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Preface
In this paper, we consider some singular limit problems for several non-convex func-

tionals. This paper consists of three chapters, which characterize the limit of a sequence
of functionals in the sense of Γ-convergence. In considering Γ-convergence, it is important
to determine the topology in the function space, which is the domain of definition of
the functional. Choosing an appropriate topology according to the functional, we obtain
several interesting singular limits. We are able to find the relation between minimizers of
discrete and continuous models. Moreover, the detailed shape of the minimizer depending
on the problem.

In Chapter 1, we introduce a random discrete energy of the energy for knots called the
O’Hara energy, and discuss the convergence to continuous energy and the compactness of
the discrete energy. Moreover, we show convergence stronger than that for conventional
discretization. Specifically, we are successful to show locally uniform convergence and
compactness of discrete energy in a space involving the optimal transport theory. By
introducing a random discrete approximation of O’Hara energy using random variables,
we show the convergence from a minimizer to a minimizer.

In Chapter 2, we consider the singular limit problem of a single-well Modica-Mortola
energy and the Kobayashi–Warren–Carter energy in a one-dimensional domain. In this
study, we introduce a finer topology of ”graph convergence of functions” into the func-
tion space, and derive the singular limit of a single-well Modica-Mortola energy and the
Kobayashi–Warren–Carter energy energies in the one-dimensional domain in the sense of
Γ-convergence. The energy functional obtained as this singular limit is also shown to have
the remarkable property of a minimizing function that is concave concerning the strength
of jumps of a function. To characterize the limit under graph convergence, a new idea
that is especially useful for one-dimensional problems is introduced. It is a change of pa-
rameter of the variable by the arc-length parameter of its graph, which is called unfolding
by the arc-length parameter in this chapter.

In Chapter 3, as a continuation of Chapter 2, we consider the singular limit problems of
a single-well Modica-Mortola energy and the Kobayashi–Warren–Carter energy. However,
unlike Chapter 2, the domain is multidimensional. We introduce a new convergence
concept called sliced graph convergence. Sliced graph convergence is, roughly speaking,
graph convergence in almost every slice line for dense direction. This is because the
method used to show Γ-convergence in multi-dimensional domains, called the ”slicing
method,” is also used for finer topology.

Chapter 1 has been published in [1], while Chapter 2 is essentially the same as the
publication [2].

[1] J.Okamoto, Random discretization of O’Hara knot energy, Advances in Mathemat-
ical Sciences and Applications, Vol.30, pp.507-520, (2021)

[2] Y.Giga, J.Okamoto, M.Uesaka, A finer singular limit of a single-well Modica–Mortola
functional and its applications to the Kobayashi–Warren–Carter energy, Advances
in Calculus of Variations, DOI : 10.1515/acv- 2020-0113，(2021)
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Chapter 1

Random discretization of O’Hara
knot energy

In this chapter, we consider the random discrete approximation of O’Hara energy. O’Hara
energy is the energy defined for a knot, and O’Hara energy was introduced for defining the
standard shape for each knot class (equivalence class by ambient isotopy) by variational
method. If the exponent is taken so that the energy is invariant Möbius transformation,
O’Hara energy is called Möbius energy. Although discretization for various Möbius en-
ergies has been defined to analyze the shape of the minimizer so far, only Γ-convergence
to the original energy has been shown for a conventional discretization. In this study, we
are successful to show locally uniform convergence and compactness of discrete energy in
a space involving the optimal transport theory, by introducing random discrete approxi-
mation of O’Hara energy using random variable and we can show convergence from the
minimizer to the minimizer.

1.1 Introduction

Let A be the set of all closed regular curves that is parametrized by arc length in Rd, with
no self-intersections and with total length L i.e. A := {γ ∈ C0,1(R/LZ,Rd) | |γ′(x)| =
1 a.e. x ∈ R/LZ}. For α, p ∈ (0,∞), the O’Hara (α, p)-energy Eα,p : A → R ∪ {+∞} is
defined as follows:

Eα,p(γ) :=
∫
(R/LZ)2

Mα,p(γ)dxdy, (1.1)

where

Mα,p(γ)(x, y) =

(
1

|γ(x)− γ(y)|α
− 1

D(γ(x), γ(y))α

)p
, (x, y) ∈ (R/LZ)2 (1.2)

and D is the length of a shortest arc of the curve γ connecting the two points γ(x) and
γ(y), i.e.

D(γ(x), γ(y)) = min{L − |x− y|, |x− y|}. (1.3)

This energy was introduced and investigated by O’Hara in [6]-[9] for defining the standard
shape for each knot class by variational method. In the case of α = 2, p = 1, due to
energy invariance under Möbius transformation, this energy is called ”Möbius energy”.
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It is possible to show the existence of minimizer in the ”prime knot”. R. Kusner and
J. Sullivan conjectured the minimizer in composite knot class may not exist [13]. This
conjecture was established by numerical calculation with discretization of Möbius energy.

In this paper, we introduce the weighted O’Hara energy Eα,pρ : A → R ∪ {+∞} with
weight ρ : R/LZ → R≥0 defined

Eα,pρ (γ) :=

∫
(R/LZ)2

Mα,p(γ)ρ(x)ρ(y)dxdy. (1.4)

Our main goal is to construct random discretization of this O’Hara energy and to show
Γ-convergence in a space involving the optimal transport theory. We even show locally
uniform convergence and compactness.

1.1.1 Known results

Various discretizations of O’Hara energy are defined not only for numerical calculation
but also for shape analysis of minimizer.

First, D. Kim and R. Kusner constructed a Möbius energy for polygonal knots in [3].
This energy, defined on the class of arc length parametrizations of polygons of length

L with n segments, is given by

En(P ) :=
n∑

i,j=1
i ̸=j

(
1

|P (aj)− P (ai)|2
− 1

d(aj, ai)2

)
d(ai+1, ai)d(aj+1, aj),

where ai’s are consecutive points on R/LZ, or interval [0,L] if we consider the polygon
parametrized over an interval. This energy scales invariant. A slight variant would be to
take 2−1(d(ak−1, ak) + d(ak, ak+1)) instead of d(ak+1, ak).

S. Scholtes proved that this discretization Γ-converges to the Möbius energy in [17].
He furthermore showed that this energy is minimized by regular n-gons.

Second, J. Simon [5] defined the so-called minimal distance energy for a polygon P by

Ems (P ) = Ẽms (P )− Ẽms (Rm) + 4

with

Ẽms (P ) =
∑

|i−j|>1

|Xi||Xj|
dist(Xi, Xj)2

,

where Rn is the regular n-gon. Note, that this energy scales invariant. Third, Möbius
invariant discrete energy is introduced in [15] and show Γ-convergence is established in
W 1,q-metric sense. The definition of that energy is as follows:

Emcos(P ) =
∑

dm(i,j)>1

|∆iP ||∆jP |
|∆j

iP ||∆
j+1
i+1P |

(
1− 1

2
(cos(αij) + cos(α̃ij))

)
,

where P (θi) is a vertex of a closed polygon, i = 1, 2, ...,m and ∆j
iP := P (θj) − P (θi),

∆iP = ∆i+1
i P , αij be the angle of the crossing of the circles through at the points

P (θi), P (θi+1), P (θj) and P (θj), P (θj+1), P (θi) and α̃ij be the angle of the crossing of the
circles through at the points P (θi), P (θi+1), P (θj+1) and P (θj), P (θi+1), P (θj+1).
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1.1.2 Main results

We introduce a new discretization of O’Hara (α, p)-energy using random variables on
R/LZ.

Definition 1.1.1 (Random O’Hara Energy). Let {Xi}i∈N be a sequence of i.i.d. random
variables on R/LZ with probability density function ρ.

Random O’hara energy Rn,ρEα,p : A → R ∪ {+∞} is defined as follow:

Rn,ρEα,p(γ) :=
1

n2

n∑
i,j=1
i ̸=j

(
1

|γ(Xi)− γ(Xj)|α
− 1

D(γ(Xi), γ(Xj))α

)p
.

Remark 1. Since {Xi}i∈N has the probability density function ρ, we always have
P(Xi = Xj) = 0 for any i 6= j. Therefore Rn,ρEα,p is well-defined almost surely.

Then we introduce the space for comparing continuous model and discrete model as
follows.

Definition 1.1.2 (The TLq metric space [10]). TLq metric is defined on particular spaces
of the family

TLq(R/LN) := {(µ, f) | µ ∈ P(R/LN), f ∈ Lq(R/LZ;µ)} ,

where 1 ≤ q < ∞ and P(R/LN) denotes the set of Borel probability measure on R/LN.
For (µ, f) and (ν, g) in TLq we define the distance

dTLq

(
(µ, f), (ν, g)

)
:= inf

π∈Γ(µ,ν)

(∫
(R/LZ)2

(|x− y|q + |f(x)− g(y)|q) dπ(x, y)
)1/q

,

where Γ(µ, ν) is the set of all coupling (or transportation plans) between µ and ν, that
is, the set of all Borel probability measures on (R/LZ)2 for which the marginal on the
first variable is µ and the marginal on the second variable is ν. It is shown in [11] that
dTLq is actually a metric. The distance dTLq is called a transportation distance between
functions defined on graph. The TLq topology provides a general and versatile way to
compare functions in a discrete setting with functions in a continuum setting. It is a
generalization of the weak convergence of measures and Lq convergence of functions.

Definition 1.1.3. Let {Xi}i∈N be a sequence of i.i.d. random variables and let us denote
by νn the empirical measure of {Xi}i∈N:

νn :=
1

n

n∑
i=1

δXi
,

where δX is the Dirac measure of X.

Definition 1.1.4. Let {Xi}i∈N be a sequence of i.i.d. random variables on R/LZ and
νn be an empirical measure of {Xi}i∈N and ν be a distribution measure of {Xi}i∈N. We

use a slight abuse of notation: γn
TLq

−−→ γ instead of (νn, γn)
TLq

−−→ (ν, γ). (Note that A ⊂
Lq(R/LZ,Rd).) Thus A is not a metric space with the metric dTLq but only convergence
is defined.
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The main results of the paper are

Theorem 1.1.1 (Γ-convergence and locally uniform convergence). Let {Xi}i∈N be a se-
quence of i.i.d. random variables with probability density function ρ on R/LZ. Then
Rn,ρEα,p Γ-converge to Eα,pρ as n→ ∞ in the TL1 sense.

Moreover, we set F := {γ ∈ A | Eα,pρ (γ) < ∞}, then Rn,ρEα,pbF locally uniformly
converges to Eα,pρ bF as n→ ∞ in the TL1 sense a.s. ω ∈ Ω.

Theorem 1.1.2 (Compactness). Let ρ be bounded from below by a positive constant and
let 2 ≤ αp < 2p+ 1 and 1 ≤ q <∞,

Assume {γn}n∈N ⊂ TLq(R/LZ) satisfying

sup
n∈N

Rn,ρEα,p(γn) <∞.

and we assume that there exists x ∈ R/LZ and C ∈ Rd such that γn(x) = C for all
n ∈ N.

Then {γn}n∈N is relatively compact in the TLq(R/LZ) sense a.s. ω ∈ Ω.

The metric used in Γ-convergence is the TL1 sense. Locally uniform convergence is
also in the TL1 sense, which will be defined in Section 1.2.

Corollary 1 (Minimizer to minimizer). Under the assumption of Theorem 1.1.1 and
Theorem 1.1.2, let {γn}n∈N ⊂ A be minimizers of Rn,ρEα,p then there exists γ̃ ∈ A and

subsequence {γnk
}k∈N with γnk

TLq

−−→ γ̃ such that γ̃ is a minimizer of Eα,p.

1.2 Preliminaries

1.2.1 Γ-convergence and locally uniformly convergence in the
TLq sense

We recall notation of general Γ-converge and locally uniform convergence in the TLq sense.

Definition 1.2.1 (Γ-convergence in the TLq sense). Let Fn : A → R ∪ {+∞} be a
sequence of functionals. The sequence {Fn}n∈N Γ-converges to the functional F : A →
R ∪ {+∞} as n→ ∞ in the TLq sense if the following inequality hold:

i) For every x ∈ X and every sequence {xn}n∈N with xn
TLq

−−→ x

lim inf
n→∞

Fn(xn) ≥ F (x),

ii) For every x ∈ X there exists a sequence {xn}n∈N and xn
TLq

−−→ x satisfying

lim sup
n→∞

Fn(xn) ≤ F (x).

Definition 1.2.2 (Locally uniform convergence in the TLq sense). A set K ⊂ A is
sequentially compact in the TLq sense if it satisfies the following conditions. For all

sequence {γn}n∈N ⊂ K , there is a subsequence {γnk
}k∈N and a γ ∈ K such that γnk

TLq

−−→ γ
as k → ∞. Let X be a space containing Lq(νn) and Lq(ν), and let Fn : X → R and
F : X → R. The sequence {Fn}n∈N locally uniformly converges to F in the TLq sense if
it satisfies the following conditions. For any sequentially compact set K ⊂ X in the TLq

sense,
lim
n→∞

sup
γ∈K

|Fn(γ)− F (γ)| = 0.
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We first discuss an equivalent condition for locally uniform convergence in the TLq

sense.

Proposition 1.2.1. Let F : X → R is continuous in the TLq sense, ( i.e. γn
TLq

−−→ γ then
lim
n→∞

F (γn) = F (γ). ) and a sequence {Fn}n∈N locally uniformly converge to F in the TLq

sense.
if and only if

For any sequence {γn}n∈N ⊂ X with γn
TLq

−−→ γ,

lim
n→∞

Fn(γn) = F (γ).

Proof. This can be proved in a similar way to prove Ascoli-Arzelà theorem [18, Theorem
7.25.]. For γ ∈ A and r > 0, we set B(γ, r) := {γ̃ ∈ X | There exists an n ∈ N such that
dTLq

(
(νn, γ), (ν, γ̃)

)
< r}.

First, we show that suppose K ⊂ X be a sequentially compact set in the TLq sense,

then for any ε > 0, there is a sequence {γi}Nε
i=1 ⊂ K, such that

Nε⋃
i=1

B(γi, ε) ⊃ K. If not,

there is a r > 0 such that for all {γi}mi=1 ⊂ K, K \
m⋃
i=1

B(γi, r) 6= ∅. We choose γ1 ∈ K and

inductively choose γn ∈ K \
n−1⋃
i=1

B(γi, r), then for all m,n ∈ N,

r ≤ dTLq

(
(νn, γn), (ν, γm)

)
≤ dTLq

(
(νn, γn), (νm, γm)

)
+ dTLq

(
(νm, γm), (ν, γm)

)
= dTLq

(
(νn, γn), (νm, γm)

)
.

This is a contradiction to the fact that K is sequentially compact set in the TLq sense.
Let εm > 0 with εm ↘ 0. and we set

K0 :=

{
{γmi }Nm

m=1 ∈ K

∣∣∣∣∣
Nm⋃
i=1

B(γmi , εm) ⊃ K

}
. (1.5)

Second, we show that for all ε > 0, there exists a δ > 0 such that for all γ1, γ2 ∈ K and
all n ∈ N, if dTLq

(
(νn, γ1), (ν, γ2)

)
< δ then

|Fn(γ1)− Fn(γ2)| < ε. (1.6)

If not, there exists an ε > 0 such that for all n ∈ N, there exists γn1 , γ
n
2 ∈ K and

mn ∈ N such that dTLq

(
(νn, γ

n
1 ), (ν, γ

n
2 )
)
< 1/n, and |Fmn(γ

n
1 )− Fmn(γ

n
2 )| ≥ ε. By the K

is sequentially compact, there exists a subsequence {γnk
1 }k∈N, {γnk

2 }k∈N, and γ ∈ K such

that γnk
1

TLq

−−→ γ, γnk
2

TLq

−−→ γ. Then

ε < |Fmnk
(γnk

1 )− Fmnk
(γnk

2 )| ≤ |Fmnk
(γnk

1 )− F (γ)|+ |F (γ)− Fmnk
(γnk

2 )| k→∞−−−→ 0.

This is a contradiction.

Third, we show that there exists a subsequence {Fnk
}k∈N such that for all j , {Fnk

(γj)}k∈N
is convergence sequence by a diagonal argument. By lim

n→∞
Fn(γ1) = F (γ1), {Fn(γ1)}n∈N
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is bounded sequence on R. Therefore there exists a subsequence {Fn(1,k)}k∈N such that
{Fn(1,k)(γ1)}k∈N is a convergence sequence in R. In the same way, there exists a subse-
quence {Fn(2,k)}k∈N such that {Fn(2,k)(γ2)}k∈N is a convergence sequence on R. Further, in
the same way, we construct subsequence {Fn(p,k)}k∈N, p = 3, 4, ..., and we set Fnk

= Fn(k,k).

Finally, let any η > 0, for sufficiently largem such that for all n ∈ N, if dTLq

(
(νn, γ1), (ν, γ2)

)
<

εm then

|Fn(γ)− Fn(γ
m
i )| < η/3. (1.7)

Since {Fnk
(γmi )}k∈N is a convergence sequence on R, there exists a number N such that

if k, l > N then |Fnk
(γmi )− Fnl

(γmi )| < η/2 for i = 1, 2, ..., Nm. Now, let γ ∈ K, by (1.5)
there exist an i and n such that

dTLq

(
(νn, γ

m
i ), (ν, γ)

)
< εm.

By (1.6) and (1.7) if k, l > N then

|Fnk
(γ)− Fnl

(γ)| ≤ |Fnk
(γ)− Fnk

(γmi )|+ |Fnk
(γmi )− Fnl

(γmi )|+ |Fnl
(γ)− Fnl

(γmi )|
(1.8)

≤ η. (1.9)

Therefore {Fnk
(γ)}k∈N is a Cauchy sequence. By the completeness of R, there exists a

F (γ) such that limk→∞ Fnk
(γ) = F (γ). In (1.8) and (1.9), suppose that l goes to infinity,

then we get

|Fnk
(γ)− F (γ)| < η. (1.10)

This indicates that {Fnk
}k∈N uniformly converges to F on K.

Assume that F is continuous and that Fn locally uniformly converges to F in the TLq

sense and γn
TLq

−−→ γ.

Clearly, {γn | n ∈ N} ∪ {γ} ⊂ X is sequentially compact in the TLq sense.

Therefore

|Fn(γn)− F (γ)| ≤ |Fn(γn)− F (γn)|+ |F (γn)− F (γ)|
≤ sup

y∈{γn}n∈N∪{γ}

(
|Fn(y)− F (y)|

)
+ |F (γn)− F (γ)| n→∞−−−→ 0.

2

1.2.2 The property of TLq space and empirical measure

In this subsection, we consider the space based on optimal transport theory to compare
discrete and continuous models.

Given a Borel map T : R/LZ → R/LZ and µ ∈ P(R/LZ) the push-forward of µ by
T , denoted by T#µ ∈ P(R/LZ) is given by:

T#µ(A) := µ(T−1(A)), A ∈ B(R/LZ).
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Definition 1.2.3 ([10]). We say that a sequence of transportation plans {πn}n∈N ⊂
Γ(µ, µn) is stagnating if it satisfies

lim
n→∞

∫
(R/LZ)2

|x− y|qdπn(x, y) = 0.

µ, µn ∈ P(R/LZ), Tn : R/LZ → R/LZ : transportation maps with Tn#µ = µn.
We say that a sequence of transportation maps {Tn}n∈N is stagnating if it satisfies

lim
n→∞

∫
R/LZ

|x− Tn(x)|qdµ(x) = 0.

