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Abstract. We introduce a Floer homotopy version of the contact invariant
introduced by Kronheimer-Mrowka-Ozváth-Szabó. Moreover, we prove a glu-
ing formula relating our invariant with the author’s Bauer-Furuta type invari-
ant, which refines Kronheimer-Mrowka’s invariant for 4-manifolds with contact

boundary. As an application, we give a constraint for a certain class of sym-
plectic fillings using equivariant KO-cohomology.
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1. Introduction

1.1. Main theorems. In the past twenty years, the topology of symplectic fillings
of contact three-manifolds has been a central topic of research at the intersection of
symplectic geometry, gauge theory, and Heegaard Floer theory ([33], [21],[44], [45],
[20], [2]). Kronheimer-Mrowka developed the analysis on 4-manifolds with cone-like
ends and gave an invariant

m(X, sX,ξ, ξ) ∈ Z/{±1}(1)

of any 4-manifold X equipped with a contact structure ξ on its boundary and a
compatible Spinc-structure sX,ξ. This is a variant of Seiberg-Witten invariant for
closed 4-manifold([55]).

In gauge theory, the framework of Floer homology groups gives a cut-and-paste
method to compute 4-manifold-invariant. In the Seiberg-Witten side, Kronheimer-
Mrowka constructed the monopole Floer homology groups with three flavors in
[22]. As a relative version of (1), Kronheimer-Mrowka-Ozváth-Szabó ([20]) defined
a monopole-Floer-homology-valued invariant of a contact structure ξ on a closed
3-manifold Y

ψ(Y, ξ) ∈ ĤM•(−Y ),(2)

which gives subtle information on contact structures such as fillability or overtwist-
edness. As one of applications of such invariants, it is proved that any strong
symplectic filling (X,ω) of any L-space has b+(X) = 0 ([34], [44], [10]). This result
was originally proved by Ozváth-Szabó using the Heegaard Floer counterpart of (2)
in [44]. F.Lin ([29]) used Pin(2)-monopole Floer homology to give a topological
constraint of some indefinite Stein fillings.

In this paper, we follow their methods to obtain topological constraints of fillings.
In addition, we use a Floer homotopy theoretic viewpoint. More precisely, we
construct a Floer homotopy version of (2). In order to explain what we mean by
Floer homotopy version, we review the Seiberg-Witten homotopy type, which is
constructed by a method called finite dimensional approximation.

Originally, Furuta ([12]) introduced the method of finite dimensional approxi-
mation of the Seiberg-Witten map and proved the 10/8-theorem for closed spin
4-manifolds. Later, Bauer-Furuta ([4], [3]) used this method to construct a coho-
motopy refinement of the Seiberg-Witten invariant called Bauer-Furuta invariant,
which is an S1-stable homotopy class of an S1-equivariant map. In [36], as a
TQFT like extension of the Bauer-Furuta invariant, Manolescu constructed the
Seiberg-Witten Floer homotopy type for rational homology 3-spheres and the rela-
tive Bauer-Furuta invariant for a certain class of 4-manifolds with boundary.

The main theme of this thesis is construction a homotopy refinement of (2),
which is a stable homotopy class of a map whose codomain is Manolescu’s Floer
homotopy type. This is a natural development of the authors master thesis [15],
and done as a joint work with Masaki Taniguchi [16].

Theorem 1.1. Let Y be a rational homology 3-sphere equipped with a contact struc-
ture ξ. We denote by d3(Y, [ξ]) the homotopy invariant of 2-plane field introduced
Gompf [14] with the convention

d3(Y, [ξ]) =
1

4
(c1(X)2 − 2χ(X)− 3σ(X))
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where X is a compact almost complex 4-manifold with boundary (Y, ξ).
Then we can associate a well-defined homotopy class of a non-equivariant pointed

map

Ψ(Y, ξ) : S0 → Σ
1
2−d3(−Y,[ξ])SWF (−Y, sξ)(3)

up to suspension and sign, where sξ is the Spinc structure induced by ξ.

Moreover, our invariant Ψ(Y, ξ) can be regarded as a relative version of the
author’s Bauer-Furuta type invariant ([15])

Ψ(X, sX,ξ, ξ) : S
⟨e(S+,Φ0),[(X,∂X)]⟩ → S0,(4)

which refines (1). Here
〈e(S+,Φ0), [(X, ∂X)]〉

is the relative Euler number of the pair (S+,Φ0) of the spinor bundle and its
canonical non-vanishing section. The following table provides relations between
the invariants explained above.

Counting Finite dimensional approximation

closed 4-manifolds SW-invariant ∈ Z BF-invariant

Ψ(X) : (Rm ⊕ Cn)+ → (Rm′
⊕ Cn′

)+

4-manifolds with KM-invariant ∈ Z/{±1} BF-type invariant (4)

contact boundary Ψ(X, ξ) : (RM )+ → (RM′
)+

closed 3-manifolds monopole Floer homology group SW Floer homotopy type
”HM•(Y )” SWF (Y )

4-manifolds with relative SW invariant relative BF invariant
boundary ”ψ(X) ∈ HM•(∂X)” Ψ(X) : (Rm ⊕ Cn)+ → SWF (∂X)

contact 3-manifolds contact invariant homotopy contact invariant

ψ(Y, ξ) ∈ ĤM•(−Y ) Ψ(Y, ξ) : (RM )+ → SWF (−Y )

The construction of our new invariant (3) is done by analysis of Seiberg-Witten
equation on the manifold

R≥1 × Y

equipped with an almost Kähler structure constructed from the contact structure.
When we denote the R≥1 coordinate by s, the metric g0 and the symplectic form
ω0 are written as

g0 = ds2 + s2gY ,

ω0 =
1

2
d(s2θ)

respectively, where θ is a contact form and gY is the metric on Y written as

gY = θ ⊗ θ +
1

2
dθ(·, J ·)|ξ

for a fixed complex structure J on ξ. More precisely, we need to add a collar
neighborhood with product metric to this conical end manifold. In the construction
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of our new invariant, we need to deal with two difficulties simultaneously: One
difficulty derives from the conical end and the other derives from the boundary.
The former was dealt with Kronheimer-Mrowka [21] and the author [15], and the
latter was dealt with Manolescu [36], Khandhawit [17] but in order to combine
these techniques, we need new analysis. One main reason is that Hodge theory for
manifolds with boundary is crucial in the latter and that cannot be applied directly
to our case. This problem is resolved in section 3, using weighted Sobolev spaces
as in [15] and the excision principle for index of Laplacians with suitable boundary
conditions.

Moreover, we prove a gluing relation between (4) and (3). Let

η : SWF (Y, sξ) ∧ SWF (−Y, sξ) → S0

be the duality morphism introduced in [36] and [37].

Theorem 1.2. Let X be a compact oriented Spinc 4-manifold with connected con-
tact boundary (Y, ξ) and sX a Spinc structure whose restriction on the boundary is
compatible with the Spinc structure induced by ξ. Suppose b1(X) = 0. Then

η ◦ (Ψ(X, sX) ∧Ψ(Y, ξ)) = Ψ(X, sX,ξ, ξ)

holds.

Theorem 1.2 implies the following non-triviality of (3).

Corollary 1.3. Let Y be a rational homology 3-sphere equipped with a contact
structure ξ. If ξ has a symplectic filling with b1 = 0, then (3) has a non-equivariant
stable homotopy left inverse. In particular, (3) is not stably null-homotopic. More-
over, a left inverse is given by the dual of the relative Bauer-Furuta invariant for
the filling.

1.2. KO theoretic obstruction. When a 4-manifold is spin, the S1-symmetry of
the Seiberg-Witten equation is extended to a Pin(2)-symmetry, where

Pin(2) := S1 ∪ jS1 ⊂ Sp(1).

This symmetry has been used in several situations including the 10/8-inequality
([12]), Manolescu’s triangulation conjecture ([39]) and 10/8-inequality for spin 4-
manifolds with boundary ([38]). In the context of contact topology, F.Lin used the
Pin(2)-symmetry in [29]. By the use of Theorem 1.2 and Pin(2)-equivariant KO-
theory, we obstruct a certain class of spin symplectic fillings of contact structures.

For a contact rational homology 3-sphere (Y, ξ) with c1(sξ) = 0 and a pair

(m,n) ∈ Z × Q with n + σ(W )
16 ∈ Z for a spin 4-manifoldW bounded by (Y, s), we

have two groups

KOM−m,−n
Pin(2) (−Y, sξ) := K̃OPin(2)(Σ

mR̃⊕nHSWF (−Y, sξ))

and its reducible part

KOM
−m

Pin(2)(−Y, sξ) := K̃OPin(2)((Σ
mR̃SWF (−Y, sξ))S

1

),
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where the Pin(2)-actions on R̃ and on H are given as the multiplication via j 7→ −1
and restriction of the action of Sp(1). By the Bott periodicity for the equivariant
KO-group, it is sufficient to consider the case that (m,n) satisfies

(m,n) ∈
{
(0, l0), (1, l1), (2, l2), (3, l3)

∣∣∣∣li ∈ {0, 1

16
, · · · , 31

16

}
, li +

σ(W )

16
∈ Z

}
.

We associate a homomorphism

i∗m,n : KOM−m,−n
Pin(2) (−Y, sξ) → KOM

−m

Pin(2)(−Y, sξ)

and
φm : KOM

−m

Pin(2)(−Y, sξ) → Z

where im,n is the inclusion map (ΣmR̃SWF (−Y ))S
1 → ΣmR̃⊕nHSWF (−Y ) and the

map φm is introduced by Jianfeng Lin in [31, Definition 5.1].

Theorem 1.4. We impose either of the following two conditions.

(i) When

−d3(Y, [ξ])−
1

2
+m+ 4n ≡ 0, 4 mod 8

for (m,n) ∈ Z×Q with n+ σ(W )
16 ∈ Z for a spin 4-manifold W bounded by

(Y, s), suppose that the map

(KOM−m,−n
G (−Y, sξ)/Torsion)⊗ Z2 → Z2

induced by φm ◦ i∗m,n is injective.

(ii) When

−d3(Y, [ξ])−
1

2
+m+ 4n ≡ 1, 2 mod 8

for (m,n) ∈ Z×Q with n+ σ(W )
16 ∈ Z for a spin 4-manifold W bounded by

(Y, s), suppose that the map

KOM−m,−n
G (−Y, sξ)⊗ Z2 → Z2

induced by φm ◦ i∗m,n is injective.

Then any symplectic filling (X,ω) of (Y, ξ) satisfying that sω is spin and b1(X) =
0, satisfies

b+(X) ≤ e(m),

where

e(m) =


0 m ≡ 0, 1, 2, 4 mod 8

1 m ≡ 3, 7 mod 8

2 m ≡ 6 mod 8

3 m ≡ 5 mod 8.

In particular,
b+(X) ≤ 3.
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In [42], it is proved that any weak symplectic filling of a rational homology 3-
sphere can be modified to a strong symplectic filling. Thus, we do not pay attention
to the difference between them.

For example, −Σ(2, 3, 11) satisfies the assumption of Theorem 1.4. Then for any
symplectic filling of a contact structure of −Σ(2, 3, 11) such that sω is spin and
b1(X) = 0, we have

b+(X) = 1.

For the case of Stein fillings of −Σ(2, 3, 11), a similar result was proved in [48].
F.Lin’s ([29]) result is a generalization of the result for −Σ(2, 3, 11) given in [48].
Note that the result for −Σ(2, 3, 11) can be also proved by the argument in [29,
Theorem 3].

1.3. Conjecture. At the end of this section, we write a conjecture related to our
invariant.

Conjecture 1.5. Let Φ be the homomophism

H0(S
0) → ĤM [ξ](−Y, sξ)

obtained as the composition of the following three maps:

(1) the map

Ψ(Y, ξ)∗ : H0(S
0) → H0(Σ

1
2−d3(−Y,[ξ])SWF (−Y, sξ))

induced by Ψ(Y, ξ) : S0 → Σ
1
2−d3(−Y,[ξ])SWF (−Y, sξ),

(2) the map

H0(Σ
1
2−d3(−Y,[ξ])SWF (−Y, sξ)) → HS1

0 (Σ
1
2−d3(−Y,[ξ])SWF (−Y, sξ))

induced by

Σ
1
2−d3(−Y,[ξ])SWF (−Y, sξ)) ∧ ES1 → Σ

1
2−d3(−Y,[ξ])SWF (−Y, sξ)) ∧S1 ES1,

and

(3) an isomorphism constructed by Lidman-Manolescu([28])

HS1

0 (Σ
1
2−d3(−Y,[ξ])SWF (−Y, sξ)) ∼= ĤM [ξ](−Y, sξ).

Then
Φ(1) = ψ(Y, ξ) ∈ ĤM [ξ](−Y, sξ)

up to sign.

Remark 1.6. Although ψ(Y, ξ) is in the S1-equivariant monopole Floer homology

ĤM [ξ](−Y, sξ), our invariant is not an S1-equivariant map. This can be seen by

the following way: We can explicitly give an element ψ̃(Y, ξ) ∈ H̃M [ξ](−Y, sξ)
such that a natural map H̃M∗(−Y, s) → ĤM∗(−Y, s) sends ψ̃(Y, ξ) to ψ(Y, ξ),

where H̃M [ξ](−Y, sξ) is a flavor of monopole Floer homology introduced in [5]. In
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particular, we see that ψ(Y, ξ) is contained in KerU ⊂ ĤM [ξ](−Y, sξ) using the
exact sequence

· · · → H̃M∗(−Y, s) → ĤM∗(−Y, s)
U−→ ĤM∗−2(−Y, s) → · · · .

Conjectually, our invariant corresponds to

ψ̃(Y, ξ) ∈ H̃M [ξ](−Y, sξ) ∼= H̃0(Σ
1
2−d3(−Y,[ξ])SWF (−Y, sξ)).

1.4. Outline. Here is an outline of the contents of the remainder of this paper: In
Section 2, we first review Manolescu’s Floer homotopy type. In Section 3, we prove
a certain boundedness result for the Seiberg-Witten equation in our situation. As
a consequence, we define a Seiberg-Witten Floer homotopy contact invariant. We
also calculate several Fredholm indices of operators in our situation. In Section 4,
we prove the gluing theorem of our invariants. We follow the gluing method devel-
oped by Manolescu([37]) and Khandhawit-Lin-Sasahira ([18],[19]). Using the gluing
theorem, we give several calculations of our invariants. In Section 5, by the use of
the gluing theorem and our invariant, we prove Theorem 1.4.

Acknowledgement. The content of this thesis is contained in a joint work with
Masaki Taniguchi [16]. The author thanks deeply to him. The author wishes to
thank Hirohumi Sasahira for answering their many questions on the paper([19]).
The author also wishes to thank Mariano Echeverria for answering some questions
on his work([10]). The author also thanks Takahiro Oba for discussing examples
of symplectic fillings. The author also appreciates Anubhav Mukherjee’s helpful
comments. Finally, the author thanks deeply my advisor Mikio Furuta for his
comments and encouragements throughout the author’s PhD course.

2. Preliminaries

2.1. Seiberg-Witten Floer homotopy type. In this subsection, we review Man-
plescu’s construction of the Seiberg-Witten Floer homotopy type. For details, see
[36].

Let Y be a rational homology 3-sphere equipped a Spinc-structure s and g a
Riemann metric on Y . The spinor bundle with respect to s is denoted by S. When
s is spin, we can regard S as an Sp(1)-bundle.

The map ρ : Λ∗
Y ⊗ C → End(S) denotes the Clifford multiplication induced by

s. The notation B0 denotes a fixed flat Spinc-connection. Then the set of Spinc

connections can be identified with iΩ1(Y ). Then the configuration space is defined
as

Ck− 1
2
(Y ) := L2

k− 1
2
(iΛ1

Y )⊕ L2
k− 1

2
(S),

here L2
k− 1

2

denotes the completion of the space of smooth sections with respect to

the L2
k− 1

2

-norm. In the spin case, we consider the following additional Pin(2)-action

on Ck− 1
2
(Y ), where Pin(2) is the subgroup of Sp(1) written as U(1) ∪ jU(1):

(i) the group Pin(2) acts on iΛ1
Y via the nontrivial homomorphism Pin(2) →

O(1) and

(ii) the group Pin(2) acts on S by the restriction of the natural action of Sp(1).
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We have the Chern-Simons-Dirac functional

CSD : Ck− 1
2
(Y ) → R(5)

defined by

CSD(b, ψ) := −1

2

∫
Y

b ∧ db+ 1

2

∫
Y

〈ψ,DB0+bψ〉d vol,

where DB0+b is the Spinc-Dirac operator with respect to the Spinc-connection
B0 + b. The gauge group

Gk+ 1
2
(Y ) :=

{
eξ
∣∣∣ξ ∈ L2

k+ 1
2
(Y ; iR)

}
acts on Ck− 1

2
(Y ) by

u · (b, ψ) := (b− u−1du, uψ).

