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Abstract

In this paper, we study the following.

(1) The Bogomolov-Sommese vanishing theorem for lc surfaces in positive char-
acteristic.

(2) The Bogomolov-Sommese vanishing theorem for globally F -regular threefolds.

(3) Pathologies of Du Val del Pezzo surfaces in positive characteristic.

For (1), we show that the Bogomolov-Sommese vanishing theorem holds for a log
canonical surface pair pX,Bq with κpX,KX ` tBuq ‰ 2 in large characteristic. As
an application, we prove that a surface pair pX,Bq of a smooth projective surface
X and a reduced simple normal crossing divisor B with κpX,KX ` Bq ď 0 lifts to
the ring of Witt vectors in large characteristic. Moreover, we give an explicit and
optimal bound on the characteristic unless κpX,KX ` tBuq “ 0.

For (2), we show a weak version of the Bogomolov-Sommese vanishing theo-
rem holds for globally F -regular threefolds. Indeed, we show that every invertible
subsheaf of the cotangent bundle of a smooth globally F -regular threefold of char-
acteristic p ą 3 has Iitaka dimension less than or equal to one.

For (3), we study the relationship between pathological phenomena of Du Val del
Pezzo surfaces and their non-liftability to the ring of Witt vectors. We investigate
the following four conditions on Du Val del Pezzo surfaces:

• (NB) all the members of the anti-canonical linear system are singular,

• (ND) there does not exist Du Val del Pezzo surfaces over the field of complex
numbers with the same Dynkin type, Picard rank, and anti-canonical degree,

• (NK) there exists an ample Z-divisor that violates the Kodaira vanishing the-
orem, and

• (NL) the pair pY,Eq does not lift to the ring of Witt vectors, where Y is the
minimal resolution and E is its reduced exceptional divisor.

We classify all the Du Val del Pezzo surfaces satisfying (NB) (resp. (ND),(NK),(NL)).
Moreover, we see that none of these pathological conditions occur under the assump-
tion of Frobenius splitting.
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Chapter 1

Introduction

In this thesis, we study the Bogomolov-Sommese vanishing theorem and patholo-
gies of Du Val del Pezzo surfaces in positive characteristic.

1.1 Bogomolov-Sommese vanishing theorem for

lc surfaces in positive characteristic

This section is based on [58]. Vanishing theorems involving differential sheaves
play a significant role in the analysis of algebraic varieties. The Bogomolov-Sommese
vanishing theorem, originally proved in [15], is one of the most important tools of
this kind and has been studied by many authors (see [34], [36], [37], [54], [94] for
example).

Theorem 1.1.1 (Bogomolov-Sommese vanishing theorem [34, Corollary 1.3]). Let
pX,Bq be a log canonical (lc, for short) projective pair over the field of complex
numbers C. Then

H0
pX, pΩ

ris
X plog tBuq b OXp´Dqq

˚˚
q “ 0

for every Z-divisor D on X satisfying κpX,Dq ą i.

In Theorem 1.1.1, κpX,Dq denotes the Iitaka dimension of a Z-divisor D (see

Definition 2.3.1 for the definition), p´q˚˚ denotes reflexive hull, and Ω
ris
X plog tBuq

denotes the sheaf of i-th logarithmic reflexive differential forms of the pair pX, tBuq,
where tBu is the round-down of B. Klt and lc singularities are important classes of
singularities appearing in the minimal model program (MMP, for short), and it is
very useful to generalize vanishing theorems to varieties with such singularities (see
Definition 2.2.1 for their definition). The reader is also referred to Definition 2.2.4
for the definitions of varieties appearing in the MMP such as varieties of Fano type
and of Calabi-Yau type.

We note that Theorem 1.1.1 is equivalent to saying that the sheaf Ω
ris
X plog tBuq

does not contain any Weil divisorial sheaves with Iitaka dimension bigger than i. In
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particular, when dim X “ 2, it suffices to check that the sheaf of the first logarithmic
reflexive differential forms does not contain any big Weil divisorial sheaves.

The logarithmic extension theorem for pn`1q-dimensional lc pairs can be deduced
from the Bogomolov-Sommese vanishing theorem for n-dimensional log Calabi-Yau
pairs (see [35, Section 9]). Theorem 1.1.1 also can be applied to show the vanishing
of the second cohomology of the tangent sheaf of lc projective surfaces with big
anti-canonical divisors, so that they have no local-to-global obstructions (see [40,
Proposition 3.1]). In this paper, we discuss an analog of Theorem 1.1.1 in positive
characteristic. In the rest of this chapter, we work over an algebraically closed field
k of positive characteristic p ą 0.

LetX be a normal projective surface over k. It is well-known that the Bogomolov-
Sommese vanishing theorem fails when KX is big. For example, it is not difficult to
see that the sheaf of the first differential forms of Raynaud’s surface [92] contains an
ample invertible sheaf. Moreover, Langer [74, Section 8] constructed a pair pS, F q

of a smooth rational surface S and a disjoint union of smooth rational curves F
such that ΩSplog F q contains a big invertible sheaf in every characteristic (see also
[75, Section 11]). In other words, the Bogomolov-Sommese vanishing theorem fails
even if X is a smooth rational surface. On the other hand, we can observe that
the log canonical divisor KS ` F is big except when the characteristic is equal to
two (see Example 3.4.4 for the details). Therefore, it is natural to ask whether the
Bogomolov-Sommese vanishing theorem holds when the log canonical divisor is not
big and the characteristic is sufficiently large. We give an affirmative answer to this
question.

Theorem 1.1.2. There exists a positive integer p0 with the following property. Let
pX,Bq be an lc projective surface pair over an algebraically closed field of charac-
teristic p ą p0. If κpX,KX ` tBuq ‰ 2, then

H0
pX, pΩ

ris
X plog tBuq b OXp´Dqq

˚˚
q “ 0

for every Z-divisor D on X satisfying κpX,Dq ą i. Moreover, if κpX,KX ` tBuq “

´8 (resp. κpX,KX`tBuq “ 1), then we can take p0 “ 5 (resp. p0 “ 3) as an optimal
bound. If κpX,KX ` tBuq “ 0, then we can take p0 as the maximum Gorenstein
index of any klt Calabi-Yau surface over any algebraically closed field.

In Theorem 1.1.2, a klt Calabi-Yau surface means a klt projective surface whose
canonical divisor is numerically trivial. If the base field is an algebraically closed
field of characteristic zero, then the Gorenstein index of a klt Calabi-Yau surface is
less than or equal to 21 by [14, Theorem C (a)]. In general, there exists a uniform
bound on the Gorenstein index independent of the choice of the algebraically closed
base field (see Lemma 3.1.9), but its explicit value is not known.

As an application of Theorem 1.1.2, we obtain a result on the liftability of log
surfaces.

Theorem 1.1.3. There exists a positive integer p0 with the following property. Let
X be a normal projective surface over an algebraically closed field k of characteristic
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p ą p0, B a reduced divisor on X, and f : Y ÝÑ X a log resolution of pX,Bq.
Suppose that one of the followings holds:

(1) κpX,KX ` Bq “ ´8,

(2) KX ` B ” 0 and B ‰ 0,

(3) κpX,KX ` Bq “ 0.

Then pY, f´1
˚ B`Excpfqq lifts to the ring W pkq of Witt vectors. Moreover, when the

condition (1) or (2) holds, we can take p0 “ 5 as an optimal bound.

It is well-known that every smooth projective surface defined over an alge-
braically closed field of characteristic p ą 3 with non-positive Kodaira dimension
lifts to W pkq (see [53, Proposition 2.6], [80, Section 11], and [88, Proposition 11.1]).
Theorem 1.1.3 can be viewed as a log version of this fact.

In Theorem 1.1.3 (3), p0 should be at least 19 by Example 3.4.3, but it is not
clear whether we can take p0 as the maximum Gorenstein index of klt Calabi-Yau
surfaces.

In the proof of Theorem 1.1.3 (1) and (2), we apply Theorem 1.1.2 to obtain the
vanishing of H2pY, TY p´ log f´1

˚ B ` Excpfqqq, where the obstruction to the lifting
lives. In the case of (3), such a vanishing does not always hold. Therefore, using an
argument of Cascini-Tanaka-Witaszek [23], we show the boundedness of some ε-klt
log Calabi-Yau surfaces, from which we deduce the desired liftability (see Lemma
3.1.12 and Proposition 3.1.13).

Using Theorems 1.1.2 and 1.1.3, we prove that the Kawamata-Viehweg vanishing
theorem for Z-divisors holds on normal projective surfaces whose canonical divisor
is not big.

Theorem 1.1.4. There exists a positive integer p0 with the following property. Let
X be a normal projective surface over an algebraically closed field of characteristic
p ą p0 and D a nef and big Z-divisor on X. Suppose that one of the followings
holds:

(1) κpX,KXq ď 0,

(2) κpX,KXq “ 1 and X is lc.

Then H ipX,OXpKX ` Dqq “ 0 for all i ą 0. Moreover, if κpX,KXq “ ´8

(resp. κpX,KXq “ 1), then we can take p0 “ 5 (resp. p0 “ 3) as an optimal bound.

1.2 Bogomolov-Sommese type vanishing for glob-

ally F -regular threefolds

This section is based on [57]. We have studied the Bogomolov-Sommese vanishing
theorem for surfaces in Section 1.1. In this section, we discuss the higher-dimensional
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case. Since the proof of Theorem 1.1.2 heavily depends on the classifications of
lc surface singularities and klt del Pezzo surfaces of Picard rank one, a similar
argument does not work for higher-dimensional varieties. On the other hand, the
author proved in [59] that an analog of Theorem 1.1.1 holds when X is a smooth
Fano threefold in characteristic p ą 0, B “ 0, and i “ 1. In this section, we study
a Bogomolov-Sommese type vanishing theorem for threefolds of Fano type, and we
prove a weak version of the Bogomolov-Sommese vanishing theorem for globally F -
regular threefolds, a special class of Frobenius split (F -split, for short) varieties that
are of Fano type (see Definition 4.1.1 (2) for the precise definition).

Theorem 1.2.1 (Theorem 4.4.10). Let X be a smooth projective globally F -regular
threefold over an algebraically closed field of characteristic p ą 3. Then

H0
pX,ΩX b OXp´Dqq “ 0

for every Z-divisor D on X satisfying κpX,Dq ą 1. Furthermore, if p ą 7, then the
above vanishing holds for every Z-divisor D satisfying κpX,Dq ą 0.

We need the assumption “p ą 3” only for running the MMP, which was recently
established for threefolds of characteristic p ą 3 (see [41] for the details). In the
proof of Theorem 1.2.1, we run a KX-MMP to reduce to the case where D is nef
and big.

Theorem 1.2.2 (Theorem 4.4.5). Let X be a projective globally F -regular variety
over an algebraically closed field of characteristic p ą 0 and B a reduced Z-divisor
on X. Suppose that dimX ě 2 and the non-simple normal crossing locus of pX,Bq

has codimension at least three. Then

H0
pX, pΩ

r1s

X plog Bq b OXp´Dqq
˚˚

q “ 0

for every nef and big Q-Cartier Z-divisor D on X.

When X is smooth, Theorem 1.2.2 follows from the Cartier isomorphism and
the F -splitting of X. However, even if we start from a smooth variety, the output
of the MMP is not necessarily smooth. This is the reason why we have to consider
singular varieties in Theorem 1.2.2. We use the global F -regularity of X to deal
with singularities.

1.3 Pathologies of Du Val del Pezzo surfaces in

positive characteristic

This section is based on [61] and [60], which are joint work with Masaru Na-
gaoka. Theorems 1.1.3 and 1.1.4 tells us that there exists a surface X over k with
κpX,KXq “ ´8 that does not satisfy the Kodaira vanishing theorem and the lifta-
bility in Theorem 1.1.3 (see Example 3.4.1). In this section, we focus on del Pezzo
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surfaces with Du Val singularities and study their pathological phenomena system-
atically.

We say that X is a Du Val del Pezzo surface if X is a projective surface whose
anti-canonical divisor is ample and that has at worst Du Val singularities, i.e., 2-
dimensional canonical singularities. By the Dynkin type of X, we mean the Dynkin
diagrams of singularities on X. For example, we say that X is of type 3A1 ` D4

if X has three A1-singularities and one D4-singularity. In this case, we also write
DynpXq “ 3A1 ` D4 and X “ Xp3A1 ` D4q.

Definition 1.3.1 (cf. Definition 2.4.10). Let X be a normal projective surface over
an algebraically closed field k of characteristic p ą 0. We say that X is log liftable
over W pkq if there exists a log resolution f : Y ÝÑ X such that the pair pY,Excpfqq

lifts to W pkq.

By Theorem 1.1.3, every Du Val del Pezzo surface over an algebraically closed
field of characteristic p ą 5 is log liftable over W pkq. We remark that all Du Val
del Pezzo surfaces themselves are liftable over W pkq (see Remark 5.1.2), but they
are not necessarily log liftable. In this section, we study the following pathological
conditions on Du Val del Pezzo surfaces.

Definition 1.3.2. For a Du Val del Pezzo surface X over an algebraically closed
field k of characteristic p ą 0, we say that X satisfies:

• (ND) if there does not exist any Du Val del Pezzo surface XC over the field of
complex numbers C with the same Dynkin type, the same Picard rank, and
the same degree as X.

• (NB) if all members of the anti-canonical linear system of X are singular.

• (NK) if H1pX,OXp´Aqq ‰ 0 for some ample Z-divisor A on X.

• (NL) if X is not log liftable over W pkq.

For example, Keel-McKernan [62, end of Section 9] constructed a Du Val del
Pezzo surface Xp7A1q of Picard rank one and degree K2

Xp7A1q
“ 2 in characteristic

two. This surface satisfies (ND) (see [31, Theorem 2, Table (II)] or [9, Theorem
1.1]). Cascini-Tanaka pointed out in [21, Proposition 4.3 (iii)] and [22, Theorem 4.2
(6)] that it also satisfies (NB) and (NK). Since the anti-canonical linear system of
Xp7A1q is base point free, this surface is a counterexample to Bertini’s theorem in
positive characteristic. Furthermore, we easily see from Cascini-Tanaka’s result [22,
Theorem 4.2 (6)] that Xp7A1q satisfies (NL).

Our main results consist of three theorems. The first one is the following, which
shows the implications (NK) ñ (NL) and (ND) ñ (NL) ñ (NB).

Theorem 1.3.3. Let X be a Du Val del Pezzo surface over an algebraically closed
field k of characteristic p ą 0. Then the following hold.
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p1q If a general member of anti-canonical linear system is smooth, then X is log
liftable over W pkq.

p2q If X is log liftable over W pkq, then there exists a Du Val del Pezzo surface
over C with the same Dynkin type, the same Picard rank, and the same degree
as X.

p3q If X is log liftable over W pkq, then H1pX,OXp´Aqq “ 0 for every ample
Z-divisor A.

The second main theorem, Theorem 1.3.4, classifies Du Val del Pezzo surfaces
satisfying (NB), the weakest condition among those listed in Definition 1.3.2.

Theorem 1.3.4. Let X be a Du Val del Pezzo surface over an algebraically closed
field k of characteristic p ą 0. Suppose that X satisfies (NB). Then the following
hold.

(0) K2
X ď 2 and p “ 2 or 3.

