of multi-step structural modification. (Note that these

structural modifications do not necessarily correspond to actual chem-

ical reactions.) (a) Repetitive application of structural modification

rules to obtain structure T from S. The red circles indicate the posi-

tion where the designated rule was applied. In order that this mod-

ification from S to T takes place, the intermediate that is generated

in the first iteration has to be selected as a seed structure in the sec-

ond iteration, and the possibility was small in the previous version of

DAECS. (b) Corresponding one-step rule has made this modification

more likely to occur.

only if each intermediate structure from S to T is continuously selected

as a seed structure in each iteration. An example is given in Figure 2.5.

Since the number of candidate structures increases with each iteration, the

probability that T is generated by DAECS decreases as n increases. The

structural modification rules implemented in the previous version of DAECS

are insufficient to make some structural modifications that need repetitive

application of the existing rules.

Therefore, we designed new structural modification rules that can short-

cut the multi-step structure modification in a single step. There are many

such structural modification rules, but here we designed ones that are as

general as possible. Namely, the structural modification rules were designed

to be widely used regardless of the purpose of generation. In this study, we

designed two new types of rules: bond contraction and ring mergence.

Bond Contraction The bond contraction rule selects a bond, removes

the selected bond, and then the two atoms that formed the removed bond
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Figure 2.6: Bond contraction rules. The red bond indicates the selected bond,

and the red dotted circle indicates the selected end-atom. (a) The

carbon atom was removed and the side chain to the carbon atom was

connected to the nitrogen atom, the other end-atom of the selected

bond, resulting in smaller-membered ring. (b) The oxygen atom was

removed, and the length of the straight chain was shortened.

(end-atoms) are regarded as a single atom (Figure 2.6). Here, the rule also

selects either of the end-atoms to be removed. This rule can reduce the

number of atoms in a structure. In particular, structural changes such as

reducing the size of a ring or shortening the length of a straight chain can

be performed in a single step. In the previous version of DAECS, the only

rule to reduce the number of atoms in a structure was the atom deletion

rule. Thus, it is expected that more small-sized structures can be obtained

by adding this rule.

Ring Mergence The ring mergence rule selects a bond, and creates a new

ring structure that includes the selected bond (Figure 2.7). We restricted the

generated rings to four patterns: 5- to 7-membered aliphatic rings and a 6-

membered aromatic ring (i.e., benzene ring). In creating aliphatic rings, all

newly formed bonds are single bonds (note that the selected bond is possibly

unsaturated). A single application of this type of rule greatly increases

the number of atoms in a structure. For this reason, it is expected that

a structure will change drastically by repetitively applying the rule. In
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Figure 2.7: Ring mergence rules. The red bond indicates the selected bond. (a)

The selected bond becomes a bond in the newly formed 6-membered

ring. (b) The selected bond becomes a bond in the newly formed

benzene ring.

particular, this rule enables one-step structural modification to create fused

aromatic rings, such as naphthalene rings.

Seed Selection Algorithm

With the seed selection algorithm in the previous study, the structures near

the target t are selected with high probability, so the selected seeds are

prone to be similar to each other. Newly generated structures from similar

structures are also similar to each other, which results in low diversity of

the generated structures by the previous version of DAECS. In this study,

we modified the seed selection algorithm to select more diverse structures.

Newly generated structures from a given seed structure are generally

similar to the original structure, and they also tend to be mapped close

to the seed structure on a GTM-created 2D map. Since the purpose of

DAECS is to generate structures close to the target t (Figure 2.8 (a)), the

selected seed structures should be mapped near the target t. Therefore, we

restrict the candidates of seed structures to those mapped near the target

t. For all N candidate structures, the distance from the target t on the 2D
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map is calculated, and candidate structures are restricted to the R nearest

structures from the target t (R ∈ Z>0 is a hyperparameter with R < N). We

refer to the structures obtained by this approach as the restricted candidate

structures. The number of restricted candidate structures R is determined

so that the ratio r = R/N to the total number of candidate structures N is

constant.

If the two plots (i.e., two chemical structures) on the 2D map are dis-

tant to some extent, the corresponding two structures are considered to

be dissimilar to each other. Therefore, we select those structures that are

scattered in the restricted area in the 2D map (Figure 2.8 (b)).

A clustering method is used to select structures at scattered positions in

the restricted area in the 2D map. Here, clustering is performed in the 2D

map, not in the high-dimensional chemical space, to eliminate the curse of

dimensionality: clustering methods do not give meaningful clusters in the

higher-dimensional space. By training the clustering model with the coor-

dinates obtained by plotting the restricted candidate structures in the map,

we can divide the restricted candidate structures into K clusters (Figure 2.8

(c)). We used the k-means++ algorithm [57] for the clustering model. The

structures in the same cluster are considered to be similar because their 2D

coordinates are close to each other. In contrast, we consider structures in

different clusters to not be so similar to each other because they are distant

to each other in two dimensions. Therefore, we select the seed structures by

sampling one structure from each cluster uniformly at random (Figure 2.8

(d)).

2.3 Results and Discussion

We performed structure generation to verify the effectiveness of the proposed

method. As in previous studies of DAECS [52, 53], the ligand structures

for the histamine H1 receptor were generated, and the performances of the

previous and proposed methods were compared.

In this experiment, we used Python 3.5.3 and RDKit [58] (version 2017.09.1)

for implementation. We constructed both the QSPR and dimension-reduction

models with all of the available RDKit descriptors, which are composed of
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Figure 2.8: Procedures of the proposed seed selection algorithm. Solid circles in-

dicate the positions of generated structures on the map. (a) Initial

state. (b) Restricted structures. (c) Restricted structures were parti-

tioned into K = 5 clusters. (d) Five structures indicated by the red

stars are randomly sampled from each cluster.
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200 descriptors including, e.g., molecular weight and the number of aromatic

rings. The detail of the used descriptors can be found in the official website

of RDKit. Note that the RDKit descriptors, which are commonly used for

feature extraction of compounds, were used here, but any other descriptor

can be used as long as the feature extraction method is fixed in DAECS.

2.3.1 Datasets and Models

The QSPR Model

The QSPR model is used only to visualize the property landscape in the

2D map, and the prediction results of the QSPR model are not used in

the structure generation step. Therefore, the QSPR model with good ac-

curacy is not necessary to verify the effectiveness of the proposed method.

Here, we constructed the QSPR model only to complete the case study by

demonstrating the workflow of structure generation using DAECS.

We used the dataset consisting of 522 known ligand structures for the his-

tamine H1 receptor from ChEMBL17 [59], the same dataset as the previous

study [53]. Experimentally verified inhibition constant Ki is associated to

each of the obtained structure. In this study, we constructed a QSPR model

to predict pKi values for the histamine H1 receptor. As in the previous

study [53], we used support vector regression (SVR) [60], which is a non-

deep method, as a learning algorithm for the QSPR model, and the Gaussian

kernel as a kernel function of SVR. Scikit-learn (version 0.19.1) [61] was

used to train the model. To determine the optimal hyperparameters for the

model, a grid search with five-fold cross-validation was employed, using the

mean squared error (MSE) as a loss function. Consequently, the optimal

hyperparameters were determined as follows: the regularization parameter

C = 10; the tolerance ε = 10−1; and the width of the Gaussian kernel

γ = 10−8. The QSPR model was trained with these hyperparameters. With

five-fold cross-validation, the MSE and the coefficient of determination R2
CV

were calculated to check the prediction accuracy of the model. Here, R2
CV

is defined by

R2
CV = 1 −

∑N
i=1(yi − ŷCV,i)

2∑N
i=1(yi − ȳ)2

,
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where N is the number of training data, yi is the observed value for the

i-th sample, ŷCV,i is the predicted target value for the i-th sample in the

validation fold, and ȳ is the mean of the observed target value. The ac-

curacy of the model improves as R2
CV approaches 1. The calculated MSE

and R2
CV were 0.5689 and 0.6004, respectively. Although there is room for

improvement, we used this QSPR model hereafter.

The Dimension Reduction Model

Subsequently, we trained the GTM model using 5,000 structures with a

molecular weight of 500 or less from the BIOVIA Available Chemicals Di-

rectory [62], which contains commercially available compounds. Note that

only molecular structure information is required for the training of GTM,

and such unlabeled data can be obtained from public databases. We fixed

the number of the latent grid points Ngrid = 602, and we tuned the re-

maining three hyperparameters λ,Nkernel and γ. By using GPyOpt (version

1.2.1) [63] combined with GPy (version 1.9.2) [64], Bayesian optimization was

performed to determine the optimal hyperparameters for the GTM model

because this optimization approach performs the hyperparameter search ef-

ficiently. The root mean squared error of midpoints (RMSEM) [65] was used

as a loss function to improve the mapping accuracy not only for samples in

the dataset but also for samples not included in the dataset. The RMSEM

value for the k-nearest points was calculated by

RMSEMk =

√√√√ 1

Nk

N∑
i=1

∑
m∈Mk(xi)

∥m− proj(m)∥2,

where N is the number of samples in the dataset, Mk(x) is the set of mid-

points between x and the k-nearest points of x, and proj(m) is the point

that is yielded by projecting m onto the manifold obtained by the trained

GTM model. In this study, we set k = 10. Smaller RMSEM10 values in-

dicate better accuracy of the GTM model for unknown data. The optimal

hyperparameters calculated were λ = 101, Nkernel = 602 and γ = 20.1044.

These hyperparameters enabled the convergence of the RMSEM10 value

(Figure 2.9). Using the trained GTM model and QSPR model, we visu-

alized the distribution of predicted pKi values in a 2D map.
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Figure 2.9: The trajectory of RMSEM10 in tuning hyperparameters of the GTM

model. RMSEM10 converged after 14 iterations.

2.3.2 Metric of Structural Diversity

A chemical structure can be converted into a binary vector called a finger-

print, which represents the presence or absence of respective substructures.

Fingerprints are used to calculate the Tanimoto distance, which is an in-

dex that represents the dissimilarity between two chemical structures. The

distance between S1 and S2 is defined by the following equation:

dist(S1, S2) = 1 − a

b
,

where a is the number of substructures that are present in both fingerprints,

and b is those that are present in at least one of the two fingerprints. The

Tanimoto distance ranges from 0 to 1. Values closer to 1 indicate that

the two chemical structures S1 and S2 are more divergent. In this study,

the Morgan Fingerprint [66] (2,048 bits, radius 2) was used. Note that

RDKit descriptors, which were used to construct the QSPR model and the

dimension-reduction model, is not a binary vector and therefore cannot be

used to calculate the Tanimoto distance. For the set of chemical structures

G , we defined the diversity of G to be the mean of the Tanimoto distances

between all possible combinations of two different structures in G :

Div(G ) :=
1(|G |
2

) ∑
{S,T }⊆G ,S ̸=T

dist(S, T ).
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Here,
(
a
b

)
indicates the binomial coefficient. This metric Div(G ) takes a

value from 0 to 1. Values closer to 1 indicate that the chemical structures

in the set G are less similar to each other, i.e., the set G is more diverse.

2.3.3 Conditions for Structure Generation

Suppose that we hope to obtain an unknown chemical structure near the

target t at the red cross shown in Figure 2.10 and we hope to start with

an initial seed structure Sinit with known chemical structure as shown in

Figure 2.11. Note that the target t can be set at the arbitrary position

on the 2D map. From 522 structures included in the training dataset of

the QSPR model (not in the training dataset of the GTM), the initial seed

structure Sinit was selected as the nearest structure of the target t. The

number of iterations in the structure generation step was fixed to ten.

Throughout this experiment, the ten types of structural modification

rules explained in Section 2.2.2 were used. In applying structural modifica-

tion rules, only C, N and O atoms were considered. When using the ring

formation rule, we limited the number of ring members to 5 ‒ -7 so that

the generated ring would be stereochemically stable. Note that it is still

possible to generate a ring that is not 5- to 7-membered as the result of

applying other rules. The structural modification rules newly designed in

this study are explained in the Section 2.2.3, and we checked whether the

diversity could be improved by adding these rules.

We used two filtering rules: one is to discard duplicate structures and

the other is to discard structures with an unstable ring (3- or 4-membered

ring with a double bond and 3- to 7-membered ring with a triple bond).

The number of selected seed structures in each iteration was set to K = 5.

We checked that the proposed algorithm for seed selection outperformed the

previous one in terms of the diversity of generated structures. We set the

ratio of the number of candidate structures in the proposed algorithm to

r = 1/3 so that the number of restricted candidate structures does not grow

too rapidly.

Table 2.1 shows four conditions tested to confirm the effects of the two

proposed methods (i.e., the seed selection algorithm and the structural mod-
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Figure 2.10: The position of the target and the initial seed structure. The red

cross indicates the target t, and the red star indicates the position

of the initial seed structure selected, i.e., Sinit. The blue dots are

the position of 522 structures in the training dataset for the QSPR

model. The background is the obtained 2D map of predicted pKi

values.

Figure 2.11: The initial seed structure Sinit.
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Table 2.1: Summary of four methods compared in the experiment.

Set of structural modification rules

Previous Proposed

Seed selection

algorithm

Previous Method P Method R

Proposed Method S Method RS

ification rules).

2.3.4 Results of Generation

Distribution of Generated Structures on the 2D Map

We checked the location of the generated structures in the chemical space.

Figure 2.12 shows the plots of the structures generated by each method.

Methods P and R use the same previous seed selection algorithm but

different set of structural modification rules. The obtained distributions by

them are generally similar to each other, but method R generated some

new structures in the area to the right of the initial seed structure. The

distribution of the generated structures did not change significantly in the

method because the distribution of the selected seed structures was similar.

This similarity of the seed distributions was because of the behavior of the

seed selection algorithm. We obtained an analogous result when comparing

methods S and RS, which use the same proposed seed selection algorithm

but different set of structural modification rules.

Having compared the methods S with P, both of which use the same

previous set of structural modification rules but use different seed selection

algorithms, the distribution of structures near the target in method S was

broader than that in method P, with many new structures generated in

the area to the left of the target. The same tendency was observed when

comparing the distributions of structures in method R with that in method

RS, both of which use the same proposed set of structural modification

rules but use different seed selection algorithms. This result suggests that

changing the algorithm for selecting seed structures had a significant effect

on the distribution of generated structures near the target. In addition, the
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(a) (b)

(c) (d)

Figure 2.12: The distributions of the generated structures by each method. The

red cross indicates the target t, and the red star indicates the posi-

tion of the initial seed structure selected, i.e., Sinit. The blue dots in-

dicate the positions of the generated structures, and the pink squares

indicate the selected seed structures in each iteration. (a) Method

P, (b) Method R, (c) Method S, and (d) Method RS.
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Table 2.2: Number of generated structures and diversity indices.

|Gent| |Gnear| Div(Gnear)

(a) Method P 7,412 403 0.7013

(b) Method R 8,766 353 0.6551

(c) Method S 5,096 1,951 0.7574

(d) Method RS 7,139 2,343 0.7575

selected seed structures were scattered near the target as expected.