Since the normalized gauge group

G0
k+ 1

2
(Y ) :=

{
eξ ∈ Gk+ 1

2
(Y )

∣∣∣∣∫
Y

ξd vol = 0

}
freely acts on Ck− 1

2
(Y ), one can take a slice. The slice is given by

Vk− 1
2
(Y ) := Ker

(
d∗ : L2

k− 1
2
(iΛ1

Y ) → L2
k− 3

2
(iΛ0

Y )
)
⊕ L2

k− 1
2
(S).

The formal gradient field of the Chen-Simons-Dirac functional with respect to a
norm induced by Manolescu ([36]) is the sum

l + c : Vk− 1
2
(Y ) → Vk− 3

2
(Y ),

where
l(b, ψ) = (∗db,DB0

ψ)

and
c(b, ψ) = (prKer d∗ρ−1((ψψ∗)0), ρ(b)ψ − ξ(ψ)ψ).

Here ξ(ψ) ∈ iΩ0(Y ) is determined by the conditions

dξ(ψ) = (1− prKer d∗) ◦ ρ−1((ψψ∗)0) and

∫
Y

ξ(ψ) = 0.

Note that l + c is S1-equivariant, where the S1-action is coming from

S1 = Gk+ 1
2
(Y )/G0

k+ 1
2
(Y ).

When s is spin, we have an additional Pin(2)-symmetry. For a subset I ⊂ R, a
map x = (b, ψ) : I → Vk− 1

2
(Y ) is called a Seiberg-Witten trajectory if

∂

∂t
x(t) = −(l + c)(x(t)).(6)

Definition 2.1. A Seiberg-Witten trajectory x = (b, ψ) : I → Vk− 1
2
(Y ) is finite

type if
sup
t∈I

‖ψ(t)‖Y <∞ and sup
t∈I

|CSD(x(t))| <∞.
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We consider subspaces V µ
λ (Y ) defined as the direct sums of eigenspaces whose l-

eigenvalues are in (λ, µ] for λ < 0 < µ. We denote the L2-projection from Vk− 1
2
(Y )

to V µ
λ (Y ) by pµλ. Then the finite dimensional approximation of (6) is given by

∂

∂t
x(t) = −(l + pµλc)(x(t)),(7)

where x is a map from I ⊂ R to V µ
λ (Y ). Manolescu([36]) proved the following

result:

Theorem 2.2. The following results hold.

• There exists R > 0 such that all finite type trajectories x : R → Vk− 1
2
(Y )

are contained in
◦
B(R;Vk− 1

2
(Y )), where

◦
B(R;Vk− 1

2
(Y )) is the open ball with

radius R in Vk− 1
2
(Y ).

• For sufficiently large µ and −λ and the vector field

β(l + pµλc)

on V µ
λ (Y ),

◦
B(2R;V µ

λ (Y )) is an isolating neighborhood, where β is the S1-
invariant bump function such that β| ◦

B(3R)c
= 0 and β| ◦

B(2R)
= 1. When s

is spin, we take β as a Pin(2)-invariant function.

Then an S1-equivariant Conley index Iµλ depending on V µ
λ (Y ), the flow (7), an

isolating neighborhood
◦
B(2R) and its isolated invariant set is defined. When s is

spin, we take a Pin(2)-equivariant Conley index. Then the Seiberg-Witten Floer
homotopy type is defined by

SWF (Y, s) := Σ−n(Y,s,g)C−V 0
λ Iµλ ,

as the stable homotopy type of a pointed S1-space, where n(Y, s, g) is given by

n(Y, s, g) := indAPS
C (D+

A)−
c21(sX)− σ(X)

8
.

Here (X, sX) is a compact Spinc 4-manifold bounded by (Y, s), the Riemannian

metric on X is product near the boundary, indAPS
C (D+

A) is the Atiyah-Patodi-

Singer index of the operator D+
A and a Spinc connection A is a Spinc connection

on X which is an extension of B0. For the meaning of formal desuspensions, see
[36]. When s is spin, we set

SWF (Y, s) := Σ−n(Y,s,g)
2 H−V 0

λ Iµλ ,

as a stable homotopy type of a pointed Pin(2)-space.

3. Seiberg-Witten Floer homotopy contact invariant

3.1. Contact structure and conical metric. In this subsection, we review the
geometric setting for constructing of our invariant. Let Y be an oriented rational
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homology 3-sphere and ξ a positive contact structure on Y . Take a contact 1-
form θ which is positive on the positively oriented normal field to ξ and a complex
structure J on ξ compatible with the orientation. Then we can define the Riemann
metric

g1 = θ ⊗ θ +
1

2
dθ(·, J ·)|ξ

on Y . On R≥1 × Y , we consider the Riemannian metric

g0 := ds2 + s2g1,

and the symplectic form

ω0 :=
1

2
d(s2θ),

where s is the coordinate of R≥1. This gives an almost Kähler structure on R≥1×Y .
We consider a metric on

N+ := R≥0 × Y

which is an extension of g0 and product on [0, 12 ]×Y . We also call this metric g0. The
Riemannian manifold N+ is what we mainly consider to define our invariant. We
extend ω0 to a self-dual 2-form with |ω0(s, y)| =

√
2 which is translation invariant

on [0, 12 ] × Y . Then a pair (g0, ω0) determines an almost complex structure J on
N+. This defines a Spinc structure

s := (S+ = Λ0,0
N+ ⊕ Λ0,2

N+ , S
−
N+ = Λ0,1

N+ , ρ : T ∗N+ → Hom(S+
N+ , S

−
N+)),

where

ρ =
√
2 Symbol(∂ + ∂

∗
).

(See Lemma 2.1 in [21].) The notation Φ0 denotes

(1, 0) ∈ Ω0,0
R≥1×Y

⊕ Ω0,2
R≥1×Y

= Γ(S+|R≥1×Y ).

We extend Φ0 to a section of S+ which is zero on [0, 12 ] × Y . Then the canonical
Spinc connection A0 on s is defined by the equation

D+
A0

Φ0 = 0(8)

on R≥1×Y . We also extend A0 to a Spinc connection which is translation invariant
on [0, 12 ]× Y .

3.2. The Seiberg-Witten map. We introduce configuration spaces and gauge
groups for 4-manifolds with conical end. We combine Kronheimer-Mrowka’s asymp-
totic condition [22] on the conical end of N+ and Khandhawit’s double Coulomb
slice condition [17] on ∂N+. A technical point is that we use weighted Sobolev
spaces to define the double Coulomb slice. First, we define weighted Sobolev spaces.

3.2.1. Weighted Sobolev norms. In this subsection, we give definitions and prop-
erties of weighted Sobolev norms on manifolds with conical ends which are also
considered in [15].
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Definition 3.1. A non-compact Riemannian 4-manifold (X+, gX+) (possibly with
boundary) is called a 4-manifold with a conical end if (X+, gX+) is equipped with
a compact subset K in X+ and an isometry between X+ \ intK and

(R≥1 × Y, ds2 + s2gY ),(9)

where Y is a closed connected Riemannian 3-manifold (Y, gY ).

We fix an extension σ : X+ → R>0 of the s-coordinate. The function σ is called
a radius function. Let k be a positive integer and α a positive real number. Let E
be a real or complex vector bundle with an inner product on an oriented 4-manifold
with a conical end X+ and A be a connection on E. Then, we use the following
family of inner products on Γc(E):

Definition 3.2. For any compact support section s of E, we define

〈s1, s2〉L2
k,α,A

:=

k∑
i=0

∫
X+

e2ασ〈∇i
As1,∇i

As2〉dvolX+ ,(10)

where the connection ∇i
A is the induced connection from A and the Levi-Civita

connection.

The space L2
k,α,A(E) is defined as the completion of Γc(E) with respect to (10).

We use the following estimate proved in [15].

Lemma 3.3. Let (E1, |·|1, A1), (E2, |·|2, A2) be two normed vector bundles equipped
with a unitary connection on X+. Set Wn = σ−1([2n−1, 2n]) ⊂ X+. Denote by
φn : W1 → Wn the diffeomorphism (t, y) 7→ (2n−1t, y). For i = 1, 2, suppose
isomorphisms

(φ∗
nEi)|W1

∼= Ei|W1

are given and there exist constants a1, a2 such that

|φ∗
ns|(t,y) = 2ain|s|φn(t,y)

|∇jφ∗
ns|(t,y) = 2(ai−j)n|∇js|φn(t,y)

for s ∈ Γ(Ei), where we regard φ
∗
ns, ∇jφ∗

n as sections of Ei|W1 , (Ei⊗(T ∗X+)⊗j)|W1

respectively by the isomorphism above.

(1) (Multiplication)
For α1, α2 ∈ R, l ∈ Z>2, ε ∈ R>0, the multiplication

L2
l,A1,α1

(E1)× L2
l,A2,α2

(E2) → L2
l,A1⊗A2,α1+α2−ε(E1 ⊗ E2)

is continuous.

(2) (Compact embedding)
For l ∈ Z≥1, α′ < α, the inclusion

L2
l,A1,α(E1) → L2

l−1,A1,α′(E1)

is compact.
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For example, if E1 is Λk, | · |1 is the norm induced by the Riemannian metric g0,
and A1 is the connection induced by the Levi-Civita connection, then an isomor-
phism (φ∗

nE1)|W1
∼= E1|W1 can be given by regarding Wn =W1 as a manifold (but

the metrics are different) and a1 = −k satisfies the condition. The proof of Sobolev
multiplication is similar to [22, Theeorem 13.2.2]. The proof of Sobolev embedding
is essentially the same as the proof of [35, Theorem 3.12].

3.2.2. Seiberg-Witten equation on 4-manifolds with conical end. Let Y be a rational
homology 3-sphere with a contact structure ξ.

Definition 3.4. Let k be a positive integer with k ≥ 4 and α a positive real
number. We first define the configuration space Ck,α(N+) by

Ck,α(N+) := (A0,Φ0) + L2
k,α(iΛ

1
N+)⊕ L2

k,α(S
+
N+),

where L2
k,α(iΛ

1
N+) and L2

k,α(S
+
N+) are the completions of the inner products with

respect to L2
k,α,∇LC

(iΛ1
N+) and L2

k,α,A0
(S+

N+).

The gauge group Gk+1,α(N
+) is given by

Gk+1,α(N
+) :=

{
u : N+ → C

∣∣ |u(x)| = 1 ∀x, 1− u ∈ L2
k+1,α(C)

}
.(11)

The action of Gk+1,α(N
+) on Ck,α(N+) is defined by

u · (A,Φ) := (A− u−1du, uΦ).

We also define the double Coulomb slice by

Uk,α(N
+) := L2

k,α(iΛ
1
N+)CC ⊕ L2

k,α(S
+
N+),

where
L2
k,α(iΛ

1
N+)CC := {a ∈ L2

k,α(iΛ
1
N+)|d∗αa = 0, d∗ta = 0},

where t is the restriction of 1-forms as differential forms and d∗α is the formal
adjoint of d with respect to L2

α.

Since Gk+1,α(N
+) can be embedded into C0(N+, S1), we define the group struc-

ture on Gk+1,α(N
+) by multiplication.

On N+, one can define the Seiberg-Witten map

FN+ : Ck,α(N+) → L2
k−1,α(iΛ

+
N+ ⊕ S−

N+)(12)

by

FN+(A,Φ) :=

(
1

2
F+
At − ρ−1(ΦΦ∗)0 − (

1

2
F+
At

0
− ρ−1(Φ0Φ

∗
0)0), D

+
AΦ

)
(13)

where A0 is introduced in (8) and Φ0 is the canonical section and L2
k−1,α(iΛ

+
N+ ⊕

S−
N+) is induced by the connection A0. We often omit the Clifford multiplication

in our notations. When we write (a, ϕ) = (A,Φ)− (A0,Φ0), we can decompose the
Seiberg-Witten map FN+ as the sum of the linear part

LN+(a, ϕ) :=
(
d+a− (Φ0ϕ

∗)0 − (ϕΦ∗
0)0, D

+
A0
ϕ+ ρ(a)Φ0

)
,(14)
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the quadratic part CN+(a, ϕ) := (−(ϕϕ∗)0, ρ(a)ϕ) and the constant part (0, D+
A0

Φ0).

We sometimes regard LN+ as an operator from Uk,α(N
+) to L2

k−1,α(iΛ
+
N+) ⊕

L2
k−1,α(S

−
N+) by the restriction. Moreover, the quadratic part is compact by Lemma 3.3.

The differential equation

FN+(A,Φ) = 0(15)

is called the Seiberg-Witten equation for N+. The linearlization of FN+ is given by
LN+ .

In some situations in the remaining sections, we also consider 4-manifolds with
conical end without boundary. We take a compact Spinc bound X of Y . Then we
have a glued non-compact manifold

X+ := X ∪Y N+

without boundary. We use this manifold X+ when we calculate Fredholm indices
of elliptic differential operators and prove the gluing theorem. Similarly, we have
the configuration space written by

Ck,α(X+) := (A0,Φ0) + L2
k,α(iΛ

1
X+)⊕ L2

k,α(S
+
X+).

Here a pair (A0,Φ0) on X
+ is an extension of (A0,Φ0) for N

+. We also define the
Coulomb slice by

Uk,α(X
+) := Ker(d∗α : L2

k,α(iΛ
1
X+) → L2

k−1,α(iΛ
0
X+))⊕ L2

k,α(S
+
X+).

On X+, one can define the Seiberg-Witten map

FX+ : Ck,α(X+) → L2
k−1,α(iΛ

+
X+)⊕ L2

k−1,α(S
−
X+)(16)

by

FX+(A,Φ) :=

(
1

2
F+
At − ρ−1(ΦΦ∗)0 − (

1

2
F+
At

0
− ρ−1(Φ0Φ

∗
0)0), D

+
AΦ

)
,(17)

where d∗α denotes the formal adjoint of d with respect to the L2
α-inner product.

3.3. Hodge decomposition for the double Coulomb subspace. In this sec-
tion, we mainly use the Riemannian manifold (N+, g0) defined in Subsection 3.1.
Note that N+ has a boundary and a conical end. We recall the double Coulomb
subspace

L2
k,α(iΛ

1
N+)CC = {a ∈ L2

k,α(iΛ
1
N+)|d∗αa = 0, d∗ta = 0},(18)

where t is the pull-back as a differential form by the inclusion map {0}×Y → N+.
We take a compact Spinc 4-manifold X whose boundary is Y . Then we have a
glued non-compact manifold

X+ := X ∪Y N+.

The following proposition is the key lemma to prove the global slice theorem:
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Proposition 3.5. There exists a small positive number α0 depending on a contact
form θ and a complex structure J on ξ such that for any positive real number α ≤ α0

satisfying the following conditions:

(i) d∗α : L2
k,α(iΛ

1
X+) → L2

k−1,α(iΛ
0
X+) has closed range,

(ii) d : L2
k,α(iΛ

0
X+) → L2

k−1,α(iΛ
1
X+) has closed range,

(iii) ∆α := d∗α ◦ d : L2
k,α(iΛ

0
X+) → L2

k−2,α(iΛ
0
X+) is invertible and

(iv) we have the following decomposition:

L2
k,α(iΛ

1
N+) = L2

k,α(iΛ
1
N+)CC ⊕ dL2

k+1,α(iΛ
0
N+).(19)

Proof. In order to prove (i), we consider the following operator:

L̂′
X+ : L2

k,α(iΛ
1
X+ ⊕ S+

X+) → L2
k−1,α(iΛ

0
X+ ⊕ iΛ+

X+ ⊕ S−
X+),(20)

given by

L̂′
X+(a, ϕ) = (−d∗αa+ iRe〈iΦ0, ϕ〉, d+a− (Φ0ϕ

∗)0 − (ϕΦ∗
0)0, D

+
A0
ϕ+ ρ(a)Φ0).

In [21, Theorem 3.3], it is proved that L̂′
X+ is Fredholm for α = 0. Since Fredholm

property is an open condition, we can see that there exists a small positive number

α0 such that for any positive real number α ≤ α0, L̂
′
X+ is also Fredholm. The

positive number α0 depends only on L̂′
X+ on the end because of the usual parametrix

patching argument. Thus, α0 actually depends only on θ and J . Since any Fredholm
operator sends a closed subspace to a closed subspace, if we put ϕ = 0, then we
can conclude that d∗α : L2

k,α(iΛ
1
X+) → L2

k−1,α(iΛ
0
X+) has closed range. In order to

prove (ii), we consider the L2
α formal adjoint

(L̂′
X+)∗ : L2

k,α(iΛ
0
X+ ⊕ iΛ+

X+ ⊕ S−
X+) → L2

k−1,α(iΛ
1
X+ ⊕ S+

X+)

of L̂′
X+ described as

(L̂′
X+)∗(f, b, ψ) := (−df + 2i Imψ ⊗ Φ∗

0, d
∗αb,D−

A0
ψ + fΦ0),

where D−
A0

is the L2
α-formal adjoint of D+

A0
. (Note that D−

A0
is not the L2-formal

adjoint of D+
A0

. ) In [21, Theorem 3.3], it is proved that (L̂′
X+)∗ is Fredholm when

α = 0. Moreover, in [15], it is checked that, for α ∈ [0, α0], (L̂
′
X+)∗ is also Fredholm.

