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Abstract

In this paper, we study the following.

(1) The Bogomolov-Sommese vanishing theorem for lc surfaces in positive char-
acteristic.

(2) The Bogomolov-Sommese vanishing theorem for globally F-regular threefolds.
(3) Pathologies of Du Val del Pezzo surfaces in positive characteristic.

For (1), we show that the Bogomolov-Sommese vanishing theorem holds for a log
canonical surface pair (X, B) with (X, Kx + |B|) # 2 in large characteristic. As
an application, we prove that a surface pair (X, B) of a smooth projective surface
X and a reduced simple normal crossing divisor B with (X, Kx + B) < 0 lifts to
the ring of Witt vectors in large characteristic. Moreover, we give an explicit and
optimal bound on the characteristic unless (X, Kx + |B]) = 0.

For (2), we show a weak version of the Bogomolov-Sommese vanishing theo-
rem holds for globally F-regular threefolds. Indeed, we show that every invertible
subsheaf of the cotangent bundle of a smooth globally F-regular threefold of char-
acteristic p > 3 has litaka dimension less than or equal to one.

For (3), we study the relationship between pathological phenomena of Du Val del
Pezzo surfaces and their non-liftability to the ring of Witt vectors. We investigate
the following four conditions on Du Val del Pezzo surfaces:

e (NB) all the members of the anti-canonical linear system are singular,

e (ND) there does not exist Du Val del Pezzo surfaces over the field of complex
numbers with the same Dynkin type, Picard rank, and anti-canonical degree,

e (NK) there exists an ample Z-divisor that violates the Kodaira vanishing the-
orem, and

e (NL) the pair (Y, F) does not lift to the ring of Witt vectors, where Y is the
minimal resolution and FE' is its reduced exceptional divisor.

We classify all the Du Val del Pezzo surfaces satisfying (NB) (resp. (ND),(NK),(NL)).
Moreover, we see that none of these pathological conditions occur under the assump-
tion of Frobenius splitting.
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Chapter 1

Introduction

In this thesis, we study the Bogomolov-Sommese vanishing theorem and patholo-
gies of Du Val del Pezzo surfaces in positive characteristic.

1.1 Bogomolov-Sommese vanishing theorem for
lc surfaces in positive characteristic

This section is based on [58]. Vanishing theorems involving differential sheaves
play a significant role in the analysis of algebraic varieties. The Bogomolov-Sommese
vanishing theorem, originally proved in [15], is one of the most important tools of
this kind and has been studied by many authors (see [34], [36], [37], [54], [94] for
example).

Theorem 1.1.1 (Bogomolov-Sommese vanishing theorem [34, Corollary 1.3]). Let
(X, B) be a log canonical (lc, for short) projective pair over the field of complex
numbers C. Then

H(X, (2 (log | B]) ® Ox (=D))™*) = 0
for every Z-divisor D on X satisfying (X, D) > i.

In Theorem 1.1.1, x(X, D) denotes the litaka dimension of a Z-divisor D (see
Definition 2.3.1 for the definition), (—)** denotes reflexive hull, and Q_[;{] (log|B])
denotes the sheaf of i-th logarithmic reflexive differential forms of the pair (X, |B]),
where | B] is the round-down of B. Klt and lc singularities are important classes of
singularities appearing in the minimal model program (MMP, for short), and it is
very useful to generalize vanishing theorems to varieties with such singularities (see
Definition 2.2.1 for their definition). The reader is also referred to Definition 2.2.4
for the definitions of varieties appearing in the MMP such as varieties of Fano type
and of Calabi-Yau type. ‘

We note that Theorem 1.1.1 is equivalent to saying that the sheaf QEZ(] (log|B])
does not contain any Weil divisorial sheaves with litaka dimension bigger than i. In
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particular, when dim X = 2, it suffices to check that the sheaf of the first logarithmic
reflexive differential forms does not contain any big Weil divisorial sheaves.

The logarithmic extension theorem for (n+1)-dimensional lc pairs can be deduced
from the Bogomolov-Sommese vanishing theorem for n-dimensional log Calabi-Yau
pairs (see [35, Section 9]). Theorem 1.1.1 also can be applied to show the vanishing
of the second cohomology of the tangent sheaf of lc projective surfaces with big
anti-canonical divisors, so that they have no local-to-global obstructions (see [40,
Proposition 3.1]). In this paper, we discuss an analog of Theorem 1.1.1 in positive
characteristic. In the rest of this chapter, we work over an algebraically closed field
k of positive characteristic p > 0.

Let X be a normal projective surface over k. It is well-known that the Bogomolov-
Sommese vanishing theorem fails when Kx is big. For example, it is not difficult to
see that the sheaf of the first differential forms of Raynaud’s surface [92] contains an
ample invertible sheaf. Moreover, Langer [74, Section 8] constructed a pair (S, F)
of a smooth rational surface S and a disjoint union of smooth rational curves F
such that Qg(log F') contains a big invertible sheaf in every characteristic (see also
[75, Section 11]). In other words, the Bogomolov-Sommese vanishing theorem fails
even if X is a smooth rational surface. On the other hand, we can observe that
the log canonical divisor Kg + F' is big except when the characteristic is equal to
two (see Example 3.4.4 for the details). Therefore, it is natural to ask whether the
Bogomolov-Sommese vanishing theorem holds when the log canonical divisor is not
big and the characteristic is sufficiently large. We give an affirmative answer to this
question.

Theorem 1.1.2. There exists a positive integer py with the following property. Let
(X, B) be an lc projective surface pair over an algebraically closed field of charac-
teristic p > po. If K(X, Kx + |B|) # 2, then

HO(X, (9% (log | B) ® Ox (~D))**) = 0

for every Z-divisor D on X satisfying k(X, D) > i. Moreover, if k(X, Kx + |B]) =
—0 (resp. k(X, Kx+|B]) = 1), then we can take py = 5 (resp. po = 3) as an optimal
bound. If k(X,Kx + |B|) = 0, then we can take py as the maximum Gorenstein
index of any kit Calabi-Yau surface over any algebraically closed field.

In Theorem 1.1.2, a klt Calabi-Yau surface means a klt projective surface whose
canonical divisor is numerically trivial. If the base field is an algebraically closed
field of characteristic zero, then the Gorenstein index of a klt Calabi-Yau surface is
less than or equal to 21 by [14, Theorem C (a)]. In general, there exists a uniform
bound on the Gorenstein index independent of the choice of the algebraically closed
base field (see Lemma 3.1.9), but its explicit value is not known.

As an application of Theorem 1.1.2, we obtain a result on the liftability of log
surfaces.

Theorem 1.1.3. There exists a positive integer py with the following property. Let
X be a normal projective surface over an algebraically closed field k of characteristic
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p > po, B a reduced divisor on X, and f:Y — X a log resolution of (X, B).
Suppose that one of the followings holds:

(1) K(X,Kx + B) = —0,
(2) Kx+B=0and B #0,
(3) K(X,Kx + B) =0.

Then (Y, 1B+ Exc(f)) lifts to the ring W (k) of Witt vectors. Moreover, when the
condition (1) or (2) holds, we can take po =5 as an optimal bound.

It is well-known that every smooth projective surface defined over an alge-
braically closed field of characteristic p > 3 with non-positive Kodaira dimension
lifts to W (k) (see [53, Proposition 2.6], [80, Section 11], and [88, Proposition 11.1]).
Theorem 1.1.3 can be viewed as a log version of this fact.

In Theorem 1.1.3 (3), po should be at least 19 by Example 3.4.3, but it is not
clear whether we can take py as the maximum Gorenstein index of klt Calabi-Yau
surfaces.

In the proof of Theorem 1.1.3 (1) and (2), we apply Theorem 1.1.2 to obtain the
vanishing of H*(Y, Ty (—log f,'B + Exc(f))), where the obstruction to the lifting
lives. In the case of (3), such a vanishing does not always hold. Therefore, using an
argument of Cascini-Tanaka-Witaszek [23], we show the boundedness of some e-klt
log Calabi-Yau surfaces, from which we deduce the desired liftability (see Lemma
3.1.12 and Proposition 3.1.13).

Using Theorems 1.1.2 and 1.1.3, we prove that the Kawamata-Viehweg vanishing
theorem for Z-divisors holds on normal projective surfaces whose canonical divisor
is not big.

Theorem 1.1.4. There exists a positive integer py with the following property. Let
X be a normal projective surface over an algebraically closed field of characteristic
p > po and D a nef and big Z-divisor on X. Suppose that one of the followings
holds:

(]‘) I{(X7 KX) < 07
(2) K(X,Kx) =1 and X is lc.

Then H (X,Ox(Kx + D)) = 0 for all i > 0. Moreover, if n(X,Kx) = —©
(resp. k(X, Kx) = 1), then we can take py =5 (resp. po = 3) as an optimal bound.

1.2 Bogomolov-Sommese type vanishing for glob-
ally F'-regular threefolds

This section is based on [57]. We have studied the Bogomolov-Sommese vanishing
theorem for surfaces in Section 1.1. In this section, we discuss the higher-dimensional
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case. Since the proof of Theorem 1.1.2 heavily depends on the classifications of
lc surface singularities and klt del Pezzo surfaces of Picard rank one, a similar
argument does not work for higher-dimensional varieties. On the other hand, the
author proved in [59] that an analog of Theorem 1.1.1 holds when X is a smooth
Fano threefold in characteristic p > 0, B = 0, and ¢ = 1. In this section, we study
a Bogomolov-Sommese type vanishing theorem for threefolds of Fano type, and we
prove a weak version of the Bogomolov-Sommese vanishing theorem for globally F'-
regular threefolds, a special class of Frobenius split (F-split, for short) varieties that
are of Fano type (see Definition 4.1.1 (2) for the precise definition).

Theorem 1.2.1 (Theorem 4.4.10). Let X be a smooth projective globally F-reqular
threefold over an algebraically closed field of characteristic p > 3. Then

HY(X,Qx ® Ox(~D)) =0

for every Z-divisor D on X satisfying (X, D) > 1. Furthermore, if p > 7, then the
above vanishing holds for every Z-divisor D satisfying (X, D) > 0.

We need the assumption “p > 3” only for running the MMP, which was recently
established for threefolds of characteristic p > 3 (see [41] for the details). In the
proof of Theorem 1.2.1, we run a Kx-MMP to reduce to the case where D is nef
and big.

Theorem 1.2.2 (Theorem 4.4.5). Let X be a projective globally F-reqular variety
over an algebraically closed field of characteristic p > 0 and B a reduced Z-divisor
on X. Suppose that dim X > 2 and the non-simple normal crossing locus of (X, B)
has codimension at least three. Then

H(X, (Q4(log B)® Ox(~D))**) =0
for every nef and big Q-Cartier Z-divisor D on X.

When X is smooth, Theorem 1.2.2 follows from the Cartier isomorphism and
the F-splitting of X. However, even if we start from a smooth variety, the output
of the MMP is not necessarily smooth. This is the reason why we have to consider
singular varieties in Theorem 1.2.2. We use the global F-regularity of X to deal
with singularities.

1.3 Pathologies of Du Val del Pezzo surfaces in
positive characteristic

This section is based on [61] and [60], which are joint work with Masaru Na-
gaoka. Theorems 1.1.3 and 1.1.4 tells us that there exists a surface X over k with
k(X, Kx) = —oo that does not satisfy the Kodaira vanishing theorem and the lifta-
bility in Theorem 1.1.3 (see Example 3.4.1). In this section, we focus on del Pezzo
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surfaces with Du Val singularities and study their pathological phenomena system-
atically.

We say that X is a Du Val del Pezzo surface if X is a projective surface whose
anti-canonical divisor is ample and that has at worst Du Val singularities, i.e., 2-
dimensional canonical singularities. By the Dynkin type of X, we mean the Dynkin
diagrams of singularities on X. For example, we say that X is of type 34, + Dy
if X has three A;-singularities and one D,-singularity. In this case, we also write
Dyn(X) =3A; + Dy and X = X (34, + Dy).

Definition 1.3.1 (cf. Definition 2.4.10). Let X be a normal projective surface over
an algebraically closed field k of characteristic p > 0. We say that X is log liftable
over W (k) if there exists a log resolution f: Y — X such that the pair (Y, Exc(f))
lifts to W (k).

By Theorem 1.1.3, every Du Val del Pezzo surface over an algebraically closed
field of characteristic p > 5 is log liftable over W (k). We remark that all Du Val
del Pezzo surfaces themselves are liftable over W (k) (see Remark 5.1.2), but they
are not necessarily log liftable. In this section, we study the following pathological
conditions on Du Val del Pezzo surfaces.

Definition 1.3.2. For a Du Val del Pezzo surface X over an algebraically closed
field k of characteristic p > 0, we say that X satisfies:

e (ND) if there does not exist any Du Val del Pezzo surface X¢ over the field of
complex numbers C with the same Dynkin type, the same Picard rank, and
the same degree as X.

e (NB) if all members of the anti-canonical linear system of X are singular.
e (NK) if H'(X,0x(—A)) # 0 for some ample Z-divisor A on X.
e (NL) if X is not log liftable over W (k).

For example, Keel-M°Kernan [62, end of Section 9] constructed a Du Val del
Pezzo surface X (7A;) of Picard rank one and degree Kiw A, = 2 in characteristic
two. This surface satisfies (ND) (see [31, Theorem 2, Table (II)] or [9, Theorem
1.1]). Cascini-Tanaka pointed out in [21, Proposition 4.3 (iii)] and [22, Theorem 4.2
(6)] that it also satisfies (NB) and (NK). Since the anti-canonical linear system of
X(7A;) is base point free, this surface is a counterexample to Bertini’s theorem in
positive characteristic. Furthermore, we easily see from Cascini-Tanaka’s result [22,
Theorem 4.2 (6)] that X (7A;) satisfies (NL).

Our main results consist of three theorems. The first one is the following, which
shows the implications (NK) = (NL) and (ND) = (NL) = (NB).

Theorem 1.3.3. Let X be a Du Val del Pezzo surface over an algebraically closed
field k of characteristic p > 0. Then the following hold.
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(1) If a general member of anti-canonical linear system is smooth, then X is log
liftable over W (k).

(2) If X s log liftable over W (k), then there exists a Du Val del Pezzo surface
over C with the same Dynkin type, the same Picard rank, and the same degree
as X.

(3) If X 1is log liftable over W (k), then H*(X,Ox(—=A)) = 0 for every ample
Z-divisor A.

The second main theorem, Theorem 1.3.4, classifies Du Val del Pezzo surfaces
satisfying (NB), the weakest condition among those listed in Definition 1.3.2.

Theorem 1.3.4. Let X be a Du Val del Pezzo surface over an algebraically closed
field k of characteristic p > 0. Suppose that X satisfies (NB). Then the following
hold.

(0) K¥ <2 andp=2 or 3.

(1) When K% =1 and p = 2 (resp. p = 3), the Dynkin type of X is Eg, Ds,
Al + E7, 2D4, 2A1 + DG; 4A1 + D4, or 8A1 (7”68]). Eg, A2 + E6, or 4142) In
particular, the Picard rank of X is equal to one.

(2) When K% = 2, the characteristic p has to be 2 and the Dynkin type of X is Er,
A1+ Dg, 3A1+ Dy, or TA;. In particular, the Picard rank of X is equal to one.
Furthermore, the morphism ¢|_k: X — P} associated to the anti-canonical
linear system is purely inseparable and therefore X is homeomorphic to P2.

(3) The isomorphism class of X is uniquely determined by its Dynkin type if and
only if the Dynkin type is not 2D4,4A1 + Dy, or 8A;.

Summarizing the above, we obtain Table 1.1.

Table 1.1
Degree K% =1

Dynkin type Fyq Ay + Es | 44, Dy | A+ E;

Characteristic p=23 p=3 p=2
No. of isomorphism classes 1 1 \ 1 1 \ 1

KT =1 K2 =2
2D, ‘ 2A1 + Dg ‘ 4A1 + Dy ‘ 8A1 E; ‘ A1 + Dg ‘ 3A1 + Dy ‘ TA;
p=2 p=2

o | 1 \ 0 EE 1 \ 1 \ 1 \ 1

Remark 1.3.5. Combining Theorem 1.3.4 with Ito’s results [50, 51], we obtain a
complete classification of isomorphism classes of rational quasi-elliptic surfaces (see
Corollary 5.5.24 for more details).
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The last main theorem, Theorem 1.3.6, classifies Du Val del Pezzo surfaces sat-
isfying (ND) (resp. (NK), (NL)). As a consequence, we have the implications (NK)
= (ND) = (NL) = (NB) among the conditions in Definition 1.3.2 and we see that
none of the opposite implications hold.

Theorem 1.3.6. Let X be a Du Val del Pezzo surface over an algebraically closed
field k of characteristic p > 0. Then the following hold.

(1) X satisfies (NL) if and only if (p, Dyn(X)) = (3,4A4s), (2,4A; + Dy), (2,84;),
or (2,7Ay).

(2) X satisfies (ND) if and only if (p,Dyn(X)) = (2,44, + Dy), (2,8A4;), or
(2,7A7).

(3) X satisfies (NK) if and only if (p, Dyn(X)) = (2,84;) or (2,7A;).

Remark 1.3.7. Tt follows from Theorem 1.3.6 that there exist Du Val del Pezzo
surfaces over an algebraically closed field of characteristic p = 2,3 on which the
Bogomolov-Sommese vanishing theorem does not hold.

Finally, we show that F-split Du Val del Pezzo surfaces do not satisfy any con-
ditions in Definition 1.3.2.

Theorem 1.3.8. Let X be a Du Val del Pezzo surface over an algebraically closed
field of characteristic p > 0. Suppose that X is F-split. Then a general member
of the anti-canonical linear system is smooth. Moreover, if p = 2, then the general
member is an ordinary elliptic curve.

Remark 1.3.9. We cannot drop the assumption on the characteristic in the latter
assertion of Theorem 1.3.8. Indeed, there exists an F-split Du Val del Pezzo surface
over an algebraically closed field of characteristic p = 3 such that all smooth members
of the anti-canonical linear system are supersingular elliptic curves. We refer to
Remark 5.9.5 for the details.



Chapter 2

Preliminaries

2.1 Notation

A variety means an integral separated scheme of finite type over an algebraically
closed field. A curve (resp. surface) means a variety of dimension one (resp. two).
A pair (X, B) consists of a normal variety of X and an effective Q-divisor B with
coefficients in [0, 1] n Q such that Kx + B is Q-Cartier. Throughout this paper, we
use the following notation:

e Exc(f): the reduced exceptional divisor of a birational morphism f.
e | D] (resp. [D]): the round-down (resp. round-up) of a Q-divisor D.
e F*: the dual of a coherent sheaf of F.

. QEZ(] (log B): the i-th logarithmic reflexive differential form j.Qi; (log B), where
X is a normal variety, B is a reduced divisor on X, U is the snc locus of (X, B),
and j: U — X is the natural inclusion morphism.

o T'x(—log B) = (QE}](log B))*: the logarithmic tangent sheaf of a normal
variety X and a reduced divisor B on X.

o W(k) (resp. W, (k)): the ring of Witt vectors (resp. the ring of Witt vectors
of length n), where k is an algebraically closed field of positive characteristic.

2.2 Singularities and varieties appearing in the
MMP

In this section, we gather definitions of singularities and varieties appearing in
the MMP.

Definition 2.2.1. Let (X, B) be a pair and f: Y — X be a proper birational
morphism from a normal variety Y and E a prime divisor on Y. Any such F is

12
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called a divisor over X and f(F) is called the center of E. We take the canonical
divisor Ky of Y so that f. Ky = Kx. We call the coefficient coeff z( Ky — f*(Kx+B))
as discrepancy of E, and denote by a(E, X, B). We say (X, B) is klt (resp. e-klt, Ic)
if, for any prime divisor E over X, the discrepancy of E satisfies a(E, X, B) > —1
(resp. a(E, X,B) > —1+¢, a(E, X,B) = —1).

Definition 2.2.2. Let Z be a Noetherian separated scheme. Let X be a smooth
projective scheme over Z of relative dimension d and B = }_, B; a reduced divisor
on X, where each B; is an irreducible component. We say that B is a simple normal
crossing over Z (snc over Z, for short) if, for any subset J < {1,...,r} such that
ﬂie ; Bi # &, the scheme-theoretic intersection ﬂie ; B; is smooth over Z of relative
dimension d — |J|. When Z is a spectrum of an algebraically closed field, we just
say that B is snc.

Let B’ be a Q-divisor on X. We say that (X, B’) is log smooth over Z if Supp(B’)
is snc over Z. When Z is a spectrum of an algebraically closed field, we just say
that (X, B’) is log smooth.

Definition 2.2.3. Let (X, B) be a pair. We say (X, B) is dlt if there exists a closed
subset [’ < X such that

e (X, B) is log smooth outside F.

e for any divisor E over X whose center is contained in F', the discrepancy of FE
satisfies a(E, X, B) > —1.

Definition 2.2.4. We say a projective pair (X, B) is log Fano if (X, B) is klt and
—(Kx + B) is ample. We say X is of Fano type if there exists an effective Q-divisor
B such that (X, B) is log Fano. We say a projective pair (X, B) is log Calabi-Yau
if (X,B)islcand Kx + B =0. We say X is of Calabi-Yau type if there exists an
effective Q-divisor B such that (X, B) is log Calabi-Yau. If, in addition, the pair
(X, B) is klt (resp. e-klt), then we say that (X, B) is kit (resp. e-kit) log Calabi-Yau
and X is klt (resp. e-klt) of Calabi-Yau

Definition 2.2.5. Let (X, B) be a pair and f: X — Z a projective surjective
morphism to a normal variety Z. We say f: X — Z is a (Kx + B)-Mori fiber
space if

e —(Kx + B) is f-ample,
o f,.Ox =0z and dim X > dim Z, and
e the relative Picard rank p(X/7) = 1.

2.3 The litaka dimension for Z-divisors

In this section, we recall the definition and basic properties of the litaka dimen-
sion of Z-divisors.
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Definition 2.3.1 ([37, Definition 2.18]). Let X be a normal projective variety and
D a Z-divisor on X. We define the [itaka dimensione {—0,0,1, - dim X} as
follows. If h°(X, Ox(mD)) = 0 for all m € Z-,, then we say D has [itaka dimension
k(X, D) := —oo. Otherwise, set

M :={m € Z-, | h°(X,Ox(mD)) > 0},
and consider the natural rational mappings
¢m: X --> P(H°(X,0x(mD))*)  for each m € M.

Note that we can consider the rational map as above since Ox(mD) is invertible on
the regular locus of X. The litaka dimension of D is then defined as

(X, D) == maxmen {dim ¢, (X)}.

When D is a Q-divisor, we define (X, D) as (X, mD), where m is any positive
integer such that mD is a Z-divisor. We say a Q-divisor D is big if (X, D) = dim X.
Note that if D is Q-Cartier, then the above definition coincides with the usual
definition ([76, Definition 2.13]).

Remark 2.3.2. Let X be a normal projective variety. Suppose that a resolution
f:Z — X exists. We call kK(Z, Kz) as the Kodaira dimension of X. We note
that the Kodaira dimension of X dose not depend on resolutions. In general, the
Kodaira dimension of X is less than or equal to the Titaka dimension (X, Kx) of
the canonical divisor Ky (see Lemma 3.2.1 (2)). In this paper, we mainly use the
litaka dimension (X, Kx) of the canonical divisor.

Definition 2.3.3. Let D be a Q-divisor on a normal projective surface X. We say
D is nef it D - C > 0 for every curve C' on X.

Let f: Y — X be a projective birational morphism of normal surfaces. Let
m: Y — Y be a resolution. Since Supp(7* Exc(f)) < Exc(f o), it follows that
the intersection matrix of Exc(f) is negative definite. In particular, we can define
the Mumford pullback ([19, 14.24]) for f.

Remark 2.3.4. We can see that the Mumford pullback preserves the Iitaka dimension
by the projection formula. In addition, the Mumford pullback preserves nefness by
definition.

In the rest of the paper, we just refer to the Mumford pullback as pullback.

2.4 Liftability of pairs to the ring of Witt vectors

In this section, we recall the fundamental facts about the liftability of pairs.



15

Definition 2.4.1. Let X be a normal projective variety over an algebraically closed
field k and B = },_, B; a reduced divisor on X, where each B; is an irreducible
component. Let R be a Noetherian local ring with residue field k. When (X, B) is
log smooth (resp. not log smooth), we say that the pair (X, B) lifts to R if there
exist

e a projective flat morphism X — Spec R, and
e closed subschemes B; (i =1,2,...,r) on X

such that (X, B := Y}._, B;) is log smooth (resp. B is flat) over R, X @ k = X, and
B ®@rk = B;.

In the setting of Definition 2.4.1, if we further assume that R is regular and
(X, B) is log smooth, then a lifting (X, B) becomes automatically log smooth as
follows.

Lemma 2.4.2. Let X be a normal projective variety over an algebraically closed
field k and B = Y),_| B; a reduced divisor on X, where each B; is an irreducible
component. Let R be a reqular local ring with residue field k. Suppose that there
exist

e a projective flat morphism X — Spec R, and
e closed subschemes B; (i =1,2,...,1) on X flat over R

such that X ®pk = X and B;®Qrk = B;. If (X, B) is log smooth, then (X,B) is log

smooth over Spec R.

Proof. Since X (resp. B3;) is flat over Spec R by assumption, this is smooth of relative
dimension d (resp. d — 1) by [39, Théoreme 12.2.4 (iii)]. In particular, each B; is a
Cartier divisor. We take a subset J < {1,...,7}. Let us show that [),_; B; is flat
over R. We fix a closed point of = € [),_; B;. Since each B; is Cartier, we obtain

dim Oy, — |J| < dim On_, 5, < dim On _ B, . +dim R
=dim OX@ — ‘J’ +dim R = dimO/y’x — ‘J‘

and hence (’)mm B, is Cohen-Macaulay and dim Oﬂie] Bz = dim Omie Bz +dim R.
Then, by [84, Theorem 23.1], it follows that (),_; B; is flat over R. Finally, by [39,
Théoreme 12.2.4 (iii)], the closed subscheme (1),_; B; is smooth over R and hence
(X, B) is log smooth over R. O

Lemma 2.4.3. Let X be a smooth projective surface and B an snc divisor on X.
Let Bl,: Y — X a blow-up at a closed point x € X. Suppose that (X, B) lifts to a
complete reqular local ring R. Then (Y, (Bl,);'B + Exc(Bl,)) lifts to R.
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Proof. Let (X, B) be a lifting of (X, B) to R. Since R is regular, the pair (X, B) is log
smooth over R by Lemma 2.4.2. Since R is henselian, [29, Propostion 2.8.13] shows
that there exists a lifting  of x to R, which is compatible with the snc structure in
the sense of [7, Theorem 2.7]. By [29, Theorem 2.5.8 (i)= (ii)], there exists an open
subset U of X containing = and an étale R-morphism @: U —> Spec R[Ty, 1] such
that

o B;nU = V(¢*T;) for each irreducible component B; of B satisfying B;nU # &,
and

e 7= V(&*Th @*Tg)

We define an étale k-morphism ¢: U := U ®r k —> Spec k[T1, T3] as ¢ = ¢ ®g k.
Then x = V(¢*T1, ¢*T5). Now, an argument of after Claim of [6, Lemma 4.4] shows
that (), (Blz);'B + Exc(Blz)) is a lifting of (Y, (Bl,),'B + Exc(Bl,)). O

Lemma 2.4.4. Let X be a normal projective surface and B a reduced divisor on
X. Suppose that there exists a log resolution f:Y — X of (X,B) such that
H?(Y,Oy) = 0 and (Y, f;'B + Exc(f)) lifts to a complete regular local ring R.
Then, for every log resolution g: Z — X of (X, B), the pair (Z,g;'B + Exc(g))
lifts to R.

Proof. Let us take a log resolution g: Z — X of (X, B) and show the liftability
of (Z,9;'B + Exc(g)). We can take a log resolution h: W — X of (X, B) such
that both f and g factor through h. Since W — Y is a composition of blow-ups
at a smooth point, the pair (W, h;!B + Exc(h)) lifts to R by Lemma 2.4.3. Since
W — Z is also a composition of blow-ups at a smooth point, it follows from |2,
Proposition 4.3 (1)] that (Z,g;'B + Exc(g)) formally lifts to R. By assumption,
we have H*(Z,0z) = H*(Y,Oy) = 0, and hence (Z, g; ' B + Exc(g)) lifts to R as a
scheme. O

Theorem 2.4.5. Let X be a smooth projective surface over an algebraically closed
field k and B an snc divisor on X. Let (R,m) be a Noetherian complete local ring
with residue field k. Suppose that H*(X,Tx(—log B)) = 0. Then (X, B) lifts to R
as a formal scheme. In particular, (X, B) lifts to R/m™ for all n € Z~o. Moreover,
if we further assume that H*(X,Ox) = 0, then (X, B) lifts to R as a scheme.

Proof. We denote R/m™ by R,,. Let (X", B") be alifting of (X, B) over Spec R,,. We
first see that (X™, B™) is liftable to Spec R, 1. Since B™ is simple normal crossing
over Spec R,,, we can take an affine open covering {U;} of Y™ such that (U;, B|y,) lifts
to Spec R,,1. Then for each 7 and any open subset U of U;, the set of equivalence
classes of such liftings is a torsor under the action of Hom/(Qy(log B), m" 'Oy).
We refer to the arguments of [26, Section 8] for the details. Then by a similar
argument as in [27, Theorem 8.5.9 (b)], the obstruction for the lifting of (X", B")
over Spec R, is contained in H?(Y, Tx(—log B)) ®@m™/m™**. Thus the vanishing
of H*(X,Tx(—log B)) gives a lifting of X and B; over Spec R as formal schemes.
We assume that H?(X,Ox) = 0 in addition. Then the formal liftings of X and
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B; are algebraizable and we get a projective scheme X over Spec R and a closed
subscheme B := Z;Zl B; on X such that Y ®r R, = X" and B;®p R,, = B} for each
n and i by [27, Corollary 8.5.6 and Corollary 8.4.5]. We take a subset J < {1,...,r}.
Since ((,e; Bi) ®r Ry = ();e; B is smooth over Spec R, for all n > 0 and X is
projective over Spec R, [38, Chapitre 0, Proposition (10.2.6)] and [39, Théoreme
12.2.4 (iil)] show that (),_; B; is smooth of relative dimension dim X, — |J| except
when (,.; B, = &, where X, is the generic fiber. Therefore (X,B = >)_, B;) is a
lifting of (X, B) over Spec R. O

Hara [42, Corollary 3.8] showed the Akizuki-Nakano vanishing theorem for Ws-
liftable pairs (X, B). In Theorem 2.4.6, we slightly generalize this theorem to the
vanishing for nef and big divisors when dim X = 2.

Theorem 2.4.6 (cf. [42, Corollary 3.8]). Let X be a smooth projective surface over
an algebraically closed field k of characteristic p > 0 and B an snc divisor on X.
Suppose that (X, B) lifts to Wy(k). Let D be a nef and big Q-divisor on X such that
Supp(|D| — D) is contained in B. Then

H(X,Q%(log B)® Ox(—[D])) =0
fori,j € Zsqo such that v+ 5 < 2.

Remark 2.4.7. Langer [72, Example 1] showed that Theorem 2.4.6 does not hold
when D is only big. In other words, the Bogomolov-Sommese vanishing theorem
can fail on Ws-liftable surfaces.

Proof. By the Serre duality and the essentially same argument as in [42, Corollary
3.8], we can reduce the assertion to

H'(X, Q(log B)) ® Ox (=B + [p°D]) = 0

for all i + j > 2 and some e > 0. We remark that the assumption that p >
dim X in [42, Corollary 3.8] is relaxed to p > dim X. Indeed, in the proof of
[42, Corollary 3.8], the assumption that p > dim X is only used for the quasi-
isomorphism @, Qy (log B)[—i] = F.Q%(log B), and this quasi-isomorphism holds
even in p = dim X by [26, 10.19 Proposition].

We take m,n € Z- such that p™(p" — 1)D is Cartier. Then we obtain

HY(X,Q%(log B)) ® Oy (—B + [p™"D])

-1
=H’(X,Qy(log B)® Oy(—B + [p™D] + (Zp”i)p’”(p” —1)D)).

When j = 2 (resp. (4,j) = (2,1)), the last term vanishes for all sufficiently large
[ » 0 by [99, Proposition 2.3] (resp. [99, Theorem 2.6]), and we obtain the desired
vanishing. ]

Proposition 2.4.8. Let X be a normal projective surface. Suppose that one of the
following conditions folds.
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(1) —Kx is ample Q-Cartier, the minimal resolution 7: Y — X is a log reso-
lution, and there exists a log resolution f: Z — X such that (Z, Ey) lifts to
Wa(k).

(2) H*(X,Tx) =0 and H*(X,Ox) = 0.

Then, for every log resolution f': Z' — X, the pair (Z', E) lifts to every Noethe-
rian complete local ring with residue field k.

