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Abstract

In this thesis, we describe several new results in semiclassical analy-
sis and resonance theory. We first discuss semiclassical analysis and the
Agmon-Finsler metric for discrete Schrödinger operators. We next discuss
resonances and viscosity limit for the Wigner-von Neumann-type Hamil-
tonians. We finally discuss the complex absorbing potential method for
Stark resonances.

1 Introduction

Semiclassical analysis and resonance theory are rich areas in spectral theory and
mathematical quantum mechanics. Semiclassical analysis studies the quantum-
classical correspondence in the semiclassical limit in quantum mechanics. A
parameter-dependent formalism of microlocal analysis is a powerful method in
semiclassical analysis (see [61]). While the classical microlocal analysis empha-
sizes the study of singularities, the semiclassical microlocal analysis is useful
in the asymptotic analysis. It is richer than the classical theory since lower
order parts of (pseudo)differential operators also play the principal role in the
semiclassical limit. Resonances correspond to quasi-steady states and are closely
related to scattering theory. They are hidden complex eigenvalues of self-adjoint
Schrödinger operators and are closely related to the spectral theory of non-self-
adjoint operators. Mathematical theory of resonances is full of interesting ideas
and methods (see [14]).

We first discuss semiclassical analysis and the Agmon-Finsler metric for dis-
crete Schrödinger operators. This part is based on [32]. We discuss discrete
Schrödinger operators in the semiclassical setting where semiclassical continu-
ous Schrödinger operators are discretized with the mesh size proportional to
the semiclassical parameter. In this setting, we first prove the Weyl law for
the number of eigenvalues. We also prove the semiclassical Agmon estimate for
the eigenfunctions with the Agmon metric defined as a Finsler metric rather
than a Riemannian metric. We call it Agmon-Finsler metric. We then con-
struct approximate eigenfunctions by the WKB method near a local potential
minimum in terms of the Agmon-Finsler metric. We also prove the Agmon
estimate and the exponential decay of eigenfunctions for non-semiclassical dis-
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crete Schrödinger operators. This exponential decay is optimal for a concrete
example.

We next discuss resonances and the complex absorbing potential method
for the Wigner-von Neumann-type Hamiltonian. This part is based on [31],
which is a joint work with Shu Nakamura. The complex absorbing potential
method is also called as “resonances as viscosity limits”. In this method we
consider the Hamiltonian with a complex absorbing potential added and take
the limit where the absorbing coefficient tends to zero. Then the resonances for
the original Hamiltonian are characterized as limit points of discrete eigenvalues
of Hamiltonian with complex absorbing potential. Wigner-von Neumann-type
Hamiltonians are Schrödinger operators with oscillatory and slowly decaying
potentials. We define the resonances and justify the complex absorbing poten-
tial method for the Wigner-von Neumann-type Hamiltonian by introducing the
periodic complex distortion in the Fourier space.

We finally discuss the complex absorbing method for Stark resonances. This
part is based on [33]. Stark Hamiltonians describe the particles in the external
electric field. We characterize the resonances for Stark Hamiltonians by the
complex absorbing potential method. The proof is based on the complex distor-
tion outside a cone introduced in the master thesis by the author. Perturbations
may be potentials with local singularities such as the Coulomb potential.

This thesis is organized as follows. In Section 2, we discuss semiclassical
analysis and the Agmon-Finsler metric for discrete Schrödinger operators. In
Section 3, we discuss resonances and the complex absorbing potential method
for the Wigner-von Neumann-type Hamiltonian. In Section 4, we discuss the
complex absorbing potential method for Stark resonances.

2 Semiclassical analysis and the Agmon-Finsler
metric for discrete Schrödinger operators

2.1 Introduction to Section 2

In this section, we mainly consider the following semiclassical setting for dis-
crete Schrödinger operators. In the appendix to this section, we also discuss
the non-semiclassical standard setting. We first set a continuous semiclassical
Schrödinger operator

Hcont = Hcont(h) = −h2∆+ V (x) on L2(Rd),

where V ∈ C∞(Rd;R) is a potential. The dimension d ∈ Z>0 is fixed throughout
this section. We discretize this operator with mesh size τ > 0 and obtain a
discrete Schrödinger operator Hτ (h) on ℓ2(τZd) defined by

Hτ (h)u(x) = −
(
h

τ

)2 ∑
|x−y|=τ

(u(y)− u(x)) + V (x)u(x).

Here x, y ∈ τZd ⊂ Rd and u ∈ ℓ2(τZd).
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In the limit h→ 0 for fixed τ > 0, the Hτ (h) converges to V (x) on ℓ2(τZd)
since the difference Laplacian is a bounded operator. We note that h−2Hτ (h)
when h→ 0 for fixed τ > 0 is studied in [3]. The limit τ → 0 for fixed h > 0 is
the continuum limit problem and we expect that “limτ→0H

τ (h) = Hcont(h)”
(see for instance, [28] [40]). This formally corresponds to τ = h∞. In this
section, we put τ = h. It will be interesting to study the case of τ = hµ with
1 < µ <∞.

Then our semiclassical discrete Schrödinger operator H(h) on ℓ2(hZd) is
defined by

H(h)u(x) = −
∑

|x−y|=h

(u(y)− u(x)) + V (x)u(x).

Here x, y ∈ hZd ⊂ Rd and u ∈ ℓ2(hZd). We set Td = Rd/2πZd. In this section,
the semiclassical discrete Fourier transform Fh : ℓ2(hZd) → L2(Td) is defined
by

Fhu(ξ) = (2π)−d/2
∑

x∈hZd

u(x)ei⟨x,ξ⟩/h.

Then we have

H̃(h) : =FhH(h)F−1
h =

d∑
j=1

(2− 2 cos ξj) + V (hDξ).

Here V (hDξ) is the semiclassical pseudodifferential operator on Td with the
symbol V (x) (see subsection 2.2 for the definition). We interpret x ∈ Rd as

the dual variable of ξ ∈ Td on T ∗Td. Then H̃(h) is the semiclassical quanti-

zation of p(ξ, x) =
∑d

j=1(2 − 2 cos ξj) + V (x) ∈ C∞(T ∗Td) on the torus. A
quantum-classical correspondence is obtained and it is expected that various
quantities related to H(h) are described in terms of p(ξ, x) when h → 0, that
is, “limh→0H(h) = p(ξ, x)”.

We observe the Weyl law in this semiclassical setting. We denote the number
of eigenvalues of H(h) in [a, b] by N[a,b](h). We denote ⟨x⟩ = (1 + x2)1/2.

Theorem 1. Assume V ∈ C∞(Rd;R), lim|x|→∞V (x) ≥ 0. Moreover assume
that there exits 0 < θ ≤ 1 such that

|∂αV (x)| ≤ Cα⟨x⟩−θ|α|

for any α ∈ Zd
≥0. Then for any fixed a < b < 0,

N[a,b](h) = (2πh)−dVol({(ξ, x) ∈ T ∗Td| a ≤ p(ξ, x) ≤ b}) + o(h−d)

when h→ 0.

We then discuss the Agmon estimate in our semiclassical setting. We set
GE = {x ∈ Rd|V (x) ≤ E}. We also set the δ-neighborhood of GE as GE,δ =
{x ∈ Rd|dist(x,GE) < δ}. Here dist(·, ·) is the Euclidean distance. We write
Gc
E,δ = Rd \ GE,δ. We denote the space of smooth functions which are bounded

with their all derivatives by C∞
b (Rd).
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Assumption 1. The potential V ∈ C∞
b (Rd;R) and E ∈ R satisfy the following:

inf
x∈Gc

E,δ

V (x) > E for any δ > 0.

We note that the compactness of GE is not assumed. We set

Kx =
{
ξ ∈ Rd

∣∣ d∑
j=1

sinh2
ξj
2

≤ (V (x)− E)+
4

}
,

where (·)+ = max{·, 0}. We introduce the Agmon-Finsler metric for discrete
Schrödinger operators

L(x, v) = sup
ξ∈Kx

⟨ξ, v⟩.

This is the length of v ∈ TxRd = Rd in this metric.
The Finsler metric L(x, v) induces the (pseudo-)distance dE(x, y) between

x, y ∈ Rd (see subsubsection 2.3.2 for details). We set

dE(x) = inf
y∈GE

dE(x, y).

Our semiclassical Agmon estimate for discrete Schrödinger operators is the
following.

Theorem 2. Under Assumption 1 and the above notation, for any C0 > 0,
δ0 > 0 and ε > 0, there exist C > 0, h0 > 0, 0 < δ < δ0, χ, χ̃ ∈ C∞

b (Rd; [0, 1])
with

supp (1− χ) ⊂ GE,δ, supp χ̃ ⊂ GE,δ \ GE,δ/2

and ρ ∈ C∞(Rd;R≥0) with |(1− ε)dE(x)− ρ(x)| ≤ ε such that for 0 < h < h0,

∥χeρ(x)/hu∥ℓ2 ≤ C∥χ̃u∥ℓ2 + C∥χeρ(x)/h(H(h)− z)u∥ℓ2

for any u ∈ ℓ2(hZd) and any z ∈ [E − C0, E + C0h] + i[−C0, C0].

We prove the Agmon estimate and the optimal exponential decay of eigen-
functions which are valid for h = 1 in the appendix to this section.

We finally construct local approximate eigenfunctions of H(h) near a non-
degenerate potential minimum.

Assumption 2. The potential V ∈ C∞(Rd;R) satisfies

V (0) = 0, ∂V (0) = 0 and ∂2V (0) > 0.

Moreover, a positive number E0 satisfies the following. There exists a unique
α ∈ Zd

≥0 such that E0 =
∑d

j=1 λj(αj +1/2), where λ1, . . . λd are positive square

roots of eigenvalues of 1
2∂

2V (0).

We denote the Agmon-Finsler distance to 0 at energy 0 for this potential by
d(x) = d0(x, 0).
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Theorem 3. Under Assumption 2, there exist unique Ej ∈ R, (j ≥ 1), such
that the following holds. There exist aj(x) ∈ C∞(Rd), (j ≥ 0), such that if
a ∼

∑∞
j=0 h

jaj and E(h) ∼
∑∞

j=0 h
jEj then

(H(h)− hE(h))(a(x)e−d(x)/h) = r(x)e−d(x)/h, r(x) = O(h∞)

near x = 0. The formal power series
∑∞

j=0 h
jaj is essentially uniquely defined

in the sense that any other solution is given by (
∑∞

j=0 h
jcj)(

∑∞
j=0 h

jaj) near
x = 0 for some cj ∈ C.

The microlocal analysis on the torus for discrete Schrödinger operators is
also discussed in the study of the long-range scattering theory (see [39] [54]).

For the history of the semiclassical Weyl law for continuous Schrödinger
operators, see [11]. The proof of Theorem 1 is analogous to the usual continuous
case employing the pseudodifferential operators on the torus.

The Agmon estimate was introduced by Agmon (see [1]). We follow the
strategy in [36]. Since we work in the Fourier space (torus), we study the opera-
tor conjugated with the exponential of a Fourier multiplier and the calculations
are more complicated than those in [36]. See [36] for the history of the semi-
classical Agmon estimate for continuous case.

Theorem 3 for the continuous Schrödinger operator case was proved by
Helffer-Sjöstrand [20]. Helffer-Sjöstrand [21] considered the Harper operator

Hθ,hu(n) =
1

2
(u(n+ 1) + u(n− 1)) + cos(hn+ θ)u(n)

on ℓ2(Z). For fixed θ, this is a special case of our setting. They studied⋃
θ σ(Hθ,h) by considering

P (h) = cos(hDx) + cosx

on L2(R). Among many things, they proved the Agmon estimate based on the
Agmon-type Riemann metric

dsE = 2arsinh

√
(V (x)− E)+

2
ds,

where ds is the length of the standard metric on R. Our Agmon-Finsler metric
reduces to this metric when d = 1. They also discussed the one-dimensional
case of Theorem 3 employing this metric. The general strategy of our proof
of Theorem 3 is similar to Dimassi-Sjöstrand [11, section 3]. Modifications are
needed for treating a Finsler metric.

We noticed that Rabinovich [44] already studied the same semiclassical set-
ting of discrete Schrödinger operators in higher dimensions and proved the ex-
ponential decay of eigenfunctions. Nevertheless, the Agmon-Finsler metric is
not introduced in this paper and the exponential decay in [44] is weaker than
ours. We note that our Theorem 3 suggests that the Agmon-Finsler distance to
GE = {x ∈ Rd|V (x) ≤ E} is the natural function for estimating the exponential
decay of eigenfunctions.
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This section is organized as follows. In subsection 2.2, we recall basic facts
about pseudodifferential operators on the torus and prove Theorem 1. In sub-
section 2.3, we discuss the Agmon-Finsler metric and prove Theorem 2. In
subsection 2.4, we construct WKB solutions near a nondegenerate potential
minimum and prove Theorem 3. In the appendix to this section, we prove
the Agmon estimate for discrete Schrödinger operators in the non-semiclassical
setting. We also discuss the optimality of this estimate.

2.2 Preliminaries for Section 2

We recall basic facts on microlocal analysis on the torus in this subsection.
Functions on T ∗Td or Td are identified with those on T ∗Rd or Rd which are
2πZ-periodic. We recall the notation

Sm
θ,0(T

∗Td) = {a(·;h) ∈ C∞(T ∗Td)| |∂αξ ∂βxa(ξ, x;h)| ≤ Cα,β⟨x⟩m−θ|β|}.

Here α, β ∈ Zd
≥0. We write Sm

θ,0 = Sm
θ,0(T

∗Td), Sm = Sm
1,0, S = S0

0,0 and S−∞ =⋂
m∈R S

m. For a ∈ Sm
θ,0 we define a pseudodifferential operator a(ξ, hDξ) on Td

by the expression

a(ξ, hDξ)u(ξ) = (2πh)−d

∫
Rd

∫
Rd

a(ξ, x)ei⟨ξ−η,x⟩/hu(η)dηdx

in the sense of oscillatory integral, where u ∈ C∞(Td). The class of pseudodif-
ferential operators corresponding to Sm

θ,0 is denoted by OpSm
θ,0.

We have V (hDξ) = FhV (x)F−1
h for V ∈ C∞

b (Rd) since

V (hDξ)u(ξ) = (2πh)−d

∫
Rd

∫
Rd

V (x)ei⟨ξ−η,x⟩/hu(η)dηdx

= (2πh)−d

∫
Rd

V (x)

 ∑
x∈hZd

(2π)d/2hd(F−1
h u)(x)δx

 ei⟨ξ,x⟩/hdx

= (2π)−d/2
∑

x∈hZd

V (x)(F−1
h u)(x)e⟨ξ,x⟩/h

for u ∈ C∞(Td). Thus H̃(h) = p(ξ, hDξ).
While the definition of a(ξ, hDξ) is based on the special structure of the

torus, the pseudolocality of pseudodifferential operators implies that we can
employ the general theory of pseudodifferential operators on manifolds (see [61,
Chapter 5, 14]). In particular, the functional calculus and the trace formula
for pseudodifferential operators are valid. We give a proof of Theorem 1 using
these method.