(1) When K2
X “ 1 and p “ 2 (resp. p “ 3), the Dynkin type of X is E8, D8,

A1 ` E7, 2D4, 2A1 ` D6, 4A1 ` D4, or 8A1 (resp. E8, A2 ` E6, or 4A2). In
particular, the Picard rank of X is equal to one.

(2) When K2
X “ 2, the characteristic p has to be 2 and the Dynkin type of X is E7,

A1`D6, 3A1`D4, or 7A1. In particular, the Picard rank of X is equal to one.
Furthermore, the morphism φ|´KX | : X ÝÑ P2

k associated to the anti-canonical
linear system is purely inseparable and therefore X is homeomorphic to P2

k.

(3) The isomorphism class of X is uniquely determined by its Dynkin type if and
only if the Dynkin type is not 2D4, 4A1 ` D4, or 8A1.

Summarizing the above, we obtain Table 1.1.

Table 1.1

Degree K2
X “ 1

Dynkin type E8 A2 ` E6 4A2 D8 A1 ` E7

Characteristic p “ 2, 3 p “ 3 p “ 2
No. of isomorphism classes 1 1 1 1 1

K2
X “ 1 K2

X “ 2
2D4 2A1 ` D6 4A1 ` D4 8A1 E7 A1 ` D6 3A1 ` D4 7A1

p “ 2 p “ 2
8 1 8 8 1 1 1 1

Remark 1.3.5. Combining Theorem 1.3.4 with Ito’s results [50, 51], we obtain a
complete classification of isomorphism classes of rational quasi-elliptic surfaces (see
Corollary 5.5.24 for more details).
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The last main theorem, Theorem 1.3.6, classifies Du Val del Pezzo surfaces sat-
isfying (ND) (resp. (NK), (NL)). As a consequence, we have the implications (NK)
ñ (ND) ñ (NL) ñ (NB) among the conditions in Definition 1.3.2 and we see that
none of the opposite implications hold.

Theorem 1.3.6. Let X be a Du Val del Pezzo surface over an algebraically closed
field k of characteristic p ą 0. Then the following hold.

(1) X satisfies (NL) if and only if pp,DynpXqq “ p3, 4A2q, p2, 4A1 `D4q, p2, 8A1q,
or p2, 7A1q.

(2) X satisfies (ND) if and only if pp,DynpXqq “ p2, 4A1 ` D4q, p2, 8A1q, or
p2, 7A1q.

(3) X satisfies (NK) if and only if pp,DynpXqq “ p2, 8A1q or p2, 7A1q.

Remark 1.3.7. It follows from Theorem 1.3.6 that there exist Du Val del Pezzo
surfaces over an algebraically closed field of characteristic p “ 2, 3 on which the
Bogomolov-Sommese vanishing theorem does not hold.

Finally, we show that F -split Du Val del Pezzo surfaces do not satisfy any con-
ditions in Definition 1.3.2.

Theorem 1.3.8. Let X be a Du Val del Pezzo surface over an algebraically closed
field of characteristic p ą 0. Suppose that X is F -split. Then a general member
of the anti-canonical linear system is smooth. Moreover, if p “ 2, then the general
member is an ordinary elliptic curve.

Remark 1.3.9. We cannot drop the assumption on the characteristic in the latter
assertion of Theorem 1.3.8. Indeed, there exists an F -split Du Val del Pezzo surface
over an algebraically closed field of characteristic p “ 3 such that all smooth members
of the anti-canonical linear system are supersingular elliptic curves. We refer to
Remark 5.9.5 for the details.



Chapter 2

Preliminaries

2.1 Notation

A variety means an integral separated scheme of finite type over an algebraically
closed field. A curve (resp. surface) means a variety of dimension one (resp. two).
A pair pX,Bq consists of a normal variety of X and an effective Q-divisor B with
coefficients in r0, 1s XQ such that KX `B is Q-Cartier. Throughout this paper, we
use the following notation:

• Excpfq: the reduced exceptional divisor of a birational morphism f .

• tDu (resp. rDs): the round-down (resp. round-up) of a Q-divisor D.

• F˚: the dual of a coherent sheaf of F .

• Ω
ris
X plog Bq: the i-th logarithmic reflexive differential form j˚Ω

i
Uplog Bq, where

X is a normal variety, B is a reduced divisor on X, U is the snc locus of pX,Bq,
and j : U ãÑ X is the natural inclusion morphism.

• TXp´ log Bq :“ pΩ
r1s

X plog Bqq˚: the logarithmic tangent sheaf of a normal
variety X and a reduced divisor B on X.

• W pkq (resp. Wnpkq): the ring of Witt vectors (resp. the ring of Witt vectors
of length n), where k is an algebraically closed field of positive characteristic.

2.2 Singularities and varieties appearing in the

MMP

In this section, we gather definitions of singularities and varieties appearing in
the MMP.

Definition 2.2.1. Let pX,Bq be a pair and f : Y ÝÑ X be a proper birational
morphism from a normal variety Y and E a prime divisor on Y . Any such E is

12
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called a divisor over X and fpEq is called the center of E. We take the canonical
divisorKY of Y so that f˚KY “ KX . We call the coefficient coeffEpKY ´f˚pKX`Bqq

as discrepancy of E, and denote by apE,X,Bq. We say pX,Bq is klt (resp. ε-klt, lc)
if, for any prime divisor E over X, the discrepancy of E satisfies apE,X,Bq ą ´1
(resp. apE,X,Bq ą ´1 ` ε, apE,X,Bq ě ´1).

Definition 2.2.2. Let Z be a Noetherian separated scheme. Let X be a smooth
projective scheme over Z of relative dimension d and B “

řr
i“1Bi a reduced divisor

on X, where each Bi is an irreducible component. We say that B is a simple normal
crossing over Z (snc over Z, for short) if, for any subset J Ď t1, . . . , ru such that
Ş

iPJ Bi ‰ H, the scheme-theoretic intersection
Ş

iPJ Bi is smooth over Z of relative
dimension d ´ |J |. When Z is a spectrum of an algebraically closed field, we just
say that B is snc.

Let B1 be a Q-divisor on X. We say that pX,B1q is log smooth over Z if SupppB1q

is snc over Z. When Z is a spectrum of an algebraically closed field, we just say
that pX,B1q is log smooth.

Definition 2.2.3. Let pX,Bq be a pair. We say pX,Bq is dlt if there exists a closed
subset F Ă X such that

• pX,Bq is log smooth outside F .

• for any divisor E over X whose center is contained in F , the discrepancy of E
satisfies apE,X,Bq ą ´1.

Definition 2.2.4. We say a projective pair pX,Bq is log Fano if pX,Bq is klt and
´pKX `Bq is ample. We say X is of Fano type if there exists an effective Q-divisor
B such that pX,Bq is log Fano. We say a projective pair pX,Bq is log Calabi-Yau
if pX,Bq is lc and KX ` B ” 0. We say X is of Calabi-Yau type if there exists an
effective Q-divisor B such that pX,Bq is log Calabi-Yau. If, in addition, the pair
pX,Bq is klt (resp. ε-klt), then we say that pX,Bq is klt (resp. ε-klt) log Calabi-Yau
and X is klt (resp. ε-klt) of Calabi-Yau

Definition 2.2.5. Let pX,Bq be a pair and f : X ÝÑ Z a projective surjective
morphism to a normal variety Z. We say f : X ÝÑ Z is a pKX ` Bq-Mori fiber
space if

• ´pKX ` Bq is f -ample,

• f˚OX “ OZ and dim X ą dim Z, and

• the relative Picard rank ρpX{Zq “ 1.

2.3 The Iitaka dimension for Z-divisors
In this section, we recall the definition and basic properties of the Iitaka dimen-

sion of Z-divisors.
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Definition 2.3.1 ([37, Definition 2.18]). Let X be a normal projective variety and
D a Z-divisor on X. We define the Iitaka dimensionP t´8, 0, 1, ¨ ¨ ¨ , dimXu as
follows. If h0pX,OXpmDqq “ 0 for all m P Zą0, then we say D has Iitaka dimension
κpX,Dq :“ ´8. Otherwise, set

M :“
␣

m P Zą0

ˇ

ˇ h0pX,OXpmDqq ą 0
(

,

and consider the natural rational mappings

φm : X 99K P
`

H0
pX,OXpmDqq

˚
˘

for each m P M.

Note that we can consider the rational map as above since OXpmDq is invertible on
the regular locus of X. The Iitaka dimension of D is then defined as

κpX,Dq :“ maxmPM

␣

dimφmpXq
(

.

When D is a Q-divisor, we define κpX,Dq as κpX,mDq, where m is any positive
integer such thatmD is a Z-divisor. We say a Q-divisorD is big if κpX,Dq “ dimX.
Note that if D is Q-Cartier, then the above definition coincides with the usual
definition ([76, Definition 2.13]).

Remark 2.3.2. Let X be a normal projective variety. Suppose that a resolution
f : Z ÝÑ X exists. We call κpZ,KZq as the Kodaira dimension of X. We note
that the Kodaira dimension of X dose not depend on resolutions. In general, the
Kodaira dimension of X is less than or equal to the Iitaka dimension κpX,KXq of
the canonical divisor KX (see Lemma 3.2.1 (2)). In this paper, we mainly use the
Iitaka dimension κpX,KXq of the canonical divisor.

Definition 2.3.3. Let D be a Q-divisor on a normal projective surface X. We say
D is nef if D ¨ C ě 0 for every curve C on X.

Let f : Y ÝÑ X be a projective birational morphism of normal surfaces. Let
π : rY ÝÑ Y be a resolution. Since Supppπ˚ Excpfqq Ă Excpf ˝ πq, it follows that
the intersection matrix of Excpfq is negative definite. In particular, we can define
the Mumford pullback ([19, 14.24]) for f .

Remark 2.3.4. We can see that the Mumford pullback preserves the Iitaka dimension
by the projection formula. In addition, the Mumford pullback preserves nefness by
definition.

In the rest of the paper, we just refer to the Mumford pullback as pullback.

2.4 Liftability of pairs to the ring of Witt vectors

In this section, we recall the fundamental facts about the liftability of pairs.
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Definition 2.4.1. Let X be a normal projective variety over an algebraically closed
field k and B “

řr
i“1Bi a reduced divisor on X, where each Bi is an irreducible

component. Let R be a Noetherian local ring with residue field k. When pX,Bq is
log smooth (resp. not log smooth), we say that the pair pX,Bq lifts to R if there
exist

• a projective flat morphism X ÝÑ Spec R, and

• closed subschemes Bi (i “ 1, 2, . . . , r) on X

such that pX ,B :“
řr

i“1 Biq is log smooth (resp. B is flat) over R, X bR k “ X, and
Bi bR k “ Bi.

In the setting of Definition 2.4.1, if we further assume that R is regular and
pX,Bq is log smooth, then a lifting pX ,Bq becomes automatically log smooth as
follows.

Lemma 2.4.2. Let X be a normal projective variety over an algebraically closed
field k and B “

řr
i“1Bi a reduced divisor on X, where each Bi is an irreducible

component. Let R be a regular local ring with residue field k. Suppose that there
exist

• a projective flat morphism X ÝÑ Spec R, and

• closed subschemes Bi (i “ 1, 2, . . . , r) on X flat over R

such that X bR k “ X and Bi bR k “ Bi. If pX,Bq is log smooth, then pX ,Bq is log
smooth over Spec R.

Proof. Since X (resp. Bi) is flat over Spec R by assumption, this is smooth of relative
dimension d (resp. d ´ 1) by [39, Théorème 12.2.4 (iii)]. In particular, each Bi is a
Cartier divisor. We take a subset J Ď t1, . . . , ru. Let us show that

Ş

iPJ Bi is flat
over R. We fix a closed point of x P

Ş

iPJ Bi. Since each Bi is Cartier, we obtain

dimOX ,x ´ |J | ď dim OŞ

iPJ Bi,x ď dim OŞ

iPJ Bi,x ` dim R

“ dim OX,x ´ |J | ` dim R “ dimOX ,x ´ |J |

and hence OŞ

iPJ Bi,x is Cohen-Macaulay and dim OŞ

iPJ Bi,x “ dim OŞ

iPJ Bi,x`dim R.
Then, by [84, Theorem 23.1], it follows that

Ş

iPJ Bi is flat over R. Finally, by [39,
Théorème 12.2.4 (iii)], the closed subscheme

Ş

iPJ Bi is smooth over R and hence
pX ,Bq is log smooth over R.

Lemma 2.4.3. Let X be a smooth projective surface and B an snc divisor on X.
Let Blx : Y ÝÑ X a blow-up at a closed point x P X. Suppose that pX,Bq lifts to a
complete regular local ring R. Then pY, pBlxq´1

˚ B ` ExcpBlxqq lifts to R.
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Proof. Let pX ,Bq be a lifting of pX,Bq to R. Since R is regular, the pair pX ,Bq is log
smooth over R by Lemma 2.4.2. Since R is henselian, [29, Propostion 2.8.13] shows
that there exists a lifting rx of x to R, which is compatible with the snc structure in
the sense of [7, Theorem 2.7]. By [29, Theorem 2.5.8 (i)ñ (ii)], there exists an open
subset U of X containing x and an étale R-morphism rφ : U ÝÑ Spec RrT1, T2s such
that

• BiXU “ V prφ˚Tiq for each irreducible component Bi of B satisfying BiXU ‰ H,
and

• rx “ V prφ˚T1, rφ
˚T2q.

We define an étale k-morphism φ : U :“ U bR k ÝÑ Spec krT1, T2s as φ :“ rφ bR k.
Then x “ V pφ˚T1, φ

˚T2q. Now, an argument of after Claim of [6, Lemma 4.4] shows
that pY , pBl

rxq´1
˚ B ` ExcpBl

rxqq is a lifting of pY, pBlxq´1
˚ B ` ExcpBlxqq.

Lemma 2.4.4. Let X be a normal projective surface and B a reduced divisor on
X. Suppose that there exists a log resolution f : Y ÝÑ X of pX,Bq such that
H2pY,OY q “ 0 and pY, f´1

˚ B ` Excpfqq lifts to a complete regular local ring R.
Then, for every log resolution g : Z ÝÑ X of pX,Bq, the pair pZ, g´1

˚ B ` Excpgqq

lifts to R.

Proof. Let us take a log resolution g : Z ÝÑ X of pX,Bq and show the liftability
of pZ, g´1

˚ B ` Excpgqq. We can take a log resolution h : W ÝÑ X of pX,Bq such
that both f and g factor through h. Since W ÝÑ Y is a composition of blow-ups
at a smooth point, the pair pW,h´1

˚ B ` Excphqq lifts to R by Lemma 2.4.3. Since
W ÝÑ Z is also a composition of blow-ups at a smooth point, it follows from [2,
Proposition 4.3 (1)] that pZ, g´1

˚ B ` Excpgqq formally lifts to R. By assumption,
we have H2pZ,OZq “ H2pY,OY q “ 0, and hence pZ, g´1

˚ B ` Excpgqq lifts to R as a
scheme.

Theorem 2.4.5. Let X be a smooth projective surface over an algebraically closed
field k and B an snc divisor on X. Let pR,mq be a Noetherian complete local ring
with residue field k. Suppose that H2pX,TXp´ log Bqq “ 0. Then pX,Bq lifts to R
as a formal scheme. In particular, pX,Bq lifts to R{mn for all n P Zą0. Moreover,
if we further assume that H2pX,OXq “ 0, then pX,Bq lifts to R as a scheme.