(If we need, we again take a small number α0.) This implies, for such a α0, Im d is
closed.

Because Im d is closed, we have the following L2
α-orthogonal decomposition:

L2
k,α(iΛ

1
X+) = Ker d∗α ⊕ d(L2

k,α(iΛ
0
X+)).

So, ∆α : L2
k,α(iΛ

0
X+) → L2

k−2,α(iΛ
0
X+) has a closed image since Im∆α = Im d∗α .

Therefore, we also have the following L2
α-orthogonal decomposition:

L2
k,α(iΛ

0
X+) = ∆α(L

2
k,α(iΛ

0
X+))⊕ (∆α(L

2
k,α(iΛ

0
X+)))

⊥L2
α
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= ∆α(L
2
k,α(iΛ

0
X+))⊕Ker∆α.

Moreover, for any element f ∈ Ker∆α, we can see that

0 = 〈∆α(f), f〉L2
α
= ‖df‖L2

α
.

So, f is constant and f ∈ L2, we conclude that f = 0. This implies ∆α :
L2
k,α(iΛ

0
X+) → L2

k−2,α(iΛ
0
X+) is invertible for 0 ≤ α ≤ α0.

Next, we will prove (iv).
We fist prove

L2
k,α(iΛ

1
N+)CC ∩ dL2

k+1,α(iΛ
0
N+) = {0}.(21)

Here we use the connectivity of ∂N+. Let a = df be an element in

L2
k,α(iΛ

1
N+)CC ∩ dL2

k+1,α(iΛ
0
N+).

Then Green’s formula implies

〈d1, a〉L2
α
− 〈1, d∗αa〉L2

α
=

∫
∂N+

t1 ∧ ∗na.(22)

By (22), we conclude that

0 =

∫
∂N+

∗na.(23)

We again use Green’s formula and obtain

‖df‖2L2
α
− 〈f, d∗αdf〉L2

α
=

∫
∂N+

tf ∧ ∗ndf.(24)

Since
0 = d∗ta = d∗tdf = d∗dtf = ∆∂N+tf

and ∂N+ is connected, we see that tf is a constant c. Moreover, we have d∗αdf =
d∗αa = 0. Then (24) can be computed as

‖df‖2L2
α
=

∫
∂N+

tf ∧ ∗ndf = c

∫
∂N+

∗na = 0,

here we used (23). So we have a = df = 0. This completes the proof of (21). Next,
we will see

L2
k,α(iΛ

1
N+) = L2

k,α(iΛ
1
N+)CC + dL2

k+1,α(iΛ
0
N+).

We need to prove that, for any α ∈ L2
k,α(iΛ

1
N+), there exists ξ ∈ L2

k+1,α(iΛ
0
N+)

such that α− dξ ∈ L2
k,α(iΛ

1
N+)CC , i.e.

d∗αdξ = d∗αα

d∗tdξ = d∗tα

hold. These equations are equivalent to

∆αξ = d∗αα

tξ = G∂N+d∗tα,
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whereG∂N+ is the Green operator on ∂N+. Therefore, we need to prove surjectivity
of the map

∆α(N
+, ∂) : L2

k+1,α(iΛ
0
N+) → L2

k−1,α(iΛ
0
N+)⊕ L2

k+ 1
2
(iΛ0

∂N+),

defined by

∆α(N
+, ∂)ξ = (∆αξ, tξ).

In order to prove this, we first use the excision principle and reduce the surjectivity
of ∆α(N

+, ∂) to calculations of indexes for several Laplacian operators. We follow
a method of J. Lin ([32, Appendix A]).

For the excision principle, we consider the double Xdbl := X ∪Y (−X) of X, its
Laplacian

∆(Xdbl) : L2
k+1(iΛ

0
Xdbl) → L2

k−1(iΛ
0
Xdbl)

and the Laplacian for −X

∆(−X, ∂) : L2
k+1(iΛ

0
−X) → L2

k−1(iΛ
0
−X)⊕ L2

k+ 1
2
(iΛ0

∂(−X)),

defined by

∆(−X, ∂)ξ = (∆ξ, tξ).

We also treat the Laplacian for X+

∆α(X
+) := d∗α ◦ d : L2

k+1,α(iΛ
0
X+) → L2

k−1,α(iΛ
0
X+).

Then for the operators ∆α(N
+, ∂),∆(Xdbl),∆(−X, ∂) and ∆α(X

+), we have the
following excision result:

Lemma 3.6. For any α ∈ [0, α0], we have

ind∆α(N
+, ∂) + ind∆(Xdbl) = ind∆α(X

+) + ind∆(−X, ∂).

Proof. This is standard excision principle. We omit the proof. For detail, see [6]
and [32, Appendix A]. □

By (iii), we have

Ker∆α(X
+) = {0} and Coker∆α(X

+) = {0}.

Moreover, it is well-known that ind∆(−X, ∂) = ind∆(Xdbl) = 0 ([47]). This
concludes that ind∆α(N

+, ∂) = 0. Suppose ∆α(N
+, ∂)(ξ) = 0. Green’s formula

implies that

‖dξ‖2L2
α
= 〈ξ, d∗αdξ〉L2

α
= 0.(25)

So we have Ker∆α(N
+, ∂) = {0}. This completes the proof of Coker∆α(N

+, ∂) =
{0}. This completes the proof of (iv). □
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3.4. Fredholm theory. In this subsection, we will prove the operator (14) with
spectral boundary condition

LN+ + p0−∞ ◦ r : Uk,α(N
+) → L2

k−1,α(iΛ
+
N+ ⊕ S−

N+)⊕ V 0
−∞(∂N+)

is Fredholm for a certain class of weights. First we fix a Spinc bound (X, sX) of Y
and consider a Spinc 4-manifold

X+ := X ∪∂(N+) N
+.

In order to prove the Fredholm property of LN+ + p0−∞ ◦ r, we introduce the
following operator on N+:

L̂N+ + p̂0−∞ ◦ r̂ : L2
k,α(iΛ

1
N+ ⊕ S+

N+) → L2
k−1,α(iΛ

0
N+ ⊕ Λ+

N+ ⊕ S−
N+)⊕ V̂ 0

−∞(∂N+),

(26)

given by

L̂N+(a, ϕ) = (d∗αa, d+a− (Φ0ϕ
∗)0 − (ϕΦ∗

0)0, D
+
A0
ϕ+ ρ(a)Φ0),

where

(i) the space V̂ 0
−∞(∂N+) is the L2

k− 1
2

-completion of the negative eigenspaces

of the operator

l̂ :=

 0 −d∗ 0
−d ∗d 0
0 0 DB0

 : Ω0
∂N+ ⊕ Ω1

∂N+ ⊕ Γ(S) → Ω0
∂N+ ⊕ Ω1

∂N+ ⊕ Γ(S),

(ii) the map r̂ : L2
k,α(iΛ

1
N+ ⊕ S+

N+) → Ω0
∂N+ ⊕ Ω1

∂N+ ⊕ Γ(S) is the restriction,

(iii) the operator

p̂0−∞ : Ω0
∂N+ ⊕ Ω1

∂N+ → V̂ 0
−∞(∂N+)

is the L2-projection to V̂ 0
−∞(∂N+).

Lemma 3.7. Suppose 0 ≤ α ≤ α0, where α0 is the constant appeared in Proposi-

tion 3.5 Then the operator L̂N+ + p̂0−∞ ◦ r̂ defined in (26) is Fredholm for k ≥ 1.

Proof. In the proof of Proposition 3.5, we confirm that

L̂′
X+ : L2

k,α(iΛ
1
X+ ⊕ S+

X+) → L2
k−1,α(iΛ

0
X+ ⊕ iΛ+

X+ ⊕ S−
X+)(27)

defined by

L̂′
X+(a, ϕ) = (−d∗αa+ iRe〈iΦ0, ϕ〉, d+a− (Φ0ϕ

∗)0 − (ϕΦ∗
0)0, D

+
A0
ϕ+ ρ(a)Φ0)

is Fredholm for 0 ≤ α ≤ α0. Thus we obtain a parametrix of the operator L̂ on
R≥1 × Y . By the technique [1], one can take the inverse of the AHS operator with
the spectral boundary condition on R≤0×Y . Then the standard patching argument

gives a parametrix of L̂ on N+.This proves the Fredholm property of (26). This
completes the proof. □
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Finally, we prove the Fredholmness result that will be needed to construct our
invariant and present its Fredholm index in terms of the following quantities:

2n(Y, gY , s) := indAPS
R (D+

A0
)−

c21(S
+
X)− σ(X)

4

is the quantity introduced by Manolescu([36]) and

d3(Y, [ξ]) =
1

4
(c21(S

+
X)− 2χ(X)− 3σ(X))− 〈e(S+

X ,Ψ), [X, ∂X]〉

is the d3 invariant of the homotopy class of the plane field ξ, where (X,S±
X , ρX) is

a Spinc bound of (Y, s), and Ψ is a unit section of S+
X |Y determined by ξ under

the correspondence of Lemma 2.3 in [21]. Note that when the Spinc structure of
X comes from an almost complex structure J with ξ = JTY ∩ TY , we can extend
Ψ to a nowhere-vanishing section of S+

X on X and thus 〈e(S+
X ,Ψ), [X, ∂X]〉 = 0.

Proposition 3.8. For 0 ≤ α ≤ α0, where α0 is the constant appeared in Proposi-
tion 3.5, LN+ + p0−∞ ◦ r is Fredholm and its index is

indR(LN+ ⊕ p0−∞ ◦ r) = −d3(Y, [ξ])−
1

2
+ 2n(−Y, gY , s)

Proof. This argument is similar to that of [17], which deals with a compact 4-
manifold with boundary instead of N+. First, by the choice of α, Lemma 3.7

implies that L̂N+ ⊕ (p̂0−∞ ◦ r̂) is Fredholm. Consider an extra operator

L̂N+ ⊕ ((p0−∞ ⊕ϖ) ◦ r̂) : L2
k,α(iΛ

1
N+ ⊕ S+

N+)

→ L2
k−1,α(iΛ

0
N+ ⊕ iΛ+

N+ ⊕ S+
N+)⊕ V 0

−∞(∂N+)⊕ iRb0(∂N
+) ⊕ dL2

k−1/2(iΛ
0
∂N+)

where
ϖ : V̂ (∂N+) → iRb0(∂N

+) ⊕ dL2
k−1/2(iΛ

0
∂N+)

is the L2-orthogonal projection.

We will show that LN+ ⊕ (p0−∞ ◦ r) and L̂N+ ⊕ ((p0−∞⊕ϖ)◦ r̂ are Fredholm and

ind(LN+ ⊕ (p0−∞ ◦ r)) = ind(L̂N+ ⊕ ((p0−∞ ⊕ϖ) ◦ r̂))

= ind(L̂N+ ⊕ (p̂0−∞ ◦ r̂)) = −d3(Y, [ξ])−
1

2
+ 2n(−Y, gY , s)

Let
V ⊥ = iΩ0(∂N+)⊕ idΩ0(∂N+)

l⊥ : V ⊥ → V ⊥

be the operator

l⊥ =

[
0 −d∗
−d 0

]
.

We denote its L2
k−1/2-completion by the same notation. Then

V̂ = V ⊕ V ⊥
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and
l̂ = l ⊕ l⊥.

Let (V ⊥)0−∞ be the span of non-positive eigenvectors of l⊥.
As shown in [17], the map

ϖ : (V ⊥)0−∞ → iRb0(∂N
+) ⊕ dL2

k−1/2(iΛ
0
∂N+) =:W (∂N+)

is an isomorphism. Thus, the commutative diagram

L2
k,α(iΛ

1
N+ ⊕ S+

N+)
L̂N+⊕p̂0

−∞◦r̂
−−−−−−−−−→ L2

k−1,α(iΛ
0
N+ ⊕ iΛ+

N+ ⊕ S−
N+)⊕ V̂ 0

−∞∥∥∥ id⊕ϖ

y∼=

L2
k,α(iΛ

1
N+ ⊕ S+

N+)
L̂N+⊕((p0

−∞⊕ϖ)◦r̂)
−−−−−−−−−−−−−→ L2

k−1,α(iΛ
0
N+ ⊕ iΛ+

N+ ⊕ S−
N+)⊕ V 0

−∞ ⊕W (∂N+)

implies L̂N+ ⊕ ((p0−∞ ⊕ϖ) ◦ r̂ is Fredholm and

ind(L̂N+ ⊕ ((p0−∞ ⊕ϖ) ◦ r̂)) = ind(L̂⊕ (p̂0−∞ ◦ r̂)).

First, we show

ind(LN+ ⊕ (p0−∞ ◦ r)) = ind(L̂N+ ⊕ ((p0−∞ ⊕ϖ) ◦ r̂)).

We put

W (∂N+) := iRb0(∂N
+) ⊕ dL2

k−1/2(iΛ
0
∂N+).

We can apply the snake lemma to the following diagram:

0 0y y
L2
k,α(iΛ

1
N+ ⊕ S+

N+)CC

LN+⊕p0
−∞◦r

−−−−−−−−−→ L2
k−1,α(iΛ

+ ⊕ S−
N+)⊕ V 0

−∞y y
L2
k,α(iΛ

1
N+ ⊕ S+

N+)
L̂N+⊕((p0

−∞⊕ϖ)◦r̂)
−−−−−−−−−−−−−→ L2

k−1,α(iΛ
0
N+ ⊕ iΛ+

N+ ⊕ S−
N+)⊕ V 0

−∞ ⊕W (∂N+)

d∗α⊕ϖ◦r̂
y y

L2
k,α(iΛ

0)⊕W (∂N+) L2
k−1,α(iΛ

0
N+)⊕W (∂N+)y y

0 0

Thus, we obtain

ind(LN+ ⊕ (p0−∞ ◦ r)) = ind(L̂N+ ⊕ ((p0−∞ ⊕ϖ) ◦ r̂)).

Next, we show

ind(L̂N+ ⊕ ((p0−∞ ⊕ϖ) ◦ r̂)) = ind(L̂N+ ⊕ (p̂0−∞ ◦ r̂)).
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Finally, we show

ind(L̂N+ ⊕ (p̂0−∞ ◦ r̂)) = −d3(Y, [ξ])−
1

2
+ 2n(−Y, gY , s).

Let X be a Spinc bound of (Y, ξ) and X ′ be a Spinc bound of (−Y, s). Then,
by the excision property of index,

indR(L̂N+ ⊕ p̂0−∞ ◦ r̂) + indR(L̂X∪Y X′) = indR(L̂X+) + indR(L̂X′ ⊕ p̂0−∞ ◦ r̂)

holds. Thus, we have

indR(L̂N+ ⊕ p̂0−∞ ◦ r̂)− indR(L̂X′ ⊕ p̂0−∞ ◦ r̂)

= indR(L̂X+)− indR(L̂X∪Y X′)

=〈e(S+
X ,Ψξ), [X, ∂X]〉 −

c21(S
+
X)− 2χ(X)− 3σ(X)

4
−
c21(S

+
X′)− 2χ(X ′)− 3σ(X ′)

4

=− d3(Y, [ξ])−
c21(S

+
X′)− 2χ(X ′)− 3σ(X ′)

4
,

here we use the computation result of the index of L̂X+ given in [21, Theorem 2.4].
Therefore,

indR(L̂N+ ⊕ p̂0−∞ ◦ r̂) =

−d3(Y, [ξ]) + indAPS
R (d∗α + d+ +D+

A0
)X′ −

c21(S
+
X′)− 2χ(X ′)− 3σ(X ′)

4

Now, from the index formula (for example, see [17, Section 3])

indAPS
R (d∗α + d+)X′ = −σ(X

′) + χ(X ′)

2
− 1

2

and the definition

2n(∂X ′, g, s) := indAPS
R (D+

A0
)X′ −

c21(S
+
X′)− σ(X ′)

4
,

we have

indAPS
R (d∗α + d+ +D+

A0
)X′ −

c21(S
+
X′)− 2χ(X ′)− 3σ(X ′)

4

=

{
indAPS

R (d∗α + d+)X′ +
σ(X ′) + χ(X ′)

2

}
+

{
indAPS

R (D+
A0

)X′ −
c21(S

+
X′)− σ(X ′)

4

}
=− 1

2
+ 2n(∂X ′, g, s).