Proof of Theorem 1. For small ε > 0, we take χ1,ε, χ2,ε ∈ C∞
c (R; [0, 1]) such

that χ1,ε = 1 on [a−ε, b+ε], suppχ1,ε ⊂ [a−2ε, b+2ε], χ2,ε = 1 on [a+2ε, b−2ε]
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and suppχ2,ε ⊂ [a+ ε, b− ε]. Since N[a,b](H̃(h)) = tr(χ[a,b](H̃(h))) and χ2,ε ≤
χ[a,b] ≤ χ1,ε, we have

tr(χ2,ε(H̃(h))) ≤ N[a,b](H̃(h)) ≤ tr(χ1,ε(H̃(h))).

By the functional calculus and the trace formula for pseudodifferential op-
erators, we have

tr(χj,ε(H̃(h))) = (2πh)−d

∫
T∗Td

χj,ε(p(ξ, x))dξdx+Oε(h
−d+1)

for j = 1, 2. By Fubini’s theorem and the definition of p(ξ, x), We have
Vol2d({(ξ, x)| p(ξ, x) = a, b}) = 0. Then we have

lim
ε→0

∫
T∗Td

χj,ε(p(ξ, x))dξdx = Vol({(ξ, x) ∈ T ∗Td| a ≤ p(ξ, x) ≤ b})

for j = 1, 2.
Take any δ > 0. Then we have for small ε > 0

−δ −Oε(h) ≤ (2πh)dN[a,b](H̃(h))−Vol({(ξ, x)| a ≤ p(ξ, x) ≤ b}) ≤ δ +Oε(h)

by the above arguments. We take h → 0 and then δ → 0, which completes the
proof.

2.3 The Agmon estimate

We prove Theorem 2 in this subsection.

2.3.1 Calculation of exponentially conjugated operator

For ρ ∈ C∞
b (Rd;R), we compute H̃ρ(h) = eρ(hDξ)/hH̃(h)e−ρ(hDξ)/h. Note that

eρ(hDξ)/hV (hDξ)e
−ρ(hDξ)/h = V (hDξ). We thus consider eρ(hDξ)/hp0(ξ)e

−ρ(hDξ)/h,

where p0(ξ) =
∑d

j=1(2− 2 cos ξj).

Lemma 2.1. For any ρ ∈ C∞
b (Rd;R),

eρ(hDξ)/hp0(ξ)e
−ρ(hDξ)/h = aρ(ξ, hDξ;h) ∈ OpS,

where aρ ∼
∑∞

k=0 h
kaρ,k(ξ, x), aρ,k ∈ S and

aρ,0(ξ, x) = p0(ξ − i∂ρ(x), x).

If moreover
|∂αx ρ(x)| ≤ Cα⟨x⟩1−|α| for any α ∈ Zd

≥0, (1)

then aρ ∈ S0 and aρ,k ∈ S−k.
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Proof. We set g(x) = e−|x|2 . Then we have

e−ρ(hDη̂)/hu(η̂)

= lim
ε→0

(2πh)−d

∫
R2d

ei⟨η̂−η,x⟩/he−ρ(x)/hu(η)g(εx)g(εη)dxdη

= (2πh)−d

∫
R2d

ei⟨η̂−η,x⟩/h tLN
1

(
e−ρ(x)/hu(η)

)
dxdη

by integration by parts, where N ≥ 2d+ 1 and

L1 =
1− x · hDη + (η̂ − η) · hDx

1 + |x|2 + |η − η̂|2
.

Thus

eρ(hDξ)/hp0(ξ)e
−ρ(hDξ)/hu(ξ)

= (2πh)−2d

∫
R2d

ei⟨ξ−η̂,y⟩/h tLN
2 e

ρ(y)/hp0(η̂)

∫
R2d

ei⟨η̂−η,x⟩/h

tL2N
1

(
e−ρ(x)/hu(η)

)
dxdηdydη̂

= lim
ε→0

(2πh)−2d

∫
R4d

ei⟨ξ−η̂,y⟩/he(ρ(y)−ρ(x))/hei⟨η̂−η,x⟩/h

u(η)g(εx)g(εη)g(εy)g(εη̂)dxdηdydη̂,

where

L2 =
1− y · hDη̂ + (ξ − η̂) · hDy

1 + |y|2 + |η̂ − ξ|2
.

We set ρ(y) − ρ(x) = (y − x) · Φ(x, y), where Φ(x, y) =
∫ 1

0
∂ρ(y + t(x − y))dt.

We deform the integral by Cauchy’s theorem and obtain

eρ(hDξ)/hp0(ξ)e
−ρ(hDξ)/hu(ξ)

= lim
ε→0

(2πh)−2d

∫
R4d

ei⟨ξ−η̂,y⟩/hei⟨η̂−η,x⟩/hp0(η̂ − iΦ(x, y))u(η)

g(εx)g(εη)g(εy)g(εη̂ − εiΦ(x, y))dηdxdη̂dy.

Using tLN
2 and tL2N

1 as above, we see that

eρ(hDξ)/hp0(ξ)e
−ρ(hDξ)/hu(ξ)

= lim
ε→0

lim
ε′→0

(2πh)−2d

∫
R4d

ei⟨ξ−η̂,y⟩/hei⟨η̂−η,x⟩/hp0(η̂ − iΦ(x, y))u(η)

ψ(εx)ψ(εη)ψ(ε′y)ψ(ε′η̂)dηdxdη̂dy

= lim
ε→0

lim
ε′→0

(2πh)−2d

∫
R4d

ei⟨ξ−η,x⟩/he−i⟨y,η̂⟩/hp0(η̂ + ξ − iΦ(x, y + x))u(η)

ψ(εx)ψ(εη)ψ(ε′y + ε′x)ψ(ε′η̂ + ε′ξ)dη̂dydηdx.
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Here ψ ∈ C∞
c (Rd) is a cutoff near 0 with suppψ ⊂ {x ∈ Rd| |x| < 1/4}. We

also changed the variables from y and η̂ to y + x and η̂ + ξ.
We next insert

1 = (1− ψ(y)ψ(η̂)) + ψ(y)ψ(η̂)

into the integrand. Then we estimate the limε′→0(2πh)
−d

∫
R2d · · · dη̂dy part. We

set

L3 =
−η̂hDy − yhDη̂

|η̂|2 + |y|2
.

We see that the 1 − ψ(y)ψ(η̂) term contributes as h∞S by using tLN
3 with

N ≫ 1. To estimate the ψ(y)ψ(η̂) term, we apply the stationary phase method
([19, Theorem 7.7.6]) with respect to (η̂, y). The stationary point (∂η̂,yϕ = 0) is
(η̂, y) = (0, 0). We have sgn∂2η̂,yϕ = 0 and |det ∂2η̂,yϕ| = 1 at (η̂, y) = (0, 0). We
then obtain an asymptotic expansion with respect to h in S with the leading
term p0(ξ − i∂ρ(x)). Here we used Φ(x, x) = ∂ρ(x).

Finally we assume (1) and prove the asymptotic expansion in S0. For this,
we change the variables from y to ⟨x⟩y and set h̃ = h⟨x⟩−1. Then we have

eρ(hDξ)/hp0(ξ)e
−ρ(hDξ)/hu(ξ)

= lim
ε→0

lim
ε′→0

(2πh)−d(2πh̃)−d

∫
R4d

ei⟨ξ−η,x⟩/he−i⟨y,η̂⟩/h̃p0(η̂ + ξ − iΦ(x, ⟨x⟩y + x))

u(η)ψ(εx)ψ(εη)ψ(ε′⟨x⟩y + ε′x)ψ(ε′η̂ + ε′ξ)dη̂dydηdx.

We insert
1 = (1− ψ(y)) + ψ(y)(1− ψ(η̂)) + ψ(y)ψ(η̂)

into the integrand and estimate the limε′→0(2πh̃)
−d

∫
R2d · · · dη̂dy part. We set

L̃3 =
−η̂h̃Dy − yh̃Dη̂

|η̂|2 + |y|2
and L̃4 =

−yh̃Dη̂

|y|2
.

We see that the 1− ψ(y) term contributes as h∞S−∞ by using tL̃d+1
3 and tL̃N

4

with N ≫ 1. We also see that the ψ(y)(1− ψ(η̂)) term contributes as h∞S−∞

by using tL̃N
3 with N ≫ 1. To see this, we note that for |y| ≤ 1/4

|∂αy Φ(x, ⟨x⟩y + x)| ≤ Cα for any α ∈ Zd
≥0

since |⟨x⟩y+ x| ≥ |x|/2 for |x| ≥ 1 and |y| ≤ 1/4. We then apply the stationary
phase method to the ψ(y)ψ(η̂) term and obtain asymptotic expansion with
respect to h⟨x⟩−1 in S0 using the above estimate on ∂αy Φ(x, ⟨x⟩y + x). This
completes the proof.

Remark 2.2. The Gaussian weight is also used in the context of the reso-
nance theory to justify the contour deformation in the oscillatory integral (see
Galkowski-Zworski [16, Appendix B.1]).

Remark 2.3. The second part of Lemma 2.1 is used in the appendix to this
section.
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This lemma implies that for ρ ∈ C∞
b (Rd;R), the semiclassical principal

symbol of H̃ρ(h) is

σh(H̃ρ(h)) = p(ξ − i∂ρ(x), x).

In the proof of the Agmon estimate, the weight ρ ∈ C∞(Rd;R) may be
only lower semibounded and ∂ρ ∈ C∞

b (Rd,Rd). Take ν(t) ∈ C∞(R;R) with
0 ≤ ν′(t) ≤ 1 and ν′′(t) ≤ 0 such that ν(t) = t for t < 0.9 and ν(t) = 1 for
t > 1.1. We then set ρM (x) =Mν(ρ(x)/M). We note that ρM (x) ↗ ρ(x) when
M → ∞ since ν′′(t) ≤ 0.

By the proof of Lemma 2.1, we see that the first statement in Lemma 2.1
with ρ replaced by ρM is valid uniformly for M > 1 since ∂ρM ∈ C∞

b (Rd,Rd)
uniformly for M > 1. The second statement with ρ replaced by ρM is also valid
uniformly for M > 1 if we add the assumption that ρ(x) ≳ |x| for |x| ≫ 1 to
ensure that (1) with ρ replaced by ρM is valid uniformly for M > 1.

We set
H̃M (h) = eρM (hDξ)H̃(h)e−ρM (hDξ).

It may be possible to prove that H̃ρ(h) = limM→∞ H̃M (h) ∈ OpS and that

σh(H̃ρ(h)) = p(ξ − i∂ρ(x), x) even in this case. In fact, in the proof of the
Agmon estimate, we do not use these and we take the limit M → ∞ in a later
step of the proof.

2.3.2 The Agmon-Finsler metric

We recall that

p0(ξ) =

d∑
j=1

(2− 2 cos ξj) = 4

d∑
j=1

sin2
ξj
2
.

We will find a condition which ensures that

Re
(
p0(ξ − i∂ρ(x)) + V (x)− E

)
is positive away from GE = {x ∈ Rd|V (x) ≤ E}. We note that

4 sin2
ξ + iλ

2
= 4(sin

ξ

2
cos

iλ

2
+ cos

ξ

2
sin

iλ

2
)2

= 4(sin
ξ

2
cosh

λ

2
+ i cos

ξ

2
sinh

λ

2
)2.

Then we have

Re (4 sin2
ξ + iλ

2
) ≥ −4 sinh2

λ

2
.

This implies that

Re
(
p0(ξ − i∂ρ(x)) + V (x)− E

)
≥ V (x)− E − 4

d∑
j=1

sinh2
∂jρ(x)

2
. (2)

10



We set

Kx =
{
ξ ∈ Rd

∣∣ d∑
j=1

sinh2
ξj
2

≤ (V (x)− E)+
4

}
,

which is interpreted as a convex subset of T ∗
xRd.

We present a construction of a function d(x) such that

∂d(x) ∈ Kx

for (almost all) x ∈ Rd, which is valid for more general Kx. We introduce a
Finsler metric given by the supporting function of Kx;

L(x, v) = sup
ξ∈Kx

⟨ξ, v⟩,

which gives the length of v ∈ TxRd = Rd in this metric.

Remark 2.4. We note that Kx for x with V (x) > E is a strictly convex compact
set such that ∂Kx is smooth and has non-vanishing Gaussian curvature. This
implies that

(
1
2∂vi∂vj

L(x, v)2
)
ij
is positive definite for v ̸= 0 and x with V (x) >

E. Thus L(x, v) satisfies the conditions of the definition of the Finsler metric
(for instance, [2, Section 1.1]) on Gc

E = {x ∈ Rd| V (x) > E}.
We set

dE(x, y) = inf
x(·)

∫ 1

0

L(x(t), x′(t))dt,

where x(·) : [0, 1] → Rd ranges over C1 curves such that x(0) = x and x(1) = y.
We note that dE(x, y) = dE(y, x) since L(x, v) = L(x,−v). Take any closed set
G in Rd and set

dG(x) = dE,G(x) = inf
y∈G

dE(x, y).

Note that dG is a Lipschitz continuous function and thus is differentiable at
almost all x ∈ Rd. We have the following.

Lemma 2.5. For almost all x ∈ Rd,

∂dG(x) ∈ Kx.

Proof. Take x such that dG(x) is differentiable at x. Take any v ∈ TxRd. The
triangle inequality implies

|dG(x)− dG(x+ tv)|/t ≤ dE(x, x+ tv)/t.

Taking limit t→ 0, we learn

|⟨∂dG(x), v⟩| ≤ L(x, v).

Since the compact convex set Kx is recovered from its supporting function as

Kx = {ξ ∈ Rd| ⟨ξ, v⟩ ≤ L(x, v) for any v ∈ Rd}

(see [19, subsection 4.3]), this implies ∂dG(x) ∈ Kx.
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We call L(x, v) or L : TRd → [0,∞) with respect to our Kx the Agmon-
Finsler metric for discrete Schrödinger operators. Then the exponential decay
of the eigenfunctions of H(h) is stated in terms of

dE(x) = dE,GE
(x).

The inequality (2) and Lemma 2.5 imply that

Re
(
p0(ξ − i∂dE(x)) + V (x)− E

)
≥ 0.

outside GE .

2.3.3 Proof of Theorem 2

Proof of theorem 2. We should modify dE(x) as follows. For a given ε > 0, we
take a sufficiently small δ > 0. We fix ψδ ∈ C∞

c (R;R≥0) such that suppψδ ⊂
{x ∈ Rd| |x| < δ/30} and

∫
Rd ψδ(x)dx = 1. Set χ = 1Gc

E, 3
4
δ
∗ψδ, χ1 = 1Gc

E, 1
2
δ
∗ψδ

and χ̃ = 1G
E, 7

8
δ
\G

E, 5
8
δ
∗ψδ. Here 1 denotes the indicator function of a set. Then

χ, χ1, χ̃ ∈ C∞
b (Rd; [0, 1]), χχ1 = χ, χ̃∂χ = ∂χ and

supp (1− χ) ⊂ GE,δ, supp χ̃ ⊂ GE,δ \ GE,δ/2.