Accept the following proposition introduced by [10]

Proposition 1.2.2 ([10]). Let (µ, γ) ∈ TLq and let {(µn, γn)}n∈N ⊂ TLq． The following
statements are equivalent;

i) (µn, γn) → (µ, γ) in the TLq.

ii) µn ⇀ µ and for every stagnating sequence of transportation plans {πn}n∈N ⊂
Γ(µ, µn) ∫

(R/LZ)2
|γ(x)− γn(x)|qdπn(x, y) → 0. (1.11)

iii) µn ⇀ µ and there exists a stagnating sequence of transportation plans {πn}n∈N ⊂
Γ(µ, µn) such that ∫

(R/LZ)2
|γ(x)− γn(x)|qdπn(x, y) → 0. (1.12)

Moreover, if the measure µ is absolutely continuous with respect to the Lebesgue
measure, the following are equivalent to the previous statement:

iv) µn ⇀ µ and there exists a stagnating sequence of transportation maps {Tn}n∈N (
with Tn#µ = µn) such that∫

R/LZ
|γ(x)− γn(Tn(x))|qdµ(x) → 0. (1.13)

v) µn ⇀ µ and for any stagnating sequence of transportation maps {Tn}n∈N with
Tn#µ = µn)， ∫

R/LZ
|γ(x)− γn(Tn(x))|qdµ(x) → 0. (1.14)

Remark 2. Thanks to Proposition 1.2.2 when µ is absolutely continuous with respect to

the Lebesgue measure γn
TLp

−−→ γ as n → ∞ if and only if for every (or one) stagnating

sequence {Tn}n∈N of transportation maps (with Tn#µ = µn) γn ◦ Tn
Lp(µ)−−−→ γ as n → ∞.

Also, {un}n∈N is relatively compact in TLp if and only if for every (or one) stagnating
sequence {Tn}n∈N of transportation maps (with T#µ = µn) {un ◦ Tn}n∈N is relatively
compact in Lp(µ).
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We recall the following proposition.

Proposition 1.2.3 (Glivenko-Cantelli’s Theorem). Let {Xi}i∈N be a sequence of i.i.d.
random variables on R/LZ, and let ν is the distribution measure of {Xi}i∈N, and νn is the
empirical measure of {Xi}i∈N. Fn(x) := νn((−∞, x]) and F is the distribution function
of {Xi}i∈N, then,

lim
n→∞

‖Fn − F‖∞ = 0 a.s. ω ∈ Ω.

Theorem 1.2.1 ([12]). Let D ⊂ Rd be a bounded, connected, open set with Lipschitz
boundary. Let ν be a probability measure on D with density ρ : D → (0,∞) which is
bounded from below and from above by positive constants. Let {Xi}i∈N be a sequence of
independent random points distributed on D according to measure ν and let νn be the
associated empirical measures. Then there is a constant C > 0 such that for a.s. ω ∈ Ω
there exists a sequence of transportation maps {Tn}n∈N from ν to νn (Tn#ν = νn) and
such that

if d = 2 then

lim sup
n→∞

n1/2‖Id− Tn‖∞
(log n)3/4

≤ C

and if d ≥ 3 then

lim sup
n→∞

n1/d‖Id− Tn‖∞
(log n)1/d

≤ C.

1.3 Γ-convergence and locally uniformly convergence

Proof of Theorem 1.1.1

Proof. Let νn be an empirical measure of L1bρ and Tn : R/LZ → R/LZ be transportation
maps with Tn#L1bρ = νn.
・liminf inequality
Assume that γn → γ in TL1 as n → ∞. Since Tn#L1bρ = νn, we change variables to

get

Rn,ρEα,p(γn) =
∫
(R/LZ)2

Mα,p(γn)dνn(x)dνn(y) (1.15)

=

∫
(R/LZ)2

Mα,p(γn ◦ Tn)ρ(x)ρ(y)dxdy. (1.16)

By the way, we notice that

|γn(Tn(x))− γn(Tn(y))| ≤ |γn(Tn(x))− γ(x)|+ |γ(x)− γ(y)|+ |γ(y)− γn(Tn(y))|.

and

D(γ(x), γ(y)) ≤ D(γ(x), γn(Tn(x))) +D(γn(Tn(x)), γn(Tn(y))) +D(γn(Tn(y)), γ(y))

≤ |x− Tn(x)|+D(γn(Tn(x)), γn(Tn(y))) + |Tn(y)− y|
≤ 2‖Tn − Id‖∞ +D(γn(Tn(x)), γn(Tn(y))).
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By Proposition 1.2.2 we deduce γn ◦ Tn → γ in L1(R/LZ). Thus, by taking an appro-
priate subsequence {γnk

◦ Tnk
}k∈N of {γn ◦ Tn}n∈N, we deduce γnk

(Tnk
(x)) → γ(x) a.e. x ∈

R/LZ, and therefore

lim inf
n→∞

Mα,p(γn ◦ Tn) ≥ Mα,p(γ) a.e. (x, y) ∈ (R/LZ)2.

So that Mα,p(γn ◦ Tn) > 0, using Fatou’s lemma we get

lim inf
n→∞

Rn,ρEα,pn (γn) ≥ Eα,pρ (γ).

・limsup inequality
Assume that γn → γ in TL1 as n → ∞. If Eα,pρ (γ) = ∞, we are done, and so we

henceforth assume Eα,pρ (γ) <∞. We observe that

|γ(x)− γ(y)| ≤ |γ(x)− γn(Tn(x))|+ |γn(Tn(x))− γn(Tn(y))|+ |γn(Tn(y))− γ(y)|,

and

D(γn(Tn(x)), γn(Tn(y))) ≤ D(γn(Tn(x)), γ(x)) +D(γ(x), γ(y)) +D(γ(y), γn(Tn(y))).

In the same way as liminf inequality, we get
lim sup
n→∞

Mα,p(γn ◦ Tn) ≤ Mα,p(γ) a.e. (x, y) ∈ (R/Z)2. Since Eα,pρ (γ) < ∞, using

Fatou’s lemma to Mα,p(γ)−Mα,p(γn ◦ Tn), we get

lim sup
n→∞

Rn,ρEα,p(γn) ≤ Eα,pρ (γ).

By Proposition 1.2.1, the proof is now complete.
2

1.4 Compactness

In this section, we would like to prove Theorem 1.1.2. We first recall several function
spaces.

1.4.1 Function spaces

Definition 1.4.1 (Sobolev-Slobodeckij spaces). For s ∈ (0, 1) and q ∈ [1,∞) we set

[γ]W s,p :=

(∫
R/LZ

∫ L/2

−L/2

|γ(u+ w)− γ(u)|p

|w|1+ps
dwdu

)1/p

W s,p(R/LZ,Rd) :=
{
γ ∈ Lq(R/LZ,Rd) | [γ]W s,p <∞

}
and equip this space with the norm

‖γ‖W s,q := ‖γ‖Lq + [γ]W s,p .

Furthermore, we let

W 1+s,q(R/LZ,Rd) :=
{
γ ∈ W 1,q(R/LZ,Rd) | γ′ ∈ W s,q(R/LZ,Rd)

}
and

‖γ‖W 1+s,q :=
(
‖γ‖qW s,q + ‖γ‖qW 1,q

)1/q
.
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Definition 1.4.2 (Besov spaces). For s ∈ R, 1 ≤ p, q ≤ ∞ and S(R/LZ,Rd) is the
Schwartz space.

We set

ψ(ξ) =

{
1 (|ξ| ≤ 4)

0 (|ξ| ≥ 8)
, ϕ(ξ) =

{
1 (2 ≤ |ξ| ≤ 4)

0 (|ξ| ≤ 1 or |ξ| ≥ 8)
.

We set ϕj(ξ) = ϕ(2−jξ) and τ(D)f := F−1[τ · Ff ] for τ ∈ S(R/LZ,Rn) and f ∈
S ′(R/LZ,Rd). We recall Besov norms:

‖f‖Bs
p,q

:=


‖ψ(D)f‖Lp +

(
∞∑
j=1

2jqs‖ϕj(D)f‖qLp

)1/q

(1 ≤ q <∞)

‖ψ(D)f‖Lp + sup
j∈N

2js‖ϕj(D)f‖Lp (q = ∞)

Bs
p,q(R/LZ,Rd) := {f ∈ S ′(R/LZ,Rd) | ‖f‖Bs

p,q
<∞}.

Note that W s,p agrees with Bs
p,p.

We recall the following embedding results.

Proposition 1.4.1 (Embedding Besov spaces). Let 0 < p0, p1 ≤ ∞ and 0 < q0, q1 ≤
∞ and −∞ < s1 < s0 <∞. Assume that s0 − 1

p0
> s1 − 1

p1
, then

Bs0
p0,q0

(R/LZ,Rd) ↪→ Bs1
p1,q1

(R/LZ,Rd).

Here ↪→ denotes a continuous embedding.

Theorem 1.4.1 (Kondrachov embedding theorem). Let 1 ≤ p, q <∞ and 1 < k, s.
Assume that k − 1

p
> s− 1

q
, then the Sobolev embedding

W k,p(R/LZ,Rd) ↪→ W s,q(R/LZ,Rd)

is completely continuous.

Proposition 1.4.2 (Embedding L1 space for Besov space). Let s ∈ R and 0 < q ≤
∞, then

L1 ↪→ B0
1,q if and only if q = ∞.

The following theorem is based on [14] and explains conditions for which O’Hara
energy becomes finite.

Theorem 1.4.2 ([14]). Let γ ∈ A and α, p ∈ (0,∞) with αp ≥ 2 and s := αp−1
2p

< 1

and p ≥ 1, then Eα,p(γ) < ∞ if and only if γ ∈ W 1+s,2p(R/LZ). Moreover, there is a
C = C(α, p) such that

‖γ′‖2pW s,2p ≤ C(Eα,p(γ) + ‖γ′‖2pL2p).

Lemma 1.4.3. Let {γn}n∈N ⊂ A and we assume that there exists a x ∈ R/LZ and
C ∈ Rd such that γn(x) = C for all n ∈ N.

Then

sup
n∈N

‖γn‖L1(νn) = sup
n∈N

1

n

n∑
i=1

|γn(Xi)| <∞.
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Proof. First, we show that there exists a M > 0 such that

max
i=1,2,...,n

|γn(Xi)− C| ≤M.

If not, there exists a n ∈ N and i ∈ {1, 2, ..., n} such that

|γn(Xi)− C| > L.

Then a length of γn is more than L. This is a contradiction.
Thus

‖γn‖L1(νn) =
1

n

n∑
i=1

|γn(Xi)|

≤ 1

n

n∑
i=1

|γn(Xi)− C|+ 1

n

n∑
i=1

|C| ≤M + |C|.

2

1.4.2 Proof of Theorem 1.2.

Proof. Let s := αp−1
2p

. By Theorem 1.4.2 we see

‖γ‖2pW 1+s,2p ≤ C
(
Eα,p(γ) + ‖γ‖2pW 1,2p

)
.

By the Gagliardo-Nirenberg interpolation inequality, we choose Θ > 0 such that Θ <
(2p−1)q+2p

(2p+αp−2)q+2p
≤ 1, and t with 1

2p
− 1 > t, to get

‖γ‖W 1,2p ≤ ‖γ‖W 1+s/2,2p (1.17)

= ‖γ‖
B

1+s/2
2p,2p

≤ C‖γ‖Θ
B1+s

2p,2p
‖γ‖1−Θ

Bt
2p,2p

. (1.18)

Since L1 ↪→ B0
1,∞ ↪→ Bt

2p,2p, this yields

‖γ‖W 1,2p ≤ C‖γ‖Θ
B1+s

2p,2p
‖γ‖1−Θ

L1 .

Using Young’s inequality, for all ε > 0, we get

‖γ‖2pW 1,2p ≤ C‖γ‖2pθW 1+s,2p‖γ‖2p(1−Θ)

L1 (1.19)

≤ Cε1/ΘΘ‖γ‖2pW 1+s,2p + C(1−Θ)
‖γ‖2pL1

ε1/(1−Θ)
. (1.20)

Therefore, for sufficient small ε > 0, we conclude that

‖γ‖2pW 1+s,2p ≤ C ′ (Eα,p(γ) + ‖γ‖2pL1

)
. (1.21)

Let {γn}n∈N be a sequence of TLq(R/Z) with

sup
n∈N

Rn,ρEα,p(γn) <∞,

and let Tn : R/LZ → R/LZ be transportation maps with Tn#µ = µn. Then

sup
n∈N

Eα,pρ (γn ◦ Tn) <∞.
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Since ρ is bounded from below by a positive constant we deduce by Lemma 1.4.3 that

sup
n∈N

(Eα,p(γn ◦ Tn) + ‖γn ◦ Tn‖L1) <∞.

Therefore by (1.21) and Lemma 1.4.2, we see

sup
n∈N

‖γn ◦ Tn‖W 1+s,2p <∞.

Since 1 + s− 1
2p

= 2p+αp−2
2p

≥ 0 > −1
q
, Theorem 1.4.1 yields a compact embedding

ι : W 1+s,2p(R/LZ,Rd) ↪→↪→ Lq(R/LZ,Rd).

Therefore there exists an {nk}k∈N ⊂ N and γ ∈ Lq(R/LZ, ρ) such that γnk
◦ Tnk

→ γ in
Lq(R/Z, ρ). By Proposition 1.2.2 we see γnk

→ γ in TLq(R/LZ).
2



Chapter 2

A finer singular limit of a single-well
Modica-Mortla functional on one
dimensional domain

An explicit representation of the Gamma limit of a single-well Modica–Mortola func-
tional is given for one-dimensional space under the graph convergence which is finer than
conventional L1-convergence or convergence in measure. As an application, an explicit
representation of a singular limit of the Kobayashi–Warren–Carter energy, which is pop-
ular in materials science, is given. Some compactness under the graph convergence is also
established. Such formulas as well as compactness are useful to characterize the limit of
minimizers of the Kobayashi–Warren–Carter energy. To characterize the Gamma limit
under the graph convergence, a new idea which is especially useful for one-dimensional
problem is introduced. It is a change of parameter of the variable by arc-length parameter
of its graph, which is called unfolding by the arc-length parameter in this chapter.

2.1 Introduction

In this chapter, we are interested in a singular limit called the Gamma limit of a single-well
Modica–Mortola functional under the graph convergence, the convergence with respect
to the Hausdorff distance of graphs, which is finer than conventional L1-convergence
or convergence in measure. A single-well Modica–Mortola functional is introduced by
Ambrosio and Tortorelli [3, 4] to approximate the Mumford–Shah functional [29]. A
typical explicit form of their functional now called the Ambrosio–Tortorelli functional is

Eε(u, v) := σ

∫
Ω

v2 |∇u|2 dx+ λ

∫
Ω

(u− g)2 dx+ Eε(v),

with small parameter ε > 0, where Eε is a single-well Modica–Mortola functional of the
form

Eε(v) :=
1

2ε

∫
Ω

(v − 1)2 dx+
ε

2

∫
Ω

|∇v|2 dx.

Here g is a given function defined in a bounded domain Ω in Rn and σ ≥ 0, λ ≥ 0 are given
parameters. The potential energy part (v − 1)2 is a single-well potential. If it is replaced
by a double-well potential like (v2 − 1)2, the corresponding energy Eε well approximates
(a constant multiple of) the surface area of the interface and this observation went back
to Modica and Mortola [27, 28]. Even for the single-well potential if v is close to zero

17
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around some interface then it is expected that Eε still approximates the surface area of
the interface. This observation enables us to prove that for σ > 0, the Gamma limit of
Eε(u, v) in the convergence in measure is a Mumford–Shah functional; see [3, 4, 14].

If Eε(vε) is bounded for small ε > 0, then it is rather clear that vε → 1 in L1 as ε→ 0,
so that vε → 1 almost everywhere by taking a suitable subsequence. Therefore, it seems
natural to consider the Gamma convergence in L1-sense. However, if one considers

Eε
b (v) = Eε(v) + bv(0)2 (2.1)

for b > 0, where Ω = (−1, 1), then we see L1-convergence is too weak because in the limit
stage, the effect of the term involving b is invisible but this should be counted.

To illustrate the point, we calculate the unique minimizer wε of E
ε
b (v), that is,

Eε
b (wε) = min

{
Eε
b (v) | v ∈ H1(−1, 1)

}
.

This is strict convex problem so that the minimizer exists and is unique. Moreover, its
Euler–Lagrange equation is linear. A simple manipulation shows that the minimizer of
Eε
b with the Neumann boundary conditions w′

ε(±1) = 0 is given by

wε(x) = 1 +
b
(
−e− 2

ε − 1
)

1− e−
4
ε + b

(
1 + e−

2
ε

)2 e− |x|
ε +

b
(
−e− 2

ε − e−
4
ε

)
1− e−

4
ε + b

(
1 + e−

2
ε

)2 e |x|
ε .

It converges to 1 locally uniformly outside zero but

lim
ε→0

wε(0) =
1

1 + b
> 0,

and

lim
ε→0

Eε
b (wε) =

b

1 + b
< b.

Since Eε
b (1) = b for any ε > 0, the information that wε(x) → 1 almost everywhere is

insufficient to identify the behavior of minimizers wε.
We show the graph of wε for several ε > 0 in Figure 2.1. We see that the graph of wε

is dropping sharply at x = 0 and its sharpness increases as ε → 0. Hence, it is natural
to consider the graph convergence of wε and its limit is a set-valued function Ξ so that
Ξ(x) = {1} for x 6= 0 and Ξ(0) = [1/(1 + b), 1].

Our first goal is to give an explicit representation formula for the Gamma limit of Eε
b

under the graph convergence as well as compactness. We discuss such problems only in
one-dimensional domain since the problem is already complicated. The graph convergence
enables us to characterize the limit of above wε as a minimizer of the Gamma limit of Eε

b .
Our second goal is to give an explicit representation formula for the Gamma limit of

the Kobayashi–Warren–Carter energy. A typical form of the energy is

Eε
KWC(u, v) = σ

∫
Ω

v2 |∇u|+ Eε(v),

where
∫
v2 |∇u| denotes a weighted total variation of a Radon measure ∇u; see Section

5 for a precise definition. Here and hereafter we suppress dx unless ∇u is absolutely
continuous with respect to the Lebesgue measure. This energy is first proposed by [21, 20]
to model motion of multi-phase problems in materials sciences. This energy looks similar
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Figure 2.1: The graphs of wε as the minimizers of Eε
b defined by (2.1) when b = 1 and

ε = 10−1, 10−2, 10−3.

to the Ambrosio–Tortorelli functional Eε. It is obtained by inhomogenizing Dirichlet
energy

∫
|∇u|2 dx by putting weights

∫
v2|∇u|2 dx with a single-well Modica–Mortola

functional. By this observation, we call Eε an Ambrosio–Tortorelli inhomogenization of
the Dirichlet energy when λ = 0. From this point of view, the Kobayashi–Warren–Carter
energy is interpreted as an Ambrosio–Tortorelli inhomogenization of the total variation.
It turns out that natural topology for studying the limit of functionals as ε → 0 is quite
different.

For the Ambrosio–Tortorelli functional, it is enough to consider the L1×L1 convergence
since vε(x) → 1 except at most finitely many points where lim inf

∗
vε(x) = 0 if one assumes

that Eε(uε, vε) is bounded and uε → u, vε → v in L1. (see [3, 4, 14].) Here lim inf
∗
denotes

the relaxed liminf and we shall give its definition in Section 2.2. For the Kobayashi–
Warren–Carter energy, however, the situation is quite different. Indeed, if one considers

u(x) =

{
1, 0 < x < 1,
0, −1 < x < 0,

then Eε
KWC(u, v) = Eε

σ(v) with Ω = (−1, 1). Thus the natural convergence for v must
be in the graph convergence as we discussed before. Note that in our problem vε → 1
except at most countably many points, where lim inf

∗
vε may be nonzero. One merit of

the graph convergence is that it is very strong so when we consider the Gamma limit
problem, we don’t need to restrict ourselves in the space of special BV functions as for
the Ambrosio–Tortorelli functional.