Thus, we obtain

indR(L̂N+ ⊕ p̂0−∞ ◦ r̂) = −d3(Y, [ξ])−
1

2
+ 2n(−Y, gY , s).

□
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3.5. Uniform bound for energies. In this subsection, we prove a certain bound-
edness of the solutions of the Seiberg-Witten equation on N+. This is a main step
to construct our Floer homotopy contact invariant.

We consider a half-cylinder R≤0×Y with the product metric and a Spinc struc-
ture, A0 and Φ0 on it as translation invariant, which are the same as s|[0, 12 ]×Y ,

A0|[0, 12 ]×Y and Φ0|Y×[0, 12 ]
= 0. The notations S+

R≤0×Y
, S−

R≤0×Y
denote the spinor

bundles.
Our main result in this section is:

Theorem 3.9. There exists 0 < α1 ≤ α0 depending only on θ and J such that the
following conclusion holds, where α0 is the constant appeared in Proposition 3.5.
Let α be an element in (0, α1]. There exists a constant R′ > 0 independent of α
such that the following result holds. Suppose that

(x, y) ∈ Uk,α(N
+)× L2

k(iΛ
1
R≤0×Y ⊕ S+

R≤0×Y
)

satisfies the following conditions:

(i) the element x+ (A0,Φ0) is a solution of (15) on N+,

(ii) the element y is a solution of Seiberg-Witten equation on R≤0 × Y ,

(iii) y is temporal gauge, d∗b(t) = 0 for each t, where y(t) = (b(t), ψ(t)) and y
is finite type and

(iv) x|∂N+ = y(0).

Then
‖x‖L2

k,α
< R′ and ‖y(t)‖L2

k− 1
2

< R′ (∀t ≤ 0).

In order to prove Theorem 3.9, we use several corresponding notions used in [36]
and [21].

Definition 3.10. We consider a Riemannian manifold

N+
∗ := R≤0 × Y ∪N+

obtained by gluing the half-cylinder (R≤0×Y, dt2+gY ) and N+ along their bound-
ary. The solutions (A,Φ) of the Seiberg-Witten equation on N+

∗ are called N+
∗ -

trajectories. If an N+
∗ trajectory (A,Φ) satisfies

sup
t∈R≤0

|CSD(A|{t}×Y )| <∞ and ‖Φ‖C0(R≤0×Y ) <∞,

then (A,Φ) is called a finite type N+
∗ -trajectory.

We also use a notion of the notion of energy introduced in [21]: For an element
(A,Φ) ∈ Ck,α(N+

∗ ), we regard (A,Φ)|R≥1×Y as an element

(a, α, β) ∈ iΩ1
R≥1×Y ⊕ Ω0,0

R≥1×Y
⊕ Ω0,2

R≥1×Y
.

For this description and a suitable subset U in R≥1 × Y , we define

EU (A,Φ) :=

∫
U

(1− |α|2 − |β|2)2 + |β|2 + |∇aα|2 + |∇̃aβ|2,(28)
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where ∇̃a is the unique unitary connection in Λ0,2 whose (1, 0)-part is equal to ∂a
under the identification Λ1,0⊗Λ0,2 = Λ1,2. In order to prove Theorem 3.9, we need
the following four propositions. We first see the exponential decay estimate for the
energy.

Proposition 3.11 ([21], Proposition 3.15 ). For any constant E0 > 0, there exists
constant εE0

> 0 and CE0
> 0, such that if (A,Φ) is a solution of (15) satisfying

ER≥1×Y (A,Φ) ≤ E0, then

E[s,s+1]×Y (A,Φ) ≤ CE0e
−εE0

s,

for any s ≥ 1.

Note that our constants CE0
and εE0

depend on E0. Later, we will prove that
CE0

and εE0
do not depend on E0 The proof is the completely same as Proposition

3.15 in [21]. Next, we see a bound of spinors for finite type N+
∗ -trajectories.

Proposition 3.12 ([21], Lemma 3.14). There exists a constant κ such that for all
finite type N+

∗ -trajectories (A,Φ), we have

sup
x∈N+

∗

|Φ(x)|2 ≤ κ.

Proof. Put S := supx∈N+
∗
|Φ(x)|. We consider the following two cases:

(1) S = maxx∈N+
∗
|Φ(x)|

(2) There is no points satisfying S = |Φ(x)|.

In the first case, by the standard argument in the case of closed 4-manifolds, we
have

S < ‖ Scal(N+
∗ )‖C0 .

Note that ‖ Scal(N+
∗ )‖C0 is bounded since we are considering product and cone

metrics. In the second case, one can take a sequence of points {xn} ⊂ N+
∗ such

that |Φ(xn)| → S. By taking a subsequence, we can reduce to the following two
cases:

(2)-(i) xi ∈ R≤−i × Y and

(2)-(ii) xi ∈ R≥i × Y .

In the second case, since we have ‖Φ−Φ0‖L2
3,α(R≥1×Y ) <∞, so ‖Φ−Φ0‖C0({s}×Y ) →

0 as s → ∞ by Sobolev embedding theorem on [i, i + 1] × Y . Here we use α > 0.
Therefore, in this case, we have

S ≤ 1.

In the first case, by the same discussion in the proof of [36, Proposition 1], we have

S ≤ ‖ Scal(Y, g|Y )‖C0

This implies the conclusion. □

As the third proposition, we consider a universal bound of the energies of finite
type trajectories.
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Proposition 3.13 ([21], Lemma 3.17, [41], Lemma 2.2.7). There exist a constant
κ and a positive integer i0 such that for any finite type N+

∗ -trajectory (A,Φ) of the
Seiberg-Witten equation on N+

∗ , we have

ER≥i0×Y (A,Φ) ≤ κ.

Proof. First, we follow the proof of Lemma 3.17. We fix a positive integer i0 such
that

|NJ |C0([i0,i0+1]×Y ) ≤
1

32

and

|Fω
∇̃|C0([i0,i0+1]×Y ) ≤

1

8
,

where NJ is the Nijenhuis tensor of J , ∇̃ is the unique unitary connection in Λ0,2

whose (1, 0)-part is equal to ∂ and Fω
∇̃
= 1

2 〈F∇̃, ω〉. Then, in [21], it is proved that

ER≥i0+2×Y ≤ κ′ +

∫
∂(R≥i0+2×Y )

1

4
ia|{i0+2}×Y ∧ ω|{i0+2}×Y

for some constant κ′. Next, we consider a cut off of the connection a. Let a′ be a
connection given by ρa, where ρ is a cut off function satisfying ρ|R≤0×Y = 0 and
ρ|R≥1×Y = 1. We also extend the closed form ω by ω := 1

2d(ρs
2θ). Then the

integration ∫
∂(R≥i0+2×Y )

1

4
ia|{i0+2}×Y ∧ ω|{i0+2}×Y

can be regarded as

−
∫
[0,i0+2]×Y

1

4
ida′ ∧ ω

by the Stokes theorem. By the Peter-Paul inequality, we have

1

4

∣∣∣∣∣
∫
[0,i0+2]×Y

da′ ∧ ω

∣∣∣∣∣ ≤ 1

8

(∫
[0,i0+2]×Y

|da′|2 +
∫
[0,i0+2]×Y

|ω|2
)

≤ 1

8

(∫
N+

∗

|da′|2 +
∫
[0,i0+2]×Y

|ω|2
)

≤ 1

8

(
2

∫
N+

∗

|d+a′|2 +
∫
[0,i0+2]×Y

|ω|2
)
.

Then the Seiberg-Witten equation and Proposition 3.12 imply

1

8

(
2

∫
N+

∗

|d+a′|2
)
< c′.

Thus, we conclude that

ER≥i0+2×Y ≤ κ′ + c′ +

∫
[0,i0+2]×Y

|ω|2.

This completes the proof. □
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As the fourth proposition, we estimate analytic energies Ean for finite type tra-
jectories. For the definition of Ean, see [22, Definition 4.5.4].

Proposition 3.14. Let i0 be the positive integer appeared in Proposition 3.13.
Then there exists a constant κ′ such that any finite type N+

∗ -trajectory (A,Φ),
we have

Ean
R≤i0+1×Y (A,Φ) ≤ κ′.

Proof. As in the proof of Proposition 1 in [36], we can suppose that there exists a
solution of the 3-dimensional Seiberg-Witten equation (B−∞,Ψ−∞) such that

‖(A,Φ)− pr∗(B−∞,Ψ−∞)‖Ck([−i−1,−i]×Y ) → 0 as i→ ∞,

where pr : R× Y → Y is the projection. This implies

Ean
R≤i0+1×Y (A,Φ)

= 2CSD(B−∞,Ψ−∞)− 2CSD(A|{i0+1}×Y ,Φ|{i0+1}×Y ).

Note that the set of critical values of CSD is uniformly bounded. (Here we use
the condition that Y is a rational homology 3-sphere.) Moreover, Kronheimer-
Mrowka proved that there exist κk and ε > 0 which is independent of (A,Φ) and
an L2

k+1-gauge transformation g(A,Φ) such that

‖g∗(A,Φ)(A,Φ)− (A0,Φ0)‖L2
k([s,s+1]×Y ) ≤ κke

−εs.(29)

Actually, Kronheimer-Mrowka proved this result for L2
k-solutions. Since our Sobolev

space L2
k,α is contained in L2

k, we obtain the same result. Moreover, by the con-

dition (29), we can see that g(A,Φ) is in L2
k+1,α. In our case, since Y is a rational

homology 3-sphere, CSD is gauge invariant so

2CSD(A|{i0+1}×Y ,Φ|{i0+1}×Y )

is bounded. This completes the proof. □

We now give a proof Theorem 3.9 by assuming Proposition 3.13 and Proposi-
tion 3.14.

Proof of Theorem 3.9. Suppose that

(x, y) ∈ Uk,α ⊕ (L2
k(iΛ

1(R≤0 × Y )⊕ L2
k(S

+
R≤0×Y

))

satisfies the assumption of Theorem 3.9. We have three steps in this proof. Step
1: First, we see that (x, y) defines a finite type N+

∗ -trajectory (A,Φ).

Proof of Step 1. This is essentially the same as the proof of Corollary 2 in [17]. □

Step 2: Second, there exists 0 < α1 ≤ α0 such that we obtain a gauge transfor-
mation u on N+

∗ such that

sup
t∈Z<0

‖u∗(A,Φ)− (A0,Φ0)‖L2
k([t,t+1]×Y ) + ‖u∗(A,Φ)− (A0,Φ0)‖L2

k,α1
(N+) ≤ C,

where C is independent of (A,Φ). Here α0 is the constant given in Proposition 3.5.
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Proof of Step 2. Kronheimer-Mrowka (Theorem 5.1.1 in [21]) proved that there ex-
ists a gauge transformation u+ on R≥i0 × Y such that for s ≥ i0,

‖(u+)∗(A,Φ)− (A0,Φ0)‖L2
k([s,s+1]×Y ) ≤ ce−α1s

for some α1 > 0 and c > 0. By [21, Lemma 3.21, Lemma 3.22] and Proposition 3.13,
we know that α1 and c depend only on θ and J . Therefore, we have

‖(u+)∗(A,Φ)− (A0,Φ0)‖L2
k,α1

(N+) ≤ κ′

for some κ′. On the other hand, we can take u− on R≤i0+1 × Y such that, for
t+ 1 ≤ i0 + 1,

sup
t∈Z<0

‖(u−)∗(A,Φ)− (A0,Φ0)‖L2
k([t,t+1]×Y ) ≤ c′

for some constant c′ by using Proposition 3.14. Here we use the Coulomb slice and
the standard bootstrapping argument. Then, by the standard patching argument
for u+ and u−, we obtain a gauge transformation u on N+

∗ satisfying our conclusion.
□

Step 3: Suppose 0 < α ≤ α1. In the third step, we show that the action

Uk,α × Gk+1,α(N
+) → Ck,α(N+)

given by
u · (a, ϕ) := (a− u−1du+A0, uϕ+ uΦ0)

is a Gk+1,α(N
+)-equivariant diffeomorphism. We also apply the Coulomb projection

and obtain
‖x‖L2

k,α
< R′

and
‖y(t)‖L2

k− 1
2

< R′ ∀t ≤ 0.

Proof of Step 3. The first statement is a consequence of (3.5). The second inequal-
ity

‖y(t)‖L2

k− 1
2

< R′ ∀t ≤ 0

is followed by Step 2. By Step 2, we have the bound

sup
t∈Z<0

‖u∗(A,Φ)− (A0,Φ0)‖L2
k([t,t+1]×Y ) + ‖u∗(A,Φ)− (A0,Φ0)‖L2

k,α1
(N+) ≤ C

for some gauge transformation u. Let α be a positive real number with α ≤ α1.
Then we consider the projection using the decomposition Proposition 3.5

P : Ck,α(N+) → Uk,α(N
+).

Note that P is not L2, L2
α, or L

2
k,α-orthogonal projection. Since P is continuous,

we see that

‖Pu∗(A,Φ)|N+‖L2
k,α

≤ c‖u∗(A,Φ)|N+ − (A0,Φ0)‖L2
k,α
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for some constant c. This inequality implies

‖Pu∗(A,Φ)|N+‖L2
k,α

≤ cc1

for a constant c1. Since Uk,α × Gk+1,α(N
+) → Ck,α(N+) is a diffeomorphism, we

have
Pu∗(A,Φ) = (A,Φ) on N+.

This completes the proof.
□

This completes the proof of Theorem 3.9.
□

3.6. Seiberg-Witten Floer homotopy contact invariant. In this section, by
the use of boundedness result Theorem 3.9, we construct a Seiberg-Witten Floer
homotopy contact invariant. To carry out this, we consider a finite-dimensional
approximation of the map

FN+ : Uk,α → Vk−1,α ⊕ V (∂N+),

where Uk,α = L2
k,α(iΛ

1
N+)CC ⊕ L2

k,α(S
+
N+) and Vk−1,α = L2

k−1,α(iΛ
0
N+ ⊕ iΛ+

N+) ⊕
L2
k−1,α(S

−
N+). In this section, we fix a weight α ∈ (0,∞) satisfying α ≤ α1, where

α1 is the constant appeared in Theorem 3.9. Take sequences of subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vk−1,α and V λ1

−λ1
⊂ V λ2

−λ2
⊂ · · · ⊂ V (∂N+)

such that

(i) (ImLN+ + p0−∞ ◦ r)⊥Vk−1,α⊕V (∂N+) ⊂ Vn ⊕ V λn

−λn
(∂N+) for any n

(ii) the L2-projection Pn : Vk−1,α ⊕ V (∂N+) → Vn ⊕ V λn

−λn
(∂N+) satisfies

lim
n→∞

Pn(v) = v

for any v ∈ Vk−1,α ⊕ V (∂N+).

Then we define a sequence of subspaces

Un := (LN+ + pλn

−λn
◦ r)−1(Vn ⊕ V λn

−λn
).

This gives a family of the approximated Seiberg-Witten map is given by

{Fn := Pn(LN+ + CN+ , pλn

−λn
◦ r) : Un → Vn ⊕ V λn

−λn
(∂N+)}.

In order to define a cohomotopy type invariant, we need to prove the following
proposition:

Proposition 3.15. For a large n and a large positive real number R, there exists
an index pair (Nn, Ln) of V

λn

−λn
(∂N+) and a sequence {εn} of positive numbers such

that

B(Un;R)/S(Un;R) → (Vn/B(Vn, εn)
c) ∧ (Nn/Ln)(30)

is well-defined.
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Proof. In order to prove this lemma, we follow a method used by Manolescu and
Khandhawit. We will use [17, Lemma A.4] ([36, Theorem 4]). Set

K̃1(R,n) := B(Un;R) ∩ F−1
n (

◦
B(Vn, εn)

c)

and

K̃2(R,n) := S(Un;R) ∩ F−1
n (

◦
B(Vn, εn)

c)

for a fixed R. For these compact sets, we will prove that for a sufficiently large
n, there is an isolating neighborhood An = B(R′;V λn

−λn
) satisfying the following

conditions for some constant R′ which is independent of n:

(a) If x ∈ K̃1(R,n) satisfies t ·pλn
−∞ ◦ r(x) ∈ An for all t ≥ 0, then for any t ≥ 0,

t · pλn
−∞ ◦ r(x) /∈ ∂An

holds.

(b) If x ∈ K̃2(R,n), then there exists t ≥ 0 such that t · pλn
−∞ ◦ r(x) /∈ An.

If such an isolating neighborhood An exists, we can apply [17, Lemma A.4] and
obtain an index pair (Nn, Ln) such that

(Fn(K̃1),Fn(K̃2)) ⊂ (Nn, Ln) and Nn ⊂ An.