By mollifying (1 − ε)dE,GE,δ
, we obtain ρ ∈ C∞(Rd;R≥0) satisfying |(1 −

ε)dE(x) − ε| ≤ ε for x ∈ Rd and ∂ρ(x) ∈ (1 − ε/2)Kx on suppχ1. Moreover,
dist(supp ρ, supp ∂χ) > δ/10.

Define ρM and H̃M (h) from this ρ as in subsubsection 2.3.1. Then ∂ρM (x) ∈
(1− ε/2)Kx on suppχ1.

Take any z ∈ [E −C0, E +C0h] + i[−C0, C0] for a given C0. By Lemma 2.1
we have

χ1(hDξ)(H̃M (h)− z)∗(H̃M (h)− z)χ1(hDξ)− γ2χ1(hDξ)
2

belongs to OpS uniformly for M > 1 and its principal symbol is

χ1(x)
2|p(ξ − i∂ρM (x), x)− z|2 − γ2χ1(x)

2.

The inequality (2) and the estimate for ∂ρM (x) above imply that this is non-
negative for small γ > 0. Here we replace z with z−C0h if E ≤ Re z ≤ E+C0h.

Then the G̊arding inequality implies that there exists h0 > 0 such that

∥(H̃M (h)− z)χ1(hDξ)û∥L2(Td) ≥ γ∥χ1(hDξ)û∥L2(Td) −
γ

2
∥û∥L2(Td)

for any û ∈ L2(Td) and any 0 < h < h0. Here h0 is independent of M > 1 by
the uniform estimate of the symbol. Replacing û with χ(hDξ)û, we have

∥eρM (x)/h(H(h)− z)e−ρM (x)/hχu∥ℓ2 ≥ γ

2
∥χu∥ℓ2

12



for u ∈ ℓ2(hZd) and 0 < h < h0. We replace u with eρM (x)/hu and obtain

∥eρM (x)/h(H(h)− z)χu∥ℓ2 ≥ γ

2
∥eρM (x)/hχu∥ℓ2

for u ∈ ℓ2(hZd) and 0 < h < h0. Taking the limit M → ∞, we have this
estimate with ρM (x) replaced by ρ(x). Then we have

∥χeρ(x)/hu∥ℓ2 ≤ C∥eρ(x)/h(H(h)− z)χu∥ℓ2

≤ C∥χeρ(x)/h(H(h)− z)u∥ℓ2 + C∥eρ(x)/h[H(h), χ]u∥ℓ2

≤ C∥χeρ(x)/h(H(h)− z)u∥ℓ2 + C∥χ̃u∥ℓ2 .

In the last inequality, we used the facts that ρ = 0 near supp ∂χ and that χ̃ = 1
near supp ∂χ.

2.4 WKB solutions near a potential minimum

In this subsection, we set q(x, ξ) = 4
∑d

j=1 sinh
2 ξj

2 − V (x) and give a proof of
Theorem 3.

2.4.1 Solution to the eikonal equation

After some orthogonal transformation, we have

q(y, η) = η2 −
d∑

j=1

λ2jy
2
j +O((y, η)3).

Thus there exists a real valued smooth function ϕ defined near x = 0 such that
the local unstable and stable manifolds at (0, 0) of Hq = ∂q

∂ξ
∂
∂x − ∂q

∂x
∂
∂ξ are given

as Λ± = {(x, ξ)| ξ = ±∂ϕ(x)}. Moreover, ϕ =
∑d

j=1
λj

2 y
2
j +O(|y|3) in the above

coordinate y and the phase ϕ satisfies the eikonal equation q(x, ∂ϕ(x)) = 0.
These facts are proved by the same proof as in [11, Section 3].

We recall that d(x) is the Agmon-Finsler distance to 0 ∈ Rd at energy 0.

Lemma 2.6. Under the above notation, ϕ(x) = d(x) near x = 0.

Proof. We follow the strategy of Proposition A.1 in [11, Section 6]. We should

be careful since we work with a Finsler metric. Take a small neighborhood Ω̃ of
0 ∈ Rd where ϕ is defined. We also take a small neighborhood Ω ⊂ Ω̃ of 0 ∈ Rd.
Then for x, x̃ ∈ Ω, the Agmon-Finsler distance d(x, x̃) is computed by the C1

curves in Ω̃ joining them.
Suppose that x(t) is a C1 curves in Ω̃ such that x(0) = x, x(1) = x̃. Since

(∂ϕ)(x(t)) ∈ ∂Kx(t) by the eikonal equation, the definition of L implies that

|ϕ(x)− ϕ(x̃)| = |
∫ 1

0

⟨(∂ϕ)(x(t)), x′(t)⟩dt| ≤
∫ 1

0

L(x(t), x′(t))dt.

13



Taking the infimum over x(t), we have |ϕ(x) − ϕ(x̃)| ≤ d(x, x̃). In particular,
we have 0 ≤ ϕ(x) ≤ d(x) by setting x̃ = 0.

We next take x ∈ Ω and set exp(−tHq)(x, ∂ϕ(x)) = (x(t), ξ(t)), where
exp(tHq) is the flow generated by Hq. Since ϕ generates the local unstable
manifold, we see that limt→∞ x(t) = 0 and ξ(t) = (∂ϕ)(x(t)) ∈ ∂Kx(t). Then
we have

ϕ(x)− ϕ(x(t)) =

∫ t

0

⟨(∂ϕ)(x(s)),−x′(s)⟩ds =
∫ t

0

⟨ξ(s),−x′(s)⟩ds.

We have −x′(s) = ∂q
∂ξ (x(s), ξ(s)) by the Hamilton equation. Thus the supremum

in L(x(s), x′(s)) = L(x(s),−x′(s)) = supξ∈Kx(s)
⟨ξ,−x′(s)⟩ is achieved at ξ(s).

Thus we have

ϕ(x)− ϕ(x(t)) =

∫ t

0

L(x(s), x′(s))ds ≥ d(x, x(t)).

Taking the limit t→ ∞, we have ϕ(x) ≥ d(x).

2.4.2 Transport equation

We next calculate eϕ(x)/hH(h)e−ϕ(x)/h. Difference operators such as H(h) act
on functions both on Rd and hZd.

Proposition 2.7. Under the above notation

eϕ(x)/hH(h)e−ϕ(x)/ha = h(La)(x) + h2Φ(x, h; a)

for a ∈ C∞(Rd) near x = 0, where

(La)(x) = 2

d∑
j=1

(sinh ∂jϕ(x))∂ja(x) +

d∑
j=1

(cosh ∂jϕ(x))(∂
2
jϕ(x))a(x)

and

Φ(x, h; a) ∼
∞∑

n=0

hn(Φna)(x).

Here Φn is a (n+ 2)th order differential operator defined in terms of ϕ.

Proof. We have

eϕ(x)/hH(h)e−ϕ(x)/ha = −
∑

|y−x|=h

(a(y)e(ϕ(x)−ϕ(y))/h − a(x)) + V (x)a(x).

Since ϕ satisfies the eikonal equation, we have

V (x) =
∑
j,±

(e∓∂jϕ(x) − 1).
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This and the Taylor expansions of ϕ(y) and a(y) around x imply that

eϕ(x)/hH(h)e−ϕ(x)/ha

∼ −
∑
j,±

(( ∞∑
n=0

(±h)n(∂nj a(x)
)
/n!)e∓

∑∞
n=1(±h)n−1(∂n

j ϕ(x))/n! − e∓∂jϕ(x)a(x)
)

∼ −
∑
j,±

(
±h∂ja(x)e∓∂jϕ(x) − ha(x)e∓∂jϕ(x)

1

2
∂2jϕ(x)

)
+ h2Φ(x, h; a)

= h(La)(x) + h2Φ(x, h; a)

for some Φ(x, h; a) ∼
∑∞

n=0 h
n(Φna)(x). This is justified as an asymptotic

expansion if we expand

e∓
∑∞

n=1(±h)n−1(∂n
j ϕ(x))/n! = e∓∂jϕ(x)e∓

∑∞
n=2(±h)n−1(∂n

j ϕ(x))/n!

using ez =
∑∞

m=0 z
m/m!.

See [21, Section 8] for the case of d = 1. This proposition implies that in
order to solve

eϕ(x)/h(H(h)− hE(h))(a(x)e−ϕ(x)/h) = O(h∞),

it is enough to solve the following transport equations

(L − E0)a0 = 0, (L − E0)an =

n−1∑
m=0

(En−m − Φn−m−1)am, (n ≥ 1).

2.4.3 Solution to the transport equation

Proof of Theorem 3. We recall that ϕ(y) =
∑d

j=1
λj

2 y
2
j + O(|y|3) after some

orthogonal transformation. Thus L = 2
∑d

j=1(λjyj + O(|y|2))∂yj
+

∑
j λj +

O(|y|). Then the same arguments as in [11, Section 3] implies the existence
part of Theorem 3.

We next prove the uniqueness of Ej and the essential uniqueness of aj .

Suppose that Ẽj and ãj are other solutions. Recall that for any g ∈ C∞(Rd),
the equation (L−E0)f = g−λa0 near x = 0 has a solution f ∈ C∞ for precisely
one λ ∈ C and the solution is unique modulo Ca0 ([11, Proposition 3.4, 3.5]).
Considering the first nonzero ãj , we may assume that ã0 = a0. We prove the

uniqueness by induction. We assume that Ẽj = Ej and ãj = aj +
∑j

ℓ=1 cℓaj−ℓ

for some cℓ ∈ C up to j − 1. Then

(L − E0)ãj + (Ej − Ẽj)a0 =

j−1∑
m=0

(Ej−m − Φj−m−1)ãm

=

j−1∑
m=0

(Ej−m − Φj−m−1)(am +

m∑
ℓ=1

cℓam−ℓ)
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by the inductive hypothesis and the transport equation for ãj . This is equal to

(L − E0)aj +

j−1∑
ℓ=1

cℓ

j−1∑
m=ℓ

(Ej−m − Φj−m−1)am−ℓ

= (L − E0)aj +

j−1∑
ℓ=1

cℓ

j−1−ℓ∑
m=0

(Ej−m−ℓ − Φj−m−ℓ−1)am

by the transport equation for aj . The transport equation for aj−ℓ implies that

(L − E0)ãj + (Ej − Ẽj)a0 = (L − E0)aj +

j−1∑
ℓ=1

cℓ(L − E0)aj−ℓ.

Since this has a solution ãj , we have Ẽj = Ej and ãj = aj +
∑j

ℓ=1 cℓaj−ℓ for
some cj ∈ C. This shows the uniqueness part of Theorem 3.

2.5 Appendix to Section 2: The Agmon estimate and
the exponential decay of eigenfunctions for discrete
Schrödinger operators

2.5.1 The Agmon estimate

In this appendix to Section 2, we prove the Agmon estimate for

Hu(x) = −
∑

|x−y|=1

(u(y)− u(x)) + V (x)u(x),

where x, y ∈ Zd. The proof is similar to that of Theorem 2. While we used
the semiclassical G̊arding inequality in the proof of Theorem 2, we employ the
non-semiclassical sharp G̊arding inequality in this appendix.

Assumption 3. The potential V : Zd → R has a smooth extension Ṽ : Rd → R
such that

|∂αṼ (x)| ≤ Cα(1 + |x|)−θ|α| for any α ∈ Zd
≥0 (3)

for some 0 < θ ≤ 1 and lim|x|→∞Ṽ (x) ≥ 0.

We note that any V ∈ ℓ∞comp(Zd) satisfies the Assumption 3. We write Ṽ = V
without confusion. We fix E < 0.

Remark 2.8. Note that a necessary and sufficient condition for the existence of
an extension V : Rd → R of V : Zd → R satisfying (3) is given in Nakamura [39,
Lemma 2.1]. Although the case of θ = 1 is discussed in [39], the case of 0 < θ < 1
is similar.

We set q(ξ) = 4
∑d

j=1 sinh
2 ξj

2 in this appendix. We set KE = {ξ ∈
Rd| q(ξ) ≤ |E|} and

ρE(x) = sup
ξ∈KE

⟨x, ξ⟩.
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We define the Gauss map GE : ∂KE → Sd−1 by GE(x) = ∂q(ξ)/|∂q(ξ)| for
ξ ∈ ∂KE . This is bijective since KE is convex and the Gaussian curvature of
∂KE does not vanish. Then we have

ρE(x) = x ·G−1
E (x/|x|).

Theorem 4. Under Assumption 3 and the above notation, for any C0 > 0 and
ε > 0 there exist C > 0 and 1− χ, χ̃ ∈ ℓ∞comp(Zd) such that

∥χe(1−ε)ρE(x)u∥ℓ2 ≤ C∥χ̃u∥ℓ2 + C∥χe(1−ε)ρE(x)(H − z)u∥ℓ2

for any u ∈ ℓ2(Zd) and z ∈ [E − C0, E] + i[−C0, C0].

Corollary 2.9. Under Assumption 3 and the above notation, if (H −E)u = 0
and u ∈ ℓ2(Zd), then for any ε > 0 there exists Cε > 0 such that

|u(x)| ≤ Cεe
−(1−ε)ρE(x)

for any x ∈ Zd.

Remark 2.10. We note that ρE(x) coincides with the length of the line segment
joining 0 and x with respect to the Agmon-Finsler metric L(x, v) at energy E
for V ≡ 0. The geodesics with respect to the Agmon-Finsler metric in this case
are the straight lines since L(x, v) is independent of x. Thus ρE(x) coincides
with dE(x, 0) for V ≡ 0 (see [2, subsection 5.3, 6.6]).

2.5.2 Proof of Theorem 4

We first note that ρE(x) satisfies the eikonal equation.

Lemma 2.11. For any x ∈ Rd \ {0},

q(∂ρE(x)) = |E|.

Proof. The definition of GE implies

q(G−1
E (x/|x|)) = |E| and (∂q)(G−1

E (x/|x|)) = x/|x|.

Differentiating the first equality and using the second, we learn

x · ∂xj
(G−1

E (x/|x|)) = 0.

This implies that

∂ρE(x) = ∂
(
x ·G−1

E (x/|x|)
)
= G−1

E (x/|x|).

Then we have
q(∂ρE(x)) = q(G−1

E (x/|x|)) = |E|.
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Remark 2.12. Set Λ0 = T ∗
0Rd ∩ {q(ξ) = |E|}, which is a (d − 1)-dimensional

isotropic submanifold of T ∗Rd with the standard symplectic structure. Then
the solution in Lemma 2.11 corresponds to the Lagrangian submanifold Λ =⋃

t>0 Λt, where Λt is the image of Λ0 under the time t map of the Hamilton flow
generated by the Hamilton vector field of q(ξ).

Proof of Theorem 4. Take a smooth modification ρ̃E(x) of ρE(x) such that
ρ̃E(x) = ρE(x) for |x| > 1. We have |∂αρ̃E(x)| ≤ Cα(1 + |x|)1−|α| for any
α ∈ Zd

≥0. We also note that ρ̃E(x) ≳ |x| for large |x|. For a given small ε > 0,

we define ρM and H̃M = H̃M (1) from (1− ε)ρ̃E as in subsubsection 2.3.1.
We take any z ∈ [E − C0, E] + i[−C0, C0] for a fixed C0. We also take

χ1 ∈ C∞(Rd; [0, 1]) such that suppχ1 ⊂ {x ∈ Rd| |x| > R − 2} and χ1(x) = 1
for |x| > R− 1. Lemma 2.1 implies that

χ1(Dξ)(H̃M − z)∗(H̃M − z)χ(Dξ)− γ2χ1(Dξ)
2

belongs to OpS0
θ,0 uniformly for M > 1 and its symbol is

χ1(x)
2|p(ξ − i∂ρM (x), x)− z|2 − γ2χ1(x)

2

modulo S−θ
θ,0 , where 0 < θ ≤ 1 is that in Assumption 3. If R > 2 is sufficiently

large and γ > 0 is sufficiently small, this is everywhere nonnegative for any
M > 1 by Assumption 3, Lemma 2.11 and the construction of ρ̃E .