Our first main result is a characterization of the Gamma limit of Eε
b in the graph

convergence (Theorem 2.2.1). To show the Gamma convergence, we need to prove the two
types of inequalities often called liminf and limsup inequalities. To show liminf inequality,
a key point is to study a general behavior near the set Σ of all exceptional points of the
limit set-valued function Ξ; here, we say a point x is exceptional if Ξ(x) is not a singleton.
To describe behavior near Σ, a conventional method is to find a suitable accumulating
sequence as in [14, proof of Proposition 3.3]. However, unfortunately, it seems that this
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argument does not apply to our setting, since Σ can be a countably infinite set. Thus
we are forced to introduce a new method to show liminf inequality. When we study a
absolutely continuous function uε on a bounded interval I, that is, uε ∈ W 1,1(I), we
associate its unfolding U ε by replacing the variable by the arc-length parameter of the
graph. Namely, we set

U ε(s) = uε (xε(s)) , s ∈ Jε = sε(I),

where xε = xε(s) in the inverse function of the arc-length parameter

sε(x) =

∫ x

0

(
1 + (uεx(z))

2)1/2 dz.
If the total variation of uε is bounded, then the length of Jε is bounded as ε → 0. The
unfolding U ε has several merits compared with the original one. First, {U ε} and {xε}
are uniformly Lipschitz with constant 1. Second, the total variation of U ε and uε are the
same as expected. It is easy to study the convergence as ε→ 0 of unfolding U ε compared
with the original uε. Among other results, we are able to characterize the relaxed limits
lim inf

∗
uε, lim sup* uε by the limit of U ε and xε. We use this unfolding for (vε − 1)2/2 in

the case of Eε
b to show liminf inequalities, where {vε} is a given sequence with a bound

for Eε
b (vε). The proof for limsup inequalities is not difficult although one has to be careful

that there are countably many points where the limit of vε is not equal to one.
We also established a compactness under the graph convergence with a bound for Eε

b

(Theorem 2.2.2). This can be easily proved by use of unfoldings.
Based on results on Eε

b , we are able to prove the Gamma convergence of the Kobayashi–
Warren–Carter energy Eε

KWC under the graph convergence (Theorem 2.2.3). If u is a
piecewise constant function with countably many jump points {aℓ}∞ℓ=1 ⊂ Ω with positive
jump {bℓ}∞ℓ=1, we see that

Eε
KWC(u, v) = Eε(v) + σ

∞∑
ℓ=1

bℓv
2(aℓ).

The Gamma limit for such fixed u is easily reduced to the results of Eε
b . However, to

establish liminf inequality for Eε
KWC for both uε and vε, we have to establish some lower

estimate for a sequence
∫
Ω
v2ε |∇uε| dx as ε→ 0, which is an additional difficulty. However,

we still do not need to use SBV space here.
The Gamma convergence problem of the Modica–Mortola functional, which is the sum

of Dirichlet type energy and potential energy was first studied by [27]. Since then, there
is a large number of works discussing the Gamma convergence. However, the topology
is either L1 or convergence in measure. In our Gamma limit, the topology is the graph
convergence, which is finer than previous studies. In [28], the L1 Gamma limit of a
double-well Modica–Mortola functional is characterized as a number of transition points
in one-dimensional setting. Later in [26, 36], it was extended to multi-dimensional setting
and the limit is a constant multiple of the surface area of the transition interface. This
type of the Gamma convergence results as well as compactness is important to establish
the convergence of local minimizer ([23]) as well as the global minimizer. However, the
convergence of critical points are not in the framework of a general theory and a special
treatment is necessary [17]. The double-well Modica–Mortola functional is by now well
studied even in the level of gradient flow called the Allen–Cahn equation. The limit
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ε→ 0 is often called the sharp interface limit and the resulting flow is known as the mean
curvature flow. For early stage of development of the theory, see [7, 8, 9, 10].

A single-well Modica–Mortola functional is first used in [3] to approximate the Mumford–
Shah functional. The Gamma limit of the Ambrosio–Tortorelli functional is by now well
studied ([3, 4, 14]). However, convergence of critical points is studied only in one dimen-
sion ([12]). The Ambrosio–Tortorelli type approximation is now used in various problems.
In [13], the Ambrosio–Tortorelli type approximation is introduced to describe brittle frac-
tures. Its evolution is also described in [15]. For the Steiner problem, such approximation
as also proposed ([24]) and its Gamma limit is established ([5]). However, all these prob-
lems is closer to the Ambrosio–Tortorelli inhomogenization of the Dirichlet energy, not of
the total variation.

For the Kobayashi–Warren–Carter energy, its gradient flow for fixed ε is somewhat
studied. Note that the well-posedness itself is non-trivial because even if one assumes
v ≡ 1, the gradient flow of Eε

KWC is the total variation flow and the definition of a
solution itself is non trivial; see [19], for example. Apparently, there is no well-posedness
result for the original system proposed by [20, 21, 22]. According to [21], its explicit form
is

τ1vt = s∆v + (1− v)− 2sv |∇u| , (2.2)

τ0v
2ut = s div

(
v2

∇u
|∇u|

)
, (2.3)

where τ0, τ1, s are positive parameters. This system is regarded as the gradient flow of
Eε

KWC with F (v) = (v − 1)2, ε = 1, σ = s with respect to a kind of weighted L2 norm
whose weight depends on the solution. If one replaces (2.3) by

τ0(v
2 + δ)ut = s div

((
v2 + δ′

) ∇u
|∇u|

+ ν∇u
)

with δ > 0, δ′ ≥ 0, and ν ≥ 0 satisfying δ′ + ν > 0, then the studies of existence and
large-time behavior of solutions are developed in [18, 30, 31, 33, 34, 35], under homo-
geneous settings of boundary conditions. However, the uniqueness question is almost
open, and there is a few (only one) result [18, Theorem 2.2] for the one-dimensional so-
lution, under ν > 0. Meanwhile, the line of previous results can be extended to the
studies of non-homogeneous cases of boundary conditions. For instance, if we impose
the non-homogeneous Dirichlet boundary condition for (2.3), then we can further ob-
serve various structural patterns of steady-state solutions, under one-dimensional setting,
two-dimensional radially-symmetric setting, and so on (cf. [32]).

This paper is organized as follows. In Section 2.2, we recall notion of the graph
convergence and states our main Gamma convergence results as well as compactness.
In Section 2.3, we introduce notion of unfoldings. Section 2.4 is devoted to the proof
of the Gamma convergence of Eε

b as well as the compactness in the graph convergence.
Section 2.5 is devoted to the proof of the Gamma convergence of the Kobayashi–Warren–
Carter energy.

The authors are grateful to Professor Ken Shirakawa for letting us know his re-
cent results before publication as well as development of researches on gradient flows
of Kobayashi–Warren–Carter type energies.
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2.2 Singular limit under graph convergence

We first recall basic notion of set-valued functions; see [1] for example. Let (M,dM) be a
compact metric space. We consider a set-valued function Γ defined in M such that Γ(x)
is a compact set in R for each x ∈M . If its graphΓ defined by

graphΓ :=
{
(x, y) ∈M × R

∣∣ y ∈ Γ(x), x ∈M
}

is closed, we say that Γ is upper semicontinuous. Let B denote the totality of a bounded,
upper semicontinuous set-valued functions. In other words,

B := {Γ | graphΓ is compact in M × R} .

For Γ1,Γ2 ∈ B, we set

dg(Γ1,Γ2) := dH(graphΓ1, graphΓ2),

where dH denotes the Hausdorff distance of two sets in M × R. The Hausdorff distance
dH is defined as usual:

dH(A,B) := max

{
sup
z∈A

dist(z, B), sup
w∈B

dist(w,A)

}
for A,B ⊂M × R, where

dist(z, B) := inf
w∈B

dist(z, w), dist(z, w) :=
(
dM(z1, w1)

2 + |z2 − w2|2
)1/2

for z = (z1, z2) and w = (w1, w2). It is easy to see that (B, dg) is a complete metric space.
The convergence with respect to dg is called the graph convergence.

We next recall the notion of semi-convergent limit for sets. For a family of closed
subsets {Zε}0<ε<1 in M × R, we set

lim sup
ε→0

Zε :=
⋂
ε>0

cl

( ⋃
0<δ<ε

Zδ

)
,

lim inf
ε→0

Zε := cl

(⋃
ε>0

⋂
0<δ<ε

Zδ

)
,

where cl denotes the closure in M × R. These semi-limits can be defined for sequences
like {Zj}∞j=1 with trivial modification.

Lemma 2.2.1. A sequence {Γj}∞j=1 ⊂ B converges to Γ in the sense of the graph conver-
gence if and only if

lim sup
j→∞

graphΓj = lim inf
j→∞

graphΓj = graphΓ.

Proof. Note that the Hausdorff convergence to A for a sequence {Aj}∞j=1 of compact sets
is equivalent to saying that

(i) for any z ∈ A, there is a sequence zj ∈ Aj such that zj → z (j → ∞) and
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(ii) if wj ∈ Aj converges to w, then w ∈ A.

Since (i) and (ii) are equivalent to

lim inf
j→∞

Aj ⊃ A, lim sup
j→∞

Aj ⊂ A,

respectively, the Hausdorff convergence is equivalent to saying that

A = lim inf
j→∞

Aj = lim sup
j→∞

Aj.

Thus the proof is complete. 2

We next recall relaxed convergent limits of functions. Let {gj} be a sequence of real-
valued function on M . For x ∈M , We set

lim sup*

j→∞
gj(x) := lim

j→∞
sup
{
gk(y)

∣∣ |y − x| < 1/j, k ≥ j
}
,

lim inf
∗

j→∞
gj(x) := lim

j→∞
inf
{
gk(y)

∣∣ |y − x| < 1/j, k ≥ j
}
;

see [16, Chapter 2] for more detail. By definition, the lim sup*wj is upper semicontinuous
and lim inf

∗
wj is lower semicontinuous.

Let C(M) be the Banach space of all continuous real-valued functions on M equipped
with the norm ‖f‖∞ = supx∈M |f(x)|, f ∈ C(M). For g ∈ C(M), we associate a set-
valued function Γg such that Γg(x) = {g(x)} for x ∈M . Clearly, Γg ∈ B.

Lemma 2.2.2. Let {gj}∞j=1 ⊂ C(M) be a bounded sequence. Then the semi-limit Γ+ =
lim supj→∞ Γgj still belongs to B. Let K be the set-valued function of the form

K(x) :=

{
y ∈ R

∣∣∣ lim inf
∗

j→∞
gj(x) ≤ y ≤ lim sup*

j→∞
gj(x)

}
.

Then Γ+(x) ⊂ K(x) for all x ∈M .

Proof. The first statement is trivial. To prove Γ+ ⊂ K, it suffices to prove that the limit
y = limj→∞ yj, yj ∈ Γgj(xj) belongs to K(x) if xj → x. Since yj = gj(xj), by definition

of relaxed limits lim sup* and lim inf
∗
it is easy to see that

lim inf
∗

j→∞
gj(x) ≤ y ≤ lim sup*

j→∞
gj(x).

Thus Γ+(x) ⊂ K(x). 2

We next discuss an equivalent condition of the graph convergence.

Lemma 2.2.3. 1. Let {gj}∞j=1 ⊂ C(M) be a bounded sequence. Then the semi-limit
Γ− = lim infj→∞ Γgj belongs to B.

2. Assume that M is locally arcwise connected. For each x ∈M following three condi-
tions are equivalent.

(a) Γ−(x) contains both lim inf
∗
gj(x) and lim sup* gj(x).
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(b) K(x) ⊂ Γ−(x).

(c) Γ−(x) = Γ+(x) = K(x).

In particular, Γgj converges to K in the graph sense if and only if one of (a), (b), (c)
holds for all x ∈M .

Proof. (1) follows from the definition and we focus on the proof of (2). Assume (a) so
that Γ−(x) contains ∂ (K(x)). Then there exist xj ∈ M , yj = gj(xj) such that xj → x,
yj → ŷ for ŷ = lim inf

∗
gj(x) and that there exists xj ∈ M , yj ∈ gj(xj) such that xj → x,

yj → y for y = lim sup* gj(x).
By assumption, for any δ > 0 there exists an arc γj connecting xj to xj, lying in a

δ-neighborhood Bδ of x provided that j is sufficiently large. Since gj is continuous on
γj ⊂ Bδ, the intermediate value theorem implies that

[
yj, yj

]
⊂ gj(Bδ). Thus K(x) ⊂

Γ−(x). Thus (b) follows.
Assume (b). By Lemma 2.2.2, we know Γ+(x) ⊂ K(x). By definition of Γ− we see

Γ− ⊂ Γ+. Thus, we conclude (c). It is easy to see that (c) implies (a). The proof is now
complete. 2

We next consider an important subclass of B. Let A be the family of Γ ∈ B such that
Γ(x) is a closed interval for all x ∈ M . Let A0 be the subfamily of A such that Γ(x) is
the singleton {1} with at most countably many exceptions of x ∈M . Such Γ is uniquely
determined by {xi}∞i=1 where Γ(xi) =

[
ξ−i , ξ

+
i

]
with ξ−i < ξ+i contains 1 and Γ(x) = {1} if

x /∈ {xi}∞i=1. We call such a point xi an exeptional point of Ξ ∈ A0, so that Σ is the set
of all exceptional points of Ξ.

We next study the compactness in the graph convergence.

Lemma 2.2.4. Let {gj}∞j=1 ⊂ C(M) be a bounded sequence. Assume that

η−(x) < η+(x) for x ∈ S,
η−(x) = η+(x) = 1 for x ∈M \ S,

where S is a countable set and

η−(x) = lim inf
∗

j→∞
gj(x), η

+(x) = lim sup*

j→∞
gj(x).

If 1 ∈ [η−(x), η+(x)], then there is a subsequence {gjk} such that Γgjk converges to some
Γ0 ∈ A0 in the graph sense.

Proof. We write S = {xi}∞i=1. By definition, there is a subsequence {g−1,j} of {gj} such
that

η−(x1) = lim
j→∞

g−1,j(y1,j)

with some {y1,j} converging to x1. We set

η+1 (x1) := lim sup*

j→∞
g−1,j(x1) ≤ η+(x1).

Since η− = η+ = 1 outside S, we see η+(x1) ≥ 1. We take a further subsequence {g1,j} of
{g−1,j} so that

η+1 (x1) = lim
j→∞

g1,j(z1,j)
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with some {z1,j} converging to x1. We repeat this procedure for x2, x3, . . . and find a
subsequence {gℓ,j}∞j=1 so that

lim
j→∞

gℓ,j(yℓ,j) = lim inf
∗

j→∞
gℓ,j(xℓ) ≤ 1,

lim
j→∞

gℓ,j(zℓ,j) = lim sup*

j→∞
gℓ,j(xℓ) ≥ 1

with some {yℓ,j}, {zℓ,j} converging to xℓ for ` = 1, 2, . . . , k. By a diagonal argument, we
see that {gk,k}∞k=1 has the property that

ξ−(x) := lim inf
∗

k→∞
gk,k(x), ξ

+(x) := lim sup*

k→∞
gk,k(x)

belong to Γ−(x) = lim infk→∞ Γgk,k for x ∈M . We now apply Lemma 2.2.3(2) to conclude
that Γgk,k converges to Γ with

Γ(x) = [ξ−(x), ξ+(x)], x ∈M.

By construction, Γ(x) = {1} for x ∈ M \ S and ξ−(x) ≤ 1 ≤ ξ+(x) for x ∈ S. Thus,
Γ ∈ A0 so the proof is now complete. 2

We now define several functionals when M = I or T = R/Z, where I is a bounded
open interval in R and I = cl I. For a real-valued function v onM and ε > 0, a single-well
Modica–Mortola functional is defined by

Eε
sMM(v) :=

ε

2

∫
M

∣∣∣∣dvdx
∣∣∣∣2 dx+

1

2ε

∫
M

F (v) dx.

Here the potential energy F is a single-well potential. We shall assume that

(F1) F ∈ C(R) is nonnegative and F (v) = 0 if and only if v = 1;

(F2) lim inf |v|→∞ F (v) > 0;

(F2’) (growth condition) there are positive constants c0, c1 such that

F (v) ≥ c0|v|2 − c1 for all v ∈ R.

Remark 2.2.1. Obviously, (F2’) implies (F2).

We are interested in a Gamma limit of Eε
sMM not in usual L1-convergence but the graph

convergence which is of course finer than L1 topology. As usual, we set

G(v) =

∣∣∣∣∫ v

1

√
F (τ)dτ

∣∣∣∣ .
A typical example of F (v) is F (v) = (v − 1)2. In this case,

G(v) = (v − 1)2/2.

To write the limit energy for Ξ ∈ A0, let Σ = {xi}∞i=1 denote the totality of points where
Ξ(xi) is a nontrivial closed interval

[
ξ−i , ξ

+
i

]
such that ξ−i ≤ 1 ≤ ξ+i . This set can be a

finite set. By definition, Ξ(x) = {1} if x /∈ {xi}∞i=1. In the case that M = T, we define

E0
sMM(Ξ,T) :=

2
∞∑
i=1

{
G(ξ−i ) +G(ξ+i )

}
for Ξ ∈ A0,

∞ otherwise.
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In the case that M = I, one has to modify the value when xi is the end point of I. The
energy is defined by

E0
sMM(Ξ, I) :=


∞∑
i=1

{
2(G(ξ−i ) +G(ξ+i ))− κimax(G(ξ−i ), G(ξ

+
i ))
}

for Ξ ∈ A0,

∞ otherwise,

where κi = 0 if xi ∈ I and κi = 1 if xi ∈ ∂I. For brevity we simply write vj
g−→ Ξ if

vj ∈ C(M) is a sequence such that vj → Ξ (j → ∞) in the sense of the graph convergence.

We also use vε
g−→ Ξ as ε→ 0 if ε is a continuous parameter.

We shall state that the Gamma limit of Eε
sMM is E0

sMM as ε→ 0 under the graph con-
vergence. For later applications, it is convenient to consider a slightly general functional
of form Eε,b

sMM(v) := Eε
sMM(v)+ bα (v(a)), where α ∈ C(R) with α ≥ 0 and a ∈ M̊ = intM

and b ≥ 0. The corresponding limit functional is

E0,b
sMM(Ξ,M) := E0

sMM(Ξ,M) + b min
ξ∈Ξ(a)

α (ξ) .

Theorem 2.2.1 (Gamma limit under graph convergence). Assume the following condi-
tions:

� M = I or T;

� F satisfies (F1) and (F2);

� a ∈ M̊ = intM and b ≥ 0.

Then the following inequalities hold:

(i) (liminf inequality) Let {vε}0<ε<1 be in H1(M) ⊂ C(M). If vε
g−→ Ξ ∈ B, then

E0,b
sMM(Ξ,M) ≤ lim inf

ε→0
Eε,b

sMM(vε).

In particular, if the right-hand side is finite, then Ξ ∈ A0.

(ii) (limsup inequality) For any Ξ ∈ A0, there is {wε}0<ε<1 ⊂ H1(M) ⊂ C(M) such

that wε
g−→ Ξ and

E0,b
sMM(Ξ,M) = lim

ε→0
Eε,b

sMM(wε).

We also have a compactness result.

Theorem 2.2.2 (Compactness). Assume thatM = I or T. Assume that F satisfies (F1)
and (F2’). Let {vεj}∞j=1 be in H1(M) ⊂ C(M). Assume that

sup
j
E
εj
sMM(vεj) <∞

for εj → 0 as j → ∞. Then there exists a subsequence
{
vε′k
}
such that vε′k

g−→ Ξ with
some Ξ ∈ A0.