Diversity of Generated Structures around the Target

We counted the number of the structures in the following groups of generated

structures: all of the generated structures (“the entire structures”, Gent) and

the generated structures plotted closer to the target than the initial seed

(“the near structures”, Gnear). We also calculated the diversity of the near

structures, Div(Gnear). Table 2.2 shows the results of each method.

The proportion of the number of near structures to the number of entire

structures in methods S and RS were larger than that of method P or R.

This is due to the selected seeds: most of the selected seeds lay around the

target (Figure 2.12 (c) (d)), resulting in more structures near the target.

This suggests that the proposed seed selection algorithm contributes to the

increase in number of the near structures. To explain the diversity of the near

structures in each method, the distribution of Tanimoto distances between

arbitrary pairs of structures taken from the near structures Gnear are shown

in Figure 2.13.

We initially compared methods P and R, which use the same previous

seed selection algorithm but differs in structural modification rules. In terms

of the diversity of the near structures, method R using the proposed set of

structural modification rules underperformed method P (Table 2.2), with

the histogram of the Tanimoto distance peaking at around 0.7 (Figure 2.13

(b)). As the number of structural modification rules increased, the number

of structures generated from the same seed structure also increased. There-

fore, the number of similar structures near the target increased, which we

postulate caused a decrease in diversity.
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Figure 2.13: Distributions of Tanimoto distances between arbitrary structures

taken from the near structures Gnear. (a) Method P, (b) Method

R, (c) Method S and (d) Method RS.
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Second, we compared methods P and S, which use the same previous

set of structural modification rules but differs in seed selection algorithms.

Method S outperformed method P in terms of the diversity of the near

structures (Table 2.2), with the peak of the histogram in method S shifting

to the right when compared with that of method P (Figure 2.13 (a) (c)).

The reason for the increase in the diversity of the near structures in method

S is the diverse seed structures around the target: generated structures from

that seeds were also diverse and many of them lay around the target. In

conclusion, the proposed seed selection algorithm can increase the diversity

near the target by selecting seeds from the near structures.

Third, we compared methods S and RS, which use the same proposed

seed selection algorithm but differs in structural modification rules. In terms

of the diversity of the near structures, method RS slightly outperformed

method S (Table 2.2), and the histograms were similar in shape, with the

Tanimoto distance peaking at around 0.8 (Figure 2.13 (c) (d)). Since the

distributions of the seed structures were similar between methods S and RS

(Figure 2.12 (c) (d)), the major difference between these methods is the set

of structural modification rules. We can conclude that the new structural

modification rules actually generated the structures in the vicinity of the

target. Unlike in method R, the newly added rules did not deteriorate the

diversity of the near structures in method RS. This is because the selected

seed were diverse and near the target thanks to the proposed algorithm,

suggesting the proposed seed selection algorithm more greatly affects the

generated structures than the newly added rules.

Comparison of Generated Structures Near the Target

We examined the four structures nearest to the target generated by each

method (Figure 2.14). For all the methods, the molecular skeletons of the

structures were similar to that of the initial seed structure. However, the aro-

matic ring substructures in the structures generated by method RS were not

included in the training dataset. These substructures were inherited from

a seed structure selected in the first iteration of method RS (Figure 2.15)

and were generated by contracting the amino group bond attached to the
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aromatic ring of the initial seed structure. These results suggest that the

newly added rules contributed to the formation of novel structures.

2.4 Conclusion

In this study, we added structural modification rules and modified the seed

selection algorithm to diversify the structures generated by DAECS. We

designed two new types of structural modification rules: bond contraction

and ring mergence. The modified seed selection algorithm was designed so

that diverse structures near the target were selected.

The effectiveness of the proposed method was demonstrated using the

histamine H1 receptor as a case study. The proposed seed selection algorithm

clearly improved the diversity of the generated structures near the target.

The newly added two structural modification rules did not change the overall

distribution significantly; however, we observed they contributed to the novel

structures.

In the case study, a small chemical dataset consisting of 522 samples was

used to build the QSPR model. In the previous studies of DAECS [52, 53],

QSPR models were also constructed using the same dataset, and docking

simulations predicted that some of the ligand structures generated near the

target would bind to the protein. This suggests that DAECS with the

proposed method will also have the ability to generate ligand structures

that bind to the protein.

As the number of training samples of the QSPR model becomes even

smaller, the prediction performance will inevitably become worse, and the

structures generated near the target may not have the desired properties.

In such a case, we can use a model that can calculate the confidence of

prediction such as the Gaussian process regression, and set the target to the

coordinates that are likely to have the desired physical properties.

Although the diversity of the structures generated by DAECS was im-

proved by the proposed method, there remain problems to be solved in

DAECS. First, DAECS might generate stereochemically unstable structures,

such as those with overly large distortions. This problem is caused by:

(1) the structural modification rules being applied exhaustively;
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Figure 2.14: The four structures closest to the target generated by each method.

(a) Method P, (b) Method R, (c) Method S and (d) Method RS.

The orange dotted circle indicates the novel substructure generated

by the bond contraction rule.
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Figure 2.15: (a) The initial seed structure Sinit (identical to Figure 2.11). (b) A

seed structure selected in the first iteration of method RS.

(2) that the structural modification rules do not imitate the actual chem-

ical reaction; and

(3) that there are few filtering rules to remove unwanted structures.

If an unstable structure was selected as a seed structure in some iteration,

the stereochemical stability of the generated structures would be reduced be-

cause the generated structures based on the seed structures can also contain

unstable substructures. To increase the stability of the generated structures,

the structural modification rules should be improved to avoid generation of

unstable structures, or to add filtering rules that remove unstable struc-

tures. Furthermore, calculation of the formation energy of the structure

enables filtering of unstable structures by setting an appropriate threshold

of the energy. Since it takes considerable time to calculate the formation

energy of many structures correctly, it is conceivable that a machine learn-

ing method rather than calculating the energy accurately can predict the

formation energy. Also, hard-to-synthesize structures might be generated

by DAECS due to the same reasons. Such structures can be removed by

calculating the metric for synthesizability, such as the SA score [67].

Second, DAECS can also be improved by supporting more types of

atoms. All structural modification rules in DAECS can handle only car-

bon, nitrogen and oxygen atoms. However, many compounds contain other

atoms such as sulfur, phosphorus, fluorine and chlorine atoms. For practi-
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cal use, DAECS needs a mechanism that can generate structures containing

these atoms, and including this mechanism will increase the diversity of the

generated structures.

Third, we should consider how to apply the structural modification rules.

Currently, the algorithm generates structures by applying structural modifi-

cation rules exhaustively, but many structures located far from the target in

the 2D map are also generated. Selection of suitable rules that are applied in

each loop should remove unnecessary structures and improve computational

efficiency for structure generation.

Moreover, the seed selection algorithm also needs further study. Both

of the previous and the proposed methods generally select structures near

the target coordinates, but it is possible that a structure distant from the

target coordinate is transformed into ones near the target. Also, for the ratio

parameter r in the proposed method, it is necessary to search for appropriate

values to further increase the diversity of generated structures.



Chapter 3

Data Augmentation for

Small-scale Datasets of

Molecular Graphs

3.1 Introduction

In this and the next chapters, we deal with deep learning models as statistical

models. A deep learning model consists of statistical models called neural

network, which repeatedly performs linear and nonlinear transformations

on samples. Although the number of model parameters will increase, it is

possible to model complicated relationships between inputs and outputs by

combining multiple neural networks.

The most notable difference between models that use deep learning and

those that do not is the way of feature extraction. In a non-deep model,

it is customary to use features such as descriptor vectors and fingerprints

calculated from molecular structures. However, the features effective for

prediction generally differ depending on what we predict, which requires us

to design the features properly. Therefore, much trial and error is required to

obtain a good prediction model. On the other hand, deep learning models

allow direct input of the molecular representation. Such models can be

trained with a dataset to extract features useful for prediction. Hence, we

can obtain a general-purpose model and avoid elaborate feature engineering.

43
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Figure 3.1: An example of a molecular graph. Circles denote vertices of the graph

(v1, . . . , v11) and the characters in the vertices indicate the elements

of the corresponding atoms. The segments connecting the vertices are

the edges of the graph, which correspond to the bonds between atoms.

The number of segments indicates the multiplicity of bonds, and the

type of segment indicates the presence or absence of aromaticity.

We can input the molecular structures into a deep learning model by rep-

resenting them with SMILES strings [68, 69] or molecular graphs. SMILES

strings are codes of molecular structures described according to a certain

grammar. Because different SMILES strings may represent the same molec-

ular structure, canonicalization of SMILES strings is often applied in prepro-

cessing. In SMILES strings, ring structures and side chains are represented

one-dimensionally, and the neighboring relationships of atoms are broken.

To successfully extract features of molecular structures from SMILES strings,

many models that take SMILES strings as input have been proposed by

adopting methods from the field of natural language processing, and have

been shown to have good prediction performance [70–73].

Meanwhile, molecular graphs are representations of molecular struc-

tures in which atoms and bonds correspond to vertices and edges, respec-

tively (Figure 3.1). To molecular graph data, which constitute a molecular
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graph with feature vectors attached to each vertex and edge, we can apply

a deep neural network called a graph neural network (GNN) [74]; good

progress has been made using this approach in the past few years. GNNs ex-

tract features from graph data by performing operations that do not depend

on the ordering of graph vertices. Therefore, the same prediction results can

be obtained for the graph data representing the same molecule, while the

different prediction results can be obtained for the different SMILES strings

representing the same molecule. Also, molecular graphs are expected to

be easier to capture the information of molecular structures than SMILES

strings because they can explicitly handle the adjacency of atoms. In ad-

dition, some studies [75–77] reported that the performance of a GNN in

predicting properties of compounds is better than that of other existing

feature extraction methods.

In general, as we mentioned in Chapter 1, deep learning models such as

GNNs require many model parameters to be adjusted, and therefore, large

datasets are needed for high-performance prediction. In the performance

analyses of previous studies, datasets containing more than 100,000 samples

(e.g., the QM9 dataset [78]) have often been used for training. However, in

molecular design, it often happens that only a small number of the chemical

property data of interest are available owing to the high cost of synthesis

and testing of compounds. In such a situation where there are few available

training samples, feature extraction using deep learning models tends to fail

owing to overfitting.

Even in the situation that only a few training samples are available,

there are cases in which a well-considered training method provides better

prediction performance than conventional methods. In transfer learning [79],

for example, training on the target dataset can be performed effectively by

pre-training on a large dataset other than the target dataset. When using

unlabeled molecular structure data obtained from a database such as Pub-

Chem [48] or ZINC [49] as a large dataset, the model is expected to acquire

knowledge on the nature of the molecular structures, which facilitates train-

ing on the target dataset. Several methods for pre-training GNN models

have been actively studied in recent years; e.g., self-supervised learning [80,

81] and contrastive learning [82].
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Data augmentation [50] is another effective method of training on small

datasets. Data augmentation is an operation that increases the apparent

number of training samples by randomly deforming the samples. Data aug-

mentation is expected to improve a model’s generalization performance even

when the training dataset is small, because it extracts essential features that

can be successfully predicted even when the samples are slightly deformed.

In particular, the advantage of data augmentation is that it does not require

any additional dataset other than the training dataset and can thus be easily

performed.

Admissible operations for data augmentation are limited to those that

do not appreciably degrade the information of the samples. As examples, in

image data augmentation, operations such as cropping and adding Gaussian

noise to an image are acceptable if the object represented by the image can

be correctly identified. However, operations such as filling the entire image

with black pixels are inappropriate because we cannot determine the object

in the deformed image.

Data augmentation can be performed for deep learning models that

take SMILES strings as input by making the best of the multiplicity of

the SMILES strings [83]. Although the molecular representation is affected

by this augmentation, the corresponding molecular structures themselves

are the same, and there is thus almost no loss of information.

Several methods for augmenting graph data have been proposed. One

method of graph data augmentation is to create a sample with a slightly

altered graph structure [84–88]. However, applying such a method to a

molecular graph results in a molecular graph corresponding to a molecule

different from the original molecule. Differences in molecular skeletons con-

tribute to the chemical properties, and it is thus inappropriate to modify

the graph structure to augment the molecular graph data.

Meanwhile, methods of graph data augmentation in which a pertur-

bation is added to all the input vertex feature vectors have also been pro-

posed [89, 90]. These methods are more suitable for the augmentation of

molecular graph data because they keep the input molecular graph intact.

Although these methods have been reported to improve a model’s perfor-

mance, large datasets with more than 100,000 samples were used to verify
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the performance, and the effect of the augmentation of small datasets has

not yet been investigated.

In this chapter, we designed a graph data augmentation method that

improves the prediction performance of a GNN-based QSPR model for small

training datasets comprising approximately 1000 samples. The proposed

method deforms samples by perturbating the vertex feature vectors of the

graph data rather than by modifying the graph structure. In the proposed

method, elements of the perturbation vector are standard normal random

numbers. In addition, instead of perturbating all the vertex features input

to the GNN, the proposed method perturbates some of the hidden feature

vectors in the feature extraction of the GNN.

To verify the effectiveness of the proposed method, we investigated the

prediction performance for regression and classification tasks. We also in-

vestigated how the prediction performance changes when the perturbation

timing is changed. As a result, we confirmed that adding perturbations im-

mediately before the GNN readout operation improves the prediction per-

formance the most. In particular, the data augmentation worked better

for the model trained on a smaller dataset. The proposed method is not

only versatile enough to be applied to many GNN models but also simple

enough to be easily implemented without a large increase in computational

complexity.

3.2 Methods

In this section, we first describe the graph data and then outline the GNN

operations. We then describe the proposed method in detail.

3.2.1 Graph Data

A graph is a tuple G = (V,E) of a set V of vertices and a set E of edges

connecting the vertices. An edge e ∈ E connecting vertices u, v ∈ V is

denoted by e = uv, and u and v are said to be adjacent. The set of vertices

adjacent to a vertex v in graph G is called the neighborhood of v and denoted

by NG(v). When graph G is obvious from the context, we simply denote

the neighborhood by N(v).
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Graph data are the triplets G = (G,XV ,ΞE), where the graph G =

(V,E) has the information XV = (xv)v∈V for the feature vector xv of each

vertex v ∈ V and ΞE = (ξe)e∈E for the feature vector ξe of each edge e ∈ E.

The structure data of an organic compound can also be represented as

graph data by adding vertex feature vectors and edge feature vectors to the

molecular graph. Discrete feature vectors, such as the types of atoms/bonds,

the number of bonded hydrogens, and the presence or absence of aromaticity,

are often used as feature vectors.