This index pair gives our conclusion. The proof of the existence of (Nn, Ln) is also
similar to the proof given in [17, Lemma A.4]. We give a sketch of proof. We
take a constant R′ as the constant appeared in Theorem 3.9. We also can suppose

that
◦
B(R′) ⊂ V (∂N+) contains the critical set of the flow l + c. We prove (a)

by contraposition. Suppose that there exists a sequence xn ∈ K̃1(R,n) satisfies

t · pλn
−∞ ◦ r(xn) ∈ An for all t ≥ 0 and for some tn ≥ 0,

tn · pλn
−∞ ◦ r(xn) ∈ ∂An.

Here we take R as a positive number with R > R′. Then, by the use of Propo-
sition 3.16 which we prove later, after taking a subsequence, one can assume that
{(xn, yn)} converges to an element

(x, y) ∈ Uk,α(N
+)× (L2

k(iΛ
1(Y × R≤0)⊕ L2

k(S
+
R≤0×Y

))

satisfying

(i) the element x+ (A0,Φ0) is a solution of (15),

(ii) the element y is a solution of Seiberg-Witten equation on R≤0 × Y ,

(iii) y is temporal gauge, d∗αb(t) = 0 for each t, where y(t) = (b(t), ψ(t)) and y
is finite type and

(iv) x|∂N+ = y(0).
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Thus, we use Theorem 3.9 and obtain bounds

‖x‖L2
k,α

< R′ and ‖y(t)‖L2

k− 1
2

< R′(t ≤ 0).

On the other hand, since we can suppose

lim
n→∞

tn = t∞ ∈ [0,∞) ∪ {∞},

we conclude
‖y(t∞)‖L2

k−1(Y ) = R′.

However, this contradicts to the choice of R′. The proof of (b) is similar to (a). For
more detail, see [17, Proposition 4.5].

□

In order to complete the proof of Proposition 3.15, we need to prove Proposi-
tion 3.16 used in the proof of Proposition 3.15.

Proposition 3.16. Let {xn} be a bounded sequence in Uk,α such that

(LN+(xn), p
λn
−∞ ◦ r(xn)) ∈ Vn × V λn

−λn

and
Pn(LN+ + CN+)xn → 0.

Let yn : [0,∞) → V λn

−λn
be a uniformly bounded sequence of trajectories such that

yn(0) = pλn
−∞ ◦ r(xn).

Then, after taking a subsequence, {xn} converges a solution x ∈ Uk,α (in the topol-
ogy of Uk,α) and {yn(t)} converges y(t)(∀t ∈ [0,∞)) in L2

k− 1
2

which is a solution of

the Seiberg-Witten equation on R≤0 × Y .

Proof. By a similar discussion in Proposition 3 in [36], we can prove that for any
compact set I ⊂ (0,∞) and yn(t) uniformly converges to y(t) in L2

k− 1
2

on I. How-

ever, for a compact set in [0,∞), we can only say yn(t) uniformly converges to y(t)
in L2

k− 3
2

. In order to improve this, we will prove the following two lemmas.

Lemma 3.17. In L2
k− 1

2

, we have

p0−∞yn(0) → p0−∞y(0).

The proof of this convergence is completely the same as the original proof in
[36]. So we omit the proof.

Since {xn} is bounded, we know that {xn} has a weak convergent subseqeunce
and a limit x ∈ L2

k,α.

Lemma 3.18. We have the following convergences:

(1)
p0−∞yn(0) → p0−∞r(x) in L

2
k− 1

2
,
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(2)
xn → x in L2

k,α

(3)
yn(0) → y(0) in L2

k− 1
2
.

Proof of Lemma 3.18 This is also similar to [36], [17], however, we need to
use some properties of our weighted Sobolev spaces in order to deal with cone-like
ends.

(1): Since V 0
−∞ ⊂ V λn

−∞, the assumption pλn
−∞r(xn) = yn(0) implies p0−∞r(xn) =

p0−∞yn(0).
Since xn weakly converges to x in L2

k,α, p
0
−∞r(xn) weakly converges to p0−∞r(x)

in L2
k−1/2. Thus, we have p0−∞r(x) = p0−∞y(0) and then Lemma 3.17 implies (1).

(2): Since LN++p0−∞◦r : Uk,α → L2
k−1,α(iΛ

+
N+⊕S−

N+)⊕V 0
−∞(∂N+) is Fredholm,

there exists a constant C such that for any x ∈ Uk,α,

‖x‖L2
k,α

≤ C(‖LN+x‖L2
k−1,α

+ ‖p0−∞ ◦ r(x)‖L2
k−1/2

+ ‖x‖L2)

holds. By Lemma 3.3, CN+(xn) converges to CN+(x) in L2
k−1,α. Thus, we have

‖xn − x‖L2
k,α

≤ C(‖LN+(xn − x)‖L2
k−1,α

+ ‖p0−∞ ◦ r(xn − x)‖L2
k−1/2

+ ‖xn − x‖L2)

≤ C(‖(LN+ + CN+)(xn)− (LN+ + CN+)(x)‖L2
k−1,α

+ ‖CN+(x)− CN+(xn)‖L2
k−1,α

+ ‖p0−∞ ◦ yn(0)− p0−∞ ◦ r(x)‖L2
k−1/2

+ ‖xn − x‖L2)

We claim that all of the four terms in the last line converge to zero by taking
subsequences. The first term converges to zero since

‖(LN+ + CN+)(xn)‖L2
k−1,α

≤ ‖(LN+ + PnCN+)(xn)‖L2
k−1,α

+ ‖(1− Pn)CN+(xn)‖L2
k−1,α

→ 0

by the assumption (LN+ +PnCN+)(xn) → 0 and our choice of Pn and therefore we
have

(LN+ + CN+)(xn) → (LN+ + CN+)(x) = 0 in L2
k−1,α.

The second term converges to zero because the product estimate and the compact
embedding result in Lemma 3.3 implies that CN+(xn) converges to CN+(x) in
L2
k−1,α by taking subsequences. The third term converges to zero by (1). The

fourth term converges to zero since the compact embedding result in Lemma 3.3
implies we can assume that xn converges to x in L2 by taking a subsequence.

(3): (2) implies r(xn) converges to r(x) in L
2
k−1/2. Thus we have

‖yn(0)− r(x)‖L2
k−1/2

= ‖pλn
−∞r(xn)− r(x)‖L2

k−1/2

≤ ‖pλn
−∞(r(xn)− r(x))‖L2

k−1/2
+ ‖(1− pλn

−∞)r(x)‖L2
k−1/2

→ 0

as n→ ∞. Since yn(0) converges to y(0) in L
2
k−3/2, we have r(x) = y(0) and thus

(3) holds. □



30 NOBUO IIDA

Thus, we obtain a family of the continuous maps (30). Now, by the definition of
Fredholm index, we have

indR(LN+ ⊕ pλn
−∞ ◦ r) = dimR Un − dimR Vn − dimR V

λn

−λn
.

By Proposition 3.8, we also know

indR(LN+ ⊕ pλn
−∞ ◦ r) = indR(LN+ ⊕ p0−∞ ◦ r)− dimR V

λn
0

= −d3(Y, [ξ])−
1

2
+ 2n(−Y, gY , s)− dimR V

λn
0 .

Thus we obtain

dimR Un − dimR Vn − dimR V
λn

−λn
= −d3(Y, [ξ])−

1

2
+ 2n(−Y, gY , s)− dimR V

λn
0

Then, by applying the formal (de)suspension

Σ( 1
2−d3(−Y,[ξ])−2n(−Y,gY ,s))R⊕(−V 0

−λn
)⊕(−Vn)

to

B(Un;R)/S(Un;R) → (Vn/
◦
B(Vn, εn)

c) ∧ (Nn/Ln),

we obtain a map stably written by

Ψ(Y, ξ) : S0 → Σ( 1
2−d3(−Y,[ξ])−2n(Y,gY ,s))R⊕(−V 0

−λn
)(Nn/Ln).

We check that the domain of Ψ(Y, ξ) is S0. Note that the index formula

dimR Un − dimR Vn − dimR V
λn

−λn
= −d3(Y, [ξ])−

1

2
+ 2n(−Y, gY , s)− dimR V

λn
0

implies

dimR Un − dimR Vn − dimR V
0
−λn

+ d3(Y, [ξ]) +
1

2
− 2n(−Y, gY , s) = 0

and thus

Σ( 1
2−d3(−Y,[ξ])−2n(−Y,gY ,s))R⊕(−V 0

−λn
)⊕(−Vn)B(Un;R)/S(Un;R) = S0.

Using the definition SWF (−Y, s) = Σ−2n(−Y,s,g)R−V 0
λ Iµλ , and the fact that d3(−Y, [ξ]) =

−d3(Y, [ξ]), we regard Ψ(Y, ξ) as a map

Ψ(Y, ξ) : S0 → Σ( 1
2−d3(−Y,[ξ]))RSWF (−Y, s).

Definition 3.19. Finally, we have

Ψ(Y, ξ) : S0 → Σ( 1
2−d3(−Y,[ξ]))RSWF (−Y, s).(31)

The map (31) is called Seiberg-Witten Floer homotopy invariant of (Y, ξ).

Proposition 3.20. If we take a weight α satisfying 0 < α < α1, then the stable ho-
motopy class of Ψ(Y, ξ) depends only on (Y, ξ), where the constant α1 is introduced
in Theorem 3.9.
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Proof. We choose two contact forms θ0 and θ1 of ξ and two complex structures J0
and J1 of ξ. Then we take 1-parameter families θt and Jt connecting θ0 and θ1
and J0 and J1. Then, for such a 1-parameter family θt, one can take a positive
number α1(θt) > 0 such that there exists a 1-parameter family of finite-dimensional
approximations satisfying a family version of Proposition 3.15. Moreover, we can
take such a 1-parameter family of finite-dimensional approximations which are in-
dependent of t. This gives a homotopy between Ψ(Y, θ0, J0) and Ψ(Y, θ1, J1). The
proof of independence of Ψ(Y, ξ) with respect to α is essentially the same. This
gives our conclusion. □

Note that (31) is not an S1-equivariant map. By using the duality map η, we
often regard (31) as

Σ− 1
2−d3(Y,[ξ])SWF (Y )

Ψ(Y,ξ)∧Id−−−−−−→

Σ
1
2−d3(−Y,[ξ])SWF (−Y, s) ∧ Σ− 1

2−d3(Y,[ξ])SWF (Y )
η−→ S0.

We write this composition by

Ψ̂(Y, ξ) : Σ− 1
2−d3(Y,[ξ])SWF (Y ) → S0.

Example 3.21. As a trivial example, we consider homotopy classes of contact struc-
tures on S3 which are parametrized by its d3-invariants

d3(S
3, ξk) = k +

1

2
.

The standard contact structure is represented by ξ−1 = ξstd. (In [22], the homotopy
class of ξstd is written by ξ+.) Since SWF (−S3) = S0, we have a map

Ψ(S3, ξk) : S
0 → Sk+1.

Therefore, we can regard Ψ(S3, ξk) as an element

Ψ(S3, ξk) ∈ πS
−k−1,

where πS
−k−1 is the stable homotopy group of the sphere. Therefore, if πS

k+1 = 0,

then Ψ(S3, ξk) must vanish.

4. Gluing result

In this section, we will prove Theorem 1.2. The main idea which we use is
contained in [37] and [19]. In particular, we follow the arguments given in [19].
First, we introduce notions which are used in the statement of Theorem 1.2.

Let Y be a rational homology 3-sphere equipped with a contact structure ξ and
X a compact oriented 4-manifold with b1(X) = 0 and ∂X = Y . Suppose that a
relative Spinc structure sX,ξ = (sX , sX |Y → sξ) ∈ Spinc(X, ξ) in the sense of [21]
is given. Now, the relative Bauer-Furuta invariant of (X, s) is an S1-equivariant
stable map

Ψ(X, sX) : (R−b+(X) ⊕ C
c21(sX )−σ(X)

8 )+ → SWF (Y, sξ).



32 NOBUO IIDA

If we forget the S1-action, this map can be written as

Ψ(X, sX) : (R−b+(X)+
c21(sX )−σ(X)

4 )+ → SWF (Y, sξ)

or equivalently

Ψ(X, sX) : (R1+⟨e(S+
X ,Ψξ),[X,∂X]⟩)+ → Σ

1
2−d3(Y,[ξ])SWF (Y, sξ)

since

d3(Y, [ξ]) =
1

4
(c21(sX)− 2χ(X)− 3σ(X))− 〈e(S+

X ,Ψξ), [X, ∂X]〉

=
c21(sω)− σ(X)

4
− χ(X) + σ(X)

2
− 〈e(S+

X ,Ψξ), [X, ∂X]〉

=
c21(sω)− σ(X)

4
− b+(X)− 1

2
− 〈e(S+

X ,Ψξ), [X, ∂X]〉,

where Ψξ is a section of S+
X |Y with |Ψξ(y)| = 1 for all y ∈ Y such that the

isomorphism class of (sξ,Ψξ) corresponds to ξ under the correspondence given in
Lemma 2.3 in [21]. On the other hand, the invariant for (X,ω) constructed in [15]
is defined as a non-equivariant stable map

Ψ(X, ξ, sX,ξ) : (R⟨e(S+
X ,Ψξ),[X,∂X]⟩)+ → S0.

Later, we will explain the invariant Ψ(X, ξ, sX,ξ) defined in our situation.
Finally, our contact invariant is a non-equivariant stable map

Ψ(Y, ξ) : S0 → Σ
1
2−d3(−Y,[ξ])SWF (−Y, sξ).

Using Manolescu’s duality morphism

η : SWF (Y, sξ) ∧ SWF (−Y, sξ) → S0,

we have a non-equivariant stable map

η ◦ (Ψ(X, sX) ∧Ψ(Y, ξ)) : (R1+⟨e(S+
X ,Ψξ),[X,∂X]⟩) → (R)+.

(Note that d3(−Y, [ξ]) = −d3(Y, [ξ]).) Therefore, we can ask whether η◦(Ψ(X, sX)∧
Ψ(Y, ξ)) and Ψ(X, ξ, sX,ξ) are stably homotopy equivalent.

The following gluing result can be shown by a similar way as Theorem 1 of [37].

Theorem 4.1. In the above setting, η ◦ (Ψ(X, sX)∧Ψ(Y, ξ)) and Ψ(X, ξ, sX,ξ) are
stably homotopy equivalent as non-equivariant pointed maps.

4.1. The relative Bauer-Furuta invariant. In this subsection, we summarize
the definition of the relative Bauer-Furuta invariant Ψ(X, sX) following [36], [37],
and [17]. Let X be a compact oriented Riemannian 4-manifold with ∂X = Y is a
rational homology 3-sphere. Assume the collar neighborhood of ∂X is isometric to
the product. Let sX be a Spinc structure on X and give Y the Spinc structure
s obtained by restricting sX to Y . We denote the spinor bundles of sX by SX =
S+
X ⊕ S−

X and the spinor bundle of s by S. For simplicity, assume b1(X) = 0
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Let Ω1
CC(X) be the space of 1-forms a on X in double Coulomb gauge. The

relative Bauer-Furuta invariant Ψ(X, sX) arises as the finite-dimensional approxi-
mation of the Seiberg-Witten map

Fλ
X : L2

k(iΛ
1
X)CC ⊕ L2

k(S
+
X) →L2

k−1(iΛ
+
X ⊕ S−

X)⊕ V λ
−∞(Y )

(32)

(a, ϕ) 7→(d+a− ρ−1(ϕϕ∗)0, D
+
A0
ϕ+ ρ(a)ϕ, pλ−∞ ◦ r(a, ϕ))(33)

for λ ∈ R. We will denote

UX = L2
k(iΛ

1
X)CC ⊕ L2

k(S
+
X) and VX = L2

k−1(iΛ
+
X ⊕ S−

X).

We will also sometimes denote the map to the first two factors by LX +CX , where
LX = d++D+

A0
+pλ−∞r and CX is compact. The finite-dimensional approximation

goes as follows. Pick an increasing sequence λn → ∞ and an increasing sequence
of finite-dimensional subspaces VX,n ⊂ VX with prVX,n

→ 1 pointwise. We also
assume

(Im(LX + pλn
−∞r))

⊥

is contained in VX,n ⊕ V λn

−λn
for all n. Let

UX,n = (LX + pλn
−∞r)

−1(VX,n × V λn

−λn
) ⊂ UX ,

and
FX,n := Pn ◦ Fλn

X : UX,n → VX,n ⊕ V λn

−λn
,

where Pn := prVX,n
× prV λn

−λn

. Let

K̃1
X,n = (FX,n)

−1(B(VX,n; εn)× V λn

−λn
) ∩B(UX,n, R),

K̃2
X,n = (FX,n)

−1(B(VX,n; εn)× V λn

−λn
) ∩ S(UX,n, R)

K1
X,n = prV λn

−λn

◦ FX,n(K̃
1
X,n), K2

X,n = prV λn
−λn

◦ FX,n(K̃
2
X,n)

for some R > 0. One can find an index pair (NX , LX) which represents the Conley

index for V λn

−λn
in the form NX/LX such that K1

X,n ⊂ NX and K2
X,n ⊂ LX .