By combining the Gamma convergence result and the compactness, a general theory
yields the convergence of a minimizer of Eε,b

sMM; see [6, Theorem 1.21] for example. Note
that in the case of b = 0, the minimum of Eε

sMM(v) is zero and is attained only at constant
function v = 1 so the convergence of minimizers is trivial.
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Corollary 2.2.1. Assume the same hypotheses of Theorem 2.2.1 and (F2’). Let vε be a

minimizer of Eε,b
sMM on H1(M). Then there is a subsequence {vεk}

∞
k=1 such that vεk

g−→ Ξ0

with some Ξ0 ∈ A0. Moreover, Ξ0 is a minimizer of E0,b
sMM. Furthermore, Ξ0(x) = {1} if

x 6= a and Ξ0(a) = [p0, 1], where p0 is a minimizer of 2G(p) + bp2 with p ∈ [0, 1].

Remark 2.2.2. If F ′(v)(v−1) ≥ 0, thenG is convex so that 2G(p)+bp2 is strictly convex for
b > 0. In this case, the minimizer is unique. If F (v) = (v− 1)2 so that G(v) = (v− 1)2/2,
then 2G(p) + bp2 = (p− 1)2 + bp2 and its minimizer is 1/(b+ 1) and its minimal value is
E0,b

sMM(Ξ0,M) = b/(b+ 1).

Our theory has an application to the Kobayashi–Warren–Carter energy [20, 21, 22]
which can be interpreted as an Ambrosio–Tortorelli inhomogenization of the total varia-
tion energy. Its typical form is

Eε
KWC(u, v) := σ

∫
M̊

α(v)

∣∣∣∣dudx
∣∣∣∣+ Eε

sMM(v)

for a given α ∈ C(R) with α ≥ 0 and a constant σ ≥ 0. The first integral denotes the
total variation of u with weight α(v). See Section 2.5 for more rigorous definition. Note
that if ux = 0 outside a and u jumps at a with jump 1, then

Eε
KWC(u, v) = Eε,σ

sMM(v),

so our Eε,σ
sMM(v) is considered a special value of Eε

KWC(u, v) by fixing such u. For Ξ ∈ A0,
let Σ = {xi}∞i=1 be the set of all exceptional points of Ξ. (Note that the set Σ can be
finite.) Let ξ−i = minΞ(xi) for xi ∈ Σ. For u ∈ BV (M̊), let Ju denote the set of jump
discontinuities of u, i.e.,

Ju:=
{
x ∈ M̊

∣∣∣ d(x) = ∣∣u(x+ 0)− u(x− 0)
∣∣ > 0

}
,

where u(x + 0) (resp. u(x − 0)) denotes the trace from right (resp. left). For (u,Ξ) ∈
L1(M̊)× B, we set

E0
KWC(u,Ξ,M) :=


σ

∫
M̊\(Ju∩Σ)

α(1)

∣∣∣∣dudx
∣∣∣∣+ σ

∞∑
i=1

diαi + E0
sMM(Ξ,M)

for u ∈ BV (M̊) and Ξ ∈ A0,

∞ otherwise,

where di = d(xi) and
αi := min

{
α(ξ) | ξ−i ≤ ξ ≤ ξ+i

}
.

Here

∫
Ω

∣∣∣∣dudx
∣∣∣∣ denotes the total variation in Ω ⊂ M̊ . Since the measure |ux| is a continuous

measure outside Ju so that |ux| (Σ\Ju) = 0, one may replace Σ ∩ Ju by Σ in the domain
of integration in the definition of E0

KWC.

Theorem 2.2.3 (Gamma limit). Assume that the same hypotheses of Theorem 2.2.1
concerning M and F .
(i) (liminf inequality) Let {vε}0<ε<1 be in H1(M) ⊂ C(M). Assume that vε

g−→ Ξ ∈ B
as ε→ 0. Let {uε} ⊂ L1(M) satisfy uε → u in L1(M̊) as ε→ 0. Then

E0
KWC(u,Ξ,M) ≤ lim inf

ε→0
Eε

KWC(uε, vε).
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(ii) (limsup inequality) For any Ξ ∈ A0 and u ∈ BV (M̊), there exists {wε}0<ε<1 ⊂
H1(M̊) ⊂ C(M) and {uε}0<ε<1 ⊂ L1(M) such that wε

g−→ Ξ and uε → u in L1

satisfying
E0

KWC(u,Ξ,M) = lim
ε→∞

Eε
KWC(uε, wε).

Remark 2.2.3.

(i) From the proof of Lemma 2.2.1, it suffices to assume uε → u in L1
loc(M̊\Σ0) where

Σ0 = {x ∈M | minΞ(x) = 0}

in the statement of Theorem 2.2.3 (i). Since Ξ must be in A0 and E
0
sMM(Ξ,M) <∞,

this set Σ0 must be a finite set.

(ii) We may add a fidelty term λ‖u − g‖2
L2(M̊)

to energies Eε
KWC, E

0
KWC for λ > 0 with

given g ∈ L2(M̊) like the Ambrosio-Tortorelli functional Eε and the Munford-Shah
functional. More precisely, the statement of Theorem 2.2.3 is still valid for

Eε,λ
KWC(u, v) := Eε

KWC(u, v) + λ

∫
M̊

|u− g|2 dx,

E0,λ
KWC(u,Ξ,M) := E0

KWC(u,Ξ,M) + λ

∫
M̊

|u− g|2 dx.

The next compactness result easily follows from the compactness (Theorem 2.2.2) in
B and L1-compactness of BV (Ω), where Ω is an open set such that Ω ⊂ M̊\Σ0.

Theorem 2.2.4 (Compactness). Assume the same hypothesis of Theorem 2.2.2 concern-
ingM and F . Let λ > 0 be fixed. Let

{
vεj
}∞
j=1

be inH1(M) ⊂ C(M) and
{
uεj
}
⊂ L2(M̊).

Assume that
sup
j
E
εj ,λ
KWC

(
uεj , vεj

)
<∞

for εj → 0. Then there exists a subsequence
{(
uε′k , vε′k

)}
such that uε′k → u in L1

loc(M̊\Σ0)

with some u ∈ L1
loc(M̊\Σ0) and that vε′k

g−→Ξ with some Ξ ∈ A0. Here

Σ0 = {x ∈M | minΞ(x) = 0} .

By combining the Gamma convergence result and the compactness, a general theory
yields the convergence of a minimizer of Eε,λ

KWC; see [6, Theorem 1.21] for example.

Corollary 2.2.2. Assume the same hypothesis of Theorem 2.2.1. Let (uε, vε) be a

minimizer of Eε,λ
KWC. Then, there is a subsequence {(uεk , vεk)}

∞
k=1 such that vεk

g−→Ξ,

uεk → u in L1
loc(M̊ \ Σ0) and that the limit (u,Ξ0) be a minimizer of Eε,λ

KWC. Here
Σ0 = {x ∈M | minΞ0(x) = 0}.

2.3 Unfolding by arc-length parameters

For a bounded open interval I let u be a real-valued C1 function on I, that is, u ∈ C1(I).
To simplify notation, we set I = (0, r). Then the arc-length parameter s of the graph
curve y = u(x) is defined as

s(x) = su(x) :=

∫ x

0

(
1 + u2x(z)

)1/2
dz.
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One is able to extend this definition for general u ∈ BV (I). By definition, s(·) is strictly
monotone increasing. It is easy to see that s(·) is continuous if and only if the derivative
ux has no point mass, that is, u has no jump, which is equivalent to u ∈ C(I). The
inverse function x = x(s) of s = s(x) is always Lipschitz with Lipschitz constant 1, that

is, Lip(x) ≤ 1. Indeed, since
dx

ds
= (1 + u2x)

−1/2, the inequality

∣∣∣∣dxds
∣∣∣∣ ≤ 1 always holds.

For u ∈ C(I) ∩BV (I), we define an unfolding U by arc-length parameter of the form

U(s) = u (x(s)) .

The function U is defined on J with J = (0, L), where L is the length of the graph u on
I. Note that L ≥ r, the length of I.

We begin with several basic properties of the unfoldings.

Lemma 2.3.1. Assume that u ∈ W 1,1(I).

(i) U is Lipschitz continuous on J . More precisely, Lip(U) ≤ 1.

(ii) The total variation of U on J equals that of u in I, that is,

TV(u) = TV(U).

Proof. (i) Since

Us =
ux

(1 + u2x)
1/2
,

Lip(U) ≤ 1 is rather clear.

(ii) By definition,

TV(U) =

∫ L

0

|Us| ds =
∫ r

0

|ux| dx = TV(u).

2

Since q = p/(1 + p2)1/2 is equivalent to p = q/(1− q2)1/2, we see that

dx

ds
=

1

(1 + u2x)
1/2

=
(
1− U2

s

)1/2
.

We next discuss compactness for unfoldings and the lower semicontinuity of TV(·).

Lemma 2.3.2. Assume that {uε}0<ε<1 ⊂ W 1,1(I) with a bound for TV(uε) and ‖uε‖∞.
Then there is a subsequence such that U ε tends to some function V with Lip(V ) ≤ 1
uniformly in a domain of definition of V . Moreover, TV(V ) ≤ lim infε→0TV(u

ε).

Proof. Since TV(uε) is bounded, so is the length Lε of the graph of uε. The existence of
convergent subsequence follows from the Ascoli-Arzela theorem. A basic lower semicon-
tinuity of TV(·) yields

TV(V ) ≤ lim inf
ε→0

TV(U ε).

The right-hand side equals TV(uε) as proved in Lemma 2.3.1 (ii) so the proof is now
complete. 2
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uε Uε

x
V

Jx = {x(s) = x}

Figure 2.2: The visual example of Theorem 2.3.1. The sequence of function uε is unfolded
to U ε (the upper right figure). When U ε converges uniformly to V , the corresponding
limit of uε can be no longer captured as single-valued function but is possibly multi-
valued. The red part of the graph of V (the lower right image), however, corresponds
to the multi-valued part (the red part in the lower left image) and its maximum and
minimum coincide with the upper and lower relaxed limit of uε, respectively.

We raise a question whether or not a Lipschitz function V on J with Lip(V ) ≤ 1 can
be written as u (x(s)). This is in general not true if there is a non trivial interval such
that Us = 1 (or Us = −1). Indeed, if Us = ±1, then x(s) is not invertible.

In spite of this lack of the correspondence, however, the following lemma states that
the limit of the unfolding contains the information on the pointwise behaviour of uεk . (See
also Figure 2.2.)

Theorem 2.3.1. Assume that {uεk}∞k=1 ⊂ W 1,1(I) is a sequence uniformly bounded in
TV and its unfolding U εk converges uniformly to V in the domain J of definition of V .

If xεk , the inverse of the arc-length parameter of uεk , converges uniformly to a limit x
in J , then (

lim sup*

k→∞
uεk
)
(x) = max {V (s) | x(s) = x} ,(

lim inf
∗

k→∞
uεk

)
(x) = min {V (s) | x(s) = x} , x ∈ I.

Remark 2.3.1. The length of J is bounded by a bound of TV(uε) plus the length of I.

Proof. Since the proof is symmetric, we only give a proof for lim sup*. Let Jx = {s ∈ J | x(s) = x}.
We take s∗ ∈ Jx such that

V (s∗) = max
Jx

V.

Since V is the limit of U ε, we have

V (s∗) = lim
k→∞

uεk (xεk(s∗)) ≤
(
lim sup*

k→∞
uεk
)
(x).

To prove the converse inequality, we set

Jσx =
{
s ∈ J

∣∣ |x(s)− x| ≤ σ
}
.



2.3. UNFOLDING BY ARC-LENGTH PARAMETERS 31

0 x1 x2 x3

0

V

Jx1,1 Jx2,1 Jx2,2 Jx3,1

Figure 2.3: The visual explanation of Theorem 2.3.2. If the graph of {uεk} converges to
the graph as the top, its unfolding converges to V , whose graph is like the bottom. Then
Jxi = {s ∈ J | x(s) = xi} can be decomposed as the union of {Jxi,j}j=1,2,... by labelling
the disjoint intervals where V does not vanish.

Since xεk converges to x uniformly in J , for sufficiently large k, say k > k0(σ),

xεk(J2σ
x ) ⊃

{
y ∈ I

∣∣ |y − x| ≤ σ
}
;

here k0(σ) can be taken so that k0(σ) → ∞ as σ → ∞ and k0(σ) > 1/σ. We thus observe
that

sup
|y−x|≤σ

uεk(y) ≤ sup
{
uεk(y)

∣∣ y ∈ xεk(J2σ
x )
}
= sup

{
U εk(s)

∣∣ s ∈ J2σ
x

}
for k > k0(σ). Sending σ → 0, we observe that

lim
σ↓0

sup
|y−x|≤σ
k>k0(σ)

uεk(y) ≤ max
s∈Jx

V (s).

The left-hand side agrees with lim sup*

k→∞
uεk since

{
(y, k)

∣∣ |y − x| < 1/k0(σ), k > k0(σ)
}

⊂
{
(y, k)

∣∣ |y − x| < σ, k > k0(σ)
}

⊂
{
(y, k)

∣∣ |y − x| < σ, k > 1/σ
}
.

We thus conclude that(
lim sup*

k→∞
uεk
)
(x) ≤ max

{
V (s)

∣∣ s ∈ Jx
}
.

The proof is now complete. 2

We next prove the inequality connecting the total variation and the relaxed limit in
terms of the unfolding. (see Figure 2.3.)

Theorem 2.3.2. Assume the same hypothesis of Theorem 2.3.1. Then the set Σ of points
x where

lim sup*

k→∞
uεk(x) > lim inf

∗
k→∞

uεk(x)
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has at most countable cardinality. Assume furthermore that outside Σ the limit must be
zero and lim inf

k→∞
∗u

εk(x) = 0 for all x ∈ I. Then

lim inf
k→∞

TV(uεk) ≥
∑
x∈Σ

2χ(x) lim sup*

k→∞
uεk(x),

where χ(x) = 1 for x ∈ I and χ(x) = 1/2 for x ∈ ∂I.

Proof. If #Σ is uncountable, then there is an infinite number of intervals Jxi such that
maxV − minV > c0 with some c0 > 0. This is impossible by Theorem 2.3.1, since
TV(V ) <∞. Thus, Σ is at most a countable set.

We write Σ = {xi}∞i=1 and Ji = Jxi . We set ρi = maxJi V . The cases devided into two
cases whether or not Ji contains a boundary point of J . The total variation is estimated
so

TV(V ) ≥
∞∑
i=1

2χiρi,

where χi = χ(xi). Thus Theorem 2.3.1 and Lemma 2.3.2 yield the desired result. 2

We decompose Ji by

Ji := cl

(
∞⋃
j=1

Jxi,j

)
,

where V > 0 in an open interval Jxi,j and V = 0 on ∂Jxi,j. The union can be finite.

We introduce χ on subsets of Jxi which reflects behavior finer than that of χ on the
boundary. We set for x = xi ∈ Σ,

χ(Jxi,j) =

{
1 if Jxi,j ∩ ∂I = ∅,
1/2 otherwise.

By definition

TV(V ) ≥
∞∑
i=1

∞∑
j=1

2χ(Jxi,j)ρxi,j

with

ρxi,j = max
Jxi,j

V.

Similarly to obtain Theorem 2.3.2, we are able to prove a stronger result.

Theorem 2.3.3. Assume the same hypothesis of Theorem 2.3.1. Then

lim inf
k→∞

TV(uεk) ≥
∑
x∈Σ

∞∑
j=1

2χ(Jx,j)ρx,j,

where ρx,j and χ are determined from V as above.
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2.4 Proof of convergence of functional and compact-

ness

We shall prove the characterization of the Gamma limit of the single-well Modica–Mortola
functional by the results of the previous section on unfoldings.

Proof of Theorem 2.2.1.
(i) (liminf inequality) We discuss the case M = I. We may assume I = (0, r). Assume

that vε
g−→ Ξ ∈ B with vε ∈ H1(M). By the Modica–Mortola inequality which follows

from α2 + β2 ≥ 2αβ for numbers we have

Eε
sMM(vε) ≥

∫
M

∣∣∣∣dvεdx

∣∣∣∣√F (vε) dx =

∫
M

|G(vε)x| dx.

The right-hand is equal to TV(uε) if one sets uε = G(vε)≥ 0. We may assume that
Eε

sMM(vε) is bounded for ε ∈ (0, 1) so that TV(uε) is bounded for ε ∈ (0, 1) and that∫
M
F (vε) dx → 0 as ε → 0. By (F2), the latter convergence implies that vε → 1 in

measure. By taking a subsequence, we see that vε′ → 1 a.e. so that uε
′ → 0 a.e. This

implies that
lim inf

∗
ε→0

uε(x) = 0 for all x ∈M.

By taking a subsequence, we may assume that the inverse function xεk of the arc-length
parameter of uεk converges to some x. Applying Theorem 2.3.3, we see that

lim inf
k→∞

Eεk
sMM(vεk) ≥

∑
x∈Σ

∞∑
j=1

2χ(Jx,j)ρx,j,

where Σ is the set where lim sup* uεk(x) > 0 and ρx,j is determined by limit V of uε. Note

that Σ is at most countable. If vε
g−→ Ξ, then uε

g−→ Θ and Θ(x) = {0} if x /∈ Σ and

Θ(xi) =
[
0,max

(
G(ξ+i ), G(ξ

−
i )
)]

for xi ∈ Σ

by Lemma 2.2.3. By Theorem 2.3.1, at least one of ρxi,j should be equal to max
(
G(ξ+i ), G(ξ

−
i )
)
.

However, if ξ−i < 1 < ξ+i , then vε − 1 is sign-changing near xi. In this case, one of ρxi,j’s
must be equal to min

(
G(ξ+i ), G(ξ

−
i )
)
. Thus we observe that

∞∑
j=1

χ(Jxi,j)ρxi,j ≥ G(ξ+i ) +G(ξ−i ), xi ∈ Σ ∩ I.

If x ∈ Σ ∩ ∂I, one has to be more careful. For xi ∈ Σ ∩ ∂I, we see that

∞∑
j=1

χ(Jxi,j)ρx,j ≥ min(G(ξ+i ), G(ξ
−
i )) +

1

2
max(G(ξ+i ), G(ξ

−
i )). (2.4)

Indeed, without loss of generality, we assume that G(ξ−i ) < G(ξ+i ). When G(ξ−i ) = 0,

(2.4) is rather easy to prove since the right hand side is equal to
1

2
G(ξ+i ), and then we

may assume that G(ξ−i ) > 0. Then there are at least two indices denoted by j = 1, 2,
such that

χ(Jxi,1) =
1

2
, χ(Jxi,2) = 1, and {ρxi,1, ρxi,2} = {G(ξ−i ), G(ξ+i )}.
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The left hand side is dominated from below by

χ(Jxi,1)ρxi,1 + χ(Jxi,2)ρxi,2 =
1

2
ρxi,1 + ρxi,2.

The right hand side is minimized in the case that ρxi,1 = G(ξ+i ) and ρxi,2 = G(ξ−i ). We
thus obtain the inequality (2.4).

We now conclude that

lim inf
k→∞

Eεk
sMM(vεk) ≥

∞∑
i=1

2(1− κi)(G(ξ
+
i ) +G(ξ−i ))

+ κi
[
2min(G(ξ+i ), G(ξ

−
i )) + max(G(ξ+i ), G(ξ

−
i ))
]

= E0
sMM(Ξ, I),

which is the desired liminf inequality for b = 0. Since vε
g−→ Ξ, we see that

lim inf bα (vε(a)) ≥ b min
ξ∈Ξ(a)

α (ξ) .

Thus the desired liminf inequality follows for b > 0. The case M = T is easier since there
is no boundary point.

(ii) (limsup inequality) This follows from explicit construction of function wε as for the
standard double-well Modica–Mortola functional.

For ξ < 1 and x > 0, let v(x, ξ) be a function determined by∫ v

ξ

(
1√
F (ρ)

)
dρ = x.

This equation is uniquely solvable by (F1) for all x ∈ [0, x∗) with

x∗ :=

∫ 1

ξ

(
1√
F (ρ)

)
dρ.