Proof. We first show (1). We take a m-exceptional effective Q-divisor F' such that
1 (—Kx) — F is ample and [7*(—Kx) — F| = [7*(—Kx)|. Since 7 is minimal, we
have —Ky = [7*(—Kx)| = [7*(—Kx) — F|. Let f': Z/’ — X be a log resolution.
Then f’ decomposes into g: Z’ — Y and the minimal resolution 7: ¥ — X. We
have the injective morphism

9+(Qz(log Ep) @ Oz(Kz1)) —(9+(Qz(log Ep) @ Oz (Kz)))*
ZQy(IOg Eﬂ-) ® Oy(Ky)

and then the Serre duality yields
H*(Z' Ty (—log Ep)) ~H(Z',Qz(log Ep) @ Oz (Kyz))
%HO(Y, Qy(log EW> ® Oy(Ky))
—H(Y,Qy(log E;) ® Oy (—[7*(—Kx) — F))).

Since (Z, Ey) lifts to Wa(k) by assumption, so does (Y, E;) by [2, Proposition 4.3
(1)], and hence the last cohomology vanishes by Theorem 2.4.6. Together with

H*(Z',0z) = H(Z',02(Kz)) — H(X,0x(Kx)) = 0,

we obtain the liftability of (Z’, E;) by Theorem 2.4.5.
In this case of (2), we have

H*(Z' Ty (—log Ep)) ~H(Z',Qz(log Ep) @ Oz (Kyz))
—H"(X, (Qx ® Ox(Kx))™)
~H*(X,Tx) =0,

and the rest proof is similar to that of (1). O

Lemma 2.4.9. Let X be a normal projective surface over an algebraically closed
field k of positive characteristic and D a nef and big Z-divisor on X. Suppose that
there ezists a log resolution m: Y — X such that (Y, Exc(m)) lifts to Wy (k). Then
H(X,Ox(Kx + D)) =0 for all i > 0.

Proof. By the Serre duality for Cohen-Macaulay sheaves ([66, Theorem 5.71]), it
suffices to show that H'(X,Ox(—D)) = 0 for all i < 2. When i = 0, the vanishing
follows from the bigness of D. Thus we assume that ¢ = 1. By the spectral sequence

E} = HY(X, R',Oy (—[x*D])) = "7 = H**9(Y, Oy (~[x*D])),
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we obtain an injective morphism
H' (X, 7,0y (<[7* D])) — H'(Y. Oy (~[*D])).

By the projection formula, we have 7,0y (—[7*D]|) = 1Oy (|—-7*D]|) = Ox(—D)
and hence it suffices to show that H(Y, Oy(—[7*D])) = 0. Since Supp([7*D]| —
D) < Exc(m) and 7*D is nef and big (see Remark 2.3.4), we obtain the desired
vanishing by Theorem 2.4.6. [

Finally, we define log lifting, which we will use in Section 5.

Definition 2.4.10. Let X be a normal projective surface. Fix a Noetherian irre-
ducible scheme T and a morphism «: Speck — T. We say that X is log liftable
over T' via « (or log liftable over R via o when T = Spec R) if the pair (Z, Ey) lifts
to T via « for some log resolution f: Z — X. When T is the spectrum of a local
ring (R, m) and « is induced by R/m =~ k, We also say that X is log liftable over R
for short.



Chapter 3

Bogomolov-Sommese vanishing
and liftability for surface pairs in
positive characteristic

In this chapter, we prove Theorems 1.1.2, 1.1.3, and 1.1.4.

3.1 KIlt Calabi-Yau surfaces

In this section, we prove the liftability of a log resolution of a klt Calabi-Yau
surface in large characteristic (Propositions 3.1.2 and 3.1.13). We also show that
there exists a bound on the Gorenstein index for every klt Calabi-Yau surface over
every algebraically closed field (Lemma 3.1.9).

Definition 3.1.1. Let X be a normal projective variety. We say that X is canonical
(resp. kit) Calabi-Yau if X has only canonical (resp. klt) singularities and Kx = 0.
Moreover, if X is kit Calabi-Yau but not canonical Calabi-Yau, then we say that X
is strictly kit Calabi- Yau.

First, we show the liftability of a log resolution of a canonical Calabi-Yau surface.

Proposition 3.1.2. Let X be a canonical Calabi-Yau surface over an algebraically
closed field k of characteristic p > 19. Then, for every log resolution f: Z — X of
X, the pair (Z,Exc(f)) lifts to W (k).

Proof. Let m: Y — X be the minimal resolution. By Lemma 2.4.3, it suffices to
show the liftability of (Y, £ := Exc(w)). Since Ky = n*Kx = 0, it follows that Y
is one of an abelian surface, a hyperelliptic surface, a K3 surface, or an Enriques
surface. If Y is an abelian surface, then Y = X and Y lifts to W (k) by [88,
Proposition 11.1]. Next, we assume that Y is a hyperelliptic surface. In this case,
Y = X and Y is the quotient of the fiber product C; x C5 of elliptic curves by an
action of some group scheme G. Let us recall that a smooth projective curve lifts
to W (k) with its automorphism if the degree of the automorphism is not divisible

20
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by p ([87, Theorem 1.5 and Remark 1.11}). Since p # 2,3, comparing with the list
of actions of G on C; x Cy in [19, List 10.27], we can take a W (k)-lifting C; of C;
and G of G such that G acts on C; x Cy compatibly with the action of G on C4 x (.
Then C; x Cy/G gives a lifting of Y.

Next, we assume that Y is a K3 surface or an Enriques surface. Let us show
that the determinant d of the intersection matrix of E is not divisible by p. For
the sake of contradiction, we assume that d is divisible by p. Since the determinant
of the intersection matrix of a rational double point of type A,, (resp. D,,, Eg, Ex7,
Eg) is equal to (—1)"(n+1) (resp. (—1)"4, 3,—2,1), it follows from the assumption
of p > 19 that X has an A,,_i-singularity for some n € Z.,. Hence we have
p(Y) = np = 23, a contradiction since the Picard rank of a K3 surface (resp. an
Enrique surface) is at most 22 (resp. 10) ([49, Chapter 17, 2.4] and [16, Section 3]).
Thus d is not divisible by p and [35, Theorems 1.2 and 1.3] shows that 7,y = Qg?.
Then we obtain

H*(Y, Ty(~1log E)) — H*(X,Ty) ~H°(X, Q¥ ® Ox(Ky))
=H°(Y,Qy ® Oy(Ky)).

For the first injection, we refer to Remark 3.2.2. Let us assume that Y is a K3
surface. Then we have H(Y, Qy ® Oy (Ky)) = H°(Y,Qy) = 0, and (Y, E) formally
lifts to W (k) by Theorem 2.4.5. Moreover, the formal lifting is algebraizable by [53,
Proposition 2.6]. Fmally, let us assume that Y is an Enrlques surface. Then we have
an étale morphism 7: Y — Y from a K3 surface Y since p # 2. Thus we obtain
HY(Y,Qy @ Oy (Ky)) — H(Y,Qy ® Oy (Ky)) = 0. Moreover, since p # 2, we have
Kx # 0, and in particular, H*(Y,Oy) =~ H°(Y,Oy(Ky)) = 0. Therefore, the pair
(Y, E) lifts to W (k) by Theorem 2.4.5. O

Remark 3.1.3. In Proposition 3.1.2, we cannot drop the assumption p > 19 (see
Example 3.4.3). On the other hand, when the minimal resolution Y is a K3 surface
which is not supersingular, the pair (Y, F) lifts to W (k) in any characteristic as
follows.

First, by [79, Corollary 4.2], Y itself lifts to W (k). Moreover, by [79, Lemma 2.3
and Corollary 4.2], each irreducible component of F lifts to W (k). Then we obtain
the desired liftability by Lemma 2.4.2.

From now, we focus on a strictly klt Calabi-Yau surface. We first prove the
existence of the maximum number of the Gorenstein index of a kit Calabi-Yau
surface.

Lemma 3.1.4. Let X be a kit surface and w: Y — X a resolution. Then the
Cartier index of any Z-divisor on X divides the determinant of the intersection
matriz of Exc(r).

Proof. Let d be the determinant of the intersection matrix of Exc(m). We take a
Z-divisor D on X and write 7*D = 7' D + > d; E; for some d; € Q. Then it follows
that dd; € Z for each 7, and in particular, 7*dD is Cartier. Now, we can conclude
that dD is Cartier by [23, Lemma 2.1]. O
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Lemma 3.1.5. We fix a real number e € (0, ig) Then there exists m == m(e) € Zxg
with the following property. For every e-klt of Calabi-Yau type surface X over every
algebraically closed field and every Z-divisor D on X, the divisor mD s Cartier.

Proof. Let m: Y — X be the minimal resolution and Exc(w) := .. E; the irre-
ducible decomposition. Then Y is e-klt of Calabi-Yau type. By [4, Lemma 1.2
and Theorem 1.8], we have —2 < E? < —2 and p(Y) < 2. In addition, we have
E;-E; =0or 1 fori# jsince X is klt. Thus there are only finitely many possibili-
ties for the intersection matrix of Exc(m) when X moves surfaces as in the lemma.
We take m as a product of all possible determinants of the intersection matrices of
Exc(m). Now, Lemma 3.1.4 shows that m is the desired integer. O

Lemma 3.1.6. We fiz a real number ¢ € (0, LB) When X moves every e-kit of
Calabi-Yau type surface over every algebraically closed field, there are only finitely
many possibilities for K%.

Proof. Let m: Y — X be the minimal resolution. We can write Ky + Y}, a;F; =
m* Ky for some a; € Q-q, where FE; is a m-exceptional prime divisor. Note that
when we take a sum over the empty set, we define the sum as zero. As in the proof
of Lemma 3.1.5, we have p(Y) < % and there are only finitely many possibilities
for the intersection matrix of Exc(m) when X moves. We fix a positive integer
m = m(e) € Zsg as in Lemma 3.1.5. Then we have a; € {X,---, =1} for each i.

If Y is rational, then Y is obtain from P? or a Hirzebruch surface by at most
([22%] — 1)-times blow-ups, and in particular, K3 € Z n (9 — |2£],9). If Y is not
rational, then K% = 0 by [4, Lemma 1.4]. Now, we can conclude that there are only
finitely many possibilities for

K} = Ky + Y ai(Ky - B)) = K3 + Y ai(=E} = 2)

and obtain the assertion. O

Lemma 3.1.7 (cf. [13, Proposition 11.7]). Let A < [0,1] n Q be a DCC set. Then
there exists a finite subset I' = A with the following property: for every projective
morphism X — Z over every algebraically closed field and every Q-diwvisor B on
X satisfying

e (X, B) is an lc surface,

e the coefficients of B are in A,

o Kx + B is numerically trivial over Z,
e dim X > dim Z,

all the m-horizontal coefficients of B are contained in T.
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Proof. The assertion has been proved in [13, Proposition 11.7] when we fix the base
field. We remark that the same proof works even when the base field moves every
algebraically closed field. We note that, in Step 4 of the proof of [13, Proposition
11.7], we use [3, Theorem 6.9], which requires us to fix the base field. However, [3,
Theorem 6.9] is applied to only show the boundedness of the Gorenstein index and
the self-intersection number of the canonical divisor of an e-klt del Pezzo surface,
which do not depend on the base field (see also Lemmas 3.1.5 and 3.1.6). O

Lemma 3.1.8. There exists a positive real number ¢ € Rog such that every kit
Calabi- Yau surface over every algebraically closed field is e-klt.

Proof. First, we extract an exceptional divisor with minimum log discrepancy. We
take a klt Calabi-Yau surface X as in the lemma. Let 7: Y — X be the minimal
resolution and write

KY + ZaX,iEi = W*KX

for some ax; € Q-o. We may assume that ax; > ax,; for all i. We run a (Ky +
ax1E1 + Yo, E;)-MMP over X to obtain a birational contraction ¢:Y — Y.
Since Ky + ax,1 51 + Y00 Bi =x D550(1 — ax;) By, it follows that o,/ # 0 and
Duiso(l — ax;)p«E; is nef over X. The negativity lemma shows that ¢, FE; = 0 for
each ¢ > 2 and hence

Ky +ax1p:E1 = o (Ky + ZCLX,in) =0.

Now, we prove the assertion. For the sake of contradiction, we assume that there
exists a sequence of klt Calabi-Yau surfaces {X,,}mez., such that {ax,, 1}mez., is
a strictly increase sequence. Since {ax,, 1|m € Z-¢} is a DCC set, we can derive a
contradiction by Lemma 3.1.7. O

Lemma 3.1.9. There exists a minimum positive integer n € Z-qo such that, for
every kit Calabi-Yau surface X over every algebraically closed field, the Gorenstein
idex of X is less than or equal to n.

Proof. The assertion follows from Lemmas 3.1.5 and 3.1.8. O]

Remark 3.1.10. There exists a klt Calabi-Yau surface over C whose Gorenstein index
is 19 by [14, Theorem C (a)]. Thus we have n > 19 in Lemma 3.1.9. Moreover, [14,
Theorem C (a)] also shows that we can take n = 21 when the base field of X only
moves algebraically closed fields of characteristic zero.

Lemma 3.1.11. Let X be a strictly kIt Calabi-Yau surface and n the Gorenstein
index of X. Then n is a minimum positive integer such that nKyx = 0.

Proof. By the abundance theorem ([98, Theorem 1.2]), we can take a minimum
positive integer [ such that [Kx = 0. By the definition, we have n < [. Let us
show that [ < n. Let 7: ¥ — X be the minimal resolution of X. Then we have
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nKy + F = m*nKx = 0 for some effective Cartier divisor F. Since X is strictly klt
Calabi-Yau, it follows from the proof of [4, Lemma 1.4] that Y is a rational surface.
Thus numerically trivial Cartier divisors on Y are linearly trivial, and in particular,
nKy + E = 0. Now we obtain nKx = m,(nKy + E) = 0 and hence [ < n. O

Lemmas 3.1.9 and 3.1.11 show that a global cyclic cover associated to the canon-
ical divisor of a strictly klt Calabi-Yau surface is étale in codimension one in large
characteristic.

Finally, we prove the liftability of a log resolution of a strictly klt Calabi-Yau
surface in large characteristic.

Lemma 3.1.12. We fix a finite set I < [0,1) n Q and a positive real number
e € (0, \%) There ezists a positive integer p(I,€) € Z~o with the following property.
Let (X, B) be an e-klt log Calabi- Yau surface over an algebraically closed field k of
characteristic bigger than p(I,e). Suppose that X admits a Kx-Mori fiber space
structure f: X — Z and all the coefficients of B are contained in I. Then, for
every log resolution g: W — X of (X, B), the pair (W, g, '(Supp(B)) + Exc(g))
lifts to W (k).

Proof. First, we show the following claim.

Claim. There exists a flat family (X', B) — T to a reduced quasi-projective scheme
T over Spec Z such that every log Calabi-Yau surface (X, B) over every algebraically
closed field of characteristic bigger than five satisfying

e (X, B) is e-klt,
e X has a Kx-Mori fiber structure f: X — Z, and
e all the coefficients of B are contained in I,

is a geometric fiber of (X, B) — T.

Proof of Claim. By the proof of [23, Lemma 3.1], it suffices to show the following:
there exists a positive integer m € Z~ not depending on X and a very ample divisor
Hx on X such that

e mB is Cartier, and

e there are only finitely many possibilities for dim H%(X,Ox(Hx)), H%, Hx -
Kx,Hx - B,Kx - B, and B? when (X, B) moves log Calabi-Yau surfaces as in
the claim.

We take a positive integer m = m(e) as in Lemma 3.1.5. Since all the coefficients
of B are contained in a finite set I, we can assume that mB is Cartier when (X, B)
moves, and the first assertion holds.

Let us show the latter assertion. Together with B = —Kyx and Lemma 3.1.6,
it suffices to check the values of dim H°(X,Ox(Hx)), H%, and Hx - Kx. We first
construct an ample Cartier divisor Ax on X such that there are only finitely many
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possibilities for A%, Ax - Kx when X moves. If dim Z = 0, then —Kx is ample and
we can take Ax = —mKx. We next assume that dim Z = 1. Let us show that
—Kx + ([2] = 1)F is ample, where F is a fiber of X — Z. Let C be an irreducible
curve whose numerical class spans an extremal ray of NE(X) that is not spanned
by the numerical class of F. If C? > 0, then we have

(~Kx + (2] = 1)F) - C = (B+ (2] - )F) - C > [2] =1 >0,

and hence —Kx + ([2] — 1)F is ample by Kleiman’s ampleness criterion. We next
assume that C? < 0. Let 7: Y — X be the minimal resolution. Then Y is an
e-klt of Calabi-Yau surface and hence [4, Lemma 1.2] shows that —2 < (7, *C)?. In
particular, —2 < C?. Now, we have

-1
|
|—1>0,

and hence —Kx + ([2] — 1)F is ample. Together with F? = 0, Kx - F = —2, and
Lemma 3.1.6, by taking Ax = m(—Kx + ([2] — 1)F), we can see that Ax is the
desired ample Cartier divisor.

Now, by [102, Theorem 1.2], it follows that 13mKx + 45mAx is very am-
ple. Moreover, we can see that (13m — 3)Kx + (45m — 14)Ax is nef and hence
H(X,0x(13mKx + 45mAx)) = 0 for all : > 0 by [102, Proposition 6.5]. We set
Hyx = 13mKyx + 45mAx. Then there are only finitely many possibilities for H%
and Hx - Kx. Moreover, by the Riemann-Roch theorem, we have

(f*Hx)*  f*Hx (=Kw) . (Hx)*  Hx-(-Kx)
2 2 1= 2 2

+1,

where f: W — X is a resolution and we used the fact that X has only ratio-
nal singularities for the second equality. Therefore, there are only finitely many
possibilities for dim H°(X, Ox(Hx)), and we finish the proof of the claim.

By the claim and the proof of [23, Proposition 3.2], we can find a positive integer
p(I,e) with the following property: let (X, B) be a log Calabi-Yau surface as in
the lemma. Then, there exists a log resolution g: W — X of (X, B) such that
the pair (W, g;*(Supp(B)) + Exc(g)) lifts to characteristic zero over a smooth base
in the sense of [23, Definition 2.15]. Now, we obtain the desired liftability by [7,
Proposition 2.5] and Lemma 2.4.4. O

Proposition 3.1.13. There exists a positive integer py with the following property.
Let X be a strictly kit Calabi- Yau surface over an algebraically closed field of char-
acteristic p > po. Then, for every log resolution g: W — X, the pair (W, Exc(g))
lifts to W (k).
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Proof. By Lemma 3.1.8, there exists a positive real number ¢ € (0, %) such that

73
every klt Calabi-Yau surface is e-klt. We take m = m(e) as in Lemma 3.1.5 and
define a finite set I == {Z,--- =1} Let us take py := p(I,¢) as in Lemma 3.1.12.

Let X be a strictly klt Calabi-Yau surface over an algebraically closed field of
characteristic p > pg. As in Lemma 3.1.8, we can take an extraction f: Y — X
of an exceptional prime divisor E; such that ay := coeff g, (f*Kx — Ky) € I. Since
Ky = —a, F; is not pseudo-effective, we can run a Ky-MMP to obtain a birational
contraction ¢: Y — Y’ and a Ky.-Mori fiber space Y’. Since Ky + a;E; = 0, the
negativity lemma shows that Ky +a Fy = ¢*(Ky +a1E]) and hence (Y, a1 EY) is e-
klt log Calabi-Yau, where F/| := ¢, E;. Then, by Lemma 3.1.12 and the definition of
Do, we can take a log resolution p: Z — Y” of (Y’ a1 EY) such that ¢ factors through
pand (7, u; By + Exc(p)) lifts to W (k). We now have the following diagram:

(Z, i B + Exe(p) —— (Y, Br) —— X
\}\\ P
(Y, E1)

Since Exc(f o h) < p;'E} + Exc(u), the pair (Z, Exc(f o h)) lifts to W (k), and the
assertion holds by Lemma 2.4.4. O

3.2 The Bogomolov-Sommese vanishing theorem
for lc surfaces

3.2.1 An extension type theorem for lc surfaces

In this subsection, we show an extension type theorem (Proposition 3.2.6), which
plays an essential role in the proof of Theorem 1.1.2.

Lemma 3.2.1. Let f: Y — X be a projective birational morphism of normal
surfaces. Let By (resp. Dy) be a reduced Z-divisor (resp. Z-divisor) on Y and
B = f.By (resp. D = f.Dy ). Then the followings hold.

(1) The natural restriction morphism
() (log By) ® Oy (~Dy))*™* — (Q{/(log B) ® Ox(~D))**
18 1njective.
(2) Suppose that X and Y are projective. Then k(Y, Dy) < (X, D) holds.
Proof. We first see the assertion (1). Since f*(QE}] (log Dy )®0Oy (—By))** is torsion-

free, we have an injective morphism
£ (O (1og Dy) ® Oy (= By))** (£ (2 (log Dy) ® Oy (—By))**)**
~(Q (log D) ® Ox(~Bx))**
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We note that, for every open subset U of X, the above morphism is the restriction
of the sections of HO(f~1(U), (2 (log Dy) ® Oy (—By)**) to f~1(U)\ Exc(f) =
U\f (Exc(f)).

Similarly, we have the natural injective morphism
HY(Y,Oy(mBy)) — H°(X,Ox(mBx))
for all m € Z-y and hence the assertion (2) holds. O
Remark 3.2.2. In the setting of Lemma 3.2.1 (2), we have
H*(Y, Ty (—log By)) =Homo, (Ty(—log By), Oy (Ky))
=H°(Y, (2} (log By) ® Oy (Ky))™)
by the Serre duality. Then, by Lemma 3.2.1 (1), we obtain an injective morphism
H*(Y,Ty(—log By)) — H*(X,Tx(—log B)).
We will use this fact in Section 3.3.

Definition 3.2.3. Let (X, B) be a dlt pair over an algebraically closed field of
characteristic p > 0 such that B is reduced. We say that (X, B) is tamely dlt if the
Cartier index of Kx + B is not divisible by p.

Definition 3.2.4. Let X be a normal surface and B is a Q-divisor with coefficients
in [0,1]. We say that a morphism h: W — X is a dlt blow-up of (X, B) if

(1) h is a projective birational morphism,
(2) (W,h;'B + Exc(h)) is dlt, and
(3) Kw + h;'B + Exc(h) + F = h*(Kx + B) for some effective Q-divisor F.

Lemma 3.2.5. Let X be a normal surface and B is a Q-divisor with coefficients in
[0,1]. Then the followings hold.

(1) Any log resolution m: Y — X of (X, B) decomposes into a birational projec-
tive morphism Y — W and a dlt blow-up W — X.

(2) F =0 if and only if (X, B) is lc.

Proof. We refer to [100, Theorem 4.7 and Remark 4.8] for the proof. Note that, by
considering the Mumford pullback, [100, Remark 4.8 (1)] holds without the assump-
tion that Kx + B is R-Cartier. O

Proposition 3.2.6 (An extension type theorem for lc surfaces). Let (X, B) be an
le surface pair over an algebraically closed field of characteristic p > 5 and D a Z-
divisor on X. Let f: Y — X be a projective birational morphism such that (Y, By)
is lc, where By = f;1B + Exc(f). Then the natural restriction morphism

O f.(Q) (log | By]) ® Oy (~[f*D]))™* — (24 (log | B]) ® Ox(~D))**

1 1isomorphic.
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Remark 3.2.7. Proposition 3.2.6 is equivalent to saying that

F(23 (log | By]) ® Oy ([ £*D]))**

is reflexive.

Remark 3.2.8. 1f we take D = 0 in the proposition, then this is nothing but Graf’s
extension theorem ([35, Theorem 1.2]). Let us see why we need to generalize Graf’s
extension theorem to Proposition 3.2.6 for the proof of Theorem 1.1.2.

We work in characteristic zero and follow the notation of Theorem 1.1.1. Let
7: Y — X be a log resolution and By = 7, !B+ Exc(r). Suppose that there exists
a Z-divisor D and an injective morphism Ox (D) — Q@(log B). For simplicity, we
assume that D is Q-Cartier. Then, by applying the extension theorem in character-
istic zero [37, Theorem 1.5], we can construct a Z-divisor Dy on Y such that there
exists an injective morphism Oy (Dy) — Q‘[;](log By) and k(X,D) = k(Y,Dy).
This means the Bogomolov-Sommese vanishing theorem can be reduced to the case
of log smooth pairs by the extension theorem (see [37, 7.C. Proof of Theorem 7.2.]
for the detailed argument). In the construction of Dy, we use the fact that an index
one cover of D is étale in codimension. However, when we work in characteristic
p > 0 and the Cartier index of D is divisible by p, this fact is not always true.
Therefore, we cannot apply Graf’s extension theorem directly to reduce Theorem
1.1.2 to the case where (X, B) is log smooth.

Moreover, in positive characteristic, reducing to the case of log smooth surfaces is
not enough because the Bogomolov-Sommese vanishing theorem is not known even
for such pairs. Proposition 3.2.6 asserts that Dy can be taken as [f*D], and this
enables us to apply the Akizuki-Nakano vanishing theorem (Theorem 2.4.6) when
D is ample.

Proof of Proposition 3.2.6. Step 0. Througihout the proof of this proposition, we
denote (Q[ ](log Bw)® Ow (—Dw))** by Q (log Bw)(—Dw) for every surface pair
(W, By) and Z-divisor Dy,. By Lemma 3. 2 1 (1), ® is injective. Since (X,|B]) is
lc (see [35, Proposition 7.2]), by replacing B with |B]|, we may assume that B is
reduced. Moreover, since the assertion of the proposition is local on X, we may
assume that X is affine. Therefore, it suffices to show that

o: HO(Y, QM (log By)(~[f*D])) — H°(X, 0% (log B)(—D))

is surjective.
Step 1. First, we prove the following claim.

Claim. Suppose that
e (Y, By) is tamely dlt, and
—(Ky + By) is f-nef.

Then & is surjective.



29

Proof of Claim. We take s € H°(X, Qg?(log B)(—D)). Let us construct a section
in H(Y, Qg](log By )(—[7*D])) which maps to s by ®. We may assume that s
is non-zero and hence s is considered as an injective Ox-module homomorphism
s: Ox(D) — ng(log B). By [35, Theorem 6.1], the natural restriction morphism
f*Qg}] (log By) = Qgi] (log B) is isomorphic. Then we have a generically injective
Oy-module homomorphism

FOx(D) 25 ol og B) = f*£.00 (log By) — Q) (log By).
By taking double dual, we obtain an injective Oy-module homomorphism
sy fOx(D) — 0l (log By),

where fllOx (D) = (f*Ox(D))**. We take a Z-divisor Dy on Y such that
Oy(Dy) = f™Ox(D). Since Ox(f:Dy) = (f:Oy(Dy))** = (fof*Ox(D))* =
Ox(D), it follows that f,Dy is linearly equivalent to D. By replacing Dy with
Dy + f*(D — f«Dy), we may assume that f,Dy = D. In particular, Dy — f*D is
f-exceptional.

Now, we replace Dy so that Dy — f*D is effective. Let us assume that Dy — f*D
is not effective. By applying the negativity lemma to the negative coefficients part
of Dy — f*D, we can take a prime f-exceptional divisor E; such that multg, (Dy —
f*D) <0 and Dy - E; > 0. Then we can show that sy factors though an injective
Oy-module homomorphism Oy (Dy + E;) — Qg](log By). This follows from the
essentially same argument as [35, Theorem 6.1], but we provide the proof here for
the completeness.

Since (Y, By) is tamely dlt, we have the following commutative diagram

Oy(Dy)

I‘eSEl

0— M log By — E1) — QM (log By)

and a surjective morphism
resy, : Sym[™! Qg}] (log By) := (Sym™ Qg}] (log By))** — Ogp,

for each m > 0 which coincides with Sym™(resg,) in the generic point of E; by
[35, Theorem 1.4 (1.4.1)]. Let us show that t is the zero map. For the sake
of contradiction, we assume that t is not zero. Since Im(t) < Op, is a torsion-
free Op,-module, it follows that ¢ is non-zero in the generic point of E; and so is
Sym™(t): Oy (Dy)®" — Op,. Since Sym™ (sy) (resp. Sym™ (resg, )) coincides with
Sym!™(sy) = (Sym™(sy))** (resp. resy ) in the generic point of Ej, the compo-
sition resy, o Sym!™(sy) coincides with Sym™(t) = Sym™(resg, ) o Sym™(sy), and
in particular, is non-zero in the generic point of E;. Now, we fix m > 0 such
that mDy is Cartier. Note that Y is Q-factorial since (Y, By) is dlt. By restrict-
ing resi, oSym!™(sy) to Ei, we obtain an injective Op,-module homomorphism
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Opg,(mDy) — Opg, and hence 0 < mDy - E; = deg(Og,(mDy)) < 0, a contra-
diction. Therefore t is zero and the morphism sy factors through Oy (Dy) —
Qg}](log By — Ey). Then, by [35, Theorem 1.4 (1.4.2)], we obtain the following
commutative diagram

Oy(Dy)

restrE1

0—— QWM (log By)(—E)) —— QM log By — E)) — 3 wp, (| ES]) —— 0,
and a surjective morphism
restry Sym[™ Qg] (log (By — E1)) — Opg,(mKg, + |mEY])

which coincides with Sym™(restrg,) in the generic point E;. Here, E{ denotes
the different Diff g, (By — Ey) (see [65, Definition 4.2] for the definition). Since
—(Ky + By) is f-nef, it follows that
deg(Op,(mKg, +|mEf])) < (mKy + mBy) - E; <0

for all m > 0 and hence an argument similar to above shows that v = 0 and sy
factors through Oy (Dy) — Qg}] (log By )(—FE1). In particular, we obtain an injective
Oy-module homomorphism Oy (Dy + E;) — Qg}] (log By) which coincides with sy
on Y\ Exc(f). By replacing Dy with Dy + FEj, and repeating the above procedure,
we can assume that Dy — f*D is effective.

Now, we obtain a Z-divisor Dy on Y such that Dy — f*D > 0 and a morphism

sy € HO(Y, Qg](log By)(—Dy)), which maps to s under the natural restriction
morphism

o' H(Y, 0 (log By)(~Dy)) — H'(X, QY (log B)(-D)).
Since [f*D]| < [Dy]| = Dy, it follows that &’ decomposes into the natural
injective morphism
0: H(Y, 0 (log By)(~Dy)) < H°(Y, (4 (log By)(~[f*DI))
and the morphism
@: HO(Y. 0y (log By)(~[f*D])) — H(X, 24 (log B)(~D)).

Now we have ®(O(sy)) = ®'(sy) = s and hence ® is surjective. Thus we finish the
proof of the claim.

Step 2. Next, let us show that we may assume that f: Y — X is a log
resolution of (X, B). Let m: Z — Y be a log resolution of (Y, By) and f = fom.
Then By = 7, !By +Exc(7) = f,'B+Exc(f), and in particular, f is a log resolution
of (X, B). Suppose that the natural restriction morphisms

@zx: HZ, Qz(log By)(=[]*DD) — H(X, 2! (log B)(-D)).
Bzy: H'(Z,Qz(log Bz)(—[x*[f*DI])) = H°(Y, (Q} (log By)(~[f*D]))
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are isomorphic. Since [7*[f*D]] = [f*D], the isomorphism ¢,y factors through
the natural restriction morphism

¥yt HY(Z,Qz(log By)(—[ D)) — H(X, 9 (log By)(~[f*D]))

and hence @', is isomorphic. Now, we can conclude that ® = 5 x o (9}, )" is an
isomorphism. Thus we may assume that f: Y — X is a log resolution of (X, B).

Step 3. Finally, let us show that the surjectivity of ® and finish the proof of
the proposition. By Lemma 3.2.5, a log resolution f decomposes into a birational
morphism and a dlt blow-up. Then, by [35, 7.B. Proof of Theorem 1.2}, we obtain
a decomposition

Y=y Ly, . Iy =X

such that each f; satisfies the assumption of the claim. Here, we use the assumption
that p > 5. By the claim, the natural restriction morphisms

Cpnt H (Yot O (log By, )(—[f£ D)) = H(X, 0% (log B)(-D)),

—1

Oyt H(Yyoo, Q) (log By, ,)(~[fi_1[f£D1])
~H (Y1, O (log By, ) (~[f5D]))

are isomorphic. Then ®,,_;,, o ®,,_2,,—1 factors through the natural restriction
morphism

By ot HO (Y 0, ) (log By, ,)(~[f%_,f5D])) — H'(X, QW (log B)(—D)),

-2 m

and hence ®,,,_5 ,,, is isomorphic. By repeating this procedure, we can conclude that
® is an isomorphism. O

3.2.2 Proof of Theorem 1.1.2

In this subsection, we prove Theorem 1.1.2. First, we show the Bogomolov-
Sommese vanishing theorem on a surface admitting a fibration structure including
a Mori fiber space and an lc trivial fibration.

Lemma 3.2.9. Let X be a normal surface over an algebraically closed field k of
characteristic p > 3 and B a reduced divisor on X. Let f: X — Z be a projective
surjective morphism such that dim Z =1, f,Ox = Oy, and —(Kx + B) is f-nef.
Then

£ (log B)® Ox(~D))** = 0
for every Z-divisor D satisfying D - F' > 0 for a general fiber F' of f.
Proof. Since f*(QEi] (log B)®Ox(—D))** is torsion-free, it suffices to show that the

rank of the sheaf is zero, and in particular, we can shrink Z for the proof. First, we
prove the following claim.