Now, for a sufficiently large n, we have a map

FX,n : B(UX,n, R)/S(UX,n, R) → (VX,n/(B(VX,n, ε)
c)) ∧ (NX/LX).

This gives the relative Bauer-Furuta invariant Ψ(X, sX) constructed by Manolescu([36])
and Khandhawit([17]).

4.2. The Bauer-Furuta version of Kronheimer-Mrowka’s invariant. In this
subsection, we summarize the definition of the Bauer-Furuta version of Kronheimer-
Mrowka’s invariant Ψ(X, ξ, sX,ξ) following [15], though the weighted Sobolev spaces
we use here are different from those used in [15].

Let X be a compact oriented 4-manifold with nonempty boundary. We assume
H1(X, ∂X;R) = 0, in particular, Y = ∂X is connected. Let ξ be a contact structure
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on Y = ∂X compatible with the boundary orientation. As in the construction of
N+, we will construct a complete Riemannian manifold (X+, g0) by attaching an
almost Kähler conical end. As a manifold,

X+ = X ∪Y ([0, 1]× Y ) ∪Y [1,∞)× Y = X ∪Y N+.

Pick a contact 1-form θ on Y and a complex structure J of ξ compatible with the
orientation. There is now a unique Riemannian metric g1 on Y such that θ satisfies
that |θ| = 1, dθ = 2 ∗ θ, and J is an isometry for g|ξ .

Define a symplectic form ω0 on [1,∞)× Y by the formula

ω0 =
1

2
d(s2θ)(34)

= sds ∧ θ + 1

2
s2dθ(35)

and a metric g0 by

g0 = ds2 + s2g1.

Pick a smooth extension of g0 to all of X+ which is a product metric on [0, 1/2]×Y .
On X+\X, we have a canonical Spinc structure s0, a canonical Spinc connection

A0, a canonical positive spinor Φ0 as before. Fix a Spinc structure sX on X+

equipped with an isomorphism sX → s0 on X+ \X. We denote such a pair by sX,ξ.
Fix a smooth extension of (A0,Φ0) such that Φ0 is zero on X∪([0, 1]×Y ) and A0 is
product on [0, 1/2]×Y . We also fix a nowhere zero proper extension σ of s ∈ [1,∞)
coordinate to all of X+ which is 1 on X ∪ ([0, 1] × Y ). (This implies that for a
section supported in X, its weighted Sobolev norms are equal to its unweighted
Sobolev norms.)

On X+, weighted Sobolev spaces

ÛX+ = L2
k,α(iΛ

1
X+ ⊕ S+

X+)

V̂X+ = L2
k−1,α(iΛ

0
X+ ⊕ iΛ+

X+ ⊕ S−
X+)

are defined as before using σ for a positive real number α ∈ R and k ≥ 4, where
S+
X+ and S−

X+ are positive and negative spinor bundles.
The invariant Ψ(X, ξ, sX,ξ)([15]) is obtained as a finite-dimensional approxima-

tion of the Seiberg-Witten map

F̂X+ : ÛX+ → V̂X+

(a, ϕ) 7→ (d∗αa, d+a− ρ−1(ϕΦ∗
0 +Φ0ϕ

∗)0 − ρ−1(ϕϕ∗)0, D
+
A0
ϕ+ ρ(a)Φ0 + ρ(a)ϕ)

(36)

The finite-dimensional approximation goes as follows. We decompose F̂X+ as

L̂X+ + ĈX+ where

L̂X+(a, ϕ) = (d∗αa, d+a− ρ−1(ϕΦ∗
0 +Φ0ϕ

∗)0, D
+
A0
ϕ+ ρ(a)Φ0)

and

ĈX+(a, ϕ) = (0,−ρ−1(ϕϕ∗)0, ρ(a)ϕ).
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For 0 < α ≤ α1, L̂ is Fredholm. In this section, we fix a weight α ∈ (0,∞) satisfying

α ≤ α1, where α1 is the constant appeared in Theorem 3.9. Then L̂X+ is linear

Fredholm and ĈX+ is quadratic, compact.
Then pick an increasing sequence λn → ∞ and an increasing sequence of finite-

dimensional subspaces V̂X+,n ⊂ VX+ such that prV̂X+,n
→ 1 pointwise. Let

ÛX+,n = L̂−1(V̂X+,n) ⊂ ÛX+ ,

and

FX+,n := prV̂X+,n
◦ FX+ : ÛX+,n → V̂X+,n.

We can show that for a large R > 0, a small ε and a large n, we have a well-defined
map

FX+,n : B(ÛX+,n, R)/S(ÛX+,n, R) → B(V̂X+,n, ε)/S(V̂X+,n, ε).

This gives the Bauer-Furuta version of Kronheimer-Mrowka’s invariant

Ψ(X, ξ, sX,ξ) ∈ πS
⟨e(S+

X ,Φ0),[(X,∂X)]⟩

defined in [15]. The following result is proved in [15]:

Theorem 4.2. For α ∈ (0,∞) satisfying α ≤ α1, the stable homotopy class of
Ψ(X, ξ, sX,ξ) ∈ πS

⟨e(S+
X ,Φ0),[(X,∂X)]⟩ depends only on (X, ξ, sX,ξ), where πS

i be the

i-th stable homotopy group of the sphere. Moreover, in the case of

〈e(S+
X ,Φ0), [(X, ∂X)]〉 = 0,

the mapping degree of Ψ(X, ξ, sX,ξ) recovers the Kronheimer-Mrowka’s invariant of
(X, ξ, sX,ξ) up to sign.

4.3. Deforming the duality pairing. First, we deform the duality pairing. We
consider a counterpart of [19, Proposition 6.10]. Although in the situation of [19],
X0 and X1 are compact, these facts are not essential in the proof of [19, Proposi-
tion 6.10]. Therefore, in our situation, we have a similar result:

Proposition 4.3. The morphism η ◦ (Ψ(X, ξ, sX,ξ) ∧ Ψ(Y, ξ)) can be represented
by a suitable desuspension of the map

B(UX,n, R1)

S(UX,n, R1)
∧
B(UN+,n, R2)

S(UN+,n, R2)
→ B(VX,n, ε)

S(VX,n, ε)
∧
B(VN+,n, ε)

S(VN+,n, ε)
∧
B(V λn

−λn
, ε)

S(V λn

−λn
, ε)

(37)

(x1, x2) 7→{
(FX,n(x1),FN+,n(x2), rx1 − rx2) if ‖FX,n(x1)‖ ≤ ε and ‖FN+,n(x2)‖ ≤ ε

∗ otherwise

for large numbers R1, R2 and small positive numbers ε, ε, where the maps r are
coming from the restrictions.
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4.4. Proof of the gluing theorem. In this subsection, we give a proof of The-
orem 1.2. We follow the methods given by Khandhawit-Sasahira-Lin [19]. We use
the following notations:

• ÛX = L2
k(iΛ

1 ⊕ S+
X), UX = L2

k(iΛ
1 ⊕ S+

X)CC ;

• ÛN+ = L2
k,α(iΛ

1 ⊕ S+
N+), UN+ = L2

k,α(iΛ
1 ⊕ S+

N+)CC ;

• ÛX+ = L2
k,α(X

+; iΛ1⊕S+
X+), UX+ = iKer d∗α⊕L2

k,α(X
+;S+

X+) ⊂ L2
k,α(X

+; iΛ1⊕
S+
X+);

• V̂X = L2
k−1(iΛ

0
X ⊕ iΛ+

X ⊕ S−
X), VX = L2

k−1(iΛ
+
X ⊕ S−

X);

• V̂N+ = L2
k−1,α(iΛ

0
N+ ⊕ iΛ+

N+ ⊕ S−
N+), VN+ = L2

k−1,α(iΛ
+
N+ ⊕ S−

N+)

for a real number α ∈ R and k ≥ 4. In this subsection, we fix a weight α ∈ (0,∞)
satisfying α ≤ α1, where α1 is the constant appeared in Theorem 3.9. Before
proving the gluing theorem, we introduce a notion of BF pair which is a counterpart
of SWC triple in [19]. Let H1, H2 be separable Hilbert spaces.

Definition 4.4. Let (L,C) be a pair of bounded continuous maps from H1 to H2.
Suppose L is a Fredholm linear map and C extends to a continuous map H1 → H2,
where H1 is a completion of H1 with respect to a weaker norm. We impose that
H1 → H1 is compact. Moreover, we assume

(L+ C)−1(0) ⊂
◦
B(H1,M

′)

for some M ′ > 0. Then (L,C) is called a BF pair.

As in the case of SWC triples, we also have a notion of c-homotopic.

Definition 4.5. Two BF pairs (Li, Ci)(i = 1, 2) are c-homotopic if there is a
homotopy between them through a continuous family of BF pairs with a uniform
constant M ′. Two BF pairs (Li, Ci)(i = 1, 2) are stably c-homotopic if there exist
Hilbert spacesH3, H4 such that (L1⊕idH3

, C1⊕0) is c-homotopic to (L2⊕idH4
, C2⊕

0).

Similar to the case of SWC triples, for a given BF pair (L,C), we can define a
stable cohomotopy invariant

Ψ(L,C) ∈ {Sind(L), S0}.

In the proof, we have seven steps as in [19].

Step 1 In [19], we move the gauge fixing condition d∗α = 0 from the domain to the
maps. In our case, we do not need to do anything because (36) contains
d∗α as a component.

Step 2 We glue the Sobolev spaces of the domains.

Step 3, 4 We glue the Sobolev spaces of the targets.

Step 5 We focus on deforming the boundary conditions for gauge fixing.
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Step 6 We change the action of harmonic gauge transformations with different
boundary conditions. However, in our case, these symmetries are trivial.
Moreover, we recover double Coulomb gauge conditions.

Step 7 We make the final homotopy between (37) and (43).

We do not need Step 1, so we start with Step 2.

4.4.1. Step 2. We can prove the following lemma of gluing Sobolev spaces by the
same argument as Lemma 3 in [37]. Since the proof is essentially the same, we omit
the proof.

Lemma 4.6. Regard X+ = X ∪{0}×Y N+. We can assume that X also has
cylindrical end near the boundary, and denote by s the variable in the direction
normal to {0}×Y . Let E be an admissible vector bundle over X+ and assume that
the L2

k,α-Sobolev completion of the space of smooth, compactly supported sections of

E on X+, N+ are defined by a fixed connection and a fixed pointwise norm. Then,
for k ≥ Z≥1 and α ∈ R, there is a natural identification

L2
k,α(X

+;E) = L2
k(X;E)×∏k−1

m=0 L2
m+1/2

(Y ;E) L
2
k,α(N

+;E),

where the right-hand side is the fiber product of L2
k(X;E) and L2

k,α(N
+;E) with

respect to the maps

rk1 : L2
k(X) →

k−1∏
m=0

L2
k− 1

2−m(Y ;E),

rk1 (u) =

(
u|Y ,

∂u

∂s
|Y ,

∂2u

∂s2
|Y , · · · ,

∂k−1u

∂sk−1
|Y
)
,

rk2 : L2
k,α(N

+;E) →
k−1∏
m=0

L2
k− 1

2−m(Y ;E),

rk2 (u) =

(
u|Y ,

∂u

∂s
|Y ,

∂2u

∂s2
|Y , · · · ,

∂k−1u

∂sk−1
|Y
)
.

□
By the use of Lemma 4.6, we glue configurations. Before gluing, we introduce a

family of linear maps:

D(≤k) : ÛN+ × ÛX →
k⊕

m=0

V̂k−m− 1
2

defined by

D(≤k)(x1, x2) := rk1 (x1)− rk2 (x2)

for any non-negative integer k. The following statement is followed by Lemma 4.6.

Lemma 4.7. For any k ∈ Z≥0, the map D(≤k) is surjective and the kernel can be

identified with ÛX+ .

Now, we glue the configuration spaces.



38 NOBUO IIDA

Lemma 4.8. The pair

((pj(L̂X × L̂N+), D(≤k)),pj(ĈX × ĈN+))(38)

is a BF pair from ÛN+ ×ÛX to V̂X+ ×
⊕k

m=0 V̂k−m, where pj is the projection from

V̂N+ × V̂X to V̂X+ . (Here we regard V̂X+ as the kernel of D(≤m). )

Moreover, ((pj(L̂X × L̂N+), D(≤k)),pj(ĈX × ĈN+)) is stably c-homotopic to

(L̂X+ , ĈX+).

Proof. In the proof, we use the following lemma. This is an easier version of Lemma
6.13 in [19] and originally proved in Observation 1 in [37].

Lemma 4.9. Let (L,C) be pair of continuous maps from H1 to H2. Suppose L
is bounded linear and C extends to H1 → H2 for a weak norm of H1. Let g be a
surjective linear map H1 → H3. Then the following conditions are equivalent;

• (L⊕ g, C ⊕ 0) is a BF pair, and

• (L|Ker g, C|Ker g) is a BF pair.

Moreover, (L⊕ g, C ⊕ 0) is c-homotopic to (L|Ker g, C|Ker g).

Lemma 4.8 is followed by using Lemma 4.9.
□

4.4.2. Step 3, 4. For any positive integer k, we define

E(≤k−1) : V̂X × V̂N+ →
k−1⊕
m=0

V̂k−m− 1
2

by
E(≤k−1)(y1, y2) = rk−1

1 (y1)− rk−1
2 (y2).

The following lemma is a counterpart of Proposition 6.17 in [19].

Lemma 4.10. The pair

((pj ◦(L̂X × L̂N+), E(≤k−1) ◦ (L̂X × L̂N+), D(≤0)),

(pj ◦(ĈX × ĈN+), E(≤k−1) ◦ (ĈX × ĈN+), 0))
(39)

is a BF pair from ÛX × ÛN+ to V̂X+ × (
⊕k−1

m=0 V̂k−m− 1
2
) × V̂k− 1

2
. Moreover, this

BF pair is stably c-homotopic to (38).

The proof is essentially the same as [19, Proposition 6.17]. Thus, we omit the
proof.

The following lemma is a counterpart of Lemma 6.19 in [19]. The only difference

is that we have no constant functions in V̂X+ .

Lemma 4.11. The map

(pj, E≤k−1) : V̂X × V̂N+ → V̂X+ ×
k−1⊕
m=0

V̂k−m− 1
2

is an isomorphism. □
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Then one can prove the main result of Step 3 and 4.

Lemma 4.12. The pair in (39) can be identified with the pair

(((L̂X × L̂N+), D(≤0)), (ĈX × ĈN+ , 0))(40)

from ÛX × ÛN+ to V̂X × V̂N+ × V̂k− 1
2
via the isomorphism given in (4.11).

This is a counterpart of Lemma 6.20 in [19]. This is a corollary of Lemma 4.11.

4.4.3. Step 5. This step contains the non-trivial argument which appears in our
situation. We sometimes omit spinors from expressions in this step. Let us consider
an operator

d : L2
k− 1

2
(iΛ0

Y )0 → dL2
k+ 1

2
(iΛ0

Y )0

defined in [19, Step 5]. We denote by d
∗
its formal adjoint. Then we have a family

of maps

DH,t : ÛX × ÛN+ → dL2
k+ 1

2
(iΛ0

Y )⊕ L2
k− 1

2
(iΛ0

Y )

given by

DH,t(a1, a2) :=

(prIm d(a1|Y − a2|Y ), td
∗
(prIm d(a1|Y + a2|Y )) + (1− t) prL2

k+1
2

(iΛ0
Y )(a1|Y − a2|Y )

parametrized by t ∈ [0, 1]. The next proposition is a counterpart of Proposition
6.22.

Proposition 4.13. For any t ∈ [0, 1], the pair((
L̂X , L̂N+ , DY ⊕DH,t

)
,
(
ĈX × ĈN+ , 0

))
(41)

is a BF pair from ÛX × ÛN+ to V̂X × V̂N+ × V̂k− 1
2
In particular,((

L̂X , L̂N+ , DY ⊕DH,1

)
,
(
ĈX × ĈN+ , 0

))
(42)

is stably c-homotopic to (42).

Proof. As in the proof of Proposition 6.22 in [19], we first prove the following result;

Proposition 4.14. Let W ⊂ L2
k+1(X;R) × L2

k+1,α(N
+;R) be the subspace con-

taining all functions (f1, f2) satisfying the following conditions;

(i) ∆fi = 0

(ii) f1(ô) = 0, and

(iii) f1|Y = f2|Y ,

where ô is a fixed point in Y . Then the map ρt :W → L2
k− 1

2

(Λ0
Y )0 defined by

ρt(f1, f2) := 2td
∗
d(f1|Y ) + (1− t)(∂n⃗f1|Y − ∂n⃗f2|Y )

is an isomorphism, where

L2
k− 1

2
(Λ0

Y )0 := {f ∈ L2
k− 1

2
(iΛ0

Y )|
∫
Y

fd volY = 0}.
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Proof of Proposition 4.14. When t = 1, we can use a similar argument in Propo-
sition 2.2 in [17] since we have Proposition 3.5. For t < 1, we can use the same
argument given in Proposition 6.22 in [19]. □

When t = 0, (41) is a BF pair by Lemma 4.12. For each element in the kernel
of (41), there is a unique gauge transformation to an element in the kernel of((

L̂X , L̂N+ , DY ⊕DH,0

)
,
(
ĈX × ĈN+ , 0

))
.