3.2.2 Operations of Graph Neural Networks

In a GNN, two types of operation, namely message passing and readout

operations, are performed. After extracting the vertex features of the graph

data by repeatedly performing message passing on the input, the readout

operation is conducted to produce the feature vector of the graph data itself.

Using GNNs, features that combine local information around each vertex of

the graph and global information of the whole graph are extracted from the

graph data.

Various types of GNN have been proposed, and the detailed operation

of GNNs differs depending on the model. In this study, we used a message

passing neural network (MPNN) [91] as a base model, which we describe

hereafter.

The MPNN calculates the feature vector zG for the input G = (G,XV ,ΞE)

in the following procedure:

(1) Each feature vector is transformed using a fully connected neural net-

work.

(2) Message passing is repeated L times to extract vertex features (where

L ∈ Z>0 is a hyperparameter).

(3) Feature vector zG is computed by reducing the information of vertex

feature vectors with the readout operation.
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Transformation of Feature Vectors

First, all feature vectors xv and ξvw of the input graph data are transformed

into h
(0)
v and Avw using the functions f and g, respectively:

h(0)
v = f(xv),

Avw = g(ξvw).

Here, the functions f and g are fully connected neural networks, h
(0)
v is a

d-dimensional real vector whereas Avw is a d × d real square matrix. Note

that because the parameters of neural networks generally take real values,

the feature vector xv comprising discrete features is transformed by the

function f into the feature vector h
(0)
v comprising continuous features.

Message Passing

After the feature transformation, message passing is performed L times us-

ing the transformed features. In message passing, two operations, namely

aggregation and update operations, are performed alternately to transform

the feature vector of each vertex into a feature vector that captures the local

information of its neighborhood (Figure 3.2).

In the aggregation operation, for each vertex v of the graph, we compute

a message vector that summarizes the feature vectors of vertex v’s neighbors.

We denote by h
(ℓ)
v (ℓ = 0, 1, . . . , L) vertex v’s feature vector after ℓ message

passing operations. In the aggregation operation of the ℓ-th message passing,

we compute the message vector m
(ℓ)
v as

m(ℓ)
v =

∑
w∈N(v)

Avwh
(ℓ−1)
v (ℓ = 1, 2, . . . , L).

We consider from how the message vector is calculated that m
(ℓ)
v contains

the information of the current feature vectors of each vertex w adjacent to

v, h
(ℓ−1)
w , and the information of the incident edge vw, Avw.

In the following update operation, the current feature vector h
(ℓ−1)
v of

each vertex v is updated to h
(ℓ)
v using the message vector m

(ℓ)
v calculated

above. Specifically, we use a recurrent neural network called the gated re-

current unit (GRU) [92]:

h(ℓ)
v = GRU

(
m(ℓ)

v ;h(ℓ−1)
v

)
(ℓ = 1, 2, . . . , L).
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Update

Aggregate

Figure 3.2: Message passing operation in the MPNN. Colors of the vertices in-

dicate the atom types. Stacked squares near vertices indicate vertex

feature vectors whereas arrayed squares on edges indicate edge feature

vectors. We here focus on the operation for the vertex v. In aggrega-

tion, feature vectors of the vertices/edges adjacent/incident to vertex

v are used to create the message vector for v. In the update, the

message vector and the current vertex feature are used to update the

feature vector of vertex v.
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Here, the second argument h
(ℓ−1)
v is a vector representing the internal state

of the GRU. We note that parameter-shared GRUs are assigned to each

vertex v and update operation is applied independently to the vertices. Be-

cause the the GRU can capture the evolution of each vertex feature, h
(ℓ)
v

contains information of the feature vector of vertex v up to the (ℓ − 1)-st

message passing. The above message passing operation is repeated L times

to calculate the final vertex feature vector h
(L)
v .

Readout

Finally, in the readout operation, all the final vertex feature vectors com-

puted by message passing are combined and transformed into a single fea-

ture vector zG , namely the graph feature vector for the input G (Figure 3.3).

Specifically, we use a neural network called Set2Set [93]:

zG = Set2Set
(
{h(L)

v | v ∈ V }
)
.

Set2Set can extract feature from the input set of feature vectors, i.e., the

extracted feature is invariant with respect to the vertex ordering. Set2Set

uses the input set to update the initial vector q∗0, which is set to zero vector,

and after K times update it outputs the updated vector q∗K as the graph

feature zG . In the k-th update of Set2Set, the vector q∗k is calculated as

follows:

qk,ηk = LSTM(q∗k−1;ηk−1),

αv,k = softmax(h(L)
v · qk) (v ∈ V ),

rk =
∑
v∈V

αv,kh
(L)
v ,

q∗k = qk ∥ rk.

Here, LSTM is a recurrent neural network called the long short-term memory

(LSTM) [94] and ηk is the vector representing the internal state of the LSTM

(η0 = 0). Also, the binary operation ∥ denotes vector concatenation. We

note that αv,k represents the contribution of vector h
(L)
v , and the vector rk

summarizes the vertex feature vectors by taking the weighted sum based on

this contribution, the operation that does not depend on the vertex ordering.
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Readout

Figure 3.3: Readout operation in the MPNN. All the current features for vertices

are used to compute the feature vector for the input G

3.2.3 Proposed method: Perturbating MPNN

In the augmentation of molecular graph data, it is necessary to handle the

discrete aspects of the graph structure and feature vectors. One method of

augmenting graph data is to change the graph structure slightly (Figure 3.4

(a)), but as mentioned in the introduction, this method is inappropriate for

molecular graph data because it changes the compounds represented by the

molecular graph. Meanwhile, perturbating the vertex/edge feature vectors

is also effective in augmenting the graph data. However, because the ver-

tex/edge feature vectors for molecular graphs often include discrete features

such as binary features like one-hot vectors and features with non-negative

integer values, direct modification of these feature vectors may corrupt the

information of the feature vectors (Figure 3.4 (b)). As an example, if the ele-

ment corresponding to the atom type in the vertex feature vector is changed,

the modified graph data may correspond to a different molecule with a dif-

ferent atom type or an inappropriate structure that does not satisfy the

valence constraint. We need to avoid the above discreteness in molecular

graph data.

We here focus on the operation of the MPNN. In procedure (1) of the

MPNN, the feature vectors are transformed by the neural network, such
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(a)

(b)

Figure 3.4: Modifications that are inappropriate for the augmentation of molec-

ular graph data. Colors of vertices indicate the atom types. Stacked

squares indicate discrete feature vectors with each element being an

integer value. The modified part is circled by a red dotted line. (a)

Change in the graph structure. This operation results in a different

molecular graph. (b) Change in a discrete vertex feature. This op-

eration may also result in a different molecular graph or an invalid

structure.



CHAPTER 3. GRAPH DATA AUGMENTATION 54

that each element of the feature vectors is a continuous value. Similarly,

the vertex feature vectors in message passing and the graph feature vectors

obtained by the readout operation are also vectors with continuous values.

For such continuous-valued vectors, it is expected that the information of the

original data can be more easily preserved even if random changes are made

to each vector. In fact, in a previous study [89], graph data were augmented

by adding perturbations to the vertex feature vectors immediately after the

input vertex feature vectors were transformed by the neural network; i.e.,

h
(0)
v (v ∈ V ).

In addition, if all vertex feature vectors are perturbated, the graph data

may be deformed such that they do not retain the features of the original

data. It is therefore desirable to control the total perturbation applied to

the graph data by perturbating only some of the vertex features.

We therefore designed the perturbating MPNN (PMPNN) as a GNN

model that performs graph data augmentation (Figure 3.5). The PMPNN

calculates the feature vector zG for the input graph data G = (G,XV ,ΞE)

in the following procedure:

(1) Each feature vector is transformed using a fully connected neural net-

work.

(2) Message passing is repeated ℓpre times (where ℓpre ∈ Z≥0 is a hyper-

parameter).

(3) For each vertex feature, a perturbation vector of normal random values

with probability p (where 0 < p ≤ 1 is a hyperparameter) is sampled

and added, with each element of the perturbation having a mean of

zero and variance of 1.

(4) Message passing is repeated ℓpost times to extract vertex features

(where ℓpost ∈ Z≥0 is a hyperparameter satisfying ℓpre + ℓpost > 0).

(5) Feature vector zG is computed by reducing the information of vertex

feature vectors with the readout operation.

In procedure (3) of the PMPNN, we sample a binary value bv ∈ { 0, 1 }
(v ∈ V ) from the Bernoulli distribution B(1, p) of the parameter p and
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Feature
Transformation

Readout

Feature vector
of graph data

Input
graph data

Vertex
perturbations

+

Message passing
　   times

Message passing
　    times

Figure 3.5: Overview of the PMPNN. Stacked squares indicate feature vectors.

After ℓpre message passings, some atoms in the molecular graph are

selected with probability p (where selected atoms are depicted with

solid lines), and normally distributed perturbations are then sampled

and added to the feature vectors.
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a perturbation vector πv ∈ Rd (v ∈ V ) from the d-dimensional standard

normal distribution N (0, Id), and add bvπv to the vertex feature after the

ℓpre-th update:

h
(ℓpre)
v = GRU

(
m(ℓ)

v ;h(ℓ−1)
v

)
+ bvπv,

bv ∼ B(1, p),

πv ∼ N (0, Id).

Here, Id is the d× d identity matrix. Note that the time required for these

operations is sufficiently short relative to the time required for training.

In the PMPNN, we adjust the timing of perturbating the feature vectors

by fixing the number of times the message passing is applied, L = ℓpre+ℓpost,

and varying the hyperparameters ℓpre and ℓpost. The hyperparameter p

controls the total number of perturbations to be added to the graph data;

i.e., for a graph with n vertices, the perturbations are added to np vertices in

expectation. In particular, at the limit that p → 0, the PMPNN is consistent

with the MPNN with L = ℓpre + ℓpost, and the PMPNN is thus an extended

model of the MPNN.

3.3 Results and Discussion

To verify the effect of the proposed data augmentation method, we con-

ducted comparison experiments with the base model, the MPNN, for two

types of task: regression and classification. We confirmed the effects of the

timing of the perturbation and the number of perturbations on the predic-

tion performance. We also investigated the effect of data augmentation for

different sizes of the training dataset.

We performed the experiment using Python 3.7.3. We used RDKit (ver-

sion 2019.03.2.0) [58] to handle the organic compound data and PyTorch

(version 1.7.0) [95], DGL (version 0.5.3) [96], and DGL-LifeSci (version 0.2.6) [97]

as deep learning frameworks.
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3.3.1 Datasets

All datasets used in this study were obtained from MoleculeNet [98]. The

original datasets contained molecules that have atoms with incorrect va-

lence, mixtures, and molecules with deuterium, which were removed in the

preprocessing step.

Dataset Preparation for the Regression Task

For the regression task, we used 133,018 structures with calculated values of

the gap between the highest occupied molecular orbital and the lowest un-

occupied molecular orbital from the QM9 dataset [78] of 133,885 structures.

This dataset contains a comprehensive set of structures with nine or fewer

carbon, oxygen, nitrogen, and fluorine atoms and is used in many property

prediction tasks.

To train on a small dataset, we created a training dataset, a validation

dataset, and a test dataset in the following steps. First, 26,604 samples

(20% of the total samples) were held as the test dataset for evaluating the

prediction performance. For the remaining dataset comprising 106,414 sam-

ples, we repeated the operation of sampling half of the samples at random

and created datasets comprising 53,207, 26,603, 13,301, 6650, 3325, 1662,

and 831 samples. Each of the above eight datasets was split so that the

sample ratio of the training dataset to the validation dataset was 8:2. For

the experiments in the first part of Section 3.3.3, we trained the model using

the datasets with 1662 samples, and for the experiments in the final part of

Section 3.3.3, we trained the model with each dataset.

Dataset Preparation for the Classification Task

Meanwhile, for the classification task, we used 301,644 structures (active:

62,577, inactive: 239,067) with human TDP1 inhibitor data from the PCBA-

686978 dataset of 302,175 structures. We select this dataset because it

contains the most active data among the PCBA dataset.

As in the regression task, to train on a small dataset, we created the

training, validation, and test datasets using the following procedure. To

maintain the proportion of classes, we divided the data through stratified
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sampling. First, we held 60,329 samples (active: 12,515, inactive: 47,814),

which is 20% of the total samples, as the test dataset for evaluating the

prediction performance. We next undersampled the inactive classes to get

the same class ratio for the remaining 241,315 samples and created a dataset

comprising 100,124 samples in total, including 50,062 active and 50,062 in-

active samples. We repeated the operation of sampling half of the samples

through stratified sampling and created datasets comprising 50,062, 25,031,

12,515, 6257, 3128, 1564, and 782 samples. The above eight datasets were

divided so that the sample ratio of the training dataset to the validation

dataset was 8:2. For the experiments in the first part of Section 3.3.3, we

trained the model using the dataset comprising 1564 samples, and for the

experiments in the final part of Section 3.3.3, we trained the model using

each dataset.

Also, we used 5,673 structures (active: 911, inactive: 4,762) from the

Tox21 dataset (SR-ARE) for the classification task. To train on a small

dataset, we created the training, validation, and test datasets using the

following procedure. To maintain the proportion of classes, we divided the

data through stratified sampling. First, we held 2,270 samples (active: 365,

inactive: 1,905), which is 40% of the total samples, as the test dataset for

evaluating the prediction performance. We next undersampled the inactive

classes to get the same class ratio for the remaining 3,403 samples and

created a dataset comprising 1,092 samples in total, including 546 active

and 546 inactive samples. This dataset was divided so that the sample ratio

of the training dataset to the validation dataset was 8:2. We trained the

model using this dataset for the experiments in the first and second part of

Section 3.3.3.

In constructing the graph data, we used an 80-dimensional vertex feature

vector comprising the following elements:

• Type of atom,

• Vertex degree,

• Number of bonded hydrogens,
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• Formal charge,

• Number of radicals,

• Type of hybrid orbital, and

• Presence or absence of aromaticity.

As the edge feature vectors, we used a 12-dimensional feature vector com-

prising the following elements:

• Type of bond,

• Whether the bond is conjugated or not

• Whether the bond is in a ring or not, and

• Stereo configuration.

3.3.2 Models and Experimental Conditions

Network Architectures

To perform the regression and classification tasks, we used a network struc-

ture in which the graph data are passed through the MPNN or PMPNN for

feature extraction and then passed through a two-layer fully connected neu-

ral network. All the activation functions used in the neural networks were

ReLU functions. The detailed model architecture is shown in Figure 3.6.