Claim. By shrinking Z, we may assume that (X, B) is log smooth over Z.
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Proof of Claim. We note that the general fiber F' is reduced and irreducible since
dim Z =1 and f,Ox = Ogz. By shrinking Z, we may assume that all irreducible
components of B dominant Z. Let n € Z~( be the number of the irreducible com-
ponents of B. Then we have

deg(Kp) = Kx-F<Kx-F+n<(Kx+B)-F<0

and hence (deg(Kr),n) = (0,0),(—=2,0),(—2,1), or (—2,2). If (deg(F'),n) = (0,0),
then B = 0 and F is an elliptic curve since p > 3. Similarly, if (deg(F'),n) = (—2,0),
then B =0 and F =~ P}. Next, if (deg(F'),n) = (—2,1), then F ~ P} and B- F =1
or 2. In the case where B - ' = 1, it follows that B and I intersect transversally.
In the case where B - F' = 2, the restricted morphism f|g: B —> Z is generically
étale since p # 2. Finally, if (deg(F),n) = (—2,2), then By - ' = By - F = 1 and
hence By (resp. Bs) intersects transversally with /') where By and By are irreducible
components of B.

Therefore, in each case, we can assume that (X, B) is log smooth over Z by
shrinking Z and finish the proof of the claim.

Now, we show that the assertion of the lemma. We shrink Z so that Z is affine
and (X, B) is log smooth over Z. Note that (X, B) is also log smooth over k in this
case. For the sake of contradiction, we assume that

H°(X,Qx(log B)® Ox(—D)) # 0

for some Z-divisor D satisfying D-F > 0. Then there exists an injective O x-module
homomorphism s: Ox(D) — Qx(log B). Since (X, B) is log smooth over Z, we
have the following exact sequence.

Ox(D)

L

0—— Ox(f*Kz) — Qx(log B) — Qx/z(log B) — 0.

In the above diagram, when B # 0, we define Qx(log B) — Qx/z(log B) by
d(f*z) — 0,dz/x —> dz/x, where z is a coordinate on Z and z is a local equation
of B. Note that f*z and « form coordinates on X since (X, B) is log smooth over Z.
When B = 0, this is the usual relative differential sequence for f ([44, II Proposition
8.11]). Suppose that ¢ is non-zero. Then, by restricting ¢ to F', we have an injective
Op-module homomorphism t|p: Op(D) — Qp(log Blr) = Op(Kr + Br), where
the injectivity follows from the generality of F'. This shows that

0 < deg(D|r) < deg(Kp + Blr) = (Kx + B) - F <0,

a contradiction. Thus t is zero and the morphism s factors through Ox (D) —
Ox(f*Kz). Then by considering the restriction to F', we obtain

0< deg(D|F) < deg(f*KZ|F) = 0,
a contradiction. Hence we conclude that H°(X, Qx(log B) ® Ox(—D)) = 0. O
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Now, we prove Theorem 1.1.2.

Proof of Theorem 1.1.2. Step 0. By replacing B with |B|, we may assume that B
is reduced. Since the assertion is obvious when ¢ = 0 or 2, it suffices to show that

H(X, (9 (log B) ® Ox(~D))*™) =0 (a)

for every big Z-divisor D. Let h: (W, By := h;'B + Exc(h)) — (X, B) be a dlt
blow-up. Then (W, Kw + By) = k(X, Kx + B) and the vanishing (a) is equivalent
to saying that

HO(W, (24} (log Bw) ® Ow (—[h*D]))**) = 0 (b)

when p > 5 by Proposition 3.2.6. We set Dy, = [h*D]. By Remark 2.3.4, Dy, is
big.

Step 1. First, we assume that (X, Kx + B) = —o0 and p > 5. Let us show
the vanishing (b). In this case, Kw + Bw is not pseudo-effective by the abundance
theorem ([98, Theorem 1.2]). By Lemma 3.2.1 (1) and (2), we can replace W with
an output of a (Ky + By )-MMP and assume that W has a (Kw + By )-Mori fiber
space structure f: W — Z. If dim Z = 1, then the assertion follows from Lemma
3.2.9. Thus we assume that dim Z = 0. In this case, W is a klt del Pezzo surface
of Picard rank one and Dy, is an ample Q-Cartier Z-divisor. Let 7: Y — W be a
log resolution of (W, By), B’ :== 7, !By, E := Exc(r), and By := B’ + E. Then by
Proposition 3.2.6, it suffices to show that

H0<Y7 Qy(log By) ® Oy(—[ﬂ'*Dw])) = (.

For the sake of contradiction, we assume that there exists an injective Oy-module
homomorphism s: Oy (|7* Dy |)) — Qy (log By ). Let us show that s factors through
s: Oy([m*Dw])) — Qy(log E). Let Bj be an irreducible component of B’. Since
(Y, By) is log smooth, we obtain the following diagram

Oy ([7*Dw])

00— Qy(log By —Bi) E— Qy(lOg By) OB{ 0.

Since B] is not m-exceptional and Dy is an ample Q-Cartier Z-divisor, it follows
that
[W*Dw] . Bi = ’/T*DW : Bi = DW : ’/T*Bi > 0,

and t is zero. Then s factors through Oy ([7*Dy/|) — Qy (log By — B}). By repeat-
ing this procedure, we can show that s factors through Oy ([7* Dy/|) < Qy (log E).
By [67, Theorem 1.4] and Lemma 2.4.4 (1), it follows that (Y, F) lifts to W (k). Now,
since m* Dy is a nef and big Q-divisor whose support of the fractional part is con-
tained in F, Theorem 2.4.6 shows that 0 # s € H*(Y, Qy (log E))®Oy (—[7*Dw|) =
0, a contradiction.
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Step 2. Next, we assume that (X, Kx + B) = 0 and prove the vanishing (b).
We can replace (W, By) with the (K + By )-minimal model by Lemma 3.2.1 and
hence assume that Ky + By = 0.

Step 2-1. First, we assume that By # 0 and p > 5. In this case, Ky is
not pseudo-effective and we can run a Ky -MMP to obtain a birational contraction
¢: W — W' and a Ky-Mori fiber space f: W/ — Z. Since Ky + By = 0, the
negativity lemma shows that Ky + By = ¢*(Kws + By), where By = ¢, Bw.
Thus (W', By») is log Calabi-Yau and W’ is klt. By Lemma 3.2.1, we can replace
(W, Bw) with (W', By). If dim Z = 1, then the assertion follows from Lemma 3.2.9.
Thus we may assume that dim Z = 0. In this case, W is a klt del Pezzo surface
of Picard rank one and Dy, is an ample Q-Cartier Z-divisor. Let n: Y — W
be a log resolution of (W, By/), B' := n;' By, E = Exc(n), and By = B’ + E.
As in Step 1, we derive a contradiction assuming there exists an injective Oy-
module homomorphism s: Oy ([7*Dy|) — Qy(log By). Since B’ # 0, we can take
an irreducible component B of B’. Since Bj is not m-exceptional and Dy, is an
ample Q-Cartier Z-divisor, an argument as in Step 1 shows that the morphism s
factors through Oy ([7*Dw|) — Qy(log By — Bj). Since Ky + By = 0, we have
k(Y, Ky + By — B]) = —o0. Now, we obtain a contradiction by Step 1.

Step 2-2. Next, we assume that By, = 0. In this case, W is a klt Calabi-Yau
surface. We take a positive integer n as in Lemma 3.1.9 and assume p > n. Let
us show that we may assume that Dy, is nef and big. Let Dy = P + N be the
Zariski decomposition. Note that we can take the Zariski decomposition even when
X is singular ([25, Theorem 3.1]). We take a rational number 0 < ¢ « 1 such that
(W,eN) is klt. Since Ky is torsion by the abundance theorem ([98, Theorem 1.2])
and N is negative definite, it follows that x(Ky +eN) = (X, N) = 0. We run a
(Kw +eN)-MMP to obtain a birational contraction ¢: W — W’ to a (K +eN)-
minimal model W’. Then Ky = ¢, Ky = 0, and in particular, W’ is klt Calabi-Yau.
Moreover, p,eN = Ky + e N = 0, and hence ¢, Dy = ¢, P is nef and big. By
Lemma 3.2.1, we can replace W with W’ and assume that Dy, is nef and big.

We next reduce to the case where W is canonical Calabi-Yau. Let us assume
that W is a strictly klt Calabi-Yau surface. By Lemma 3.1.11, the positive integer
n is_the minimum integer such that nKy = 0. Then we can take a cyclic cover
7: W — W associated to a non-zero global section of nKy, = 0. Since n is not
divisible by p, it follows that 7 is étale in codimension one, and hence we obtain an
injective morphism

HOW, (O ® Ow (~Dw))™) — H* (W, (] ® O (—*Diw))™)
and 7* Dy is nef and big. By replacing W with 17/, we may assume that I has only
canonical singularities.

Now, we show the vanishing (b). Let 7: Y — W be the minimal resolution
and F := Exc(m). By Proposition 3.2.6, it suffices to show that

H(Y,Qy (log E) ® Oy (—[r*Dw1)) = 0.
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Since p > n = 19 by Remark 3.1.10, the pair (Y, E) lifts to W (k) by Proposition
3.1.2. Thus we conclude the desired vanishing by Theorem 2.4.6.

Step 3. Finally, we assume that x(X, Kx + B) = 1 and p > 3. We prove the
vanishing (a) directly. In this case, by replacing (X, B) with its (Kx + B)-minimal
model, we may assume that Kx + B is semiample and x(X, Kx + B) = 1. Then
there exists a projective morphism f: X — Z such that dim Z =1, f,Ox = Oy,
and Kx + B is numerically trivial over Z. Now, by Lemma 3.2.9, we obtain the
assertion.

We will check the sharpness of the explicit bounds on py in Example 3.4.1. [

Let us recall that the definition of a globally sharply F-split pair, which is a
positive characteristic analog of a log Calabi-Yau pair in characteristic zero.

Definition 3.2.10 ([93, Definition 3.1]). Let (X, B) be a pair an algebraically closed
field of characteristic p > 0. We say that (X, B) is globally sharply F-split if there
exists a positive integer e € Z~( such that the composite map

Ox — F,Ox — F,Ox([(p° - 1)B])

of the e-times iterated Frobenius morphism Oy — F{Ox and the natural inclusion
FtOx — FeOx([(p® — 1)B]) splits as an Ox-module homomorphism.

By a similar argument to Theorem 1.1.2, we can show the Bogomolov-Sommese
vanishing theorem for a globally sharply F-split surface pair.

Proposition 3.2.11. Let (X, B) be a globally sharply F-split surface pair over an
algebraically closed field of characteristic p > 5. Then

HO(X, (2} (log | B]) ® Ox(~D))**) = 0
for every Z-diwvisor D on X satisfying (X, D) > i.

Proof. By [93, Theorem 4.4 (ii) and Theorem 4.3 (ii)], it follows that (X, B) is lc
and —(Kx + B) is effective. If k(X, Kx + |B|) = —o0o, then the assertion follows
from Theorem 1.1.2. Thus we may assume that Kx + |B| = 0. First, we assume
that (X, |B]) is not klt. By Proposition 3.2.6, we can replace (X, |B]|) with its dlt
blow-up. In this case, the boundary of the dlt pair is non-zero since (X, |B]) is not
klt. Then the assertion follows from Step 2-1 of the proof of Theorem 1.1.2.

Now, we assume that X is klt Calabi-Yau and B = 0. As in Step 2-2 of the proof
of Theorem 1.1.2, by considering the Zariski decomposition, we can assume that D is
nef and big. Note that the globally F-split property is preserved under a birational
contraction ([17, 1.1.9 Lemma]). Next, a splitting morphism F,Ox — Ox give a
non-zero section of Home, (FxOx, Ox) =~ H°(X, Ox((1—p)Kx)), and together with
Kx =0, we obtain (1 — p)Kx = 0. In particular, the minimum positive integer n
such that nKx = 0is not divisible by p. Let us recall the globally F-split property is
preserved under a finite cover which is étale in codimension one ([89, Lemma 11.1.]).
Thus, by taking a cyclic cover associated to a non-zero global section of nKx, we
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may assume that X is a canonical Calabi-Yau surface such that Kx = 0. If X is
an abelian surface, then the same argument as Step 2-2 of the proof of Theorem
1.1.2 works. Thus we may assume that the minimal resolution Y of X is a K3
surface. Now, by [17, 1.3.13 Lemma| and [101, 5.1 Theorem|, the K3 surface Y is
not supersingular, and an argument of Step 2-2 of the proof of Theorem 1.1.2 and
Remark 3.1.3 show the desired vanishing. ]

Remark 3.2.12. It is still open whether Proposition 3.2.6 holds for F-pure surface
singularities in characteristic p < 5. This is the main reason why we need the
assumption that p > 5 in Proposition 3.2.11.

3.3 Liftability of surface pairs

In this section, we prove Theorems 1.1.3 and 1.1.4. We also discuss deformations
of an lc projective surface whose canonical divisor has negative litaka dimension
(Proposition 3.3.6). First, we focus on the vanishing of the second cohomology of
the logarithmic tangent sheaf.

Definition 3.3.1. Let X be a normal projective variety. We say X is Q-abelian
if there exists a finite surjective morphism 7: X — X such that X is an abelian
variety and 7 is étale in codimension one.

Proposition 3.3.2. Let (X, B) be an lc projective surface pair over an algebraically
closed field of characteristic p > 0 such that B is reduced. When k(X, Kx + B) =0,
let (X', B') be the (Kx + B)-minimal model of (X, B), where B’ is the pushforward
of B. Suppose that one of the followings holds.

(1) K(X,Kx + B) = —w0 and p > 5.
(2) k(X,Kx + B) =0 and one of the followings holds.

(i) B"#0 and p > 5,

(ii) B' =0, X’ is klt, the Gorenstein index of X' is not divisible by p, X' is
not Q-abelian, and p > 19.

Then H*(X,Tx(—log B)) = 0.

Remark 3.3.3. All the assumptions on p are sharp (see Examples 3.4.1, 3.4.2, and
3.4.3).

Proof. First, we assume that the condition (1) holds. We can reduce the desired
vanishing to an output of a (Kx + B)-MMP by Remark 3.2.2, and hence assume
that X admits a (Kx + B)-Mori fiber space structure f: X — Z. If dim Z = 1,
then the assertion follows from Lemma 3.2.9 since — Ky is f-ample. We next assume
that dim Z = 0. Note that —Kx is Q-Cartier by [98, Theorem 5.4]. Then it follows
from p(X) = 1 that —Kx is an ample Q-Cartier Z-divisor, and the assertion follows
from Theorem 1.1.2.
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Next, we assume that the condition (2)-(i) holds. It suffices to show that
H*( X', Tx/(—log B')) = 0. Since Kx + B' =0 and B’ # 0, it follows that K is
not pseudo-effective. Then we can run a K x.-MMP to obtain a birational contrac-
tion p: X’ — X to a Ks-Mori fiber space f: X —> Z. It suffices to show that
H*(X,Tx(—log B)) = 0. Since Ky + B’ = 0, the negativity lemma shows that
Ky + B' = ¢*(K+ + B) and hence (X, B) is log Calabi-Yau, where B := ¢, B’. If
dim Z = 1, then the assertion follows from Lemma 3.2.9 since —K~ is f-ample. If
dim Z = 0, then the assertion follows from Step 2-1 of the proof of Theorem 1.1.2
since — K is ample Q-Cartier by [98, Theorem 5.4].

Finally, we assume that the condition (2)-(ii) holds. It suffices to show that
H?*(X',Tx:) = 0. We first assume that X' is strictly klt Calabi-Yau. Let n be the
minimum positive integer such that nKx, = 0. Then n is equal to the Gorenstein
index by Lemma 3.1.11, and hence n is not divisible by p by assumption. Let
7: X — X' be a cyclic cover associated to a non-zero global section of nKx, = 0.
Since 7 is étale in codimension one, we have

HA(X', Tyr) = HY(X', (%) ® O (Kx))™) > H(X, (2 ® O3 (Kg))*™)
—H® (X,T;(),

Thus we may assume that X’ is canonical Calabi-Yau. By the assumption that
X' is not Q-abelian, the minimal resolution of X’ is a K3 surface or an Enriques
surface. In these cases, we have already shown that H?(X’ Tx+) = 0 in the proof of
Proposition 3.1.3. O

Now, we prove Theorems 1.1.3 and 1.1.4.

Proof of Theorem 1.1.5. Set By = m;'B + Exc(r). Suppose that the condition (1)
holds and p > 5. Then (Y, Ky + By) = — by Lemma 3.2.1 (2), and hence (Y, By)
lifts to W (k) by Proposition 3.3.2 (1) and Theorem 2.4.5.

Next, we assume that the condition (2) holds and p > 5. By Lemma 3.2.5, we
can decompose 7: Y — X into a birational morphism ¥ — W and a dlt blow-up
h: W — X. Then there exists an effective Q-divisor F' such that Ky + By + F =
h*(Kx + B) = 0, where By := h;'B + Exc(h). By assumption, we have By # 0
and hence H*(Y, Ty (—log By)) — H?*(W, Ty (—log By )) = 0 by Proposition 3.3.2
(1) and (2)-(i). Moreover, since —Kx = B is strictly effective, it follows that
H?*(Y,0y) = 0. Now, we conclude that (Y, By) lifts to W (k) by Theorem 2.4.5.

Finally, we assume that the condition (3) holds. In this case, k(Y, Ky + By) <0
by Lemma 3.2.1 (2). If x(Y,Ky + By) = —o0 and p > 5, then (Y, By) lifts to
W (k) by (1). Thus we can assume that x(Y, Ky + By) = 0. By Propositions 3.1.2
and 3.1.13, we can take a positive integer pg > 19 with the following property; for
every klt Calabl Yau surface Z over an algebraically closed field of characteristic
bigger than po and every log resolution f: Z —> Z, the pair (Z Exc(f)) lifts to
W (k). We fix such a py and assume that p > po. We run a (Ky + By)-MMP
to obtain a birational contraction ¢: Y — Y’ to the (Ky + By)-minimal model
(Y’ By == p4By), which is dlt and log Calabi-Yau. If By, # 0, then (Y, By) lifts
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to W (k) by (2). If By: = 0, then we obtain the desired liftability by the assumption
of Po-

We will check the sharpness of the explicit bound on py in Examples 3.4.1 and
3.4.2. m

Proof of Theorem 1.1.4. We take a positive integer py as in Theorem 1.1.3. If
R(X,Kx) = —oo and p > 5 (resp. K(X,Kx) = 0 and p > py), then the assertion
follows from Theorem 1.1.3 and Lemma 2.4.9. Next, we assume that x(X, Kx) = 1,
X is lc, and p > 3. In this case, we have H°(X, (Qg] ® Ox(—p°D))**) = 0 for all
e € Z=g by Theorem 1.1.2. Then, by the proof of [59, Lemma 2.5], we have the
injective morphism H'(X,Ox(—D)) — HY(X,Ox(—p°D)) arising from the e-th
iterated Frobenius morphism. Let 7: Y — X be a log resolution. By the proof of
Lemma 2.4.9, it suffices to show that H'(Y, Oy (—[p°m*D])) = 0 for e » 0. We take
m,n € Z~q such that p™(p"™ — 1)7*D is Cartier. Then we obtain

HY(Y, Oy (~[p™ " D) = H'(¥, Oy (~[p"x D] + (3,p")p" ("~ 1)° D))

and the last cohomology vanishes for [ » 0 by [99, Theorem 2.6].
We will check the sharpness of the explicit bounds on py in Example 3.4.1. [

Finally, we apply Proposition 3.3.2 to show the vanishing of local-to-global ob-
structions (see [78, Definition 4.11] for the definition). In particular, we prove Propo-
sition 3.3.6 (3), which is a positive characteristic analog of [40, Proposition 3.1].

Definition 3.3.4. Let X be a normal projective variety. We say X admit a Q-
Gorenstein smoothing if there exists a flat projective morphism X — T from a
normal Q-Gorenstein scheme to a smooth curve T" with a reference point o € T such
that the fiber over o is isomorphic to X and X — T is smooth over T — o.

Definition 3.3.5. Let X be a normal variety over an algebraically closed field of
positive characteristic. We say X is F-pure if the local ring Ox , is F-split (i.e. the
Frobenius morphism Ox, — F.Ox, splits as an Ox ,-module homomorphism)
for every closed point z € X.

Proposition 3.3.6. Let X be an lc projective surface over an algebraically closed
field k of characteristic p > 5 with k(X, Kx) = —o0. Then X has no local-to-global
obstructions. In particular, the followings hold.

(1) If X is F-pure, then X lifts to Wa(k).
(2) If X is locally complete intersection (l.c.i. for short), then X lifts to W (k).

(3) If every singular point of X is l.c.i or a T-singularity (see [78, Definition 3.4/
for the definition), then X admits a Q-Gorenstein smoothing.
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Proof. By taking B = 0 in Proposition 3.3.2 (1), we obtain H?(X,Tx) = 0. Then
we conclude that X has no local-to-global obstructions by [78, Theorem 4.13].
First, we show (1). Suppose that X is F-pure. Then X lifts to Wa(k) locally
by [72, Corollary 8|. Since X has no local-to-global obstructions, it follows that X
lifts to Wa(k). Next, we show (2). Suppose that X is locally complete intersection.
Then X lifts to W (k) locally by [45, Theorem 9.2 |. Thus X formally lifts to W (k)
and this is algebraizable by H*(X,Ox) = 0. Finally, we show (3). Suppose that
every singular point of X is l.c.i or a T-singularity. Then each singularity admit a
smoothing by [78, Lemma 5.1 and Theorem 3.14]. Hence it follows from the proof
of [78, Theorem 5.3] that X admits a smoothing. O

3.4 Sharpness of Theorems 1.1.2, 1.1.3, and 1.1.4

In this section, we observe the failure of Theorems 1.1.2, 1.1.3, and 1.1.4 in low
characteristic or for surface pairs whose log canonical divisor is big. First, let us
focus on the characteristic.

Example 3.4.1. By Theorem 1.3.6 (3), [10, Theorem 1.1], and [7, Proposition
5.1], we can take a klt del Pezzo surface X in each characteristic p € {2, 3,5} with
more than four singularities and an ample Q-Cartier Z-divisor D on X such that
HY(X,0x(Kx + D)) # 0. Let m: Y — X be the minimal resolution with F =
Exc(m). Then —Ky is big and (Y, Ky + E) = —c0.

Firstly, (Y, E) does not lift to any Noetherian local domain with fractional field
of characteristic zero because there are no klt del Pezzo surfaces with more than
four singularities in characteristic zero by [9, Theorem 1.1]. In addition, (Y, E)
dose not lift to Wh(k) by Lemma 2.4.9, and it follows from Theorem 2.4.5 that
0 # H*(Y,Ty(=log E)) — H?*(X,Tx). Therefore, the explicit bound py = 5 in
Theorems 1.1.2, 1.1.3 (1), and 1.1.4 (1) is optimal. These examples also show that
the sharpness of the assumption p > 5 in Proposition 3.3.2 (1).

By [92, Section 3,1, we can take a smooth projective surface X in each char-
acteristic p € {2,3} with x(X, Kx) = 1 and an ample Cartier divisor D on X such
that H'(X, Ox(Kx + D)) # 0. Then [59, Lemma 2.5] shows that there exists n > 0
such that H°(X,Qx ® Ox(—p"D)) # 0. Therefore, the explicit bound py = 3 in
Theorems 1.1.2, 1.1.4 (2) and the assumption that p > 3 in Lemma 3.2.9 are optimal.

Example 3.4.2. We show that there exists a klt del Pezzo surface X in each char-
acteristic p € {2, 3,5} and a non-zero reduced divisor B on X such that Kx + B = 0,
but (Y, f; 1B+ Exc(f)) does not lift to any Noetherian local domain with fractional
field of characteristic zero for some log resolution f: Y — X of (X, B).

We first assume p = 5. We take a del Pezzo surface X with two A-singularities
and a cuspidal rational curve B in the smooth locus of X as in [67, Example 7.6].
Then we have Kx + B = 0 by the adjunction formula. We take a three-times blow-
up f: Y — X at the cusp of B. Then there exists a contraction 7: Y — Z to a
klt del Pezzo surface Z with five singularities and Exc(m) < f, !B + Exc(f) (see [67,
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Example 7.6] for the detail). Then (Y, Exc(m)) does not lift to any Noetherian local
domain with fractional field of characteristic zero by [9, Theorem 1.1] and neither
does (Y, f, ' B+ Exc(f)). When p = 3, we can take X = P? and a curve B as in [67,
Example 7.5] to show the assertion. When p = 2, we can take a del Pezzo surface
X as any one of Theorem 1.3.6 (3) and B is a general member of the anti-canonical
linear system, which is integral.

Therefore, the explicit bound on pg in Theorem 1.1.3 (2) and the assumption
p > 5 in Proposition 3.3.2 (2)-(i) are optimal.

Example 3.4.3 (cf. [11, Remark 3.4]). By [95, Corollary 1.2], there exists a canoni-
cal Calabi-Yau surface X in each characteristic p < 19 such that Y is a supersingular
K3 surface and E = Exc(m) consists of 21 (—2)-curves, where 7: Y — X is the
minimal resolution. Then (Y, E) does not lift to any Noetherian local domain R with
fractional field K of characteristic zero. For the sake of contradiction, we assume
that there exists a lifting (), &) of (Y, F) to such an R. Let Y (resp. Ey) be the
geometric generic fiber of J) — R (resp. £ — R).

Let us show that Y% is a K3 surface. Since H'(Y, Oy) = 0, alifting of each invert-
ible sheaf is unique by [27, Corollary 8.5.5]. Then wy|y = wy = Oy = Oyly shows
that wy = Oy. Together with X (Y, Oy._) = X(Y,0y) = 2, we conclude that Yz
is a K3 surface. Since Y contains 21 (—2)-curves Eg which is negative definite, we
obtain p(Y%) = 22, a contradiction with the fact that the Picard rank of a K3 surface
in characteristic zero is at most 20 (see [49, Chapter 17, 1.1] for example). Finally,
by the proof Proposition 3.1.2, we obtain 0 # H*(Y,Ty(—log E)) — H?*(X, Tx).

Therefore, py in Theorem 1.1.3 (3) should be at least 19. Moreover, the assump-
tion that p > 19 in Propositions 3.1.2 and 3.3.2 (2)-(ii) is sharp.

Finally, we close the paper by discussing the assumptions of litaka dimensions
of (log) canonical divisors in Theorems 1.1.2, 1.1.3, and 1.1.4. By counterexamples
([92]) of the Kodaira vanishing theorem on smooth projective surfaces with big
canonical divisor, we can see that Theorems 1.1.2, 1.1.3, and 1.1.4 do not hold for
a surface with big canonical divisor in any characteristic. In the next example, we
will see that Langer’s surface pair [72] shows that Theorems 1.1.2 and 1.1.3 do not
hold on a surface pair whose log canonical divisor is big even when the surface itself
is rational.

Example 3.4.4. We first recall the construction of Langer’s surface pair [72, Section
8]. Let h: X —> P% be the blow-up all the F,-rational points and Li,..., Ly,
strict transforms of all the Fp-lines. Then X is a smooth rational surface and

Ly,..., Ly, are pairwise disjoint smooth rational curves.
There exists a nef and big Q-divisor D such that H'(X, (’)X(KX +[D])) # 0
and Supp({D}) = > +p+1L by (21, Theorem 3.1]. Thus (X, >} ] L) dose

not lift to Wa(k) by Theorem 2.4.6 and H*(X,Tx(—log Y ] el p L;)) # 0 by The-
orem 2.4.5. Finally, there exists a big divisor M such that OX( ) is contained in

Qx(log X177 By’ L;) by [75, Proposition 11.1].
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Now, we check that Ky + Zf:rpﬂ L; is big except when p = 2. Since L? = —p
for each ¢ and Ly,...,Ly2,.; are pairwise disjoint, we can take the contraction
f: X — Zof Zp2+p+1 L;. By the proof of [21 Lemma 2.4 (i)], we have Kx + (1 —
eI el L;) = f*Kz and hence Kx + Y| el [f*Kz]. I p# 2, then K is

P i=1

ample by [21, Lemma 2.4 (iv)] and hence Kx + 7] "2+l [ is big. Note that if p = 2,

then k(X, Kx + >0 ] Sl L) = —oo since fo(Kx + > 1) = K is anti-ample.
Therefore, T heorems 1.1.2, 1.1.3 and Proposition 3. 3 2 do not hold on a surface

pair whose log canonical divisor is big even when the surface itself is rational.

Remark 3.4.5. For a singular surface, it is often more useful to consider the liftability
of a log resolution than that of itself (see [7], [23], and Section 5 for example). In
Example 3.4.4, we constructed the pathological example from the log resolution
of the palr consisting of P% and all the F,-lines Zp LT However, the pair

(P2, 307 SEARY) L;) clearly lifts to W (k). For this reason, when we discuss lifting of a
non-log smooth pair, it is more suitable to consider the liftability of a log resolution
of the pair to capture pathologies in positive characteristic.

Remark 3.4.6. Example 3.4.4 gives a slightly generalization of [21, Corollary 3.3].
Indeed, we can drop the assumption p > 3 and replace >/ ] el > Sral L with

32?”1 L’ in [21, Corollary 3.3]. On the other hand, this fact also follows from [74,

Proposition 4.1] and [75, Proposition 11.1].



Chapter 4

Bogomolov-Sommese type
vanishing for globally F'-regular
threefolds

In this section, we prove Theorems 1.2.1 and 1.2.2.

4.1 F-split and globally F-regular varieties

In this section, we gather the results about F-split and globally F-regular vari-
eties.

Definition 4.1.1 ([85], [97]). Let X be a normal variety.

(1) We say that X is (globally) F-split if the Frobenius map Ox — F,Ox
splits as an Ox-module homomorphism. We call ¢ € Home, (FiOx,Ox) =
H(X,0x((1 —p)Kx)) a splitting section if o induces a splitting of Ox —
F.Ox. We often call the divisor ¥ € |(1—p)K x| corresponding to o a splitting
section.

(2) We say that X is globally F-regular if for every effective Weil divisor D on X,
there exists an integer e > 1 such that the composite map

OX e F:OX —> F:OX(D)
of the e-times iterated Frobenius map Oy — FfOx and the natural inclusion
FtOx — FfOx (D) splits as an Ox-module homomorphism.

Remark 4.1.2. (1) Let X be a globally F-regular variety and D an effective Weil
divisor on X. Then the map Ox — FfOx (D) splits as an Ox-module homo-
morphism for all sufficiently large e by [93, Proposition 3.8].

(2) Let f: X --» Y be a small birational map or a projective surjective morphism
satisfying f.Ox = Oy of normal varieties. If X is F-split (resp. globally F-
regular), then so is Y by [32, Lemma 1.5]. In particular, if we start the MMP

42
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from an F-split (resp. globally F-regular) variety, then an output of the MMP
is also F-split (resp. globally F-regular).

(3) Globally F-regular varieties are Cohen-Macaulay by [97, Proposition 4.1].

(4) Let m: Y — X be a birational projective morphism between normal Q-
Gorenstein varieties such that f*Kx — Ky is Q-effective. If X is F-split
(resp. globally F-regular), then so is Y by [33, Lemma 3.3]). In particular,
the minimal resolution of a Du Val del Pezzo surface preserves the F-splitting

property.

(5) Let C be an elliptic curve. Then C' is F-split if and only if C' is ordinary (see
[17, 1.3.9 Remark (ii)]).

(6) Globally F' regular projective varieties are of Fano type (see [93, Theorem
1.1]).

Theorem 4.1.3 ([32, Theorem 2.1]). Let f: X — Y be a projective surjective
morphism of normal varieties satisfying f+Ox = Oy. If X is globally F-regular,
then a general fiber of f is normal and globally F-reqular.

Theorem 4.1.4 (Proof of [32, Theorem 4.1)). Let f: X — Y be a projective
surjective morphism from a terminal globally F-regular threefold to a normal variety
over an algebraically closed field of characteristic p > 0 satisfying f.Ox = Oy.
Suppose that —Kx is f-ample and one of the following conditions holds.

(1) dimY = 2.
(2) p>7and dimY = 1.
Then X is separably rationally connected.

We refer to [64, IV 3.2 Definition] for the definition of separably rationally con-
nected varieties. Since the separably rationally connected property is preserved un-
der birational maps, Theorem 4.1.4 states that if we start Kx-MMP from a smooth
globally F-regular threefold and the MMP ends up with a Mori fiber space over a
surface, or a curve and p > 7, then X is separably rationally connected. On the
other hand, very little is known when the MMP ends up with a Fano variety. We
refer to [32] for more details.

4.2 Logarithmic Cartier operators

In this section, we recall the logarithmic Cartier operator. Let X be a smooth
variety and B a reduced divisor on X with snc support. The Frobenius push-forward
of the logarithmic de Rham complex

F.Q%(log B): F,Ox 2% F,QL (log B) =5 ...
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is a complex of Ox-module homomorphisms. For all ¢ > 0, we define locally free
Ox-modules as follows.

B (log B) == Im(F,d: F,.Q%"'(log B) — F.Q%(log B)),
Zi (log B) == Ker(F,d: F.Q%(log B) — F.Q%'(log B)).