Then the sharp G̊arding inequality implies

∥(H̃M − z)χ1(Dξ)û∥2L2 − γ2∥χ1(Dξ)û∥2L2 ≥ −C∥û∥2H−θ/2

for any û ∈ L2(Td). Here H−θ/2 is the Sobolev space on Td. We replace û
with χ(Dξ)û, where χ ∈ C∞(Rd; [0, 1]) satisfies suppχ ⊂ {x ∈ Rd| |x| > R} and
χ(x) = 1 for |x| > R+ 1. Then we obtain

∥(H̃M − z)χ(Dξ)û∥2L2 − γ2∥χ(Dξ)û∥2L2 ≥ −C∥χ(Dξ)û∥2H−θ/2 .

Taking R > 1 large enough, we have

C∥χ(Dξ)û∥2H−θ/2 ≤ γ2

2
∥χ(Dξ)û∥2L2 .

Here C and thus R are independent of M > 1 by the uniform estimate of the
symbol. This shows that

∥eρM (x)(H − z)e−ρM (x)χ(x)u∥ℓ2 ≥ γ

2
∥χ(x)u∥ℓ2

for any u ∈ ℓ2(Zd). We then have

∥eρM (x)(H − z)χ(x)u∥ℓ2 ≥ γ

2
∥eρM (x)χ(x)u∥ℓ2
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for any u ∈ ℓ2(Zd). Taking the limit M → ∞, we obtain

∥e(1−ε)ρE(x)(H − z)χ(x)u∥ℓ2 ≥ γ

2
∥e(1−ε)ρE(x)χ(x)u∥ℓ2

for any u ∈ ℓ2(Z). We then calculate the commutator as in the proof of Theo-
rem 2 and take χ̃ ∈ ℓ∞comp which is 1 on {x ∈ Zd|R − 1 < |x| < R + 2}. Then
the proof of Theorem 4 is finished.

2.5.3 The optimality of Theorem 4

We prove that the exponential decay of eigenfunctions in Theorem 4 is optimal
for a concrete discrete Schrödinger operator. Fix any E < 0. We define uE ∈
ℓ2(Zd) by

uE(x) = (2π)−d

∫
Td

(
4

d∑
j=1

sin2
ξj
2

+ |E|
)−1

e−i⟨x,ξ⟩dξ.

Then (H0+|E|)uE(x) = δ0(x). HereH0 is the free discrete Schrödinger operator
and δ0 is the delta function supported on 0 ∈ Zd. We note that uE(0) > 0. Thus
we have (H0 + V )uE(x) = EuE(x) if we set V (x) = −uE(0)−1δ0(x). We study
the exponential decay of this eigenfunction uE . We note that Corollary 2.9 for
uE is also proved by the deformation of the integral in the definition of uE .

Take a bounded domain 0 ∈ Ω ⊂ Rd and set

ρΩ(x) = sup
ξ∈Ω

⟨x, ξ⟩.

Recall that KE = {ξ ∈ Rd| 4
∑d

j=1 sinh
2 ξj

2 ≤ |E|}. The following proposition
shows the optimality of Theorem 4.

Proposition 2.13. Under the above notation, assume that

|uE(x)| ≤ Ce−ρΩ(x)

for some C > 0 and any x ∈ Zd. Then Ω ⊂ KE.

Proof. By the Fourier inversion formula, we have

(4

d∑
j=1

sin2
ξj
2

+ |E|
)−1

=
∑
x∈Zd

uE(x)e
i⟨x,ξ⟩.

The assumption on uE implies

|uE(x)ei⟨x,ξ⟩| ≤ Ce−ρΩ(x)e−⟨Im ξ,x⟩.

We then see that (4
∑d

j=1 sin
2 ξj

2 + |E|
)−1

has an analytic continuation to {ξ ∈
Cd/2πZd| − Im ξ ∈ Ω}. Since 4 sin2 ξj/2 = −4 sinh2 Im ξj/2 for Re ξj = 0, we
conclude that Ω ⊂ KE .
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Remark 2.14. For d = 1, we have uE(x) = (|E|(4 + |E|))−1/2e−ρE(x) ([29,
Theorem 2.2]). Ito-Jensen [29, Theorem 2.1, 2.4] showed that uE is expressed
by a hypergeometric function of several variables for d ≥ 2 and by a general-
ized hypergeometric function of one variable for d = 2. The precise pointwise
asymptotics of uE(x) when |x| → ∞ does not seem to be immediate from these
expressions.

3 Resonances and viscosity limit for Wigner-von
Neumann-type Hamiltonians

As mentioned in Section 1, this section is based on the joint work [31] with Shu
Nakamura.

3.1 Introduction to Section 3

In this section, we consider the one-dimensional Schrödinger operator

P = − d2

dx2
+ V (x) on L2(R),

where V (x) is an oscillatory and slowly decaying potential. A typical example
is

P = − d2

dx2
+ a

sin 2x

x
on L2(R),

where a ∈ R.
We note that P is not dilation analytic in this case since the potential is

exponentially growing in the complex direction. More generally, we consider
the following class of potentials.

Assumption 4. The potential V (x) has the following form:

V (x) =

J∑
j=1

sj(x)Wj(x)

for some J ∈ N, where sj ∈ C(R;R) is a periodic function with period π
whose Fourier series converges absolutely, and Wj ∈ C∞(R;R) has an analytic
continuation to the region {z = x + iy | |x| > R0, |y| < K|x|} for some R0 > 0
and K > 0 with the bound |Wj(z)| ≤ C|z|−µ for some µ > 0 in this region.

We note that V (x) = a sin 2x
x satisfies Assumption 4 for any K > 0 with

J = 2. We also note that dilation analytic potentials satisfy Assumption 4 by
setting sj(x) = 1. Our first aim is to show that resonances can be defined for this
class of potentials. We write the set of thresholds by T = {n2 | n ∈ N∪{0}} (see
Remark 3.6 for the reason for which we introduce T ). We denote the resolvent
on the upper half plane by R+(z) = (z − P )−1, Im z > 0.
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Theorem 5. Under Assumption 4, there exists a complex neighborhood Ω ⊂ C
of [0,∞) \ T such that the following holds. For any f, g ∈ L2

comp(R), the matrix
element of the resolvent (f,R+(z)g) has a meromorphic continuation to Ω.

Remark 3.1. Unfortunately, the original Wigner-von Neumann potential ([41],
see also [45, Section XIII.13])

V (x) = (1+ g(x)2)−2(−32 sinx)(g(x)3 cosx− 3g(x)2 sin3 x+ g(x) cosx+sin3 x)

does not seem to satisfy Assumption 4, where g(x) = 2x−sin 2x. The argument
principle implies that if ν > 1/2 and ℓ ≫ 1 with ℓ ∈ Z, g(z)± i have two zeros
in the region {z ∈ C | (ℓ−1/2)π ≤ Re z ≤ (ℓ+1/2)π,−ν log ℓ ≤ Im z ≤ ν log ℓ}.
Thus we need another method to study the complex resonances for the original
Wigner-von Neumann Hamiltonian.

We define the complex resonances using this meromorphic continuation.

Definition 3.2. A complex number z ∈ Ω is called a resonance if z is a pole of
(f,R+(z)g) for some f, g ∈ L2

comp(R). The multiplicity of resonance mz at z is
defined as the maximal number m such that there exist f1, . . . , fm, g1, . . . , gm ∈
L2
comp(R) with det

(
1

2πi

∮
C(z)

(fi, R+(ζ)gj)dζ
)m
i,j=1

̸= 0, where C(z) is a small

circle around z. The set of resonances is denoted by Res(P ) including multi-
plicities.

Remark 3.3. Res(P ) is discrete in Ω and mz < ∞ for any z ∈ Ω (see Re-
mark 3.7).

We prove Theorem 5 by introducing the periodic complex distortion in the
Fourier space. See subsection 3.2 for the definition and the underlying idea.

We next add a complex absorbing potential as follows:

Pε = − d2

dx2
+ V (x)− iεx2, ε > 0.

It is not difficult to see that Pε, ε > 0, has purely discrete spectrum on L2(R).
Zworski [62] proved that the resonances can be characterized as limit points
of the eigenvalues of Pε as ε → 0, namely limε→0 σd(Pε) = Res(P ) for com-
pactly supported potentials. The proof employed the dilation analytic method.
Zworski [62] also proposed a problem of finding a potential V (x) such that the
limit set of σd(Pε) when ε → 0 is not discrete. He suggested V (x) = sin x

x as a
candidate for such V (x). Our next result disproves this conjecture (away from
the thresholds). We set B(z, ρ) = {w ∈ C | |w − z| ≤ ρ}.

Theorem 6. Under Assumption 4, there exists a complex neighborhood Ω ⊂ C
of [0,∞) \ T such that limε→0 σd(Pε) = Res(P ) in Ω including multiplicities.
More precisely, for any z ∈ Ω there exists ρ0 > 0 such that for any 0 < ρ < ρ0
there exists ε0 > 0 such that for any 0 < ε < ε0,

#
(
σd(Pε) ∩B(z, ρ)

)
= mz.

In particular, limε→0 σd(Pε) is discrete in Ω.
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Remark 3.4. Ω in Theorem 5 and Theorem 6 are given explicitly in subsec-
tion 3.2 and subsection 3.3.

Wigner-von Neumann-type Hamiltonians have been investigated by many
authors. See for instance [4], [5], [6], [9], [15], [18], [34], [35], [46], [47] and
references therein. To our knowledge, the definition of the complex resonances
based on the complex distortion for Schrödinger operators with oscillatory and
slowly decaying potentials is new. The complex distortion in the Fourier space
was studied by Cycon [7] and Sigal [50] for radially symmetric dilation analytic,
or sufficiently smooth exponentially decaying potentials. This method was ex-
tended to the not necessarily radially symmetric case in [37]. See the references
in [37] for earlier works on the complex distortion.

Complex absorbing potential method was introduced in physical chemistry
([48], [49]). Theorem 6 was proved by Zworski [62] for the compactly supported
potentials, which gave the mathematical justification of this method. This was
extended to several settings (see [31], [58], [59], [60]). Analogous results were
proved for Pollicott-Ruelle resonances by Dyatlov-Zworski [13] (see also [8], [12]),
and for 0th order pseudodifferential operators by Galkowski-Zworski [16]. Ste-
fanov [53] studied the approximation of resonances in the semiclassical limit
by a fixed complex absorbing potential. Similar methods were also used in
Nonnenmacher-Zworski [42], [43] and Vasy [55].

This section is organized as follows. In subsection 3.2, we prove the theorems
for the model case V (x) = a sin 2x

x . It contains essential ideas for the general
case. In subsection 3.3, we present technical arguments which complete the
proofs of the theorems for the general case.

3.2 The proofs for the model case

In this subsection, we present the general ideas for the proofs and give the proofs
for the model case V (x) = a sin 2x

x , a ∈ R.

3.2.1 Periodic distortion in the Fourier space

The idea of the proof of Theorem 5 is as follows. While the standard dilation
analytic method for the resonances does not apply to our potentials, it is known
that we can construct a Mourre theory with the conjugate operator A′, where

A′ =
1

2
(x ·D′ +D′ · x), D′u(x) =

1

2π
(u(x+ π)− u(x− π))

(see [38]). In the Fourier space, A′ is a differential operator

Ã′ = (i∂ξ) · sin(πξ) + sin(πξ) · (i∂ξ).

We may use e−iθA′
to define the resonances for our model. Although the flow

of the vector field sin(πξ) is calculated explicitly, it is complicated.
Thus we use the Hunziker-type distortion from the vector field sin(πξ) (see

[37] for Hunziker-type local distortion in the Fourier space). Namely, we set

Φθ(ξ) = ξ + θ sin(πξ), Uθf(ξ) = Φ′
θ(ξ)

1
2 f(Φθ(ξ)),
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where θ ∈ (−π−1, π−1). This is our periodic distortion in the Fourier space.

In the Fourier space, P has the form P̃ = ξ2 + Ṽ , where Ṽ = (2π)−1/2V̂ ∗ is a
convolution operator and V̂ is the Fourier transform of V with the convention
V̂ (ξ) = (2π)−1/2

∫
V (x)e−ixξdx. Hence we have

P̃θ := UθP̃U
−1
θ = (ξ + θ sin(πξ))2 + Ṽθ, Ṽθ = UθṼ U

−1
θ .

We next prove the analyticity of Ṽθ for the model case.

Lemma 3.5. Let V (x) = a sin 2x
x for a ∈ R. Then Ṽθ = (Φ′

θ)
1
2 Ṽ (Φ′

θ)
1
2 , where

(Φ′
θ)

1
2 is a multiplication operator by Φ′

θ(ξ)
1
2 , and Ṽ = a

21[−2,2]∗. Here 1[−2,2]

denotes the indicator function of [−2, 2]. In particular, Ṽθ is analytic with re-
spect to θ and ξ2-compact, where θ ranges over C \

(
(−∞,−π−1] ∪ [π−1,∞)

)
.

Proof. By a simple computation, we immediately have Ṽ = a
21[−2,2]∗. Thus we

have

Ṽθf(ξ) = UθṼ U
−1
θ f(ξ)

=

∫
R
Φ′

θ(ξ)
1
2
a

2
1[−2,2](Φθ(ξ)− η)(Φ−1

θ )′(η)
1
2 f(Φ−1

θ (η))dη

=

∫
R
Φ′

θ(ξ)
1
2
a

2
1[−2,2](Φθ(ξ)− Φθ(η))Φ

′
θ(η)

1
2 f(η)dη

for θ ∈ (−π−1, π−1). To simplify this expression, we note that

d

dξ
(Φθ(ξ)− Φθ(η)) = 1 + θπ cos(πξ) > 0

for θ ∈ (−π−1, π−1) and that

Φθ(η ± 2)− Φθ(η) = ±2 + θ(sin(π(η ± 2))− sin(πη)) = ±2.

These imply that −2 ≤ Φθ(ξ)− Φθ(η) ≤ 2 if and only if −2 ≤ ξ − η ≤ 2. Then
we see that

Ṽθf(ξ) =

∫
R
Φ′

θ(ξ)
1
2
a

2
1[−2,2](ξ − η)Φ′

θ(η)
1
2 f(η)dη

= (Φ′
θ)

1
2 Ṽ (Φ′

θ)
1
2 f(ξ).

The first part of the Lemma 3.5 implies the second part. Note that (Φ′
θ)

1
2 is well-

defined for θ ∈ C\
(
(−∞,−π−1] ∪ [π−1,∞)

)
since C\

(
(−∞,−π−1] ∪ [π−1,∞)

)
is simply connected and Φ′

θ(ξ) = 1 + θπ cos(πξ) ̸= 0 for such θ.