To transform the vertex feature vectors of the MPNN and PMPNN, we

used a one-layer fully connected neural network that outputs 64-dimensional

vectors. For the transformation of the edge feature vectors, we used a two-

layer fully connected neural network that outputs a 64 × 64 square matrix,

and the dimension of the hidden layer of this network was set at 128. In

Set2Set, which is used for the readout of both MPNN and PMPNN, the

number of updates K was set at six, the number of LSTM layers at three,

and the dimension of the graph feature vector at 128. In the network for

regression and classification, we set the dimension of the hidden layer at 64

and that of the output at 1.

As a base model, we used the MPNN with four message passings. To

make the number of message passings the same as that for the MPNN, we
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Figure 3.6: The architecture of the model we used in the case study. FC layer

stands for fully connected layer and the numbers in parentheses indi-

cate the dimensions of the input and output. Gray rounded squares

indicate the presence of learning parameters. In each PMPNN, per-

turbation is applied at the position indicated by the red circle.
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set the hyperparameter of the PMPNN as L = ℓpre + ℓpost = 4. In the

following, we refer to the PMPNN with hyperparameters ℓpre and ℓpost as

the (ℓpre + ℓpost)-PMPNN.

To consider the timing of perturbation addition, we also created two

types of variant in the experiments described in the first part of Section 3.3.3:

the VF-PMPNN, a model that adds perturbation directly to the input vertex

feature vectors, and the GF-PMPNN, a model that adds perturbation to the

graph feature vectors output by the MPNN. The number of message passings

is again set at four for these models.

Traditional Model

For the comparison in the first part of Section 3.3.3, we also created the non-

deep QSPR models. We used the Random Forest (RF) [99] for the model

and the Morgan Fingerprint [66] (2,048 bits, radius 2) for feature extraction.

Among the hyperparameters of the Random Forest, the number of decision

trees and the maximum depth were optimized by grid search using the train-

ing and validation datasets. The search range of the hyperparameters was

as follows:

• The number of decision trees: { 50 × i | i = 1, . . . , 6 },

• The maximum depth of trees: { 5 × i | i = 1, . . . , 16 }.

After the tuning of the hyperparameters, we trained the Random Forest with

the optimized hyperparameters on the training dataset only, and evaluated

its prediction performance on the test dataset.

Loss Functions

As the loss function to be minimized in training, we used the mean square

error (MSE) in the regression task and the mean of the binary cross-entropy

loss weighted by the class ratio in the classification task. For a dataset of N

samples D = { (xi, yi) }Ni=1 (where xi is i-th sample and yi is the label for

the sample xi), the mean squared error of the regression model f for D is
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defined by

MSED [f ] =
1

N

N∑
i=1

(yi − f(xi))
2

and the mean weighted binary cross-entropy loss (CEL) of the classification

model f for the dataset D is

CELD [f ] = − 1

N

N∑
i=1

(w1yi log f(xi) + w0(1 − yi) log(1 − f(xi))) ,

where yi ∈ { 0, 1 } and f(x) ∈ [0, 1]. In this experiment, the hyperparameters

w0 and w1, which represent the weights of classes 0 and 1, were set to account

for the slight bias in the class distribution of the training dataset:

wi :=
Ni

max(N0, N1)
(i = 0, 1),

where Ni is the number of samples of class i in the training dataset. Note

that wi ≈ 1 because of the application of undersampling in the classification

task.

Experimental Conditions

We used Adam [100] with a learning rate of 0.0001 as the optimization

algorithm for the loss function. The training batch size was set at 64. The

maximum number of training epochs was set at 500, and early stopping [101]

was adopted. We set the patience of early stopping at 200 in the regression

task and 50 in the classification task. Data augmentation with the PMPNN

was used only for training, and perturbations were set as zero vectors in the

prediction for the validation and test datasets.

Metrics for Evaluation

To evaluate the prediction performance of the model, we used the mean

absolute error (MAE) and the coefficient of determination R2 for the test

dataset in the regression task and the area under the curve of receiver op-

erating characteristic (ROC-AUC) for the test dataset in the classification

task. ROC-AUC and R2 closer to 1 and an MAE closer to zero indicate bet-

ter model prediction. We performed 10 trials in the following experiments.
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Table 3.1: MAE (mean±standard deviation) for the test dataset in the regression

task. The background color indicates the improvement of the evalua-

tion metric over the base model (MPNN). Bold type indicates the best

evaluation metric.

No Perturbation p = 0.25 p = 0.5 p = 0.75 p = 1.0

RF 0.4511 ± 0.0015 — — — —

MPNN 0.3334 ± 0.0188 — — — —

VF-PMPNN — 0.3471 ± 0.0065 0.3733 ± 0.0073 0.4106 ± 0.0121 0.4459 ± 0.0098

(0+4)-PMPNN — 0.3593 ± 0.0045 0.3672 ± 0.0051 0.3888 ± 0.0124 0.4057 ± 0.0158

(1+3)-PMPNN — 0.3371 ± 0.0064 0.3359 ± 0.0074 0.3421 ± 0.0068 0.3440 ± 0.0141

(2+2)-PMPNN — 0.3245 ± 0.0090 0.3230 ± 0.0063 0.3243 ± 0.0081 0.3271 ± 0.0064

(3+1)-PMPNN — 0.3090 ± 0.0062 0.3084 ± 0.0077 0.3072 ± 0.0075 0.3082 ± 0.0063

(4+0)-PMPNN — 0.3070± 0.0082 0.3099 ± 0.0081 0.3110 ± 0.0063 0.3164 ± 0.0080

GF-PMPNN — 0.3400 ± 0.0104 0.3550 ± 0.0147 0.3594 ± 0.0136 0.3637 ± 0.0177

In each trial, we trained a model and computed the metrics described above.

We calculated the mean and standard deviation of the metrics after com-

pleting all the trials.

3.3.3 Performances of Models

Effect of Perturbations on the Prediction Performance

We first investigated whether the proposed data augmentation performs

well. Table 3.1 and 3.2 give the evaluation metrics for the regression task

whereas Table 3.3 and 3.4 give the evaluation metrics for the two different

classification tasks when the hyperparameters (ℓpre, ℓpost) and p are varied.

The performances of (3+1)-PMPNN and (4+0)-PMPNN exceed the per-

formance of the base model, indicating that the proposed data augmentation

method works well in both regression and classification tasks. In all cases,

the prediction performance tends to improve as ℓpost becomes small. In par-

ticular, (4+0)-PMPNN, which includes a perturbation immediately before

readout, has the highest prediction performance, which may be because the

message passing did not amplify the information loss caused by the per-

turbation. The perturbation added to the feature vector of some vertex is

propagated to the feature vectors of its neighboring vertices in the subse-

quent message passing. Therefore, a smaller number of message passings

after the perturbation results in the perturbation effect being less spread,
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Table 3.2: The coefficient of determination R2 (mean±standard deviation) for the

test dataset in the regression task. The background color indicates the

improvement of the evaluation metric over the base model (MPNN).

Bold type indicates the best evaluation metric.

No Perturbation p = 0.25 p = 0.5 p = 0.75 p = 1.0

RF 0.7502 ± 0.0015 — — — —

MPNN 0.8597 ± 0.0186 — — — —

VF-PMPNN — 0.8439 ± 0.0053 0.8214 ± 0.0076 0.7842 ± 0.0119 0.7522 ± 0.0107

(0+4)-PMPNN — 0.8313 ± 0.0050 0.8251 ± 0.0056 0.8052 ± 0.0122 0.7917 ± 0.0152

(1+3)-PMPNN — 0.8560 ± 0.0061 0.8589 ± 0.0082 0.8527 ± 0.0067 0.8505 ± 0.0138

(2+2)-PMPNN — 0.8683 ± 0.0095 0.8707 ± 0.0062 0.8683 ± 0.0080 0.8636 ± 0.0050

(3+1)-PMPNN — 0.8818 ± 0.0060 0.8833 ± 0.0067 0.8830 ± 0.0072 0.8823 ± 0.0070

(4+0)-PMPNN — 0.8868± 0.0074 0.8850 ± 0.0055 0.8850 ± 0.0052 0.8815 ± 0.0057

GF-PMPNN — 0.8548 ± 0.0103 0.8418 ± 0.0131 0.8391 ± 0.0128 0.8380 ± 0.0142

Table 3.3: ROC-AUC (mean±standard deviation) for the test dataset in the clas-

sification task (PCBA). The background color indicates the improve-

ment of the evaluation metric over the base model (MPNN). Bold type

indicates the best evaluation metric.

No Perturbation p = 0.25 p = 0.5 p = 0.75 p = 1.0

RF 0.7116 ± 0.0040 — — — —

MPNN 0.7408 ± 0.0107 — — — —

VF-PMPNN — 0.7037 ± 0.0083 0.6830 ± 0.0128 0.6637 ± 0.0107 0.6673 ± 0.0060

(0+4)-PMPNN — 0.6838 ± 0.0141 0.6656 ± 0.0056 0.6655 ± 0.0067 0.6641 ± 0.0054

(1+3)-PMPNN — 0.7182 ± 0.0099 0.7194 ± 0.0183 0.7023 ± 0.0205 0.7187 ± 0.0147

(2+2)-PMPNN — 0.7372 ± 0.0069 0.7329 ± 0.0067 0.7242 ± 0.0181 0.7343 ± 0.0040

(3+1)-PMPNN — 0.7472 ± 0.0055 0.7405 ± 0.0078 0.7395 ± 0.0175 0.7419 ± 0.0083

(4+0)-PMPNN — 0.7494 ± 0.0066 0.7550± 0.0038 0.7535 ± 0.0060 0.7524 ± 0.0061

GF-PMPNN — 0.7370 ± 0.0073 0.7263 ± 0.0233 0.7303 ± 0.0165 0.7264 ± 0.0250

Table 3.4: ROC-AUC (mean±standard deviation) for the test dataset in the clas-

sification task (Tox21). The background color indicates the improve-

ment of the evaluation metric over the base model (MPNN). Bold type

indicates the best evaluation metric.

No Perturbation p = 0.25 p = 0.5 p = 0.75 p = 1.0

RF 0.7609± 0.0031 — — — —

MPNN 0.6955 ± 0.0332 — — — —

VF-PMPNN — 0.6854 ± 0.0204 0.6882 ± 0.0089 0.6761 ± 0.0128 0.6528 ± 0.0131

(0+4)-PMPNN — 0.6771 ± 0.0154 0.6894 ± 0.0170 0.6852 ± 0.0107 0.6804 ± 0.0080

(1+3)-PMPNN — 0.6846 ± 0.0263 0.6716 ± 0.0134 0.6638 ± 0.0150 0.6712 ± 0.0181

(2+2)-PMPNN — 0.6950 ± 0.0411 0.6740 ± 0.0320 0.6893 ± 0.0322 0.6586 ± 0.0129

(3+1)-PMPNN — 0.7065 ± 0.0402 0.7169 ± 0.0372 0.6867 ± 0.0409 0.6815 ± 0.0381

(4+0)-PMPNN — 0.7400 ± 0.0247 0.7345 ± 0.0344 0.7149 ± 0.0385 0.7340 ± 0.0346

GF-PMPNN — 0.7143 ± 0.0332 0.7241 ± 0.0270 0.6956 ± 0.0439 0.7045 ± 0.0269
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and the vertex features can thus be extracted from the original graph data

without appreciable information loss. This result is consistent with the ten-

dency that the prediction performance is improved when ℓpost is small.

It is confirmed that the prediction performance of the VF-PMPNN is

worse than that of the base model, which verifies that it is unreasonable to

augment the data by directly perturbating the discrete input vertex features.

Moreover, the prediction performance of the GF-PMPNN is also lower than

that of the (4+0)-PMPNN, suggesting that it is desirable to perturbate the

vertex feature vectors when augmenting the data by adding perturbations.

We note here that the setting of the probability p for the best prediction

performance will depend mainly on the dataset, as shown by the fact that

p for the best prediction performance differs depending on the tasks. We

suppose that this is because the total amount of perturbation applied to a

sample depends on the number of atoms in the molecule.

On the QM9 and PCBA datasets, the prediction performance of MPNN

was better than that of Random Forest, but on the Tox21 dataset, the

prediction performance of Random Forest was the best. This result suggests

that the prediction performance of PMPNN could fall short of that of the

traditional QSPR model depending on the dataset, although the prediction

performance of MPNN was indeed improved by the data augmentation. In

order to further improve the prediction performance, it will be necessary to

use other training methods on small datasets such as transfer learning.

Effect of Perturbation Probability

To investigate the effect of the perturbation probability p on the prediction

performance in more detail, we performed predictions on the Tox21 dataset

by varying the p of the (4+0)-PMPNN in increments of 0.05. The results

are shown in Figure 3.7.

For all values of the probability p of selecting vertices, the mean ROC-

AUC of the (4+0)-PMPNN was improved over that of the base model

(MPNN). In particular, the mean ROC-AUC was greatest when p = 0.85,

and the improvement from the base model was confirmed even when the

standard deviation was taken into account. This suggests that the pre-
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Figure 3.7: Variation in the ROC-AUC with the perturbation probability in the

classification task for the Tox21 dataset. Data are averages for 10

trials. The error bars indicate the standard deviation. The grey area

indicates the range where the difference from the mean of the baseline

model falls within its standard deviation.
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diction performance can be improved by partially perturbating the vertex

features.

However, no clear relationship was found between the value of p and the

prediction performance. It is thus desirable to perform the hyperparame-

ter tuning of p through Bayesian optimization or other methods to achieve

better prediction performance.

Data Augmentation Effect According to the Number of Training

Samples

We then checked the effect of data augmentation when the number of train-

ing samples was varied. We fixed the models to the base model and (4+0)-

PMPNN (p = 0.25) and compared the prediction performances of these

models. The evaluation metrics for the regression task and the classification

task are plotted in Figures 3.8 and 3.9, respectively.

It is confirmed that the mean prediction performance of (4+0)-PMPNN

is better than that of the base model, except for the datasets with 53,207

and 106,414 samples in the regression task. In particular, the average ef-

fect of data augmentation tend to be greater in average when the number

of training samples was approximately 1000, suggesting that the proposed

method successfully extracts features from a small number of graph data.

However, when the number of training samples was smaller, the standard

deviation of the prediction performance tended to be larger. When the

standard deviation is large, the prediction performance might be worse than

that of the base model. In such a situation, it is better to compensate for

the variation in prediction by building an ensemble of several PMPNNs.