By definition, we have the following exact sequence
0 —> Zi(log B) — F,Q%(log B) — By'(log B) — 0

for ¢ = 0.
In particular, by taking ¢+ = 0 in the above exact sequence, we have

We note that B%(log B) = BY. We remark that the F-splitting (Definition 4.1.1
(1)) is nothing but to the splitting of this exact sequence. Moreover, we have the
exact sequence arising from the logarithmic Cartier isomorphism

0 —> B (log B) — Zi(log B) <> Qi (log B) — 0.

We refer to [56, Theorem 7.2] for more details.

4.3 Bogomolov-Sommese type vanishing for sev-
eral varieties

In this section, we prove a Bogomolov-Sommese type vanishing for varieties with
special properties.

The following assertion states about a Bogomolov-Sommese type vanishing on
separably uniruled varieties. We refer to [64, IV 1.1 Definition] for the definition of
separably uniruled varieties.

Proposition 4.3.1 ([63, Lemma 7]). Let X be a smooth projective separably uniruled
variety and D a big Cartier divisor on X. Then H°(X, Q% ® Ox(=D)) = 0 for all
1= 0.

Remark 4.3.2. Let (X, B) be a log smooth projective surface such that B is reduced.
If K(X,Kx) = —o0 and B = 0, then the Bogomolov-Sommese vanishing holds by
Proposition 4.3.1. On the other hand, as we have seen before in Example 3.4.4, this
is not true if B # 0.

We will see that if X is F-split, then Qx(log B) dose not contain a nef and big
invertible sheaf in Proposition 4.4.6.

Next, we show a Bogomolov-Sommese type vanishing on separably rationally
connected varieties. Let X be a smooth projective variety of dim X = n. We recall
that a rational curve p: Pi — X is called very free if p*Qx = Opi(—a1) ® -+ @
Opi(—an) for a, -+ ,an € Zy.
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Theorem 4.3.3. Let X be a smooth projective variety. Then X is separably ratio-
nally connected if and only if there is a very free rational curve through a general
point of X.

Proof. We refer to [64, IV. Theorem 3.7] for the proof. O

The proof of the following proposition is essentially same as that of Proposition
4.3.1, but we include the proof for the convenience of the reader.

Proposition 4.3.4. Let X be a smooth projective separably rationally connected
variety and D a Cartier divisor on X. If K(X, D) = 0, then H*(X, Q5% ®0x(—D)) =
0 for allv > 0.

Proof. We take a Cartier divisor D satisfying x(X, D) > 0. Conversely, we assume
that there exists a nonzero section 0 # s € H°(X, Q% ® Ox(—D)) for some i > 0.
We fix m € Z- such that mD is linearly equivalent to an effective divisor. We take
a very free rational curve p: P, — X through a general point of X. Then Im ¢
is not contained Supp(mD) and hence we have ¢*Ox (D) = Opi (b) for some b = 0.
By the definition of a very free rational curve, it follows that ¢*(Q% ® Ox(—D)) =
O]pllc(_bl) @@ Op}c(—bn) for some by,--- ,b, > 0.

On the other hand, since ¢: P, —> X passes through a general point of X it
follows that Im ¢ is not contained in the zero locus of s and hence s|p,, # 0.

Now, we obtain

0+# Slme € H°(Imgp, (% @ Ox(—=D))|imy)
— HO(Imw (% @ Ox(— D)) ® ¢:Op1)
HO(P}, o* (% ® Ox(—D))
HO(P;,OP( bl)@ - @ Op1 (—by))

|
o

Y

a contradiction. O

Remark 4.3.5. Let X be a smooth globally F-regular surface. Then X is rational by
[32, Proposition 3.5]. Therefore if Ox(D) < QY% is an invertible subsheaf for some
i > 0, then (X, D) = —oo by Proposition 4.3.4.

Lemma 4.3.6. Let f: X — C be a minimal ruled surface. Then we have
H(X,Qx ® Ox(—=D)) =0
for every Cartier divisor D satisfying x(X, D) = min{g = dim; H'(X, Ox), 2}.

Proof. If ¢ = 0 or g > 1, then the assertion follows from Proposition 4.3.4 and
Proposition 4.3.1, respectively. We assume that g = 1. We take an injective homo-
morphism s: Ox (D) < Qx. Then we have the following commutative diagram
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Let F be a general fiber of f. By the generality of F, the restriction t|p: Op(D) —
wx | is injective. Then we have (D - F) < (Kx - F) = —2 and hence (X, D) = —w
by the nefness of F'. Now, we assume that ¢ is zero. Then an injective homomorphism
Ox (D) — Ox is induced by the above diagram and hence (X, D) = —oo or D = 0.
Therefore the assertion holds. O

Next, we discuss the case where (X, Kx) = 0. The following proposition is an
immediate consequence of [73, Corollary 3.3].

Proposition 4.3.7. Let X be a smooth projective variety of dim X = n. Suppose
that p = (n—1)(n —2), Kx = 0, and X is not uniruled. If Ox(D) < Qi is an
invertible subsheaf for some i = 0, then (X, D) < 0.

Proof. We may assume that k is an algebraically closed field. By [73, Corollary 3.3],
it follows that Q2x is strongly semistable with respect to any ample polarization H
and so is Q% for each i > 0 by [91, Theorem 3.23]. We refer to [73] for the definition
of the strongly semistability. We take an injective homomorphism Ox (D) — Q%
for some 7 > 0. By the definition of the semistability, we have (D - H" 1) <
(—c1(X) - H ) /rank Q% = 0 and hence (X, D) < 0. Therefore we obtain the
assertion. [

Remark 4.3.8. A Calabi-Yau variety whose Artin-Mazur height is finite is not unir-
uled by [46, Theorem 1.3]. We note that the proof of [46, Theorem 1.3] works in
any dimension.

Now, we show a Bogomolov-Sommese type vanishing for smooth projective F-
split surfaces.

Theorem 4.3.9. Let X be a smooth projective F-split surface. If Ox(D) < QY is
an invertible subsheaf for some i = 0, then (X, D) < 0.

Proof. When ¢ = 0, the assertion is obvious. Since X is F-split, there exists a
section 0 € H*(X,Ox((1 —p)Kx)) =~ Homp, (FyOx, Ox) which induces a splitting
of the Frobenius map Ox — F,Ox, and in particular the anti-canonical divisor
— K is effective. Then the assertion holds when 7 = 2. We assume that ¢ = 1. By
Lemma 3.2.1, we may assume that X is minimal.

e The case where (X, Kyx) = —oo. If X ~ P2 then the assertion follows
from Proposition 4.3.4. Thus we assume that X has a ruled surface struc-
ture f: X — C. Since C is F-split by Remark 4.1.2 (2), it follows that
dim H'(C,O¢) = 0 or 1 and the assertion follows from Lemma 4.3.6.

e The case where (X, Kx) = 0. First, we assume that X is a K3 surface. Then
the Artin-Mazur height of X is equal to one by [101, 5.1 Theorem] and hence
we obtain the assertion by Proposition 4.3.7 and Remark 4.3.8.

Next, we assume that X is an Enriques surface. We first assume that p # 2.
Then there exists a finite étale morphism f: Y — X from a K3 surface Y.
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Since f is étale, it follows from [1, Lemma 2.5.5 (d)] that Y is F-split and
in particular Y is not uniruled. The étaleness of f also shows that X is not
uniruled and we obtain the assertion by Proposition 4.3.7. We next assume
that p = 2. Since X is F-split, the Frobenius action on H'(X, Ox) is bijective
by [1, Lemma 2.5.5 (a)] and hence X is not supersingular. Moreover, since
there exists a section 0 € HY(X, Ox(—Kx)) which induces a splitting of the
Frobenius map, it follows that Ky is not torsion and hence X is not classical.
Thus X is a singular Enriques surface and hence there exists a finite étale
morphism f:Y — X from a K3 surface Y by [16, Corollary in Section 3.
Now, the same argument as in the case where p # 2 shows the assertion.

If X is an Abelian surface, then the assertion follows immediately from Propo-
sition 4.3.7. Finally, we assume that X is a (quasi-)hyperelliptic surface. Since
X is F-split, a general fiber of the Albanese map is normal by [24, Proposition
7.2]. Thus X is a hyperelliptic surface and there exists a finite étale morphism
f:Y — X from an Abelian surface Y. Then X is not uniruled and we
conclude the assertion by Proposition 4.3.7.

O

4.4 Bogomolov-Sommese type vanishing for glob-

ally F-regular threefolds

In this section, we prove a Bogomolov-Sommese type vanishing on globally F-
regular threefolds.

Definition 4.4.1. Let X be a variety and F a coherent sheaf on X. We say that F
satisfies Serre’s condition S, if depthy, (F,) = min{n,dim Ox,} holds for every
(not necessary closed) point x € X.

Lemma 4.4.2. Let X be a projective variety and A an ample Cartier divisor on X .
Let F be a coherent sheaf on X satisfying Serre’s condition S,. Then

H' (X, F®Ox(—mA)) =0

for all i <1 :=min{n,dim X} and all sufficiently large m.

Proof. We may assume that X is the closed subscheme of P& and Ox(A) = Ox(1).
We fix a closed point z € X. Since F satisfies Serre’s condition .S, it follows that

pdo, (Fo) =N —depthy , (F,) = N —depthy,(F,) < N 1
LT [Pk T T

and hence gwtﬁ»{j (F, =) =0 for j > N —[. Now the Serre duality yields

H'(X, F(=m)) =Bt (F,wpy(m))
gHO(]P’fCV,Exth_i(.F, wpn (M))) m > 0

=0 1<

and hence we obtain the assertion. O
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Lemma 4.4.3. Let X be a normal projective variety and D a Q-Cartier Z-divisor
on X such that k(X, D) > 0. Let F be a reflevive sheaf on X. Then H°(X,(F ®
Ox(—=p°D))**) = 0 for all sufficiently large and divisible e.

Proof. Since k(X, D) > 0, there exists a rational map ¢ = @pmpErn_1)p|: X --» Y
such that Y is a projective variety with dim Y > 0 for some m,n € Z>,. We fix
such m,n. Since F is reflexive, we can take an open subset U with codimy (X —
U) = 2 such that F is locally free on U and U < X,,. By taking a resolution of
indeterminacy of |y, we have the following commutative diagram

We note that p™(p"™ — 1) f*D|y — ¢g*H = 0 for some ample Cartier divisor H on Y
by the construction of g. Then we have

H(X,(F®Ox(— m””D))**)
= HU,(Flv ® Oy(—p ))®0U(—pm(pl”—1)D))
= HV,f (F|U®@U( D)) ® Oy (—p™(p™ —1)f*D))
— H°(V, f*(Fluv ® Oy(=p™D)) ® Oy (—g*H,))
= H'(Y,g.f (}_!U®OU( p" D)) ® Oy (—H))

for all [ € Z-q, where H; := (1 +p + e ptbn )H Since F|y and Oy (—p™D)

are locally free, it follows that g, f*(F |U ® Oy (—p™D)) is torsion-free. Therefore
HYY, g. f*(Flv ® Oy (—p™D)) ® Oy (—H;)) = 0 for a sufficiently large integer [ by
Lemma 4.4.2. O

Example 4.4.4. Let X be a normal projective variety which lifts to the ring of
Witt vectors of length two W (k) with its Frobenius morphism (see [20, Section 2]
for more details). Then there exists a splitting injective map QEZ(] — F*QE? by [20,
Theorem 2]. Let D be a Q-Cartier Z-divisor on X. If x(X, D) > 0, then it follows
that

HO(X, (Y ® Ox(=D))™) — H(X, (Y ® Ox(~p*D))**) = 0

for a sufficiently large and divisible integer e by Lemma 4.4.3. We remark that toric
varieties lift to W5 (k) with their Frobenius morphisms, but a stronger assertion than
the above holds on them. We refer to [30, Theorem 2.22] for the detail.

Theorem 4.4.5. Let X be a projective globally F'-reqular variety and B reduced
divisor on X. Suppose that dim X > 2 and codimx ((X, B)usnc) = 3. Then

H(X, (4 (log B) ® Ox(~D))™) =0
for every nef and big Q-Cartier Z-divisor D on X.

Proof. First, we show the following claim.
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Claim. H'(U,Oy(—D)) = 0 for every nef and big Q-Cartier Z-divisor D, where U
denotes (X, A)gne.

Proof of the Claim. Let D be a nef and big Q-Cartier Z-divisor. We fix m,n € Z~
such that D' := p™(p" —1)D is Cartier. The bigness of D shows that p™D is linearly
equivalent to an effective Z-divisor for all sufficiently large m » 0. By Remark 4.1.2
(1), there exists [ » 0 such that

Ox — F""'"Ox(p™D)
splits. By restricting to U and tensoring Oy (—D), we have a splitting injective map

OU(_D> PN F:I-‘ranU(me _ pm+lnD)
FrHnOy(-Dy),

where Dj := (1+p"+---+pl=Y")D’. By taking the cohomology, we have a splitting
injection
HY(U,Oy(=D)) — H'(U,Ouy(-Dy)),

and thus we may assume that D is Cartier. If dim X = 2, then U = X by the
assumption that codimy ((X, A)ysne) = 3, and the assertion of the claim follows
from [97, Corollary 4.4]. Now we assume that n := dim X > 3. Since X is globally
F-regular, it follows that X is Cohen-Macaulay by Remark 4.1.2 (3) and the line
bundle Ox (—D) satisfies Serre’s condition S,. By the assumption codimx(Z) > 3
and by [18, Proposition 1.2], we have HL(X,Ox(—D)) = 0 for all j < 3, where Z
denotes (X, A)psne. We consider the spectral sequence

By = HY(X,H}(X,0x(~D)) — H™ = H7(X,0x(-D)).
Since Fy’ = HY(X, H},(X,Ox(=D)) = 0 for all j < 3, we have
HL(X,0(-D)) = H' = E° = H(X,H%(X,O0x(-D)) =0
for all 7 < 3. By the local cohomology exact sequence, we have the exact sequence
HY(X, Ox(~D)) — H(U,Ox(~D) —> H3(X,Ox(~D)) = 0.

Therefore, it suffices to show that H'(X,Ox(—D)) = 0 and this follows from [97,
Corollary 4.4]. O

Now, we show the assertion of the theorem. Conversely, we assume that
H(X, (2 (log B) ® Ox(—D))*) = H*(U,Qu(log B) ® Oy(~D)) # 0.
Then, by Lemma 4.4.3, there exists [ € Z~, such that

HY(X, (9% (log B) ® Ox(—p'D))**) # 0,
HO(X, (9% (log B) ® Ox(—p*'D))**) = 0.
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We note that we can use the Cartier operator on U = (X, A)g,e. Since X is F-split,
the exact sequence
O—>OU—>F*OU—>B[1]—>O

splits. By the claim and the splitting of the above exact sequence, we have
HY(U, Bj; ® Oy(—p'D)) = 0

for every nef and big Q-Cartier Z-divisor D. Since Z};(log B) < F.Qu(log B), we
have

HO(U, Z}:(log B) ® Oy(—p'D)) < HO(U,Qu(log B) ® Oy (—p'*' D))

H(X, (2 (log B) ® Ox(—p"*'D))**)
0.

Now, since H*(U, Z};(log B)® Oy (—p'D)) = H (U, B;, @ Oy (—p' D)) = 0, the exact
sequence

0 — Bl (log B) = B}, — Z}(log B) — Qu(log B) — 0
shows
H(X, (2 (log B) ® Ox(—p'D))**) = H(U, 2y (log B) ® Oy(—p'D)) =0,
a contradiction with the assumption of /. O

If X is smooth in Theorem 4.4.5, then we can weaken the assumption that X is
globally F-regular as follows.

Proposition 4.4.6. Let (X, B) be a log smooth projective variety of dim X > 2.
Suppose that X is F-split. Then H°(X,Qx(log B) ® Ox(—D)) = 0 for every nef
and big Cartier divisor D on X.

Proof. We take a nef and big Cartier divisor D. Since X is F-split, we have a
splitting injective map

H'(X,0x(~D)) — H'(X,Ox(—p°D)).

By [71, Proposition 2.24], we have H'(X, Ox(—p°D)) = 0 for a sufficiently large
integer e and hence H'(X,Ox(—D)) = 0. Now the argument after the claim of
Theorem 4.4.5 shows the assertion. [

Globally F-regular surfaces have only F-regular singularities. We note that
F-regular singularities are klt and in particular the minimal resolutions are log
resolutions. We refer to [43] for more details.

Graf [35] shows that a surface with F-regular singularities satisfies the extension
theorem for the logarithmic differential form.
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Theorem 4.4.7 (cf. [35, Theorem 1.2]). Let X be a normal surface with F-reqular
singularities and w: Y — X the minimal resolution with the reduce m-exceptional
divisor E. Then m,Qy (log F) =~ QE?.

Proof. We may assume that k is an algebraically closed field by [35, Proposition
7.4]. By [43, Theorem 1.1], the dual graph of 7 is one of the following.

1. The graphs of the singularity is a chain.
2. The graphs of the singularity is star-shaped and either

(a) of type (2,2,d), d =2, and p # 2,
(b) of type (2,3,3) or (2,3,4), and p > 3,
(c) of type (2,3,5) and p > 5.

By applying [35, 7.B Proof of Theorem 1.2 (7.9.5)] (resp. [ibid, (7.9.6)], [ibid, (7.9.7)])
to (1) (resp. (2)(a), (2)(b) and (c)), we obtain the assertion. O

Corollary 4.4.8. Let X be a normal projective F'-split surface with F'-regqular sin-
gularities. Then H°(X, QE? ® Ox(=D)) = 0 for every i = 0 and every nef and big
Cartier diwisor D on X.

Proof. When ¢ = 0, we obtain the assertion by the bigness of D. Since X is F-split, it
follows that — Ky is effective and hence the assertion holds when ¢ = 2. Now, we as-
sume that ¢+ = 1. Conversely, we assume that there exists an injective homomorphism
Ox(D) — QQ] for some nef and big Cartier divisor D on X. Let 7: ¥ — X be the
minimal resolution with the reduced m-exceptional divisor E. Since 7 is crepant, it
follows that Y is F-split by [17, 1.3.13 Lemmal|. Now, by Theorem 4.4.7, we have
an injective homomorphism Oy (7*D) — W*QQ] ~ 11, Qy (log E) — Qy(log E),
a contradiction with Proposition 4.4.6. O]

Lemma 4.4.9. Let f: X — Y be a projective surjective morphism of normal
varieties satisfying f.Ox = Oy. Suppose that a general fiber F of f is globally
F-regular and dim F = 1 or 2. In addition, assume that codimy(Xs,) = 3 when

dim F' = 2. Let D be an f-nef and f-big Q-Cartier Z-divisor on X. Then f*(QEZ(] &
Ox(=D))** =0 for all i = 0.

Proof. If dim Y = 0, then X is a smooth rational curve or a smooth rational surface,
and the assertion follows from Proposition 4.3.4. Thus we assume that dim Y > 0.
We may assume that Y is affine. Conversely, we assume that there exists an injective
homomorphism s: Ox (D) — QE’{] for some i > 0. Since the closed point y = f(F)
is contained in Yiey, we have Ip/I% = f*(m,/m?2) = O™ Y where I is the ideal
sheaf of F'. Now by the conormal exact sequence, we have

@dim Y
0_)0Freg —>QX Freg _)QFreg—)O‘

By the generality of F, the restriction s|p: Op(D|r) — QE? l# = N\’ Qx| is injective
and we obtain an injective homomorphism Op(D|r) — Qgﬁ] @ N\ ORI Y by [34,
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Lemma 3.14]. In particular, we have Op(D|p) — Qg] for some j > 0. We first
assume that dim F' = 1. Then F =~ P} and D|p is a nef and big Cartier divisor.
This is a contradiction. We next assume that dim F' = 2. Then D|r is a nef and
big Cartier divisor by the assumption that codimy(Xs,) > 3. Now we can derive a
contradiction by Corollary 4.4.8. O

Now, we prove a Bogomolov-Sommese type vanishing for globally F-regular
threefolds.

Theorem 4.4.10. Let X be a smooth projective globally F'-reqular threefold and
Ox(D) < Qx an invertible subsheaf. If p > 3, then (X, D) < 1. Furthermore, if
p>T7, then k(X,D) <0.

Remark 4.4.11. In the above theorem, we need the assumption that p > 3 only for
running Kx-MMP.

Proof. Let us prove the first assertion of the theorem. We assume that p > 3 and
k(X,D) > 1. Let us show that H°(X,Qx ® Ox(—D)) = 0. Since X is globally
F-regular, the anti-canonical divisor —Kx is big by [93, Corollary 4.5]. Then by
running K x-MMP, we obtain a birational contraction f: X --+ X’ and a Mori fiber
space g: X' — Y by [41, Theorem 1.2]. By Remark 4.1.2 (2), X’ is a Q-factorial
terminal projective globally F'-regular threefold. By Lemma 3.2.1, it suffices to show
that H(X', (Qg?,@(’)xl(—D'))**) = 0. Moreover, we have k(X’,D") > (X, D) > 1.

First, we assume that dim Y = 0. In this case, the divisor D’ is ample since
k(X',D") > 1 and p(X’) = 1. Since three-dimensional terminal singularities are
isolated by [65, Corollary 2.13], we obtain H°(X’, (ng ® Ox:/(=D"))**) = 0 by
Theorem 4.4.5.

Next, we assume that dim Y = 1. Let G be a general fiber of g. Since —Kx
and G form the basis of N1(X’) ®z Q, we can denote D' = a(—Kx) + bG for some
a,b € Q, where N'(X') is the quotient of Pic(X’) by its subgroup consisting of
all isomorphism classes numerically equivalent to zero. We denote by Pic’(X’) the
subgroup of Pic(X'’) consisting of all isomorphism classes algebraically equivalent
to zero and by NS(X’) the quotient of Pic(X’) by Pic’(X’). Since X' is globally
F-regular, it follows from [97, Corollary 4.3] that H'(X’,Oxs) = 0. Then by [27,
Theorem 9.5.11], we obtain Pic’(X’) = 0 and hence Pic(X’) = NS(X’). Since the
kernel of the natural map NS(X’) —» N'(X’) is torsion by [76, Corollary 1.4.38], we
obtain Pic(X")®z Q = NS(X')®zQ = N (X’')®z Q. In particular, D’ is Q-linearly
equivalent to a(—Kx/) + bG. Since k(X', D’) > 1 = k(X', G), it follows that a > 0
and hence D’|g is ample. Now G is a globally F-regular surface by Theorem 4.1.3
and hence we obtain H°(X', (QE], ® Ox:/(—D'))**) = 0 by Lemma 4.4.9.

Finally, we assume that dim Y = 2. In this case, X’ is separably rationally
connected by Theorem 4.1.4 (1) and hence so is X. Then we obtain H(X,Qx ®
Ox(—D)) = 0 by Proposition 4.3.4.

Now, we show the latter assertion. We assume that p > 7 and (X, D) > 0.
We take X' Y as above. When dim Y = 0 or 2, we obtain the assertion by the
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essentially same argument as above. When dim Y = 1, Theorem 4.1.4 (2) shows
that X’ is separably rationally connected and hence so is X. Therefore we obtain

HY(X,Qx ® Ox(—D)) = 0 by Proposition 4.3.4. O

Remark 4.4.12. Let X be a terminal projective globally F-regular threefold. Suppose
that p > 3 and Ox (D) < ng is a Weil divisorial subsheaf. Then an argument similar
to Theorem 4.4.10 shows that (X, D) < 2 as follows.

By taking a small Q-factorialization and running Kx-MMP, the assertion is
reduced to a Mori fiber space g: X’ — Y. Let D’ is the push-forward of D to X’.
When dim Y = 0 or 1, we obtain the assertion by the proof of the first assertion of
Theorem 4.4.10. On the other hand, when dim Y = 2, we need a different argument
from Theorem 4.4.10 since Proposition 4.3.4 cannot be applied to singular varieties.
In this case, since D’ is big and p(X'/Y') = 1, it follows that D’|g is ample and the
assertion follows from Lemma 4.4.9.



Chapter 5

Pathologies of Du Val del Pezzo
surfaces in positive characteristic
(joint work with Masaru Nagaoka)

In this chapter, we prove Theorem 1.3.3, 1.3.4, 1.3.6, and 1.3.8.

5.1 Du Val del Pezzo surfaces

In this section, we gather the basic results of Du Val del Pezzo surfaces.

Definition 5.1.1. Let X be a normal projective surface. We say that X is a Du Val
del Pezzo surface if —Kx is ample and X has only Du Val singularities. We write
Dyn(X) for the Dynkin type of X. For D,, E, (resp. E,), and in no other cases
in p =2 (resp. p = 3), there are more than one, finitely many, isomorphism classes
of singularity sharing the same Dynkin type. They are classified and named as D]
and E! by Artin [5], where r is called the Artin coindex of the Du Val singulairty.
We write Dyn’(X) for the Dynkin type of X with Artin coindices.

Remark 5.1.2. Let X be a normal projective surface with only rational singularities
with Iitaka dimension x(X, K3) = —o0, where X — X is a resolution. Let us see
that X lifts to every Noetherian complete local ring R with the residue field k.

First, we recall that X lifts to R (see [27, 8.5.26]). Then X is formally liftable to R
by [2, Proposition 4.3(1)], and the formal lifting is algebraizable since H?(X, Ox) =
0. In particular, all Du Val del Pezzo surfaces lift to R.

Lemma 5.1.3. Let X be a Du Val del Pezzo surface of degree d :== K%. Then the
following hold.

(1) dim| — K| = d.

(2) | = Kx| has no fized part.

o4
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(3) A general member of the anti-canonical linear system is a locally complete
intersection curve with arithmetic genus one. Moreover, if p > 3, then a
general member of the anti-canonical linear system is smooth.

(4) If d = 3, then | — Kx| is very ample.

(5) If d = 4, then X is isomorphic to a complete intersection of two quadric
hypersurfaces in P;.

(6) If d = 3, then X is isomorphic to a cubic hypersurface in P3.

(7) If d = 2, then | — Kx| is base point free and X is isomorphic to a weighted
hypersurface in Pp(1,1,1,2) of degree four.

(8) If d = 1, then | — Kx| has the unique base point and X is isomorphic to a
weighted hypersurface in Pr(1,1,2,3) of degree six.

Proof. We refer to [12, Propositions 2.10, 2.12, and 2.14] and [59, Proposition 4.6]
for the proof. |

5.2 Quasi-elliptic surfaces

In this subsection, we compile the results on rational quasi-elliptic surfaces by
Ito [50, 51], which we will use in Sections 5.4 and 5.5.

Theorem 5.2.1 ([50, Theorems 3.1-3.3]). Suppose p = 3. Then the following hold.

(1) The configurations of reducible fibers of rational quasi-elliptic surfaces and
their Mordell-Weil groups are listed in Table 5.1, where we use Kodaira’s no-
tation.

(2) Rational quasi-elliptic surfaces of each type (1), (2), and (3) uniquely exist.

(3) Sections on rational quasi-elliptic surfaces are disjoint from each other. More-
over, the dual graphs of negative rational curves in rational quasi-elliptic sur-
faces are as in Figure 5.1 and Table 5.2, where black nodes (resp. white nodes)
correspond to (—1)-curves (resp. (—2)-curves).

Table 5.1

| Type | Reducible fibers | MW(Z) |
(1) I {1}
2) IVF, IV ZJ3L
(3) four IV (Z/37.)*

Theorem 5.2.2 ([51, §5]). Suppose p = 2. Then the following hold.
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Figure 5.1: Dual graphs of negative rational curves in rational quasi-elliptic surfaces

of types (1)—(3)

Table 5.2

5=0 b =-1 g=1 =
Sections adjacent | O,2P + @, | O, Q, O, P, O,P+Q,
to Oz P+2Q 2Q 2P 2P +2Q)
Sections adjacent | P, Q, 2P, 2P + Q, | 2Q,P + 2Q, | P,2Q
to ©g1 2P +2Q 2P +2Q 2P +2Q 2P+ Q
Sections adjacent | 2P, 2Q), P P+Q, Q,P+Q Q,2P,
to Op P+Q P+2Q 2P +Q P +2Q




(1)

()

o7

The configurations of reducible fibers of rational quasi-elliptic surfaces and
their Mordell-Weil groups are listed in Table 5.3, where we use Kodaira’s no-
tation.

Rational quasi-elliptic surfaces of each type (a)-(c) and (e) uniquely exist.

For each rational quasi-elliptic surface of one of the types (a)—(e), sections are
disjoint from each other. Moreover, the dual graphs of negative rational curves
in rational quasi-elliptic surfaces of types (a)—(e) are as in Figure 5.2, where
black nodes (resp. white nodes) correspond to (—1)-curves (resp. (—2)-curves).

For each rational quasi-elliptic surface of type (f), sections are disjoint from
each other. There is an element a € k\{0} such that the reducible fiber of
type 1§ lies over t = 1 and reducible fibers of type 111 lie over the points
t = 0,00, 1,9 of the base curve Py, where a; and ay are two solutions of the
equation t> + at +1 = 0. Moreover, Figure 5.3 and Table 5.4 describe the dual
graph of the configuration of negative rational curves.

For each rational quasi-elliptic surface of type (g), there are eight pairs of
two sections intersecting with each other transversally and not intersecting
with any other sections. There are no irreducible components of reducible
fibers intersecting with two sections in a pair. Figure 5.4 describes the above
situation.

Table 5.3
| Type | Reducible fibers | MW(Z) [| Type | Reducible fibers | MW(Z) |
(@) g 1) (e) UL | (Z22)?
(b) I 727 (f) | I and four I | (Z/2Z)3
© [T, 111 Z2Z | (g) cight III (Z2Z)"
(@) BT | (2227

Remark 5.2.3. 1. Table 2 of [51] contains misprints. By substituting ¢ = 1 to the

By [77, Theorem 3.1], each cuspidal cubic curve in P?

equations of Py, P3, @1, and R; in the bottom of p. 246 of [ibid], we see at
once that () and P, in the bottom table should be interchanged with each
other. We also have to replace R3 by Rs.

. In Lemma 5.2.6, we will clarify that Figure 5.5 is the intersection matrix of

negative rational curves in a rational quasi-elliptic surface of type (g).
In Corollary 5.5.24, we will give the parametrizing spaces of the isomorphism
classes of rational quasi-elliptic surfaces of type (d), (f), or (g).

2] With an inflexion point

is projectively equivalent to C' = {z® +y*2 = 0}. Moreover, since the automorphism
[ 1y : 2] —> [az : y : a®z] of P} with a € k* fixes C, the pair of C' and a point
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Figure 5.2: Dual graphs of negative rational curves in rational quasi-elliptic surfaces
of types (a)—(e)
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Figure 5.3: Dual graph of negative rational curves in a rational quasi-elliptic surface
of type (f)
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Table 5.4

B=0 =0 |f=m|B=0m

Section intersecting | O, Ry | O,Q2 | O0,Q2 | O, Ry

with @5,0 R\, P3| P3,Q1 | Ri, P | Po,(Q

Section intersecting | P1,Qs | P, Ry | P, Ry | Pp,Q>

with ©4;4 Py, Qi1| Ri, P | P5,Q1 | Ri, s
vy=1

Section intersecting with ©,, | O, P,

Section intersecting with O, 1 | Q2, Ry

Section intersecting with ©,5 | Q1, ;

Section intersecting with ©,3 | P, Ps

VWV VW W

40,1 ®A1,1 %421 %451 %441 %451 %461 ®A7

2 ¢A1.2 ¢A2,2 gA32 gAa2 gA52 A2 gAT2

INEVYVEY!

Figure 5.4: Dual graph of negative rational curves in a rational quasi-elliptic surface
of type (g)
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p € C'is projectively equivalent to the pair of C'and [1:1: —1] unlessp =[0:0: 1]
or [0:1:0]. From these facts, we can interpret [50, Example 3.8] and [51, Remark
4] as follows.

Lemma 5.2.4 ([50, Example 3.8], [51, Remark 4]). Let Z be a quasi-elliptic surface
of type one of (1)-(3) in characteristic three or one of (a)-(d) in characteristic two.
When Z is of type (1), (a), or (b), we choose a general fiber F' in addition. Then,
contracting all curves corresponding to bold white node or black node in Figure 5.1
and Types (a)-(d) of Figure 5.2, we obtain a morphism h: Z —> P2. Moreover,
there are coordinates [x : y : z| of P2 such that the images of F' and negative rational
curves by h are written as follows.