Note that v solves the initial value problem
dv

dx
=
√
F (v), x ∈ (0, x∗),

v(0, ξ) = ξ,

(2.5)

although this problem may admit many solutions.
although this problem may admit many solutions. For ξ > 1, we parallely define v by∫ ξ

v

(
1√
F (z)

)
dz = x

for x ∈ (0, x∗) with

x∗ :=

∫ ξ

1

(
1√
F (z)

)
dz.

In this case, v also solves (2.5).
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We also note that v is monotone and that

lim
x→x∗

v(x, ξ) = 1

including the case x∗ = ∞. We consider the even extention of v and still denote by v,
that is, v(x, ξ) = v(−x, ξ) for x ∈ (−x∗, 0]. We next translate and rescale v. Let vε be of
the form

vε(x, z, ξ) := v

(
x− z

ε
, ξ

)
, x ∈ R.

By the equality case of the Modica–Mortola functional, we see that

Eε
sMM(vε) =

∫
M

∣∣∣∣dvεdx

∣∣∣∣√F (vε) dx =

∫
M

|G(vε)x| dx.

The right-hand side is estimated from above by

2 (G(ξ)−G(1)) = 2G(ξ)

and if z is a boundary point of M , we may replace 2G(ξ) by G(ξ).
In order to explain the the main idea of the proof, we first study the case when all

ξ+i = 1 although logically we need not distinguish this case from general case. If all
ξ+i = 1, then it is easy to construct the desired wε by setting

wε(x) = min
xi∈Σ

v(x, xi, ξ
−
i ).

Indeed, we still have

Eε
sMM(wε) =

∫
M

|G(wε)x| dx

and evidently this total variation is dominated from above by

∞∑
i=1

2χiG(ξ
−
i ).

(The first identity can be proved by approximating wε by minimum of finitely many wε’s.)
We thus observe that Eε

sMM(wε) ≤ E0
sMM(Ξ,T) for all ε > 0. The graph convergence

wε
g−→ Ξ is rather clear since

wε(x, 0, ξ)
g−→ Ξ0

on any bounded closed interval as ε→ 0, where

Ξ0(x) =

{
1, x 6= 0,
[ξ, 1] , x = 0.

The proof for general ξ±i is more involved. For δ > 0, we cut off v by setting as follows:
For ξ < 1,

vδ(x, ξ) =

{
v(x, ξ) if v(x) ≤ 1− δβ, β = |ξ − 1|,
(|x|+ c) ∧ 1 if v(x) ≥ 1− δβ,

and for ξ > 1,

vδ(x, ξ) =

{
v(x, ξ) if v(x) ≥ 1 + δβ, β = |ξ − 1|,
(−|x|+ c′) ∨ 1 if v(x) ≤ 1 + δβ,
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v(x, ξ)

vδ(x, ξ)
1

ξ
vδε(·, xi, ξ

−
i )

vδε(·, xi + η+i + η−i , ξ
+
i )

1 xi

ξ−i

ξ+i

Figure 2.4: (left) The construction of vδ(·, ξ). In order to ensure the finiteness of the
support, we take the cutoff by affine functions. (right) The construction of vδε,i for general
ξ±i . It is constructed by combining vδε(·, xi, ξ−i ) and vδε(·, xi, ξ+i ) with shift in order that
their supports touch at their endpoints.

where constants c, c′ are taken so that vδ is (Lipschitz) continuous. (See Figure 2.4.) We
rescale and translate this vδ and set

vδε(x, z, ξ) := vδ
(
x− z

ε
, ξ

)
x ∈ R.

We consider the case when ξ < 1. Since
dvδε
dx

=
1

ε

√
F (vδε) for v

δ
ε ≤ 1− δ, we see that for

z ∈M

Eε
sMM(v

δ
ε) =

ε

2

∫
M

∣∣∣∣dvδεdx

∣∣∣∣2 dx+
1

2ε

∫
M

F (vδε) dx

≤
∫
vε(x)<1−δ

|G(vε)x| dx

+ 2

{
ε

2

(
1

ε

)2

· δβε+ 1

2ε
max

{
F (ρ)

∣∣∣ 1− δ ≤ ρ ≤ 1
}
δβε

}
≤ 2G(ξ) + 2βδ

(2.6)

for sufficiently small δ, say δ < δF , since F (ρ) → 0 as ρ → 1. This δF depends only on
F . A similar argument for ξ > 1 yield the same estimate (2.6).

We first consider the case when M = T. Let η = η(ε, δ, ξ) be a number such that
supp

(
vδε − 1

)
= [z − η, z + η]. For xi ∈ Σ, we set

vδε,i(x) :=

{
vδε(x, xi, ξ

−
i ) if x ∈ (xi − η−i , xi + η−i ),

vδε(x, xi + η+i + η−i , ξ
+
i ) otherwise,

where η−i = η(ε, δ, η−i ) and η
+
i = η(ε, δ, η+i ). (see Figure 2.4.) This function is (Lipschitz)
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continuous and is strictly monotone from xi − η+i − η−i to xi. For v
δ
ε,i(x) by (2.6), we see

that
Eε

sMM

(
vδε,i
)
≤ 2

(
G(ξ+i ) +G(ξ−i )

)
+ 4βiδ, (2.7)

where βi = max
(
|ξ+i − 1|, |ξ−i − 1|

)
.

Our goal is to construct wε such that wε
g−→ Ξ and for each µ > 0, there is εµ > 0 such

that if ε < εµ then
Eε

sMM(wε) ≤ E0
sMM(Ξ,T) + µ. (2.8)

We order xi ∈ Σ so that βi is decreasing. We note that {βi} must converge to zero
because

∑∞
i=1

(
G(ξ+i ) +G(ξ−i )

)
< ∞. For each vδε,i, we set δ = δi = δi(µ) such that∑∞

i=1 4βiδi < µ; this is, of course, possible for example by taking δi = 2−i−2µ. Let

j(µ, ε) > 0 be the maximum number such that the support of
{
vδiε,i − 1

}j(µ,ε)
i=1

is mutually
disjoint. We set

wµε (x) := 1 +

j(µ,ε)∑
i=1

(
v
δi(µ)
ε,i (x)− 1

)
and observe by (2.7) that

Eε
sMM(w

µ
ε ) ≤

j(µ,ε)∑
i=1

2
(
G(ξ+i ) +G(ξ−i )

)
+

j(µ,ε)∑
i=1

4βiδi (2.9)

≤ E0
sMM(Ξ,T) + µ for all ε > 0.

Since j(µ, ε) → ∞ as ε→ 0, we see that wµε
g−→ Ξ as ε→ 0 for each µ > 0. The desired wε

is obtained through a diagonal argument. Indeed, for a given ν > 0, we take ε = ε(ν, µ)
such that

dH (Γwµ
ε
,Ξ) < ν

for ε ∈ (0, ε(ν, µ)). We may assume that ε(ν, µ) is monotone in ν and µ, that is, ε(ν2, µ2) ≤
ε(ν1, µ1) if ν1≥ν2 and µ1≥µ2. We then set

wε := wµℓε for ε ∈ [ε(νℓ+1, µℓ+1), ε(νℓ, µℓ)) ,

where νℓ, µℓ ↓ 0 as ` → ∞. We now observe that wε
g−→ Ξ and by (2.8) the desired

estimate (2.8) holds for εµ = ε(νℓ, µℓ) for µℓ < µ.
We thus proved the limsup inequality for Eε

sMM for M = T. If b > 0, we may assume
that ξ−i = minΞ(a) < 1. It is easy to see that wε(a) = ξi− for all ε > 0 by construction.

Thus the limsup inequality for Eε,b
sMM for b > 0 is obtained.

It remains to handle the case for M = I. Assume that x1 ∈ Σ is the right end point
of I. We first consider the case when G(ξ−1 ) ≤ G(ξ+1 ). Instead of (2.6), we have

Eε
sMM

(
vδε,1
)
≤ 2G(ξ+1 ) +G(ξ−1 ) + 3β1δ.

If there is no other point of Σ on ∂I, arguing in the same way we obtain the desired
limsup inequality by the same construction of wε. If G(ξ

−
1 ) > G(ξ+1 ), then we modify the

definition of vδε,1 by

vδε,1(x) :=

{
vδε(x, x1, ξ

+
i ) of x ∈ (x1 − ηi, x1],

vδε(x, x1 + η+1 + η−1 , ξ
−
i ) otherwise.

The remaining argument is similar. Symmetric argument yields the limsup inequality in
the case that Σ has the left end point of I. 2
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We next prove the compactness.

Proof of Theorem 2.2.2. As in the proof of Theorem 2.2.1 (i), we see that

sup
j

∫
M

∣∣G (vεj)x∣∣ dx <∞.

By (F2), we see that

G(v) ≤
√
F (v)|v − 1| ≤ F (v)

2
+

(v − 1)2

2
, v ∈ R.

By (F2’), we see
F (v) ≥ c0(v − 1)2 − c′1

so
G(v) ≤ C ′F (v)

for v such that |v − 1| is sufficiently large v with some content C ′ > 0. Since

1

εj

∫
M

F
(
vεj
)
dx

is bounded, so is
∫
M
G
(
vεj
)
dx. We set uεj = G

(
vεj
)
and observe that TV (uεj) is

bounded and ‖uεj‖L1 is bounded. Since

‖f − fav‖∞ ≤ ‖fx‖L1 ,

where fav is the average of f over I, it follows that

‖f‖∞ ≤ ‖fx‖L1 + ‖fx‖L1/|I|.

This interpolation inequality yields a bound for ‖uεj‖∞. Applying Lemma 2.3.2, there is
a subsequence U εk converges to V uniformly, where U εk is the unfolding of uεk . Since we
may assume that xεk , the inverse of arc-length of uεk , converges to x uniformly in M by
taking a subsequence, applying Theorem 2.3.2 yields that

lim sup*

k→∞
uεk(x) > lim inf

∗
k→∞

uεk(x), x ∈ Σ

for at most countably many x ∈ Σ. Since vεk → 1 a.e. by taking a subsequence, we see
that lim inf

∗
uεk(x) = 0 for all x ∈ M . This implies that vεk satisfies all assumptions

on a sequence {gj} of the compactness lemma (Lemma 2.2.4) with S = Σ. Then by

Lemma 2.2.4, we conclude that vεk
g−→ Ξ with some Ξ ∈ A0. 2

2.5 Singular limit of the Kobayashi–Warren–Carter

energy

In this section, we shall study the Gamma limit of the Kobayashi–Warren–Carter energy.
We first derive an inequality for lower semicontinuity. Assume that M is either I or

T. Assume that

(C1) vε
g−→ Ξ, uε → u in L1(M̊) as ε→ 0, where vε ∈ C(M), uε ∈ L1.
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For the limits, we assume that

(C2) Ξ ∈ A0, that is, there is a countable set Σ = {xi}∞i=1 ⊂M such that Ξ(x) = {1} for
x /∈ Σ and Σ(xi) =

[
ξ−i , ξ

+
i

]
3 1 with ξ−i < ξ+i for xi ∈ Σ. Moreover,

∑∞
i=1G

(
ξ−i
)
<

∞.

(C3) u ∈ BV
(
M̊ \Σ0

)
, where Σ0 =

{
xi ∈ Σ

∣∣ ξ−i = 0
}
. (Since

∑∞
i=1G

(
ξ−i
)
<∞, the set

Σ0 is a finite set.)

We define a weighted total variation∫
M̊

α(vε)

∣∣∣∣duεdx

∣∣∣∣ := sup

{∫
M̊

ϕxuε dx
∣∣∣ |ϕ(x)| ≤ α(vε(x)), ϕ ∈ C1

c (M̊)

}
,

where C1
c (M) is the space of all C1 functions in M̊ with compact support in M̊ . For

u ∈ BV
(
M̊ \ Σ0

)
, let Ju denote the set of jump discontinuities of u. In other words,

Ju =
{
x ∈ M̊ \ Σ0

∣∣ d(x) = |u(x+ 0)− u(x− 0)| > 0
}
,

where u(x± 0) is the trace from right (+) and left (−). It is at most a countable set.

Lemma 2.5.1. Assume conditions (C1) – (C3). Then∫
M̊\(Ju∩Σ)

α(1)|ux|+
∑
x∈Σ′

diαi ≤ lim inf
ε→0

∫
M̊

α(vε)

∣∣∣∣duεdx

∣∣∣∣ ,
where di = d(xi) ≥ 0, Σ′ = Σ \ Σ0.

Proof. It suffices to prove that for any δ ∈ (0, 1),

α(1− δ)

∫
M̊\(Ju∩Σ1−δ)

|ux|+
∑

xi∈Σ′
1−δ

diαi ≤ lim inf
ε→0

∫
M̊

α(vε)

∣∣∣∣duεdx

∣∣∣∣ ,
where

Σ1−δ =
{
xi ∈ Σ

∣∣ ξ−i < 1− δ
}
, Σ′

1−δ = Σ1−δ \ Σ0.

By this notation Σ1 = Σ. Note that the set Σ1−δ is a finite set for δ > 0 since∑∞
i=1G

(
ξ−i
)
<∞.

Since Σ0 is a finite set and∫
M̊

α(vε)

∣∣∣∣duεdx

∣∣∣∣ ≥ ∫
M̊\Σ0

α(vε)

∣∣∣∣duεdx

∣∣∣∣ ,
it suffices to prove that for each interval {Mj}mj=1, which is a connected component of

M̊ \ Σ0 the inequality

α(1− δ)

∫
Mj\(Ju∩Σ1−δ)

|ux|+
∑

xi∈Σ′
1−δ

xi∈Mj

diαi ≤ lim inf
ε→0

∫
Mj

v2ε

∣∣∣∣duεdx

∣∣∣∣ .
Thus we may assume that Σ0 = ∅.
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We consider δ1-open neighborhood of Σ1−δ, that is,

Xδ1 =
{
x ∈ M̊

∣∣ dist (x,Σ1−δ) < δ1

}
and observe that∫

M̊

α(vε)

∣∣∣∣duεdx

∣∣∣∣ ≥ ∫
M̊\Xδ1

α(vε)

∣∣∣∣duεdx

∣∣∣∣+ ∫
Xδ1

α(vε)

∣∣∣∣duεdx

∣∣∣∣ .
We may assume that Xδ1 consist of disjoint interval Bδ1(xi) =

{
x ∈ M̊

∣∣ |x− xi| < δ1

}
,

xi ∈ Σ1−δ by taking δ1 small. Since vε
g−→ Ξ, for sufficiently small ε we observe that

vε ≥ 1− δ − δ1 in M̊ \Xδ1 ,

vε ≥ ξ−i − δ1 in Bδ1(xi), xi ∈ Σ1−δ.

We thus conclude that

lim inf
ε→0

∫
M̊

α(vε)

∣∣∣∣duεdx

∣∣∣∣
≥ lim inf

ε→0

α(1− δ − δ1)

∫
M̊\Xδ1

∣∣∣∣duεdx

∣∣∣∣+ ∑
xi∈Σ1−δ

α
(
ξ−i − δ1

) ∫
Bδ1

(xi)

∣∣∣∣duεdx

∣∣∣∣


≥ α(1− δ − δ1)

∫
M̊\Xδ1

|ux|+
∑

xi∈Σ1−δ

α
(
ξ−i − δ1

) ∫
Bδ1

(xi)

|ux|

by lower semicontinuity of TV(·) with respect to L1-convergence. The second term of the
right-hand side is estimated from below by∑

xi∈Σ1−δ

α
(
ξ−i − δ1

)
di.

Note that δ2 < δ1 implies M̊\Xδ1 ⊂ M̊\Xδ2 . Sending δ1 → 0 and by definition α0 we
have

α(1− δ)

∫
M̊\Σ1−δ

|ux|+
∑

xi∈Σ1−δ

diαi ≤ lim inf
ε→0

∫
M̊

α(vε)

∣∣∣∣duεdx

∣∣∣∣ .
Replacement of M̊ \ Σ1−δ by M̊ \ (Ju ∩ Σ1−δ) is rather trivial because outside Ju the

set Σ1−δ has measure zero with respect to the measure |ux|. 2

We are now in position to give a proof for the Gamma limit of the Kobayashi–Warren–
Carter energy.

Proof of Theorem 2.2.3.

(i) (liminf inequality) We may assume that

lim inf
ε→0

Eε
KWC(uε, vε) <∞.

By Theorem 2.2.1(i), we see that the limit Ξ satisfies (C2). Let Ω be an open set
such that Ω is compact and contained in M̊ \ Σ0. Assume that∫

M̊

α(vε)

∣∣∣∣duεdx

∣∣∣∣
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is bounded. Since c := minx∈Σ′ Ξ(x) > 0 and vε
g−→ Ξ, we set that vε ≥ c/2 > 0 on

Ω for sufficiently small ε > 0. Thus

∫
Ω

∣∣∣∣duεdx

∣∣∣∣ is bounded. This implies that the limit

u ∈ BV (Ω). We now conclude that u satisfies (C3).

Applying Theorem 2.2.1 for Eε
sMM and Lemma 2.5.1 for

∫
α(vε)

∣∣∣∣duεdx

∣∣∣∣, we see that

σ

∫
M̊\(Ju∩Σ)

α(1)|ux|+ σ
∑
x∈Σ′

diαi + E0
sMM(Ξ,M) ≤ lim inf

ε→0
Eε

KWC(uε, vε).

The second term in the left-hand side equals σ
∑

x∈Σ diαi since ξ
−
i = 0 on Σ0. Thus

the left-hand side equals E0
KWC(u,Ξ,M). The proof of liminf inequality is now com-

plete.

(ii) (limsup inequality) We take uε = u. We notice that Theorem 2.2.1 extends to the
case when E0,b

sMM(Ξ,M), Eε,b
sMM(v) are replaced by

E
0,{bℓ}
sMM (Ξ,M) := E0

sMM(Ξ,M) +
∞∑
ℓ=1

bℓ min
ξ∈Ξ(aℓ)

α (ξ) ,

E
ε,{bℓ}
sMM (vε) := Eε

sMM(vε) +
∞∑
ℓ=1

bℓα (vε(aℓ)) ,

where we assume that
∑∞

ℓ=1 bℓ <∞ with bℓ ≥ 0 and aℓ ∈ M̊ for ` = 1, 2, . . . ,m. Let
{aℓ} denote the jump discontinuity of u, that is, Ju = {aℓ}. Let bℓ denote σ times
the jump dℓ = |u(aℓ + 0)− u(aℓ − 0)|, that is, bℓ = σdℓ. Note that

∑
bℓ < ∞. By

Theorem 2.2.1(ii) for E
ε,{bℓ}
sMM , we see that there exist wε

g−→ Ξ such that

E
0,{bℓ}
sMM (Ξ,M) = lim

ε→0
E
ε,{bℓ}
sMM (wε). (2.10)

We notice that

Eε
KWC(u,wε) = σ

∫
M̊

α(wε)|ux|+ Eε
sMM(wε)

= σ

∫
M̊\Σ

α(wε)|ux|+
∞∑
ℓ=1

bℓα (wε(aℓ)) + Eε
sMM(wε)

= σ

∫
M̊\Σ

α(wε)|ux|+ E
ε,{bℓ}
sMM (wε).

By construction, wε is bounded and wε → 1 almost everywhere with respect to the
measure |ux| outside Σ, i.e. |ux|bM̊\Σ. Since α(wε)−α(1) tends to zero for all x outside

Σ and it is bounded, the first term in the right-hand side converges to σ
∫
M\Σ α(1) |ux|

by a bounded convergence theorem. The convergence (2.10) yields the desired result.
2





Chapter 3

A finer singular limit of a single-well
Modica-Mortla functional on multi
dimensional

In this chapter, we consider the Γ-convergence of a single-well Modica-Mortola energy in
a multidimensional domain. We Introduce a new convergence concept called slice graph
convergence. Slice graph convergence is, roughly speaking, graph convergence in almost
every slice for dense direction. This is because the method used to show Γ-convergence
in multidimensional domains, called the ”slice method,” is also used for finer topology.