The degradation of the prediction performance on the two datasets of the

regression task can be attributed to the poor setting of the hyperparameter

p for the two datasets and the consequent large deformation due to the

perturbation. It is thus expected that the prediction performance can be

improved by adjusting the hyperparameter p appropriately.
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Figure 3.8: Variation in the MAE with the number of training samples in the re-

gression task. Data are averages for 10 trials. The error bars indicate

the standard deviation.
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Figure 3.9: Variation in the ROC-AUC with the number of training samples in

the classification task (PCBA). Data are averages for 10 trials. The

error bars indicate the standard deviation.
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3.4 Conclusion

In this study, we designed a data augmentation method, namely the PMPNN,

for feature extraction from a small-scale graph dataset of approximately 1000

samples. In the PMPNN, perturbation vectors comprising normal random

numbers with a mean of zero and variance of 1 are added to the vertex fea-

ture vectors during message passing of the MPNN, and the computational

complexity is almost the same as that of the MPNN. The degree of pertur-

bation of the samples is adjusted by introducing a hyperparameter p that

represents the perturbation probability.

We confirmed that the proposed method can successfully augment graph

data by comparing the proposed method with the base model, namely the

MPNN, for both regression and classification tasks. In particular, we found

that the perturbation just before readout enhances the effect of data aug-

mentation. An analysis of the prediction performance for a varying number

of training samples suggests that the proposed method is particularly effec-

tive in extracting features from a small-scale graph dataset of approximately

1000 samples. The appropriate value of the hyperparameter p may vary de-

pending on the dataset, and it is thus desirable to tune the hyperparameter

using methods such as Bayesian optimization to achieve better prediction

performance.

In this study, we modified the MPNN to obtain the PMPNN, but adding

perturbations during message passing is a general method that can be ap-

plied to any GNN model. We thus believe that we can augment data in

the same way when using GNN models such as the graph convolutional net-

work [102] and the graph isomorphism network [103]. In particular, because

the graph convolutional network is a typical model used in theoretical stud-

ies of GNNs [104], there is a possibility that the effect of data augmentation

by perturbation, which was only experimentally verified in this study, can

be theoretically analyzed.

Although the perturbations added by the PMPNN were all standard

normal random numbers, the degree of perturbation may be inappropriate

for some samples. We therefore expect the prediction performance to be fur-

ther improved by adjusting the perturbation value according to the feature
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vector. In addition, it will be a future work to check the behavior when the

distribution of the perturbations is changed to a different distribution such

as the uniform distribution.

Finally, it is noted that the data augmentation proposed in this study is

designed to make the best use of the available graph dataset and does not

necessarily lead to a dramatic improvement in prediction performance. For

further improvement in the prediction performance, other methods, such

as transfer learning on a large-scale unlabeled graph dataset, are needed.

Verifying the effect of data augmentation when the proposed method is

used together with such transfer learning is a future topic of research.



Chapter 4

Data-oriented Generation

with a Graph-based Deep

Structure Generator

4.1 Introduction

A deep structure generator is a neural network model that can generate

molecular structures similar to one of the training samples without setting

explicit structure generation rules. The number of studies on deep structure

generators has been increasing in the last few years, and various deep struc-

ture generators have been proposed so far [105, 106]. In particular, string-

based deep structure generators that use string representations of molecules

like SMILES strings for model input and output, and graph-based deep

structure generators that use molecular graphs for model input and output

have become the mainstream.

String-based deep structure generators are easy to implement structure

generation mechanisms by leveraging neural networks, which are commonly

used in natural language processing. For example, the ChemTS [39] can

generate compounds with desired properties by using a recursive neural

language model, which predicts the next symbol from an input SMILES

substring, and Monte Carlo tree search [107], which is often used in gaming

AIs. In addition, the chemical variational autoencoder [45], which is a model

72
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that combines a network that converts SMILES strings into numerical vec-

tors and a network that generates SMILES strings from an input numerical

vector, can generate SMILES strings by sampling numerical vectors after

adequate training. However, when SMILES strings are used for input and

output, the generated strings, because of the SMILES string grammar, do

not always become valid SMILES strings, i.e., SMILES strings correspond-

ing to actual compounds. For this reason, methods that explicitly take the

SMILES grammar into account [40, 108] or string representations that are

robust against grammatical errors [109, 110] have been used.

On the other hand, graph-based deep structure generators [111] tend

to have a more complicated structure generation mechanism than string-

based models. However, they can handle molecular substructures, making

it easier to check valence constraints during the generation process and thus

generating more valid molecular graphs, i.e., graphs corresponding to actual

compounds. In fact, many graph-based deep structure generators, such as

the deep generative model of graphs [42], NeVAE [112], GraphNVP [113],

GraphCNF [114], and GraphEBM [115], can generate more valid molecular

structures than the SMILES string-based model. In particular, the graph-

based deep structure generators such as the junction tree variational autoen-

coder (JT-VAE) [54], the constrained graph variational autoencoder [116],

the graph convolutional policy network [44], and MoFlow [117], achieve 100%

valid generation of molecular graphs. Because molecular graphs are ex-

pected to be easier to capture the information of molecular structures than

SMILES strings, as described in Section 3.1, we believe that graph-based

deep structure generators can generate structures with a good performance

by capturing the features of training samples.

However, most of the deep structure generators proposed so far have

been evaluated on large datasets such as the QM9 and ZINC datasets, which

consist of more than 100,000 samples. As described in Chapter 1, the number

of compounds of interest for training is often limited in compound design,

and for such small chemical datasets, there is a possibility that the deep

structure generator suffers from overfitting, resulting in generating only the

same samples as the training samples or many similar samples.

Transfer learning can be effective in suppressing overfitting. When using
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transfer learning in training a deep structure generator, we pre-train the

model on a large dataset from a database such as PubChem or ZINC to

learn how to construct molecular structures, and then train it on a small

dataset of interest so that it can generate structures that are typical of the

target dataset. By increasing the number of samples used for training, the

effect of overfitting is expected to be suppressed.

Data augmentation is another method that can suppress overfitting by

increasing the apparent number of training samples. In Chapter 3, we de-

signed a method for data augmentation by adding perturbations to the GNN

when extracting features from samples. Since GNNs are used for feature ex-

traction from training samples in the graph-based deep structure generator,

we believe that data augmentation can be applied similarly and thus help

the model improve the generation performance.

Therefore, in this chapter, we aim to improve the effectiveness of trans-

fer learning for deep structure generators by using the data augmentation

method designed in Chapter 3. Here, we use JT-VAE [54] as a base model.

It has been reported that JT-VAE can generate 100% valid molecular graphs

by checking the validity of the structures during the structure generation.

JT-VAE is also distinctive in that it is relatively easy to generate stereo-

chemically stable structures, although it does not explicitly consider stabil-

ity, because it assembles molecular structures based on the substructures in

the training dataset. Furthermore, Bayesian optimization can be used to

search for compounds with the desired properties. For these reasons, we

adopted JT-VAE as the base model.

In JT-VAE, two types of GNNs are used for feature extraction from

training samples. For each of them, we created a model that performs data

augmentation by adding perturbations. In order to validate the effect of data

augmentation, we pre-trained the model on a set of lead-like compounds ob-

tained from the ZINC20 database [49], and then trained the model on the

PCBA dataset to generate structures. The performance of the structure

generation was evaluated by checking the metrics such as novelty, diver-

sity, uniqueness, and similarity of the generated compounds to the training

dataset, and the generated structures.
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Figure 4.1: The VAE architecture (Translation of Figure 2.10 in the book [119]

into English). fθ and gϕ indicates neural networks.

4.2 Methods

In the following, we first explain the architecture of the model and the

training method of the variational autoencoder. Then, we describe the JT-

VAE architecture and how to modify the model to use the data augmentation

in JT-VAE.

4.2.1 Variational Autoencoder

Assume that every sample follows some probability distribution (the sam-

ple generating distribution) pdata(x). The variational autoencoder

(VAE) [118] is a deep generative model that explicitly models this distri-

bution pdata(x) (Figure 4.1). In VAE, the sample generating distribution

is approximated by a nonlinear latent variable model pθ(x) (θ is a model

parameter). That is, we introduce a d-dimensional unobservable latent vari-

able z ∈ Rd that follows the prior distribution pθ(z) = N (z |0, Id), and the

sample x is condidered to follow the conditional distribution pθ(x | z). In

this model, given a latent variable z, we can generate a new sample x̃ that

approximately follows the sample generating distribution. The conditional

distribution pθ(x | z) is modeled by a neural network, and this neural net-

work that stochastically generates samples from a given latent variable z is

called the decoder of the VAE.

Because the parameter θ that makes it easier to generate the training

dataset cannot be determined analytically, the posterior distribution qϕ of
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the latent variable given the sample x is auxiliarily introduced (ϕ is a model

parameter). In particular, this distribution is set to be a multidimensional

normal distribution with qϕ(z |x) = N (z |µ(x), diag(σ2(x))). The distri-

bution qϕ(z |x) is also modeled by a neural network, and this network is

called the encoder of the VAE. The encoder is responsible for transforming

the input sample x into a latent variable z that can generate x.

In the training of VAEs, the log-likelihood of a sample x, log pθ(x),

which measures the degree of how likely it is that the sample x is derived

from the model pθ, is indirectly maximized by maximizing a quantity called

the variational lower bound for each sample. This training strategy aims to

generate a sample that is similar to the training sample from the model pθ.

The variational lower bound for a sample x is expressed as follows.

Lϕ,θ(x) = Eqϕ(z |x)[log pθ(x | z)] −DKL[qϕ(z |x)∥pθ(z)]. (4.1)

Here, DKL[q(x)∥p(x)] is the Kullback–Leibler divergence defined as below:

DKL[p(x)∥q(x)] = Ep(x)

[
log

p(x)

q(x)

]
=

∫
p(x) log

p(x)

q(x)
dx.

The first term of Eq. (4.1) is the expectation with respect to the encoder

distribution qϕ(z |x) of the log-likelihood for x obtained from the latent

variable z. This term can be regarded as a measure of whether the latent

variable z which is stochastically determined from the sample x is likely

to reconstruct the original sample x or not. The second term of Eq. (4.1)

measures whether the encoder distribution qϕ(z |x) approaches the prior

distribution pθ(z) = N (z |0, Id), which serve as a regularization term that

restricts ϕ.

Eq. (4.1) is calculated as follows. First, the second term of Eq. (4.1)

is calculated by passing the training sample x through the encoder and

obtaining µ(x) and σ2(x). Then, the latent variable z sampled from the

encoder distribution qϕ(z |x) is passed through the decoder to calculate the

first term of Eq. (4.1).

A VAE trained in this way can generate a sample x̃ similar to x from the

latent variable z which is sampled from the encoder distribution qϕ(z |x).

This can be interpreted that the latent variable z summarizes the character-
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(a) (b)

Figure 4.2: Tree decomposition of a graph (Figure 3.11 in the book [119]). (a)

The given graph G. (b) A junction tree T corresponding to G

istics of the training sample x, i.e., the latent space captures the characteris-

tics of the training dataset. Therefore, if we generate a sample from a latent

variable after training the VAE on the training dataset, we can construct a

sample similar to a training sample.

4.2.2 Overview of Junction Tree Variational Autoencoder

JT-VAE is a deep structure generator using two VAEs. In JT-VAE, struc-

tures are generated by combining substructures, such as rings. JT-VAE uses

a coarse-grained tree graph of a molecular graph as an auxiliary graph to

capture the connections between substructures of the molecule.

Tree Decomposition

For coarse-graining of molecular graphs, JT-VAE uses a tree decomposition

of the graph (Figure 4.2). For a graph G = (V,E), let C = {C1, . . . , Cm } be

the set of subgraphs of G, and let T = (C, F ) be a tree (a connected graph

without any cycles), where each Ci ∈ C is a vertex. Here, the pair (T, C) is

said to be a tree decomposition of G when the following two conditions

hold:

(1) The union of all Ci is equal to G, i.e.,
⋃m

i=1Ci = G,
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(2) For any Ci, Cj , Ck ∈ C, if the Ci, Cj-path on T contains Ck, then

V (Ci)∩V (Cj) ⊆ V (Ck) (the notation V (H) denotes the set of vertices

of the G’s subgraph H).

Condition (1) guarantees that any vertex v of G is contained in some Ci and

any edge e of G is contained in some Cj . Condition (2) states that the vertex

v which is commonly contained in V (Ci) and V (Cj) is always also contained

in V (Ck), meaning that T properly reflects the adjacency of the original G.

In this sense, T obtained by a tree decomposition of G can be regarded as

a coarse-graining of G. The tree T in the tree decomposition of a graph G

is called a junction tree, and C ∈ C is called a cluster. In general, a tree

decomposition of G is not unique. In JT-VAE, a certain algorithm [54] to

generate one of the junction trees is used.

Vocabulary Extraction and Construction of Junction Tree Data

In JT-VAE, it is necessary to define the substructures to be used for structure

generation in advance. For this purpose, we perform the tree decomposition

of each molecular graph in the training dataset and record all the clusters

found. The set of clusters obtained in this way is called the vocabulary,

and the substructures in the vocabulary are used for structure generation.

Once the vocabulary is obtained, for the graph data G = (G,XV ,ΞE)

with G = (V,E), the graph data corresponding to its junction tree TG =

(CG, FG) is set to TG = (TG,YCG ,O). Here, the feature vector yi of vertex i ∈
CG is a one-hot vector that indicates which substructure of the vocabulary

i represents, and all the edge feature vectors are set to be zero. In addition,

the root r ∈ CG of the junction tree is chosen arbitrarily among the TG’s

leaves (vertices with only one incident edge). The root r is used for feature

extraction from the junction tree and for the generation of the junction tree.

JT-VAE Architectures

JT-VAE consists of two kinds of VAEs, one for molecular graph data G and

the other for its junction tree data TG (Figure 4.3). The encoder of the

VAE for the molecular graph data determines the distribution of the latent

vector zG for G, qϕg(z | G). The encoder of the VAE for the junction tree
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data also determines the distribution of the latent vector ζTG for the junction

tree TG, qϕt(ζ | TG) . That is, the latent vectors zG and ζTG are calculated

independently from G and TG, respectively.

Meanwhile, there is a dependency between the distributions determined

by the two decoders. The decoder for the junction tree data determines the

distribution of the junction tree data T for the latent vector ζ, pθt(T | ζ).

The decoder for molecular graph data then determines the distribution of the

molecular graph G for the latent vector z and the sampled T , pθg(G | z, T ).

Thus, when generating a molecular structure from the given latent variables

z and ζ, JT-VAE first samples a junction tree T from ζ, and then samples

the molecular structure G from z and the sampled T . As in the usual VAE,

the prior distributions of the latent variables z and ζ are both set to the

multidimensional standard normal distribution.

The Encoder for Molecular Graph Data In the encoder for molec-

ular graph data, the feature vector hG for the input graph data G is first

calculated by GNN. Unlike the MPNN used in Chapter 3, the GNN used

here updates the edge feature vectors instead of the vertex feature vectors

in message passing. In the readout step, the vertex feature vectors are cal-

culated using the edge feature vectors incident to each vertex, and then the

feature vector hG for G is obtained by averaging the vertex feature vectors.