3.2.2 Definition of resonances

In subsubsection 3.2.2 and subsubsection 3.2.3, we set V (x) = a sin 2x
x for a ∈ R.

The modifications needed for the general case are explained in subsection 3.3.
By Lemma 3.5, we see that P̃θ is analytic with respect to θ in the sense of

Kato and the essential spectrum of P̃θ is given by

σess(P̃θ) =
{
(ξ + θ sin(πξ))2

∣∣ ξ ∈ R
}
.
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Remark 3.6. We note that

σess(P̃θ) ∩ [0,∞) = {n2 | n ∈ N ∪ {0}}

for complex θ. Thus T = {n2 | n ∈ N ∪ {0}} ⊂ [0,∞) is the set of thresholds
with respect to our periodic complex distortion in the Fourier space. This is
analogous to the set of threshold {0} ⊂ [0,∞) in the case of the usual complex
dilation. In addition to the usual threshold 0, our T contains energy n2, n ∈ N,
at which the corresponding wave e±inx has a half-multiple wavenumber of that
of the oscillating part of the potential.

We fix n ∈ N and consider the energy interval ((n − 1)2, n2). We take
θ = (−1)niδ = ±iδ. We easily see that for 0 < δ < π−1 the essential spectrum

of P̃±iδ is the graph of a function κ±δ : [0,∞) → R in R2 ∼= C. Namely, we may
define κ±δ(x), x = Re z ≥ 0, by the relation

σess(P̃±iδ) =
{
z ∈ C

∣∣ Im z = κ±δ(Re z),Re z ≥ 0
}
.

If x = ξ2 − δ2 sin2(πξ) for ξ ∈ R, then κ±δ(x) = ±2δξ sin(πξ). An important
fact is that κ(−1)nδ(x) < 0 for x ∈ ((n− 1)2, n2).

We take any 0 < δ < δ0, where δ0 = π−1. We set

Ωn,δ =
{
z = x+ iy

∣∣ (n− 1)2 < x < n2, y > κ(−1)nδ(x)
}
.

We note that Ωn,δ ⊂ Ωn,δ′ if 0 < δ < δ′ < δ0.

Proof of Theorem 5 for the model case. We fix n ∈ N and δ > 0 as above. We
denote A = L2

comp(R). We then see that Uθf̂ , f ∈ A, has an analytic contin-
uation for complex θ. We denote the resolvent R+(z) on the Fourier space by

R̃+(z). For f, g ∈ A, we see

(f̂ , R̃+(z)ĝ) = (Uθf̂ , UθR̃+(z)U
−1
θ Uθ ĝ) = (Uθf̂ , (z − P̃θ)

−1Uθĝ)

where θ ∈ R and Im z > 0. The right hand side is analytic with respect to θ
by Lemma 3.5, where θ ranges over a complex neighborhood of {(−1)niδ | 0 ≤
δ < δ0}. This implies that the left hand side has a meromorphic continuation to
Ωn,δ0 with respect to z. Then Theorem 5 is proved with Ω =

⋃
n∈N Ωn,δ0 .

Remark 3.7. We set the spectral projection for P̃θ as Π
θ
z = 1

2πi

∮
C(z)

(ζ−P̃θ)
−1dζ.

Then we have

1

2πi

∮
C(z)

(f,R+(ζ)g)dζ =
1

2πi

∮
C(z)

(Uθf̂ , (ζ − P̃θ)
−1Uθĝ)dζ = (Uθf̂ ,Π

θ
zUθ ĝ).

We note that {Uθf̂ | f ∈ A} is dense in L2. This is proved by an argument
similar to [27, Theorem 3]. Then we see that mz = rankΠθ

z. Namely, the

resonances coincide with the discrete eigenvalues of P̃θ including multiplicities.
This implies that Res(P ) is discrete in Ω and mz <∞ for any z ∈ Ω.
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3.2.3 Viscosity limit

As in [62], the essential part of the proof of Theorem 6 is the resolvent estimate
for the free distorted operator which is uniform with respect to ε. We prove
this by the semiclassical analysis in the Fourier space with the semiclassical
parameter h =

√
ε. Since we work in the Fourier space, the term −iεx2 = iε∂2ξ

is the usual viscosity term (multiplied by i). The viscosity limit corresponds to
the semiclassical limit.

For simplicity, we set P0 = P , P̃0 = P̃ and P̃0,θ = P̃θ. In the Fourier space,
Pε, ε ≥ 0, has the following form:

P̃ε = ξ2 + Ṽ + iε∂2ξ .

Thus the distorted operator P̃ε,θ = UθP̃εU
−1
θ is given by

P̃ε,θ = (ξ + θ sin(πξ))2 + Ṽθ − iεDξ(1 + πθ cos(πξ))−2Dξ − iεrθ(ξ),

where rθ(ξ) = −Φ′
θ(ξ)

− 1
2 ∂ξ(Φ

′
θ(ξ)

−1∂ξ(Φ
′
θ(ξ)

− 1
2 )) is a function which is analytic

with respect to θ and bounded with respect to ξ. Since the resolvent of P̃ε,θ is

compact , P̃ε,θ, ε > 0, has purely discrete spectrum. Moreover, for fixed ε > 0,

P̃ε,θ is analytic with respect to θ in the sense of Kato. These imply that the

eigenvalues of P̃ε,θ coincide with those of P̃ε including multiplicities by the same
argument as in Remark 3.7. Then it is enough to show that the eigenvalues of
P̃ε,θ converge to those of P̃θ as ε→ 0+.

Proof of Theorem 6 for the model case. We set the distorted free Hamiltonian
as follows:

Q̃ε,θ = (ξ + θ sin(πξ))2 − iεDξ(1 + πθ cos(πξ))−2Dξ − iεrθ(ξ), ε ≥ 0.

We first prove the resolvent estimate (4) below for this operator. In this proof,
we fix n ∈ N, set θ = (−1)niδ = ±iδ, 0 < δ < δ0 as in subsubsection 3.2.2.

We set h =
√
ε and regard Q̃ε,θ as an h-pseudodifferential operator in the

Fourier space. Recall the definition of Ωn,δ in subsubsection 3.2.2. We easily
see that the range{

(ξ + θ sin(πξ))2 − i(1 + πθ cos(πξ))−2x2
∣∣ x, ξ ∈ R

}
of the h-principal symbol of Q̃ε,θ is disjoint from Ωn,δ for small δ > 0. This
is true for 0 < δ ≤ δ1, where δ1 = (

√
2 − 1)π−1. The constant δ1 comes from

the requirement that supx≥0 | d
dxκ±δ(x)| = | d

dxκ±δ(0)| = 2πδ
1−π2δ2 is less than or

equal to the minimal value 1
2

(
1
πδ − πδ

)
with respect to ξ ∈ R of the absolute

value of the slope of the half line
{
−i(1 ± πδi cos(πξ))−2x2

∣∣ x ∈ R
}

in the
complex plane. We consider 0 < δ < δ1 and do not pursue the optimal δ. We
fix 0 < δ < δ1 and z ∈ Ωn,δ. Then there exists ρ0 > 0 such that there is no
resonance in B(z, ρ0) ⋐ Ωn,δ possibly expect for z, where B(z, ρ) denotes the
disk of radius ρ with the center z. In the following, we fix 0 < ρ < ρ0, and
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consider w ∈ Bz = B(z, ρ). By the standard semiclassical calculus we see that

(Q̃ε,θ − w)−1 exists and

∥(Q̃ε,θ − w)−1∥L2→L2 ≤ C (4)

for w ∈ Bz and 0 < ε≪ 1. We note that it also holds for ε = 0.
We next employ the perturbation argument. By the existence of (Q̃ε,θ −

w)−1, we have

P̃ε,θ − w = (1 + Ṽθ(Q̃ε,θ − w)−1)(Q̃ε,θ − w).

By Lemma 3.5 and the boundedness of (ξ2+i)(Q̃ε,θ−w)−1, we see that Ṽθ(Q̃ε,θ−
w)−1 is compact for 0 ≤ ε ≪ 1. Then we may apply the analytic Fredholm
theory. We have

(w − P̃ε,θ)
−1 =

(
∂w(P̃ε,θ − w)

)
(P̃ε,θ − w)−1

= (∂wṼθ(Q̃ε,θ − w)−1)(1 + Ṽθ(Q̃ε,θ − w)−1)−1

+ (1 + Ṽθ(Q̃ε,θ − w)−1)(w − Q̃ε,θ)
−1(1 + Ṽθ(Q̃ε,θ − w)−1)−1.

The Gohberg-Sigal factorization theorem ([17, Theorem 3.1]) applied to 1 +

Ṽθ(Q̃ε,θ − w)−1, Cauchy’s theorem and the cyclicity of the trace imply that

tr

∮
∂Bz

(1 + Ṽθ(Q̃ε,θ − w)−1)(w − Q̃ε,θ)
−1(1 + Ṽθ(Q̃ε,θ − w)−1)−1dw = 0.

Thus the number of the eigenvalues of Pε,θ, 0 ≤ ε≪ 1, in Bz is given by

tr

∮
∂Bz

(w− P̃ε,θ)
−1dw = tr

∮
∂Bz

(∂wṼθ(Q̃ε,θ −w)−1)(1 + Ṽθ(Q̃ε,θ −w)−1)−1dw.

We note that the right hand side of this equality is the number of zeros of
1 + Ṽθ(Q̃ε,θ − w)−1 in Bz in the sense of Gohberg-Sigal ([17, Theorem 2.1]).
Thus operator-valued Rouché’s theorem ([17, Theorem 2.2]) implies that to
prove Theorem 6, it is enough to show that∥∥((1+Ṽθ(Q̃0,θ−w)−1)−(1+Ṽθ(Q̃ε,θ−w)−1))(1+Ṽθ(Q̃0,θ−w)−1)−1

∥∥
L2→L2 < 1

for w ∈ ∂Bz and small ε > 0. We note that (1 + Ṽθ(Q̃0,θ − w)−1)−1 exists and
is independent of ε > 0 for w ∈ ∂Bz since we assumed that w ∈ ∂Bz is not a
resonance. Then the above estimate hold if we show

lim
ε→0

∥Ṽθ(Q̃0,θ − w)−1 − Ṽθ(Q̃ε,θ − w)−1∥L2→L2 = 0 (5)

uniformly for w ∈ ∂Bz.
Take any γ > 0. We claim that there exists a decomposition Ṽθ = Ṽθ,1+Ṽθ,2,

where Ṽθ,1 is a smoothing pseudodifferential operator in the Fourier space and

∥Ṽθ,2∥L2→L2 < γ. To see this, we write

Ṽθ = (Φ′
θ)

1
2 Ṽ (Φ′

θ)
1
2 = (Φ′

θ)
1
2 Ṽ1,R(Φ

′
θ)

1
2 + (Φ′

θ)
1
2 Ṽ2,R(Φ

′
θ)

1
2 = Ṽθ,1 + Ṽθ,2
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for large R > 0, where Ṽj,R is the Fourier multiplier on the Fourier space by
Vj,R. Here we took χ ∈ C∞

c (R) such that χ = 1 near x = 0 and decomposed
a sin 2x

x = a sin 2x
x χ(x/R) + a sin 2x

x (1 − χ(x/R)) = V1,R + V2,R. The claimed
properties are easily verified.

Since ∥(Q̃ε,θ − w)−1∥L2→L2 ≤ C for 0 ≤ ε≪ 1 and w ∈ Bz, we see that

∥Ṽθ,2(Q̃0,θ − w)−1 − Ṽθ,2(Q̃ε,θ − w)−1∥L2→L2 ≤ 2Cγ,

where C is independent of γ. By the resolvent equation, we have

Ṽθ,1(Q̃0,θ − w)−1 − Ṽθ,1(Q̃ε,θ − w)−1

= −iεṼθ,1(Q̃0,θ − w)−1(Dξ(1 + πθ cos(πξ))−2Dξ + rθ(ξ))(Q̃ε,θ − w)−1.

Since Ṽθ,1 is smoothing and (Q̃0,θ − w)−1 preserves the Sobolev space on the

Fourier space, we see that Ṽθ,1(Q̃0,θ − w)−1D2
ξ is L2-bounded. Thus we have

∥Ṽθ,1(Q̃0,θ − w)−1 − Ṽθ,1(Q̃ε,θ − w)−1∥L2→L2 ≤ Cγε

with some constant Cγ > 0. We take small ε such that ε ≤ (C/Cγ)γ. Then we
have

∥Ṽθ(Q̃0,θ − w)−1 − Ṽθ(Q̃ε,θ − w)−1∥L2→L2 ≤ 2Cγ + Cγε ≤ 3Cγ

and thus (5) is proved since γ > 0 is arbitrary small. Then Theorem 6 is proved
with Ω =

⋃
n∈N Ωn,δ1 .

3.3 The proofs for the general case

3.3.1 The analyticity of Ṽθ

Recall that Ṽθ was defined in subsubsection 3.2.1. We also recall the constant
K in Assumption 4.

Lemma 3.8. Under Assumption 4, the distorted operator Ṽθ is analytic with
respect to θ and ξ2-compact, where θ ranges over some complex neighborhood of
{iδ | −Kπ−1 < δ < Kπ−1}.

Proof of Lemma 3.8. For real θ, the integral kernel of Ṽθ is given by

Ṽθ(ξ, η) = Φ′
θ(ξ)

1
2 V̂ (Φθ(ξ)− Φθ(η))Φ

′
θ(η)

1
2 , ξ, η ∈ R.

We first consider the case of V ∈ C∞
c (R;R). Then Ṽθ(ξ, η) is analytic with

respect to θ ∈ C and has the off-diagonal decay bounds

|∂αξ ∂βη Ṽθ(ξ, η)| ≤ Cα,β,N ⟨ξ − η⟩−N , ξ, η ∈ R

for any α, β and N . Here Cα,β,N is independent of θ when θ ∈ C ranges over a
bounded set. We also recall the formula ([61, subsection 8.1])

Ṽθ = bw(ξ,Dξ; θ), b(ξ, x; θ) =

∫
R
Ṽθ

(
ξ +

η

2
, ξ − η

2

)
e−i⟨η,x⟩dη,
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where bw denotes the Weyl quantization

bw(ξ,Dξ; θ)f(ξ) = (2π)−1

∫
R

∫
R
b
(ξ + η

2
, x; θ

)
ei⟨ξ−η,x⟩f(η)dηdx.

These imply that Ṽθ is a pseudodifferential operator in the Fourier space whose
symbol is rapidly decaying with respect to x, that is,

|∂αξ ∂βx b(ξ, x; θ)| ≤ Cα,β,N ⟨x⟩−N , ξ, x ∈ R

for any α, β and N . Here Cα,β,N is independent of θ when θ ∈ C ranges over
a bounded set. Moreover, b(ξ, x; θ) is analytic with respect to θ. Thus the
Lemma 3.8 is proved in this case.