3.1 Introduction

In this section, we introduce the notion of sliced graph convergence. We first recall a few
basic notion of a set-valued function, especially on the measurability. Consequently, we
review the notion of the slicing argument and introduce the concept of the sliced graph
convergence.

3.1.1 A set-valued function and its measurability

We first recall a few basic notion of a set-valued function; see [1] for example. Let M be
a Borel set in Rd.

Let Γ be a set-valued function on M with values in 2R
m\{∅} such that Γ(z) is closed

in Rm for all z ∈ M . We simply say that such Γ is a closed set-valued function. We say
that Γ is Borel measurable if Γ−1(U) is a Borel set whenever U is an open set in Rm. Here
the inverse Γ−1(U) is defined as

Γ−1(U) :=
{
z ∈M

∣∣ Γ(z) ∩ U 6= ∅
}
.

Similarly, we say that Γ is Lebesgue measurable if Γ−1(U) is Lebesgue measurable whenever
U is an open set. Assume that M is closed. We say that Γ is upper semicontinuous if
graphΓ is closed in M × Rm, where

graphΓ :=
{
z = (x, y) ∈M × Rm

∣∣ y ∈ Γ(z), x ∈M
}
.

If Γ is upper semicontinuous, Γ is Borel measurable [1]. Assume that M is compact.
Then, graphΓ is compact if it is closed. We set

C = {Γ | graphΓ is compact in M × Rm and Γ(x) 6= ∅ for z ∈M} .

43
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For Γ1,Γ2 ∈ C, we set

dg(Γ1,Γ2) := dH(graphΓ1, graphΓ2),

where dH denotes the Hausdorff distance of two sets in M × Rm. Here, dH is defined in
Chapter 2.

We recall a basic properties of a Borel measurable set-valued function [1, Theorem
8.1.4].

Theorem 3.1.1. Let Γ be a closed set-valued function on a Borel setM in Rd with values
in 2R

m\{∅}. The following three statements are equivalent:

(i) Γ is Borel (resp. Lebesgue) measurable.

(ii) graphΓ is a Borel set (M⊗B measurable set) in M × Rm.

(iii) There is a sequence of Borel (Lebesgue) measurable functions {fj}∞j=1 such that

Γ(z) = {fj(z) | j = 1, 2, . . .}.

Here M denotes the σ-algebra of Lebesgue measurable sets in M and B denotes the
σ-algebra of Borel sets in Rm.

3.1.2 Sliced graph convergence

We next recall the notation often used in the slicing argument [14].
Let S be a set in RN . Let SN−1 denote the unit sphere in RN centered at the origin,

i.e.,
SN−1 =

{
ν ∈ RN

∣∣ |ν| = 1
}
.

For a given ν, let Πν denote the hyperplane whose normal equals ν. In other words,

Πν :=
{
x ∈ RN

∣∣ 〈x, ν〉 = 0
}

where 〈 , 〉 denotes the standard inner product in RN . For x ∈ Πν , let Sx,ν denote the
intersection of Ω and the whole line with direction ν which contains x. In other words,

Sx,ν :=
{
x+ tν

∣∣ t ∈ S1
x,ν

}
,

where
S1
x,ν =

{
t ∈ R

∣∣ x+ tν ∈ S
}
⊂ R.

We also set
Sν :=

{
x ∈ Πν

∣∣ Sx,ν 6= ∅
}
.

For a given function f on Ω, we define the 1-d restriction function fx,ν on Ω1
x,ν by

fx,ν(t) := f(x+ tν) (x ∈ Ω, ν ∈ SN−1).

Let Ω be a bounded domain in RN , and T denote the set of all Lebesgue measurable
(closed) set-valued function Γ : Ω → 2R. For ν ∈ SN−1, we consider Ω1

x,ν ⊂ R and the

(sliced) set-valued function Γx,ν on Ω1
x,ν defined by Γx,ν(t) = Γ(x + tν). Let Γx,ν denote

its closure defined on the closure of Ω1
x,ν , i.e., it is uniquely determined so that the graph
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of Γx,ν equals the closure of graphΓx,ν in R × R. As for a usual measurable function,
we identify Γ(1),Γ(2) ∈ T if Γ(1)(z) = Γ(2)(z) for LN -a.e. z ∈ Ω, where LN denotes the

N -dimensional Lebesgue measure. By Fubini’s theorem, Γ
(1)
x,ν(t) = Γ

(2)
x,ν(t) for L1-a.e. t for

LN−1-a.e. x ∈ Ων . With this identification, we consider its equivalence class and we call
each Γ(1), Γ(2) as a representative of this equivalence class. For ν ∈ SN−1, we define the
subset Bν ⊂ T as follows: Γ ∈ Bν if

� There is a representative of Γx,ν such that Γx,ν = Γx,ν on Ω1
x,ν ;

� graphΓx,ν is compact in Ω1
x,ν × R for a.e. x ∈ Ων .

We note that if Γ(1),Γ(2) ∈ Bν , then Γ
(1)
x,ν ,Γ

(2)
x,ν ∈ C with M = Ω1

x,ν by a suitable choice

of representative of Γ
(1)
x,ν ,Γ

(2)
x,ν , which follows from definition.

In this situation, we have the following fact:

Lemma 3.1.1. The function

f(x) = dg

(
Γ
(1)
x,ν ,Γ

(2)
x,ν

)
= dH

(
graphΓ(1)

x,ν , graphΓ
(2)
x,ν

)
is Lebesgue measurable in Ων .

Proof. By Theorem 3.1.1 (iii), there is a representative of Γ which is Borel measurable.
This is because that each Lebesgue measurable function f has a Borel measurable function
f with f(z) = f(z) for LN -a.e. z ∈ Ω. By Theorem 3.1.1 (ii), graphΓ is a Borel set for the
Borel representative of Γ. Since the graph of the set-valued function T : x 7−→ graphΓx,ν
on Ων equals graphΓ for Γ ∈ Bν by taking a suitable representative of Γ, we see that
T should be Borel measurable if Γ is Borel measurable by Theorem 3.1.1 (ii). (Note
that T (x) is a compact set in R × R.) Since dH is continuous, the map f(x) should be
measurable. 2

We now introduce a metric on Bν of the form

dν
(
Γ(1),Γ(2)

)
:=

∫
Ων

dg

(
Γ
(1)
x,ν ,Γ

(2)
x,ν

)
1 + dg

(
Γ
(1)
x,ν ,Γ

(2)
x,ν

) dHN−1(x)

for Γ1,Γ2 ∈ Bν , where HN−1 denotes the Hausdorff measure. From Lemma 3.1.2, we see
that this is a well-defined quantity for all Γ(1),Γ(2) ∈ Bν . We identify Γ(1),Γ(2) ∈ Bν if
Γ
(1)
x,ν = Γ

(2)
x,ν for a.e. x. With this identification, (Bν , dν) is indeed a metric space. By a

standard argument, we see that (Bν , dν) is a complete metric space; we do not give a proof
since we do not use this fact.

Let D be a countable dense set in SN−1. We set

BD :=
⋂
ν∈D

Bν .

It is a metric space with metric

dD
(
Γ(1),Γ(2)

)
:=

∞∑
j=1

1

2j
dνj
(
Γ(1),Γ(2)

)
1 + dνj (Γ

(1),Γ(2))
,
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where D = {νj}∞j=1. (This is also a complete metric space.)
We shall fix D. The convergence with respect to dD is called the sliced graph conver-

gence. If {Γk} ⊂ BD converges to Γ ∈ BD with respect to dD, we simply write Γk
sg−→ Γ

(as k → ∞). Roughly speaking, we say Γk
sg−→ Γ if the graph of the slice Γk converges to

that of Γ for a.e. x ∈ Ων for any ν ∈ D. For a function v on Ω, we associate a set-valued
function Γv by Γv(x) = {v(x)}. If Γk = Γvk for some vk, we shortly write, vk

sg−→ Γ instead

of Γvk
sg−→ Γ. We note that if v ∈ H1(Ω), the L2-Sobolev space of order 1, then Γv ∈ BD

for any D.
We conclude this subsection by giving an example that the graph convergence does not

imply the sliced graph convergence. Let C(r) denote the circle of radius r > 0 centered at
the origin in R2. It is clear that dH (C(r), C(r − ε)) → 0 as ε > 0 tends to zero. However,
for ν = (1, 0), C(r − ε)x,ν with x = (0,±r) is empty and does not converge to a single
point C(r)x,ν = {(0,±r)}. In this case, C(r − ε)x,ν converges to C(r)x,ν in the Hausdorff
sense except the case x = (0,±r). To make the exceptional set has a positive L1 measure
in Πν , we recall a thick Cantor set defined by

G := [0, 1]\U

U :=
⋃{(

a

2n
− 1

22n+1
,
a

2n
+

1

22n+1

) ∣∣∣∣ n, a = 1, 2, . . .

}
.

This G is a compact set with positive L1 measure. We set

K :=
⋃
r∈G

C(r), Kε :=
⋃
r∈G

C(r − ε).

It is clear that Kε converges to K as ε→ 0 in the Hausdorff distance sense. However, for
any ν ∈ S1, (Kε)x,ν does not converge to (K)x,ν for x ∈ Πν with |x| ∈ G. Based on this
set, it is easy to construct an example, that the graph convergence does not imply the
sliced graph convergence. Let Ω be an open unit disk centered at the origin. We set

Γε(x) :=

{
[0, 1], z ∈ Kε

{1}, z ∈ Ω\Kε
, Γ(x) :=

{
[0, 1], z ∈ K
{1}, z ∈ Ω\K .

The graph convergence is equivalent to the Hausdorff convergence of Kε to K. The sliced
graph convergence is equivalent to saying (Kε)x,ν → (K)x,ν for ν ∈ D and a.e. x, where
D is some dense set in S1. However, because of construction of Kε and K, we observe
for any ν ∈ S1, Kx,ν does not converge to K for x with |x| ∈ G, which has a positive
L1 Lebesgue measure on Πν . Thus, Γε does not converges to Γ in the sense of the sliced
graph convergence while Γε converges to Γ in the sense of graph convergence.

3.2 Liminf inequality

We recall a single-well Modica–Mortola function EεsMM on H1(Ω), when Ω is a bounded
multidimensional domain in RN . For v ∈ H1(Ω), we set an integral

EεsMM(v) :=

∫
Ω

{
ε

2
|∇v|2 + 1

2ε
F (v)

}
dx.

Here, the potential energy F is a single-well potential. We shall assume that
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(F1) F ∈ C1(R) is non-negative and F (v) = 0 if and only if v = 1,

(F2) lim inf |v|→∞ F (v) > 0.

We occasionally impose stronger growth assumption than (F2):

(F2’) (monotonicity condition) F ′(v)(v − 1) ≥ 0 for all v ∈ R.

We are interested in the Gamma limit of EεsMM as ε → 0 under the sliced graph
convergence. We define the subset A0 := A0(Ω) ⊂ BD as follows: Ξ ∈ A0(Ω) if there is a
countably N − 1 rectifiable set Σ ⊂ Ω such that

Ξ(z) =

{
1, z ∈ Ω\Σ
[ξ−, ξ+] , z ∈ Σ

(3.1)

with HN−1-measurable function ξ± on Σ and ξ−(z) ≤ 1 ≤ ξ+(z) for HN−1-a.e. z ∈ Σ. For
the definition of countably N − 1 rectifiability, see the beginning of Section 3.2.1. Here
Hm denotes the m-dimensional Hausdorff measure.

We briefly remark that the compactness of the elements in A0. By definition, if Ξ is
of the form (3.1), then Ξ ∈ J . However, there may be a chance that graphΓx,ν is not
compact. This happens even for the one-dimensional case (N = 1). Indeed, if a set-valued
function on (0, 1) is of the form,

Ξ(z) =

{
[1,m] for z = 1/m
{1} otherwise,

then Ξ is not compact in [0, 1]× R. It also possible to construct an example that Ξ 6= Ξ
in (0, 1). This is a reason why we impose Ξ ∈ BD in the definition of A0.

For Ξ ∈ A0, we define a functional

E0
sMM(Ξ,Ω) := 2

∫
Σ

{
G(ξ−) +G(ξ+)

}
dHN−1, where G(σ) :=

∣∣∣∣∫ σ

1

√
F (τ) dτ

∣∣∣∣ .
We shall state the liminf inequality for the convergence of EεsMM.

Theorem 3.2.1. Let Ω be a bounded domain in RN . Assume that F satisfies (F1) and
(F2). Assume that α ∈ C(R) is non-negative. Let D be a countable dense set of SN−1.

Let {vε}0<ε<1 be in H1(Ω) so that Γvε ∈ BD. If vε
sg−→ Ξ and Ξ ∈ A0, then

lim inf
ε→0

EεsMM(vε) ≥ E0
sMM(Ξ,Ω).

3.2.1 Basic properties of a countably N − 1 rectifiable set

To prove Theorem 3.2.1, we begin with basic properties of a countably N − 1 rectifiable
set. A set S in RN is said to be countably N − 1 rectifiable if

S ⊂ S0 ∪

(
∞⋃
j=1

Fj
(
RN−1

))

where HN−1(S0) = 0 and Fj : RN−1 → RN are Lipschitz mapping for j = 1, 2, . . ..
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Definition 3.2.1. Let δ > 0. A set K in RN is δ-flat if there is V ⊂ RN−1 and a C1

function ψ : RN−1 → R and a rotation A ∈ SO(N) such that

K =
{
(x, ψ(x))A

∣∣ x ∈ V
}

and ‖∇ψ‖∞ ≤ δ.

Lemma 3.2.1. Let Σ be countably N−1 rectifiable set. For any δ > 0, there is a disjoint
countable family {Ki}∞i=1 of compact δ-flat sets and HN−1 measure zero N0 such that

Σ = N0 ∪

(
∞⋃
i=1

Ki

)
.

Proof. By [25, Lemma 11.1], there is a countable family of C1 manifolds {Mi}∞i=1 and N
with HN−1(N) = 0 such that

Σ ⊂ N ∪

(
∞⋃
i=1

Mi

)
.

Since Mi is C
1 manifold, it can be written as a countable family of δ-flat sets. Thus, we

may assume that Mi is δ-flat. We define {Ni,Σi}∞k=1 inductively by

Ni := Σ ∩M1, Σ1 := Σ\N1

Ni+1 := Σi ∩Mi+1, Σi+1 := Σi\Ni (i = 1, . . . , ).

Here, Ni is HN−1-measurable and HN−1(Ni) < ∞. Since HN−1 is Borel regular, for any
δ, there exists a compact set C ⊂ Ni such that HN−1(Ni\C) < δ. Thus, there is a disjoint
countable family {Mij}∞j=1 of compact sets and HN−1-zero set Ni0 such that

Ni = Ni0 ∪

(
∞⋃
j=1

Mij

)
(i = 1, 2, . . .).

Indeed, we define a sequence of compact sets {Mij} inductively by

Mij+1 ⊂ Ni\
j⋃

k=1

Mij, j = 1, 2, . . .

Mi1 ⊂ Ni

such that HN−1
(
Ni\

⋃i
k=1Mij

)
< 1/2i. Then, setting Ni0 = Ni\

⋃∞
j=1Mij yields the

desired decomposition of Ni. Setting

N0 = (N ∩ Σ) ∪

(
∞⋃
i=1

Ni0

)

and renumbering {Mij} as {Ki} to get the desired decomposition. 2
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3.2.2 Proof of liminf inequality

Proof of Theorem 3.2.1. Let {vε}ε>0 ⊂ H1(Ω) be a sequence satisfying vε
sg−→ Ξ. By

definition,
vε,x,ν

g−→ Ξx,ν

for ν ∈ D, HN−1-a.e.x ∈ Πν . By Lemma 3.2.1, for any δ > 0, there is a countable disjoint
compact δ-flat family {Ki}i∈N and zero set N0 s.t.

Σ =
⋃
i∈N

Ki ∪N0.

For each n ∈ N, we set

Σn :=
n⋃
i=1

Ki ∪N0,

and take a disjoint open family {Un
i }i∈N such that Ki ⊂ Un

i for each i = 1, . . . ,m. By
definition, Ki is of the form

Ki = {(x′, ψ(x′))A | x ∈ Vi}

for some Ai ∈ SO(N), a compact set Vi ⊂ RN−1 and ψi ∈ C1(RN−1) with ‖∇ψi‖∞ < δ.
Since D is dense in SN−1, we are able to take νi ⊂ D, which is close to the normal of

the hyperplane
Pi =

{
(x, 0)Ai

∣∣ x ∈ RN−1
}

for i = 1, . . . ,m. By rotating slightly, we may assume that νi is a normal of Pi and
‖∇ψi‖∞ ≤ 2δ.

By slicing and Fatou’s lemma, we have

lim inf
ε→0

∫
Un
i

{
ε

2
|∇vε|2 +

1

2ε
F (vε)

}
dx

= lim inf
ε→0

∫
(Un

i )νi

∫
(Un

i )1
x,νi

{
ε

2
|∇vε|2x,νi +

1

2ε
F (vε,x,νi)

}
dtdHN−1(x)

≥ lim inf
ε→0

∫
(Un

i )νi

∫
(Un

i )1
x,νi

{
ε

2
|∂t(vε,x,νi)|2 +

1

2ε
F (vε,x,νi)

}
dtdHN−1(x)

≥
∫
(Un

i )νi

lim inf
ε→0

∫
(Un

i )1
x,νi

{
ε

2
|∂t(vε,x,νi)|2 +

1

2ε
F (vε,x,νi)

}
dtdHN−1(x)

Applying one-dimensional results in Chapter 2, we get

∫
(Un

i )νi

lim inf
ε→0

∫
(Un

i )1
x,νi

{
ε

2
|∂t(vε,x,νi)|2 +

1

2ε
F (vε,x,νi)

}
dtdHN−1(x)

≥
∫
(Un

i )νi

∑
t∈Σ1

x,νi
∩(Un

i )1
x,νi

2
{
G(ξ+

x,νi
(t)) +G(ξ−

x,νi
(t))
}
dHN−1(x)

≥
∫
(Un

i )νi

∑
t∈(Ki)1

x,νi
∩(Un

i )1
x,νi

2
{
G(ξ+

x,νi
(t)) +G(ξ−

x,νi
(t))
}
dHN−1(x).
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Here, we note that H0((Ki)
1
x,νi ∩ (Un

i )
1
x,νi) = 1, we set

(Ki)
1
x,νi ∩ (Un

i )
1
x,νi =: {tx},

and we denote G̃(x) := 2 {G(ξ+(x)) +G(ξ−(x))} (x ∈ Σ), then

∫
(Un

i )νi

∑
t∈(Ki)1

x,νi
∩(Un

i )1
x,νi

2
{
G(ξ+

x,νi
(t)) +G(ξ−

x,νi
(t))
}
dHN−1(x) =

∫
(Un

i )νi

G̃(x+txν
i)dHN−1(x).

By the area formula, we see∫
Ki

G̃(x)dHN−1(x) =

∫
Vi

G̃((y, ψ(y))A) ·
√

1 + |∇ψ(y)|2dLN−1(y)

≤
√
1 + (2δ)2

∫
Vi

G̃((y, ψ(y))A)dLN−1(y)

=
√
1 + (2δ)2

∫
(Un

i )νi

G̃(x+ txν
i)dHN−1(x).