This proves that the kernel of (41) is finite dimensional for any t. The remaining
part is the same as the proof of Proposition 6.22.

□

4.4.4. Step 6. In this step, we see counterparts of Lemma 6.24 and Corollary 6.25
in [19].

Lemma 4.15. The operator

(d∗X , d
∗α

N+ , DH,1) :

ÛX ⊕ ÛN+ → L2
k−1(iΛ

0(X))⊕ L2
k−1,α(iΛ

0(N+))⊕ dL2
k− 1

2
(iΛ0

Y )⊕ L2
k− 1

2
(iΛ0

Y )0

is surjective and its kernel can be written as

(L2
k(iΛ

1
X)CC ⊕ L2

k(S
+
X))× (L2

k,α(iΛ
1(X+))CC ⊕ L2

k,α(S
+
N+)).

Proof. This is obtained by using integration by parts. □

Corollary 4.16. The BF pair (42) is c-stable homotopic to a BF pair

((LX , LN+ , D(≤0)), (CX , CN+ , 0))(43)

from UX × UN+ to VX × VN+ × V (Y ).

Proof. This is a corollary of Lemma 4.9. □

4.4.5. Step 7. We choose finite dimensional vector spaces VX,n and VN+,n in L2
k−1(iΛ

+
X⊕

S−
X) and L2

k−1,α(iΛ
+
N+ ⊕ S−

N+). Note that we denote by V λn

−λn
a family of finite di-

mensional approximation of V (Y ). We introduce a family of subbundles :

Wn,t
X,N+ := {(x1, x2) ∈ UX × UN+ |LX(x1) ∈ VX,n, LN+(x2) ∈ VN+,n

p∞λn
r2(x2) = tp∞λn

r2(x1)

p−λn
−∞ r2(x1) = tp−λn

−∞ r2(x2)}.

This gives a vector bundle
⋃

t∈[0,1]W
n,t
X,N+ → [0, 1]. A point is that the operators

p̂∞0 ◦ r̂ : {x ∈ ÛX |L̂X(x) = 0} → V̂∞
0 (Y )

p̂0−∞ ◦ r̂ : {x ∈ ÛX |L̂N+(x) = 0} → V̂ 0
−∞(Y )
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are compact. The first fact is proved in [22, Theorem 17.1.3. (ii)]. By the same
proof, we can prove that the second operator is also compact. Moreover,

p̂−λn
−∞ ◦ r̂ : {x ∈ ÛX |L̂X(x) = 0} → V̂ −λn

−∞ (Y )

p̂∞λn
◦ r̂ : {x ∈ ÛX |L̂N+(x) = 0} → V̂∞

λn
(Y )

are surjective for a sufficient large n. This is a corollary of the unique continuation
property. These two facts enable us to see that the rank of Wn,t

X,N+ is constant.

Finally, we see the following boundedness result which is a counterpart of [19,
Lemma 6.26].

Proposition 4.17. For any R > 0, there exist N , ε0 with the following significance:

For any n > N , t ∈ [0, 1], (x1, x2) ∈
◦
B(Wn,t

X,N+ , R) and γi : (−∞, 0] →
◦
B(V λn

−λn
, R)

for i = 1, 2 satisfying

(i) ‖pλn

−λn
(r2(x1)− r2(x2))‖L2

k− 1
2

≤ ε

(ii) ‖prVX,n
◦(L̂X+ĈX)(x1)‖L2

k−1
≤ ε, ‖prVN+,n

◦(L̂N++ĈN+)(x2)‖L2
k−1,α

≤ ε,

(iii) γi is approximated trajectory with γi(0) = pλn

−λn
◦ r̂i(xi) for i = 1 and 2,

we have ‖x1‖L2
k+1

≤ R+1, ‖x2‖L2
k+1,α

≤ R+1, ‖γi(t)‖L2

k− 1
2

≤ R+1 for i = 1 and

2.

Proof. The proof is essentially identical with [37, Lemma 1]. □

Then the restricting family onWn,t
X,N+ defines a homotopy between (37) and (43)

This completes the proof of the gluing theorem.
At the end of this subsection, we see the following corollary of Theorem 1.2.

Corollary 4.18. Let Y be a rational homology 3-sphere equipped with a contact
structure ξ. If ξ has a symplectic filling with b1 = 0, then (3) has a non-equivariant
stable homotopy left inverse. In particular, (3) is not stably null-homotopic. More-
over, a left inverse is given by (the dual of) the relative Bauer-Furuta invariant for
the filling.

Proof. Let (X,ω) be such a symplectic filling of (Y, ξ). We see the following maps:

Sm+2n+
c21(sX )−σ(X)

4

Ψ(X,sX )−−−−−→ Σm+b+(X)+2nSWF (Y )

Ψ(Y,ξ)∧id

y
Σ

1
2−d3(−Y,[ξ])SWF (−Y ) ∧ Σm+b+(X)+2nSWF (Y )∥∥∥

Σ
1
2−d3(−Y,[ξ])+m+b+(X)+2nSWF (−Y ) ∧ SWF (Y )

id∧η

y
S

1
2−d3(−Y,[ξ])+m+b+(X)+2n

.

(44)
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The gluing theorem implies that (id∧ η) ◦ (Ψ(Y, ξ)∧ id) ◦Ψ(X,sX) and Ψ(X,sω,ξ)

are stably homotopic. Since (X,ω) is a symplectic filling, Ψ(X,sω,ξ) is a homotopy
equivalence ([15]). Note that by the definition of d3(Y, [ξ]), we can see

m+ 2n+
c21(sX)− σ(X)

4
=

1

2
− d3(−Y, [ξ]) +m+ b+(X) + 2n.

So the dimension of the spheres of the domain and the codomain are equal. This
implies the conclusion.

□

Remark 4.19. Corollary 4.18 implies that, under the same assumption as Corol-
lary 4.18, the dual map̂

Ψ(Y, ξ) : Σ− 1
2−d3(Y )SWF (Y, s) → S0

has a non-equivariant stable homotopy right inverse.

4.5. Calculations via gluing theorem. In this subsection, we give several cal-
culations of SWF homotopy contact invariants by the use of the gluing theorem.

Example 4.20. We consider the standard contact structure ξstd on S
3. Our invariant

lies in
Ψ(S3, ξstd) ∈ πS

0
∼= Z.

Since (S3, ξstd) has a standard symplectic filling (D4, ωstd), we have

η ◦ (Ψ(D4, sωstd
) : S0 → S0) ∧ (Ψ(S3, ξstd) : S

0 → S0)

= Ψ(D4, sωstd
, ξstd) : S

0 → S0.

Since Ψ(D4, sωstd
, ξstd) : S

0 → S0 is a ±1 map by [15], we conclude that

Ψ(S3, ξstd) ∈ πS
0
∼= Z.

is a generator.

We also give several calculations of our invariants for Σ(2, 3, r). The following
calculations of Seiberg-Witten Floer homotopy types were given in [36], [38] using
the result of [40]. The d3-invariants can be computed from the results [43], [13] and
[54]. Here we use a relation between the Q-grading of Heegaard Floer homology
and d3 given in [45, Proposition 4.6].

SWF (Y, s) non-equivariant d3(Y ) Σ− 1
2
−d3(Y )SWF (Y, s)

Σ(2, 3, 12n+ 5) Σ
1
2
H(S0 ∨ ∨nΣ

−1G+) S2 ∨ ∨2n(S
2 ∨ S1) 3

2
S0 ∨ ∨2n(S

0 ∨ S−1)

Σ(2, 3, 12n− 1) G̃ ∨ ∨n−1ΣG+ S2 ∨ ∨2n−1(S
2 ∨ S1) 3

2
S0 ∨ ∨2n−1(S

0 ∨ S−1)

Σ(2, 3, 12n− 5) Σ− 1
2
H(G̃ ∨ ∨n−1ΣG+) S0 ∨ ∨2n(S

0 ∨ S−1) − 1
2

S0 ∨ ∨2n(S
0 ∨ S−1)

Σ(2, 3, 12n+ 1) S0 ∨ ∨nΣ
−1G+ S0 ∨ ∨2n(S

0 ∨ S−1) − 1
2

S0 ∨ ∨2n(S
0 ∨ S−1)

−Σ(2, 3, 12n+ 5) Σ− 1
2
H(S0 ∨ ∨nG+) S−2 ∨ ∨2n(S

−2 ∨ S−1) − 3
2

S−1 ∨ ∨2n(S
0 ∨ S−1)

−Σ(2, 3, 12n− 1) Σ−H(T̃ ∨ ∨n−1Σ
2G+) S−2 ∨ ∨2n−1(S

−2 ∨ S−1) − 3
2

S−1 ∨ ∨2n−1(S
0 ∨ S−1)

−Σ(2, 3, 12n− 5) Σ− 1
2
H(T̃ ∨ ∨n−1Σ

2G+) S0 ∨ ∨2n(S
0 ∨ S1) 1

2
S−1 ∨ ∨2n(S

0 ∨ S−1)

−Σ(2, 3, 12n+ 1) S0 ∨ ∨nG+ S0 ∨ ∨2n(S
0 ∨ S1) 1

2
S−1 ∨ ∨2n(S

0 ∨ S−1)

Here G+ , G̃ and T̃ are the same notation given in [38]. We remark that the
value of d3 in the table is only for contact structures which can have a symplectic
filling.
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Example 4.21. For example, we can detect the dual of our invariant for the fillable
contact structure ξstd on Y = Σ(2, 3, 5) as a homotopy equivalence

Ψ̂(Y, ξ) : Σ− 1
2−d3(Y )SWF (Y, s) = S0 → S0,

where Ψ̂(Y, ξ) is the dual map of Ψ(Y, ξ) introduced in the end of Subsection 3.6.
Similarly, any symplectic fillable contact structure ξ on any spherical 3-manifold
can be computed as

(Σ− 1
2−d3(Y )SWF (Y, s) = S0 →

Ψ̂(Y,ξ)
S0) = ± Id .

Moreover, we can similarly determine our invariant for a fillable contact structure
of −Σ(2, 3, 11).

5. Applications to symplectic fillings

In this section, by the use of the gluing theorem and K or KO theory, we give
several constraints of spin symplectic fillings. Moreover, at the end of this section,
we also treat the extension property of a positive scalar curvature metric on a
4-manifold with boundary.

Seiberg-Witten Floer homotopy type is a ”formal desuspension” of a certain
space, so in order to apply KO theory, we have to do some suspension in order to
cancel the ”formal desuspension”. More explicitly, for a Spinc cobordism (W, sW ) :
(Y, s) → (Y ′, s′) with b1(W ) = b1(Y ) = b1(Y

′) = 0, the relative Bauer-Furuta
invariant is a morphism

BF (W, sW ) : ΣR−b+(W )⊕C
c21(sW )−σ(W )

8 SWF (Y, s) → SWF (Y ′, s′)

and in order to apply KO-theory, we have to choose (m,n) ∈ Z×Q large enough

such that n +
c21(sW )−σ(W )

8 is an integer. Then, we obtain an S1 equivariant con-
tinuous map

ΣRm−b+(W )⊕Cn+
c21(sW )−σ(W )

8 SWF (Y, s) → SWF (Y ′, s′).

Similarly, when sW is spin, the relative Bauer-Furuta invariant is a morphism

BF (W, sW ) : ΣR̃−b+(W )⊕H−σ(W )/16

SWF (Y, s) → SWF (Y ′, s′)

and in order to apply KO-theory, we have to choose (m,n) ∈ Z×Q large enough

such that n− σ(W )
16 is an integer and obtain a Pin(2) equivariant continuous map

ΣR̃m−b+(W )⊕Hn−σ(W )/16

SWF (Y, s) → ΣR̃m⊕Hn

SWF (Y ′, s′).

For example, RP 3 = L(2, 1) = S3
−2(unknot) oriented as quotient S3/Z2 has

two isomorphism classes of Spinc structures s0, s1 , where s0, s1 are determined as
follows: On the cobordism W : S3 → RP 3 obtained by a 2-handle attachment, we
have Spinc structures ŝ0, ŝ1 such that

〈c1(ŝi), h〉 = 2i− 2 i = 0, 1.
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s0, s1 are the restriction of ŝ0, ŝ1. In particular,

c1(ŝ1) = 0

and thus ŝ1, s1 is spin. We can check that s0 is also spin. The intersection form of
W is [−2] and thus its signature is σ(W ) = −1.

It is proved in [36] and [37] that the Seiberg-Witten Floer homotopy type of
(RP 3, s0) is given by

SWF (RP 3, s0) = (C−1/8)+ = (H−1/16)+.

The Seiberg-Witten Floer homotopy type of (RP 3, s1) is given by

SWF (RP 3, s1) = (C1/8)+ = (H1/16)+.

The relative Bauer-Furuta invariant of (W, ŝ0) is

BF (W, ŝ0) : (R−b+(W ) ⊕ C
c21(ŝ0)−σ(W )

8 )+ = (R−1 ⊕ C−1/8)+

→ SWF (RP 3, s0) = (C−1/8)+.

Here we use the fact that

c21(ŝi) = − (2i− 2)2

2
.

In order to take KO-theory, we have to choose (m,n) ∈ Z × Q large enough such
that n− 1

8 is an integer and obtain a continuous map

(Rm−1 ⊕ Cn−1/8)+ → (Rm ⊕ Cn−1/8)+

(W, ŝ1) gives an example of spin cases. The relative Bauer-Furuta invariant of
(W, ŝ1) is

BF (W, ŝ1) : (R̃−b+(W ) ⊕H−σ(W )/16)+ = (R̃−1 ⊕H1/16)+

→ SWF (RP 3, s1) = (H1/16)+

and in order to take Pin(2) equivariant KO-theory, we have to choose (m,n) ∈
Z×Q large enough such that n+ 1

16 is an integer.

5.1. Two constraints for symplectic fillings of homotopy L-spaces. In this
subsection, we will give a constraint for symplectic fillings. However, all results in
this subsection also can be proved by using monopole Floer homology or Heegaard
Floer homology. In order to introduce our theorem in this section, we introduce a
notion of (Seiberg-Witten) homotopy L-spaces.

Definition 5.1. A Spinc rational homology 3-sphere (Y, s) is a Floer homotopy
L-space if

SWF (Y, s) = (Cδ)+(45)

for some rational number δ. A rational homology 3-sphere Y is a Floer homotopy
L-space if, for any Spinc structures on Y , (Y, s) is a homotopy L-space.
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Note that δ coincides with the Frøyshov invariant δ(Y, s). We compare homo-
topy L-spaces with L-spaces. Usually, L-space is defined using the Heegaard Floer

homology. For example, one definition is ĤF (Y ) is free and

rank(ĤF (Y ) :=
⊕
s

ĤF (Y, s) = |H2(Y ;Z)|.

In the work of Kutluhan, Lee, and Taubes [24], [25], [26], [27], [23] , alternatively,
the work of Colin, Ghiggini, and Honda [8] [9] [7] and Taubes [49], [50], [51], [52],
[53], it is proved that

ĤF ∗(Y ) ∼= H̃M∗(Y ) :=
⊕
s

H̃M∗(Y, s).(46)

Note that Lidman-Manolescu’s([28, Corollary 1.2.2]) constructed an isomorphism

H̃M∗(Y, s) ∼= H̃∗(SWF (Y, s)).(47)

By combining these two isomorphisms, one can confirm that any homotopy L-space
is an L-space.

Question 5.2. Is there an L-space which is not a homotopy L-space?

However, the authors do not know whether the converse is true or not. Of course,
spherical 3-manifolds are Floer homotopy L-spaces. Moreover, F.Lin and Lipnowski
([30]) provided hyperbolic examples of Floer homotopy L-spaces.

The proofs of Theorem 1.4 are similar to the proof of Theorem 5.3.

Theorem 5.3. Let (Y, ξ) be a contact rational homology 3-sphere. Suppose that
(Y, sξ) is a Floer homotopy L-space. Then, for any symplectic filling (X,ω) of
(Y, ξ), the following two facts hold:

(i) b+(X) = 0 and

(ii)
c1(sω)

2 + b2(X)

8
= δ(Y, sξ).

Note that the second equality can be regarded as the ”opposite direction” of
Frøyshov’s inequality([11]), which is a generalization of Donaldson’s diagonalization
theorem to negative definite 4-manifolds with boundary. Philosophically, F. Lin’s
result([29]) can be seen as constraints corresponding to Donaldson’s Theorem B
and C.