We next consider the case of V (x) = s(x)W (x), where s(x) andW (x) satisfy
the condition in Assumption 4. We first estimate the Fourier transform ofW (x).
By the deformation of the integral, we have

Ŵ (ξ) = (2π)−1/2

∫
C±,τ

W (z)e−izξdz, ±ξ > 0,

where

C±,τ = (e±iτ (−∞, 0]− 2R0) ∪ [−2R0, 2R0] ∪ (2R0 + e∓iτ [0,∞)).

Here 0 < τ < arctanK and R0 is that in Assumption 4. By this expression we
see that Ŵ (ξ) has an analytic continuation to

Sτ = {z ∈ C∗| − τ < arg z < τ} ∪ {z ∈ C∗| − τ < arg z − π < τ}.

We see that Ŵ (ξ) decays rapidly in Sτ when |ξ| → ∞ by the smoothness of W .

We claim that we have |Ŵ (ξ)| ≤ C|ξ|−
1

1+µ for small ξ ∈ Sτ , where µ > 0 is the
constant in Assumption 4. To see this, we take C±,τ ′ for 0 < τ < τ ′ < arctanK
and estimate

|Ŵ (ξ)| ≤ C

∫ ∞

0

e−cx|ξ|⟨x⟩−µdx = C|ξ|−1

∫ ∞

0

e−c|x|⟨x/|ξ|⟩−µdx.

We divide the integral into
∫ ε

0
+
∫∞
ε

, which shows the bound ε
|ξ| +

1
|ξ| ⟨ε/|ξ|⟩

−µ.

We take ε = |ξ|
µ

1+µ and see that |Ŵ (ξ)| ≤ C|ξ|−
1

1+µ .
We next show that the Fourier transform V̂ (ξ) has an analytic continuation

to the region Tτ =
⋃

k∈Z Tτ,k, where

Tτ,k = {z ∈ C \ {0, 2}| − τ < arg z < τ,−τ < arg(2− z) < τ}+ 2k,

and the estimate∑
k∈Z

sup
ξ∈Tτ,k

|ξ − 2k|
1

1+µ |ξ − 2k − 2|
1

1+µ |V̂ (ξ)| <∞ (6)
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holds. To see this, we first write the Fourier transform of s as

ŝ(ξ) =
√
2π

∑
k∈Z

akδ(ξ − 2k).

Then we have
V̂ (ξ) =

∑
k∈Z

akŴ (ξ − 2k).

We have
∑

k∈Z |ak| <∞ by Assumption 4. The estimates on Ŵ (ξ) above show∑
k∈Z

sup
ξ∈Tτ,k

|ξ − 2k|
1

1+µ |ξ − 2k − 2|
1

1+µ |Ŵ (ξ)| <∞.

Young’s inequality in ℓ1(Z) applied to sequences {ak}k∈Z and {supξ∈Tτ,k
|ξ −

2k|
1

1+µ |ξ − 2k − 2|
1

1+µ |Ŵ (ξ)|}k∈Z then implies the estimate (6).

By (6), we have |Ṽθ(ξ, η)| ≤ g(ξ − η) for some integrable function g. This

is also true for the derivatives of Ṽθ(ξ, η) with respect to θ by Cauchy’s for-

mula. Thus Young’s inequality implies that the operator Ṽθ with integral kernel
Ṽθ(ξ, η) is L

2-bounded and analytic with respect to θ. We note that if θ ∈ iR,
we have

|Im (Φθ(ξ)− Φθ(η))| ≤ π|θ||Re (Φθ(ξ)− Φθ(η))− 2k|,

for any k ∈ Z, in particular, for k with |ξ−η−2k| ≤ 1. Thus θ can be taken from
a complex neighborhood of {iδ| − tan τ < δ < tan τ}. Since 0 < τ < arctanK

is arbitrary, Ṽθ is analytic for θ, where θ ranges as claimed in Lemma 3.8.
To show ξ2-compactness, we approximate V by C∞

c functions. Take χ ∈
C∞

c (R) such that χ = 1 near x = 0. We decompose V (x) = V1,R + V2,R, where
R≫ 1,

V1,R = χ(x/R)W (x)
∑

|k|≤R

ake
2ikx

and
V2,R =W (x)

∑
|k|>R

ake
2ikx + (1− χ(x/R))W (x)

∑
|k|≤R

ake
2ikx.

We denote the corresponding distorted operator on the Fourier space by Ṽθ,1,R
and Ṽθ,2,R. Since V1,R ∈ C∞

c , we see that Ṽθ,1,R is ξ2-compact. We also see that

limR→∞ ∥Ṽθ,2,R∥L2→L2 = 0 by the estimate for V = s(x)W (x) discussed above.
This completes the proof of Lemma 3.8

3.3.2 Modifications of the proofs for the general case

While we set δ0 = π−1 for the model case in subsection 3.2, we set δ0 =
min{π−1,Kπ−1} for the general case in this subsubsection in view of Lemma 3.8.
Similarly we set δ1 = min{(

√
2− 1)π−1,Kπ−1} in this subsubsection. Then all

the statements in subsubsection 3.2.2 and subsubsection 3.2.3 remain valid for
these δ0 and δ1.
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Proof of Theorem 5 for the general case. We replace Lemma 3.5 by Lemma 3.8.
Then the proof is exactly the same as that for the model case discussed in
subsection 3.2.

Proof of Theorem 6 for the general case. The proof is almost the same as that
for the model case discussed in subsection 3.2. In the claim that we can decom-
pose Ṽθ = Ṽθ,1 + Ṽθ,2, where Ṽθ,1 is a smoothing pseudodifferential operator in

the Fourier space and ∥Ṽθ,2∥L2→L2 < γ, the proof for the model case used the

special form of Ṽθ in Lemma 3.5. For the general case, we set Ṽθ,1 = Ṽθ,1,R and

Ṽθ,2 = Ṽθ,2,R for large R ≫ 1, where Ṽθ,j,R was defined in the ξ2-compactness
part of the proof of Lemma 3.8. This is the only necessary modification for the
general case.

Remark 3.9. In the case of V = a sin 2x
x + V0 with a ∈ R and V0 ∈ C∞

c (R;R),
Lemma 3.8 holds for θ ∈ C \

(
(−∞,−π−1] ∪ [π−1,∞)

)
by Lemma 3.5 and the

proof of Lemma 3.8. Then the set of resonances Resn(P ) may be defined in C \
(0,∞) for any n ∈ N including multiplicities by the meromorphic continuation
of (f,R+(z)g) from {z | 0 < arg z < π} to

{z | 0 < arg z < π}∪{z | arg z = 0, (n−1)2 < |z| < n2}∪{z | −2π < arg z < 0}.

At this time we do not know whether Resn(P ) ̸= Resn′(P ) when n ̸= n′.

4 Complex absorbing potential method for the
Stark resonances

4.1 Introduction to Section 4

In this section, we discuss the complex absorbing potential method for the Stark
resonances. We study the Stark Hamiltonian

P = −∆+ x1 + V (x),

where V (x) ∈ C∞(Rn;R) is a potential.
We write x′ = (x2, . . . , xn) and set the cone C(K, ρ) = {x ∈ Rn||x′| ≤

K(x1 + ρ)} for K > 0 and ρ ∈ R. Its complement is denoted by C(K, ρ)c. The
set of smooth functions which is bounded with all its derivatives is denoted by
C∞

b .
We first recall the definition of resonances following [30].

Assumption 5. The potential V has a decomposition V = V1 + Vsing, where
V1 and Vsing satisfy the following.
(1). The smooth part V1(x) ∈ C∞

b (Rn;R) has an analytic continuation to the
region {x ∈ Cn|Rex ∈ C(K0, ρ0)

c, |Imx| < δ0} for some ρ0 ∈ R,K0 > 0 and
δ0 > 0. Moreover ∂V (x) → 0 when |Rex| → ∞ in this region.
(2). The compactly supported singular part Vsing ∈ L2

comp(Rn;R) is −∆-
bounded with relative bound 0.
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The resolvent on the upper half plane is denoted by R+(z) = (z − P )−1 for
Im z > 0.

Theorem 7. Under Assumption 1, for any χ1, χ2 ∈ L∞
comp(Rn) such that χj = 1

near suppVsing, the cutoff resolvent χ1R+(z)χ2 , (Im z > 0), has a meromorphic
continuation with finite rank poles to {z| Im z > −δ0}. The pole z of χ1R+(z)χ2

is called a resonance and its multiplicity is defined by

mz = rank
1

2πi

∮
z

χ1R+(z)χ2dz.

The set of resonances Res(P ) is independent of the choices of χ1,χ2 including
multiplicities.

We set mz = 0 if z ̸∈ Res(P ). We give a proof of Theorem 7 based on the
complex distortion outside a cone introduced in [30]. In [30], Theorem 7 was
proved when Vsing = 0 based on this method. The modification for the case of
Vsing ̸= 0 is presented in the appendix to this section. Our proof of Theorem 8
below is also based on the complex distortion outside a cone. We recall that
Theorem 7 can be proved based on the complex distortion on a half space ([25,
Chapter 23]). Nevertheless, it seems to the author that the proof of Theorem 8
would be more difficult if it were based on the half space distortion.

The main purpose of this section is the complex absorbing potential method.

Assumption 6. In addition to Assumption 5, the following hold.
(1). The smooth part satisfies lim|x|→∞ V1(x) = 0.
(2). The compactly supported singular part Vsing is −∆-compact.

We note that Assumption 6.(1) for Rex ∈ C(K0, ρ0)
c, |Imx| < δ0 follows

from that for x ∈ Rn by Assumption 5.(1).
For ε > 0, we set

Pε = P − iεx2.

Then Pε for ε > 0 with the domain D(Pε) = D(−∆)∩D(x2) has purely discrete
spectrum. Then our main result is the following. We set B(z, γ) = {w ∈
C| |w − z| ≤ γ}.

Theorem 8. Under Assumption 6,

lim
ε→0+

σd(Pε) = Res(P ).

More precisely, for any z ∈ {z ∈ C| Im z > −δ0} there exists γ0 > 0 such that
for any 0 < γ < γ0 there exists ε0 > 0 such that for any 0 < ε < ε0,

#
(
σd(Pε) ∩B(z, γ)

)
= mz.

Example 4.1. The Coulomb potential V (x) =
∑N

i=1
ei

|x−Ri| on Rn, (n ≥ 3),

satisfies the Assumption 6 with arbitrary large δ0 if we take ρ0 and K0 large.
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Note that (|Rex|2−|Imx|2+2iRex·Imx)−1/2 is well-defined for |Rex| > |Imx|.
Thus we have

Res(−∆+ x1 +

N∑
i=1

ei
|x−Ri|

) = lim
ε→0+

σd(−∆+ x1 +

N∑
i=1

ei
|x−Ri|

− iεx2)

on the whole complex plane.

The resonances for Stark Hamiltonians were investigated by many authors
(for instance, [22], [23], [24], [51], [52], [56], [57]). See subsection 3.1 for the
history of the complex absorbing potential method.

This section is organized as follows. In subsection 4.2, we recall the complex
distortion outside a cone and discuss the properties of its generalization to the
Stark Hamiltonian with a complex absorbing potential. In subsection 4.3, we
prove Theorem 8. The main ingredient of the proof is the construction of an
approximate resolvent of the free Stark distorted operator. In subsection 4.4,
we prove two technical lemmas used in the proof of Theorem 8. In the appendix
to this section, we give the modifications for including local singularities of the
potential. The proof of Theorem 7 is given there.

4.2 Complex distortion and complex absorbing potential

We recall the complex distortion outside a cone introduced in [30]. TakeK > K0

and sufficiently large ρ > 0. Take a convex set C̃(K, ρ) such that its boundary

∂C̃(K, ρ) is smooth, C̃(K, ρ) is rotationally symmetric with respect to x′ and

C̃(K, ρ) = C(K, ρ) in x1 > −ρ+1. We set F = −(1+K−2)
1
2 dist

(
•, C̃(K, ρ)

)
∗ϕ.

Here ϕ ∈ C∞
c (Rn) satisfies 0 ≤ ϕ ≤ 1 and

∫
ϕ(x)dx = 1. We set v(x) =

(v1(x), . . . , vn(x)) = ∂F (x) ∈ C∞
b (Rn;Rn) and set Φθ(x) = x + θv(x), which

is a diffeomorphism for real θ with small |θ|. We note that v1(x) ≥ 1 for

dist(x, C̃(K, ρ)) ≫ 1. We also write xθ = Φθ(x). We define the distortion

outside a cone Uθf(x) = (detΦ′
θ(x))

1
2 f(Φθ(x)), which is unitary on L2(Rn). We

then define the distorted operator Pθ = UθPU
−1
θ . Then Pθ has the following

form:

Pθ = −
∑
i,j

∂ig
ij
θ ∂j + rθ(x) + x1 + θv1 + V (xθ),

where (gijθ ) = (Φ′
θ)

−2, gθ = det(Φ′
θ)

2 and rθ = −
∑

i,j g
− 1

4

θ (∂i(g
1
2

θ g
ij
θ ∂jg

− 1
4

θ )). If

Im θ < 0, we have Im (−
∑

i,j ∂ig
ij
θ ∂j) ≤ 0 in the sense of quadratic form ([30,

Lemma 2.1]). The function rθ(x) ∈ C∞
b (Rn) satisfies |rθ(x)| ≤ C⟨x⟩−1 when

dist(x, ∂C̃(K, ρ)) ≫ 1 since we have |∂αvj(x)| ≤ Cα⟨x⟩−1 when |α| ≥ 1 and

dist(x, ∂C̃(K, ρ)) ≫ 1. The distorted operator Pθ is an analytic family of closed

operators for θ with |Im θ| < δ0(1+K
−2)−

1
2 and |Re θ| small. We have P ∗

θ = Pθ̄.
For Im θ < 0, the spectrum of Pθ is discrete in {Im z > Im θ} and resonances
for P coincide with discrete eigenvalues of Pθ in this region. These facts were

32



proved in [30, Section 2] for Vsing = 0 and is proved in the appendix to this
section for Vsing ̸= 0.

We recall the notation

S(m) = {a(x, ξ) ∈ C∞(R2n)| |∂αx,ξa(x, ξ)| ≤ Cαm(x, ξ)}.

Recall Pε = P − iεx2 and set Pε,θ = UθPεU
−1
θ . By the ellipticity in the symbol

class S(1 + x2 + ξ2), we see analogous properties for Pε,θ with ε > 0. Namely,
Pε,θ is closed on the domain D(Pε,θ) = D(−∆) ∩ D(x2) and is an analytic

family of type (A) for θ with |Im θ| < δ0(1+K
−2)−

1
2 and |Re θ| small. We have

P ∗
ε,θ = P−ε,θ̄. The spectrum of Pε,θ with ε > 0 is purely discrete on the whole

complex plane and the eigenvalues are independent of θ including multiplicities.

Lemma 4.2.
x · v(x) ≤ 0 for any x ∈ Rn.

Proof. By the rotational symmetry with respect to x′, it is enough to consider
the case of n = 2 and x′ = x2 ≥ 0. We first assume that x1 > 0. We then have
v2(x) = −K−1v1(x) by the construction of v(x). If x2 > Kx1, we thus have
x · v(x) = v1(x)(x1 − K−1x2) ≤ 0 since v1(x) ≥ 0 everywhere. If x2 ≤ Kx1,
then v(x) = 0 by the construction of v and thus x · v(x) = 0. We next assume
that x1 ≤ 0. Then we have v2(x) ≤ 0 by the construction of v. Since v1(x) ≥ 0,
we see that x · v(x) ≤ 0, which completes the proof.