Proof. We denoteR{mn byRn. Let pXn, Bnq be a lifting of pX,Bq over Spec Rn. We
first see that pXn, Bnq is liftable to Spec Rn`1. Since B

n is simple normal crossing
over Spec Rn, we can take an affine open covering tUiu of Y

n such that pUi, B|Ui
q lifts

to Spec Rn`1. Then for each i and any open subset U of Ui, the set of equivalence
classes of such liftings is a torsor under the action of HompΩUplogBq,mn´1OUq.
We refer to the arguments of [26, Section 8] for the details. Then by a similar
argument as in [27, Theorem 8.5.9 (b)], the obstruction for the lifting of pXn, Bnq

over Spec Rn`1 is contained in H2pY, TXp´ log Bqq bmn{mn`1. Thus the vanishing
of H2pX,TXp´ log Bqq gives a lifting of X and Bi over SpecR as formal schemes.
We assume that H2pX,OXq “ 0 in addition. Then the formal liftings of X and
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Bi are algebraizable and we get a projective scheme X over Spec R and a closed
subscheme B :“

řr
i“1 Bi on X such that X bRRn “ Xn and Bi bRRn “ Bn

i for each
n and i by [27, Corollary 8.5.6 and Corollary 8.4.5]. We take a subset J Ď t1, . . . , ru.
Since p

Ş

iPJ Biq bR Rn “
Ş

iPJ B
n
i is smooth over Spec Rn for all n ą 0 and X is

projective over Spec R, [38, Chapitre 0, Proposition (10.2.6)] and [39, Théorème
12.2.4 (iii)] show that

Ş

iPJ Bi is smooth of relative dimension dimXη ´ |J | except
when

Ş

iPJ Bi “ H, where Xη is the generic fiber. Therefore pX ,B “
řr

i“1 Biq is a
lifting of pX,Bq over Spec R.

Hara [42, Corollary 3.8] showed the Akizuki-Nakano vanishing theorem for W2-
liftable pairs pX,Bq. In Theorem 2.4.6, we slightly generalize this theorem to the
vanishing for nef and big divisors when dim X “ 2.

Theorem 2.4.6 (cf. [42, Corollary 3.8]). Let X be a smooth projective surface over
an algebraically closed field k of characteristic p ą 0 and B an snc divisor on X.
Suppose that pX,Bq lifts to W2pkq. Let D be a nef and big Q-divisor on X such that
SuppprDs ´ Dq is contained in B. Then

Hj
pX,Ωi

Xplog Bq b OXp´rDsqq “ 0

for i, j P Zě0 such that i ` j ă 2.

Remark 2.4.7. Langer [72, Example 1] showed that Theorem 2.4.6 does not hold
when D is only big. In other words, the Bogomolov-Sommese vanishing theorem
can fail on W2-liftable surfaces.

Proof. By the Serre duality and the essentially same argument as in [42, Corollary
3.8], we can reduce the assertion to

Hj
pX,Ωi

Xplog Bqq b OXp´B ` rpeDsq “ 0

for all i ` j ą 2 and some e ą 0. We remark that the assumption that p ą

dim X in [42, Corollary 3.8] is relaxed to p ě dim X. Indeed, in the proof of
[42, Corollary 3.8], the assumption that p ą dim X is only used for the quasi-
isomorphism

À

i Ω
i
Xplog Bqr´is – F˚Ω

‚
XplogBq, and this quasi-isomorphism holds

even in p “ dim X by [26, 10.19 Proposition].
We take m,n P Zą0 such that pmppn ´ 1qD is Cartier. Then we obtain

Hj
pX,Ωi

Xplog Bqq b OY p´B ` rpm`lnDsq

“Hj
pX,Ωi

Xplog Bq b OY p´B ` rpmDs ` p

l´1
ÿ

i“0

pniqpmppn ´ 1qDqq.

When j “ 2 (resp. pi, jq “ p2, 1q), the last term vanishes for all sufficiently large
l " 0 by [99, Proposition 2.3] (resp. [99, Theorem 2.6]), and we obtain the desired
vanishing.

Proposition 2.4.8. Let X be a normal projective surface. Suppose that one of the
following conditions folds.
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(1) ´KX is ample Q-Cartier, the minimal resolution π : Y ÝÑ X is a log reso-
lution, and there exists a log resolution f : Z ÝÑ X such that pZ,Ef q lifts to
W2pkq.

(2) H2pX,TXq “ 0 and H2pX,OXq “ 0.

Then, for every log resolution f 1 : Z 1 ÝÑ X, the pair pZ 1, Ef 1q lifts to every Noethe-
rian complete local ring with residue field k.

Proof. We first show (1). We take a π-exceptional effective Q-divisor F such that
π˚p´KXq ´ F is ample and rπ˚p´KXq ´ F s “ rπ˚p´KXqs. Since π is minimal, we
have ´KY ě rπ˚p´KXqs “ rπ˚p´KXq ´ F s. Let f 1 : Z 1 ÝÑ X be a log resolution.
Then f 1 decomposes into g : Z 1 ÝÑ Y and the minimal resolution π : Y ÝÑ X. We
have the injective morphism

g˚pΩZ1plog Ef 1q b OZ1pKZ1qq ãÑpg˚pΩZ1plog Ef 1q b OZ1pKZ1qqq
˚˚

“ΩY plog Eπq b OY pKY q

and then the Serre duality yields

H2
pZ 1, TZ1p´ log Ef 1qq –H0

pZ 1,ΩZ1plog Ef 1q b OZ1pKZ1qq

ãÑH0
pY,ΩY plog Eπq b OY pKY qq

ãÑH0
pY,ΩY plog Eπq b OY p´rπ˚

p´KXq ´ F sqq.

Since pZ,Ef q lifts to W2pkq by assumption, so does pY,Eπq by [2, Proposition 4.3
(1)], and hence the last cohomology vanishes by Theorem 2.4.6. Together with

H2
pZ 1,OZ1q – H0

pZ 1,OZ1pKZ1qq ãÑ H0
pX,OXpKXqq “ 0,

we obtain the liftability of pZ 1, Ef 1q by Theorem 2.4.5.
In this case of (2), we have

H2
pZ 1, TZ1p´ log Ef 1qq –H0

pZ 1,ΩZ1plog Ef 1q b OZ1pKZ1qq

ãÑH0
pX, pΩX b OXpKXqq

˚˚
q

–H2
pX,TXq “ 0,

and the rest proof is similar to that of (1).

Lemma 2.4.9. Let X be a normal projective surface over an algebraically closed
field k of positive characteristic and D a nef and big Z-divisor on X. Suppose that
there exists a log resolution π : Y ÝÑ X such that pY,Excpπqq lifts to W2pkq. Then
H ipX,OXpKX ` Dqq “ 0 for all i ą 0.

Proof. By the Serre duality for Cohen-Macaulay sheaves ([66, Theorem 5.71]), it
suffices to show that H ipX,OXp´Dqq “ 0 for all i ă 2. When i “ 0, the vanishing
follows from the bigness of D. Thus we assume that i “ 1. By the spectral sequence

Ep,q
2 “ Hp

pX,Rqπ˚OY p´rπ˚Dsqq ñ Ep`q
“ Hp`q

pY,OY p´rπ˚Dsqq,
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we obtain an injective morphism

H1
pX, π˚OY p´rπ˚Dsqq ãÑ H1

pY,OY p´rπ˚Dsqq.

By the projection formula, we have π˚OY p´rπ˚Dsq “ π˚OY pt´π˚Duq “ OXp´Dq

and hence it suffices to show that H1pY,OY p´rπ˚Dsqq “ 0. Since Suppprπ˚Ds ´

π˚Dq Ă Excpπq and π˚D is nef and big (see Remark 2.3.4), we obtain the desired
vanishing by Theorem 2.4.6.

Finally, we define log lifting, which we will use in Section 5.

Definition 2.4.10. Let X be a normal projective surface. Fix a Noetherian irre-
ducible scheme T and a morphism α : Spec k ÝÑ T . We say that X is log liftable
over T via α (or log liftable over R via α when T “ SpecR) if the pair pZ,Ef q lifts
to T via α for some log resolution f : Z ÝÑ X. When T is the spectrum of a local
ring pR,mq and α is induced by R{m – k, We also say that X is log liftable over R
for short.



Chapter 3

Bogomolov-Sommese vanishing
and liftability for surface pairs in
positive characteristic

In this chapter, we prove Theorems 1.1.2, 1.1.3, and 1.1.4.

3.1 Klt Calabi-Yau surfaces

In this section, we prove the liftability of a log resolution of a klt Calabi-Yau
surface in large characteristic (Propositions 3.1.2 and 3.1.13). We also show that
there exists a bound on the Gorenstein index for every klt Calabi-Yau surface over
every algebraically closed field (Lemma 3.1.9).

Definition 3.1.1. Let X be a normal projective variety. We say that X is canonical
(resp. klt) Calabi-Yau if X has only canonical (resp. klt) singularities and KX ” 0.
Moreover, if X is klt Calabi-Yau but not canonical Calabi-Yau, then we say that X
is strictly klt Calabi-Yau.

First, we show the liftability of a log resolution of a canonical Calabi-Yau surface.

Proposition 3.1.2. Let X be a canonical Calabi-Yau surface over an algebraically
closed field k of characteristic p ą 19. Then, for every log resolution f : Z ÝÑ X of
X, the pair pZ,Excpfqq lifts to W pkq.

Proof. Let π : Y ÝÑ X be the minimal resolution. By Lemma 2.4.3, it suffices to
show the liftability of pY,E :“ Excpπqq. Since KY “ π˚KX “ 0, it follows that Y
is one of an abelian surface, a hyperelliptic surface, a K3 surface, or an Enriques
surface. If Y is an abelian surface, then Y “ X and Y lifts to W pkq by [88,
Proposition 11.1]. Next, we assume that Y is a hyperelliptic surface. In this case,
Y “ X and Y is the quotient of the fiber product C1 ˆ C2 of elliptic curves by an
action of some group scheme G. Let us recall that a smooth projective curve lifts
to W pkq with its automorphism if the degree of the automorphism is not divisible

20
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by p ([87, Theorem 1.5 and Remark 1.11]). Since p ‰ 2, 3, comparing with the list
of actions of G on C1 ˆ C2 in [19, List 10.27], we can take a W pkq-lifting Ci of Ci

and G of G such that G acts on C1 ˆ C2 compatibly with the action of G on C1 ˆC2.
Then C1 ˆ C2{G gives a lifting of Y .

Next, we assume that Y is a K3 surface or an Enriques surface. Let us show
that the determinant d of the intersection matrix of E is not divisible by p. For
the sake of contradiction, we assume that d is divisible by p. Since the determinant
of the intersection matrix of a rational double point of type An, (resp. Dn, E6, E7,
E8) is equal to p´1qnpn` 1q (resp. p´1qn4, 3,´2, 1), it follows from the assumption
of p ą 19 that X has an Anp´1-singularity for some n P Zą0. Hence we have
ρpY q ě np ě 23, a contradiction since the Picard rank of a K3 surface (resp. an
Enrique surface) is at most 22 (resp. 10) ([49, Chapter 17, 2.4] and [16, Section 3]).

Thus d is not divisible by p and [35, Theorems 1.2 and 1.3] shows that π˚ΩY “ Ω
r1s

X .
Then we obtain

H2
pY, TY p´ log Eqq ãÑ H2

pX,TXq –H0
pX,Ω

r1s

X b OXpKXqq

“H0
pY,ΩY b OY pKY qq.

For the first injection, we refer to Remark 3.2.2. Let us assume that Y is a K3
surface. Then we have H0pY,ΩY b OY pKY qq “ H0pY,ΩY q “ 0, and pY,Eq formally
lifts to W pkq by Theorem 2.4.5. Moreover, the formal lifting is algebraizable by [53,
Proposition 2.6]. Finally, let us assume that Y is an Enriques surface. Then we have

an étale morphism τ : rY ÝÑ Y from a K3 surface rY since p ‰ 2. Thus we obtain
H0pY,ΩY bOY pKY qq ãÑ H0pY,Ω

rY bO
rY pK

rY qq “ 0. Moreover, since p ‰ 2, we have
KX ‰ 0, and in particular, H2pY,OY q – H0pY,OY pKY qq “ 0. Therefore, the pair
pY,Eq lifts to W pkq by Theorem 2.4.5.

Remark 3.1.3. In Proposition 3.1.2, we cannot drop the assumption p ą 19 (see
Example 3.4.3). On the other hand, when the minimal resolution Y is a K3 surface
which is not supersingular, the pair pY,Eq lifts to W pkq in any characteristic as
follows.

First, by [79, Corollary 4.2], Y itself lifts to W pkq. Moreover, by [79, Lemma 2.3
and Corollary 4.2], each irreducible component of E lifts to W pkq. Then we obtain
the desired liftability by Lemma 2.4.2.

From now, we focus on a strictly klt Calabi-Yau surface. We first prove the
existence of the maximum number of the Gorenstein index of a klt Calabi-Yau
surface.

Lemma 3.1.4. Let X be a klt surface and π : Y ÝÑ X a resolution. Then the
Cartier index of any Z-divisor on X divides the determinant of the intersection
matrix of Excpπq.

Proof. Let d be the determinant of the intersection matrix of Excpπq. We take a
Z-divisor D on X and write π˚D “ π´1

˚ D`
ř

diEi for some di P Q. Then it follows
that ddi P Z for each i, and in particular, π˚dD is Cartier. Now, we can conclude
that dD is Cartier by [23, Lemma 2.1].
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Lemma 3.1.5. We fix a real number ε P p0, 1?
3
q. Then there exists m :“ mpεq P Zą0

with the following property. For every ε-klt of Calabi-Yau type surface X over every
algebraically closed field and every Z-divisor D on X, the divisor mD is Cartier.

Proof. Let π : Y ÝÑ X be the minimal resolution and Excpπq :“
ř

iEi the irre-
ducible decomposition. Then Y is ε-klt of Calabi-Yau type. By [4, Lemma 1.2
and Theorem 1.8], we have ´2

ε
ď E2

i ď ´2 and ρpY q ď 128
ε5
. In addition, we have

Ei ¨Ej “ 0 or 1 for i ‰ j since X is klt. Thus there are only finitely many possibili-
ties for the intersection matrix of Excpπq when X moves surfaces as in the lemma.
We take m as a product of all possible determinants of the intersection matrices of
Excpπq. Now, Lemma 3.1.4 shows that m is the desired integer.

Lemma 3.1.6. We fix a real number ε P p0, 1?
3
q. When X moves every ε-klt of

Calabi-Yau type surface over every algebraically closed field, there are only finitely
many possibilities for K2

X .

Proof. Let π : Y ÝÑ X be the minimal resolution. We can write KY `
ř

i aiEi “

π˚KX for some ai P Qą0, where Ei is a π-exceptional prime divisor. Note that
when we take a sum over the empty set, we define the sum as zero. As in the proof
of Lemma 3.1.5, we have ρpY q ď 128

ε5
and there are only finitely many possibilities

for the intersection matrix of Excpπq when X moves. We fix a positive integer
m :“ mpεq P Zą0 as in Lemma 3.1.5. Then we have ai P t 1

m
, ¨ ¨ ¨ , m´1

m
u for each i.

If Y is rational, then Y is obtain from P2
k or a Hirzebruch surface by at most

pt128
ε5

u ´ 1q-times blow-ups, and in particular, K2
Y P Z X p9 ´ t128

ε5
u, 9q. If Y is not

rational, then K2
Y “ 0 by [4, Lemma 1.4]. Now, we can conclude that there are only

finitely many possibilities for

K2
X “ K2

Y `
ÿ

i

aipKY ¨ Eiq “ K2
Y `

ÿ

i

aip´E2
i ´ 2q

and obtain the assertion.