The obtained feature vector hG is then input into a fully connected

neural network to obtain the mean µ(G) and variance σ2(G) of the encoder

distribution qϕg . That is, the encoder distribution for the molecular graph

data is set to qϕg(z | G) = N (z |µ(G),diag(σ2(G))).

The Encoder for Junction Tree Data The encoder for junction tree

data also uses GNN to calculate the feature vector ηTG for the input junc-

tion tree data TG. Like the encoder for molecular graph data, the edge

feature vectors are updated instead of the vertex feature vectors in message

passing. In the readout step, the vertex feature vectors are computed using

the feature vectors of the edges connected to each vertex. Finally, the ver-

tex feature vector of the root r, which is defined during the junction tree

construction, is output as TG’s feature vector ηTG .
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Figure 4.3: The JT-VAE architecture. FCNN denotes a fully connected neural

network. d is the dimension of the latent variables.
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The obtained feature vector ηTG is then input into a fully connected

neural network to obtain the mean µ(TG) and variance σ2(TG) of the encoder

distribution qϕt . That is, the encoder distribution for the molecular graph

data is set to qϕt(ζ | TG) = N (ζ |µ(TG), diag(σ2(TG))).

The Decoder for Junction Tree Data The decoder for junction tree

data constructs the junction tree data T = ((C, F ),YC ,O) based on the

sampled latent variable ζ. In the generation of the junction tree T = (C, F ),

the root r is first generated, and the substructure corresponding to the

root r is stochastically chosen. After this, the addition of vertices and the

selection of substructures corresponding to the added vertices are repeated

stochastically in depth-first search order from the root, and the resulting

junction tree is output. The substructures corresponding to the vertices

of the junction tree are selected from the vocabulary so that no invalid

molecular graphs are generated by considering the valence constraint.

The sampled latent variable ζ is used to determine the topology of the

junction tree and the substructure corresponding to each vertex stochasti-

cally. This means that the junction tree data T is sampled from the latent

variable ζ.

The Decoder for Molecular Graph Data In the decoder for molec-

ular graph data, the junction tree data T = ((C, F ),YC ,O) with its root

r and the sampled latent variables z are used to construct the molecular

graph data G = ((V,E),XV ,ΞE). Because the substructures to be used

are already specified in the junction tree data T , this decoder recursively

combines the substructures from its root in a stochastic manner and outputs

a valid molecular graph as soon as it is generated. If an invalid molecular

graph is generated during the generation, the decoder cancels the previous

selection and performs the sampling again, so that a valid molecular graph

is always generated.

The sampled latent variable z is used to determine how to combine the

substructures stochastically. This means that the molecular graph data G
is sampled from the latent variable z and the junction tree data T .
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Training Scheme of JT-VAE

In JT-VAE training, the network parameters are determined to maximize

the sum of the variational lower bounds for the molecular graph data and

junction tree data, as in the usual VAE training. To calculate the sum

of the variational lower bounds, we first input the molecular graph data

and the corresponding junction tree data of the training samples into the

encoder to calculate the Kullback–Leibler divergence term, and then input

the sampled latent variables into the decoder to calculate the reconstruction

error term. When the VAE is trained in this way, the latent space captures

the characteristics of the training dataset.

4.2.3 Perturbating JT-VAE

In JT-VAE, the encoder extracts features from training samples to obtain

latent variables. Since the two encoders in JT-VAE use GNNs, the graph

data augmentation method proposed in Chapter 3 can be applied to this part

(Figure 4.4). In the following, we refer to this model as the perturbating

JT-VAE (P-JT-VAE).

Specifically, in P-JT-VAE, the following procedure is used for data aug-

mentation during training. First, we apply the message passing to the molec-

ular graph data in the encoder’s GNN. To the feature vectors of each edge

just before the readout, we add a perturbation vector following the multi-

dimensional standard normal distribution with probability pg. Then, from

the feature vector zG of the graph data obtained after the readout, we cal-

culate the mean µ(G) and variance σ2(G) of the distribution, and calculate

the corresponding Kullback–Leibler term of the divergence. Similarly, we

apply the message passing to the junction tree data in the encoder’s GNN.

To the feature vector of each edge just before the readout, again, we add

a perturbation vector that follows the multidimensional standard normal

distribution with probability pt. Then, from the feature vector ζTG of the

junction tree data obtained by the readout, we calculate the mean µ(TG) and

variance σ2(TG) of the distribution, and calculate the corresponding term

of the corresponding Kullback–Leibler divergence. The remaining terms are

calculated in the same way as in the usual JT-VAE.
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Figure 4.4: The P-JT-VAE architecture. MP denotes the message passing opera-

tions, and FCNN denotes a fully connected neural network. D is the

dimension of the hidden vectors and d is the dimension of the latent

variables.
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In this study, the timing of the perturbation is fixed to just before the

readout, based on the results of Chapter 3. Also, since we have already

studied the effect of perturbations following the multidimensional standard

normal distribution in Chapter 3, we again chose this distribution for the

distributions of perturbations.

4.3 Results and Discussion

In order to verify the effect of data augmentation by perturbation on the

performance of structure generation, we conducted a case study. We trained

JT-VAE and P-JT-VAE using transfer learning, and evaluated the perfor-

mance of structure generation by various metrics. In P-JT-VAE, we con-

structed three models—two models perturbated only by one encoder and

one models perturbated by both encoders—and considered the effect of the

perturbation on the structure generation performance.

The experiments were implemented in Python 3.7.3, based on the im-

plementation published by the authors of the JT-VAE paper [54]. We used

RDKit (version 2019.03.2.0) [58] to handle the organic compound data and

PyTorch (version 1.7.0) [95] as a deep learning framework.

4.3.1 Datasets

We used 62,577 active compounds of human TDP1 inhibitors in the PCBA-

686978 dataset as the target dataset. This dataset is identical to the dataset

used for the classification task in Section 3.3. A small chemical dataset

was created by randomly sampling 1000 compounds from the 62,577 active

compounds. In the following, we refer to this dataset as the PCBA-1k

dataset. In addition, as sub-datasets of the PCBA-1k dataset, three smaller

chemical datasets with sample sizes of 500, 100, and 50 were also created. We

call these datasets PCBA-0.5k, PCBA-0.1k, and PCBA-0.05k, respectively.

On the other hand, the samples used for transfer learning were obtained

from the lead-like compounds of ZINC20 [49], which are similar to the sam-

ples of the target dataset and thus will help the transfer learning work

well. A large dataset of 100,000 samples obtained by random sampling from
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7,524,597 lead-like compounds was used for transfer learning. In the follow-

ing, we refer to this dataset as the ZINC-100k dataset. We have confirmed

that there is no common compound between the ZINC-100k dataset and the

PCBA-1k dataset.

For the training of the model, we created vocabularies from the ZINC-

100k dataset and the PCBA-1k dataset. From the ZINC-100k dataset, we

obtained the vocabulary containing 526 substructures, and from the PCBA-

1k dataset, we obtained the vocabulary containing 196 substructures. There

are 181 substructures common to these two vocabularies. A total of 541

substructures were used for the training vocabulary throughout the experi-

ments.

In order to investigate the distributions of compounds in the PCBA-

1k and ZINC-100k datasets, feature vectors were created using 196 RDKit

descriptors, and then reduced the dimensionality to two by Principal Com-

ponent Analysis (PCA). The distribution of the compounds in each dataset

is visualized in Figure 4.5. Although the contribution of the two compo-

nents of PCA is low, the overlap between the compound distributions of

the PCBA-1k and ZINC-100k datasets is observed. This, together with the

large number of common substructures in the vocabularies, suggests that

the ZINC-100k dataset is sufficiently similar to the PCBA-1k dataset to be

suitable for pre-training.

In constructing the graph data, we used an 39-dimensional vertex feature

vector comprising the following elements:

• Type of atom,

• Vertex degree,

• Formal charge,

• Chirality, and

• Presence or absence of aromaticity.

As the edge feature vectors, we used a 11-dimensional feature vector com-

prising the following elements:

• Type of bond,
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Figure 4.5: The distributions of compounds in the PCBA-1k and ZINC-100k

datasets. The percentage of variance explained by two components

was 18.2%.

• Whether the bond is in a ring or not, and

• Stereo configuration.

These are the same as the original implementation by the JT-VAE authors.

4.3.2 Models and Experimental Conditions

Network Architectures

The network structure of JT-VAE and P-JT-VAE is the same as the im-

plementation by the JT-VAE authors. The dimension of the vertex/edge

feature vector is set to 128, and the dimension of the latent variable is set

to 56. The two perturbation probabilities of P-JT-VAE, pg and pt, are set

to either 0 or 0.25 (here, one of them always takes a non-zero value).

Experimental Conditions

The training batch size was set to 40 for the ZINC-100k dataset and we

pre-trained for two epochs (5,000 parameter updates) on the ZINC-100k

dataset. Then, we trained for 100 epochs (2,500 parameter updates) on the

small chemical datasets (PCBA-1k, PCBA-0.5k, PCBA-0.1k, and PCBA-

0.05k). In order to fix the number of updates of the parameters to 2,500,
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the training batch size was set to 40, 20, 4, 2, respectively. Adam [100] was

used as the optimization algorithm for the loss function. The learning rate

was set at 0.001, and the learning rate was multiplied by 0.95 for every 4000

parameter updates, as implemented by the JT-VAE author. In addition,

gradient clipping [120] was performed with its threshold set at 50 to pre-

vent the training from becoming unstable due to the large gradient used for

parameter updates.

The authors of JT-VAE pointed out that the model’s performance is

adversely affected when the Kullback–Leibler divergence term in the loss

function of JT-VAE becomes large in the early stage of training. Therefore,

similar to the training method by the JT-VAE authors, we use a loss function

in which the Kullback–Leibler divergence term is multiplied by β = 0 until

the parameters are updated 4000 times, and thereafter β is increased by

0.002 for every 1000 parameter updates.

Metrics for Evaluation

The set of structures included in ZINC-100k and the set of structures in-

cluded in PCBA-xk (x = 1, 0.5, 0.1, 0.05) are denoted by Z and Pxk, re-

spectively, and the set of all these structures is denoted by Axk = Pxk ∪Z .

The set of known active compounds that are not included in PCBA-xk but

are included in the original PCBA dataset is denoted by Pxk, and the list of

generated structures (a set that allows duplication of elements) is denoted

by G .

To evaluate the performance of the structure generation for some x ∈
{ 1, 0.5, 0.1, 0.05 }, we used the following metrics that have been used in some

papers [112].

Novelty For a set of training samples D ∈ {Pxk,Axk }, we denote the

novelty of G by

NovD(G ) :=
|D ∩ G |
|G |

.

The closer the value is to 1, the higher the percentage of novel structures

that are not included in the training sample.
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Uniqueness We denote the uniqueness of G by

Uni(G ) :=
|set(G )|

|G |
,

where set(·) represents the operation to remove duplicates from the given

list. The closer the value is to 1, the fewer duplicates there are in the

generated structure and thus the higher the generation efficiency.

Diversity This metric Div(G ) is the same as defined in Section 2.3.2 (ex-

cept that we compute it for set(G ), which excludes duplicate structures).

The closer the value is to 1, the more diverse the structures in the generated

structures are.

Similarity For the dataset D ∈ {Pxk,Z ,Pxk }, the similarity of G is

calculated as the average Tanimoto similarity between D and set(G ):

SimD(G ) :=
1

|D ||set(G )|
∑
S∈D

∑
T∈set(G )

(1 − dist(S, T )) ,

where dist(S, T ) is the Tanimoto distance between two structures S and T .

The closer the value is to 1, the more similar the generated structures are

to the dataset D . Note that, when D = Pxk (the set of the known active

compounds), the value SimD(G ) suggests how likely it is that G will contain

compounds with the desired properties.

In addition, we designed the following metrics to check the degree to

which we can generate molecules with novel substructures that are not in-

cluded in the target dataset:

Substructure Novelty We defined the substructure novelty of the list of

generated structures as

SNov(G ) :=
|Sxk|

|set(G )|
,

where Sxk ⊆ set(G ) is the set of structures that have substructures not

included in the PCBA-xk vocabulary. The closer the value is to 1, the more

likely the generated structures are to have new substructures.
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Table 4.1: Evaluation metrics (mean ± standard deviation) of the structure gen-

eration (trained on the PCBA-1k dataset). The background color in-

dicates the improvement of the evaluation metric over the base model

(JT-VAE). Bold type indicates the best evaluation metric.

NovP NovA Uni Div SimZ SimP SimP SNov Succ

JT-VAE
1.000

±0.000

0.998

±0.001

0.854

±0.030

0.858

±0.006

0.113

±0.002

0.123

±0.001

0.122

±0.001

0.003

±0.002

0.002

±0.001

P-JT-VAE

(pg = 0.25, pt = 0.25)

0.996

±0.001

0.996

±0.001

0.923

±0.009

0.850

±0.007

0.119

±0.003

0.133

±0.003

0.132

±0.002

0.009

±0.002

0.002

±0.001

P-JT-VAE

(pg = 0.25, pt = 0.0)

1.000

±0.000

0.999

±0.001

0.847

±0.022

0.864

±0.005

0.110

±0.004

0.121

±0.003

0.119

±0.003

0.005

±0.001

0.002

±0.001

P-JT-VAE

(pg = 0.0, pt = 0.25)

0.998

±0.001

0.998

±0.001

0.895

±0.011

0.841

±0.005

0.122

±0.001

0.136

±0.001

0.135

±0.001

0.014

±0.006

0.001

±0.001

Success Rate We defined the success rate of the list of generated struc-

tures as

Succ(G ) :=
|set(G ) ∩ Pxk|

|set(G )|
,

Note that set(G ) ∩ Pxk denotes the set of the generated compounds that

are not contained in the training dataset and are known to be active. The

closer the value is to 1, the more likely the generated structures are to have

the desired properties.

4.3.3 Performances of Models

We trained each model with the PCBA-1k dataset (x = 1) to generate 1000

structures in three trials.

Comparison of Metrics

We first compared the metrics of the generation. The results are shown in

Table 4.1.

In terms of novelty, there was little difference between the models with

and without data augmentation, and both models were able to generate

novel structures. However, the substructure novelty of the model with data

augmentation for the junction tree encoder was larger than that of JT-VAE.

Namely, the data augmentation for junction trees facilitated the generation

of truly novel structures, as shown in Figure 4.6, with substructures that are
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Figure 4.6: Structures with novel substructures generated by P-JT-VAE (pg =

0.0, pt = 0.25). The red circles indicates the novel substructures.

not included in the target vocabulary but included in the ZINC-100k dataset,

which suggests that the data augmentation had successfully captured the

structural features of the ZINC-100k dataset. In particular, we believe that

the data augmentation for the junction tree was more successful because the

junction tree defines most of the information of the generated structures.