Therefore

lim inf
ε→0

∫
Ω

{
ε

2
|∇vε|2 +

1

2ε
F (vε)

}
dx

≥ lim inf
ε→0

∫
∪n

i=1 U
n
i

{
ε

2
|∇vε|2 +

1

2ε
F (vε)

}
dx

≥
n∑
i=1

lim inf
ε→0

∫
Un
i

{
ε

2
|∇vε|2 +

1

2ε
F (vε)

}
dx

≥ 1√
1 + (2δ)2

n∑
i=1

∫
Ki

G̃(x) dHN−1(x)

=
1√

1 + (2δ)2

∫
Σn

G̃(x) dHN−1(x).

Sending n→ ∞ and δ → 0, we conclude

lim inf
ε→0

∫
Ω

{
ε

2
|∇vε|2 +

1

2ε
F (vε)

}
dx ≥

∫
Σ

G̃ dHN−1.

2

3.3 Limsup inequality

In this section, we construct what is called {wε}ε>0 to establish limsup inequality.

Theorem 3.3.1. Let Ω be a bounded domain in RN . Assume that F satisfies (F1) and
(F2’). Assume that α ∈ C(R) is non-negative. For any Ξ ∈ A0 with E0

sMM(Ξ,Ω) < ∞,
there exists a sequence {wε} ⊂ H1(Ω) such that

E0
sMM(Ξ,Ω) ≥ lim sup

ε→0
EεsMM(wε),

lim
ε→0

dν(Γwε ,Ξ) = 0 for all ν ∈ SN−1.
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In particular, wε
sg−→ Ξ in BD for any D ⊂ Sn−1 with D = SN−1. By Theorem 3.2.1,

E0
sMM(Ξ,Ω) = lim

ε→0
EεsMM(wε).

3.3.1 Approximation

We begin with various approximation.

Lemma 3.3.1. Assume that Ξ ∈ A0 so that its singular set Σ =
{
y ∈ Ω

∣∣ Ξ(y) 6= {1}
}

is countably N − 1 rectifiable. Let δ be positive. Assume (F1). Then, there exists a
sequence {Ξm}∞m=1 ⊂ A0 such that the following properties hold.

(i) E0
sMM(Ξ,Ω) ≥ lim sup

m→∞
E0
sMM(Ξm,Ω),

(ii) lim
m→∞

dν(Ξm,Ξ) = 0 for all ν ∈ SN−1,

(iii) Ξm(y) ⊂ Ξ(y) for all y ∈ Ω,

(iv) the singular set Σm =
{
y ∈ Ω

∣∣ Ξm(y) 6= {1}
}
consists of a disjoint finite union of

compact δ-flat sets {Kj}kj=1 and ξ+m, ξ
−
m are constant functions on each Kj (j =

1, . . . , k), where Ξm(y) = [ξ−m(y), ξ
+
m(y)] 3 1 on Σm. Here k may depend on m.

We recall an elementary fact.

Proposition 3.3.1. Let h ∈ C(R) be non-negative such that h(1) = 0 and strictly mono-
tone increasing for σ ≥ 1. Let {aj}∞j=1 be a sequence such that aj ≥ 1 (j = 1, 2, . . .)
and

∞∑
j=1

h(aj) <∞.

Then
lim
m→∞

sup
j≥m

(aj − 1) = 0.

Proof. By monotonicity of h for σ ≥ 1, we observe that

h

(
sup
j≥m

aj

)
= sup

j≥m
h(aj) ≤

∑
j≥m

h(aj) → 0

as m→ ∞. This yields the desired result since h(σ) is strictly monotone for σ ≥ 1. 2

We next recall a special case of co-area formula [25, 12.7] for a countably rectifiable
set.

Lemma 3.3.2. Let Σ be a countably N − 1 rectifiable set on Ω. Let g be a HN−1-
measurable function on Σ. For ν ∈ SN−1, let πν denote the restriction on Σ of the
orthogonal projection from RN to Πν . Then∫

Σ

gJ∗πν dHN−1 =

∫
Ων

(∫
Σ1

x,ν

gx,ν(t)dH0(t)

)
dLN−1(x).

Here J∗f denote the Jacobian of a mapping f from Σ to Πν .
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Proof of Lemma 3.3.1. Step 1. We shall construct Ξm satisfying (i) – (iv) except the
property that ξ+m, ξ

−
m are constants on each Kj.

By Lemma 3.2.1, we found a disjoint family of compact δ-flat sets {Kj}∞j=1 such that
Σ =

⋃∞
j=1Kj up to HN−1-measure zero set for Σ associated with Ξ. By the co-area

formula (Lemma 3.3.2) and J∗πν ≤ 1, we observe that∫
Kj

G̃(y) dHN−1(y) ≥
∫
Kj

G̃J∗πν dHN−1 =

∫
Ων

(∫
(Kj)1x,ν

G̃x,ν(t)dH0(t)

)
dLN−1(x),

(3.2)
where G̃(y) = 2

(
G (ξ+(y)) +G (ξ−(y))

)
. Since E0

sMM(Ξ,Ω) <∞, we see that

∞∑
j=1

∫
Kj

G̃ dHN−1(y) <∞. (3.3)

We then take

Ξm(y) =

{
[ξ−(y), ξ+(y)] , y ∈ Σm =

⋃m
j=1Kj

{1} , otherwise.

By definition, (i), (iii) are trivially fulfilled. The properly (iv) is fulfilled except the
property that ξ+, ξ− are constant on each Kj.

It remains to prove (ii). By (3.2) and (3.3), we observe that

∞∑
j=1

∫
Ων

(∫
(Kj)1x,ν

G̃x,ν(t)dH0(t)

)
dLN−1(x) <∞

for Ξ. Since all integrands are non-negative, the monotone convergence theorem implies
that

∞∑
j=1

∫
Ων

(∫
(Kj)1x,ν

G̃x,ν dH0

)
dLN−1(x) =

∫
Ων

(
∞∑
j=1

∫
(Kj)1x,ν

G̃x,ν dH0

)
dLN−1(x).

Thus
∞∑
j=1

∫
(Kj)1x,ν

G̃x,ν dH0 <∞

for LN−1-a.e. x ∈ Ων . By Proposition 3.3.1, this yields

lim
m→0

sup
j≥m

sup
t∈(Kj)1x,ν

(
ξ+x,ν(t)− 1

)
= 0

and similarly,

lim
m→0

sup
j≥m

sup
t∈(Kj)1x,ν

(
1− ξ−x,ν(t)

)
= 0.

Since

dH

(
(Ξm)x,ν Ξx,ν

)
= sup

j≥m+1
sup

t∈(Kj)1x,ν

max
{∣∣ξ+x,ν(t)− 1

∣∣ , ∣∣ξ−x,ν(t)− 1
∣∣} ,

we conclude that

dH

(
(Ξm)x,ν ,Ξx,ν

)
→ 0
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as m→ ∞ for a.e. x ∈ Ων . Since the integrand of

dν (Ξm,Ξ) =

∫
Ων

dH

(
(Ξm)x,ν ,Ξx,ν

)
1 + dH

(
(Ξm)x,ν ,Ξx,ν

) dLN−1(x)

is bounded by 1, the Lebesgue dominated convergence theorem implies (ii).
Step 2. We next approximate Ξm constructed by Step 1 and construct a sequence
{Ξmk

}∞k=1 satisfying (i) – (iv) by replacing Ξ by Ξm. If such a sequence exists, a diagonal
argument yields the desired sequence.

We may assume that

Ξ(y) =

{
[ξ−(y), ξ+(y)] , y ∈ Σm =

⋃m
j=1Kj

{1} , otherwise.

We approximate ξ+ from below. For a given integer n, we set

ξ+n (y) = inf
{
ξ+(z)

∣∣∣ z ∈ Ikn

}
, Ikn =

{
y ∈ Σm

∣∣∣∣ k − 1

n
≤ ξ+(y)− 1 <

k

n

}
for k = 1, 2, . . .. Since Ikn is HN−1-measurable set, as in the proof of Lemma 3.2.1, Ikn is
decomposed as a countably disjoint family of compact sets up to HN−1-measure zero set.
We approximate ξ− from above in a similar way. We set

Ξn(y) =

{
[ξ−n (y), ξ

+
n (y)] , y ∈ Σm

{1} , otherwise.

It is easy to see that Ξn satisfies (iii), (iv) by replacing m by n. Since E0
sMM(Ξ,Ω) ≥

E0
sMM(Ξn,Ω), the property (i) follows.
Since

dH

(
(Ξn)x,ν ,Ξx,ν

)
= sup

t∈(Σm)1x,ν

max
{∣∣ξ+x,ν − ξ+n,x,ν

∣∣ , ∣∣ξ−x,ν − ξ−n,x,ν
∣∣} ≤ 1/n,

we now conclude (ii) as discussed at the end of Step 1. 2

3.3.2 Recovery sequences

In this subsection, we shall prove Theorem 3.3.1. A key step is construct a recovery
sequence {wε} when Ξ has a simple structure. The basic idea is similar to that of [3] and
[14]. Besides generalization to general F satisfying (F1) and (F2’) from F (z) = (z − 1)2,
our situation is more involved because Ξ(y) = [0, 1] on y ∈ Σ in their case while in our
case Ξ(y) = [ξ−(y), ξ+(y)] for a general ξ− ≤ 1 ≤ ξ+. Moreover, we have to show the
convergence in dν as well as to handle α-term.

Lemma 3.3.3. Assume the same hypotheses concerning Ω, F , and α. For Ξ ∈ A0,
assume that its singular set Σ = {x ∈ Ω | Ξ(x) 6= {1}} consists of a disjoint finite union of
compact δ-flat sets {Kj}kj=1 and ξ−, ξ+ are constant functions in each Kj (j = 1, . . . , k),
where Ξ(x) = [ξ−, ξ+] on Σ. Then there exists a sequence {wε} ⊂ H1(Ω) such that

E0
sMM(Ξ,Ω) ≥ lim sup

ε→0
EεsMM(wε),

lim
ε→0

dν(Γwε ,Ξ) = 0 for all ν ∈ SN−1.
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This follows from explicit construction of function {wε} as for the standard double-well
Modica-Mortola functional.

Proof. We take a disjoint family of open sets {Uj}kj=1 with the property Kj ⊂ Uj. It
suffices to construct a desired sequence {wε} so that the support of wε− 1 is contained in⋃k
j=1 U

k
j . Thus we shall construct such wε in each Uj. We may assume k = 1 and simply

write K1, U1 by K,U and ξ−, ξ+ by a, b (a ≤ 1 ≤ b) so that

Ξ(y) =

{
[a, b] , y ∈ K,
{1} , y ∈ U\K.

For c < 1 and s > 0, let ψ(s, c) be a function determined by∫ ψ

c

1√
F (z)

dz = s.

By (F1), this equation is uniquely solvable for all s ∈ [0, s∗) with

s∗ :=

∫ 1

c

1√
F (z)

dz.

This ψ(s, c) solves the initial value problem{
dψ

ds
=
√
F (ψ), s ∈ (0, s∗)

ψ(0, c) = c,
(3.4)

although this ODE may admit many solutions. For c > 1, we parallely define ψ by∫ c

ψ

1√
F (z)

dz = s

for s ∈ (0, s∗) with

s∗ :=

∫ c

1

1√
F (z)

dz.

In this case, ψ also solves (3.4). We consider the even extension of ψ still denoted by ψ
for s < 0 so that ψ(s, c) = ψ(−s, c). For the case c = 1, we set ψ(s, c) ≡ 1. For a, b with
a ≤ 1 ≤ b, we consider a rescaled function ψε(s, ·) = ψ(s/ε, ·) and then define

Ψε(s, a, b) =


ψε(s, a) , 0 ≤ s ≤

√
ε

α1s+ β1 ,
√
ε ≤ s ≤ 2

√
ε

ψε(s− 3
√
ε, b) , 2

√
ε ≤ s ≤ 4

√
ε

α2s+ β2 , 4
√
ε ≤ s ≤ 5

√
ε

1 , 5
√
ε ≤ s

with αi, βi ∈ R (i = 1, 2) so that Ψε is Lipschitz continuous. We extend Ψε for s < 0 so
that the extended function (still denoted by Ψε) is even in s. Let η be a minimizer of α in
[a, b]. We first consider the case when η < 1 so that a ≤ η < 1. In this case, by definition
of Ψε there is a unique s0 > 0 such that Ψε(s0, a, b) = η. We then set

ϕε(s, a, b) = Ψε(s+ s0, a, b).
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For the case η ≥ 1, we take the smallest positive s0 > 0 such that Ψε(s0, a, b) = η. This
s0 = s0(ε) is of order ε

3/2 as ε→ 0.
We then take

wε(z) = ϕε (d(z), a, b) ,

where d(z) is the distance of z from K. This is a desired sequence such that the support
of wε − 1 is contained in U for sufficiently small ε > 0. Since wε is Lipschitz continuous,
it is clear that wε ∈ H1(Ω). Since

∇wε = (∂sΨε) (d(z) + s0, a, b)∇d(z),

we have

∇wε(z) = (∂sψε) (d(z) + s0, a)∇d(z) for z, d(z) + s0 <
√
ε

=
1

ε
(∂sψ) ((d(z) + δ0) /ε, a)∇d(z).

Thus, for z with d(z) + s0 <
√
ε, we see that

|∇wε(z)|2 =
1

ε2
∣∣(∂sψ) ((d(z) + s0) /ε, a)

∣∣2.
Let Uε denote the set

Uε =
{
z ∈ Ω

∣∣ d(z) + s0 <
√
ε
}
.

Since s0 is of order ε
3/2, U ε converges to K in the sense of Hausdorff distance. We proceed

EεsMM(wε, Uε) =

∫
Uε

{
ε

2
|∇wε|2 +

1

2ε
F (wε)

}
dLN

=
1

2ε

∫
Uε

∣∣(∂sψ) ((d(z) + s0) /ε, a)
∣∣2 + F

(
ψ ((d(z) + s0) /ε, a)

)
dLN(z)

=
1

ε

∫
Uε

F
(
ψ ((d(z) + s0) /ε, a)

)
dLN(z)

by (3.4). To simplify the notation, we set

fε(t) =
1

ε
F
(
ψ ((t+ s0)/ε, a)

)
for t > 0

and observe that

EεsMM(wε, Uε) =

∫
Uε

fε (d(z)) dLN(z) =
∫ βε

0

fε(t)H(t)dt, β(ε) :=
√
ε− s0(ε)

with H(t) := HN−1
({
z ∈ Uε

∣∣ d(z) = t
})

by the co-area formula.

We set A(t) := LN
({
z ∈ Uε

∣∣ d(z) < t
})

and observe that A(t) =
∫ t
0
H(s)ds by the

co-area formula. Integrating by parts, we observe that∫ β(ε)

0

fε(t)H(t)dt = fε (β(ε))A (β(ε))−
∫ β(ε)

0

f ′
ε(t)A(t)dt.

By the relation of Minkowski contents and area [11, Theorem 3.2.39], we know that

lim
t↓0

A(t)/2t = HN−1(K).
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In other words,
A(t) = 2

(
HN−1(K) + ρ(t)

)
t

with ρ such that ρ(t) → 0 as t→ 0. Thus,

−
∫ β(ε)

0

f ′
ε(t)A(t)dt ≤ −

∫ β(ε)

0

f ′
ε(t)2tdt

(
HN−1(K) + max

0≤t≤β(ε)
ρ(t)+

)
since f ′

ε(t) ≤ 0. Here we invoke (F2’) so that F ′(σ) ≤ 0 for σ < 1. We thus observe that

EεsMM(wε, Uε) ≤ fε (β(ε))A (β(ε))−
∫ β(ε)

0

f ′
ε(t)2tdt

(
HN−1(K) + max

0≤t≤β(ε)
ρ(t)+

)
.

Integrating by parts yields

−
∫ β(ε)

0

f ′
ε(t)2tdt = 2

∫ β(ε)

0

fε(t)dt− 2fε (β(ε)) β(ε).

Since ψ(s) = ψ(s, a) solves (3.4), we see

fε(t− s0) =
1

ε
F (ψ(t/ε))

=
1

ε
(∂sψ)(t/ε)

√
F (ψ(t/ε))

= − d

dt

(
G (ψ(t/ε))

)
.

Thus ∫ β(ε)

0

fε(t)dt = G (ψ(s0/ε))−G
(
ψ(1/

√
ε)
)
.

Since s0/ε→ 0, ψ(1/
√
ε, a) → 1 as ε→ 0, we obtain

lim
ε→0

∫ β(ε)

0

fε(t)dt = G(a)− 0.

Combing these manipulations, we obtain that

lim sup
ε→0

EεsMM(wε, Uε) ≤ lim sup
ε→0

fε (β(s))

{
A (β(ε))− 2

(
HN−1(K)− max

0≤t≤β(ε)
|ρ(t)|

)
β(ε)

}
+ 2HN−1(K)G(a)

We thus conclude that

lim sup
ε→0

EεsMM(wε, Uε) ≤ 2HN−1(K)G(a)

provided that
lim
ε→0

fε (β(ε)) β(ε) <∞

since
(
A(t)− 2HN−1(K)t

) /
t = ρ(t) → 0 as t → 0. This follows from the next lemma

by setting ε1/2 = δ. Indeed, we obtain a stronger result

lim sup
ε→0

1√
ε
fε (β(ε)) β(ε) <∞.



3.3. LIMSUP INEQUALITY 57

Lemma 3.3.4. Assume that F satisfies (F1), (F2’). Then, for c ∈ R,

1

δ2
F (ψ(1/δ, c)) ≤ (1− c)2 for δ > 0.

Proof of Lemma 3.3.4. We may assume c < 1 since the argument for c > 1 is symmet-
ric and the case c = 1 is trivial. We simply write ψ(s, a) by ψ(s). By definition and
monotonicity (F2’) of F , we see that

1

δ
=

∫ ψ(1/δ)

c

1√
F (z)

dz ≤ ψ(1/δ)− c√
F (ψ(1/δ))

.

Taking square of both sides, we end up with

1

δ2
F (ψ(1/δ)) ≤ (ψ(1/δ)− c)2 ≤ (1− c)2.

2

The part corresponding to ψ(s, b) is similar. The part where Ψε is linear will be vanish
as ε→ 0. So, we conclude

lim
ε→0

EεsMM(wε,Ω) ≤ E0
sMM(Ξ,Ω).

The term related to α is independent of ε because of choice of s0 so that wε(x) = η on
x ∈ K.

We prepare the following Lemma to prove wε
sg−→ Ξ.

Lemma 3.3.5. Let M ⊂ RN be a HN−1-measurable set satisfy HN−1(M) < ∞, then
H0(Mx,ν) <∞ HN−1-a.e. x ∈ Πν , for all ν ∈ SN−1.

Proof. Let π : RN → Πν be a orthogonal projection and p : Πν → RN−1 be a isometry
map. We set f := p ◦ π. By the co-area formula (Lemma 3.3.2), we see

∫
M

J∗f dHN−1 =

∫
RN−1

H0
(
f−1(y) ∩M

)
dLN−1(y).

Since J∗p = 1, we get∫
RN−1

H0
(
f−1(y) ∩M

)
dLN−1(y) =

∫
RN−1

H0
(
π−1 ◦ p−1(y) ∩M

)
dLN−1(y)

=

∫
Πν

H0
(
π−1(x) ∩M

)
dHN−1(x).

Notice that J∗f ≤ 1, we see∫
M

J∗f dHN−1 ≤ HN−1(M) <∞.

Thus
H0
(
π−1(x) ∩M

)
<∞,

HN−1-a.e. x ∈ Πν . By π
−1(x) ∩M =Mx,ν , we now conclude it.

2
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We introduce the following Proposition for z ∈ Kx,ν .

Proposition 3.3.2. Let K be a compact subset of a C1 manifold M , and TzK denote the
tangent space of M at z ∈ K. Assume that Ωx,ν ⊈ TzK, then there are δ0 > 0, ε0 > 0,
and t ∈ Ω1

x,ν such that

d(x+ t′ν,K) ≥ 5
√
ε

for all t′ > t with t′ ∈ Bδ(z)
1
x,ν, for all δ ∈ (0, δ0), for all ε ∈ (0, ε0).