Lemma 3.1.7 (cf. [13, Proposition 11.7]). Let Λ Ă r0, 1s X Q be a DCC set. Then
there exists a finite subset Γ Ă Λ with the following property: for every projective
morphism X ÝÑ Z over every algebraically closed field and every Q-divisor B on
X satisfying

• pX,Bq is an lc surface,

• the coefficients of B are in Λ,

• KX ` B is numerically trivial over Z,

• dim X ą dim Z,

all the π-horizontal coefficients of B are contained in Γ.
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Proof. The assertion has been proved in [13, Proposition 11.7] when we fix the base
field. We remark that the same proof works even when the base field moves every
algebraically closed field. We note that, in Step 4 of the proof of [13, Proposition
11.7], we use [3, Theorem 6.9], which requires us to fix the base field. However, [3,
Theorem 6.9] is applied to only show the boundedness of the Gorenstein index and
the self-intersection number of the canonical divisor of an ε-klt del Pezzo surface,
which do not depend on the base field (see also Lemmas 3.1.5 and 3.1.6).

Lemma 3.1.8. There exists a positive real number ε P Rą0 such that every klt
Calabi-Yau surface over every algebraically closed field is ε-klt.

Proof. First, we extract an exceptional divisor with minimum log discrepancy. We
take a klt Calabi-Yau surface X as in the lemma. Let π : Y ÝÑ X be the minimal
resolution and write

KY `
ÿ

i

aX,iEi “ π˚KX

for some aX,i P Qą0. We may assume that aX,1 ě aX,i for all i. We run a pKY `

aX,1E1 `
ř

iě2Eiq-MMP over X to obtain a birational contraction φ : Y ÝÑ Y 1.
Since KY ` aX,1E1 `

ř

iě2Ei ”X

ř

iě2p1 ´ aX,iqEi, it follows that φ˚E1 ‰ 0 and
ř

iě2p1 ´ aX,iqφ˚Ei is nef over X. The negativity lemma shows that φ˚Ei “ 0 for
each i ě 2 and hence

KY 1 ` aX,1φ˚E1 ” φ˚pKY `
ÿ

i

aX,iEiq ” 0.

Now, we prove the assertion. For the sake of contradiction, we assume that there
exists a sequence of klt Calabi-Yau surfaces tXmumPZą0 such that taXm,1umPZą0 is
a strictly increase sequence. Since taXm,1|m P Zą0u is a DCC set, we can derive a
contradiction by Lemma 3.1.7.

Lemma 3.1.9. There exists a minimum positive integer n P Zą0 such that, for
every klt Calabi-Yau surface X over every algebraically closed field, the Gorenstein
index of X is less than or equal to n.

Proof. The assertion follows from Lemmas 3.1.5 and 3.1.8.

Remark 3.1.10. There exists a klt Calabi-Yau surface over C whose Gorenstein index
is 19 by [14, Theorem C (a)]. Thus we have n ě 19 in Lemma 3.1.9. Moreover, [14,
Theorem C (a)] also shows that we can take n “ 21 when the base field of X only
moves algebraically closed fields of characteristic zero.

Lemma 3.1.11. Let X be a strictly klt Calabi-Yau surface and n the Gorenstein
index of X. Then n is a minimum positive integer such that nKX “ 0.

Proof. By the abundance theorem ([98, Theorem 1.2]), we can take a minimum
positive integer l such that lKX “ 0. By the definition, we have n ď l. Let us
show that l ď n. Let π : Y ÝÑ X be the minimal resolution of X. Then we have
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nKY `E “ π˚nKX ” 0 for some effective Cartier divisor E. Since X is strictly klt
Calabi-Yau, it follows from the proof of [4, Lemma 1.4] that Y is a rational surface.
Thus numerically trivial Cartier divisors on Y are linearly trivial, and in particular,
nKY ` E “ 0. Now we obtain nKX “ π˚pnKY ` Eq “ 0 and hence l ď n.

Lemmas 3.1.9 and 3.1.11 show that a global cyclic cover associated to the canon-
ical divisor of a strictly klt Calabi-Yau surface is étale in codimension one in large
characteristic.

Finally, we prove the liftability of a log resolution of a strictly klt Calabi-Yau
surface in large characteristic.

Lemma 3.1.12. We fix a finite set I Ă r0, 1q X Q and a positive real number
ε P p0, 1?

3
q. There exists a positive integer ppI, εq P Zą0 with the following property.

Let pX,Bq be an ε-klt log Calabi-Yau surface over an algebraically closed field k of
characteristic bigger than ppI, εq. Suppose that X admits a KX-Mori fiber space
structure f : X ÝÑ Z and all the coefficients of B are contained in I. Then, for
every log resolution g : W ÝÑ X of pX,Bq, the pair pW, g´1

˚ pSupppBqq ` Excpgqq

lifts to W pkq.

Proof. First, we show the following claim.

Claim. There exists a flat family pX ,Bq ÝÑ T to a reduced quasi-projective scheme
T over Spec Z such that every log Calabi-Yau surface pX,Bq over every algebraically
closed field of characteristic bigger than five satisfying

• pX,Bq is ε-klt,

• X has a KX-Mori fiber structure f : X ÝÑ Z, and

• all the coefficients of B are contained in I,

is a geometric fiber of pX ,Bq ÝÑ T .

Proof of Claim. By the proof of [23, Lemma 3.1], it suffices to show the following:
there exists a positive integer m P Zą0 not depending on X and a very ample divisor
HX on X such that

• mB is Cartier, and

• there are only finitely many possibilities for dimH0pX,OXpHXqq, H2
X , HX ¨

KX , HX ¨B,KX ¨B, and B2 when pX,Bq moves log Calabi-Yau surfaces as in
the claim.

We take a positive integer m “ mpεq as in Lemma 3.1.5. Since all the coefficients
of B are contained in a finite set I, we can assume that mB is Cartier when pX,Bq

moves, and the first assertion holds.
Let us show the latter assertion. Together with B ” ´KX and Lemma 3.1.6,

it suffices to check the values of dimH0pX,OXpHXqq, H2
X , and HX ¨ KX . We first

construct an ample Cartier divisor AX on X such that there are only finitely many
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possibilities for A2
X , AX ¨KX when X moves. If dim Z “ 0, then ´KX is ample and

we can take AX :“ ´mKX . We next assume that dim Z “ 1. Let us show that
´KX ` pr2

ε
s ´ 1qF is ample, where F is a fiber of X ÝÑ Z. Let C be an irreducible

curve whose numerical class spans an extremal ray of NEpXq that is not spanned
by the numerical class of F . If C2 ą 0, then we have

p´KX ` pr
2

ε
s ´ 1qF q ¨ C “ pB ` pr

2

ε
s ´ 1qF q ¨ C ě r

2

ε
s ´ 1 ą 0,

and hence ´KX ` pr2
ε
s ´ 1qF is ample by Kleiman’s ampleness criterion. We next

assume that C2 ă 0. Let π : Y ÝÑ X be the minimal resolution. Then Y is an
ε-klt of Calabi-Yau surface and hence [4, Lemma 1.2] shows that ´2

ε
ď pπ´1

˚ Cq2. In
particular, ´2

ε
ď C2. Now, we have

p´KX ` pr
2

ε
s ´ 1qF q ¨ C “ pB ` pr

2

ε
s ´ 1qF q ¨ C ąp1 ´ εqC2

` r
2

ε
s ´ 1

ě ´
2

ε
` 2 ` r

2

ε
s ´ 1 ą 0,

and hence ´KX ` pr2
ε
s ´ 1qF is ample. Together with F 2 “ 0, KX ¨ F “ ´2, and

Lemma 3.1.6, by taking AX :“ mp´KX ` pr2
ε
s ´ 1qF q, we can see that AX is the

desired ample Cartier divisor.
Now, by [102, Theorem 1.2], it follows that 13mKX ` 45mAX is very am-

ple. Moreover, we can see that p13m ´ 3qKX ` p45m ´ 14qAX is nef and hence
H ipX,OXp13mKX ` 45mAXqq “ 0 for all i ą 0 by [102, Proposition 6.5]. We set
HX :“ 13mKX ` 45mAX . Then there are only finitely many possibilities for H2

X

and HX ¨ KX . Moreover, by the Riemann-Roch theorem, we have

dimH0
pX,OXpHXqq “ X pOXpHXqq “ X pOW pf˚HXq

“
pf˚HXq2

2
`
f˚HX ¨ p´KW q

2
` 1 “

pHXq2

2
`
HX ¨ p´KXq

2
` 1,

where f : W ÝÑ X is a resolution and we used the fact that X has only ratio-
nal singularities for the second equality. Therefore, there are only finitely many
possibilities for dimH0pX,OXpHXqq, and we finish the proof of the claim.

By the claim and the proof of [23, Proposition 3.2], we can find a positive integer
ppI, εq with the following property: let pX,Bq be a log Calabi-Yau surface as in
the lemma. Then, there exists a log resolution g : W ÝÑ X of pX,Bq such that
the pair pW, g´1

˚ pSupppBqq ` Excpgqq lifts to characteristic zero over a smooth base
in the sense of [23, Definition 2.15]. Now, we obtain the desired liftability by [7,
Proposition 2.5] and Lemma 2.4.4.

Proposition 3.1.13. There exists a positive integer p0 with the following property.
Let X be a strictly klt Calabi-Yau surface over an algebraically closed field of char-
acteristic p ą p0. Then, for every log resolution g : W ÝÑ X, the pair pW,Excpgqq

lifts to W pkq.
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Proof. By Lemma 3.1.8, there exists a positive real number ε P p0, 1?
3
q such that

every klt Calabi-Yau surface is ε-klt. We take m “ mpεq as in Lemma 3.1.5 and
define a finite set I :“ t 1

m
, ¨ ¨ ¨ , m´1

m
u. Let us take p0 :“ ppI, εq as in Lemma 3.1.12.

Let X be a strictly klt Calabi-Yau surface over an algebraically closed field of
characteristic p ą p0. As in Lemma 3.1.8, we can take an extraction f : Y ÝÑ X
of an exceptional prime divisor E1 such that a1 :“ coeffE1pf˚KX ´ KY q P I. Since
KY ” ´a1E1 is not pseudo-effective, we can run a KY -MMP to obtain a birational
contraction φ : Y ÝÑ Y 1 and a KY 1-Mori fiber space Y 1. Since KY ` a1E1 ” 0, the
negativity lemma shows that KY `a1E1 “ φ˚pKY 1 `a1E

1
1q and hence pY 1, a1E

1
1q is ε-

klt log Calabi-Yau, where E 1
1 :“ φ˚E1. Then, by Lemma 3.1.12 and the definition of

p0, we can take a log resolution µ : Z ÝÑ Y 1 of pY 1, a1E
1
1q such that φ factors through

µ and pZ, µ´1
˚ E 1

1 ` Excpµqq lifts to W pkq. We now have the following diagram:

pZ, µ´1
˚ E 1

1 ` Excpµqq

µ
((

h
// pY,E1q f

//

φ

��

X

pY 1, E 1
1q .

Since Excpf ˝ hq Ă µ´1
˚ E 1

1 ` Excpµq, the pair pZ,Excpf ˝ hqq lifts to W pkq, and the
assertion holds by Lemma 2.4.4.

3.2 The Bogomolov-Sommese vanishing theorem

for lc surfaces

3.2.1 An extension type theorem for lc surfaces

In this subsection, we show an extension type theorem (Proposition 3.2.6), which
plays an essential role in the proof of Theorem 1.1.2.

Lemma 3.2.1. Let f : Y ÝÑ X be a projective birational morphism of normal
surfaces. Let BY (resp. DY ) be a reduced Z-divisor (resp. Z-divisor) on Y and
B :“ f˚BY (resp. D :“ f˚DY ). Then the followings hold.

(1) The natural restriction morphism

f˚pΩ
r1s

Y plog BY q b OY p´DY qq
˚˚

ÝÑ pΩ
r1s

X plog Bq b OXp´Dqq
˚˚

is injective.

(2) Suppose that X and Y are projective. Then κpY,DY q ď κpX,Dq holds.

Proof. We first see the assertion (1). Since f˚pΩ
r1s

Y plog DY qbOY p´BY qq˚˚ is torsion-
free, we have an injective morphism

f˚pΩ
r1s

Y plog DY q b OY p´BY qq
˚˚ ãÑpf˚pΩ

r1s

Y plog DY q b OY p´BY qq
˚˚

q
˚˚

–pΩ
r1s

X plog Dq b OXp´BXqq
˚˚.
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We note that, for every open subset U of X, the above morphism is the restriction
of the sections of H0pf´1pUq, pΩ

r1s

Y plog DY q b OY p´BY q˚˚q to f´1pUqzExcpfq –

UzfpExcpfqq.
Similarly, we have the natural injective morphism

H0
pY,OY pmBY qq ãÑ H0

pX,OXpmBXqq

for all m P Zą0 and hence the assertion (2) holds.

Remark 3.2.2. In the setting of Lemma 3.2.1 (2), we have

H2
pY, TY p´ log BY qq –HomOY

pTY p´ log BY q,OY pKY qq

–H0
pY, pΩ

r1s

Y plog BY q b OY pKY qq
˚˚

q

by the Serre duality. Then, by Lemma 3.2.1 (1), we obtain an injective morphism

H2
pY, TY p´ log BY qq ãÑ H2

pX,TXp´ log Bqq.

We will use this fact in Section 3.3.

Definition 3.2.3. Let pX,Bq be a dlt pair over an algebraically closed field of
characteristic p ą 0 such that B is reduced. We say that pX,Bq is tamely dlt if the
Cartier index of KX ` B is not divisible by p.

Definition 3.2.4. Let X be a normal surface and B is a Q-divisor with coefficients
in r0, 1s. We say that a morphism h : W ÝÑ X is a dlt blow-up of pX,Bq if

(1) h is a projective birational morphism,

(2) pW,h´1
˚ B ` Excphqq is dlt, and

(3) KW ` h´1
˚ B ` Excphq ` F “ h˚pKX ` Bq for some effective Q-divisor F .

Lemma 3.2.5. Let X be a normal surface and B is a Q-divisor with coefficients in
r0, 1s. Then the followings hold.

(1) Any log resolution π : Y ÝÑ X of pX,Bq decomposes into a birational projec-
tive morphism Y ÝÑ W and a dlt blow-up W ÝÑ X.

(2) F “ 0 if and only if pX,Bq is lc.

Proof. We refer to [100, Theorem 4.7 and Remark 4.8] for the proof. Note that, by
considering the Mumford pullback, [100, Remark 4.8 (1)] holds without the assump-
tion that KX ` B is R-Cartier.

Proposition 3.2.6 (An extension type theorem for lc surfaces). Let pX,Bq be an
lc surface pair over an algebraically closed field of characteristic p ą 5 and D a Z-
divisor on X. Let f : Y ÝÑ X be a projective birational morphism such that pY,BY q

is lc, where BY :“ f´1
˚ B ` Excpfq. Then the natural restriction morphism

Φ: f˚pΩ
r1s

Y plog tBY uq b OY p´rf˚Dsqq
˚˚

ÝÑ pΩ
r1s

X plog tBuq b OXp´Dqq
˚˚

is isomorphic.
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Remark 3.2.7. Proposition 3.2.6 is equivalent to saying that

f˚pΩ
r1s

Y plog tBY uq b OY p´rf˚Dsqq
˚˚

is reflexive.