The result (i) was proved in the case of 3-manifolds admitting a positive scalar
curvature metric [34], L-spaces [44] and [10]. The result (ii) follows from the fact
that Kronheimer-Mrowka-Ozsváth-Szabó’ s contact invariant ψ(Y, ξ) is contained
in the kernel of the U -map and non-zero for strongly fillable contact structure, so
it belongs to the bottom of the U -tower. We give a homotopy theoretic proof of
Theorem 5.3.
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Proof of Theorem 5.3. As in the proof of Corollary 4.18, we obtain the following
diagram

Sm+2n+
c21(sX )−σ(X)

4

Ψ(X,sX )−−−−−→ Σm+b+(X)+2nSWF (Y )

Ψ(Y,ξ)∧id

y
Σ

1
2−d3(−Y,[ξ])SWF (−Y ) ∧ Σm+b+(X)+2nSWF (Y )∥∥∥

Σ
1
2−d3(−Y,[ξ])+m+b+(X)+2nSWF (−Y ) ∧ SWF (Y )

id∧η

y
S

1
2−d3(−Y,[ξ])+m+b+(X)+2n

,

(48)

where (m,n) ∈ Z×Q such that n+
c21(sX)−σ(X)

8 ∈ Z. This diagram commutes up to
stable homotopy. The gluing theorem implies that (id∧ η) ◦ (Ψ(Y, ξ)∧ id) ◦Ψ(X,sX)

and Ψ(X,sω,ξ) are stably homotopic. Since (X,ω) is a symplectic filling, Ψ(X,sω,ξ)

is a homotopy equivalence. This implies

c21(sX)− σ(X)

4
= b+(X) + 2δ(Y, sξ).

Moreover, the mapping degree of Ψ(X,sX) is ±1. Apply [4, Proof of 1.3] to the

S1-equivariant Bauer-Furuta invariant

Ψ(X,sX) : (Rm ⊕ C
c21(sX )−σ(X)

8 +n)+ → (Rm+b+(X) + Cn+δ)+,

we have b+(X) = 0. Thus, we have
c1(sω)

2 + b2(X)

8
= δ(Y, sξ). □

5.2. Equivariant KO theory. In this subsection, we will use KO theory. We
treat a class of symplectic fillings (X,ω) whose sω are spin. In the same spirit of
(i) in Theorem 5.3, we give upper bounds of b+ for spin symplectic fillings.

In particular, we give a proof of Theorem 1.4. We will use the relative Bauer-
Furuta invariant of ”upside-down” X† of X in this section, which is a morphism

Ψ(X†, sω) : SWF (−Y, sξ) → (R̃b+(X) ⊕H
σ(X)
16 )+.

and in order to apply KO-theory, we need to take a suspension

Ψ(X†, sω) : Σ
R̃m⊕Hn

SWF (−Y, sξ) → (R̃b+(X)+m ⊕H
σ(X)
16 +n)+.

such that n + σ(X)
16 ∈ Z. Notice that the sign +σ(X)

16 is different from the one we
mentioned at the beginning of this section.

5.2.1. Proof of Theorem 1.4. We focus on the proof of Theorem 1.4. We write
G = Pin(2) in this section. The following periodicity is known:
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Lemma 5.4. [31, Section 2.2]Let k and l be non-negative integers. Then we have
isomorphisms

K̃OG((R̃k ⊕Hl)+) ∼= K̃OG((R̃k+8 ⊕Hl)+)

∼= K̃OG((R̃k+4 ⊕Hl+1)+) ∼= K̃OG((R̃k ⊕Hl+2)+).

Let (Y, s) be a spin rational homology 3-sphere. We consider an equivalence
relation ∼KO on

Z×
{
l ∈ 1

16
Z
∣∣∣∣l +

σ(X)

16
∈ Z

}
by the following way;

• (k, l) ∼KO (k + 8, l),

• (k, l) ∼KO (k + 4, l + 1), and

• (k, l) ∼KO (k, l + 2),

where σ(X) is the signature of a compact spin 4-manifold bounded by (Y, s). The

notion JKO(Y, s) denotes the quotient set Z ×
{
l ∈ 1

16Z
∣∣∣l + σ(X)

16 ∈ Z
}

divided by

∼KO. We consider representatives of JKO(Y, s) as{
[(0, l0)], [(1, l1)], [(2, l2)], [(3, l3)]

∣∣∣∣li ∈ {0, 1

16
, · · · , 31

16

}
, li +

σ(X)

16
∈ Z

}
.

Definition 5.5. For a rational homology 3-sphere Y with a spin structure s and

[(m,n)] ∈ JKO with n+ σ(X)
16 ∈ Z, we have two groups

KOM−m,−n
G (Y, s) := K̃OG(Σ

mR̃⊕nHSWF (Y, s))

and its reducible part

KOM
−m

G (Y, s) := K̃OG((Σ
mR̃SWF (Y, s))S

1

).

We call KOM−m,−n
G (Y, s) Seiberg-Witten Floer KO-homology.

We associate a homomorphism

i∗m,n : KOM−m,−n
G (−Y, sξ) → KOM

−m

G (−Y, sξ)

and
φm : KOM

−m

G (−Y, sξ) → Z

where i is the inclusion map (ΣmR̃SWF (−Y ))S
1 → ΣmR̃⊕nHSWF (−Y ) and the

map φm is introduced by Jianfeng Lin [31, Definition 5.1].
In this section, we prove the following theorem stated in the introduction:

Theorem 5.6. Let (Y, s) be a spin rational homology 3-sphere and (m,n) be a
representative of an element in JKO(Y, s). When

−d3(Y, [ξ])−
1

2
+m+ 4n ≡ 0, 4 mod 8,
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suppose also that the following induced map from φm ◦ i∗m,n

(KOM−m,−n
G (−Y, sξ)/Torsion)⊗ Z2 → Z2

is injective. When

−d3(Y, [ξ])−
1

2
+m+ 4n ≡ 1, 2 mod 8,

suppose also that the following induced map from φm ◦ i∗m,n

KOM−m,−n
G (−Y, sξ)⊗ Z2 → Z2

is injective.
Then any symplectic filling (X,ω) of (Y, ξ) satisfying sω is spin and b1(X) = 0

satisfies

b+(X) ≤ e(m),

where

e(m) =


0 m ≡ 0, 1, 2, 4 mod 8

1 m ≡ 3, 7 mod 8

2 m ≡ 6 mod 8

3 m ≡ 5 mod 8.

In particular,

b+(X) ≤ 3.

Proof. Note that for any spin filling (X,ω) with b1(X) = 0,

b+(X) +m+
σ(X)

4
+ 4n = −d3(Y, [ξ])−

1

2
+m+ 4n

by the definition of d3. Let m be a sufficiently large integer and n be a sufficiently

large rational number such that n+ σ(X)
16 is an integer. Denote by X† the ” upside-

down” cobordism −Y → ∅ obtained from X, which is the same as X as an oriented
manifold (not orientation reversed one), and consider its relative Bauer-Furuta
invariant

Ψ(X†, sω) : Σ
R̃m⊕Hn

SWF (−Y, sξ) → (R̃b+(X)+m ⊕H
σ(X)
16 +n)+.

We denote our contact invariant by

Ψ(Y, ξ) : (Rb+(X)+m+
σ(X)

4 +4n)+ → ΣR̃m⊕Hn

SWF (−Y, sξ),
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which is a non-equivariant map. Consider the following commutative diagram:

K̃O((Rb+(X)+m+
σ(X)

4 +4n)+)

Ψ(Y,ξ)∗
x

K̃O((R̃b+(X)+m ⊕H
σ(X)
16 +n)+)

Ψ(X†,sω)∗−−−−−−−→ K̃O(ΣR̃m⊕Hn

SWF (−Y, sξ))

r′

x r

x
K̃OG((R̃b+(X)+m ⊕H

σ(X)
16 +n)+)

Ψ(X†,sω)∗−−−−−−−→ K̃OG(Σ
R̃m⊕Hn

SWF (−Y, sξ))y i∗m,n

y
K̃OG((R̃b+(X)+m)+)

(Ψ(X†,sω)S
1
)∗−−−−−−−−−−→ K̃OG((R̃m)+)

φb+(X)+m

y φm

y
Z 2

αm+1+···+α
m+b+(X)

−−−−−−−−−−−−−−→ Z

,

(49)

where r and r′ are the forgetful maps, φk is defined in [31, Definition 5.1] and

αi =

{
1 i ≡ 1, 2, 3, 5 mod 8

0 otherwise

as in [31, Definition 5.2].
When

b+(X) +m+
σ(X)

4
+ 4n = −d3(Y, [ξ])−

1

2
+m+ 4n ≡ 0, 1, 2, 4 mod 8,

the forgetful map

r′ : K̃OG((R̃b+(X)+m ⊕H
σ(X)
16 +n)+) → K̃O((R̃b+(X)+m ⊕H

σ(X)
16 +n)+)

can be regarded as

K̃OG(S
0) → K̃O(S0) ∼= Z when− d3(Y, [ξ])−

1

2
+m+ 4n ≡ 0 mod 8,

K̃OG(R̃+) → K̃O(R̃+) ∼= Z/2 when− d3(Y, [ξ])−
1

2
+m+ 4n ≡ 1 mod 8,

K̃OG(R̃2+) → K̃O(R̃2+) ∼= Z/2 when− d3(Y, [ξ])−
1

2
+m+ 4n ≡ 2 mod 8,

K̃OG(R̃4+) → K̃O(R̃4+) ∼= Z when− d3(Y, [ξ])−
1

2
+m+ 4n ≡ 4 mod 8,

respectively via Bott periodicity

K̃OG((R̃k ⊕Hl)+) ∼= K̃OG((R̃k+8 ⊕Hl)+)

∼= K̃OG((R̃k+4 ⊕Hl+1)+) ∼= K̃OG((R̃k ⊕Hl+2)+).

For k ≡ 0, 1, 2, 4 mod 8, fix a generator ek ∈ K̃OG(R̃k+) as follows:
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• In the case k ≡ 0 mod 8, e0 corresponds to 1 ∈ RO(G) ∼= K̃OG(S
0).

• In the case k ≡ 1 mod 8, K̃OG(R̃+) ∼= Z and e1 be either of the generators.

• In the case k ≡ 2 mod 8, K̃OG((R̃2)+) ∼= Z⊕⊕m≥0Z/2 and the generators
are η(D)2 and γ(D)2Amc, where the notation is explained in [46, Proposi-
tion 5.5]. The element e3 is the generator corresponding to η(D)2.

• In the case k ≡ 4 mod 8, K̃OG((R̃4)+) is freely generated by

λ(D), Dλ(D), Anλ(D) and Amc,

where the notation is explained in [46, Proposition 5.5]. The element e4 is
the generator corresponding to λ(D).

For the above description of K̃OG((R̃k)+), see [46, Proposition 5.5] and [31, The-
orem 2.13] ). We can check that the image of ek under the forgetful map is a

generator of K̃O((R̃k)+). In each case of k, we set

x := Ψ(X†, sω)
∗ek ∈ K̃OG(Σ

R̃m⊕Hn

SWF (−Y, sξ)).

Theorem 4.1 implies that the composition

(Rb+(X)+m+
σ(X)

4 +4n)+
Ψ(Y,ξ)−−−−→ ΣR̃m⊕Hn

SWF (−Y, sξ)
Ψ(X†,sω)−−−−−−→ (R̃b+(X)+m ⊕H

σ(X)
16 +n)+

is homotopic to the Bauer-Furuta version of Kronheimer-Mrowka’s invariant of
(X, sω). The facts that the mapping degree of the Bauer-Furuta version Ψ(X, ξ, sω)
of Kronheimer-Mrowka’s invariant equals Kronheimer-Mrowka’s invariant up to
sign and the non-vanishing theorem of Kronheimer-Mrowka’s invariant for weak
symplectic fillings (Theorem1.1 in [21]), which imply that this map is a homotopy
equivalence. Thus, the composition

K̃O((R̃b+(X)+m ⊕H
σ(X)
16 +n)+)

Ψ(X†,sω)∗−−−−−−−→

K̃O(ΣR̃m⊕Hn

SWF (−Y, sξ))
Ψ(Y,ξ)∗−−−−−→ K̃O((Rb+(X)+m+

σ(X)
4 +4n)+)

is an isomorphism, so the image of r′(ek) under this map is

±1 ∈ K̃O((Rb+(X)+m+
σ(X)

4 +4n)+) ∼= Z or Z/2.

(i) When

b+(X) +m+
σ(X)

4
+ 4n = −d3(Y, [ξ])−

1

2
+m+ 4n ≡ 0, 4 mod 8,

commutativity of the diagram implies that

x 6= 0 ∈ (K̃OG(Σ
R̃m⊕Hn

SWF (−Y, sξ))/Torsion)⊗ Z/2.

Indeed, if x were written as x = 2x′+(torsion) for some x′ ∈ K̃OG(Σ
R̃m⊕Hn

SWF (−Y, sξ)),

±1 = Ψ(Y, ξ)∗ ◦ r(x) = 2Ψ(Y, ξ)∗ ◦ r(x′) ∈ K̃O((Rb+(X)+m+
σ(X)

4 +4n)+) ∼= Z,

which is a contradiction.
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(ii) When

b+(X) +m+
σ(X)

4
+ 4n = −d3(Y, [ξ])−

1

2
+m+ 4n ≡ 1, 2 mod 8,

commutativity of the diagram implies that

x 6= 0 ∈ K̃O(ΣR̃m⊕Hn

SWF (−Y, sξ))⊗ Z/2.

Indeed, if x were written as x = 2x′ for some x′ ∈ K̃OG(Σ
R̃m⊕Hn

SWF (−Y, sξ)),

±1 = Ψ(Y, ξ)∗ ◦ r(x) = 2Ψ(Y, ξ)∗ ◦ r(x′) = 0 ∈ K̃O((Rb+(X)+m+
σ(X)

4 +4n)+) ∼= Z/2,

which is a contradiction.

The injectivity hypothesis of the theorem implies that φm ◦ i∗m,n(x) ∈ Z is not even.

Now, suppose to the contrary that b+(X) > e(m). Since

e(m) = min{b ∈ Z≥1|αm+1 + · · ·+ αm+b ≥ 1} − 1,

we have
αm+1 + · · ·+ αm+b+(X) ≥ 1.

and thus 2αm+1+···+αm+b+(X) is even. Commutativity of the lower part of the dia-
gram implies φm ◦ i∗m,n(x) is even, contradicting the above argument. □

5.2.2. Examples. The following result is contained in the F.Lin’s argument of [29],
but we give an alternative proof using Theorem 1.4.

Proposition 5.7. Let (X,ω) be a symplectic filling of some contact structure of
−Σ(2, 3, 11) such that sω is spin and b1(X) = 0. Then b+(X) = 1.

Proof. In [13], it is showed that every tight (in particular fillable) contact structure
ξ on −Σ(2, 3, 11) have

d3(−Σ(2, 3, 11), ξ) = −3

2
.

Since

d3(−Σ(2, 3, 11), ξ) = −σ(X)

4
− b+(X)− 1

2

and Rokhlin invariant of −Σ(2, 3, 11) is zero,

b+(X) = −σ(X)

4
+ 1

must be odd. Thus, it is enough to show b+(X) ≤ 1. Manolescu showed in [37] and
[38] that

SWF (Σ(2, 3, 11)) = G̃,

i.e. the unreduced suspension of Pin(2). Take sufficiently large m ≡ −1 mod 8,
n ≡ 0 mod 2, so that

−d3(−Σ(2, 3, 11), ξ)− 1

2
+m+ 4n ≡ 0 mod 8
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holds. As in section 8.1 in [31], the exact sequence for pair for (ΣR̃m

G̃, (ΣR̃m

G̃)S
1

)
yields

· · · → K̃OG((R̃m+1)+)
A−→ K̃O(Sm+1)

→ K̃OG(Σ
R̃m

G̃) → K̃OG((R̃m)+) → K̃O(Sm) → · · · .

Here the map A can be regarded as the augmentation map RO(G) → Z, which is

surjective. Note also that K̃OG((R̃m)+) = 0 for m ≡ −1 mod 8. Thus the exact

sequence implies that K̃OG(Σ
R̃m

G̃) → K̃OG((R̃m)+) is isomorphism and so is i∗m,n.
Since the map

φm : K̃OG((R̃m)+) → Z

is given by the projection to the Z-summand under the isomorphism

K̃OG((R̃m)+) ∼= Z⊕⊕n≥1Z/2

as described in Theorem 2.13, Definition 5.1 in [31], the hypothesis of the theorem
is satisfied and we can conclude b+(X) ≤ 1. Here we use m ≡ 7mod 8. □
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