Proof. Let p : RN → TzK be a orthogonal projection. For z′ ∈ Ωx,ν , we see

d(z′, TzK) ≤ d
(
p(z′), K

)
+ d(z′, K).

and since Ωx,ν ⊈ TzK, for all ε > 0 there is a t ∈ Ωx,ν such that

d(x+ t′ν, TzK) ≥ 6
√
ε (3.5)

for all t′ with t′ > t. By the implicit function theorem, there is C1 function ψ̃ : TzK → R,
δ > 0 and B ∈ SO(N) such that

{(x′, ψ̃(x′))B | x′ ∈ TzK} ⊃ K ∩Bδ(z).

We set
K̃ := {(x′, ψ̃(x′)) | x′ ∈ TzK}.

Since ∇ψ̃(z) = 0, for all ε > 0, there is a δ0 > 0 such that if |z − z′| < δ0 then
|∇ψ̃(z′)| < 1/

√
ε. We take ε > 0 such that 0 < ε < δ0 and z′ ∈ Bε(z) then

d(z′, K̃) ≤ |ψ̃(z′)|
= |ψ̃(z)− ψ̃(z′)|
≤ ∇ψ̃(z′) · (z − z′)

≤ |∇ψ̃(z′)||z − z′| <
√
ε.

Let θν be an angle between Ωx,ν and TzK, then

|z − p(z′)| = |z − z′| cos θν .

Thus if |z − z′| < δ0 then |z − p(z′)| < δ0. We set z′ = x+ t′ν in (3.5) then

d(z′, K) ≥ d(z′, TzK)− d(p(z′), K)

> 6
√
ε−

√
ε

= 5
√
ε.

2

Furthermore, we show in the following Lemma that almost all slices of K are transver-
sal.

Lemma 3.3.6. Let K ⊂ RN be a compact subset of a (N − 1)-dimensional C1 manifold.
For all ν ∈ SN−1 K and Ωx,ν intersect transversally HN−1-a.e. x ∈ Kν . i.e. For all
z ∈ Kx,ν , Ωx,ν ⊈ TzK.
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Proof. π : R → Πν be a orthogonal projection and p : Πν → RN−1 be a isometry map.
We set f := p ◦ π and A = {z ∈ K | J∗f(z) = 0}. By the co-are formula, we see

0 =

∫
A

J∗f dHN−1 =

∫
RN−1

H0
(
f−1(y) ∩ A

)
dLN−1(y).

Thus we get

f−1(y) ∩ {J∗f = 0} = ∅

for LN−1-a.e. y ∈ RN−1. Therefore

π−1(y) ∩ {J∗π = 0} = ∅

for HN−1-a.e. y ∈ Πν . For z ∈ K, we set x = π(z). If Ωx,ν ⊂ TzK then J∗π(z) = 0. We
thus conclude that Ωx,ν ⊈ TzK for HN−1-a.e. x ∈ TzK.

2

We now prove that wε
sg−→ Ξ. By Lemma 3.3.5, Kx,ν does not have accumulation point.

therefore there is a δ > 0 such that for all z ∈ Kx,ν ,

H0 (Bδ(z) ∩Kx,ν) = 1,

for HN−1-a.e. x ∈ Ων . For all δ > 0, by Proposition 3.3.2 and Lemma 3.3.6, there exist
ε0 > 0 such that (

graph Γwεx,ν

)
δ
⊃ graph Ξx,ν(

graph Ξx,ν
)
δ
⊃ graph Γwεx,ν

on Bδ(z), for all ε ∈ (0, ε0). Thus

dH
(
graph Ξx,ν , graph Γwεx,ν

)
≤ δ,

for HN−1-a.e. x ∈ Ων . Therefore we get

lim
ε→0

dg
(
Γwεx,ν ,Ξx,ν

)
= 0,

for HN−1-a.e. x ∈ Ων . By the Lebesgue dominated convergence theorem, we obtain

lim
ε→0

dν
(
Γwε ,Ξ

)
= lim

ε→0

∫
Ων

dg
(
Γwεx,ν ,Ξx,ν

)
1 + dg

(
Γwεx,ν ,Ξx,ν

) dHN−1 = 0.

Thus for all dense set D in SN−1, we conclude

lim
ε→0

dD
(
Γwε ,Ξ

)
= 0.

2

Proof of Theorem 3.3.1. This follows from Lemma 3.3.1 and Lemma 3.3.3 by a diagonal
argument. 2
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3.4 Gamma-limit of the Kobayashi–Warren–Carter

energy

We first recall the Kobayashi–Warren–Carter energy. For a given α ∈ C(R) with α ≥ 0,
we consider the Kobayashi-Warren-Carter energy of the form

EεKWC(u, v) =

∫
Ω

α(v) d‖Du‖+ EεSMM(v)

for u ∈ BV (Ω) and v ∈ H1(Ω). The first term is the weighted total variation of u with
weight w = α(v). This is defined by∫

Ω

w d‖Du‖ := sup

{
−
∫
Ω

u divϕ dLN
∣∣∣ |ϕ(z)| ≤ w(z) a.e. x, ϕ ∈ C1

c (Ω)

}
for any non-negative Lebesgue measurable function w on Ω.

We next define the functional, which turns to be a singular limit of the Kobayashi-
Warren-Carter energy For Ξ ∈ A0(Ω) let Σ be its singular set in the sense that

Σ =
{
z ∈ Ω

∣∣ Ξ(z) 6= {1}
}
.

For u ∈ BV (Ω), u+ and u− are defined as follows

u+(x) := inf

{
t ∈ R

∣∣∣∣ lim
r→0

LN (Br(x) ∩ {u > t})
rN

= 0

}
,

and

u−(x) := sup

{
t ∈ R

∣∣∣∣ lim
r→0

LN (Br(x) ∩ {u < t})
rN

= 0

}
.

We then define the limit Kobayashi-Warren-Carter energy:

E0
KWC(u,Ξ,Ω) =

∫
Ω\Σ

α(1) d‖Du‖+
∫
Σ

α0(z)|u+ − u−| dHN−1(z) + E0
SMM(Ξ,Ω).

with
α0(z) := min

{
α(ξ)

∣∣ ξ−(z) ≤ ξ ≤ ξ+(z)
}
.

We are now in position to state our main results in a vigorous way.

Theorem 3.4.1. Let Ω be a bounded domain in RN . Assume that F satisfies (F1) and
(F2) and that α ∈ C(R) is non-negative.

(i) (liminf inequality) Assume that {uε}0<ε<1 ⊂ BV (Ω) converges to u ∈ BV (Ω) in L1,

i.e., ‖uε−u‖L1 → 0. Assume that {uε}0<ε<1 ⊂ H1(Ω). If vε
sg−→ Ξ and Ξ ∈ A0, then

E0
KMC(u,Ξ Ω) ≤ lim inf

ε→0
EεKMC(uε, vε).

(ii) (limsup inequality) For any Ξ ∈ A0 and u ∈ BM(Ω) there exist a family of Lipschitz
functions {wε}0<ε<1 such that

E0
KMC(u,Ξ,Ω) = lim

ε→0
EεKMC(u,wε).
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Corollary 3.4.1. Assume the same hypotheses of Theorem 3.4.1. Assume that f ∈ L2(Ω)
and λ ≥ 0. Then the results of Theorem 3.4.1 still holds of E0

KMC as we replaced by

E0
KMC(u,Ξ,Ω) +

λ

2

∫
Ω

|u− f |2 dLN , EεKMC(u, v) +
λ

2

∫
Ω

|u− f |2 dLN ,

respectively provided that u ∈ L2(Ω).

3

3.4.1 liminf inequality of KWC

We recall a few properties of the measure 〈Du, ν〉 for u ∈ BV (Ω), where Du denotes the
distributional gradient of u and ν ∈ SN−1. The next disintegration lemma is found in [[2],
Theorem 3.107] .

Lemma 3.4.1. For u ∈ BV (Ω) and ν ∈ SN−1,

|〈Du, ν〉| = HN−1bΩν⊗‖Dux,ν‖.

In other words, ∫
Ω

ϕ d|〈Du, ν〉| =
∫
Ων

∫
Ω1

x,ν

ϕx,ν d‖Dux,ν‖ dHN−1(x)

for any bounded Borel function ϕ : Ω → R.

We also need a representation of total variation of a vector-valued measure and its
component. We consider a division of RN into a family of rectangles of the form

Rτ
J =

N∏
i=1

[aji , aji+1), J = (j1, . . . , jN) ∈ ZN

with aji+1 < aji + τ (i = 1, . . . , N) for a given τ > 0. We say that the divition {Rτ
J} is a

τ -rectangular division.

Lemma 3.4.2. Let µ be an Rd-valued finite Radon measure in a domain Ω in RN . Let
{τk} be a decreasing sequence converging to zero as k → ∞. Let {Rτk

J } be a fixed τk-
rectangular division of RN . Let D be a dense subset of SN−1. Then

|µ|(A) = sup
{
|〈µ, νk〉| (A)

∣∣ νk : Ω → D, νk is constant on Rτk
J ∩ Ω, J ∈ ZN , k = 1, 2, . . .

}
,

where A is a Borel set.

We postpone its proof at the end of this section.

Proof of Theorem 3.4.1 (i). We recall the decomposition of Σ into a countable disjoin
union of δ-flat compact setsKi up toHN−1-measurable zero set and take the corresponding
νi ∈ D as in Theorem 3.2. We use the notation in 3.2. We may assume that ∩∞

m=1U
m
i = Ki.

By Lemma 3.4.1, we proceed
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lim inf
ε→0

∫
Um
i

α(vε) d‖Duε‖

≥ lim inf
ε→0

∫
Um
i

α(vε) d|〈Duε, νi〉|

= lim inf
ε→0

∫
(Um

i )νi

∫
(Um

i )1x,νi

α(vε,x,νi) d‖Duε,x,ν0‖ dHN−1(x).

Applying one-dimensional results of Theorem 2.2.3 in Chapter 2, we see that

lim inf
ε→0

∫
(Um

i )1x,νi

α(vε,x,ν0) d‖Duε,x,νi‖

≥
∫
(Um

i )1x,νi\Σ
1
x,νi

α(1) d‖Du‖+
∑

t∈(Σ∩Um
i )1x,νi

(
min

ξ−x,νi≤ξ≤ξ
+
x,νi

α(ξ)

)
|u+x,νi − u−x,νi |(t)

≥
∫
((Um

i )νi

∑
t∈(Σ∩Um

i )1x,νi

α0,x,ν0(t)|u+x,ν0 − u−x,ν0|(t) dH
N−1(x).

We set Σ1
x,ν0

= {tx}, then∫
(Um

i )νi

∑
t∈(Σ∩Um

i )1x,νi

α0,x,νi(t)|u+x,ν0 − u−x,ν0 |(t) dH
N−1(x)

=

∫
(Ση)ν0

α0(x+ txν0)|u+ − u−|(x+ txν0) dHN−1(x).

By area formula, we see∫
Km

i

α0|u+ − u−| dHN−1 ≤
√

1 + (2δ)2
∫
(Km

i )νi

α0(x+ tixνi)|u+ − u−|(x+ tixνi) dHN−1(x).

Combining these observation, by Fatou’s lemma we conclude that

lim inf
ε→0

∫
Um
i

α(vε) d‖Duε‖ ≥ 1√
1 + (2δ)2

∫
Km

i

α0|u+ − u−| dHN−1.

Adding from i = 1 to m, we conclude that

lim inf
ε→0

∫
∪m

i=1 U
m
i

α(vε) d‖Duε‖ ≥ 1√
1 + (2δ)2

∫
Σm

α0|u+ − u−| dHN−1.

For Wm = Ω \
⋃m
i=1 U

m
i , we take ν ∈ D and argue in the same way to get

lim inf
ε→0

∫
Wm

α(vε) d‖Duε‖

≥
∫
(Wm)ν

∫
(Wm\Σ)1x,ν

α(1) d‖Dux,ν‖ dHN−1(x)

=

∫
Wm\Σ

α(1) d |〈Du, ν〉| .
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The last equality follows from Lemma 3.2. Since Wm ∩ Σm = ∅, combining the estimate
of the integral on V m, we now observe that

lim inf
ε→0

∫
Ω

α(vε) d‖Duε‖ ≥ lim inf
ε→0

∫
Wm\(Σ\Σm)

α(vε)d |〈Du, ν〉|+ lim inf
ε→0

∫
Vm

α(vε) d‖Duε‖

≥ α(1)

∫
Wm\(Σ\Σm)

d |〈Du, ν〉|+ 1√
1 + (2δ)2

∫
Σm

α0

∣∣u+ − u−
∣∣ dHN−1.

Sending m→ ∞ yields

lim inf
ε→0

∫
Ω

α(vε) d‖Duε‖ ≥ α(1)

∫
Ω\Σ

d |〈Du, ν〉|+ 1√
1 + (2δ)2

∫
Σ

α0

∣∣u+ − u−
∣∣ dHN−1

by Fatou’s lemma. Since δ > 0 can be taken arbitrary, we now conclude that

lim inf
ε→0

∫
Ω

α(vε) d‖Duε‖ ≥ α(1)

∫
Ω\Σ

d |〈Du, ν〉|+
∫
Ω∩Σ

α0

∣∣u+ − u−
∣∣ dHN−1.

For any ν ∈ D, we may replace Ω by an open set in Ω, for example, Ω0 ∩ Ω where
Ω0 is an open rectangle. Applying the co-area formula (or just the Fubini’s theorem)
to the projection (x1, . . . , xN) 7−→ xi, for L1-a.e. q the HN−1 (Σ ∩ {xi = q}) = 0, since
otherwise LN(Σ) > 0. Thus, for any τ > 0, there is a τ -rectangular division {Rτ

J}J with
HN−1(∂Rτ

J ∩ Σ) = 0. Since HN−1(∂Rτ
J ∩ Σ) = 0, by dividing Ω into {Ω ∩ Rτ

J}J , we
conclude that

lim inf
ε→0

∫
Ω

α(vε) d‖Duε‖ ≥ α(1)

∫
Ω\Σ

d |〈Du, ν(x)〉|+
∫
Ω∩Σ

α0

∣∣u+ − u−
∣∣ dHN−1

where ν : Ω → D is a constant on each rectangle. Applying Lemma 3.4.2, we now conclude
that

lim inf
ε→0

∫
Ω

α(vε) d‖Duε‖ ≥ α(1)

∫
Ω\Σ

d‖Du‖+
∫
Ω

α0

∣∣u+ − u−
∣∣ dHN−1.

Since we already obtained

lim inf
ε→0

EεsMM(vε) ≥ E0
sMM(Ξ,Ω)

by Theorem 3.2.1 and since

EεKWC(v) = EεsMM(v) +

∫
Ω

α(v)d‖Du‖,

the desired liminf inequality follows.
2

Proof of Lemma 3.4.2. We may assume that A is open since µ is a Radon measure. By
duality representation,

|µ|(A) = sup

{
d∑
i=1

∫
A

ϕidµi

∣∣∣∣ ϕ = (ϕ1, . . . , ϕd) ∈ Cc(A), ‖ϕ‖L∞ ≤ 1

}
,
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where Cc(A) denotes the space of (Rd-valued) continuous functions compactly supported
in A and ‖ϕ‖∞ := supx∈Ω |ϕ(x)| with the Euclidean norm |a| = 〈a, a〉1/2 for a ∈ Rd. Since
µ(A) <∞, by this representation, we see that for any δ > 0, there exists ϕ ∈ Cc(A) with
‖ϕ‖∞ ≤ 1 satisfying

|µ|(A) ≤
d∑
i=1

∫
A

ϕidµi + δ.

Since ϕ is uniformly continuous in A and D is dense, for sufficiently large k there is
τk-rectangular division {Rτk

J } and νδk : Ω → D which is constant on Rτk
J ∩ Ω and that∣∣ϕ− νδkck

∣∣ < δ in Rτk
J ∩ Ω

with some constant 0 ≤ ck ≤ 1. This implies that

d∑
i=1

∫
A

ϕidµi ≤
∑
J

∫
R

τk
J ∩A

ckd〈µ, νδk〉+ δ|µ|(A)

≤
∣∣〈µ, νδk〉∣∣ (A) + δ|µ|(A).

Thus
|µ|(A) ≤

∣∣〈µ, νδk〉∣∣ (A) + δ + δ|µ|(A).
Since µ(A) <∞, and δ > 0 is arbitrary, this implies

|µ|(A) ≤ sup
{
|〈µ, νk〉| (A)

∣∣ νk : Ω → D, νk is constant on Rτk
J ∩ Ω, J ∈ ZN , k = 1, 2, . . .

}
.

The reverse inequality is trivial, so the proof is now complete. 2

3.4.2 limsup inequality of KWC

Proof of Theorem 3.4.1 (ii). We take wε in Theorem 3.3.1 we see

E0
sMM(Ξ,Ω) = lim

ε→0
EεSMM(wε).

Since ∫
Ω

α(wε) d‖Du‖ =

∫
Ω\Su

α(wε) d‖Du‖+
∫
Su

|u+ − u−|α(wε) dHN−1,

it suffices to prove that

lim
ε→0

∫
Ω\Σ

α(wε) d‖Du‖ =

∫
Ω\Σ

α(1) d‖Du‖.

We decompose

lim sup
ε→0

∫
Ω

α(wε) d‖Du‖ = lim sup
ε→0

(∫
Ω\Σ5

√
ε

α(1) d‖Du‖+
∫
Σ5

√
ε

α(wε) d‖Du‖

)
.

We have

lim sup
ε→0

∫
Ω\Σ5

√
ε

α(1) d‖Du‖ = lim sup
ε→0

α(1)‖Du‖(Ω \ Σ5
√
ε)

= α(1)‖Du‖

(
Ω \

⋂
ε>0

Σ5
√
ε

)
= α(1)‖Du‖(Ω \ Σ).
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Since wε is bounded, α(wε) is also bounded. We assume α(wε) ≤M , then we get

lim sup
ε→0

∫
Σ5

√
ε

α(wε) d‖Du‖

= lim sup
ε→0

(∫
Σ5

√
ε\Σ

α(wε) d‖Du‖+
∫
Σ

α(wε) d‖Du‖

)

≤ lim sup
ε→0

(
M‖Du‖(Σ5

√
ε \ Σ) +

∫
Σ

α(wε) d‖Du‖
)
.

By the Lebesgue dominated convergence theorem we get

lim sup
ε→0

(
M‖Du‖(Σ5

√
ε \ Σ) +

∫
Σ

α(wε) d‖Du‖
)

= lim sup
ε→0

(
M‖Du‖(Σ5

√
ε \ Σ) +

∫
Σ

α0 d‖Du‖
)

= lim sup
ε→0

(
M‖Du‖(Σ5

√
ε \ Σ) +

∫
Σ

α0|u+ − u−| dHN−1

)
=

∫
Σ

α0|u+ − u−| dHN−1.

The proof is now complete.
2
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Möbius energy, arXiv:1809.07984.(2018)

[16] S. Blatt, P. Reiter, A. Schikorra, Harmonic Analysis meets Critical Knots.Critical
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[34] Shirakawa, K., Watanabe, H.: Energy-dissipative solution to a one-dimensional phase
field model of grain boundary motion. Discrete Contin. Dyn. Syst. Ser. S, 7(1):139–
159 (2014)

[35] Shirakawa, K., Watanabe, H., Yamazaki, N.: Solvability of one-dimensional phase
field systems associated with grain boundary motion. Math. Ann. 356, 301–330
(2013)

[36] Sternberg, P.: The effect of a singular perturbation on nonconvex variational prob-
lems. Arch. Rational Mech. Anal. 101, 209–260 (1988)