Remark 3.2.8. If we take D “ 0 in the proposition, then this is nothing but Graf’s
extension theorem ([35, Theorem 1.2]). Let us see why we need to generalize Graf’s
extension theorem to Proposition 3.2.6 for the proof of Theorem 1.1.2.

We work in characteristic zero and follow the notation of Theorem 1.1.1. Let
π : Y ÝÑ X be a log resolution and BY :“ π´1

˚ B`Excpπq. Suppose that there exists

a Z-divisor D and an injective morphism OXpDq ãÑ Ω
ris
X plog Bq. For simplicity, we

assume that D is Q-Cartier. Then, by applying the extension theorem in character-
istic zero [37, Theorem 1.5], we can construct a Z-divisor DY on Y such that there

exists an injective morphism OY pDY q ãÑ Ω
ris
Y plog BY q and κpX,Dq “ κpY,DY q.

This means the Bogomolov-Sommese vanishing theorem can be reduced to the case
of log smooth pairs by the extension theorem (see [37, 7.C. Proof of Theorem 7.2.]
for the detailed argument). In the construction of DY , we use the fact that an index
one cover of D is étale in codimension. However, when we work in characteristic
p ą 0 and the Cartier index of D is divisible by p, this fact is not always true.
Therefore, we cannot apply Graf’s extension theorem directly to reduce Theorem
1.1.2 to the case where pX,Bq is log smooth.

Moreover, in positive characteristic, reducing to the case of log smooth surfaces is
not enough because the Bogomolov-Sommese vanishing theorem is not known even
for such pairs. Proposition 3.2.6 asserts that DY can be taken as rf˚Ds, and this
enables us to apply the Akizuki-Nakano vanishing theorem (Theorem 2.4.6) when
D is ample.

Proof of Proposition 3.2.6. Step 0. Throughout the proof of this proposition, we
denote pΩ

r1s

W plog BW q bOW p´DW qq˚˚ by Ω
r1s

W plog BW qp´DW q for every surface pair
pW,BW q and Z-divisor DW . By Lemma 3.2.1 (1), Φ is injective. Since pX, tBuq is
lc (see [35, Proposition 7.2]), by replacing B with tBu, we may assume that B is
reduced. Moreover, since the assertion of the proposition is local on X, we may
assume that X is affine. Therefore, it suffices to show that

Φ: H0
pY,Ω

r1s

Y plog BY qp´rf˚Dsqq ãÑ H0
pX,Ω

r1s

X plog Bqp´Dqq

is surjective.
Step 1. First, we prove the following claim.

Claim. Suppose that

• pY,BY q is tamely dlt, and

• ´pKY ` BY q is f -nef.

Then Φ is surjective.
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Proof of Claim. We take s P H0pX,Ω
r1s

X plog Bqp´Dqq. Let us construct a section

in H0pY,Ω
r1s

Y plog BY qp´rπ˚Dsqq which maps to s by Φ. We may assume that s
is non-zero and hence s is considered as an injective OX-module homomorphism
s : OXpDq ãÑ Ω

r1s

X plog Bq. By [35, Theorem 6.1], the natural restriction morphism

f˚Ω
r1s

Y plog BY q – Ω
r1s

X plog Bq is isomorphic. Then we have a generically injective
OY -module homomorphism

f˚OXpDq
f˚s
ÝÑ f˚Ω

r1s

X plog Bq – f˚f˚Ω
r1s

Y plog BY q ÝÑ Ω
r1s

Y plog BY q.

By taking double dual, we obtain an injective OY -module homomorphism

sY : f r˚sOXpDq ãÑ Ω
r1s

Y plog BY q,

where f r˚sOXpDq :“ pf˚OXpDqq˚˚. We take a Z-divisor DY on Y such that
OY pDY q “ f r˚sOXpDq. Since OXpf˚DY q “ pf˚OY pDY qq˚˚ “ pf˚f

r˚sOXpDqq˚˚ “

OXpDq, it follows that f˚DY is linearly equivalent to D. By replacing DY with
DY ` f˚pD ´ f˚DY q, we may assume that f˚DY “ D. In particular, DY ´ f˚D is
f -exceptional.

Now, we replace DY so that DY ´f˚D is effective. Let us assume that DY ´f˚D
is not effective. By applying the negativity lemma to the negative coefficients part
of DY ´ f˚D, we can take a prime f -exceptional divisor E1 such that multE1pDY ´

f˚Dq ă 0 and DY ¨ E1 ą 0. Then we can show that sY factors though an injective

OY -module homomorphism OY pDY ` E1q ãÑ Ω
r1s

Y plog BY q. This follows from the
essentially same argument as [35, Theorem 6.1], but we provide the proof here for
the completeness.

Since pY,BY q is tamely dlt, we have the following commutative diagram

OY pDY q

vv

sY
��

t

%%

0 // Ω
r1s

Y plog BY ´ E1q // Ω
r1s

Y plog BY q
resE1 // OE1

// 0,

and a surjective morphism

resmE1
: Symrms Ω

r1s

Y plog BY q :“ pSymm Ω
r1s

Y plog BY qq
˚˚

ÝÑ OE1

for each m ą 0 which coincides with Symm
presE1q in the generic point of E1 by

[35, Theorem 1.4 (1.4.1)]. Let us show that t is the zero map. For the sake
of contradiction, we assume that t is not zero. Since Imptq Ă OE1 is a torsion-
free OE1-module, it follows that t is non-zero in the generic point of E1 and so is
Symm

ptq : OY pDY qbm ÝÑ OE1 . Since Sym
m

psY q (resp. Symm
presE1q) coincides with

Symrms
psY q :“ pSymm

psY qq˚˚ (resp. resmE1
) in the generic point of E1, the compo-

sition resmE1
˝ Symrms

psY q coincides with Symm
ptq “ Symm

presE1q ˝ Symm
psY q, and

in particular, is non-zero in the generic point of E1. Now, we fix m ą 0 such
that mDY is Cartier. Note that Y is Q-factorial since pY,BY q is dlt. By restrict-
ing resmE1

˝ Symrms
psY q to E1, we obtain an injective OE1-module homomorphism
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OE1pmDY q ãÑ OE1 and hence 0 ă mDY ¨ E1 “ degpOE1pmDY qq ď 0, a contra-
diction. Therefore t is zero and the morphism sY factors through OY pDY q ÝÑ

Ω
r1s

Y plog BY ´ E1q. Then, by [35, Theorem 1.4 (1.4.2)], we obtain the following
commutative diagram

OY pDY q

uu

sY
��

v

((

0 // Ω
r1s

Y plog BY qp´E1q // Ω
r1s

Y plog BY ´ E1q
restrE1// ωE1ptEc

1uq // 0,

and a surjective morphism

restrmE1
: Symrms Ω

r1s

Y plog pBY ´ E1qq ÝÑ OE1pmKE1 ` tmEc
1uq

which coincides with Symm
prestrE1q in the generic point E1. Here, Ec

1 denotes
the different DiffE1pBY ´ E1q (see [65, Definition 4.2] for the definition). Since
´pKY ` BY q is f -nef, it follows that

degpOE1pmKE1 ` tmEc
1uqq ď pmKY ` mBY q ¨ E1 ď 0

for all m ą 0 and hence an argument similar to above shows that v “ 0 and sY
factors throughOY pDY q ãÑ Ω

r1s

Y plog BY qp´E1q. In particular, we obtain an injective

OY -module homomorphism OY pDY ` E1q ãÑ Ω
r1s

Y plog BY q which coincides with sY
on Y zExcpfq. By replacing DY with DY `E1, and repeating the above procedure,
we can assume that DY ´ f˚D is effective.

Now, we obtain a Z-divisor DY on Y such that DY ´ f˚D ě 0 and a morphism
sY P H0pY,Ω

r1s

Y plog BY qp´DY qq, which maps to s under the natural restriction
morphism

Φ1 : H0
pY,Ω

r1s

Y plog BY qp´DY qq ÝÑ H0
pX,Ω

r1s

X plog Bqp´Dqq.

Since rf˚Ds ď rDY s “ DY , it follows that Φ1 decomposes into the natural
injective morphism

Θ: H0
pY,Ω

r1s

Y plog BY qp´DY qq ãÑ H0
pY, pΩ

r1s

Y plog BY qp´rf˚Dsqq

and the morphism

Φ: H0
pY,Ω

r1s

Y plog BY qp´rf˚Dsqq ãÑ H0
pX,Ω

r1s

X plog Bqp´Dqq.

Now we have ΦpΘpsY qq “ Φ1psY q “ s and hence Φ is surjective. Thus we finish the
proof of the claim.

Step 2. Next, let us show that we may assume that f : Y ÝÑ X is a log
resolution of pX,Bq. Let π : Z ÝÑ Y be a log resolution of pY,BY q and rf :“ f ˝ π.

Then BZ :“ π´1
˚ BY `Excpπq “ rf´1

˚ B`Excp rfq, and in particular, rf is a log resolution
of pX,Bq. Suppose that the natural restriction morphisms

ΦZ,X : H0
pZ,ΩZplog BZqp´r rf˚Dsqq ãÑ H0

pX,Ω
r1s

X plog Bqp´Dqq.

ΦZ,Y : H0
pZ,ΩZplog BZqp´rπ˚rf˚Dssqq ãÑ H0

pY, pΩ
r1s

Y plog BY qp´rf˚Dsqq
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are isomorphic. Since rπ˚rf˚Dss ě r rf˚Ds, the isomorphism ΦZ,Y factors through
the natural restriction morphism

Φ1
Z,Y : H0

pZ,ΩZplog BZqp´r rf˚Dsqq ãÑ H0
pX,Ω

r1s

Y plog BY qp´rf˚Dsqq

and hence Φ1
Z,Y is isomorphic. Now, we can conclude that Φ “ ΦZ,X ˝ pΦ1

Z,Y q´1 is an
isomorphism. Thus we may assume that f : Y ÝÑ X is a log resolution of pX,Bq.

Step 3. Finally, let us show that the surjectivity of Φ and finish the proof of
the proposition. By Lemma 3.2.5, a log resolution f decomposes into a birational
morphism and a dlt blow-up. Then, by [35, 7.B. Proof of Theorem 1.2], we obtain
a decomposition

f : Y0 :“ Y
f1

ÝÑ Y1 ÝÑ ¨ ¨ ¨
fm

ÝÑ Ym :“ X

such that each fi satisfies the assumption of the claim. Here, we use the assumption
that p ą 5. By the claim, the natural restriction morphisms

Φm´1,m : H0
pYm´1,Ω

r1s

Ym´1
plog BYm´1qp´rf˚

mDsqq – H0
pX,Ω

r1s

X plog Bqp´Dqq,

Φm´2,m´1 : H
0
pYm´2,Ω

r1s

Ym´2
plog BYm´2qp´rf˚

m´1rf
˚
mDssqq

–H0
pYm´1,Ω

r1s

Ym´1
plog BYm´1qp´rf˚

mDsqq

are isomorphic. Then Φm´1,m ˝ Φm´2,m´1 factors through the natural restriction
morphism

Φm´2,m : H0
pYm´2,Ω

r1s

Ym´2
plog BYm´2qp´rf˚

m´1f
˚
mDsqq ãÑ H0

pX,Ω
r1s

X plog Bqp´Dqq,

and hence Φm´2,m is isomorphic. By repeating this procedure, we can conclude that
Φ is an isomorphism.

3.2.2 Proof of Theorem 1.1.2

In this subsection, we prove Theorem 1.1.2. First, we show the Bogomolov-
Sommese vanishing theorem on a surface admitting a fibration structure including
a Mori fiber space and an lc trivial fibration.

Lemma 3.2.9. Let X be a normal surface over an algebraically closed field k of
characteristic p ą 3 and B a reduced divisor on X. Let f : X ÝÑ Z be a projective
surjective morphism such that dim Z “ 1, f˚OX “ OZ, and ´pKX ` Bq is f -nef.
Then

f˚pΩ
r1s

X plog Bq b OXp´Dqq
˚˚

“ 0

for every Z-divisor D satisfying D ¨ F ą 0 for a general fiber F of f .

Proof. Since f˚pΩ
r1s

X plog Bq bOXp´Dqq˚˚ is torsion-free, it suffices to show that the
rank of the sheaf is zero, and in particular, we can shrink Z for the proof. First, we
prove the following claim.

Claim. By shrinking Z, we may assume that pX,Bq is log smooth over Z.



32

Proof of Claim. We note that the general fiber F is reduced and irreducible since
dim Z “ 1 and f˚OX “ OZ . By shrinking Z, we may assume that all irreducible
components of B dominant Z. Let n P Zě0 be the number of the irreducible com-
ponents of B. Then we have

degpKF q “ KX ¨ F ď KX ¨ F ` n ď pKX ` Bq ¨ F ď 0

and hence pdegpKF q, nq “ p0, 0q, p´2, 0q, p´2, 1q, or p´2, 2q. If pdegpF q, nq “ p0, 0q,
then B “ 0 and F is an elliptic curve since p ą 3. Similarly, if pdegpF q, nq “ p´2, 0q,
then B “ 0 and F – P1

k. Next, if pdegpF q, nq “ p´2, 1q, then F – P1
k and B ¨F “ 1

or 2. In the case where B ¨ F “ 1, it follows that B and F intersect transversally.
In the case where B ¨ F “ 2, the restricted morphism f |B : B ÝÑ Z is generically
étale since p ‰ 2. Finally, if pdegpF q, nq “ p´2, 2q, then B1 ¨ F “ B2 ¨ F “ 1 and
hence B1 (resp. B2) intersects transversally with F , where B1 and B2 are irreducible
components of B.

Therefore, in each case, we can assume that pX,Bq is log smooth over Z by
shrinking Z and finish the proof of the claim.

Now, we show that the assertion of the lemma. We shrink Z so that Z is affine
and pX,Bq is log smooth over Z. Note that pX,Bq is also log smooth over k in this
case. For the sake of contradiction, we assume that

H0
pX,ΩXplog Bq b OXp´Dqq ‰ 0

for some Z-divisor D satisfying D ¨F ą 0. Then there exists an injective OX-module
homomorphism s : OXpDq ãÑ ΩXplog Bq. Since pX,Bq is log smooth over Z, we
have the following exact sequence.

OXpDq

ww

s

��

t

''

0 // OXpf˚KZq // ΩXplog Bq // ΩX{Zplog Bq // 0.

In the above diagram, when B ‰ 0, we define ΩXplog Bq ÝÑ ΩX{Zplog Bq by
dpf˚zq ÞÝÑ 0, dx{x ÞÝÑ dx{x, where z is a coordinate on Z and x is a local equation
of B. Note that f˚z and x form coordinates on X since pX,Bq is log smooth over Z.
When B “ 0, this is the usual relative differential sequence for f ([44, II Proposition
8.11]). Suppose that t is non-zero. Then, by restricting t to F , we have an injective
OF -module homomorphism t|F : OF pDq ãÑ ΩF plog B|F q “ OF pKF ` BF q, where
the injectivity follows from the generality of F . This shows that

0 ă degpD|F q ď degpKF ` B|F q “ pKX ` Bq ¨ F ď 0,

a contradiction. Thus t is zero and the morphism s factors through OXpDq ãÑ

OXpf˚KZq. Then by considering the restriction to F , we obtain

0 ă degpD|F q ď degpf˚KZ |F q “ 0,

a contradiction. Hence we conclude that H0pX,ΩXplog Bq b OXp´Dqq “ 0.
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Now, we prove Theorem 1.1.2.