In terms of uniqueness, the model with the data augmentation using the

junction tree data encoder gave better results than JT-VAE, which indicates

that the data augmentation for junction trees improves the efficiency of

structure generation. This is because junction trees with various patterns

can be generated by capturing the features of the samples in the ZINC-100k

dataset, which reduced the number of duplicates.

On the other hand, the diversity was lower than that of JT-VAE for the

data augmentation to junction trees and higher than that of JT-VAE for

the data augmentation to molecular graphs. This may be due to the char-
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Figure 4.7: Structures generated by P-JT-VAE (pg = 0.0, pt = 0.25) and known

to be active.

acteristics of the Tanimoto distance, which is calculated from the structure

of the neighboring subgraphs of each atom. It is easier to obtain different

neighboring subgraphs when there is a variation in the way of connecting

the substructures defined by the junction tree.

The data augmentation for the junction tree improved the similarity

for the training datasets, both for the ZINC-100k dataset and for the tar-

get PCBA-1k dataset. It is considered that the data augmentation makes

it easier to capture the features of the training dataset because the data

augmentation is used to obtain informative latent variables that are easy to

reconstruct the training samples even when perturbations are added. In par-

ticular, the reason why the data augmentation for the junction tree improved

the similarity of the training dataset more is that the feature extraction of

the junction tree was successful, and thus the molecular structure can be

grasped more comprehensively.

Finally, the similarity to known active compounds was also improved by

augmenting the data to a junction tree. This suggests that it is possible to

generate a structure with the desired properties by training on the target

dataset, although the success rates are comparable. In fact, P-JT-VAE

(pg = 0.0, pt = 0.25) successfully generated the known active compounds as

shown in Figure 4.7.
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Generated Structures and Molecular Weight Distribution

The 25 randomly selected structures from the 1000 generated structures by

each model are shown in Figures A.1 to A.4, respectively. In structures

generated by JT-VAE and P-JT-VAE augmenting only the molecular graph

data (pg = 0.25, pt = 0.0), many relatively small and simple molecular

structures were found, whereas in structures generated by the two P-JT-

VAE that augments the junction tree data (pt = 0.25), there were many

large molecules connected with several ring structures. The datasets used for

training mainly consist of compounds with their molecular weights ranging

from about 200 to 600. Therefore, the high novelty in JT-VAE and P-JT-

VAE (pg = 0.25, pt = 0.0) is considered to be due to the generation of small

molecules that are not included in the dataset.

In order to confirm the characteristics of the generated structures in de-

tail, box plots of the molecular weight distributions of the compounds in

each training dataset and the generated structures by each model are shown

in Figure 4.8. From the plot of JT-VAE and P-JT-VAE which augment only

the molecular graph data, we can see that the molecular weight distribu-

tions of the generated structures are shifted downward, suggesting that the

characteristics of the training dataset are not well captured. On the other

hand, the two P-JT-VAEs that augment the junction tree data successfully

capture the molecular weight distribution of the target PCBA-1k dataset.

In addition, as mentioned above, these models were also able to generate

compounds with substructures included in the ZINC-100k vocabulary, im-

plying that the junction tree data augmentation successfully captures the

features of the small-scale target dataset and transferred large-scale dataset.
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Figure 4.8: Boxplots of each set of structures with respect to molecular weight.

P-JT-VAE (pg = 0.25, pt = 0.25) and P-JT-VAE (pg = 0.0, pt =

0.25) successfully capture the distribution of molecular weight in the

PCBA-1k dataset.
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(a) (b)

(c) (d)

Figure 4.9: Variation in the metrics with the number of training samples. Data

are averages for 3 trials. The error bars indicate the standard devia-

tion. (a) NovP . (b) NovA . (c) Uni. (d) Div.

Effect of the Number of Training Samples

Finally, we investigated the relationship between the number of samples

in the small chemical dataset used for the training and the performance

of structure generation. We trained the pre-trained models on the PCBA-

0.5k, PCBA-0.1k, and PCBA-0.05k datasets, respectively, and generated

1000 samples per trial. The results are shown in Figures 4.9 to 4.11, and

the examples of generated structures are shown in Appendix.

Overall, we confirmed the same trend as the case when the number

of training samples was 1,000: the models that perturbates the features

on the junction tree tend to generate structures that are similar to the
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training samples and the known active compounds (Figure 4.10), although

the success rate was comparable across all models (Figure 4.11 (b)). This

result will support the hypothesis that the junction tree data augmentation

successfully captures the features of the training datasets.

In particular, when data augmentation is applied to the junction tree

data, the similarity to the known active compounds SimP was found to be

comparable regardless of the number of training samples. Considering that

the ZINC-100k dataset used for pre-training was similar to the PCBA-1k

dataset to some extent, and that the similarity to the ZINC-100k dataset

was higher, this is probably because the feature extraction in pre-training

was particularly successful due to the augmentation of the junction tree

data.

However, novelty, uniqueness, and diversity for such models were lower

than other models when the number of training samples is smaller than 500,

suggesting a tendency of slight overfitting (Figure 4.9). Also, the substruc-

ture novelty for such models were sometimes worse than that for JT-VAE

(Figure 4.11 (a)). Note that the substructure novelty has a larger value

when the number of training samples is smaller, because the number of

substructures in the training samples is smaller.

Also, the characteristics of the generated structures also showed the same

tendency as when the number of training samples was 1,000: in structures

generated by JT-VAE and P-JT-VAE with pg = 0.25, pt = 0.0, many rela-

tively small and simple molecular structures were found, whereas in struc-

tures generated by the two P-JT-VAE with pt = 0.25, there were many large

molecules connected with several ring structures. The 25 randomly selected

structures from the 1000 generated structures by each model are shown in

Appendix.

These results showed that even when the number of training samples

is extremely small, the combination of pre-training and data augmentation

is capable of generating similar structures to the targeted small chemical

datasets. However, since it tends to slightly overfit the training dataset, it

is desirable to have at least 500 training samples.
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(a) (b)

(c)

Figure 4.10: Variation in the metrics with the number of training samples (cont.).

Data are averages for 3 trials. The error bars indicate the standard

deviation. (a) SimZ . (b) SimP . (c) SimP .
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(a) (b)

Figure 4.11: Variation in the metrics with the number of training samples (cont.).

Data are averages for 3 trials. The error bars indicate the standard

deviation. (a) SNov. (b) Succ.
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4.4 Conclusion

In this study, we propose a method to utilize data augmentation in transition

learning of JT-VAE to generate structures using a small chemical dataset

successfully. We applied the graph data augmentation proposed in Chapter 3

to the feature extraction of two encoders in JT-VAE. We found that the

data augmentation, especially for junction trees, improved the uniqueness

of the generated structures and the similarity to the training dataset, and

made it easier to generate novel structures with substructures that are only

included in the transferred training samples. The reason for this is that the

data augmentation has provided latent variables that can summarize the

information of the training samples reasonably and that the junction tree

largely determines the information of the molecular structure. Even when

the size of the chemical dataset used for training is further reduced, the

generation results are similar to those obtained when 1,000 training samples

are used. Considering the efficiency of structure generation, it is desirable

to have at least 500 training samples.

In this study, we improved the performance of structure generation by

augmenting data by perturbations. However, it will be necessary to study

the effects of changing the position of perturbation in the model and chang-

ing the perturbation probability to the generation performance. In addition,

it would be good to study how the perturbations give specific structural

characteristics to the generated structures in the future.

Applying data augmentation to the graph-based deep structure genera-

tor like that of the QSPR model, we improved the performance of structure

generation by transfer learning. Therefore, the graph-based deep structure

generator is expected to be successfully used in compound development,

where the available data is often scarce. For further improvement of the

performance, it may be necessary to modify the loss function, change the

dataset and the task used for transfer learning, and so on, in addition to

data augmentation.

Also, we transferred a dataset similar to the small-scale chemical dataset.

However, depending on the purpose of generation, it is not always possible

to obtain a large dataset similar to the target compounds. Thus, it would
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be good to consider the case where the source dataset is small or the source

dataset is not similar to the target dataset, and to investigate what kind of

source dataset the generation works better with.

Here, we applied data augmentation based on JT-VAE. We expect the

same data augmentation to be applied to other graph-based deep structure

generators where feature extraction from training samples is performed, such

as Hier-VAE [121]. We leave this verification as future work.



Chapter 5

General Conclusion and

Future Perspectives

5.1 Summary

The structure generator, which generates molecular structures by computer,

can propose structures satisfying the desired properties by using statistical

models and datasets on the properties of interest. Therefore, structure gen-

erators are expected to streamline the process of compound design. However,

due to experimental costs and other reasons, the available datasets are of-

ten small. In such situations, the statistical model may be overfitted, and

the structure generator may not be able to generate structures with good

performance.

In this thesis, we develop methods that can generate structures with good

performance when statistical model-based structure generators are trained

on a small chemical dataset consisting of about 1,000 compounds with the

desired properties. We proposed two methods to avoid overfitting: one is to

use a structure generator based on a statistical model without deep learning,

and the other is to perform data augmentation with a deep learning model

that takes molecular graphs as input.

In Chapter 2, we proposed a method to generate structures with good

performance using the structure generator DAECS, which uses the QSPR

model with a small number of model parameters and is resistant to over-

100
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fitting. Since the existing DAECS tends to have low diversity in the set of

generated structures, we added structural modification rules that reduce the

need for multiple applications of structural modification rules to a single ap-

plication, and designed a new seed structure selection algorithm that makes

the seed structures that undergo structural modification diverse. The case

study confirmed that these methods actually diversified the generated struc-

tures and generated novel structures that were not included in the training

dataset.

In Chapters 3 and 4, we designed a general data augmentation method

for graph-based deep learning models and applied it to a graph-based deep

structure generator. In Chapter 3, we first designed a data augmentation

method for the GNN-based QSPR model. In the proposed method, the data

augmentation is performed by perturbating the feature vectors for some

vertices with standard normal random numbers during the message passing

of GNNs in order to avoid collapsing the structure of the input molecular

graph. To confirm the effectiveness of the proposed method, we compare

the performance of the two tasks, regression and classification, and find

that the perturbation just before the GNN readout operation improves the

prediction performance. We found that the prediction performance is likely

to be improved particularly when the number of training samples is small.

In Chapter 4, we design a method to improve the effectiveness of transfer

learning, which uses a large-scale molecular structure dataset and a small-

scale chemical dataset, to prevent overfitting for the deep structure generator

JT-VAE. Specifically, the data augmentation method for molecular graph

data designed in Chapter 3 is used for feature extraction at two encoders

of JT-VAE. We conducted a case study and found that the data augmenta-

tion for junction trees improved the generation performance. In particular,

the data augmentation for junction trees contributed to better capture the

characteristics of the dataset, such as the molecular weight distribution of

the training dataset.



CHAPTER 5. GENERAL CONCLUSION 102

5.2 Contribution of This Thesis

There are two major contributions of this thesis. The first is the enhance-

ment of the practicality of the structure generator DAECS. As described in

Chapter 2, DAECS can generate compounds with the desired properties even

when using small chemical datasets, and the property visualization by the

2D map further enhances its usability. In the previous version of DAECS,

the diversity of the generated structures was low because the structures did

not change significantly after a single application of the structure modifica-

tion rule, and the seed structures selected in order to generate compounds

close to the target coordinates on the 2D map were similar to each other.

From the viewpoint of the development of innovative compounds, this is a

severe problem that affects the practicality of DAECS. In this thesis, we

have solved this problem and confirmed that DAECS could actually gener-

ate novel structures that are not included in the dataset. We believe this

will be an important step toward the practical application of DAECS in

compound design.

The other is that we provided a method for augmenting graph data with

perturbations and verified its effectiveness on small datasets. In order to

successfully train a deep learning model with many model parameters on

a small chemical dataset, it is necessary to take some measures to prevent

overfitting, as in the case of transfer learning, where a large dataset is used

for training. Data augmentation is one such measure, and it is often used

in training models that use SMILES strings [83]. However, most of the data

augmentation methods proposed for GNNs [84–88], which use graph data as

input, change the graph structure itself, which is inappropriate for chemical

datasets, where the topology of molecular graphs is essential. In this thesis,

we propose a general-purpose data augmentation method for graph data by

perturbation of feature vectors, and verify the effects of perturbation timing

and perturbation probability on small chemical datasets using the QSPR

model. We also applied the data augmentation method to a deep structure

generator and confirmed that it could enhance the effect of transfer learn-

ing in structure generation by capturing the characteristics of the training

datasets well. This study confirms that the proposed data augmentation by
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perturbation works successfully on small chemical datasets, and is expected

to be widely used for training GNNs on chemical datasets. In particular, it

is noteworthy that the proposed data augmentation facilitates the use of the

deep structure generator in compound design, where it is often necessary to

generate structures similar to known structures in order to find ones with

desired properties.

5.3 Challenges and Perspectives

In section 1.2, we listed four features that a structure generator should have.

We reiterate them below.

(a) The ability to generate many molecular structures with the desired

properties.

(b) The diversity of the generated structures.

(c) The stability and synthesizability of the generated structures.

(d) The high computational efficiency in generating molecular structures.

In order to satisfy these properties, statistical model-based structure gener-

ators are often used. In this thesis, we have developed a method to improve

the performance of such statistical model-based structure generators so that

they can satisfy these features even when the statistical model is trained on a

small chemical dataset. However, there are still many points to be improved

in terms of practical applications in compound design (Figure 5.1).

First, regardless of the number of training samples, the design of the

structure generator itself poses some remaining challenges. For DAECS,

features (a) and (b) are satisfied even when training on a small chemical

dataset. However, the application of the structure modification rule some-

times generates structures that are difficult to synthesize or sterically unsta-

ble. If such structures are selected as seed structures, the synthesizability of

the entire set of generated structures may be reduced. As a possible solution,

we can set more sophisticated filtering rules. For example, a synthesizability

metric such as SA score [67] or retrosynthesis analysis can be used to filter
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✓Desired properties
✓Diversity
×Stability/Synthesizability
×Computational efficiency

Small chemical dataset
(~1000 samples of interest)

Training Generate

Statistical model-based
structure generator

High-quality
generated structures

Even smaller #samples?

Figure 5.1: Challenges for constructing high-performance structure generator

with a small chemical dataset.

out hard-to-synthesize molecules, and a QSPR model that predicts forma-

tion energy can be used to filter out sterically unstable structures. There

is also room for improvement in the generation efficiency: the same struc-

ture can be output repeatedly, and many unnecessary structures that are

far from the target coordinates on the 2D map are generated. Meanwhile,

in JT-VAE, the data augmentation makes it easier to generate structures

similar to the samples in the small-scale chemical dataset, which improves

feature (a). It is also reported in the paper [54] that the Bayesian opti-

mization in the latent space can generate structures with explicitly desired

properties. For feature (b), we have confirmed that there is a certain degree

of diversity in the generated structures. However, for feature (c), although

we can guarantee a certain degree of sterical stability because generated

structures use the substructures in the training dataset, the synthesizability

of the generated structures is not explicitly considered. Also, the structure

generation procedure by the decoder is complicated, and there is room for

improvement in the generation efficiency. The issues described here should

be solved in the future to find practical applications in compound design.