The full symbol of a Stark Hamiltonian is not globally elliptic in the sense
that there is no z such that ||ξ|2 + x1 + V (x)− z| ≳ (|ξ|2 + |x1|+ 1) while the
natural symbol class for |ξ|2 + x1 + V (x) is S(|ξ|2 + |x1| + 1). This is due to
limx1→−∞(V (x) + x1) = −∞ and is one of main difficulties of the analysis of
Stark Hamiltonians. Lemma 4.2 shows that

Re (−iεx2−iδ) = −2δεx · v(x) ≥ 0

for ε, δ > 0. Hence the distorted complex absorbing potential does not cause
an additional difficulty on the lack of the global ellipticity of RePε,θ. Thus
Lemma 4.2 simplifies the proof of Theorem 8.

4.3 The proof of Theorem 8

4.3.1 Free distorted resolvent estimate with complex absorbing po-
tential

We write P0 = P and P0,θ = Pθ for simplicity. Take any Ω ⋐ {z| Im z > −δ0}
and fix θ = −iδ with 0 < δ < δ0 such that Ω ⋐ {z| Im z > −δ}. Then Pε,θ is
defined for this θ if we take K > 0 large enough in the definition of the complex
distortion outside a cone. Stark resonances coincide with eigenvalues of P0,θ in
Ω. We denote Pε,θ with V ≡ 0 by Qε,θ. The following Proposition and its proof
is crucial in the proof of Theorem 8.
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Proposition 4.3. There exists C > 0 such that

∥(Qε,θ − z)−1∥L2(Rn)→L2(Rn) ≤ C

for small ε > 0 and z ∈ Ω.

Remark 4.4. We remark the relation with the harmonic oscillator. We have

Qε = −∆+ x1 − iεx2 = −∆− iε(x1 +
i

2ε
)2 − iεx′2 − i

4ε
.

Then the eigenfunctions for this operator are obtained by a suitable complex
coordinate transform of those for the harmonic oscillator. Then we see that

σ(Qε) =
{
ε1/2e−πi/4(2|α|+ n)− i

4ε

∣∣ α ∈ Zn
≥0

}
including multiplicities. Note that this diverges to infinity when ε→ 0+. Since
σ(Qε) = σ(Qε,θ), we see that (Qε,θ − z)−1 exists for small ε > 0 and z ∈ Ω.
Proposition 4.3 claims the stronger uniform resolvent estimate. In [62], the
complex absorbing potential method was justified in the region {z| − π/4 <
arg z ≤ 0}. This is related to the fact that σ(−∆− iεx2) = {ε1/2e−πi/4(2|α|+
n)|α ∈ Zn

≥0}. There is no such restriction in the Stark Hamiltonian case.

We first construct an approximation of (Qε,θ−z)−1 as in [62, Section 3]. We
note that (Q0,θ − z)−1 exists for z ∈ Ω by the non-existence of the free Stark
resonances ([30, Corollary 2.2]). Thus (Q0,θ − z)−1 approximate (Qε,θ − z)−1

on a bounded set in Rn if 0 < ε ≪ 1. We next construct an approximation of
(Qε,θ − z)−1 near the infinity. Take χ ∈ C∞

c (Rn; [0, 1]) such that χ = 1 near
x = 0. We set

QR
ε,θ = Qε,θ − iRχ(x/R), R≫ 1.

Lemma 4.5. There exist R0 > 1, ε̃ > 0 and C > 0 such that

∥(QR
ε,θ − z)−1∥L2(Rn)→L2(Rn) ≤ C

for R > R0, 0 < ε ≤ ε̃ and z ∈ Ω.

We prove Lemma 4.5 in subsubsection 4.4.1. Although Lemma 4.5 is also
true for ε = 0 by the same proof, we do not use this since (Q0,θ−z)−1 exists. We
fix R > R0. We set χM (x) = χ(x/M), where χ is as above. Then we introduce
an approximate resolvent of Qε,θ defined by

TM
ε,z = χM (Q0,θ − z)−1 + (1− χM )(QR

ε,θ − z)−1.

Lemma 4.5 shows that TM
ε,z is uniformly bounded for 0 < ε ≤ ε̃, M > 1 and

z ∈ Ω. We set (Qε,θ − z)TM
ε,z = 1+EM

ε,z and estimate EM
ε,z. A simple calculation

shows that

EM
ε,z = [Qε,θ, χ

M ](Q0,θ − z)−1 − [Qε,θ, χ
M ](QR

ε,θ − z)−1 − χM iεx2θ(Q0,θ − z)−1

for M ≫ R. We set Q̃ε = QR
ε,θ for 0 < ε ≤ ε̃ and Q̃0 = Q0,θ. For any

χ̃ ∈ C∞
b (R), we write χ̃M (x) = χ̃(x1/M).
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Lemma 4.6. For any χ̃ ∈ C∞
b (R) such that χ̃(x1) = 0 for −x1 ≫ 1, there

exists C > 0 such that

∥χ̃M (Q̃ε − z)−1∥L2(Rn)→Hk(Rn) ≤ CMk/2

for 0 ≤ k ≤ 2, M > 1, z ∈ Ω and 0 ≤ ε ≤ ε̃.

We prove Lemma 4.6 in subsubsection 4.4.2. Since we obtain M−1 from the
commutator, Lemma 4.6 with k = 1 shows that

∥EM
ε,z∥L2(Rn)→L2(Rn) = O(M−1/2) +OM (ε).

If we take M large and then take ε > 0 small, we learn ∥EM
ε,z∥L2(Rn)→L2(Rn) <

1/2 for z ∈ Ω. Then the Neumann series argument implies that TM
ε,z(1+E

M
ε,z)

−1

is a right inverse of Qε,θ−z. The same argument shows that the adjoint Q−ε,θ̄−z̄
also has a right inverse. We then conclude that (Qε,θ − z)−1 exists on L2(Rn)
and is equal to TM

ε,z(1+E
M
ε,z)

−1. Then Proposition 4.3 follows from the uniform

boundedness of TM
ε,z.

4.3.2 Convergence to Stark resonances

Proof of Theorem 8. We follow the strategy of [62, Section 5] (see also [31, sub-
section 2.3]). By Proposition 4.3, we have

Pε,θ − z = (1 + Vθ(Qε,θ − z)−1)(Qε,θ − z),

where Vθ(x) = V (xθ). Note that limx→∞ Vθ(x) = 0 and that Vθ is −∆-compact
by Assumption 6. An approximation of Vθ by compactly supported−∆-compact
functions and Lemma 4.6 with k = 2 imply that Vθ(Qε,θ − z)−1 is a compact
operator. Thus 1 + Vθ(Qε,θ − z)−1 is a Fredholm operator. Then by the same
arguments as in [62], [31, subsection 2.3] based on the analytic Fredholm theory
and the Gohberg-Sigal theory, Theorem 8 follows if we prove

lim
ε→0+

∥Vθ(Qε,θ − z)−1 − Vθ(Q0,θ − z)−1∥L2(Rn)→L2(Rn) = 0 (7)

uniformly for z ∈ Ω. While [62], [31] employ the resolvent equation, it re-
quires the estimate of the distorted Stark resolvent with the weight x2θ in this
case, which does not seem to be easy. We instead use the construction of ap-
proximate resolvent in subsubsection 4.3.1. By approximating Vθ by compactly
supported functions Ṽθ and using Proposition 4.3, it is enough to prove (7) with

Vθ replaced by some Ṽθ such that Ṽθ ∈ L2
comp(Rn) and Ṽθ is −∆-compact. By

subsubsection 4.3.1, we see that

Ṽθ(Qε,θ − z)−1 − Ṽθ(Q0,θ − z)−1 = Ṽθ(T
M
ε,z(1 + EM

ε,z)
−1 − (Q0,θ − z)−1)

= Ṽθ(Q0,θ − z)−1((1 + EM
ε,z)

−1 − 1)

for M ≫ 1. We used fact that ṼθT
M
ε,z = Ṽθ(Q0,θ − z)−1 for 0 < ε ≤ ε̃ since

Ṽθ(1− χM ) = 0. Note that Ṽθ(Q0,θ − z)−1 is independent of ε > 0 and M > 1.
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It is a bounded operator on L2(Rn) by the −∆-boundedness of Ṽθ, Lemma 4.6

with k = 2 and the compactness of supp Ṽθ. Then we obtain

∥Ṽθ(Qε,θ − z)−1 − Ṽθ(Q0,θ − z)−1∥L2(Rn)→L2(Rn)

≲ ∥(1 + EM
ε,z)

−1 − 1∥L2(Rn)→L2(Rn).

By the estimate on ∥EM
ε,z∥L2(Rn)→L2(Rn), the operator (1 + EM

ε,z)
−1 is close to

the identity operator in the operator norm if we take largeM > 1 and then take
small ε > 0. This completes the proof of Theorem 8.

4.4 Proofs of technical lemmas

In this subsection, we present proofs of two lemmas in subsection 4.3. The
notation is the same as in subsection 4.3. Take w ∈ C∞(Rn;R≥1) depending
only on x1 and w = |x1| for x1 ≤ −2 and w = 1 for x1 ≥ −1.

4.4.1 Proof of Lemma 4.5

We take sufficiently small c0 > 0 and χ̃1, χ̃2, χ̃3, χ̃4 ∈ C∞(R; [0, 1]) such that
χ̃1(x1) = 1 for x1 > 5c0, χ̃1(x1) = 0 for x1 < 4c0, χ̃2(x1) = 1 for x1 < 5c0,
χ̃2(x1) = 0 for x1 > 6c0, χ̃3(x1) = 1 for |x1 − 5c0| < c0, χ̃3(x1) = 0 for
|x1 − 5c0| > 2c0, χ̃4(x1) = 1 for x1 < c0 and χ̃4(x1) = 0 for x1 > 2c0. We then
set χ̃R

j (x) = χ̃j(x1/R) for j = 1, 2, 3, 4.

We take any u ∈ C∞
c (Rn). We have ∥u∥ ≤ ∥χ̃R

1 u∥+∥χ̃R
2 u∥. We first estimate

these by quadratic form arguments. We have

Re (χ̃R
1 u, (Q

R
ε,θ − z)χ̃R

1 u) ≳ R∥χ̃R
1 u∥2

by the Stark potential. We also have

Im (χ̃R
2 u, (Q

R
ε,θ − z)χ̃R

2 u) ≲ −∥χ̃R
2 u∥2

by the complex distortion outside a cone and the −iRχ(x/R) term in QR
ε,θ. Here

we assumed that c0 is sufficiently small. We also assumed that 0 < ε ≤ ε̃, where
ε̃ > 0 is sufficiently small, to estimate the term iεδ2v(x)2 in −iεx2−iδ. Then we
have

∥u∥ ≲
2∑

j=1

∥(QR
ε,θ − z)χ̃R

j u∥

≲ ∥(QR
ε,θ − z)u∥+

2∑
j=1

∥[QR
ε,θ, χ̃

R
j ]u∥

≲ ∥(QR
ε,θ − z)u∥+R−1∥χ̃R

3 u∥H1 .

To estimate ∥χ̃R
3 u∥H1 , we set

Q̂ = Q̂R
ε,z = QR

ε,θ − z + χ̃R
4 w +Rχ̃R

4 .
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The estimates below are uniform with respect to 0 < ε ≤ ε̃ and z ∈ Ω. We define
the symbol q̂(x, ξ;R) by Q̂R

ε,z = q̂(x,D;R). We claim that Q̂−1 ∈ OpS(⟨ξ⟩−2)

uniformly for R≫ 1. By Lemma 4.2 and x1 + χ̃R
4 w +Rχ̃R

4 ≳ R, we see that∣∣∣∣1 + ξ2 + εx2

q̂(x, ξ;R)

∣∣∣∣ , ∣∣∣∣∂xq̂(x, ξ;R)q̂(x, ξ;R)

∣∣∣∣ ≲ 1 + ξ2 + εx2

|ξ2 +R− iεx2|
≲ 1

and ∣∣∣∣∂ξ q̂(x, ξ;R)q̂(x, ξ;R)

∣∣∣∣ ≲ |ξ|
|ξ2 +R− iεx2|

.

We have
⟨ξ⟩

|ξ2 +R− iεx2|
≲ R−1/2,

which follows from estimating it separately for |ξ|/R1/2 ≫ 1 and |ξ|/R1/2 ≲ 1.
These imply that q̂−1(x, ξ;R) = O(1) in S((1 + ξ2 + εx2)−1) ⊂ S(⟨ξ⟩−2) for
R > 1, ∂xq̂

−1(x, ξ;R) = O(R−1/2) in S(⟨ξ⟩−1) and ∂ξ q̂
−1(x, ξ;R) = O(R−1/2)

in S((1 + ξ2 + εx2)−1). Thus the symbols of q̂(x,D;R)q̂−1(x,D;R) − 1 and
q̂−1(x,D;R)q̂(x,D;R)− 1 are O(R−1/2) in S(1) since ∂xq̂(x, ξ;R) ∈ S(1+ ξ2 +
εx2) and ∂ξ q̂(x, ξ;R) ∈ S(⟨ξ⟩) by employing a standard argument of pseudod-
ifferential operators. This estimate based on the pseudodifferential calculus in
the symbol classes S((1 + ξ2 + εx2)±1) is uniform with respect to 0 < ε ≤ 1
since we have |(1 + ξ2 + εx2)|/|(1 + η2 + εy2)| ≤ C(1 + |x − y| + |ξ − η|)N
uniformly for 0 < ε ≤ 1 (see [61, Chapter 5]). In these arguments, we may
replace 1 + ξ2 + εx2 by 1 + ξ2 + ε|x| if we use |∂α(εx2θ)| ≤ Cαε⟨x⟩. In fact,
we only need |∂α(εx2θ)| ≤ Cαε⟨x⟩2. Then by the Neumann series argument and

the Beals’s theorem we conclude that Q̂−1 ∈ OpS(⟨ξ⟩−2) uniformly for R ≫ 1.

In particular, we see that Q̂−1 : H−1(Rn) → H1(Rn) is uniformly bounded for
R≫ 1.

Thus we have
∥χ̃R

3 u∥H1 ≲ ∥Q̂χ̃R
3 u∥H−1 .

This is equal to ∥(QR
ε,θ − z)χ̃R

3 u∥H−1 since supp χ̃R
3 ∩ supp χ̃R

4 = ∅. This is
bounded by

∥(QR
ε,θ − z)u∥+ ∥[QR

ε,θ, χ̃
R
3 ]u∥H−1 ≲ ∥(QR

ε,θ − z)u∥+R−1∥u∥.

Thus we conclude that ∥u∥ ≲ ∥(QR
ε,θ − z)u∥ for R≫ 1. Since QR

ε,θ is the closure

of its restriction to C∞
c (Rn), this is true for any u in the domain of QR

ε,θ. Since

the adjoint (QR
ε,θ − z)∗ = Q−ε,θ̄ − z̄ + iRχ(x/R) has the same estimate, we

see that (QR
ε,θ − z)−1 exists on L2(Rn) and ∥(QR

ε,θ − z)−1∥L2→L2 ≤ C. This
completes the proof of Lemma 4.5.