Proof of Theorem 1.1.2. Step 0. By replacing B with tBu, we may assume that B
is reduced. Since the assertion is obvious when i “ 0 or 2, it suffices to show that

H0
pX, pΩ

r1s

X plog Bq b OXp´Dqq
˚˚

q “ 0 (a)

for every big Z-divisor D. Let h : pW,BW :“ h´1
˚ B ` Excphqq ÝÑ pX,Bq be a dlt

blow-up. Then κpW,KW `BW q “ κpX,KX `Bq and the vanishing (a) is equivalent
to saying that

H0
pW, pΩ

r1s

W plog BW q b OW p´rh˚Dsqq
˚˚

q “ 0 (b)

when p ą 5 by Proposition 3.2.6. We set DW :“ rh˚Ds. By Remark 2.3.4, DW is
big.

Step 1. First, we assume that κpX,KX ` Bq “ ´8 and p ą 5. Let us show
the vanishing (b). In this case, KW `BW is not pseudo-effective by the abundance
theorem ([98, Theorem 1.2]). By Lemma 3.2.1 (1) and (2), we can replace W with
an output of a pKW `BW q-MMP and assume that W has a pKW `BW q-Mori fiber
space structure f : W ÝÑ Z. If dim Z “ 1, then the assertion follows from Lemma
3.2.9. Thus we assume that dim Z “ 0. In this case, W is a klt del Pezzo surface
of Picard rank one and DW is an ample Q-Cartier Z-divisor. Let π : Y ÝÑ W be a
log resolution of pW,BW q, B1 :“ π´1

˚ BW , E :“ Excpπq, and BY :“ B1 `E. Then by
Proposition 3.2.6, it suffices to show that

H0
pY,ΩY plog BY q b OY p´rπ˚DW sqq “ 0.

For the sake of contradiction, we assume that there exists an injective OY -module
homomorphism s : OY prπ˚DW sqq ãÑ ΩY plog BY q. Let us show that s factors through
s : OY prπ˚DW sqq ãÑ ΩY plog Eq. Let B1

1 be an irreducible component of B1. Since
pY,BY q is log smooth, we obtain the following diagram

OY prπ˚DW sq

uu

s

��

t

&&

0 // ΩY plog BY ´ B1
1q

// ΩY plog BY q // OB1
1

// 0.

Since B1
1 is not π-exceptional and DW is an ample Q-Cartier Z-divisor, it follows

that
rπ˚DW s ¨ B1

1 ě π˚DW ¨ B1
1 “ DW ¨ π˚B

1
1 ą 0,

and t is zero. Then s factors through OY prπ˚DW sq ãÑ ΩY plog BY ´B1
1q. By repeat-

ing this procedure, we can show that s factors through OY prπ˚DW sq ãÑ ΩY plog Eq.
By [67, Theorem 1.4] and Lemma 2.4.4 (1), it follows that pY,Eq lifts toW pkq. Now,
since π˚DW is a nef and big Q-divisor whose support of the fractional part is con-
tained in E, Theorem 2.4.6 shows that 0 ‰ s P H0pY,ΩY plog EqqbOY p´rπ˚DW sq “

0, a contradiction.
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Step 2. Next, we assume that κpX,KX ` Bq “ 0 and prove the vanishing (b).
We can replace pW,BW q with the pKW `BW q-minimal model by Lemma 3.2.1 and
hence assume that KW ` BW ” 0.

Step 2-1. First, we assume that BW ‰ 0 and p ą 5. In this case, KW is
not pseudo-effective and we can run a KW -MMP to obtain a birational contraction
φ : W ÝÑ W 1 and a KW 1-Mori fiber space f : W 1 ÝÑ Z. Since KW ` BW ” 0, the
negativity lemma shows that KW ` BW “ φ˚pKW 1 ` BW 1q, where BW 1 :“ φ˚BW .
Thus pW 1, BW 1q is log Calabi-Yau and W 1 is klt. By Lemma 3.2.1, we can replace
pW,BW q with pW 1, BW 1q. If dim Z “ 1, then the assertion follows from Lemma 3.2.9.
Thus we may assume that dim Z “ 0. In this case, W is a klt del Pezzo surface
of Picard rank one and DW is an ample Q-Cartier Z-divisor. Let π : Y ÝÑ W
be a log resolution of pW,BW q, B1 :“ π´1

˚ BW , E :“ Excpπq, and BY :“ B1 ` E.
As in Step 1, we derive a contradiction assuming there exists an injective OY -
module homomorphism s : OY prπ˚DW sq ãÑ ΩY plog BY q. Since B1 ‰ 0, we can take
an irreducible component B1

1 of B1. Since B1
1 is not π-exceptional and DW is an

ample Q-Cartier Z-divisor, an argument as in Step 1 shows that the morphism s
factors through OY prπ˚DW sq ÝÑ ΩY plog BY ´ B1

1q. Since KW ` BW ” 0, we have
κpY,KY ` BY ´ B1

1q “ ´8. Now, we obtain a contradiction by Step 1.
Step 2-2. Next, we assume that BW “ 0. In this case, W is a klt Calabi-Yau

surface. We take a positive integer n as in Lemma 3.1.9 and assume p ą n. Let
us show that we may assume that DW is nef and big. Let DW ” P ` N be the
Zariski decomposition. Note that we can take the Zariski decomposition even when
X is singular ([25, Theorem 3.1]). We take a rational number 0 ă ε ! 1 such that
pW, εNq is klt. Since KW is torsion by the abundance theorem ([98, Theorem 1.2])
and N is negative definite, it follows that κpKW ` εNq “ κpX,Nq “ 0. We run a
pKW ` εNq-MMP to obtain a birational contraction φ : W ÝÑ W 1 to a pKW ` εNq-
minimal modelW 1. ThenKW 1 “ φ˚KW ” 0, and in particular,W 1 is klt Calabi-Yau.
Moreover, φ˚εN ” KW 1 ` φ˚εN ” 0, and hence φ˚DW ” φ˚P is nef and big. By
Lemma 3.2.1, we can replace W with W 1 and assume that DW is nef and big.

We next reduce to the case where W is canonical Calabi-Yau. Let us assume
that W is a strictly klt Calabi-Yau surface. By Lemma 3.1.11, the positive integer
n is the minimum integer such that nKW “ 0. Then we can take a cyclic cover
τ : ĂW ÝÑ W associated to a non-zero global section of nKW “ 0. Since n is not
divisible by p, it follows that τ is étale in codimension one, and hence we obtain an
injective morphism

H0
pW, pΩ

r1s

X b OW p´DW qq
˚˚

q ãÑ H0
pĂW, pΩ

r1s

ĂW
b O

ĂW p´τ˚DW qq
˚˚

q

and τ˚DW is nef and big. By replacingW with ĂW , we may assume thatW has only
canonical singularities.

Now, we show the vanishing (b). Let π : Y ÝÑ W be the minimal resolution
and E :“ Excpπq. By Proposition 3.2.6, it suffices to show that

H0
pY,ΩY plog Eq b OY p´rπ˚DW sqq “ 0.
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Since p ą n ě 19 by Remark 3.1.10, the pair pY,Eq lifts to W pkq by Proposition
3.1.2. Thus we conclude the desired vanishing by Theorem 2.4.6.

Step 3. Finally, we assume that κpX,KX ` Bq “ 1 and p ą 3. We prove the
vanishing (a) directly. In this case, by replacing pX,Bq with its pKX `Bq-minimal
model, we may assume that KX ` B is semiample and κpX,KX ` Bq “ 1. Then
there exists a projective morphism f : X ÝÑ Z such that dim Z “ 1, f˚OX “ OZ ,
and KX ` B is numerically trivial over Z. Now, by Lemma 3.2.9, we obtain the
assertion.

We will check the sharpness of the explicit bounds on p0 in Example 3.4.1.

Let us recall that the definition of a globally sharply F -split pair, which is a
positive characteristic analog of a log Calabi-Yau pair in characteristic zero.

Definition 3.2.10 ([93, Definition 3.1]). Let pX,Bq be a pair an algebraically closed
field of characteristic p ą 0. We say that pX,Bq is globally sharply F -split if there
exists a positive integer e P Zą0 such that the composite map

OX ÝÑ F e
˚OX ãÑ F e

˚OXprppe ´ 1qBsq

of the e-times iterated Frobenius morphism OX ÝÑ F e
˚OX and the natural inclusion

F e
˚OX ãÑ F e

˚OXprppe ´ 1qBsq splits as an OX-module homomorphism.

By a similar argument to Theorem 1.1.2, we can show the Bogomolov-Sommese
vanishing theorem for a globally sharply F -split surface pair.

Proposition 3.2.11. Let pX,Bq be a globally sharply F -split surface pair over an
algebraically closed field of characteristic p ą 5. Then

H0
pX, pΩ

ris
X plog tBuq b OXp´Dqq

˚˚
q “ 0

for every Z-divisor D on X satisfying κpX,Dq ą i.

Proof. By [93, Theorem 4.4 (ii) and Theorem 4.3 (ii)], it follows that pX,Bq is lc
and ´pKX ` Bq is effective. If κpX,KX ` tBuq “ ´8, then the assertion follows
from Theorem 1.1.2. Thus we may assume that KX ` tBu ” 0. First, we assume
that pX, tBuq is not klt. By Proposition 3.2.6, we can replace pX, tBuq with its dlt
blow-up. In this case, the boundary of the dlt pair is non-zero since pX, tBuq is not
klt. Then the assertion follows from Step 2-1 of the proof of Theorem 1.1.2.

Now, we assume that X is klt Calabi-Yau and B “ 0. As in Step 2-2 of the proof
of Theorem 1.1.2, by considering the Zariski decomposition, we can assume that D is
nef and big. Note that the globally F -split property is preserved under a birational
contraction ([17, 1.1.9 Lemma]). Next, a splitting morphism F˚OX ÝÑ OX give a
non-zero section of HomOX

pF˚OX ,OXq – H0pX,OXpp1´pqKXqq, and together with
KX ” 0, we obtain p1 ´ pqKX “ 0. In particular, the minimum positive integer n
such that nKX “ 0 is not divisible by p. Let us recall the globally F -split property is
preserved under a finite cover which is étale in codimension one ([89, Lemma 11.1.]).
Thus, by taking a cyclic cover associated to a non-zero global section of nKX , we
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may assume that X is a canonical Calabi-Yau surface such that KX “ 0. If X is
an abelian surface, then the same argument as Step 2-2 of the proof of Theorem
1.1.2 works. Thus we may assume that the minimal resolution Y of X is a K3
surface. Now, by [17, 1.3.13 Lemma] and [101, 5.1 Theorem], the K3 surface Y is
not supersingular, and an argument of Step 2-2 of the proof of Theorem 1.1.2 and
Remark 3.1.3 show the desired vanishing.

Remark 3.2.12. It is still open whether Proposition 3.2.6 holds for F -pure surface
singularities in characteristic p ď 5. This is the main reason why we need the
assumption that p ą 5 in Proposition 3.2.11.

3.3 Liftability of surface pairs

In this section, we prove Theorems 1.1.3 and 1.1.4. We also discuss deformations
of an lc projective surface whose canonical divisor has negative Iitaka dimension
(Proposition 3.3.6). First, we focus on the vanishing of the second cohomology of
the logarithmic tangent sheaf.

Definition 3.3.1. Let X be a normal projective variety. We say X is Q-abelian
if there exists a finite surjective morphism τ : rX ÝÑ X such that rX is an abelian
variety and τ is étale in codimension one.

Proposition 3.3.2. Let pX,Bq be an lc projective surface pair over an algebraically
closed field of characteristic p ą 0 such that B is reduced. When κpX,KX `Bq “ 0,
let pX 1, B1q be the pKX `Bq-minimal model of pX,Bq, where B1 is the pushforward
of B. Suppose that one of the followings holds.

(1) κpX,KX ` Bq “ ´8 and p ą 5.

(2) κpX,KX ` Bq “ 0 and one of the followings holds.

(i) B1 ‰ 0 and p ą 5,

(ii) B1 “ 0, X 1 is klt, the Gorenstein index of X 1 is not divisible by p, X 1 is
not Q-abelian, and p ą 19.

Then H2pX,TXp´ log Bqq “ 0.

Remark 3.3.3. All the assumptions on p are sharp (see Examples 3.4.1, 3.4.2, and
3.4.3).

Proof. First, we assume that the condition (1) holds. We can reduce the desired
vanishing to an output of a pKX ` Bq-MMP by Remark 3.2.2, and hence assume
that X admits a pKX ` Bq-Mori fiber space structure f : X ÝÑ Z. If dim Z “ 1,
then the assertion follows from Lemma 3.2.9 since ´KX is f -ample. We next assume
that dim Z “ 0. Note that ´KX is Q-Cartier by [98, Theorem 5.4]. Then it follows
from ρpXq “ 1 that ´KX is an ample Q-Cartier Z-divisor, and the assertion follows
from Theorem 1.1.2.
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Next, we assume that the condition (2)-(i) holds. It suffices to show that
H2pX 1, TX 1p´ log B1qq “ 0. Since KX 1 ` B1 ” 0 and B1 ‰ 0, it follows that KX 1 is
not pseudo-effective. Then we can run a KX 1-MMP to obtain a birational contrac-
tion φ : X 1 ÝÑ X to a KX-Mori fiber space f : X ÝÑ Z. It suffices to show that
H2pX,TXp´ log Bqq “ 0. Since KX 1 ` B1 ” 0, the negativity lemma shows that
KX 1 ` B1 “ φ˚pKX ` Bq and hence pX,Bq is log Calabi-Yau, where B :“ φ˚B

1. If
dim Z “ 1, then the assertion follows from Lemma 3.2.9 since ´KX is f -ample. If
dim Z “ 0, then the assertion follows from Step 2-1 of the proof of Theorem 1.1.2
since ´KX is ample Q-Cartier by [98, Theorem 5.4].

Finally, we assume that the condition (2)-(ii) holds. It suffices to show that
H2pX 1, TX 1q “ 0. We first assume that X 1 is strictly klt Calabi-Yau. Let n be the
minimum positive integer such that nKX 1 “ 0. Then n is equal to the Gorenstein
index by Lemma 3.1.11, and hence n is not divisible by p by assumption. Let
τ : rX ÝÑ X 1 be a cyclic cover associated to a non-zero global section of nKX 1 “ 0.
Since τ is étale in codimension one, we have

H2
pX 1, TX 1q – H0

pX 1, pΩ
r1s

X 1 b OX 1pKX 1qq
˚˚

q ãÑH0
p rX, pΩ

r1s

rX
b O

rXpK
rXqq

˚˚
q

“H2
p rX,T

rXq,

Thus we may assume that X 1 is canonical Calabi-Yau. By the assumption that
X 1 is not Q-abelian, the minimal resolution of X 1 is a K3 surface or an Enriques
surface. In these cases, we have already shown that H2pX 1, TX 1q “ 0 in the proof of
Proposition 3.1.3.

Now, we prove Theorems 1.1.3 and 1.1.4.