If Z is of type (1), then
h(F) = {2° + y*z = 0}, h(Ouyg) = {z = 0}, h(O)=[0:1:0].
If Z is of type (2), then

h(Owp) = {x =0}, h(BOg) =
h(O)=[0:0:1], h(P)=]0:

If Z is of type (3), then

@070) = {ZL‘ = 0}, h @071) = {l’ = Z}, h @072) = {ZL’ = —Z},

©_10) = {y = 0}, h(O-_1,1) ={y = z}, hMO_1p2) = {y = =2},
@170) = {x+y=0}, h

( ( (
( ( (
( (©1, (€,
WOwo) ={r —y =0}, MOuy) ={r—y=—2}, h(Ox2)={r—y=2}
( ( (
( ( (
( ( (

{Z/ =0}, h(Oo1) ={y =72}, h(Opz2) = {z =0},
1], h(2P)=[0:1:0].

h(O)=[0:0:1], h(P)=[1:-1:1], h
h(Q)=1[1:0:1], h(2Q) =[-1:0:1], h
h2P+Q)=[0:1:1], h(P+2Q)=[0:-1:1], h

If Z is of type (a), then
h(F) = {2° + 3?2 = 0}, h(BOyxg) = {z = 0}, h(O) =[0:1:0].
If Z is of type (b), then

h(F) = {z* + y*z = 0}, h(Oxs) = {z = 0}, h(Ox3) = {x + 2z = 0},
h(P)=10:1:0], h(O) =[1: ]

If Z is of type (c), then

h(©o2) ={z =0},  h(Oxo) ={r =0},  h(Ouw,)={zz+y> =0},
h(O)=[0:1:0],  h(P)=[1:0:0]

If Z is of type (d), then

h(@OOA) = {:E = 0}7h(@0,1) = {?/ = 0}, h(@o,z) = {y + 2z = 0}, h(@073) = {Z = O},
h(©o4) =[1:0:0],~(Op1) =[0:0:1],A(Oxp2) =[0:1:1],h(Ox3) =[0:1:0].



61

Rational quasi-elliptic surfaces are naturally endowed with the action of the
Mordell-Weil groups. The next lemma shows that these surfaces may have other
automorphisms.

Lemma 5.2.5. A rational quasi-elliptic surface Z of type (d) has an involution
which sends O, in Type (d) of Figure 5.2 to O ; for 0 <i < 4.

Proof. Let ¢: Z — Pi x P} be the contraction of O, Py, Py, P3, ©g0, 001,042,
and O, 3. Then we can choose coordinates ([x : y],[s : t]) of PL x P} such that
©(©p4) = {x =0} and p(Oy4) = {y = 0}. Hence the involution ([z : y], [s : t]) —
([y : z],[s : t]) induces the desired involution on Z. O

The next lemma clarifies the whole configuration of negative rational curves in
a quasi-elliptic surface of type (g).

Lemma 5.2.6. Figure 5.5 is the intersection matriz of negative rational curves on
a rational quasi-elliptic surface of type (g).

100000001 00O00O0OOOOO,11111111,00000°O0TQO0DO0
-10 00 0O0O0OO0O10O0O0OO0OOO1 11100O0O00O0O0O0O0O0T1T1T11
-10 0000|001 0O0O0O0O0O1T10O01100O0|0011O00T11
-10 00 0/00O0O01O0O0O0O0O0OI1T01O01010|0101010°1
-10 0 0({0 0O0O0O1O0O0OO0O1100O0O0T11[{001111Q00
-10 000 O0O0O01O0O0(1 001100101 100110Q0
-10/0 0 00O0O0OT1O0(1 01 0010101011010
—-1/0 0 0 0 0 0 0 111 0 0 1 0 1 1 0]0 1 1 0 1 0 0 1

-10 0 00O0O0OO0OO0O0OOO0OOOO(1I 11 11111

-10 000O0O0O0O0OO111 11 1110000

-10 0 00O0{0O011O0O011(1 1001100

-10 000010101011 0101010

-10 00001 1110011000011

-10 0101 1 0011010011001

-10{0 101 10101 010O0T1OQO01

=110 1 1 0 1 0 0 1/1 0 0 1 0 1 1 0

-20 00 0 O0O0O0l2 00O0O0O0O0TO0

-20 000 O0O0|020000O0O0TO0
-20000O0|00200000O0

-20 0000 002 000O0

—-20 0 0(0 0 00 2 000

—20 00 0 OO0 200

-20/0 0 00 O0O0 20

—2/0 0 0 0 0 0 0 2

-20 00 0 0 0O

—20 0 0 0 0O

—20 00 0O

-20 0 0 O

-20 0 0

—20 0

0

|
I N
N

Figure 5.5: The intersection matrix of A(),l, “en ,A771, AO’Q, ‘e ,A7’2, @0’1, ey @771,
©p2,...,07 in this order in a rational quasi-elliptic surface of type (g).

Proof. Let Z be a rational quasi-elliptic surface of type (g). Then there are exactly
sixteen (—2)-curves {O; ;}o<i<7,1<j<2 00 Z, which satisfies that

(@i’j, @i',j') >0 = (®i,j7®i’,j’) =2 <= | = i/ andj #* j/.

On the other hand, as we described in Theorem 5.2.2 (5), there is exactly sixteen
sections { Ay, }o<k<71<i<2 On Z, which satisfies that

(Aps, A ) >0 = (Ap, App) =1 < k=K andl #1.
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By Theorem 5.2.2 (5), we may assume that

(@i,jaAO,Z) #* 0 (@i,jaAO,Q) =1 < ] = 2, and
(60,27—’4]4:,1) # 0 (@072714;971) =] < [ =2.

By contracting Ag 2,092 and A;; for 1 < ¢ < 7, we get a birational morphism
h: Z —> ]P)z Let t = h(A()’Q U @072), tz = h(Ai,1)7 and DZ = h*@i,l for 1 <1 < 7. To
show the assertion, we prepare some claims.
Claim. h,©;; ~ Op2(j) foreach 1 <i<T7Tand 1 <j <2

Proof of Claim. We need only consider the case where ¢ = 1 by symmetry and
the case where j = 1 since h,(©11 + O12) ~ ho(—Ky) ~ Opi(g). Suppose by
contradiction that h,0;; ~ O]pz (2). Then exactly six of Ay 1, Asy, ..., A7, intersect
with Oy since (h,011)* — ©7, = 6. We may assume that (A11,011) = 0.

Assume that h,0;; ~ Oﬂ”i@) for some 2 < i < 7. Then (h,©11,h.0;1) = 4.
However, at least five of Ay;, Ay, ..., A7y intersect with both ©,; and ©,,,
which implies that (h.©11,h.0;1) > 5, a contradiction. Hence h,0;; ~ O]}B%(l)
and (h+©11,h0;1) = 2 for each 2 < i < 7. For such an i, exactly three of
ALl,AQJ, . ,A771 intersect with @7;71 since (h*@ii)z - ("‘)2271 = 3. MOI‘QOVGI‘, Al,l
intersects with ©;; since otherwise we would obtain (7,011, h.0;1) = 3.

On the other hand, assume that Aj; intersects with both ©,, ; and ©;,; for
some 2 < k < 7and 2 <y <iy <7. Then (h.0;,1,hs0;,1) = 1 since they are
lines. However, A;; also intersects with both ©;, ; and ©,,,, which implies that
(hs©Oi; 1, heO4,1) = 2, a contradiction.

Hence we may assume that O, ; intersects with Ay 1, Ag;_91, Agi—11 for 2 <i < 4.
However, it implies that (h.Os51,h.0;1) = 2 for some 2 < i < 4, a contradiction.

Therefore hy(01,1) ~ Opz(1). [

Claim. There are coordinates of P2 such that {¢;};<;<7 is the set of Fo-rational points
and {D;}1<i<7 is the set of lines defined over Fs.

Proof of Claim. By Claim 5.2, {D;}1<i<7 is a set of lines passing through exactly
three of {¢;}1<i<7. Hence the set ¥ = {(7,7) | D; passes through ¢;} consists of 21
elements. On the other hand, distinct two lines cannot share two points. Combining
this fact and §3 = 21, we conclude that {t;}1<i<7 is a set of points contained in
exactly three of {D;}1<i<7-

Next, let us show that {t;}1<;<7 contains four points in general position. Chang-
ing the indices of {D;}1<;<7 and {t;}1<i<7, we may assume that D; (resp. Dy) passes
through ¢; and ¢y (resp.t; and t3). Since three of {D;}1<;<7 passes through to, it
contains the line spanned by ¢y and t3, say D4. Then there is a unique point, say
t7, in {t;}1<i<7 disjoint from Dy U Dy U Dy. Hence tq,t5,t3, and t; are in general
position.

Then there are coordinates of P2 such that ¢; = [1:0: 0], to = [0 : 1 : 0],
t3 =[0:0:1] and t; = [1: 1 : 1]. Then we may assume that ¢, = [1:1:0],t5 =
[0:1:1] and tg = [1:0: 1]. Since each of D; is a span of two Fa-rational point, it
is also defined over Fs. [ |
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Fix coordinates of P? as above. By construction, ¢ is not contained in D; for
1 <i <7 Nowdefine ¢: {1,...,7} — I ={(1,2,4), (1,3,6), (1,5,7), (2,3,5),
(2,6,7), (3,4,7), (4,5,6)} which maps 1, 2, 3, 4, 5, 6, and 7 to (1,2,4), (1,3,6),
(1,5,7), (2,3,5), (2,6,7), (3,4,7), and (4,5, 6) respectively. By Claims 5.2 and 5.2,
we may assume that D; contains ¢; for all [ € {(i) and 1 < i < 7. Then the following
hold for 1 <7 < 7.

e O, is the strict transform by h of the line passing through ¢; for all [ € ().

e O, is the strict transform by h of the conic passing through ¢ and ¢; for all
le{l,...,T)\C(7).

e A, is the exceptional divisor over ¢;.
e A, 5 is the strict transform by A of the line passing through ¢ and ¢;.

e Og; is the strict transform by A of the cubic passing through ¢,%,, ... ,t; which
has a cusp at t.

e The tangent line of h(0;2) at ¢ is independent of the choice of ¢, and Ag; is
the strict transform of this line by h.

e 7 is obtained by blowing up P} at ¢; once for 1 < j < 7 and at ¢ twice along
h(Ap1), and the h-exceptional divisor over ¢ consists of Ay and G s.

From these facts, it is easy to check that Figure 5.5 is the intersection matrix of
A0,17 . ,A771, A072, ce ,A772, @071, . ,@771, @072, cey @7’2 in this order. ]

5.3 Proof of Theorem 1.3.3

This section is devoted to proving Theorem 1.3.3. First, we show that (NL) =
(NB).

Proposition 5.3.1. Let X be a Du Val del Pezzo surface whose general member
of the anti-canonical linear system is smooth. Then X 1is log liftable over every
Noetherian complete local ring with the residue field k.

Proof. Let m: Y — X be the minimal resolution. By Proposition 2.4.8 (2), it
suffices to show that H*(X,Tx) = H*(X,Ox) = 0. Since —Ky is ample, it follows
that H*(X,0x) =~ H*(X,0x(Kx)) = 0. Now we show that H*(X,Tx) = 0. By
the Serre duality, it follows that

H*(X,Tx) =Homo, (Tx, Ox(Kx))
EHOIHOX (Ox(—KX)> ng%

where QE%] denotes the double dual of {2x. Suppose by contradiction that there exists
an injective Ox-module homomorphism s: Ox(—Kx) — ng. Let C €| — Kx| be
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a general member and s|c: Oc(—Kx) — Q§]|C be the restriction of s on C. By
Lemma 5.1.3 (2), we may assume that C' is not contained in the zero locus of s. In
particular, s|¢ is injective. By assumption, we also may assume that C' is a smooth
Cartier divisor. In particular, X is smooth along C' and hence QE%]]C = Qxlc.
Let t: Oc(—Kx) — Q¢ be the composition of s|¢: Oc(—Kx) — Qx|c and the
canonical map Qx|c — Qc. By the conormal exact sequence, we obtain the
following diagram.

Oc(—Ky)
sle
I
0—— Oc(—C) ——— Qxle Qo —— 0.

Then t is the zero map since O¢(—Kx) is ample and Q¢ = O¢. Hence the above
diagram induces an injective Oc-module homomorphism O¢(—Kyx) «— Oc(—C),
but this is a contradiction because Oc(—C) = O¢(Kx) is anti-ample. Therefore we
obtain the assertion. O

Next, we prove that (ND) = (NL).

Proposition 5.3.2. Let X be a Du Val del Pezzo surface. Let R be a Noetherian
integral domain of characteristic zero with a surjective homomorphism R — k. If
X is log liftable over R wvia the associated morphism «: Speck — Spec R, then
there exists a Du Val del Pezzo surface over C which has the same Dynkin type, the
same Picard rank, and the same degree as X.

Proof. Let m be the kernel of the homomorphism R — k. Replacing R with
the completion of R,,, we may assume that R is a Noetherian complete local ring
with residue field k. Thus, by Lemma 2.4.4, the pair (Y, E,) lifts to R, where
m: Y — X is the minimal resolution. We denote by F, = 22:1 E; the irreducible
decomposition. Let (Y, & := >/, &) be an R-lifting of (Y, E,). We take a subfield
K of the field of fractions of R such that K is of finite transcendence degree over Q,
and the generic fiber of ) and that of each &; are defined over K. Fix an inclusion
K < C and take K c C as the algebraic closure of K. For a field extension K c F,
we use the notation Yr = Y ®r F and E; p = & Qg I for each i. Since the
geometrical connectedness are open property by [39, Théoreme 12.2.4 (viii)], Y¢ and
E; ¢ are smooth varieties. Since Eg := 2;1 E; ¢ has the same intersection matrix
as F., we have a contraction n¢: Yo — X¢ of E¢c and X¢ has the same Dynkin
type as X. By the crepantness of w and m¢, we obtain K% = Ky = K3, = K%_.
Next, we prove that X¢ is a Du Val del Pezzo surface. For the sake of contra-
diction, we assume that —Ky. is not ample. Since K)Q(? = K%_ > 0, there exists

an integral curve Cy < Y defined over K such that Cy is not contained in E¢ and
(—Ky. - Cp) < 0. We take a finite Galois extension field L of K such that Cj is
defined over L and write C' := X, .1 x) 0(Co), which is defined over K. By the
choice of Cy, there are no components contained in both C' and Ex. We denote by
C the closure of C' in ) and define an effective divisor C} = C ®p k.
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Now, assume that SuppCj < E,. Then we can write Cy = Y, a;E; for
some a; > 0. Since C' and Ex have no common components, we have C? =
(C- > _ja;E; k) = 0. By the negative definiteness of E,, we obtain a; = 0 for
1 <i < r, a contradiction. Thus there exists an integral curve C} < Cj, such that
C}. is not contained in E,. Since —Ky is nef, we have 0 < (= Ky -C}) < (—Ky-Cy) =
(—Ky, -C) = |Gal(L/K)|(— Ky, -Cy) < 0. Hence (—Ky -C}) = (—Kx -m(C})) = 0,
a contradiction with the ampleness of —Ky. Therefore, X¢ is a Du Val del Pezzo
surface.

Finally, we show that p(X) = p(Xc¢). Since Y and Y are smooth rational
surfaces, we have p(Ye) = 10 — K3 = 10 — K3 = p(Y'). Then we obtain p(X) =
p(Xc) because ¢ contracts the same number of (—2)-curves as . O

Finally, we prove that (NK) = (NL).

Lemma 5.3.3. Let f: Z —> X be a birational morphism of normal projective klt
surfaces and A an ample Z-divisor on X. Suppose that (Z,[f*A| — f*A) is kit.
Then H'(X,Ox(—A)) = H(Z,Oz(—[f*A])) fori = 0.

Proof. By [99, Theorem 2.12], it follows that R'f,Oz(Kz + [f*A])) = 0 for i > 1.
Then the Leray spectral sequence

B3 = HP(X, R [.0z2(Kz + [f*A])) = EP*" = H""(Z,02(Kz + [f*A]))
gives H(X, fiOz(Kz+[f*A])) =~ H(Z,04(Kz+][f*A])). Since X is klt, we obtain

Kz +[[*Al = [Kz — [*Kx + [*(Kx + A)]
= |f"(Ex + A)| + F

for some effective f-exceptional Z-divisor F. Then H'(X, f.Oz(Kz + [f*A])) =
H'(X,0x(Kx + A)) by the projection formula. Hence the assertion follows from
the Serre duality for Cohen-Macaulay sheaves [66, Theorem 5.71]. O

Proposition 5.3.4. Let X be a normal projective surface and A an ample Q-Cartier
Z-divisor. Suppose that there exists a log resolution f: Z — X such that (Z, Ey)
lifts to Wy (k). Then H'(X,Ox(—A)) = 0.

Proof. By Lemma 5.3.3, it follows that H'(X,Ox(—A)) = HYZ, Oz(—[f*A])).
Take an f-exceptional effective Q-divisor F' such that [f*A — F| = [f*A]| and
f*A—F is ample. Since Supp([f*A—F|—(f*A—F)) is contained in E¢, Theorem
2.4.6 shows that H'(Z, Oz(—[f*A — F])) = 0. Hence we get the assertion. O

Now we can prove Theorem 1.3.3.

Proof of Theorem 1.3.3. The assertions (1), (2), and (3) follow from Propositions
5.3.1, 5.3.2, and 5.3.4 respectively. O]
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5.4 Dynkin types

In this section, we determine the Dynkin types of Du Val del Pezzo surfaces
satisfying (NB). By Lemma 5.1.3 (3),(4), such a del Pezzo surface is of degree at
most two, and p = 2 or 3. First, we treat the case where the degree is one.

Proposition 5.4.1. Let X be a Du Val del Pezzo surface with K% =1 and7: Y —>
X the minimal resolution. Take g: Z — Y as the blow-up at the base point of
| — Ky| and f: Z —> P}, the genus one fibration defined by | — Kz]|.

725y "X
; A

§<P|*KX‘
Py
Then the following hold.
(1) X satisfies (NB) if and only if [ is a quasi-elliptic fibration.

(2) For another Du Val del Pezzo surface X' of degree one, take n':Y' — X'
and ¢': Z' —> Y’ as above. Then X =~ X' if and only if Z ~ Z'.

(3) Suppose that p = 3 and Z is a rational quasi-elliptic surface. Then Z is of
type (1) (resp. (2), (3)) if and only if Dyn(X) = Eg (resp. Ay + Eg,4A5).

(4) Suppose that p = 2 and Z is a rational quasi-elliptic surface. Then Z is of

type (a) (resp. (b), (c). (d), (¢), (f). (3)) if and only if Dyn(X) = Ey (resp.
Dg, Ay + E7,2D4,2A; + Dg,4A; + Dy, 8A1)

Proof. (1): A general member of | — Ky | is isomorphic to its image by 7 since it is
disjoint from the exceptional divisor F, of m. On the other hand, the base locus of
| — Ky| consists of one point, say y. Since any two members of | — Ky | intersect
transversely with each other at y, each f-fiber is isomorphic to its image on Y.
Hence a general f-fiber is isomorphic to its image on X, and the assertion holds.
(2): Take f': Z' —> P as the morphism given by | — Kz/|. Suppose that there
is an isomorphism X =~ X’. Then it ascends to an isomorphism Z =~ Z’ since the
construction of m, 7/, g, and ¢’ are canonical. On the other hand, suppose that
there is an isomorphism o: Z =~ Z’. Then this isomorphism is compatible with the
genus one fibration structures since —Ky ~ 0*(—K). In particular, o maps each f-
section to an f’-section. Since E, (resp. Ey) is an f-section (resp. an f’-section) and
the Mordell-Weil group MW (Z) acts on the set of f-sections transitively, we may
assume that o maps E, to Ey. Hence it descends to an isomorphism oy : Y =~ Y.
Since both 7 (resp. ') is the contraction of all the (—2)-curves on Y (resp. Y’), oy
also descends to the desired isomorphism oy : X =~ X'.

(3) and (4): Since MW (Z) acts on the set of f-sections transitively, we may assume
that £, is the section O in Figures 5.1-5.4. Hence the assertions follows from Figures
5.1-5.5 and Tables 5.2 and 5.4. O
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We will use the following proposition in Section 5.6.

Proposition 5.4.2. Let X be a Du Val del Pezzo surface with Dyn(X) = 4A,.
Then X satisfies (NB) if and only if p = 3.

Proof. The only if part follows from Proposition 5.4.1. To show the other direction,
we suppose that p = 3. Let us take Y and Z as in Proposition 5.4.1. Suppose
by contradiction that a general member of the anti-canonical linear system of X is
smooth. Then Z is an extremal rational elliptic surface with four singular fibers. By
[69, Theorem 2.1], its singular fibers are (Ig, 15,13, 1;), (I5, 15,14, 11), or (14, Iy, Iy, Io).
However, this implies that Dyn(X) = A;+ A7, 244, or 24;+2A3, a contradiction. [

Next, we treat the case where the degree is two. The following proposition
claims that the double covering associated to the anti-canonical linear system must
be purely inseparable.

Proposition 5.4.3. Let X be a Du Val del Pezzo surface with K% = 2. Suppose
that the double covering | : X — P} associated to the anti-canonical linear
system is separable. Then a general member of the anti-canonical linear system is
smooth.

Proof. Take the minimal resolution 7: Y — X. Let ¢ € P? be a general point and
V < | = Ky| the pullback of the pencil of lines in P? passing through ¢. Then the
base locus of V' consists of two points, say y; and ys, such that there are no (—1)-
curves passing through y; or y, because t is general and there exist only finitely
many (—1)-curves on Y. Let g: Z — Y be the blow-up at y; and ys, and E; the
g-exceptional divisor over y; for i € {1,2}. Then g gives a resolution f: Z — P}
of the indeterminacy of the pencil ¢y : Y --» P;. Since any two members of V'
intersect transversely at y; and yo, a general f-fiber is isomorphic to its image on

Y.

7Ly = x T p2
iSOV
Py
Now let us show that a general member of | — Kx| is smooth. Suppose by

contradiction that members of | — Kx| are all singular. Then Z is a quasi-elliptic
surface, and E; and E, are f-sections by the same arguments as in Proposition 5.4.1.
Since there are no (—1)-curves on Y which pass through y; or 3., each (—2)-curves
in Z either intersects with both F; and FEs or is disjoint from both F; and FEs.
However, there is no such a choice of two sections by Figures 5.1-5.5 and Tables 5.2
and 5.4, a contradiction. O

Proposition 5.4.4. Let X be a Du Val del Pezzo surface with K% = 2 satisfying
(NB). Then p = 2 and Dyn(X) = E;, Ay + Dg, 3A1 + Dy, or TA;.
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Proof. By Proposition 5.4.3, the double covering ¢_g,|: X —> P2 associated to
the anti-canonical linear system is purely inseparable. In particular, we have p = 2.
Take m,t and V' as in Proposition 5.4.3. By the generality of ¢, the base locus of
V' consists of one point, say y, and no (—1)-curves pass through y. For general
two members C and C5 of V', they intersect with each other at y with multiplicity
two since @|_g | is a homeomorphism. Moreover, one of them is smooth at y since
otherwise 2 = K2 = (C; - Cy) = 4. Thus general members of V' are smooth at v,
and have the same tangent direction at y. Hence there is a point 3’ infinitely near
y such that the blow-up ¢g: Z — Y at y and y’ gives a resolution f: Z — P} of
indeterminacy of the pencil ¢y : Y --» P}. Since a general member of V' is smooth
at y, a general f-fiber is isomorphic to its image on X. In particular, Z is a quasi-
elliptic surface. By construction, E, consists of a (—1)-curve £ and a (—2)-curve
Es. In particular, F; is an f-section and FEj5 is contained in a reducible f-fiber.
Suppose that the f-fiber containing £ has simple normal crossing support. Then
there is another (—2)-curve C intersecting with Fs. Since C' and F, are contained in
the same f-fiber, F; is disjoint from C'. This implies, however, ¢,C is a (—1)-curve
passing through y, a contradiction with the choice of y. Hence Fs is contained in a
reducible f-fiber whose support is not simple normal crossing. Theorem 5.2.2 now
shows that Fs is contained in a reducible f-fiber of type III, where we use Kodaira’s
notation, and Y is one of the types (c), (e), (f), and (g) in Table 5.3. By Figures
5.2-5.5 and Table 5.4, we conclude that Dyn(X) = E7, Ay + Dg, 3A; + Dy, or
TA;. O

Finally, let us show that there are several constructions of Du Val del Pezzo
surfaces of degree two satisfying (NB).

Lemma 5.4.5. Let X be a del Pezzo surface satisfying (NB) such that Dyn(X) =
E7, Ay + Dg,3A1 + Dy, or TA;. Let Y be the minimal resolution of X. Then the
following hold.

(0) K% =2 and p = 2.

(1) For each point t € Y not contained in any negative rational curves, there is a
rational quasi-elliptic surface Z, an irreducible component T of reducible fiber
of type I1I, and a section S of Z intersecting with T such that'Y is given from
Z by contracting S 0T tot.

(2) If Dyn(X) = E; (resp. Ay + Dg,3A1 + Dy, TA1), then Z as in the assertion
(1) is of type (c) (resp. (¢), (f), (9))-

(3) If Dyn(X) = E7, Ay + D¢, or 3A; + Dy, then the union of the negative rational
curves on 'Y s a simple normal crossing divisor. Moreover, Figure 5.6 is the
dual graph of the configuration of the negative rational curve, where black nodes
(resp. white nodes) corresponds to a (—1)-curve (resp. a (—2)-curve).

(4) If Dyn(X) = TA;, then there are exactly seven (—1)-curves and seven (—2)-
curves whose intersection matrix is as in Figure 5.7.
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(5) IfDyn(X) = E7, thenY is also obtained from the rational quasi-elliptic surface
of type (a) by blowing down O and O in Type (a) of Figure 5.2.

(6) If Dyn(X) = Ay + Dg, then Y is also obtained from the rational quasi-ellptic
surface of type (b) (resp. (c)) by blowing down O and Oy (resp. O and Ogy)
in Type (b) (resp. (c)) of Figure 5.2.

(7) If Dyn(X) = 3A; + Dy, then Y is also obtained from a rational quasi-ellptic

surface of type (d) (resp. (e)) by blowing down O and Oy (resp. O and ©12)
in Type (d) (resp. (e)) of Figure 5.2.

(8) If Dyn(X) = TAy, then'Y is also obtained from a rational quasi-ellptic surface
of type (f) by blowing down O and O, in Figure 5.3.
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o o/ \o °
Type E7 Type A1 + Dg Type 341 + Dy

Figure 5.6: Dual graphs of negative rational curves in a Du Val del Pezzo surface of
type E7, Ay + Dg, or 3A; + Dy satisfying (NB)
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Figure 5.7: The intersection matrix of negative rational curves in a Du Val del Pezzo
surface of type 7A;
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Proof. The assertion (0) follows from Lemma Propositions 5.4.1 and 5.4.4. The
essentially same proof as in that of Proposition 5.4.4 shows the assertions (1) and
(2). We see at once that the contraction of O and Oy, in Types (c) and (e) of
Figure 5.2 and Figure 5.3 gives the dual graph as in Figure 5.6, and the assertion
(3) holds.

Suppose that Dyn(X) = 7A4; and we follow the notation of the proof of Lemma
5.2.6. By contracting Ap, and Og9 in Figure 5.4, A;1, A2, 0,1, ©i2 Ao, and
©p,1 become a (—1)-curve, a (0)-curve, a (—2)-curve, a (0)-curve, a (1)-curve, and a
cuspidal curve of self intersection number two respectively for 1 < ¢ < 7. Hence the
assertion (4) holds.

Finally, let us show the assertions (5)—(8). Let £ be a (—1)-curvein Y and t € F
a point not contained in any (—2)-curve. Then the blow-up Y; of Y at ¢ is a weak
del Pezzo surface whose all members of anti-canonical linear system are singular.
Hence Y; is the blow-down of a section in a rational quasi-elliptic surface Z;.

Now suppose that Dyn(X) = E7 and let F correspond the black node in Type E;
of Figure 5.6. Then Y; contains eight (—2)-curves whose configuration is the Dynkin
diagram FEg. By Proposition 5.4.1 (4), Z; is of type (a), and hence the assertion (5)
holds.

Similarly, if Dyn(X) = A; + Dg (resp. 34; + D,), then by Type A; + Dg (resp.
3A; + Dy) of Figure 5.6, there are two possibility of the number of (—2)-curves
intersecting with £, and Y; contains eight (—2)-curves whose configuration is the
Dynkin diagram Dg or Ay + E; (resp. 2Dy or 2A; + Dg). On the other hand, if
Dyn(X) = 7A;, then Figure 5.7 shows that F is unique up to symmetry, and Y;
contains eight (—2)-curves whose configuration is the Dynkin diagram Dy + 4A;.
Therefore Proposition 5.4.1 (4) shows assertions (6)—(8). O

5.5 Isomorphism classes

In this section, we determine the isomorphism classes and the automorphism
groups of Du Val del Pezzo surfaces satisfying (NB).

5.5.1 Characteristic three

In this subsection, we treat the case where p = 3.

Proposition 5.5.1. Let X be a Du Val del Pezzo surface satisfying (NB) in p = 3
and w: Y — X be the minimal resolution. Then the following hold.

(1) K% =1.
(2) Dyn(X) = Es, As + Eg, or 4As. Moreover, X is uniquely determined up to
isomorphism by Dyn(X).

(3) IfDyn(X) = Es, thenY is constructed from IP’;[I:W] by blowing up at [0 : 1 : 0]
eight times along {23 + y?z = 0}. Moreover, each negative rational curve is
either exceptional over P4 or the strict transform of {z = 0}.
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(4) If Dyn(X) = Ay + Eg, then Y s constructed from Pi{m:y:z] by blowing up at
[0:0: 1] twice along {y = 0}, at [0 : 1 : 1] three times along {y = z}, and at
[0:1:0] three times along {z = 0}. Moreover, each negative rational curve is
either exceptional over P2 or the strict transform of {y = 0}, {y = z}, {z = 0},
or {z = 0}.

(5) If Dyn(X) = 4As,, then Y is constructed from Pi{z:y:z] by blowing up all the
F3-rational points on {z # 0} except [0 : 0 : 1]. Moreover, each negative
rational curve on Y is either exceptional over P2 or the strict transform of
lines passing through two of the eight points as above.

(6) Y and each negative rational curve on'Y are defined over Fs.

Proof. (1): The assertion follows from Lemma 5.1.3 (3) and Proposition 5.4.4.

(2): The assertion follows from Proposition 5.4.1 and Theorem 5.2.1.

(3)—(5): Let g: Z —> Y be the blow-up at the base point of | — Ky|. By Propo-
sition 5.4.1 (3), Z is a rational quasi-elliptic surface of type (1), (2), and (3) when
Dyn(X) = Es, As + Eg, and 4 A, respectively. Since the MW (Z)-action on the set of
sections of Z is transitive, we may assume that g is the contraction of the section O
in Figure 5.1. Take h: Z —> P% as in Lemma 5.2.4. Then the assertion follows from
the description of the induced morphism A’: Y — P% and the image of negative
rational curves on Z via h.

(6): The assertions directly follow from the assertions (3)—(5). O

Corollary 5.5.2. Let X be a Du Val del Pezzo surface satisfying (NB) in p = 3.
When Dyn(X) = Eg (resp. Ay + Eg, 4As), Aut X is isomorphic to

{<§ g 53) e PGL(3, k)‘a ek* ce k’} (resp. k* x Z/27, GL(2,F3) ).
Proof. We follow the notation of the proof of Proposition 5.5.1.

Since every morphism from Y to X factors through the minimal resolution 7,
we have a canonical homomorphism ¢: Aut X — AutY such that com = mop(0)
for all 0 € Aut X. On the other hand, 7 is the contraction of all the (—2)-curves
on Y. Since each automorphism of Y fixes the union of (—2)-curves, we also have
a canonical homomorphism ¥ : AutY — Aut X, which is the inverse of ¢. Hence
Aut X ~ AutY.

First, suppose that Dyn(X) = FEg. By Type (1) of Figure 5.1, each negative
rational curve on Y is g(Oy ;) for some 0 < i < 8. The AutY-action on Y fixes
the unique (—1)-curve ¢(Oy0). It also fixes g(Oy 1), which is the unique (—2)-
curve intersecting with g(©40). By a similar argument, it fixes each negative ra-
tional curve. Hence the AutY-action descends to P? via /’. In particular, AutY
is contained in the subgroup G of PGL(3,k) =~ AutP} fixing h,| — Ky|. On the
other hand, since h,| — Kz| = hl| — Ky| and | — K| are base point free, Z is
the minimal resolution of indeterminacy of h,| — Ky|. In particular, the G-action
on P? ascends to Z. Since Z has a unique section, it descends to Y. Therefore
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AutY =~ G. Since h(F) = {2® + y*2 = 0} and h(O,s) = {z = 0}, we have
h,| — Ky| = {sz® + t(2® + y?2) = 0| [s: t] e P}}. Let

abc
A= G
ghi
be an element of G. Since AutY fixes h'(g(Oxs)) = h(Oyng) = {z = 0}, we have
g=h =0 and 7 # 0. On the other hand, we have

A (2? +y%2) = (a2 + B%° + 22°) + (dx + ey + f2)%(iz) € B, — Ky|.
Since the coefficients of y3, 22z, and yz? must be zero, we have b =0, d = 0, e # 0,
and f = 0. Since the coefficient of 2® must coincide with that of 3?2, we have
a® = e%i. Fixing e = 1, we obtain the assertion.