4.4.2 Proof of Lemma 4.6

Lemma 4.6 for M > 1 follows from that for M ≫ 1. By Lemma 4.5 and the
existence of (Q0,θ − z)−1, Lemma 4.6 is valid for k = 0 (without χ̃M ). Thus it
is enough to prove the case of k = 2 by the interpolation theorem.
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We take χ̃5.χ̃6 ∈ C∞
b (R; [0, 1]) such that χ̃5 = 1 near supp χ̃ and χ̃6 = 1

near supp χ̃5. We set χ̃M
j (x) = χ̃j(x1/M). We fix sufficiently large C1 > 0 and

set
A = AM

ε,z = Q̃ε + (1− χ̃M
6 )w + C1M − z.

The estimates below are uniform with respect to 0 ≤ ε ≤ ε̃ and z ∈ Ω. We define
the symbol a(x, ξ;M) by AM

ε,z = a(x,D;M). We claim that A−1 ∈ OpS(⟨ξ⟩−2)
uniformly for M ≫ 1. We see that∣∣∣∣1 + ξ2 + εx2

a(x, ξ;R)

∣∣∣∣ , ∣∣∣∣∂xa(x, ξ;M)

a(x, ξ;M)

∣∣∣∣ ≲ 1 + ξ2 + εx2

|ξ2 +M − iεx2|
≲ 1

and ∣∣∣∣∂ξa(x, ξ;M)

a(x, ξ;M)

∣∣∣∣ ≲ |ξ|
|ξ2 +M − iεx2|

by Lemma 4.2 and the fact that ξ2 + x1 + (1 − χ̃M
6 )w + C1M ≳ ξ2 +M for

C1 ≫ 1.
We argue as in the proof of Lemma 4.5 with R replaced byM and q replaced

by a and conclude that A−1 ∈ OpS(⟨ξ⟩−2) uniformly for M ≫ 1. In particular,
A−1 : Hk(Rn) → Hk+2(Rn) is uniformly bounded for any k ∈ R for M ≫ 1.

We now estimate ∥χ̃M (Q̃ε − z)−1∥L2→H2 . For this, we decompose

χ̃M (Q̃ε − z)−1 = χ̃MA−1χ̃M
5 A(Q̃ε − z)−1 + χ̃MA−1(1− χ̃M

5 )A(Q̃ε − z)−1.

Since χ̃M
5 (1− χ̃M

6 ) = 0, we have

∥χ̃MA−1χ̃M
5 A(Q̃ε − z)−1∥L2→H2

≲ ∥A−1∥L2→H2 · ∥(Q̃ε + C1M − z)(Q̃ε − z)−1∥L2→L2

≲M,

where we also used Lemma 4.5. Since χ̃M (1− χ̃M
5 ) = 0, we also estimate

∥χ̃MA−1(1− χ̃M
5 )A(Q̃ε − z)−1∥L2→H2

= ∥A−1[χ̃M , A]A−1(1− χ̃M
5 )A(Q̃ε − z)−1∥L2→H2

= ∥A−1[χ̃M , A]A−1[χ̃M
5 , A](Q̃ε − z)−1∥L2→H2

≲ ∥A−1∥L2→H2 · ∥[χ̃M , A]∥H1→L2 · ∥A−1∥H−1→H1 · ∥[χ̃M
5 , A]∥L2→H−1

≲M−2.

Here we used the fact that [χ̃M , A](1 − χ̃M
5 ) = 0. We also used the fact that

[χ̃M , A] and [χ̃M
5 , A] are first order differential operators with O(M−1) coeffi-

cients. From these, we have ∥χ̃M (Q̃ε − z)−1∥L2→H2 ≲ M for M ≫ 1, which
completes the proof of Lemma 4.6.
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Remark 4.7. In fact, we can prove Theorem 8 without relying on the property
of the vector field v(x) in Lemma 4.2. If we do not use Lemma 4.2, we replace
χ̃j with cutoffs near C(Kj , ρj), C(Kj , ρj)

c or ∂C(Kj , ρj) for suitable Kj > 0
and ρj ∈ R in the proofs of Lemma 4.5 and Lemma 4.6. We also replace w(x1)
with ⟨x⟩ in the proofs. Then Lemma 4.5 and Lemma 4.6 are proved with χ̃ in
Lemma 4.6 replaced by a cutoff near C(K̃, ρ̃) for any K̃ > 0 and ρ̃ > 0.

4.5 Appendix to Section 4: Local singularities

In this appendix to Section 4, we give modifications to include local singularities
of the potential. In particular, we prove that Stark resonances for the Coulomb
potential are defined on the whole complex plane based on our complex distor-
tion outside a cone.

We set P = −∆ + x1 + V (x) and assume Assumption 5 throughout this
appendix. We define the distorted operator Pθ from P as in subsection 4.2.
The distortion is performed outside suppVsing.

Lemma 4.8. The singular part Vsing is Pθ-bounded with relative bound 0.

Proof. Set P1,θ = Pθ − Vsing. We take a cutoff function χ ∈ C∞
c (Rn) near

suppVsing which is supported away from the distortion region. Assumption 5
implies that for any small ε > 0 there exists Cε > 0 such that

∥Vsingu∥ = ∥Vsingχu∥ ≤ ε∥ −∆χu∥+ Cε∥χu∥

for any u ∈ C∞
c (Rn). Since P1,θ = −∆+x1 +V1(x) near suppχ and x1 +V1(x)

is bounded there,

∥Vsingu∥ ≤ ε∥P1,θχu∥+ Cε∥u∥
≤ ε∥P1,θu∥+ Cε∥u∥+ ε∥[−∆, χ]u∥
≤ 2ε∥P1,θu∥+ Cε∥u∥
≤ 2ε∥Pθu∥+ 2ε∥Vsingu∥+ Cε∥u∥,

where the third inequality follows from the elliptic estimate. We subtract
2ε∥Vsingu∥ for small ε > 0 from both sides, which completes the proof.

Proof of Theorem 7. We first prove [30, Proposition 2.1] in this case, namely,
Pθ is an analytic family of type (A) and P ∗

θ = Pθ̄. As in [30, subsection 2.1], it
is enough to prove that

∥(Pθ − Pθ′)u∥ ≤ C|θ − θ′|∥Pθu∥+ Cθ,θ′∥u∥ (A.1)

for any u ∈ C∞
c (Rn). By the case where Vsing = 0, we see

∥(Pθ − Pθ′)u∥ = ∥(P1,θ − P1,θ′)u∥
≤ C|θ − θ′|∥P1,θu∥+ Cθ,θ′∥u∥
≤ C|θ − θ′|∥Pθu∥+ C|θ − θ′|∥Vsingu∥+ Cθ,θ′∥u∥.
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Then the inequality (A.1) follows from Lemma 4.8.
We next prove [30, Proposition 2.2] in this case, namely, Pθ with Im θ < 0

has purely discrete spectrum in {z| Im z > Im θ}. As in [30, subsection 2.2], it

is enough to prove that we have ∥(P̃θ − z)u∥ ≥ c∥u∥ for any u ∈ C∞
c (Rn) if

Im z > Im θ and M ≫ 1, where

P̃θ = Pθ − iMϕ(x/M)ϕ(D/M)2ϕ(x/M).

Here we took ϕ ∈ C∞
c (Rn) such that 0 ≤ ϕ ≤ 1, ϕ = 1 near {|x| ≤ 1/3}

and
∫
Rn ϕ(x)dx = 1. We fix small ε1 > 0 and set χj,M = τj(G(x)/M), where

τ0 ∈ C∞
b (R) is a cutoff near (−∞, ε1], τ1 ∈ C∞

b (R) is a cutoff near [ 12ε1,
3
2ε1],

τ2 ∈ C∞
b (R) is a cutoff near [2ε1,∞) and G(x) = (1+K−2)

1
2 dist

(
•, C̃(K, 0)

)
∗ϕ.

The function ϕ is the same as above. We fix z such that Im z > Im θ. We set
Q = P̃θ−Vsing−z+χ2,Mw−iMχ2,M and define the symbol q by Q = q(x,D;M).
Here w is the same as in subsection 4.4. We denote the seminorms in S(⟨ξ⟩k)
by |a|k,α = supx,ξ |∂αx,ξa|/⟨ξ⟩k. We claim that∣∣∣∣ ⟨ξ⟩2−k

q(x, ξ;R)

∣∣∣∣ ≤ CM−k/2

for 0 ≤ k ≤ 2. This is proved if we estimate them separately for |x| < M/3, x ∈
C(K, 3ε1M)c and x1/M ≳ 1 for small ε1 > 0. For each case, we also estimate
them separately for |ξ|/M1/2 ≲ 1 and |ξ|/M1/2 ≫ 1 as in [30, Proposition 2.2].
Then we have ∣∣∣∣∂xq(x, ξ;M)

q(x, ξ;M)

∣∣∣∣ ≲ ∣∣∣∣ ⟨ξ⟩2

q(x, ξ;M)

∣∣∣∣ ≲ 1

and ∣∣∣∣∂ξq(x, ξ;M)

q(x, ξ;M)

∣∣∣∣ ≲ ∣∣∣∣ ⟨ξ⟩
q(x, ξ;M)

∣∣∣∣ ≲M−1/2.

Thus |∂ξq−1|−2,α = O(M−1/2) and |q−1|k−2,α = O(M−k/2) for 0 ≤ k ≤ 2
(see Remark 4.9 below). We note that ∂xq ∈ S(⟨ξ⟩2) and ∂ξq ∈ S(⟨ξ⟩). Thus
the estimates |∂ξq−1|−2,α, |∂xq−1|−1,α = O(M−1/2) imply that the symbols of
q−1(x,D;M)q(x,D;M) − 1 and q(x,D;M)q−1(x,D;M) − 1 are O(M−1/2) in
S(1). By the Neumann series argument and Beals’s theorem, we conclude that
Q−1 = O(M−k/2) in OpS(⟨ξ⟩k−2) for M ≫ 1 and 0 ≤ k ≤ 2.

Then we have

M∥χ0,Mu∥ ≤ C∥Qχ0,Mu∥ = C∥(P̃θ − Vsing − z)χ0,Mu∥

≤ C∥(P̃θ − z)χ0,Mu∥+ C∥Vsingχ0,Mu∥

≤ C∥(P̃θ − z)χ0,Mu∥+ εC∥(Pθ − z)χ0,Mu∥+ Cε∥χ0,Mu∥,
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where we used Lemma 4.8 for the last inequality. We take ε < 1
4C and then

take M > 2Cε. Subtracting Cε∥χ0,Mu∥ ≤ M
2 ∥χ0,Mu∥ from both sides, we have

∥χ0,Mu∥ ≤ C∥(P̃θ − z)χ0,Mu∥+
2εC

M
∥(Pθ − z)χ0,Mu∥

≤ C∥(P̃θ − z)χ0,Mu∥+
1

2M
∥iMϕ(x/M)ϕ(D/M)2ϕ(x/M)χ0,Mu∥

≤ C∥(P̃θ − z)χ0,Mu∥+
1

2
∥χ0,Mu∥.

Subtracting 1
2∥χ0,Mu∥, we see that ∥χ0,Mu∥ ≤ C∥(P̃θ − z)χ0,Mu∥.

The remaining part of the proof of [30, Proposition 2.2] for Vsing ̸≡ 0 is
similar to that in [30, subsection 2.1] with minor modifications as follows. We
set χ̃0,M = 1 − χ0,M . We note that Vsing = 0 near suppχ1,M , suppχ2,M and
supp χ̃0,M . We have

−Im (χ̃0,Mu, (P̃θ − z)χ̃0,Mu) ≥ c∥χ̃0,Mu∥2

for M ≫ 1 by the complex distortion outside a cone. Thus we see that

∥u∥ ≤ ∥χ0,Mu∥+ ∥χ̃0,Mu∥

≤ C∥(P̃θ − z)χ0,Mu∥+ C∥(P̃θ − z)χ̃0,Mu∥

≤ C∥(P̃θ − z)u∥+ C∥[P̃θ, χ0,M ]u∥.

We note that

∥[P̃θ, χ0,M ]u∥ ≤ CM−1∥χ1,Mu∥H1 +O(M−∞)∥u∥.

Since suppχ1,M ∩ suppVsing = ∅, we obtain

∥χ1,Mu∥H1 ≤ C∥Qχ1,Mu∥H−1

= C∥(P̃θ − z)χ1,Mu∥H−1

≤ C∥(P̃θ − z)u∥+ C∥[P̃θ, χ1,M ]u∥H−1

≤ C∥(P̃θ − z)u∥+ CM−1∥u∥.

Summing up these inequalities, we have

∥u∥ ≤ C∥(P̃θ − z)u∥+ CM−2∥u∥.

By subtracting CM−2∥u∥ from both sides, we conclude that ∥(P̃θ−z)u∥ ≥ c∥u∥
for large M > 1.

Once Proposition 2.1 and Proposition 2.2 in [30] are proved, we completes
the proof of Theorem 7 by the same proof as that of [30, Theorem 1].

Remark 4.9. The statement that |q−1|−2,α = O(M−|α|/2) in the proof of [30,
Proposition 2.2] is too strong. The necessary argument for the modification is
straightforward and contained in the above proof.
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Resonances for P coincide with discrete eigenvalues of Pθ in the region
{z| Im z > Im θ} for Im θ < 0 including multiplicities, which is proved by the
same proof as in [30, Section 2].

Remark 4.10. The other results in [30, Section 2] are also valid in the almost
same form under Assumption 5 by the same proofs as in [30]. For instance,
we can replace Lp

comp by Lp
cone = {f ∈ Lp|supp f ⊂ C(K, ρ) for some K, ρ} in

Theorem 7 in this section. There is some modifications related to the unique
continuation argument. Namely, we assumed χj = 1 near suppVsing in Theo-
rem 7 in this section and should assume U ⊃ suppVsing in [30, Proposition 2.3].
These modifications are not needed if we moreover assume that there is a closed
set S ⊂ Rn of Lebesgue measure zero such that Rn \S is connected and Vsing is
bounded on any compact subset of Rn \ S.

For [30, Theorem 3], the same proof shows the existence of a one-to-one
correspondence between eigenvalues of a reference operator P int and the shape
resonances of P such that their distances are bounded by e−S/ℏ for some S > 0.
Thus [30, Theorem 3] is true even when Vsing ̸≡ 0 if the Weyl law for P int is
true.
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45



[51] I.M. Sigal, Sharp Exponential Bounds on Resonances States and Width of
Resonances, Adv. Appl. Math. 9 (1988), 127-166.

[52] I.M. Sigal, Geometric Theory of Stark Resonances in Multielectron Sys-
tems, Commun. Math. Phys. 119 (1988), 287-314.

[53] P. Stefanov, Approximating Resonances with the Complex Absorbing Po-
tential Method, Commun. Part. Diff. Eq. 30, (2005), 1843-1862.

[54] Y.Tadano, Long-Range Scattering for Discrete Schrödinger Operators,
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