Proof of Theorem 1.1.3. Set BY :“ π´1
˚ B ` Excpπq. Suppose that the condition (1)

holds and p ą 5. Then κpY,KY `BY q “ ´8 by Lemma 3.2.1 (2), and hence pY,BY q

lifts to W pkq by Proposition 3.3.2 (1) and Theorem 2.4.5.
Next, we assume that the condition (2) holds and p ą 5. By Lemma 3.2.5, we

can decompose π : Y ÝÑ X into a birational morphism Y ÝÑ W and a dlt blow-up
h : W ÝÑ X. Then there exists an effective Q-divisor F such that KW `BW `F ”

h˚pKX ` Bq ” 0, where BW :“ h´1
˚ B ` Excphq. By assumption, we have BW ‰ 0

and hence H2pY, TY p´ log BY qq ãÑ H2pW,TW p´ log BW qq “ 0 by Proposition 3.3.2
(1) and (2)-(i). Moreover, since ´KX ” B is strictly effective, it follows that
H2pY,OY q “ 0. Now, we conclude that pY,BY q lifts to W pkq by Theorem 2.4.5.

Finally, we assume that the condition (3) holds. In this case, κpY,KY `BY q ď 0
by Lemma 3.2.1 (2). If κpY,KY ` BY q “ ´8 and p ą 5, then pY,BY q lifts to
W pkq by (1). Thus we can assume that κpY,KY ` BY q “ 0. By Propositions 3.1.2
and 3.1.13, we can take a positive integer p0 ą 19 with the following property; for
every klt Calabi-Yau surface Z over an algebraically closed field of characteristic
bigger than p0 and every log resolution f : rZ ÝÑ Z, the pair p rZ,Excpfqq lifts to
W pkq. We fix such a p0 and assume that p ą p0. We run a pKY ` BY q-MMP
to obtain a birational contraction φ : Y ÝÑ Y 1 to the pKY ` BY q-minimal model
pY 1, BY 1 :“ φ˚BY q, which is dlt and log Calabi-Yau. If BY 1 ‰ 0, then pY,BY q lifts
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to W pkq by (2). If BY 1 “ 0, then we obtain the desired liftability by the assumption
of p0.

We will check the sharpness of the explicit bound on p0 in Examples 3.4.1 and
3.4.2.

Proof of Theorem 1.1.4. We take a positive integer p0 as in Theorem 1.1.3. If
κpX,KXq “ ´8 and p ą 5 (resp. κpX,KXq “ 0 and p ą p0), then the assertion
follows from Theorem 1.1.3 and Lemma 2.4.9. Next, we assume that κpX,KXq “ 1,

X is lc, and p ą 3. In this case, we have H0pX, pΩ
r1s

X b OXp´peDqq˚˚q “ 0 for all
e P Zą0 by Theorem 1.1.2. Then, by the proof of [59, Lemma 2.5], we have the
injective morphism H1pX,OXp´Dqq ãÑ H1pX,OXp´peDqq arising from the e-th
iterated Frobenius morphism. Let π : Y ÝÑ X be a log resolution. By the proof of
Lemma 2.4.9, it suffices to show that H1pY,OY p´rpeπ˚Dsqq “ 0 for e " 0. We take
m,n P Zą0 such that pmppn ´ 1qπ˚D is Cartier. Then we obtain

H1
pY,OY p´rpm`nlπ˚Dsq “ H1

pY,OY p´rpmπ˚Ds ` p

l´1
ÿ

i“0

pniqpmppn ´ 1qπ˚Dqq

and the last cohomology vanishes for l " 0 by [99, Theorem 2.6].
We will check the sharpness of the explicit bounds on p0 in Example 3.4.1.

Finally, we apply Proposition 3.3.2 to show the vanishing of local-to-global ob-
structions (see [78, Definition 4.11] for the definition). In particular, we prove Propo-
sition 3.3.6 (3), which is a positive characteristic analog of [40, Proposition 3.1].

Definition 3.3.4. Let X be a normal projective variety. We say X admit a Q-
Gorenstein smoothing if there exists a flat projective morphism X ÝÑ T from a
normal Q-Gorenstein scheme to a smooth curve T with a reference point o P T such
that the fiber over o is isomorphic to X and X ÝÑ T is smooth over T ´ o.

Definition 3.3.5. Let X be a normal variety over an algebraically closed field of
positive characteristic. We say X is F -pure if the local ring OX,x is F -split (i.e. the
Frobenius morphism OX,x ÝÑ F˚OX,x splits as an OX,x-module homomorphism)
for every closed point x P X.

Proposition 3.3.6. Let X be an lc projective surface over an algebraically closed
field k of characteristic p ą 5 with κpX,KXq “ ´8. Then X has no local-to-global
obstructions. In particular, the followings hold.

(1) If X is F -pure, then X lifts to W2pkq.

(2) If X is locally complete intersection (l.c.i. for short), then X lifts to W pkq.

(3) If every singular point of X is l.c.i or a T -singularity (see [78, Definition 3.4]
for the definition), then X admits a Q-Gorenstein smoothing.
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Proof. By taking B “ 0 in Proposition 3.3.2 (1), we obtain H2pX,TXq “ 0. Then
we conclude that X has no local-to-global obstructions by [78, Theorem 4.13].

First, we show (1). Suppose that X is F -pure. Then X lifts to W2pkq locally
by [72, Corollary 8]. Since X has no local-to-global obstructions, it follows that X
lifts to W2pkq. Next, we show (2). Suppose that X is locally complete intersection.
Then X lifts to W pkq locally by [45, Theorem 9.2 ]. Thus X formally lifts to W pkq

and this is algebraizable by H2pX,OXq “ 0. Finally, we show (3). Suppose that
every singular point of X is l.c.i or a T -singularity. Then each singularity admit a
smoothing by [78, Lemma 5.1 and Theorem 3.14]. Hence it follows from the proof
of [78, Theorem 5.3] that X admits a smoothing.

3.4 Sharpness of Theorems 1.1.2, 1.1.3, and 1.1.4

In this section, we observe the failure of Theorems 1.1.2, 1.1.3, and 1.1.4 in low
characteristic or for surface pairs whose log canonical divisor is big. First, let us
focus on the characteristic.

Example 3.4.1. By Theorem 1.3.6 (3), [10, Theorem 1.1], and [7, Proposition
5.1], we can take a klt del Pezzo surface X in each characteristic p P t2, 3, 5u with
more than four singularities and an ample Q-Cartier Z-divisor D on X such that
H1pX,OXpKX ` Dqq ‰ 0. Let π : Y ÝÑ X be the minimal resolution with E :“
Excpπq. Then ´KY is big and κpY,KY ` Eq “ ´8.

Firstly, pY,Eq does not lift to any Noetherian local domain with fractional field
of characteristic zero because there are no klt del Pezzo surfaces with more than
four singularities in characteristic zero by [9, Theorem 1.1]. In addition, pY,Eq

dose not lift to W2pkq by Lemma 2.4.9, and it follows from Theorem 2.4.5 that
0 ‰ H2pY, TY p´ log Eqq ãÑ H2pX,TXq. Therefore, the explicit bound p0 “ 5 in
Theorems 1.1.2, 1.1.3 (1), and 1.1.4 (1) is optimal. These examples also show that
the sharpness of the assumption p ą 5 in Proposition 3.3.2 (1).

By [92, Section 3,1], we can take a smooth projective surface X in each char-
acteristic p P t2, 3u with κpX,KXq “ 1 and an ample Cartier divisor D on X such
that H1pX,OXpKX `Dqq ‰ 0. Then [59, Lemma 2.5] shows that there exists n ą 0
such that H0pX,ΩX b OXp´pnDqq ‰ 0. Therefore, the explicit bound p0 “ 3 in
Theorems 1.1.2, 1.1.4 (2) and the assumption that p ą 3 in Lemma 3.2.9 are optimal.

Example 3.4.2. We show that there exists a klt del Pezzo surface X in each char-
acteristic p P t2, 3, 5u and a non-zero reduced divisor B on X such that KX `B ” 0,
but pY, f´1

˚ B`Excpfqq does not lift to any Noetherian local domain with fractional
field of characteristic zero for some log resolution f : Y ÝÑ X of pX,Bq.

We first assume p “ 5. We take a del Pezzo surface X with two A4-singularities
and a cuspidal rational curve B in the smooth locus of X as in [67, Example 7.6].
Then we have KX `B ” 0 by the adjunction formula. We take a three-times blow-
up f : Y ÝÑ X at the cusp of B. Then there exists a contraction π : Y ÝÑ Z to a
klt del Pezzo surface Z with five singularities and Excpπq Ă f´1

˚ B`Excpfq (see [67,
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Example 7.6] for the detail). Then pY,Excpπqq does not lift to any Noetherian local
domain with fractional field of characteristic zero by [9, Theorem 1.1] and neither
does pY, f´1

˚ B`Excpfqq. When p “ 3, we can take X “ P2
k and a curve B as in [67,

Example 7.5] to show the assertion. When p “ 2, we can take a del Pezzo surface
X as any one of Theorem 1.3.6 (3) and B is a general member of the anti-canonical
linear system, which is integral.

Therefore, the explicit bound on p0 in Theorem 1.1.3 (2) and the assumption
p ą 5 in Proposition 3.3.2 (2)-(i) are optimal.

Example 3.4.3 (cf. [11, Remark 3.4]). By [95, Corollary 1.2], there exists a canoni-
cal Calabi-Yau surface X in each characteristic p ď 19 such that Y is a supersingular
K3 surface and E :“ Excpπq consists of 21 p´2q-curves, where π : Y ÝÑ X is the
minimal resolution. Then pY,Eq does not lift to any Noetherian local domain R with
fractional field K of characteristic zero. For the sake of contradiction, we assume
that there exists a lifting pY , Eq of pY,Eq to such an R. Let YK (resp. EK) be the
geometric generic fiber of Y ÝÑ R (resp. E ÝÑ R).

Let us show that YK is a K3 surface. SinceH1pY,OY q “ 0, a lifting of each invert-
ible sheaf is unique by [27, Corollary 8.5.5]. Then ωY |Y “ ωY “ OY “ OY |Y shows
that ωY “ OY . Together with X pYK ,OYK

q “ X pY,OY q “ 2, we conclude that YK
is a K3 surface. Since YK contains 21 p´2q-curves EK which is negative definite, we
obtain ρpYKq ě 22, a contradiction with the fact that the Picard rank of a K3 surface
in characteristic zero is at most 20 (see [49, Chapter 17, 1.1] for example). Finally,
by the proof Proposition 3.1.2, we obtain 0 ‰ H2pY, TY p´ log Eqq ãÑ H2pX,TXq.

Therefore, p0 in Theorem 1.1.3 (3) should be at least 19. Moreover, the assump-
tion that p ą 19 in Propositions 3.1.2 and 3.3.2 (2)-(ii) is sharp.

Finally, we close the paper by discussing the assumptions of Iitaka dimensions
of (log) canonical divisors in Theorems 1.1.2, 1.1.3, and 1.1.4. By counterexamples
([92]) of the Kodaira vanishing theorem on smooth projective surfaces with big
canonical divisor, we can see that Theorems 1.1.2, 1.1.3, and 1.1.4 do not hold for
a surface with big canonical divisor in any characteristic. In the next example, we
will see that Langer’s surface pair [72] shows that Theorems 1.1.2 and 1.1.3 do not
hold on a surface pair whose log canonical divisor is big even when the surface itself
is rational.

Example 3.4.4. We first recall the construction of Langer’s surface pair [72, Section
8]. Let h : X ÝÑ P2

k be the blow-up all the Fp-rational points and L1, . . . , Lp2`p`1

strict transforms of all the Fp-lines. Then X is a smooth rational surface and
L1, . . . , Lp2`p`1 are pairwise disjoint smooth rational curves.

There exists a nef and big Q-divisor D such that H1pX,OXpKX ` rDsqq ‰ 0

and SuppptDuq “
řp2`p`1

i“1 Li by [21, Theorem 3.1]. Thus pX,
řp2`p`1

i“1 Liq dose

not lift to W2pkq by Theorem 2.4.6 and H2pX,TXp´ log
řp2`p`1

i“1 Liqq ‰ 0 by The-
orem 2.4.5. Finally, there exists a big divisor M such that OXpMq is contained in

ΩXplog
řp2`p`1

i“1 Liq by [75, Proposition 11.1].



41

Now, we check that KX `
řp2`p`1

i“1 Li is big except when p “ 2. Since L2
i “ ´p

for each i and L1, . . . , Lp2`p`1 are pairwise disjoint, we can take the contraction

f : X ÝÑ Z of
řp2`p`1

i“1 Li. By the proof of [21, Lemma 2.4 (i)], we have KX ` p1 ´

2
p
qp
řp2`p`1

i“1 Liq “ f˚KZ and hence KX `
řp2`p`1

i“1 Li “ rf˚KZs. If p ‰ 2, then KZ is

ample by [21, Lemma 2.4 (iv)] and hence KX `
řp2`p`1

i“1 Li is big. Note that if p “ 2,

then κpX,KX `
řp2`p`1

i“1 Liq “ ´8 since f˚pKX `
řp2`p`1

i“1 Liq “ KZ is anti-ample.
Therefore, Theorems 1.1.2, 1.1.3 and Proposition 3.3.2 do not hold on a surface

pair whose log canonical divisor is big even when the surface itself is rational.

Remark 3.4.5. For a singular surface, it is often more useful to consider the liftability
of a log resolution than that of itself (see [7], [23], and Section 5 for example). In
Example 3.4.4, we constructed the pathological example from the log resolution

of the pair consisting of P2
k and all the Fp-lines

řp2`p`1
i“1 Li. However, the pair

pP2
k,
řp2`p`1

i“1 Liq clearly lifts to W pkq. For this reason, when we discuss lifting of a
non-log smooth pair, it is more suitable to consider the liftability of a log resolution
of the pair to capture pathologies in positive characteristic.

Remark 3.4.6. Example 3.4.4 gives a slightly generalization of [21, Corollary 3.3].

Indeed, we can drop the assumption p ě 3 and replace
řq2`q`1

i“1 Ei `
řq2`q`1

i“1 L1
i with

řq2`q`1
i“1 L1

i in [21, Corollary 3.3]. On the other hand, this fact also follows from [74,
Proposition 4.1] and [75, Proposition 11.1].



Chapter 4

Bogomolov-Sommese type
vanishing for globally F -regular
threefolds

In this section, we prove Theorems 1.2.1 and 1.2.2.

4.1 F -split and globally F -regular varieties

In this section, we gather the results about F -split and globally F -regular vari-
eties.

Definition 4.1.1 ([85], [97]). Let X be a normal variety.

(1) We say that X is (globally) F -split if the Frobenius map OX ÝÑ F˚OX

splits as an OX-module homomorphism. We call σ P HomOX
pF˚OX ,OXq –

H0pX,OXpp1 ´ pqKXqq a splitting section if σ induces a splitting of OX ÝÑ

F˚OX . We often call the divisor Σ P |p1´pqKX | corresponding to σ a splitting
section.

(2) We say that X is globally F -regular if for every effective Weil divisor D on X,
there exists an integer e ě 1 such that the composite map

OX ÝÑ F e
˚OX ãÑ F e

˚OXpDq

of the e-times iterated Frobenius map OX ÝÑ F e
˚OX and the natural inclusion

F e
˚OX ãÑ F e

˚OXpDq splits as an OX-module homomorphism.

Remark 4.1.2. (1) Let X be a globally F -regular variety and D an effective Weil
divisor on X. Then the map OX ãÑ F e

˚OXpDq splits as an OX-module homo-
morphism for all sufficiently large e by [93, Proposition 3.8].