Next, suppose that Dyn(X) = Ay + Eg. By Type (2) of Figure 5.1, each negative
rational curve on Y is g(P), g(2P), g(©,;) for some 0 < i < 2, or g(Oy;) for
some 0 < i < 6. The AutY-action on Y fixes ¢(Og), which is the unique (—1)-
curve intersecting with one (—1)-curve and two (—2)-curves. Then it also fixes
9(Ox2), 9(Ox1), and g(Oyp). On the other hand, there are exactly two (—1)-
curves on Y intersecting with no other (—1)-curves, which are g(P) and g(2P).
Then the Aut Y-action on Y fixes g(P)ug(2P). Similarly, it fixes (O 4) U g(Ouw ),
9(O03)Ug(Oxs), and g(©p1) U g(Og2). Hence the Aut Y-action descends to P% via
R'. In particular, the Aut Y-action on P fixes h(O) = [0:0: 1], h(Oup) = {z = 0},
and h(B01) U h(Bg2) = {z(y + z) = 0}. In particular, it fixes h(©g1) N h(Bg2) =
[1:0:0] and A(Oy o) N (h(Og1) U h(Bg2)) = {[0:1:0],[0:1:1]}. On the other
hand, by construction, every automorphism on P? ascends to Y via A’ if they fix
[0:0:1],[1:0:0], and {[0:1:0],[0:1:1]}. Hence AutY is isomorphic to

{(8£8> € PGL(3, k)|a € k", (h, i) = (0,1) or <1,—1)} ~ k* x 7,/27.

Finally, suppose that Dyn(X) = 4A4,. By Type (3) of Figure 5.1, each (—1)-
curve on Y is either ¢(0©;0) for some ¢ = 0,—1,1,00, or the image of a section.
The former intersects with another (—1)-curve at g(O) and the latter intersects
with no other (—1)-curves. Hence the AutY-action on Y fixes ¢(O) and Ej. In
particular, it descends to P? via b’ and fixes h(O) = [0 : 0 : 1] and h(E}), which are
Fs-rational points not contained in {z = 0}. On the other hand, by construction,
every automorphism on P? ascends to Y via A’ if they fix [0 : 0 : 1] and h(E}).
Hence AutY is isomorphic to the subgroup of PGL(3,F3) which fixes {z = 0} and
[0:0: 1], which is GL(2, Fj).

Combining these arguments, we complete the proof. O

5.5.2 Characteristic two

In this subsection, we always assume that p = 2.
First let us show that, when the degrees are two, Dynkin types determine the
isomorphism classes of Du Val del Pezzo surfaces satisfying (NB).
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Proposition 5.5.3. The minimal resolution of each del Pezzo surface of type Ex
satisfying (NB) is constructed from Pz,[z:y:z] by blowing up at [0 : 1 : 0] seven times
along {23 + y?z = 0}. In particular, there is a unique del Pezzo surface of type E;
satisfying (NB).

Proof. We follow the notation of Type (a) of Figure 5.2. Let Z be the rational quasi-
elliptic surface of type (a) and F' a general fiber. Let g: Z — Y be the contraction
of O and Oy and 7: Y — X the contraction of all (—2)-curves. Then the desired
del Pezzo surface must be X by Lemma 5.4.5 (5). Take h: Z —> P2 and coordinates
of P? as in Lemma 5.2.4. Let i/: Y — P? be the morphism induced by h. Then I/
is the blow-up at 2(0) = [0 : 1: 0] seven times along h(F) = {x® + y*2 = 0}. Hence
it suffices to show that X satisfies (NB).

Since 7 and A’ is an isomorphism around a general member of | — Kx|, we are
reduced to proving that h,| — Ky| has only a singular member. By construction,
h!.| — Ky| consists of cubic curves intersecting with h(F) = {23+ 3%z = 0} at h(O) =
[0:1:0] with multiplicity seven. Then it is generated by {z® + 3?2z = 0}, {23 = 0},
and {z2% = 0}. The Jacobian criterion now shows that h,|— Ky-| has only a singular
member, and the assertion holds. O

Corollary 5.5.4. Let X be the del Pezzo surface of type Er satisfying (NB) and
m: Y — X the minimal resolution. Then the following hold.

(1) Y and each negative rational curve on'Y are defined over Fs.

(2) Aut X is isomorphic to

{(3?(1?1) EPGL(3ak)a€k*,dek,fek}.

00 a

Proof. We follow the notation of the proof of Proposition 5.5.3.

(1): By the construction of A, Y and each irreducible component of the exceptional
divisor E}s of ' are defined over [Fy. Since Z is of type (a), Lemma 5.2.4 shows that
a negative rational curve on Y is either a component of Ej or the strict transform
of h(©xs) = {z = 0}. Hence the assertion holds.

(2): As in the proof of Corollary 5.5.2, we have Aut X =~ AutY. By Type E;
of Figure 5.6, the AutY-action on Y fixes the (—1)-curve and each (—2)-curve.
In particular, the AutY-action naturally descends to P7 via i/. Hence AutY is
contained the subgroup G of PGL(3,k) which fixes the net h.| — Ky| = {s2® +
t(xz2?) +u(x® + y*2) =0 | [s: t: u] € P2},

On the other hand, | — Ky | is base point free by Lemma 5.1.3 (7). Since (—1)-
curves on Y are of (— Ky )-degree one, every blow-down of Y collapses the base point
freeness of | — Ky |. Hence Y is the minimal resolution of indeterminacy of b, | — Ky |.
In particular, we obtain G < AutY.

Therefore AutY =~ G. Let

A=

> oo

s =0
N——

Q@ Qe
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be an element of G. Then
A28
=22 + gi*x2? + (¢P2® + hPiy*2) + Py + ¢*ha’y + g*in?z + higwy? + hi*yz?.
Since the coefficient of y* must be zero, we have h = 0. Now the coefficient of 23
also must be zero. Hence g = 0 and ¢ # 0. Similarly,

A w2 = ci”2 + aiw? + bityz?
implies that b = 0 and
A (2% +y?2) = (A + f24)2° + ac®z2® + (a®2® + *iy?2) + (aPc + d%i)r*z
implies that a® = €2 and a’c = d?i. Fixing e = 1, we obtain the assertion. O

Proposition 5.5.5. The minimal resolution of each del Pezzo surface of type A; +
Dy satisfying (NB) is constructed from Pé[w:yzz] by blowing up at [0 : 1 : 0] five times
along {x® + y*2 = 0} and at [1 : 1 : 1] twice along {x® + y*z = 0}. In particular,
there is a unique del Pezzo surface of type Ay + Dg satisfying (NB).

Proof. We follow the notation of Type (b) of Figure 5.2. Let Z be the rational
quasi-elliptic surface of type (b) and F' a general fiber. Let g: Z — Y be the
contraction of O and Oy and 7: Y — X the contraction of all (—2)-curves. Then
the desired del Pezzo surface must be X by Lemma 5.4.5 (6). Take h: Z — P% and
coordinates of P2 as in Lemma 5.2.4. Let h’': Y — P2 be the morphism induced by
h. Then A’ is the composition of the blow-ups at h(P) = [0 : 1 : 0] five times along
h(F) = {23 + y*2 = 0} and at h(O) = [1:1: 1] twice along {z® + 3?2 = 0}. Hence
it suffices to show that X satisfies (NB).

Since m and A’ is an isomorphism around a general member of | — Kx|, it suffices
to show that h,| — Ky| has only a singular member. By construction, hl| — Ky|
consists of cubic curves intersecting with h(F) = {2® +y*z = 0} at h(P) =[0:1: 0]
five times and at h(O) = [1 : 1 : 1] twice. Then it is generated by {23 + y?z =
0}, {(z + 2)2% = 0}, and {(z + 2)?z = 0}. The Jacobian criterion now shows that
h,| — Ky| has only a singular member, and the assertion holds. ]

Corollary 5.5.6. Let X be the del Pezzo surface of type Ay + Dg satisfying (NB)
and Y the minimal resolution of X. Then the following hold.

(1) Y and each negative rational curve on'Y are defined over Fs.

(2) Aut X is isomorphic to

{ (z 0 amil) ¢ PGL(3. k)

00 ab

aek*,dek}.

(3) There is a birational morphism hy:Y — Pi{ﬂy] X }P’}C’[s:t] such that each
negative rational curve on'Y is either h'-exceptional or the strict transform of
{z =0}, {y =0}, or {s = 0}. Moreover, b} is decomposed into siz blow-ups at
[Fy-rational points.
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Proof. We follow the notation of the proof of Proposition 5.5.5.

(1): By the construction of 2/, Y and each irreducible component of Ej are defined
over Fy. Since Z is of type (b), Lemma 5.2.4 shows that a negative rational curve
on Y is either a component of Ej, or the strict transform of h(O4,5) = {z = 0} or
h(Ox3) = {x + z = 0}. Hence the assertion holds.

(2): Analysis similar to that in the proof of Corollary 5.5.4 shows that Aut X =~
AutY is the subgroup of PGL(3, k) which fixes | — Ky| = {s((x + 2)2%) + t((x +
2)22) +u(x® + y?2) = 0| [s: t : u] € P2}, and the assertion holds.

(3): Take hy: Z —> P}, x P} as the contraction of O, P, and O ; for i = 0,2,3,5,6,
and 7. The induced morphism A} : Y — P} x P} satisfies the first assertion. The
second assertion follows from (1). O

Proposition 5.5.7. The minimal resolution of each del Pezzo surface of type 3A; +
Dy satisfying (NB) is constructed from ]P’i’[x:y:z] by blowing up at [1 : 0 : 0] once,
at [0 : 0 : 1] twice along {y = 0}, at [0 : 1 : 1] twice along {y + z = 0}, and at
[0:1:0] twice along {z = 0}. In particular, there is a unique del Pezzo surface of
type 3A; + Dy satisfying (NB).

Proof. We follow the notation of Type (d) of Figure 5.2. Let Z be a rational quasi-
elliptic surface of type (d). Let g: Z — Y be the contraction of O and Og, and
7:Y — X the contraction of all (—2)-curves. Then the desired del Pezzo surface
must be X by suitable choice of Z by Lemma 5.4.5 (7). Hence it suffices to show
that X is independent of the choice of Z and satisfies (NB). Take h: Z — P? and
coordinates of P2 as in Lemma 5.2.4. Let h': Y —> P% be the morphism induced
by h. Then A’ is the composition of the blow-ups at h(©p4) = [1 : 0 : 0] once,
at h(©gp1) = [0 : 0 : 1] twice along h(Og1) = {y = 0}, at A(Oyp2) = [0 : 1 : 1]
twice along h(©gp2) = {y + 2z = 0}, and at h(©y3) = [0 : 1 : 0] twice along
h(Bo3) = {z = 0}. Hence it suffices to show that X satisfies (NB).

Since m and A’ is an isomorphism around a general member of | — Kx|, we are
reduced to proving that h/,|— Ky | has only a singular member. By construction, h|—
Ky | consists of cubic curves intersecting with h(©g ;) at h(©, ;) with multiplicity two
for 1 < < 3 and passing through h(6g4). Then it is generated by {z%y = 0}, {z%2 =
0}, and {yz(y + z) = 0}. The Jacobian criterion now shows that h/| — Ky | has only
a singular member, and the assertion holds. O

Corollary 5.5.8. Let X be the del Pezzo surface of type 3A; + Dy satisfying (NB)
and Y the minimal resolution of X. Then the following hold.

(1) Y and each negative rational curve on'Y are defined over Fs.
(2) Aut X =~ k* x PGL(2,F,).

Proof. We follow the notation of the proof of Proposition 5.5.7.

(1): By the construction of ', Y and every irreducible component of Ej, are defined
over Fy. Since Z is of type (d), Lemma 5.2.4 shows that a negative rational curve
on Y is either h'-exceptional or the strict transform of one of {y = 0}, {y + z = 0},

{z =0}, or h(BOy4) = {x = 0}. Hence the assertion holds.
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(2): By the symmetry of Type 34; + D, of Figure 5.6, the Aut X =~ Aut Y-action
on Y naturally descends to P% via h/. Hence AutY is isomorphic to the subgroup
of AutP? generated by automorphisms fixing {[0 : 1:0],[0:1:1],[0:0: 1]} and
[1:0:0], which is

{(827) ePGLG, k|a ek, (5 1) e PGL(2, Fy)} = K x PGL(2 ).

]

Proposition 5.5.9. The minimal resolution of each del Pezzo surface of type 7TA;
1s constructed from ]P’z’[x:y:z] by blowing up all the Fy-rational points. In particular,
there is a unique del Pezzo surface of type TA;.

Proof. We follow the notation of the proof of Lemma 5.2.6. Since [103] shows that
the desired surface satisfies (ND), it also satisfies (NB) by Theorem 1.3.3.

Let Z be a rational quasi-elliptic surface of type (g). Let g: Z — Y be the
contraction of Aps and Og2 and m: Y — X the contraction of all (—2)-curves.
Then the desired del Pezzo surface must be X by a suitable choice of Z by Lemma
5.4.5 (1) and (2). Claim 5.2 in the proof of Lemma 5.2.6 now shows that the
morphism //: Y — P% induced by h: Z —> P% is the blow-up of all the points in
P? defined over Fs. O

Remark 5.5.10. Cascini-Tanaka [21, Proposition 6.4] proved that some del Pezzo
surfaces constructed by Keel-M¢Kernan [62, end of section 9] are isomorphic to the
del Pezzo surface constructed by Langer [74, Example 8.2]. Proposition 5.5.9 gives
another proof of this fact. Moreover, Proposition 5.5.9 says that this surface is also
isomorphic to a counterexample to the Akizuki-Nakano vanishing theorem in [35,
Proposition 11.1 (1)] with p =n = 2.

Corollary 5.5.11. Let X be the del Pezzo surface of type TA; and 'Y the minimal
resolution of X. Let W':' Y — P2 be the blow-up of all the Fy-rational points. Then
the following hold.

(1) (=1)-curves (resp. (—2)-curves) on'Y are h'-exceptional (resp. the strict trans-
form of lines in P2 are defined over Fy). In particular, Y and every negative
rational curve on'Y are defined over Fs.

(2) The class divisor group of Y is generated by the seven (—1)-curves and any
one of (—2)-curves.

(3) Aut X = AutY = PGL(3,F,).

(4) AutY acts on both the set of (—1)-curves on'Y and that of (—2)-curves tran-
sitwvely.

(5) For each (—1)-curve E on'Y, the stabilizer subgroup of AutY with respect to
E is isomorphic to F2 x PGL(2,Fy). The first (resp. second) factor acts on E
trivially (resp. as AutPg_ ).
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Proof. (1): There are seven h'-exceptional curves and the strict transform of lines
in P? defined over Fy, which are (—1)-curves and (—2)-curves respectively. On the
other hand, Lemma 5.4.5 (4) shows that Y contains exactly seven (—1)-curves and
seven (—2)-curves. Hence the assertion holds.

(2): The assertion is obvious from the assertion (1).

(3): By the assertion (1), the AutY-action on Y fixes Ej and descends to P2 via
h'. Hence AutY equals the stabilizer subgroup of PGL(3, k) with respect to the set
of Fy-rational points on PZ, which is PGL(3, Fy).

(4): The assertion is obvious from the assertion (3).

(5): Fix coordinates [z : y : 2] of P2. By the assertion (4), we may assume that F
is the strict transform of {z = 0} < P2. Then the stabilizer subgroup of AutY with
respect to F is

100
{(d e f) e PGL(S,IFQ)} ~ {(é?S) e PGL(3,F2)} y {(éﬁ?) e PGL(3,IF2)}
ghi g01 0hi
~ 2 x PGL(2,F,),
and the assertion holds. O]
Next, we treat the case where the degree is one.

Proposition 5.5.12. Let X be a Du Val del Pezzo surface satisfying (NB). Suppose
that p = 2 and Dyn(X) = Eg, Dg, A1 + E7, or 2A1 + Dg. Then the isomorphism
class of X is uniquely determined by Dyn(X).

Proof. By Proposition 5.4.1 (4), the minimal resolution of X is obtained from the
rational quasi-elliptic surface Z of type (a), (b), (c), or (e) by contracting a section.
Since Z is unique up to isomorphism for each types by Theorem 5.2.2, the assertion
follows from Proposition 5.4.1 (2). O

Lemma 5.5.13. Let X be a Du Val del Pezzo surface satisfying (NB) and 7: Y —
X be the minimal resolution. Suppose that p = 2 and Dyn(X) = Eg, Ds, or Ay + Ex
in addition. Then the following hold.

(1) Y and every negative rational curve on'Y are defined over Fs.

(2) Aut X is isomorphic to

{6

when Dyn(X) = Eg,

?) e PGL(3, k’)’a ekt fe k;}

a

o =O

{(209) ePaLE.k)|de k) =k
when Dyn(X) = Dg, and
{(ég 82) € PGL(3J€)’66 k} ~

when Dyn(X) = Ay + E.
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Proof. Let g: Z — Y be the blow-up at the base point of | — Ky|. When Dyn(X) =
Eg (resp. Ds, Ay + E7), Z is the rational quasi-elliptic surface of type (a) (resp. (b),
(¢)) by Proposition 5.4.1 (4). We may assume that g is the contraction of O in Types
(a)—(c) of Figure 5.2 by virtue of the MW (Z)-action on Y. From now on, we follow
the notation of Lemma 5.2.4. Then h: Z — P} induces a morphism h': Y — P%.
(1): First, suppose that Dyn(X) = Fg. Then &’ is the blow-up of P% at h(O) =
[0:1:0] eight times along h(F) = {z® + y*2 = 0}. Hence Y and each irreducible
component of Ej are defined over Fy. Since each negative rational curve on Y is
either a component of Ej, or the strict transform of h(O45) = {z = 0}, the assertion
holds.

Next, suppose that Dyn(X) = Dg. Then A’ is the composition of the blow-up
of P? at h(P) = [0 : 1 : 0] five times along h(F) = {23 + y?2 = 0} and the blow-
up at h(O) = [1 : 1 : 1] three times along {z* + y?2 = 0}. Hence Y and each
irreducible component of Ej, are defined over 5. Since each negative rational curve
on Y is either a component of Ej, or the strict transform of h(O45) = {z = 0} or
h(B43) = {x + z = 0}, the assertion holds.

Finally, suppose that Dyn(X) = A; + E;. Then A’ is the composition of the

blow-up of P% at h(P) = [1:0: 0] six times along h(Oy 1) = {zz + y*> = 0} and the
blow-up at h(O) = [0 : 1 : 0] twice along h(O) = {x = 0}. Hence Y and each
irreducible component of £}/ are defined over 5. Since each negative rational curve
on Y is either a component of Ej or the strict transform of {xz + y* = 0}, {z = 0},
or h(©p2) = {# = 0}, the assertion holds.
(2): From Types (a)—(c) of Figure 5.2, it is easily seen that the AutY-action on Y
fixes each negative rational curve. In particular, the Aut Y-action naturally descends
to P? via /. Hence AutY is contained in the subgroup G of PGL(3, k) which fixes
the net hl| — Ky/|.

On the other hand, we have h}| — Ky| = hy| — Kz|. Since | — K| is base
point free, Z is the minimal resolution of indeterminacy of h’| — Ky|. Hence the
G-action on P? ascends to Z. When Dyn(X) = Eg, it descends to Y since there is
a unique section on Z. On the other hand, when Dyn(X) = Dg or A; + E7, it also
descends to Y by the asymmetry of Ej. Therefore AutY =~ G. By the choice of
coordinates [z : y : 2] of P%, | — Ky| is generated by {z® + y*2 = 0} and {2 = 0}
(resp. {@® + y?z = 0} and {(z + 2)?*2 = 0}, {(xz + y*)x = 0} and {z* = 0}) when
Dyn(X) = FEg (resp. Dg, A; + E7). Hence an easy computation as in the proof of
Corollary 5.5.4 gives the assertion. O]

Lemma 5.5.14. Let X be the Du Val del Pezzo surface of type 2A1 + Dg satisfying
(NB) and w: Y — X be the minimal resolution. Then the following hold.

(1) Y and every negative rational curve on'Y are defined over Fs.

(2) Aut X is isomorphic to

{(10
01
00

[ =] =]

)-(i

oo
—_—_—0

) € PGL(3, k:)} ~ 7.,/27.
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Proof. Since 7 is the minimal resolution, we have AutY ~ Aut X. Let g: 7 — Y
be the blow-up at the base point of | — Ky|. Then Z be the rational quasi-elliptic
surface of type (e) by Proposition 5.4.1 (4). In what follows, we use the notation of
Type (e) of Figure 5.2. Then we may assume that g is the contraction of O. By the
shape of Type (e) of Figure 5.2, the AutY-action on Y fixes g(©;2). By Lemma
5.4.5 (7), the contraction of g(©1 ) gives a morphism h: Y — W to the minimal
resolution of the Du Val del Pezzo surface of type 34, + D, satisfying (NB). Hence
AutY is isomorphic to the stabilizer subgroup of Aut W =~ k* x PGL(2,F,) with
respect to t = h o g(012).

(2): By Type (e) of Figure 5.2, E = ho g(O;3) is the unique negative rational
curve containing t. Hence the AutY-action on W fixes E. Moreover E is a (—1)-
curve intersecting with exactly two (—2)-curves, which are £y = h o g(©10) and
Ey = hog(©14). We have seen in the proof of Corollary 5.5.8 that the first factor
(resp. the second factor) of Aut W =~ k* x PGL(2,Fs) acts on E\(En(E1UE)) ~ k*
freely and transitively (resp. acts as a permutation of the third nodes from the top
in Type 34; + D, of Figure 5.6). Hence the assertion holds.

(1): By Corollary 5.5.8, W and each negative rational curve on W are defined
over [Fy. By virtue of the k*-action on W, we may assume that ¢ is an Fy-rational
point. Hence Y and each negative rational curve on Y except ¢(Gg) and g(O )
are defined over Fy. On the other hand, g(©o) and ¢(O ) are defined over Fom
for some m > 0 since Y is defined over Fy, and are the unique (—1)-curves on Y
intersecting with ¢(©¢1) and g(O 1) twice respectively. Since the field extension
Fym /IFy is Galois, they are also defined over Fy. Hence the assertion holds. O

To determine the isomorphism classes of Du Val del Pezzo surfaces of one of the
types 2Dy, 4A; + Dy, and 8A; satisfying (NB), we need the following notation and
auxiliary lemmas.

Definition 5.5.15. For coordinates of P}, let D,, < P} denote the complement of
all the hyperplane sections defined over Fy. Note that PGL(n + 1,Fy) naturally acts
on D,,.

Lemma 5.5.16. Let 3, be the stabilizer subgroup of PGL(2,Fy) with respect to
t € Dy. Then the following hold.

(1) X4 is trivial unless t is an Fy-rational point.

(2) The PGL(2,Fy)-action on the set Dy(Fy) of Fy-rational points on Dy is tran-
sitive.

(3) ¥y =Z/3Z if t is an Fy-rational point.
(4) D,/ PGL(2,Fy) =~ A} with a distinct point which corresponds to Dy (Fy).

Proof. (1): Suppose that there is a non-trivial element A € ¥;. Since PGL(2,F) is
isomorphic to the symmetric group of three letters, it has exactly three conjugacy
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classes. Since A; = (9}) and Ay = (91) are non-trivial and have different minimal
polynomials, A is conjugate to A; for some i. Then A; also fixes some point in D;.
In P,1§7[x:y], the fixed point locus of Ay (resp. As) equals {[1 : 1]} (resp. {[1 : s] |
s>+ s+ 1=0}). Hence i = 2 and t € Dy (Fy).
(2): Since A, interchanges two points in D (F,) with each other, the assertion holds.
(3): Since the order of 3; equals | PGL(2,Fy)|/|D:1(F4)| = 3, we obtain ¥; = Z/3Z.
(4): D;/PGL(2,F,) is naturally embedded into P}/ PGL(2,F,) =~ P}. The comple-
ment is a point since PGL(2,Fy) acts on PL(Fy) transitively. O

Lemma 5.5.17. Let ¥, be the stabilizer subgroup of PGL(3,Fy) with respect to
t € Dy. Then the following hold.

(1) 3 is trivial unless t is an Fg-rational point.

(2) The PGL(3,Fs)-action on the set Dy(Fs) of Fs-rational points on Dy is tran-
sitive.

(3) ¥y = ZJTZ if t is an Fg-rational point.

(4) Do/ PGL(3,Fs) is a surface with a unique singular point, which corresponds to
Do (IFy).

Proof. (1): Suppose that there is a non-trivial element A € ¥;. By [55, 27.1 Lemmal],
PGL(3,F,) =~ PSL(2,F7) has exactly six conjugacy classes. Since

Ay = (é%%),AQ = (6%9),/13 = (68?),A4 = (86?), and As = (86?)
001 001 011 110 101
are non-trivial and have different minimal polynomials to each other, A is conjugate
to A; for some 1 < i < 5. Then A; also fixes some point in Ds.

In ]P)z,[m:y:z]’ the fixed point locus of A; equals
({y =0} (1=1)
{[1:0:0]} (i=2)
S{[1:0:0]}u{[0:1:5]|s*+s+1=0} (i=23)
{[1:s:s%]|s*+s+1=0} (i =4)
{[1:5:8]]s*+s*+1=0} (i =5)

Hence i = 4 or 5, and t € Dy(FFg). We have proved more, namely that A is of order
seven and fixes exactly three points in Dy(Fg). By [55, 27.1 Lemmal, the size of its
conjugacy class is 24.

(2): Pi(Fg) (resp. P%(Fg)) consists of nine (resp. 73) points. Since P?\D, is the
union of seven P}’s passing through three Fo-rational points, Dy(Fg) consists of
73—7-9+(3—1)-7 =24 points. The Burnside lemma now shows that the number
of the PGL(3, Fy)-orbits is

1
[Da(Fs)/ PGL(3,Fy)| = 12(24+3 + 243+ 124 4 (168~ 24~ 24 1) - 0) = 1
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Hence PGL(3,F3) acts on Dy(Fg) transitively.

(3): Since the order of ¥; equals | PGL(3,Fs)|/|D(Fs)| = 7, we obtain ¥, = Z/7Z.
(4): The quotient morphism Dy — D5/ PGL(3,Fy) is étale outside the image of
Dy (Fg). Hence the assertion holds. O

Finally, let us investigate Du Val del Pezzo surfaces of one of types 2Dy, 4A1+ Dy,
and 8A4; satisfying (NB).

Proposition 5.5.18. Let W be the minimal resolution of the Du Val del Pezzo
surface of type 3A; + Dy satisfying (NB) and E the (—1)-curve intersecting with
three (—2)-curves. Note that E is unique by Lemma 5.4.5 (3) and W and E are
defined over Fy by Corollary 5.5.8. Then the following holds.

(1) The minimal resolution of each Du Val del Pezzo surface of type 2D, satisfying
(NB) is obtained from W by blowing up a point in E\E(Fs) = D;.

(2) Let hy: Yy —> W be the blow-up at t € E\E(Fy). Then Y; is the minimal
resolution of a Du Val del Pezzo surface of type 2D, satisfying (NB). Moreover,
fort' € E\E(Fy), Y; = Yy if and only if t' is contained in the PGL(2,Fy)-orbit
of t.

(2) The isomorphism classes of del Pezzo surfaces of type 2D, satisfying (NB)
corresponds to the closed points of D1/ PGL(2,Fy).

Proof. We follow the notation of Type (d) of Figure 5.2.

(1): Let Z be a rational quasi-elliptic surface of type (d). Let g: Z — Y be the
contraction of O. Then the minimal resolution of each del Pezzo surface of type
2D, satisfying (NB) is isomorphic to Y by suitable choice of Z by Proposition 5.4.1
(4). On the other hand, by Lemma 5.4.5 (7), the contraction of g(©po) gives a
morphism h: Y — W. We check at once that £ = h o ¢g(64) and it contains
the point t = h o g(©g), which is not contained in any (—2)-curves. By Corollary
5.5.8, the set of Fo-rational points on E is the intersection of E and all (—2)-curves.
Therefore Y is the blow-up of W at t € E\E(Fs).

(2): By Lemma 5.4.5 (7), Y; is obtained from a rational quasi-elliptic surface of type
(d) by contracting a section. Hence the former assertion follows from Proposition
5.4.1 (4).

We have seen in the proof of Corollary 5.5.8 that first (resp. second) factor of
Aut W = k* x PGL(2,F;) acts on h(Ouy4) trivially (resp. as Aut Py ). The same
conclusion can be drawn for FE by the choice of its coordinates. In particular,
t' € E\E(F,) is contained in the PGL(2,Fy)-orbit of ¢ if and only if it is contained
in the Aut W-orbit of ¢ in . On the other hand, Y; =~ Y}, if ¢ is contained in the
Aut W-orbit of t. Hence it remains to prove that ¢’ is contained in the Aut W-orbit
of t if Y; = Y;g/.

Suppose that there is an isomorphism o: Y; =~ Y. Since the involution as in
Lemma 5.2.5 fixes the section O, it descends to an involution 7 € AutY;. Then,
replacing ¢ with ¢ o 7 if necessary, we may assume that o(E,) = Ep,. Hence o
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descends to an isomorphism @ € Aut W such that 5(t) = t/, and the latter assertion
holds.
(3): This is an immediate consequence of (1) and (2). O

Corollary 5.5.19. Let X; be the contraction of all (—2)-curves in Yy as in Proposi-
tion 5.5.18. Then Aut X; = AutY; = (k* x Z/37) x Z/27Z when t is an Fy-rational
point of Dy and k* x Z/27 otherwise. In particular, there is a unique Du Val del
Pezzo surface X(2Dy) satisfying (NB) such that Aut X = (k* x Z/3Z) x Z/27.

Proof. We follow the notation of Proposition 5.5.18. Let X be the stabilizer subgroup
of Aut W with respect to t. Then ¥ = k* x 3’ for some ¥’ < PGL(2,F;) since k*
acts on E trivially. By Lemma 5.5.16, ¥ = k* x Z/3Z if t € Dy(F,) and ¥ = k*
otherwise. On the other hand, we can identify > with the stabilizer subgroup of
AutY; with respect to Ej,. For n € AutY,, either n or n o 7 belongs to X. Hence
AutY; = ¥ x Z/27, where the last factor is generated by 7, and the first assertion
holds. Since PGL(2,F,) acts on D;(F,) transitively, the second assertion follows
from Proposition 5.5.18 (2). O

Proposition 5.5.20. Let W be the minimal resolution of the Du Val del Pezzo
surface of type TA; and E a (—1)-curve. Note that W and E are defined over Fy
and E is unique up to the Aut W-action on W by Corollary 5.5.11 (1) and (4).
Then the following hold.

(1) The minimal resolution of each Du Val del Pezzo surface of type 4A; + Dy is
obtained from W by blowing up a point in E\E(Fy) = D;.

(2) Let hy: Yy —> W be the blow-up at t € E\E(Fy). Then Y; is the minimal
resolution of a Du Val del Pezzo surface of type 4A; + Dy. Moreover, for
t'e E\E(Fy), Y; = Yy if and only if t' is contained in the PGL(2,Fy)-orbit of
t.

As a result, there is a one-to-one correspondence between the isomorphism classes
of del Pezzo surfaces of type 4A1 + Dy and the closed points of D1/ PGL(2,F,).

Proof. We follow the notation of Figure 5.3. Note that, since [103] shows that
4A1 + D, is not feasible over C, every Du Val del Pezzo surface of type 44; + Dy,
satisfies (NB) by Theorem 1.3.3.

(1): Let Z be a rational quasi-elliptic surface of type (f). Let g: Z — Y be the
contraction of O. Then the minimal resolution of each del Pezzo surface of type
4A; + Dy is isomorphic to Y by suitable choice of Z by Proposition 5.4.1 (4). On
the other hand, by Lemma 5.4.5 (8), the contraction of g(©;) gives a morphism
h:Y — W. We may assume that £ = ho g(©,4). Then E contains the point
t = hog(©1p), which is not contained in any (—2)-curves. By Corollary 5.5.11
(1), the set of Fy-rational points on E is the intersection of F and all (—2)-curves.
Therefore Y is the blow-up of W at t € E\E(Fs).

(2): By Lemma 5.4.5 (8), Y; is obtained from a rational quasi-elliptic surface of type
(f) by contracting a section. Hence the former assertion follows from Proposition
5.4.1 (4).
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Let C; be the strict transform of E in Y;, which is a (—2)-curve. By Figure
5.7, Cy intersects with three (—2)-curves in Y;. Hence C; is the central curve of the
Dynkin diagram D,. In particular, every automorphism of Y; fixes C}.

By Corollary 5.5.11 (5), ' € E\E(F5) is contained in the PGL(2, Fy)-orbit of ¢ if
and only if it is contained in the Aut W = F3 x PGL(2,Fy)-orbit of ¢ in W. On the
other hand, Y; =~ Y}, if ¢ is contained in the Aut W-orbit of ¢. Hence it remains to
prove that ¢’ is contained in the Aut W-orbit of ¢ if Y; =~ Y}

Suppose that there is an isomorphism o: Y; = Yj. Then o(C;) = Cyp. By Figure
5.3, L, is the unique (—1)-curve intersecting with Cy. Hence o(E),) = Ep,, and o
descends to an isomorphism & € Aut W such that 5(¢) = ¢, and the latter assertion

holds. ]

Corollary 5.5.21. Let X; be the contraction of all (—2)-curves in Yy as in Proposi-
tion 5.5.20. Then Aut X; =~ AutY; = (Z/27)* x Z/37Z when t is an Fy-rational point
and (Z/27)* otherwise. In particular, there is a unique Du Val del Pezzo surface
X (4A; + Dy) such that Aut X =~ (Z/27.)* x 7,/3Z.