There is also an important challenge on how to deal with an even smaller

number of samples. In this thesis, we defined a small-scale chemical dataset

as a dataset containing about 1,000 samples. However, in practical com-

pound design, there may be situations where only a minimal chemical dataset
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consisting of a few hundred samples is available. In Chapter 4, we conducted

the case study where the number of training samples are extremely small

and found that our method was applicable, although some metrics for gen-

eration tended to be worse. In such a situation, if we want to generate

the higher-quality set of structures, it may be necessary to devise a differ-

ent training strategy, such as using a different transfer learning approach

or adopting the framework of few-shot learning, which is used for training

with an extremely small number of samples. In addition, it is considered

necessary to devote more effort to data collection. Therefore, it would be

effective to use online learning or active learning frameworks, which allow

us to train the model while acquiring new samples.



Appendix A

Generated Structures in the

Experiments of Chapter 4

A.1 Trained on the PCBA-1k dataset

The 25 structures generated by each model trained on the PCBA-1k dataset

is shown in Figure A.1 to A.4.

106
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Figure A.1: 25 structures generated by JT-VAE.
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Figure A.2: 25 structures generated by P-JT-VAE (pg = 0.25, pt = 0.25).
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Figure A.3: 25 structures generated by P-JT-VAE (pg = 0.25, pt = 0.0).
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Figure A.4: 25 structures generated by P-JT-VAE (pg = 0.0, pt = 0.25).
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A.2 Trained on the PCBA-0.5k dataset

The 25 structures generated by each model trained on the PCBA-0.5k

dataset is shown in Figure A.5 to A.8.

Figure A.5: 25 structures generated by JT-VAE.
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Figure A.6: 25 structures generated by P-JT-VAE (pg = 0.25, pt = 0.25).
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Figure A.7: 25 structures generated by P-JT-VAE (pg = 0.25, pt = 0.0).
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Figure A.8: 25 structures generated by P-JT-VAE (pg = 0.0, pt = 0.25).
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A.3 Trained on the PCBA-0.1k dataset

The 25 structures generated by each model trained on the PCBA-0.1k

dataset is shown in Figure A.9 to A.12.

Figure A.9: 25 structures generated by JT-VAE.
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Figure A.10: 25 structures generated by P-JT-VAE (pg = 0.25, pt = 0.25).
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Figure A.11: 25 structures generated by P-JT-VAE (pg = 0.25, pt = 0.0).
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Figure A.12: 25 structures generated by P-JT-VAE (pg = 0.0, pt = 0.25).
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A.4 Trained on the PCBA-0.05k dataset

The 25 structures generated by each model trained on the PCBA-0.05k

dataset is shown in Figure A.13 to A.16.

Figure A.13: 25 structures generated by JT-VAE.
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Figure A.14: 25 structures generated by P-JT-VAE (pg = 0.25, pt = 0.25).
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Figure A.15: 25 structures generated by P-JT-VAE (pg = 0.25, pt = 0.0).
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Figure A.16: 25 structures generated by P-JT-VAE (pg = 0.0, pt = 0.25).
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[45] R. Gómez-Bombarelli et al. “Automatic chemical design using a data-

driven continuous representation of molecules”. In: ACS central sci-

ence 4.2 (2018), pp. 268–276.

[46] C. Tan et al. “A survey on deep transfer learning”. In: International

conference on artificial neural networks. Springer. 2018, pp. 270–279.

[47] F. Zhuang et al. “A comprehensive survey on transfer learning”. In:

Proceedings of the IEEE 109.1 (2020), pp. 43–76.

[48] S. Kim et al. “PubChem in 2021: new data content and improved

web interfaces”. In: Nucleic Acids Research 49.D1 (2021), pp. D1388–

D1395.



REFERENCES 128

[49] J. J. Irwin et al. “ZINC20—A Free Ultralarge-Scale Chemical Database

for Ligand Discovery”. In: Journal of Chemical Information and Mod-

eling (2020).

[50] C. Shorten and T. M. Khoshgoftaar. “A survey on image data aug-

mentation for deep learning”. In: Journal of Big Data 6.1 (2019),

pp. 1–48.

[51] T. Inoue et al. “Improvement of the Structure Generator DAECS

with Respect to Structural Diversity”. In: Molecular Informatics 40.4

(2021), p. 2000225.

[52] K. Mishima, H. Kaneko, and K. Funatsu. “Development of a new de

novo design algorithm for exploring chemical space”. In: Molecular

Informatics 33 (2014), pp. 779–789. issn: 18681751. doi: 10.1002/

minf.201400056.

[53] S. Takeda, H. Kaneko, and K. Funatsu. “Chemical-Space-Based de

Novo Design Method to Generate Drug-Like Molecules”. In: Journal

of Chemical Information and Modeling 56 (2016), pp. 1885–1893.

issn: 15205142. doi: 10.1021/acs.jcim.6b00038.

[54] W. Jin, R. Barzilay, and T. Jaakkola. “Junction tree variational au-

toencoder for molecular graph generation”. In: International Confer-

ence on Machine Learning. PMLR. 2018, pp. 2323–2332.

[55] C. M. Bishop and M. Svensén. “GTM: The Generative Topographic

Mapping”. In: Neural Computation 10.1 (1998), pp. 215–234. doi:

10.1029/2004TC001640.

[56] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum likelihood

from incomplete data via the EM algorithm”. In: Journal of the royal

statistical society. Series B (methodological) (1977), pp. 1–38.

[57] D. Arthur and S. Vassilvitskii. “k-means++: The advantages of care-

ful seeding”. In: Proceedings of the eighteenth annual ACM-SIAM

symposium on Discrete algorithms. Society for Industrial and Ap-

plied Mathematics. 2007, pp. 1027–1035.

[58] G. Landrum. RDKit: Open-source cheminformatics. (Accessed on

01/20/2021). url: http://www.rdkit.org.

https://doi.org/10.1002/minf.201400056
https://doi.org/10.1002/minf.201400056
https://doi.org/10.1021/acs.jcim.6b00038
https://doi.org/10.1029/2004TC001640
http://www.rdkit.org


REFERENCES 129

[59] D. Mendez et al. “ChEMBL: towards direct deposition of bioassay

data”. In: Nucleic acids research 47.D1 (2019), pp. D930–D940.

[60] H. Drucker et al. “Support Vector Regression Machines”. In: Ad-

vances in Neural Information Processing Systems 9. Ed. by M. C.

Mozer, M. I. Jordan, and T. Petsche. MIT Press, 1997, pp. 155–161.

[61] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In:

Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[62] BIOVIA Available Chemicals Directory. url: http://accelrys.

co.jp/products/collaborative-science/biovia-available-

chemicals-directory/.

[63] The GPyOpt Authors. GPyOpt: A Bayesian Optimization framework

in Python. 2016. url: http://github.com/SheffieldML/GPyOpt.

[64] GPy. GPy: A Gaussian process framework in python. since 2012. url:

http://github.com/SheffieldML/GPy.

[65] M. Arakawa, T. Miyao, and K. Funatsu. “Development of Drug-

likeness Model and Its Visualization”. In: Journal of Computer Aided

Chemistry 9 (2008), pp. 70–80.

[66] H. L. Morgan. “The generation of a unique machine description for

chemical structures-a technique developed at chemical abstracts ser-

vice.” In: Journal of Chemical Documentation 5.2 (1965), pp. 107–

113.

[67] P. Ertl and A. Schuffenhauer. “Estimation of synthetic accessibil-

ity score of drug-like molecules based on molecular complexity and

fragment contributions”. In: Journal of Cheminformatics 1.1 (2009),

pp. 1–11.

[68] D. Weininger. “SMILES, a chemical language and information sys-

tem. 1. Introduction to methodology and encoding rules”. In: Journal

of chemical information and computer sciences 28.1 (1988), pp. 31–

36.

[69] D. Weininger, A. Weininger, and J. L. Weininger. “SMILES. 2. Al-

gorithm for generation of unique SMILES notation”. In: Journal of

chemical information and computer sciences 29.2 (1989), pp. 97–101.

http://accelrys.co.jp/products/collaborative-science/biovia-available-chemicals-directory/
http://accelrys.co.jp/products/collaborative-science/biovia-available-chemicals-directory/
http://accelrys.co.jp/products/collaborative-science/biovia-available-chemicals-directory/
http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPy


REFERENCES 130

[70] G. B. Goh et al. “Smiles2vec: An interpretable general-purpose deep

neural network for predicting chemical properties”. In: arXiv preprint

arXiv:1712.02034 (2017).

[71] M. Hirohara et al. “Convolutional neural network based on SMILES

representation of compounds for detecting chemical motif”. In: BMC

bioinformatics 19.19 (2018), pp. 83–94.

[72] E. J. Bjerrum and B. Sattarov. “Improving chemical autoencoder

latent space and molecular de novo generation diversity with het-

eroencoders”. In: Biomolecules 8.4 (2018), p. 131.

[73] S. Honda, S. Shi, and H. R. Ueda. “SMILES transformer: pre-trained

molecular fingerprint for low data drug discovery”. In: arXiv preprint

arXiv:1911.04738 (2019).

[74] F. Scarselli et al. “The graph neural network model”. In: IEEE trans-

actions on neural networks 20.1 (2008), pp. 61–80.

[75] D. Duvenaud et al. “Convolutional networks on graphs for learn-

ing molecular fingerprints”. In: Proceedings of the 28th International

Conference on Neural Information Processing Systems-Volume 2. 2015,

pp. 2224–2232.

[76] K. Yang et al. “Analyzing learned molecular representations for prop-

erty prediction”. In: Journal of Chemical Information and Modeling

59.8 (2019), pp. 3370–3388.

[77]  L. Maziarka et al. “Molecule attention transformer”. In: arXiv preprint

arXiv:2002.08264 (2020).

[78] R. Ramakrishnan et al. “Quantum chemistry structures and proper-

ties of 134 kilo molecules”. In: Scientific Data 1 (2014).

[79] R. S. Simões et al. “Transfer and multi-task learning in QSAR model-

ing: advances and challenges”. In: Frontiers in pharmacology 9 (2018),

p. 74.

[80] W. Hu et al. “Strategies for pre-training graph neural networks”. In:

arXiv preprint arXiv:1905.12265 (2019).



REFERENCES 131

[81] P. Li et al. “Learn molecular representations from large-scale unla-

beled molecules for drug discovery”. In: arXiv preprint arXiv:2012.11175

(2020).

[82] Y. Fang et al. “Knowledge-aware Contrastive Molecular Graph Learn-

ing”. In: arXiv preprint arXiv:2103.13047 (2021).

[83] E. J. Bjerrum. “SMILES enumeration as data augmentation for neu-

ral network modeling of molecules”. In: arXiv preprint arXiv:1703.07076

(2017).

[84] Y. Rong et al. “Dropedge: Towards deep graph convolutional net-

works on node classification”. In: arXiv preprint arXiv:1907.10903

(2019).

[85] D. Chen et al. “Measuring and relieving the over-smoothing problem

for graph neural networks from the topological view”. In: Proceedings

of the AAAI Conference on Artificial Intelligence. Vol. 34. 04. 2020,

pp. 3438–3445.

[86] Y. Zhang et al. “Bayesian graph convolutional neural networks for

semi-supervised classification”. In: Proceedings of the AAAI Confer-

ence on Artificial Intelligence. Vol. 33. 01. 2019, pp. 5829–5836.

[87] T. Zhao et al. “Data augmentation for graph neural networks”. In:

arXiv preprint arXiv:2006.06830 (2020).

[88] J. Zhou, J. Shen, and Q. Xuan. “Data Augmentation for Graph Clas-

sification”. In: Proceedings of the 29th ACM International Conference

on Information & Knowledge Management. 2020, pp. 2341–2344.

[89] K. Kong et al. “FLAG: Adversarial Data Augmentation for Graph

Neural Networks”. In: arXiv preprint arXiv:2010.09891 (2020).

[90] H. W. Chung, A. Datta, and C. Waites. “GABO: Graph Augmenta-

tions with Bi-level Optimization”. In: arXiv preprint arXiv:2104.00722

(2021).

[91] J. Gilmer et al. “Neural message passing for quantum chemistry”.

In: International Conference on Machine Learning. PMLR. 2017,

pp. 1263–1272.



REFERENCES 132

[92] K. Cho et al. “Learning phrase representations using RNN encoder-

decoder for statistical machine translation”. In: arXiv preprint arXiv:1406.1078

(2014).

[93] O. Vinyals, S. Bengio, and M. Kudlur. “Order matters: Sequence to

sequence for sets”. In: arXiv preprint arXiv:1511.06391 (2015).

[94] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In:

Neural computation 9.8 (1997), pp. 1735–1780.

[95] A. Paszke et al. “PyTorch: An Imperative Style, High-Performance

Deep Learning Library”. In: Advances in Neural Information Pro-

cessing Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc.,

2019, pp. 8024–8035.

[96] M. Wang et al. “Deep Graph Library: A graph-centric, highly-performant

package for graph neural networks”. In: arXiv preprint arXiv:1909.01315

(2019).

[97] M. Li et al. “DGL-LifeSci: An open-source toolkit for deep learning on

graphs in life science”. In: arXiv preprint arXiv:2106.14232 (2021).

[98] Z. Wu et al. “MoleculeNet: a benchmark for molecular machine learn-

ing”. In: Chemical science 9.2 (2018), pp. 513–530.

[99] L. Breiman. “Random forests”. In: Machine learning 45.1 (2001),

pp. 5–32.

[100] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimiza-

tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[101] L. Prechelt. “Early stopping-but when?” In: Neural Networks: Tricks

of the trade. Springer, 1998, pp. 55–69.

[102] T. N. Kipf and M. Welling. “Semi-supervised classification with graph

convolutional networks”. In: arXiv preprint arXiv:1609.02907 (2016).

[103] K. Xu et al. “How powerful are graph neural networks?” In: arXiv

preprint arXiv:1810.00826 (2018).

[104] K. Oono and T. Suzuki. “Graph neural networks exponentially lose

expressive power for node classification”. In: arXiv preprint arXiv:1905.10947

(2019).



REFERENCES 133

[105] D. C. Elton et al. “Deep learning for molecular design—a review of

the state of the art”. In: Molecular Systems Design & Engineering

4.4 (2019), pp. 828–849.
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