Proof. We follow the notation of Proposition 5.5.20. Since each automorphism of
Y; fixes E},, the group AutY; equals the stabilizer subgroup 3 of Aut W = F3 x
PGL(2,F,) with respect to t. Then (Z/27Z)? ~ F5 < AutY; since F3 acts on F
trivially. The rest of the proof runs as in Corollary 5.5.19. O

Proposition 5.5.22. Let W be the minimal resolution of the Du Val del Pezzo
surface of type TAy and B the union of all negative rational curves on W. Note that
W and B are defined over Fy and W\B = Dy by Corollary 5.5.11 (1). Then the
following hold.

(1) The minimal resolution of each Du Val del Pezzo surface of type 8A; is obtained
from W by blowing up a point in W\B.

(2) Let hy: Yy —> W be the blow-up att € W\B. ThenY; is the minimal resolution
of a Du Val del Pezzo surface of type 8A;.

(3) Forte W\B, Figure 5.8 is the intersection matrixz of negative rational curves
on'Y;. Moreover, there is a (—2)-curve Cy such that Ey, is a unique (—1)-curve
intersecting with Cy twice.

(4) For t € W\B, AutY; is contained in the affine linear group Fs x GL(3,F,)
and contains its normal subgroup T3, which acts on the set of (—2)-curves
transitively.

(5) Fort and t' € W\B, Y, = Yy if and only if t' is contained in the Aut W =
PGL(3,Fy)-orbit of t.

As a result, there is a one-to-one correspondence between the isomorphism classes
of del Pezzo surfaces of type 8 Ay and the closed points of Dy/ PGL(3,F3).
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Figure 5.8: The intersection matrix of the (—1)-curves and (—2)-curves in a del
Pezzo surface of type 84,

Proof. We follow the notation of the proof of Lemma 5.2.6. Note that, since [103]
shows that 8A; is not feasible over C, every Du Val del Pezzo surface of type 8A4;
satisfies (NB) by Theorem 1.3.3.

(1): Let Z be a rational quasi-elliptic surface of type (g). Let g: Z — Y be the
contraction of Aps. Then the minimal resolution of each del Pezzo surface of type
84, is isomorphic to Y by suitable choice of Z by Proposition 5.4.1 (4). On the
other hand, by Lemma 5.4.5 (1) and (2), the contraction of g(02) gives a morphism
h:Y — W such that t = ho g(©g2) € W\B. Therefore Y is the blow-up of W at
t e W\B.

(2): By Lemma 5.4.5 (1) and (2), Y; is obtained from a rational quasi-elliptic surface
Zy of type (g) by contracting a section. Hence the assertion follows from Proposition

5.4.1 (4).
(3): By Lemma 5.2.6, Z; has exactly sixteen (—1)-curves Ag1,..., Az1, Ao2, ..., A7z
and exactly sixteen (—2)-curves ©q1,...,071, Ogo,...,O72, whose intersection ma-

trix is Figure 5.5. We may assume that the contraction of Ay, gives a morphism
gt Zy — Yy and By, = g;(©02). Then g;(Ap,1) is a (0)-curve and A; ; := g;(4;;) is a
(—=1)-curve for 1 <4 < 7and j = 1,2. Moreover, O], := g,(0;1) and 6], = (6 2)
is a (—2)-curve and a (—1)-curve respectively for 0 < i < 7. Hence Figure 5.8 is the
intersection matrix of Aj,,..., A%, A, ..., A7, O44,...,07,, Og,,...,00, in
this order. Moreover, Ej, = 0, is a unique (—1)-curve intersecting with C; = O,
twice.

(4): Suppose that an automorphism of Y; fixes each (—1)-curve and each (—2)-curve.
Then it fixes A7 ,,..., A7, and ©y,. By Claim 5.2 in the proof of Lemma 5.2.6,
it descends to an automorphism of P% fixing all the Fy-rational points, which is the

identity. Thus an automorphism of Y; is determined by the image of all (—1)-curves
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—10 0 100 0,12010 1001
-10 010 1 0 0|0 1 1 0 0 1|0 1
-10|/0 01 0|1 001 0 1|01

=10 0 0 1/0 1 0 1 1 0]0 1
-10 0 00 1 010 11 O
-10 011 0 0 1 101 O

-10|10 1 1 01 01 O
—1/1 0 1 0 0 111 0
-11 0 0 0 0|0 O
—-10 0 0 0|0 O
—-11 0 0(0 O

—-10 0|0 O
—-11]10 0

=110 0

-11

-1

Figure 5.9: The intersection matrix of the (—1)-curves in Y’

and (—2)-curves.

Let Sg be the permutation group of {0,1,...,7}. By Figure 5.8, the images
of all (—1)-curves are determined by those of (—2)-curves ©,,...,07,. Hence
there is an injection ¢: AutY; — Sg which sends 1 € AutY; to o € Sg such that
n(6;,) = 6, for 0 <i < 7. Moreover, (0%), (1), and fourteen rows in the (1,3)
block or (2, 3) block of Figure 5.8 form the [8, 4, 4] extended Hamming code, which is
also the Reed-Muller code R(1,3). Hence ¢ factors through the automorphism group
of R(1,3), which is the affine linear group Fs x GL(3,Fy) < Sg by [81, Chapter 13,
§9, Theorem 24]. Since the normal group F3 < Sg is generated by (01)(23)(45)(67),
(02)(13)(46)(57) and (04)(15)(26)(37), it acts on {0,1,...,7} transitively. Hence
it suffices to show that F3 < AutY;. We show only the existence of € AutY;
such that «(n) = (01)(23)(45)(67); the same proof works for (02)(13)(46)(57) and
(04)(15)(26)(37).

Let ¢: Y, — Y be the contraction of A}, Ay, and A}, Set s; = p(4];)
for i = 1,2, and 4. Then Y is a smooth del Pezzo surface of degree four since
each (—2)-curve in Y; intersects with A7, A5, or Aj,. Generally speaking, a
smooth del Pezzo surface of degree four contains sixteen (—1)-curves, and each
(—1)-curve intersects with five (—1)-curves. In the present case, A;; = ¢(A},),
Aig = ©(Alo), 0, = ©(©%,), and Oy = ©(©},) are (—1)-curves on Y for i =
3,5,6,0or 7,2 < j <7 and £k = 0,1. Figure 5.9 is the intersection matrix of
23,1, . ,Zm, 2372, . 727,27 @271, .. ,@771, @072, and @1,2 in this order. In particular,
M = (@172, A3’2,A572, A672’ A772> and .Ail/ = (@&2,14371, A5,1, A671, A7’1) are the 5-
tuples of (—1)-curves intersecting with ©g» and ©; o respectively.

Since M and M’ satisfy the condition (1) of [48, Theorem 2.1}, there is an auto-
morphism 7 of Y which interchanges M with M’. By Figure 5.9, 7 also interchanges
@271 with @371, @4,1 with @5,1, and @671 with @771. Then 7 fixes s; = @271 N @371,
S9 = @471 0@5,1, and s4 = @6,1 m@m. Hence 77 induces an automorphism 7 € Aut Y},
which interchanges 6, with O/ ,, 05, with O3, ©} ; with ©5,, and Og ; with ©7 ;.
Since g, (resp. ©) ;) is the unique (—2)-curve which intersects with ©g, (resp.
O] ,) twice, 1 also interchanges 6, with ©} ;. Hence ¢(n) = (01)(23)(45)(67), and
the assertion holds.

(5): If some automorphism of W sends t to ¢/, then it ascends to an isomorphism
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Y, = Y. On the other hand, suppose that there is an isomorphism Y; = Y. By the
assertion (4), we may assume that this isomorphism sends C; to Cp. Then by the
assertion (3), it also sends Ej, to £j,. Hence it descends to an isomorphism of W,
which sends ¢ to t'. ]

Corollary 5.5.23. Let X; be the contraction of all (—2)-curves in'Y; as in Proposi-
tion 5.5.22. Then Aut X; =~ AutY; = (Z/27)3 x Z)7Z when t is an Fg-rational point
and (Z/2Z)* otherwise. In particular, there is a unique Du Val del Pezzo surface

X (8A;) such that Aut X =~ (Z/27)* x Z/TZ.

Proof. We follow the notation of Proposition 5.5.22. Let > < Aut Y} be the stabilizer
subgroup with respect to Cy. Since F3 =~ (Z/2Z)3 is a normal subgroup of AutY;
which acts on the set of (—2)-curves in Y; transitively, we obtain AutY; =~ (Z/27Z)3 x
Y. By Proposition 5.5.22 (3), X is the same as the stabilizer subgroup of PGL(3,F3)
with respect to t € Do. Now the first assertion follows from Lemma 5.5.17. Since

PGL(3,F2) acts on Dy(Fs) transitively, the second assertion follows from Proposition
5.5.22 (5). O

Corollary 5.5.24. There are one-to-one correspondences between the isomorphism
classes of rational quasi-elliptic surfaces of type (d), (f), and (g), and the closed
points of D1/ PGL(2,Fs), D1/ PGL(2,F,), and Dy/ PGL(3,Fy) respectively.

Proof. By Proposition 5.4.1, there is one-to-one correspondence between isomor-
phism classes of del Pezzo surfaces of type 2D, satisfying (NB) (resp. type 441 + Dy,
type 84;) and those of rational quasi-elliptic surfaces of type (d) (resp. (f), (g)).
Hence the assertion follows from Propositions 5.5.18, 5.5.20 and 5.5.22. O]

Now we can prove Theorem 1.3.4.

Proof of Theorem 1.3.4. The assertions (0), (1), and (2) follow from Lemma 5.1.3
(3),(4), Proposition 5.4.1, and Propositions 5.4.3 and 5.4.4 respectively. The as-
sertion (3) follows from Propositions 5.5.1, 5.5.3, 5.5.5, 5.5.7, 5.5.9, 5.5.12, 5.5.18,
5.5.20, and 5.5.22. O

5.5.3 List of automorphism groups

As a consequence, we obtain the list of automorphisms of Du Val del Pezzo
surfaces satisfying (NB) and rational quasi-elliptic surfaces as follows.

Theorem 5.5.25. Let X be a Du Val del Pezzo surface satisfying (NB). Then Aut X
15 described in Table 5.5. Furthermore, suppose that p = 2. Then for each of types
2Dy, 4A1 + Dy, and 8Ay, there is a unique del Pezzo surface of the given type such
that the group G in Table 5.5 is non-trivial.

Proof. The assertion follows from Corollaries 5.5.2, 5.5.4, 5.5.6, 5.5.8, 5.5.11, Lem-
mas 5.5.13, 5.5.14, Corollaries 5.5.19, 5.5.21, and 5.5.23. O
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Table 5.5
| Dyn(X) | Characteristic | Automorphism groups |
a0 0
— 01 *
5 D=2 {(O%GJ;)ePGL(?),k)aek:,fek}
{(3}) o) e PGL(3,k)|a € k*,c e k;}
Ay + Eg p=3 k* X 721
4A, GL(2,T3)
Dy k
Ay + B k*
2D, (5 x G) % Z/2Z with G = {1} or Z/3Z
2A1 + Ds 7]27
4A; + Dy _ 9 (Z/27)* x G with G = {1} or Z/3Z
8A, p= (Z/27)% x G with G = {1} or Z/7Z
o {(?z” )ePGL(3 k)’aek*dek fek}
00 a3 Cyw
al a
Ay + Dg {(dla+d+1>EPGL(3,k)aEk*,dEk
00 a
34, + D, ¥ x PGL(2, )
TA, PGL(3,F,)

Corollary 5.5.26. Let Z be a rational quasi-elliptic surface and O < Z a section.
Take g: Z — Y as the contraction of O and w: Y — X the contraction of all the
(—=2)-curves. Then Aut Z ~ MW(Z) - Aut X. In particular, Aut Z =~ (Z/pZ)" - H
for some 0 < n < 4 and for some group H listed in Table 5.5.

Proof. Note that X is a Du Val del Pezzo surface satisfying (NB) by Proposition
5.4.1 (1) and AutY =~ Aut X since 7 is the minimal resolution. Since h(O) is the
base point of | — Ky /|, h induces an isomorphism between AutY and the stabilizer
subgroup of Aut Z with respect to O. Hence the first assertion follows from the
transitivity of the MW (Z)-action on the set of sections on Z. The second assertion
follows from Theorems 5.2.1, 5.2.2, and 5.5.25. O

Remark 5.5.27. We follow the notation in Corollary 5.5.26. We have described the
reduced scheme structure of AutY and Aut Z. We can also describe the scheme
structure of them by virtue of [82, Main Theorem|, which calculates the identity
component of AutY as a scheme.

On the other hand, what is still lacking is the determination of the scheme
structure of Aut X since the contraction of (—2)-curves may thicken the scheme
structures of the automorphism groups. For example, smooth K3 surfaces in char-
acteristic p > 0 admit no non-trivial p,-actions but RDP K3 surfaces may admit
such actions (see [83, Remark 2.3]).
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5.6 Log liftability

In this section, we determine all the Du Val del Pezzo surfaces which are not log
liftable over W (k). Note that by Theorem 1.3.3 (1), it suffices to consider Du Val
del Pezzo surfaces satisfying (NB).

Proposition 5.6.1. Let X be a Du Val del Pezzo surface satisfying (NB) and
7: Y — X the minimal resolution. Suppose that p = 3 and Dyn(X) = Eg or
As + Eg. Then the pair of (Y, E;) lifts to SpecZ via SpecF3 — SpecZ. As a
result, X is log liftable both over Z via SpecF3 — SpecZ and over W (k).

Proof. Note that Y and each (—2)-curve on Y are defined over F3 by Proposition
5.5.1 (6). Suppose that Dyn(X) = FEg. Take a birational morphism h}: Yz — P2
as the blow-up at [0 : 1: 0] eight times along {23 + y?2 = 0}. By Proposition 5.5.1
(3), we have Y =~ Y;®;F3 and each negative rational curve on Y is the specialization
of either an h/-exceptional curve or the strict transform of {z = 0} < P% via h/,.
Hence we obtain the desired lift. The proof for the case where Dyn(X) = Ay + Fs
is similar by virtue of Proposition 5.5.1 (4). O

Proposition 5.6.2. Let X be a Du Val del Pezzo surface satisfying (NB) and
m: Y — X the minimal resolution. Suppose that p = 2. Then the following
hold.

(1) Suppose that Dyn(X) = E7, A1+ Dg, or 3A1+ Dy. Then the log smooth pair of
Y and the union B of negative rational curves lifts to SpecZ via SpecFy —
Spec Z.

(2) Suppose that Dyn(X) = Eg, Dg, A1 + E7, or 2A; + Dg. Then the pair (Y, Ey)
lifts to Spec Z via SpecFy — Spec Z.

As a result, X is log liftable both over Z via SpecFy — SpecZ and over W (k).

Proof. By Theorem 1.3.4, X is uniquely determined up to isomorphism by Dyn(X).
Moreover, we have shown in §5.5 that Y and each negative rational curve on Y are
defined over FFs.

(1): By Lemma 5.4.5 (3), the pair (Y, B) is log smooth. Now suppose that Dyn(X) =
E;. Take a birational morphism h}: Yz — P2 as the blow-up at [0 : 1 : 0] seven
times along {2 + y?z = 0}. By Proposition 5.5.3, we have Y =~ Yz ®; [, and each
negative rational curve on Y is the specialization of either an h7,-exceptional curve
or the strict transform of {z = 0} = P% via h}. Hence we obtain the desired lift.
The proof for the cases where Dyn(X) = A; + Dg and 3A; + Dy is similar by virtue
of Corollary 5.5.6 (3) and Proposition 5.5.7 respectively.

(2): By Proposition 5.4.1 (4) and Lemma 5.4.5 (5)—(7), for some Du Val del Pezzo
surface of type E7, Ay + Dg, or 3A; + D, satisfying (NB) and its minimal resolution
W, there exist a (—1)-curve £ < W and an Fy-rational point ¢ € E not contained in
any (—2)-curves such that Y is the blow-up of W at t. Hence the assertion follows
from the assertion (1) and [7, Proposition 2.9]. O
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By Proposition 5.5.18, there are infinitely many Du Val del Pezzo surfaces of
type 2D, satisfying (NB). In particular, they are not defined over 5 in general. On
the other hand, we can show their log liftability over W (k) as follows.

Proposition 5.6.3. Let X be a Du Val del Pezzo surface of type 2D, satisfying
(NB) in p = 2. Take R as a Noetherian irreducible ring with surjective ring ho-
momorphism f: R — k. Then X is log liftable over R wvia the induced morphism
Spec k — Spec R.

Proof. Let m: Y — X be the minimal resolution. By Proposition 5.5.18 (1), on the
minimal resolution W of the Du Val del Pezzo surface of type 3A; + D, satisfying
(NB), there are the (—1)-curve £ W intersecting with exactly three (—2)-curves
and a closed point t € E not contained in any (—2)-curves such that Y is the blow-up
of W at t.

Let D be the union of the (—2)-curves in W. By Proposition 5.6.2 (1), the log
smooth pair (W, D u E) lifts to Spec Z via Spec Fy — SpecZ. Take (W, D U £) as
the base change of such a lifting by the natural homomorphism Z — R.

Fix coordinates [z : y| of & =~ Pk and choose a,b € k so that t = [a : b] € IP’}szy].

Since f: R — k is surjective, we can take a lifting @ (resp. Z) of a (resp. b). Then
t=1[a:b] € £ =P is a lifting of t. Let ®: ) — W be the blow-up along . Then
(Y, ;1 (D U £)) is the desired lift. O

Proposition 5.6.4. Let X be a Du Val del Pezzo surface with Dyn(X) = 4A; + Dy,
8A1, or TAy. Then X 1s not log liftable over any Noetherian integral domain R
of characteristic zero via any morphism Spec k — Spec R induced by a surjective
homomorphism R — k.

Proof. By [103, Theorem 1.2], the surface X satisfies (ND). Hence the assertion
follows from Proposition 5.3.2. O]

Proposition 5.6.5. Let X be a Du Val del Pezzo surface of type 4A5 in p = 3.
Then X is not log liftable over W (k).

Proof. We note that X satisfies (NB) by Proposition 5.4.2. Suppose by contradiction
that X is log liftable over W (k). Take 7: ¥ — X as the minimal resolution and
(V,€) as a W(k)-lifting of (Y, E;). We follow the notation used in the proof of
Proposition 5.3.2. Then the blow-up Zx — Y at the base point of | — Ky, | gives
the morphism fr: Zx —> Pk associated to the anti-canonical linear system. Let
G be the strict transform of Fx = Zle E,k in Zx. Then fx(G) consists of four
K-rational points. We fix coordinates of Pk such that f(G) = {0,1, 0, a} for some
a € PL\{0,1, o0}

On the other hand, by Proposition 5.3.2, X¢ is the del Pezzo surface of degree
one of type 4A,. By [103, Table 4.1], the blow-up Z¢ — Y at the base point
of | — Ky,| gives an elliptic fibration fc: Z¢ — Pg with four singular fibers of
type I3. Since frx(G) < P is the singular fiber locus of f¢, [8, Théoréme] now
vields the existence of o € Aut Pt which sends fx(G) to {1,w,w? 0}, where w is a
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primitive cube root of unity. An easy computation shows that o = —w and hence
w € K. However, by the Eisenstein criterion and the Gauss lemma, the cyclotomic
polynomial #* + ¢ + 1 is irreducible in K[t], a contradiction. Therefore (Y, E,) does
not lift to W (k). O

Remark 5.6.6. One question still unanswered is whether X (4A4,) in p = 3 is log
liftable over any Noetherian integral domain of characteristic zero.

Remark 5.6.7. As we saw in the proof of Propositions 5.5.9, 5.5.20, and 5.5.22 (resp.
Proposition 5.5.1 (4)), the surfaces as in Proposition 5.6.4 (resp. Proposition 5.6.5)
are obtained from the configuration of all the lines in P defined over F,,, which is not
realizable in P% by the Hirzebruch inequality for line arrangements (see [47] and [86,
Example 3.2.2]). This is the reason why we cannot apply the proof of Proposition
5.6.1 for such surfaces.

5.7 Kodaira type vanishing theorem

In this section, we determine all the Du Val del Pezzo surfaces which violate the
Kodaira vanishing theorem for ample Z-divisors. Note that by Theorem 1.3.3 (3),
it suffices to consider Du Val del Pezzo surfaces satisfying (NL).

Lemma 5.7.1 (cf. [59, Theorem 4.8]). Let X be a Du Val del Pezzo surface and A
an ample Z-divisor on X. If HY(X,Ox(—A)) # 0, thenp =2 and (—Kx - A) = 1.

Proof. We refer to the proof of [59, Theorem 4.8] for the details. n

Proposition 5.7.2. Let X be a del Pezzo surface of type 8A,. Then there is an
ample Z-divisor A such that H' (X, Ox(—A)) # 0.

Proof. We follow the notation of the proof of Proposition 5.5.22. Let 7: ¥ — X
be the minimal resolution and A := m, (A}, + Ay, — A} ;). Then A is ample since
p(X)=1and (—Kx - A) = 1. By Figure 5.8, we have

|7 Al
1 1
:[A,m + 5(96,1 + 6/1,1 + @/2,1 + @gm) + A/2,1 + 5(@6,1 + @/1,1 + @2,1 + 8/5,1)

1
- Aim - 5(@6,1 + @/1,1 + @/6,1 + @/771)]

:A/1,1 + Alz,l - Ail,l + G)/0,1 + 6/1,1 + @,2,1 + 95,1 + 921,1 + @im

In particular, [7*A]*> = —3 and (—Ky - [7*A]) = 1. Lemma 5.3.3 now yields
H{(Y,Oy(—[r*A])) = H(X,Ox(—A)) for i = 0. Since [r*A]| is big, we have
HO(Y, Oy (—[n*A])) = 0.

Next assume that H?*(Y, Oy (—[7*A])) # 0. Then there is an effective divisor
C ~ Ky + [1*A] by the Serre duality. Since (—Ky - C) = 0, the curve C is
a sum of (—2)-curves. Since (—2)-curves in Y are disjoint from each other, we
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have (C - ©j,) € 2Z. However, (C' - Og,) = ([7*A] - ©y,) = —1 by Figure 5.8, a
contradiction.
Combining these results and the Riemann-Roch theorem, we conclude that

dimy, H' (X, Ox(—A)) = dimy, H' (Y, Oy (—[7*A]))
= —x(Y, Oy (—[7*A]))

— (Y, Oy) + 5[ A + (K [ D)) = 1.

Therefore H*(X, Ox(—A)) # 0. O

Proposition 5.7.3. Let X be a del Pezzo surface of type 4A, + Dy. Then
H'(X,0x(=A)) =0
for any ample Z-divisor A.

Proof. Let m: Y — X be the minimal resolution. By Proposition 5.4.1 (4), there
exist a rational quasi-elliptic surface Z of type (f) and a section O such that the
contraction of O gives a birational morphism ¢g: Z — Y. In what follows, we use
the notation of Figure 5.3. For a birational morphism Z — S and a curve C' < Z,
we denote (C)g the strict transform of C'in S.

By Lemma 5.4.5 (8), the contraction of (017)y gives a morphism h: Y — W
to the minimal resolution of the Du Val del Pezzo surface V of type 7A;. Let
&: W — V be the contraction of all the (—2)-curves and v = £ o h. By Corollary
5.5.11 (2), the class divisor group of W is generated by (©14)w, (R2)w, (Q2)w,
(R)w, (Q1)w, (P3)w, (P2)w, and any one of (—2)-curves. Since the point h((01)y)
lies on (O14)w and 7 contracts all the (—2)-curves, the class divisor group of X is
generated by (R2)x, (Q2)x, (F1)x, (Q1)x, (P3)x, (P2)x, and (O19)x, whose anti-



92
canonical degrees are one. Then an easy computation shows the following.
™ (O10)x = (O1o)y + (@1 )y + (61, 2)Y + (O, 3)Y +2(014)y
= 2((O10)y + 5 (@1 y + 3 (@1 2y + 5 (@1 3)y + (O14)y) — (O10)y
= 2v7(0, 4)V - (@1 0)y;

T™(Q1)x = (Ql)Y+ (@01) ;

(@1 )y + (©12)y + = (@1 3)y + (O14)y
1 1 1

(9a1 1)y

= ((Qu)y + 5 (@0 Dy + 2(9a1,1)Y + 5(@1,2)1/)
+(O10)y + 5(O11)y + 5(Oualy + 5(O1a)y + (Bra)y) — (Oro)y
= V(Q1)v + V" (O14)v — (O19)y,
' (Ri)x = v (Ri)v +v*(O14)v — (O10)y,
™ (Q2)x = v (Q2)v + v (O14)v — (O1)0)y,
T (R2)x V' (Ra)y + v*(O14)v — (O10)y,
T (Pe)x = V' (Po)v + v (O14)v — (O19)y,
™ (Ps)x = v (P3)v + " (O14)v — (O10)y

Now let us show the assertion. Let A be an ample Z-divisor on X. By Lemma
5.3.3, we only have to show that H'(Y,Oy(—[r*A])) = 0. By Lemma 5.7.1, we
may assume that (—Kx - A) = 1. Then A ~ ni(Ra)x + n2(Q2)x + n3(R1)x +
7”L4(Q1)X +n5(P3)X —|—TL6(P2)X +7’L7(@1,0)X withn;+---+n;, =1. Set B = nl(Rg)v +
no(Q2)v + n3(R1)v + na(Q1)v + ns(P3)y + neg(P)y + n7(014)y. Then we obtain
A =v*(B+ (014)v) — (O19)y. Since v sends Ej, = (©1)y to a smooth point of
V', the support of [v*(B + (©14)v)] — v*(B + (014)v) is contained in E¢. Since Ej,
is disjoint from E¢ in Y, we obtain (Ej, - [7*A]) = (E) - v*(B + (©14)v) — E) = 1.
Hence we have an exact sequence

0— Oy (—[v*(B + (014)v)]) = Oy (—[7*A]) = OF, (—1) — 0.

Thus H' (Y, Oy (—[7*A])) = H(Y, Oy (—[v*(B + (©14)v)])). Since (Y, E,) is a log
smooth pair, Lemma 5.3.3 yields H (Y, Oy (—[v*(B+(014)v)])) = H (V, Oy (—(B+
(©14)v))). Since (—Ky - B + (014)v) = 2, Lemma 5.7.1 yields H(V, Oy (—(B +
(©14)v))) = 0. Hence the assertion holds. O

Now we can prove Theorem 1.3.6.

Proof of Theorem 1.3.6. By Theorem 1.3.3, it suffices to show the assertions when
X satisfies (NB), i.e., X is listed in Table 1.1. Then the assertions (1) and (2)
follow from Propositions 5.6.1-5.6.5 and [31, Theorem 2, Table (II)] respectively.
Finally, we show the assertion (3). Suppose that X satisfies (NK). Then p = 2 and
X satisfies (NL) by Lemma 5.7.1 and Theorem 1.3.3 (3) respectively. The assertion
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(1) now shows that Dyn(X) = 7A;, 84, or 44, + Dy. If Dyn(X) = 7A;, then X
satisfies (NK) by [22, Theorem 4.2 (6)] with (d, q1,¢2) = (3,1,2). If Dyn(X) = 84,
then X satisfies (NK) by Proposition 5.7.2. If Dyn(X) = 4A; + Dy, then X does
not satisfy (NK) by Proposition 5.7.3. Hence we get the assertion (3). O

5.8 Classification of Du Val del Pezzo surface of

rank one
In this section, we prove the following theorem.

Theorem 5.8.1. Let X be a Du Val del Pezzo surface over an algebraically closed
field of characteristic p > 0. Suppose that X is singular and the Picard rank of X
1s one. Then the following holds.

(1) The Dynkin types of X and the number of the isomorphism classes of the del
Pezzo surfaces of the given Dynkin type are listed in Table 5.6.

(2) When p = 2 (resp. p = 3), X is uniquely determined up to isomorphism by
its Dynkin type with Artin coindices except when its Dynkin type is Dg, 2Dy,
4A1 + Dy, or 8Ay (resp. 2Dy).

Table 5.6
Dynkin type Ey Dy
Characteristic p=2,3 p>3 p=2 p>2
No. of isomorphism classes 3 2 o) 1
As A+ A7 24, [Ai+A+As| As+Ds | 44, |24, + Dg
p>0
1 | 1 | 1 | 1 1 ] 1 ] 1
Ay +Es | A+ E; | 2D, 2A; +24; |4A1+ D, | B8A; A,
p>0 p>2 p=2 p>0
2 | 2 | w 1 o | w« 1
Er Ay + Dg Ay + Aj ‘ 3A1 + Dy
p=2 p=3 p>3 p=2 p>2 p>0
3 2 1 2 1 1 | 1
A+ 2A3 TA; Eg A+ A5 ‘ 3A2 2A1 + A3
p>0 p=2 | p=2,3 p>3 p>0 p>0
1 1 2 1 1] 1 1
D5 A4 A1 + A2 A1
p=2 p>2 p >0 p>0 p>0
2 1 1 1 1
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When p > 3, the assertion (1) has already proven by [67, Theorem B.7]. For this
reason, we assume that p = 2 or 3 in this section. The proof is similar in spirit to
[103]. However, we have to follow Ye’s method carefully because the classification
of extremal rational elliptic surfaces in p = 2 or 3 is quite different from that in
p > 3 and rational quasi-elliptic surfaces appear in p = 2 or 3. We also investigate
Dyn'(X) of some Du Val del Pezzo surfaces X to get the assertion (2).

5.8.1 Defining equations of Du Val del Pezzo surfaces

In this section, we calculate defining equations satisfying (NL).

Proposition 5.8.2. There are coordinates [z : y : z : w| of Px(1,1,1,2) such that the
defining equation of the Du Val del Pezzo surface X (TAy) is w* +xyz(z+y+2z) = 0.

Proof. Let Y be the minimal resolution of X. Fix coordinates [s : ¢ : u] of P%.
Then there is the blow-down h: Y — P? such that h(E},) < P2 is the set of closed
points defined over Fy by Proposition 5.5.9. Set x := st(s + ),y = tu(t + u),z =
us(u + s), and w = stu(s + t)(t + v)(u + s). Then z,y,z € H*(P%, h,Oy(—Ky))
and w € HO(P}, h.Oy(~2Ky)) because H°(P}, h.Oy(-nKy)) = H°(PF, Op2(3n))
consists of elements which have zero of order at least n at each points in h(E})
for n > 1. Moreover, it is easy to check that {z?% v?, 2% xy,yz, 22, w} is a basis of
H°(P%, h,Oy(—2Ky)). Hence X is the closure of the image of the map

d: P — Pp(1,1,1,2)

[s:t:u]—[z:y:2z:w].
Now an easy computation gives the desired equation. O]

Proposition 5.8.3. Let X be a Du Val del Pezzo surface of degree one which is
not log liftable. When p = 2, set D,, < P} as the complement of the union of all
the hyperplane sections defined over Fy for n = 1,2 in addition. Then the defining
equation of X in P(1,1,2,3) is listed as in Table 5.7.

Proof. We give the proof only for the case Dyn(X) = 8A;; the other cases are left
to the reader. Let Y be the minimal resolution of X. Fix coordinates [s : t : u]
of P2. Then there is t = [a : b : ¢] € Dy and the blow-down h: Y — P? such
that t € h(Ey) and h(E,)\{t} < P% is the set of closed points defined over Fy by
Proposition 5.5.22. Set

cla+b)st(s+t) + a(b+ o)tu(t +u) + b(c + a)us(u + s),

st(s +t) + a*tu(t + u) + b*us(u + s),

((b+c)s+ (c+a)t+ (a+b)u)stu(s +t + u), and
(b+c)s+a(t+u))((c+a)t +blu+s))((a+bu+c(s+t))
x stu(s + t)(t + u)(u + s).

xT
Yy
z .
w :
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Table 5.7
characteristic | Dynkin type | defining equation of X < Py (1, 1,2, 3)[z:y:2:0]
p=3 4A, w? + 28 — 22y (x + y)? =0
p=2 4A, + Dy w? + 2% + abx?2?

+ytz + (a® + ab + V?)x?y?2

+ab(a + b)x*yz = 0 for some [a : b] € Dy
8A, w? + abez?

+((ab + be + ca)? + abe(a + b + ¢))y?2?
+(a+b+c)(a+b)(b+c)(c+ a)ryz?
+(ab + be + ca)?x?2?
+(a+b+c)*(a+b)(b+c)(c+a)vyz
(a+b+c)*((a+ b+ c)+ abc)z*y*z
(
(
(
(

+

)?
)
a+b+c)a+b)(b+c)c+a)rdyz
a+b+ c)abertz
a+b)*(b+c)*(c+ a>2y6

(a+ b+ c)® + abc)*z?y*

+(a + b)2(b + ¢)*(c + a)?xty?
+a?b?c*z% = 0 for some [a: b: c] € Dy

++ + +

Then we can see that z,y € H°(P%, h,Oy(—Ky)), z € H(P%, h,Oy(—2Ky)) and
w e HY(P2, h,Oy(—3Ky)) because H(P%, h,Oy(—nKy)) HO(Pi,OPi(?)n)) con-
sists of functions which has zero of order at least n at each points in h(E}) for
n > 1. Moreover, it is easy to check that {z3, 2%y, zy? 3>, x2,yz, w} is a basis of
HO(P?, h,Oy(—3Ky)). Hence X is the closure of the image of the map

d: P — P(1,1,2,3)
[s:t:u]—[z:y:2z:w].

Now an easy computation gives the desired equation. O

5.8.2 Rational genus one fibrations

In this section, we compile the results on rational extremal elliptic surfaces by
Lang [69, 70] and rational quasi-elliptic surfaces by Ito [50, 51], which we will use
in Section 5.8.

Theorem 5.8.4 ([69, 70, 52]). When p = 2 (resp. p = 3), the configurations of
singular fibers of extremal rational elliptic surfaces and the order of their Mordell-
Weil groups are listed in Table 5.8 (resp. Table 5.9) using Kodaira’s notation.

Moreover, there is a unique extremal rational elliptic surface with each configu-
ration of singular fibers in the table except for the type I (resp. type VI). In this case,
there are infinitely many 1somorphism classes of extremal rational elliptic surfaces
with that configuration of singular fibers.
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Table 5.8

| No. | Singular fibers | [MW(X)] || No. | Singular fibers | [MW(X))] |

I I 2 VII IV, IV* 3
II IT* 1 VIII IV, 1, I 6
I11 II1, I 4 IX IV* 1,15 3
1AY 17, 1y 4 SI Iy, I, 11, It 3
A% 1%, 1, 2 SII I5, 15, 1;, Ih 5
VI IT*, 1, 1 SIIT I3,15, 13,13 9

Table 5.9

| No. | Singular fibers | [MW(X)] || No. | Singular fibers | [MW (X))] |

I I 1 VIII 0L 1
1 T, T, 3 X 1, I 4
111 V* 1, 3 X 51T, 2
v T 1, 1 X1 %, 1, I, 2
V TTT%, 111 2 ST | Iglo 1,0, 1
VI I 1 SIT | 15,151, 1, 5

VII| 11,1515 6 SIT | 14,1, Iy, Iy 8

Definition 5.8.5. For a smooth weak del Pezzo surface ¥ and the union D of all
the (—2)-curves in Y, a curve F < Y is called a nice exceptional curve (NEC for
short) if E is a (—1)-curve such that (E - D) = 1.

Lemma 5.8.6. Let X be a Du Val del Pezzo surface with p(X) =1 andd = K% < 7.
Let Y — X be the minimal resolution. Then there are an extremal rational elliptic
surface or a rational quasi-elliptic surface Yy and blow-downs {f;: Yi_1 — Yiti<i<a
of (—1)-curves such that Yy =Y and Ey, is an NEC for 2 < i <d.

Proof. Since a general member of the anti-canonical linear system is a curve with
arithmetic genus one by Theorem 5.1.3 (3), the same proof as in [67, Theorem
B.6] remains valid for this case after admitting for Yj to be a rational quasi-elliptic
surface. m

In the remaining of this section, we follow the notation in Tables 5.8-5.1. In
addition, we use the following notation.

Definition 5.8.7. We denote by Y™(I) the successive blow-down of a section and
NECs from an extremal rational elliptic surface or a rational quasi-elliptic surface of
type m such that the anti-canonical degree is n and the configuration of (—2)-curves
is the Dynkin diagram /.

5.8.3 Characteristic two

In this subsection, we treat the case where p = 2. Let X be a singular Du Val
del Pezzo surface with Picard rank one. By the same proof as in [103, pp.14-15],
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we obtain that K% # 7,9, and X is the quadric cone in P} when K% = 8. For this
reason, we assume that K% < 6. We follow the notation of Lemma 5.8.6.

We start with the case where K% = 1. The pairs of Yy and Y = Y] are listed as
in Table 5.10, where n is the number of the NECs on Y.

Table 5.10
’Typeono‘ Y; ‘nHTypeono‘ Yi ‘n‘

I Y1(Dg) 2 SII Y (2A4,) 0
i YT (Es) 1 SIII VII(44,) |0
111 YA + Ar) 1 (a) v (Es) 1
I\ YV (A + Ds) 1 (b) Y™ (Dy) 2
v YY(A + Er) 1 (c) Y94+ Er) 1
VI Y\VI(Es) L (@ vi9@D) |2
VII YVVI( Ay + E) 1 (e) V{924, + Dg) | 1

VII | YYH(A + Ay + A5) | 0 (f) v (44, +Dy) [ 1
IX VXA +E)  [1] () vP(84) [0
SI VST (Ay) 2

The isomorphism class of Y} is independent of the choice of Ey, by virtue of the
MW (Y;)-action. Hence there is one-to-one correspondence between the isomorphism
classes of Y; and those of Y;. Theorems 5.8.4 and 5.2.2 now show the assertion (1)
of Theorem 5.8.1 in the case where K% = 1 and p = 2.

Next, we consider the case where K% = 2. Then Y = Y5, which is the blow-down
of an NEC in one of Y; listed in Table 5.10. The pairs of Y; and Y5 are listed as in
Table 5.11, where n is the number of the NECs on Y5.

Table 5.11
| Y | Y, [n ] Yi | Y, K2
Y} (Ds) Y, (A7) 2 VP (Ag) VP (A +45) |1
Y{(Ds) YiA+Dg) [ 1] v(Ey) v (E) |1
YI(By) YiE) (1] (Dy) ViO(Ar) |2
YA + A7) | YIU(A; + 245) | 0 Y™ (Dy) VP (A + Dg) | 1
YIV(As + Ds) | YIV(A +245) | 0 | Y94 + E) | V{94 + D) | 1
YV(A + Er) | YY(A +Dg) | 1 v9eD,) | Y Y3BA +Dy) |0
YVI(Ey) YV(E;) 1] Y924, + Dg) | Y9 (3A, + Dy) | 0
YV Ay + Eg) | YV U(Ay + 45) | 1| VP (44, + Dy) YO (74;) 0
YIX(4, + Be) | YX(A, + A5) | 1

Remark 5.8.8. The isomorphism class of Y1(Ay + As) is independent of the choice
of E}, because MW (Y§') =~ Z/3Z and two NECs in Y%!(Ag) are the images of the
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sections in YL, The isomorphism class of YQ(d)(SAl + D,) is also independent of the
choice of Ey, because it maps to the other NEC in Yl(d)(2D4) by the involution 7 on
v Y(2D,) constructed as in the proof of Proposition 5.5.18.

Lemma 5.8.9. We have the following isomorphisms:

1) Y3(A7) = YV (4r).

(1)

(2) Yg(Al + Dﬁ) = Yév(Al + D6)

(3) YQHI(Al + 2A3) =~ }/éIV(Al + 2A3)
(4)

4 YVQVH(AQ + A5> = }/QIX(AQ + A5) = }/281(142 + A5)
(5) Yi" (A + Dg) = Y39 (A; + D).
(6) ViV (3A, + Dy) = Y (34, + Dy).

Proof. We give the proof only for the assertions (1), (2), (5), and (6): the proof of
the assertions (3) and (4) run as in [103, Claim 4.5 (4) and (2)] respectively.

(1): Let Z — Y} (A7) be the contraction of two sections of an extremal rational
elliptic surface of type I. Then there is one to one correspondence between the
isomorphism classes of Y} (A7) and those of Z, which are uniquely determined by
those j-invariants o € k* by [70, p.432].

On the other hand, Y’ := Yz(b) (A7) is obtained from the rational quasi-elliptic
surface of type (b) by contracting two sections. Fix coordinates [z : y : z] of P2
and take C' == {z3 + y*2 = 0}. By [51, Remark 4], Y’ is also obtained from P?
by blowing up four points on C' infinitely near [0 : 1 : 0] and three points on C
infinitely near [1:1: 1]. Moreover, the push forward of | — Ky/| to P? is generated
by z® + 3?2, (xz + 2)?z and (x + 2)(y + 2)z. Now take C, as the strict transform of
{#* + 122+ as(x + 2)(y + 2)z = 0} © P2 in Y’. Then C, is a smooth member of
| — Ky+| whose j-invariant equals o. By blowing up Y at the intersection of C,, and
two NECs on Y’, we obtain the extremal rational elliptic surface of type I whose
j-invariant is o, which is isomorphic to Z. Therefore Y3 (A7) =~ Yz(b) (A7).

(2): Let Z —> Y3 (A; + Dg) be the blow-up at a general point of the unique NEC.
Then | — Kz| has a smooth member and Z contains eight (—2)-curves whose config-
uration is the Dynkin diagram A; + F;. Since members of the anti-canonical linear
system of Y, (A, + E;) are all singular, Table 5.10 now shows that Z = Y,¥ (4, + E»).
Hence Y3 (A; + Dg) = Yy (Ay + Dg).

(5): It follows from Proposition 5.5.5.

(6): It follows from Proposition 5.5.7. O

Lemma 5.8.10. We have the following:
(1) Y{(Ai + Dg) # Y3 (A1 + Dg).

(2) Yo (Er) # Y(Er) and Y, (Br) # Yy (Er).
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Proof. A general member of the anti-canonical linear system of Yj(A; + Dg) is

smooth and that of YQ(b)(Al + Dg) is singular by Proposition 5.5.5. Hence we have
the assertion (1). Similarly, Proposition 5.5.3 gives the assertion (2). ]

We will show that Y3'(E7) # Y,Y'(E7) in Corollary 5.8.14. In conclusion, there
are 10 isomorphism classes of X with K% = 2.

Next, we deal with the case where K% = 3. Then Y = Y3, which is the blow-
down of an NEC in one of Y5 listed in Table 5.11. The pairs of Y5 and Y3 are listed
as in Table 5.12, where n is the number of the NECs on Y3.

Table 5.12
| Yy | Ys | n | Yy | Ys | n ]
Y5 (A7) Vi(Ai+As) [ 1] V(A + As) | Y3'(345) [0
YJ(Er) Yi(Bs) 1] vY(B) (e |1
YY(A1L+ Dg) | V(AL + As) | 1| Y241 + D) | Y7 (A1 + As)
Y, (E7) V''(Es) |1

Remark 5.8.11. The isomorphism class of Y3(A; + Ajs) is independent of the choice
of E}, because the MW (Yy)-action naturally descends to Y3 (A7), which sends one
NEC to the other.

Lemma 5.8.12. We have the isomorphisms Yy’ (A1+A4s) =~ Y] (A;+A;5) = Yg(b)(Al—i-
As).

Proof. 1t follows from Lemma 5.8.9 (1) and (2). O
Lemma 5.8.13. It holds that Y™ (Eg) =~ YX(Eg) and Y3 (Es) # Yy (Eg).

Proof. Fix coordinates [z : y : z] of P and let C = {z* + y*2 = 0}. By Proposition
5.5.3, Yg(a)(EG) is obtained by blowing up six points on C' infinitely near ¢ := [0 : 1 :
0]. The anti-canonical linear system of Yg(a)(EG) corresponds to the linear system
A of cubic curves intersecting with C' at ¢t with multiplicity at least six. Then
A = {a(x® + y?2) + b2® + cxz® + dy2®|[a : b : ¢ : d] € P3}. Tt is easy to check
that [0 : 1: 0 : 0] corresponds to the member 3{z = 0} and the locus of singular
members of A is {ad = 0}. In particular, a pencil in A passing through [0:1:0: 0]
either consists of singular members or contains exactly one singular member, which
is 3{z = 0}

On the other hand, we recall that the configuration of singular fibers of the
extremal rational elliptic surface of type II (resp. VI) is (II*) (resp. (II*,1y)), where
we use Kodaira’s notation. Since an elimination of a general pencil in A passing
through [0 : 1 : 0 : 0] gives the extremal rational elliptic surface of type II, we
conclude that Yi"(Eg) =~ Y{!(Es). On the other hand, there is no pencil in A
passing through [0 : 1 : 0 : 0] which contains exactly two singular members. Hence

Y (Bs) 2 Y3'(Eg). O
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Corollary 5.8.14. It holds that YSX(E7) 2 Y, '1(Er)

Proof. Suppose the assertion of the lemma is false. Then Yi'(Es) =~ Y;Y'(Eg), a
contradiction to Lemma 5.8.13. ]

Therefore there are four isomorphism classes of X with K% = 3.

Next, we deal with the case where K% = 4. Then Y = Y}, which is the blow-
down of an NEC in one of Y3 listed in Table 5.12. The pairs of Y3 and Y, are listed
as in Table 5.13, where n is the number of the NECs on Y.

Table 5.13
LY Y K2
YI(A; + As) | YI(2A, + 43) | 0

Yo' (Es) Y,''(Ds)
Y3 () Y(Ds) |1

Lemma 5.8.15. It holds that Y™ (Ds) # YY'(D5).

Proof. We follow the notation of the proof of Lemma 5.8.13. Then }/;l(a)(Dg)) is
obtained by blowing up five points on C' < P? infinitely near ¢ and the anti-canonical
linear system of Y, (Ds) corresponds to the linear system A’ = {a(z® + y22) + b23 +
cxz® +dyz? + ex?zl[a:b:c:d:e] € P{}. It is easy to check that [0:1:0:0: 0]
corresponds to the member 3{z = 0} and the locus of singular members of A’ is
{ad = 0}. In particular, there is no pencil in A" passing through [0:1:0:0 : 0]
which contains exactly two singular members. Hence Y™ (D5) % Y'(Ds). O

Therefore there are three isomorphism classes of X with K% = 4.
Finally, we deal with the case where K% =5 or 6. When K% = 5, the surface Y’

is isomorphic to either Yo (Ay) or Y2"'(A4) by Table 5.13.
Lemma 5.8.16. It holds that Y™ (A4) = YV (Ay).

Proof. We follow the notation of the proof of Lemma 5.8.13. Then Y})(a) (Ay) is
obtained by blowing up four points on C' < P? infinitely near ¢ and the anti-canonical
linear system of Y})(a) (Ay) corresponds to the linear system A” = {a(x® +y?z) + bz3 +
cxz® + dyz® + ex?z + fryz|la i b:c:d:e: f] € Pi}. Since {23 + y*2 + zyz = 0}
is a nodal cubic, an elimination of the pencil {(z3, 2% + 3?2z + 2yz) = A” gives the
extremal rational elliptic surface of type VI. Hence Y™ (A,) = YVI(Ay). O

By blowing down the unique NEC in Y5(a)(A4), we obtain Y6(a)(Al + As).
Now we can prove Theorem 5.8.1 in the case where p = 2.

Proof of Theorem 5.8.1 in the case where p = 2. The assertion (1) follows from the
above arguments in this subsection. The assertion (2) will be proved once we prove
the proposition below. O
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Proposition 5.8.17. Let X be a Du Val del Pezzo surface with p(X) = 1 and
p = 2. If Dyn(X) # Ds,2Dy,4A; + Dy, or 8A;, then its isomorphism class is
uniquely determined by its Dynkin type with Artin coindices.

Proof. Let Y be the minimal resolution of X. By Theorem 5.8.1 (1), we may assume
that Dyn(X) = D5, EG, E7, A1 + DG, Eg, A1 + E7, or AQ + E6.

When Dyn(X) # A; + E; or Ay + Eg in addition, we calculate the defining
equation of X as in the proof of Propositions 5.8.2 and 5.8.3; firstly, we choose a
suitable blow-down h: Y — P% and calculate a basis of A = hy|—nKy| withn =1
(resp. = 2, = 3) when K2 > 3 (resp. = 2, = 1). Then X is the closure of the image
of the map from P? to P := P{ with d = K2 (resp. Pr(1,1,1,2), Px(1,1,2,3)) defined
by A when K% > 3 (resp. = 2, = 1). Finally we compute the defining equation of
X in P to determine Dyn’(X). As a result, we get the defining equation of X as
in Table 5.14, where [xg : - -+ : x4] stands for coordinates of P} and [z : y : z : w]
stands for coordinates of P, Py (1,1,1,2), or Px(1,1,2,3).

Table 5.14
| K3 | Y | defining equation of X c PP | Dyn'(X) |
1 Y™ (D) T3+ 2114, BTy + ToTy + T3 D?
Y'Y (Ds) T3+ T1T4, ToT1 + Ty + T35 + ToT3 D}
3 Y (Eg) wz? 4+ 2% + y?2 EY
YN (Eg) wz? + 2 + y*z + wyz E;
Y (E;) w? + yz* + xy? E?
YI(Er) w? 4y + xy’ + yw E?
2 VAR w? + y2° + 2y’ + yaw E3
Y (A;y + D) | w? + zyz? + 43z A+ D}
Y2(A; + Dg) | w? + xyz? + y°z + yzw Ay + D?
V(B | w?+ 2B+ ayp EY
1 YI(Eg) w? + 2% + 2y’ + yPw E3
Y VI(Ey) w? + 2% + 2y + yaw E}

Finally, suppose that Dyn(X) = A; + E7 or Ay + Eg. Then a suitable choice
of blow-down Y — Y” gives the minimal resolution Y’ of a del Pezzo surface of
Picard rank one of type E; or Fjg as in Table 5.15.

Table 5.15

y Y \ Y’ \ Dyn’(X) \
YA+ B | ()
YV (A + Er) | VY (Br) | A+ E2
(Be)
(Bo)

)/1VH<A2 4 EG) }/3(3)
Y’lXI<A2 T E6) Y’gVI EG

Combining these results, we get the assertion. O]
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5.8.4 Characteristic three

In this subsection, we treat the case where p = 3. Let X be a singular Du Val
del Pezzo surface with Picard rank one. As in the case where p = 2, we may assume
that K% < 6. We follow the notation of Lemma 5.8.6.

We start with the case where K% = 1. The pairs of Yy and Y = Y] are listed as
in Table 5.16, where n is the number of the NECs on Y.

Table 5.16
’TypeonO\ Y, \nHTypeonb\ Y, \n‘
I Y1 (Es) 1 X Y1 (Ds) 2
11 Y (Ag) 2 XI YViM(A +Er) |1
I11 YiHI(AQ + E()) 1 SI leSI(Al + A7) 1
Y YV (Eg) 1 SII Y (2A4,) 0
A% }/lv(Al + E7) 1 SIII }GSHI(QAl + 2A3) 0
VI YVI(2D,) 2 (1) v () 1
VII YVVI(A, + Ay + A5) | 0 (2) VP4, + Eg) |1
VIII YV (As+ Ds) |1 (3) v (44,) 0
IX VIX(2A, + Dg) |1

By virtue of the MW (Yj)-action, there is one to one correspondence between the
isomorphism classes of Y, and those of Y;. Theorems 5.8.4 and 5.2.1 now show the
assertion (1) of Theorem 5.8.1 in the case where K% =1 and p = 3.

Next, we consider the case where K% = 2. Then Y = Y3, which is the blow-down
of an NEC in one of Y; listed in Table 5.16. The pairs of Y; and Y5 are listed as in
Table 5.17, where n is the number of the NECs on Y5.

Table 5.17

| Yy | Yy [n ] Yy | Yy [n]
Yf(Eg) YQI(E7) 1 YfX(2A1 + D6) YQIX(3A1 + D4) 0
V1" (As) Vil (Ay + A4s5) |1 Y1 (Ds) Y5 (A7) 2
YIIH(AQ + Es) YQIH(AQ + As) 1 YIX(Dg) YQX(Al +Dg) | 1
Y]V (Es) Y5 (Er) 1| YA+ Er) | Y5 (AL +Ds) |1
Y, (A + E7) Y (A + D) | 1] YPHAL + A7) | YA +2A43) | 0
YVi@2D) | VYBA +Dy) 0] vU(E) v (B) |1
YV (Ag + Ds) | V(A +243) [ 0 ]| VP A+ Eg) | (A + 45) | 1

Analysis similar to that in Remark 5.8.8 shows that YJ1(Ay + A5) and Y,Y'(3A4; +
D,) are unique up to isomorphism.

Lemma 5.8.18. We have the following isomorphisms:

(1) Y (Ay + As) = YAy + As) = VP (A4, + As).
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(2) YV (A, + Dg) = YX(A, + Dg) = YX(A; + Dy).
(3) YYU(3A, + Dy) = Y/X(3A, + D).
(4) YYI(A; +243) = YDA, + 243).

Proof. We give the proof only for the isomorphism YJL(A; + As) = Y32 (A, + As):
the proof of the other assertions run as in [103, Claim 4.5].

Let 7 — YZ(Q)(AQ + Ajs) be the blow-up at a general point of a (—1)-curve
which is not an NEC. Then Z contains eight (—2)-curves whose configuration is the
Dynkin diagram Ag. Hence Z = Y]1(Ag) and Y{1(Ay + As) = Y2 (A4, + As5). O

Lemma 5.8.19. It holds that Y\ (E7) =~ YA (E;) and Y.V (E;) 2 YIV(E;).

Proof. First we recall the construction of }/2(1)(E7). Fix coordinates [z : y : z]
of P and let C' = {z* + y*2 = 0}. By [50, Example 3.8], an elimination of the
pencil (z® + 42z, z%) is the rational quasi-elliptic surface of type (1). Thus Y3" (E;)
is obtained by blowing up seven points on C' infinitely near ¢ := [0 : 1 : 0] and
the anti-canonical linear system of YZ(U(E7) corresponds to the linear system A =
{a(z® + y?*2) + b2% + cx2®[[a : b : ] € P2}. Tt is easy to check that [0 : 1 : 0]
corresponds to the member 3{z = 0} and the locus of singular members of A is
{ac = 0}. In particular, a pencil in A passing through [0 : 1 : 0] either consists of
singular members or contains exactly one singular member, which is 3{z = 0}.

On the other hand, we recall that the configuration of singular fibers of the
extremal rational elliptic surface of type I (resp.IV) is (IT*) (resp. (II*, 1)), where we
use Kodaira’s notation. Since an elimination of a general pencil in A passing through
[0 : 1 : 0] gives the extremal rational elliptic surface of type I, we conclude that
Y2(1)(E7) ~ Y3 (E7). On the other hand, there is no pencil in A passing through [0 :
1: 0] which contains exactly two singular members. Hence Y,V (E;) 2 YiV(E;) O

In conclusion, there are seven isomorphism classes of X with K% = 2.

Next, we deal with the case where K% = 3. Then Y = Y3, which is the blow-
down of an NEC in one of Y5 listed in Table 5.17. The pairs of Y5 and Y3 are listed
as in Table 5.18, where n is the number of the NECs on Y3.

Table 5.18
| Y, | Ys (n] Y, ] Ys [n]
Vi (A, + A5) | Y&(38A;) |0 YoX(Ar) | VN (A + A) | 1
YV (Er) YIV(E) |1 v0En | V() |1
}/’2\/(141 + Dg) Yév(Al + A5) 1

Analysis similar to that in Remark 5.8.11 shows that Y;*(A; + As) is unique up
to isomorphism.

Lemma 5.8.20. We have the isomorphism Y3 (A; + As) = Y3 (A; + As).
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Proof. The assertion follows from Lemma 5.8.18 (2). O
Lemma 5.8.21. It holds that VA" (Fg) % YIV(Es).

Proof. We follow the notation of the proof of Lemma 5.8.19. Then Y3(1)(E6) is
obtained by blowing up six points on C' < P% infinitely near ¢ and the anti-canonical
linear system of Y3 (Eg) corresponds to the linear system A’ = {a(z® + y22) + bz +
cxz® +dyz?|la : b:c:d] € P}, Tt is easy to check that [0: 1 : 0 : 0] corresponds
to the member 3{z = 0} and the locus of singular members of A’ is {ac = 0}. In
particular, there is no pencil in A’ passing through [0 : 1 : 0 : 0] which contains
exactly two singular members. Hence Y (Eg) # Y&V(Ey). O

Therefore there are four isomorphism classes of X with K% = 3.

Finally, we deal with the case where 4 < K% < 6. When K% = 4, the pairs of
Y; and Y = Y} are listed as in Table 5.19, where n is the number of the NECs on
Y.

Table 5.19
V[ v ]
Yy (Es) Y,V(Ds) 1
Yy (A + As) | VY (24; + A3) | O
vy (Es) yW(Ds) |1

Lemma 5.8.22. It holds that Y (Ds) = YIV(D5).

Proof. We follow the notation of the proof of Lemma 5.8.19. Then Y4(1)(D5) is
obtained by blowing up five points on C' < P infinitely near ¢ and the anti-canonical
linear system of Y4(1)(D5) corresponds to the linear system A” = {a(x® +y%2) + bz +
cxz?+dyz* +ex?z|[a:b:c:d:e]eP}. Since {z®+y*2 +2%2 = 0} is a nodal cubic,
an elimination of the pencil (23, 23 + y?z + 2?z) = A” gives the extremal rational
elliptic surface of type IV. Hence Y,V (Ds) = YV(Ds). O

Therefore there are two isomorphism classes of X with K% = 4. By blowing
down the unique NEC on Y4(1)(D5), we obtain Y5(1)(A4). Then it also contains a

unique NEC, and the blow-down of this NEC gives Yﬁ(l)(Al + Ay).
Now we can prove Theorem 5.8.1 in the case where p = 3.

Proof of Theorem 5.8.1 in the case where p = 3. The assertion (1) follows from the
above arguments in this subsection. The assertion (2) will be proved once we prove
the proposition below. O

Proposition 5.8.23. Let X be a Du Val del Pezzo surface with p(X) = 1 andp = 3.
If Dyn(X) # 2Dy, then its isomorphism class is uniquely determined by its Dynkin
type with Artin coindices.



105

Proof. We follow the notation as in Proposition 5.8.17. By Theorem 5.8.1 (1), we
may assume that Dyn(X) = Eg, E7, Es, A1 + Eq, or Ay + Es. When Dyn(X) #
Ay + E7 or As + FEj in addition, analysis similar to that in the proof of Proposition
5.8.17 gives the defining equation of X in P as in Table 5.20.

Table 5.20

| K¢ | Y | defining equation of X ¢ P | Dyn’(X) |

5 Y (Bg) | wa? + 2% + 422 EY
YiV(Es) | w2? + 2% + y?z + 2”2 E;
5 YIU(ED) | w? + y2® + o E?
YIV(E;) | w? + y2® + ay® + y22° El
Yl(l)(Eg) w? + 2% + xy® EY
1| Yi(Es) | w®+ 2%+ a2y +y'z E;
YIV(Eg) | w? + 2% + ay® + y?22 E3

Finally, suppose that Dyn(X) = A; + E7 or Ay + Eg. Then a suitable choice
of blow-down Y — Y” gives the minimal resolution Y’ of a del Pezzo surface of
Picard rank one of type E; or Fg as in Table 5.21.

Table 5.21
| Y \ Y’ | Dyn'(X) |
YY(A+ B | YY(E) | A+ E?
Y (A + Er) YIV(E7) A, + E}
V& (Ay + E) | YV (Eg) | Ay + ED
YAy + Ep) YSIV(E6) Ay + B}
Combining these results, we get the assertion. O

5.9 Proof of Theorem 1.3.8

In this subsection, we prove Theorem 1.3.8. We also give a corollary of this
theorem.

The following lemma is an immediate consequence of Fedder’s criterion [28,
Proposition 1.7].

Lemma 5.9.1. Fiz coordinates [z :y : z : w] of Px(1,1,2,3) (resp. Pp(1,1,1,2),P})
and let f(x,y,z,w) = 0 be the defining equation of a Du Val del Pezzo surface X of
degree one (resp. two, three). Then X is F-split if and only if fP=1 ¢ (xP, yP, 2P, wP).

Proof. Let R = k[x,y, z,w]/(f). By Fedder’s criterion [28, Proposition 1.7], Spec R
is F-split if and only if f*~ ¢ (2P, y?, 2P, wP). Since R = @),,., H*(X, Ox(—mKx))
and —Kx is ample, it follows that X is F-split by [96, Proposition 4.10]. ]
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Lemma 5.9.2 ([68, Proposition 2.1]). Let X be a normal F-split variety and Z a
smooth closed subscheme of codimension d which is contained in the smooth locus of
X. Let X € |(1—p)Kx| be a splitting section. If ¥ passes through Z with multiplicity
at least (d —1)(p — 1), then the blow-up of X along Z is F-split.

Proof. We refer to the proof of [68, Proposition 2.1] for the details. n

Proposition 5.9.3. Let X be a Du Val del Pezzo surface. Suppose that p = 2 and
X is F-split. Then the set of ordinary elliptic curves in | — Kx| is dense.

Proof. Conversely, suppose that the closure H of the set of ordinary elliptic curves
in | — K x| is the proper closed subset. Choose C' € | — Kx|\H such that X is smooth
along C. Let X be the splitting section of X and V' the pencil generated by C' and
Y. Then a general member of V' is not an ordinary elliptic curve. When K% # 2, we
may assume that C' is smooth along ¥ by Lemma 5.1.3 (4). In particular, a general
member of V' is also smooth along Y. Next, suppose that K% = 2. For general two
members C7 and C5 of V', both C; n¥ and C5 n Y coincides with C7; nCy. Moreover,
one of them is smooth along C; n Cy since otherwise 2 = K& = (C} - Cy) > 4. As a
result, a general member of V' is smooth along ¥ without the assumption on K%.
Let ¢: Z —> P} be an elimination of a rational map associated to the pencil
V. Then Z is normal and F-split by Lemma 5.9.2. Thus a general ¢-fiber is an
ordinary elliptic curve by [90, Corollary 2.3] and Remark 4.1.2 (5). Since a general
member of V' is smooth along >3, a general fiber of ¢ is isomorphic to its image on X.
Therefore a general member of V' is an ordinary elliptic curve, a contradiction. [J

Remark 5.9.4. Let f: V — W be a smooth projective morphism between varieties.
Yoshikawa, [104, Proposition 2.11 (2)] showed that the subset {w € W |V is F-split}
is constructible, where Vg denotes the geometric fiber over w. Making use of this,
we can show that a general member of | — K x| as in Proposition 5.9.3 is an ordinary
elliptic curve as follows.

Let m: Y — X be the minimal resolution. It suffices to show that a general
member of | — Ky | is an ordinary elliptic curve. Note that a member of | — Ky| is
corresponding a fiber of the projection pry: H — | — Ky|, where H = {(y, D) €
Y xp | = Ky| |y e D} €Y x| — Ky|. Since H is Cohen-Macaulay, | — Ky is
smooth, and pr, has equi-dimensional fibers, it follows that pr, is flat. Proposition
5.9.3 shows there exists a dense subset U < | — Ky| such that Hs is an ordinary
elliptic curve for all s € U. By shrinking | — Ky|, we may assume pr, is smooth.
Hence {s € | — Ky||Hs is F-split} is constructible by [ibid.], and U contains a non-
empty open subset.

Remark 5.9.5. Proposition 5.9.3 does not hold without the assumption of character-
istic. For example, assuming p = 3, consider a Du Val del Pezzo surface {w? + 2% +
2yt z—a'z+2% = 0} < Py(1,1,2,3)[py:0). Then we can see that it is F-split, but a
general member of the anti-canonical linear system is {w?+2*+a?z*2z — 2tz +2° = 0}
with a € k\{£1}, which is a supersingular elliptic curve.

Now we prove Theorem 1.3.8.
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Proof of Theorem 1.3.8. By Lemma 5.1.3 (3), we may assume that p = 2 or 3.
When p = 2, the assertion follows from Proposition 5.9.3.
Now suppose that p = 3. Let Y be the minimal resolution of X. If ¥ =~ Yl(l)(Eg)

(resp. Yl(?’) (4A3)) as in Table 5.16, then X is not F-split by Table 5.20 (resp. Table
5.7) and Lemma 5.9.1, a contradiction. Hence it suffices to show that Y is not

isomorphic to Yl(Q)(AQ + Eg) by Theorem 1.3.4 and Proposition 5.4.1. On one hand,
Table 5.20 and Lemma 5.9.1 show that Yg(l)(Eﬁ) is not F-split. Combining Table
5.21 and Remark 4.1.2 (2), we conclude that Yl(2) (Ay + Eg) is also not F-split. On
the other hand, Y is F-split by Remark 4.1.2 (4). Hence Y # Y{?(Ay + Eg). O

At the end of this paper, let us state a corollary of Theorem 1.3.8. The second
cohomology of the tangent bundle is important because this contains local-to-global
obstructions to deformations (cf. [78, Theorem 4.13]). In characteristic p = 2 or 3,
there exists a Du Val del Pezzo surface X such that H*(X, Tx) # 0 by Theorem 1.3.6
(1). On the other hand, if X is F-split, then Theorem 1.3.8 shows the following.

Corollary 5.9.6. Let S be a normal projective surface with only Du Val singularities
such that k(S, Kg) = —o0. Suppose that S is F-split. Then H?(S,Ts) = 0.

Proof. By running a Kg-MMP, we obtain a birational contraction ¢: S — S’ and
a Mori fiber space S’ — B. Note that Kg is not pseudo-effective. Since

2+ () © O5(Ks)) — (0. (241 ® O5(K5)))™ = 04l © 05 (K),
the Serre duality yields
H?(S,Ts) = H°(S, 05 @ 0s(Ks)) « H(S, 0 @ 04 (Kg)),

where Qg] denotes the reflexive hull of 2g. When dim B = 1, then the assertion
follows from [59, Theorem 5.3 (1)]. Now we assume that dim B = 0. Since S’ is F-
split, it follows that a general member of | — K¢ is smooth by Theorem 1.3.8. Hence

the proof similar to Theorem 5.3.1 shows that H°(.S, Qig[l] ® Og/(Kg)) =0. [
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