(2) Let f : X 99K Y be a small birational map or a projective surjective morphism
satisfying f˚OX “ OY of normal varieties. If X is F -split (resp. globally F -
regular), then so is Y by [32, Lemma 1.5]. In particular, if we start the MMP

42
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from an F -split (resp. globally F -regular) variety, then an output of the MMP
is also F -split (resp. globally F -regular).

(3) Globally F -regular varieties are Cohen-Macaulay by [97, Proposition 4.1].

(4) Let π : Y ÝÑ X be a birational projective morphism between normal Q-
Gorenstein varieties such that f˚KX ´ KY is Q-effective. If X is F -split
(resp. globally F -regular), then so is Y by [33, Lemma 3.3]). In particular,
the minimal resolution of a Du Val del Pezzo surface preserves the F -splitting
property.

(5) Let C be an elliptic curve. Then C is F -split if and only if C is ordinary (see
[17, 1.3.9 Remark (ii)]).

(6) Globally F regular projective varieties are of Fano type (see [93, Theorem
1.1]).

Theorem 4.1.3 ([32, Theorem 2.1]). Let f : X ÝÑ Y be a projective surjective
morphism of normal varieties satisfying f˚OX “ OY . If X is globally F -regular,
then a general fiber of f is normal and globally F -regular.

Theorem 4.1.4 (Proof of [32, Theorem 4.1]). Let f : X ÝÑ Y be a projective
surjective morphism from a terminal globally F -regular threefold to a normal variety
over an algebraically closed field of characteristic p ą 0 satisfying f˚OX “ OY .
Suppose that ´KX is f -ample and one of the following conditions holds.

(1) dimY “ 2.

(2) p ą 7 and dimY “ 1.

Then X is separably rationally connected.

We refer to [64, IV 3.2 Definition] for the definition of separably rationally con-
nected varieties. Since the separably rationally connected property is preserved un-
der birational maps, Theorem 4.1.4 states that if we start KX-MMP from a smooth
globally F -regular threefold and the MMP ends up with a Mori fiber space over a
surface, or a curve and p ą 7, then X is separably rationally connected. On the
other hand, very little is known when the MMP ends up with a Fano variety. We
refer to [32] for more details.

4.2 Logarithmic Cartier operators

In this section, we recall the logarithmic Cartier operator. Let X be a smooth
variety and B a reduced divisor on X with snc support. The Frobenius push-forward
of the logarithmic de Rham complex

F˚Ω
‚
Xplog Bq : F˚OX

F˚d
ÝÑ F˚Ω

1
Xplog Bq

F˚d
ÝÑ ¨ ¨ ¨
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is a complex of OX-module homomorphisms. For all i ě 0, we define locally free
OX-modules as follows.

Bi
Xplog Bq :“ ImpF˚d : F˚Ω

i´1
X plog Bq ÝÑ F˚Ω

i
Xplog Bqq,

Zi
Xplog Bq :“ KerpF˚d : F˚Ω

i
Xplog Bq ÝÑ F˚Ω

i`1
X plog Bqq.

By definition, we have the following exact sequence

0 ÝÑ Zi
Xplog Bq ÝÑ F˚Ω

i
Xplog Bq ÝÑ Bi`1

X plog Bq ÝÑ 0

for i ě 0.
In particular, by taking i “ 0 in the above exact sequence, we have

0 ÝÑ OX ÝÑ F˚OX
F˚d
ÝÑ B1

X ÝÑ 0.

We note that B1
Xplog Bq “ B1

X . We remark that the F -splitting (Definition 4.1.1
(1)) is nothing but to the splitting of this exact sequence. Moreover, we have the
exact sequence arising from the logarithmic Cartier isomorphism

0 ÝÑ Bi
Xplog Bq ÝÑ Zi

Xplog Bq
C

ÝÑ Ωi
Xplog Bq ÝÑ 0.

We refer to [56, Theorem 7.2] for more details.

4.3 Bogomolov-Sommese type vanishing for sev-

eral varieties

In this section, we prove a Bogomolov-Sommese type vanishing for varieties with
special properties.

The following assertion states about a Bogomolov-Sommese type vanishing on
separably uniruled varieties. We refer to [64, IV 1.1 Definition] for the definition of
separably uniruled varieties.

Proposition 4.3.1 ([63, Lemma 7]). Let X be a smooth projective separably uniruled
variety and D a big Cartier divisor on X. Then H0pX,Ωi

X b OXp´Dqq “ 0 for all
i ě 0.

Remark 4.3.2. Let pX,Bq be a log smooth projective surface such that B is reduced.
If κpX,KXq “ ´8 and B “ 0, then the Bogomolov-Sommese vanishing holds by
Proposition 4.3.1. On the other hand, as we have seen before in Example 3.4.4, this
is not true if B ‰ 0.

We will see that if X is F -split, then ΩXplog Bq dose not contain a nef and big
invertible sheaf in Proposition 4.4.6.

Next, we show a Bogomolov-Sommese type vanishing on separably rationally
connected varieties. Let X be a smooth projective variety of dim X “ n. We recall
that a rational curve φ : P1

k ÝÑ X is called very free if φ˚ΩX “ OP1
k
p´a1q ‘ ¨ ¨ ¨ ‘

OP1
k
p´anq for a1, ¨ ¨ ¨ , an P Zą0.
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Theorem 4.3.3. Let X be a smooth projective variety. Then X is separably ratio-
nally connected if and only if there is a very free rational curve through a general
point of X.

Proof. We refer to [64, IV. Theorem 3.7] for the proof.

The proof of the following proposition is essentially same as that of Proposition
4.3.1, but we include the proof for the convenience of the reader.

Proposition 4.3.4. Let X be a smooth projective separably rationally connected
variety and D a Cartier divisor on X. If κpX,Dq ě 0, then H0pX,Ωi

XbOXp´Dqq “

0 for all i ą 0.

Proof. We take a Cartier divisor D satisfying κpX,Dq ě 0. Conversely, we assume
that there exists a nonzero section 0 ‰ s P H0pX,Ωi

X b OXp´Dqq for some i ą 0.
We fix m P Zą0 such that mD is linearly equivalent to an effective divisor. We take
a very free rational curve φ : P1

k ÝÑ X through a general point of X. Then Imφ
is not contained SupppmDq and hence we have φ˚OXpDq “ OP1

k
pbq for some b ě 0.

By the definition of a very free rational curve, it follows that φ˚pΩi
X b OXp´Dqq “

OP1
k
p´b1q ‘ ¨ ¨ ¨ ‘ OP1

k
p´bnq for some b1, ¨ ¨ ¨ , bn ą 0.

On the other hand, since φ : P1
k ÝÑ X passes through a general point of X, it

follows that Imφ is not contained in the zero locus of s and hence s|Imφ ‰ 0.
Now, we obtain

0 ‰ s|Imφ P H0pImφ, pΩi
X b OXp´Dqq|Imφq

ãÑ H0pImφ, ppΩi
X b OXp´Dqq b φ˚OP1

k
q

“ H0pP1
k, φ

˚ppΩi
X b OXp´Dqq

“ H0pP1
k,OP1

k
p´b1q ‘ ¨ ¨ ¨ ‘ OP1

k
p´bnqq

“ 0,

a contradiction.

Remark 4.3.5. Let X be a smooth globally F -regular surface. Then X is rational by
[32, Proposition 3.5]. Therefore if OXpDq Ă Ωi

X is an invertible subsheaf for some
i ą 0, then κpX,Dq “ ´8 by Proposition 4.3.4.

Lemma 4.3.6. Let f : X ÝÑ C be a minimal ruled surface. Then we have

H0
pX,ΩX b OXp´Dqq “ 0

for every Cartier divisor D satisfying κpX,Dq ě mintg :“ dimkH
1pX,OXq, 2u.

Proof. If g “ 0 or g ą 1, then the assertion follows from Proposition 4.3.4 and
Proposition 4.3.1, respectively. We assume that g “ 1. We take an injective homo-
morphism s : OXpDq ãÑ ΩX . Then we have the following commutative diagram

OXpDq

xx

s
��

t

##
0 // f˚ωC “ OX

// Ω1
X

// ωX
// 0.
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Let F be a general fiber of f . By the generality of F , the restriction t|F : OF pDq ãÑ

ωX |F is injective. Then we have pD ¨F q ď pKX ¨F q “ ´2 and hence κpX,Dq “ ´8

by the nefness of F . Now, we assume that t is zero. Then an injective homomorphism
OXpDq ãÑ OX is induced by the above diagram and hence κpX,Dq “ ´8 or D “ 0.
Therefore the assertion holds.

Next, we discuss the case where κpX,KXq “ 0. The following proposition is an
immediate consequence of [73, Corollary 3.3].

Proposition 4.3.7. Let X be a smooth projective variety of dim X “ n. Suppose
that p ě pn ´ 1qpn ´ 2q, KX ” 0, and X is not uniruled. If OXpDq Ă Ωi

X is an
invertible subsheaf for some i ě 0, then κpX,Dq ď 0.

Proof. We may assume that k is an algebraically closed field. By [73, Corollary 3.3],
it follows that ΩX is strongly semistable with respect to any ample polarization H
and so is Ωi

X for each i ě 0 by [91, Theorem 3.23]. We refer to [73] for the definition
of the strongly semistability. We take an injective homomorphism OXpDq ãÑ Ωi

X

for some i ě 0. By the definition of the semistability, we have pD ¨ Hn´1q ď

p´c1pXq ¨ Hn´1q{ rank Ωi
X “ 0 and hence κpX,Dq ď 0. Therefore we obtain the

assertion.

Remark 4.3.8. A Calabi-Yau variety whose Artin-Mazur height is finite is not unir-
uled by [46, Theorem 1.3]. We note that the proof of [46, Theorem 1.3] works in
any dimension.

Now, we show a Bogomolov-Sommese type vanishing for smooth projective F -
split surfaces.

Theorem 4.3.9. Let X be a smooth projective F -split surface. If OXpDq Ă Ωi
X is

an invertible subsheaf for some i ě 0, then κpX,Dq ď 0.

Proof. When i “ 0, the assertion is obvious. Since X is F -split, there exists a
section σ P H0pX,OXpp1 ´ pqKXqq – HomOX

pF˚OX ,OXq which induces a splitting
of the Frobenius map OX ÝÑ F˚OX , and in particular the anti-canonical divisor
´KX is effective. Then the assertion holds when i “ 2. We assume that i “ 1. By
Lemma 3.2.1, we may assume that X is minimal.

• The case where κpX,KXq “ ´8. If X – P2
k, then the assertion follows

from Proposition 4.3.4. Thus we assume that X has a ruled surface struc-
ture f : X ÝÑ C. Since C is F -split by Remark 4.1.2 (2), it follows that
dim H1pC,OCq “ 0 or 1 and the assertion follows from Lemma 4.3.6.

• The case where κpX,KXq “ 0. First, we assume that X is a K3 surface. Then
the Artin-Mazur height of X is equal to one by [101, 5.1 Theorem] and hence
we obtain the assertion by Proposition 4.3.7 and Remark 4.3.8.

Next, we assume that X is an Enriques surface. We first assume that p ‰ 2.
Then there exists a finite étale morphism f : Y ÝÑ X from a K3 surface Y .
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Since f is étale, it follows from [1, Lemma 2.5.5 (d)] that Y is F -split and
in particular Y is not uniruled. The étaleness of f also shows that X is not
uniruled and we obtain the assertion by Proposition 4.3.7. We next assume
that p “ 2. Since X is F -split, the Frobenius action on H1pX,OXq is bijective
by [1, Lemma 2.5.5 (a)] and hence X is not supersingular. Moreover, since
there exists a section σ P H0pX,OXp´KXqq which induces a splitting of the
Frobenius map, it follows that KX is not torsion and hence X is not classical.
Thus X is a singular Enriques surface and hence there exists a finite étale
morphism f : Y ÝÑ X from a K3 surface Y by [16, Corollary in Section 3].
Now, the same argument as in the case where p ‰ 2 shows the assertion.

If X is an Abelian surface, then the assertion follows immediately from Propo-
sition 4.3.7. Finally, we assume that X is a (quasi-)hyperelliptic surface. Since
X is F -split, a general fiber of the Albanese map is normal by [24, Proposition
7.2]. Thus X is a hyperelliptic surface and there exists a finite étale morphism
f : Y ÝÑ X from an Abelian surface Y . Then X is not uniruled and we
conclude the assertion by Proposition 4.3.7.

4.4 Bogomolov-Sommese type vanishing for glob-

ally F -regular threefolds

In this section, we prove a Bogomolov-Sommese type vanishing on globally F -
regular threefolds.

Definition 4.4.1. Let X be a variety and F a coherent sheaf on X. We say that F
satisfies Serre’s condition Sn if depthOX,x

pFxq ě mintn, dim OX,xu holds for every
(not necessary closed) point x P X.

Lemma 4.4.2. Let X be a projective variety and A an ample Cartier divisor on X.
Let F be a coherent sheaf on X satisfying Serre’s condition Sn. Then

H i
pX,F b OXp´mAqq “ 0

for all i ă l :“ mintn, dimXu and all sufficiently large m.

Proof. We may assume that X is the closed subscheme of PN
k and OXpAq “ OXp1q.

We fix a closed point x P X. Since F satisfies Serre’s condition Sn, it follows that

pdOPN
k

,x
pFxq “ N ´ depthOPN

k
,x

pFxq “ N ´ depthOX,x
pFxq ď N ´ l

and hence ExtjPN
k

pF , ´q “ 0 for j ą N ´ l. Now the Serre duality yields

H i
pX,Fp´mqq –ExtN´i

pF , ωPN
k

pmqq

–H0
pPN

k , ExtN´i
PN
k

pF , ωPN
k

pmqqq m " 0

“0 i ă l

and hence we obtain the assertion.
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Lemma 4.4.3. Let X be a normal projective variety and D a Q-Cartier Z-divisor
on X such that κpX,Dq ą 0. Let F be a reflexive sheaf on X. Then H0pX, pF b

OXp´peDqq˚˚q “ 0 for all sufficiently large and divisible e.

Proof. Since κpX,Dq ą 0, there exists a rational map φ :“ φ|pmppn´1qD| : X 99K Y
such that Y is a projective variety with dim Y ą 0 for some m,n P Zě0. We fix
such m,n. Since F is reflexive, we can take an open subset U with codimXpX ´

Uq ě 2 such that F is locally free on U and U Ă Xreg. By taking a resolution of
indeterminacy of φ|U , we have the following commutative diagram

V

f
��

g

  

U
φ|U

// Y.

We note that pmppn ´ 1qf˚D|U ´ g˚H ě 0 for some ample Cartier divisor H on Y
by the construction of g. Then we have

H0pX, pF b OXp´pm`lnDqq˚˚q

“ H0pU, pF |U b OUp´pmDqq b OUp´pmppln ´ 1qDqq

“ H0pV, f˚pF |U b OUp´pmDqq b OV p´pmppln ´ 1qf˚Dqq

ãÑ H0pV, f˚pF |U b OUp´pmDqq b OV p´g˚Hlqq

“ H0pY, g˚f
˚pF |U b OUp´pmDqq b OY p´Hlqq

for all l P Zą0, where Hl :“ p1 ` pn ` ¨ ¨ ¨ ` ppl´1qnqH. Since F |U and OUp´pmDq

are locally free, it follows that g˚f
˚pF |U b OUp´pmDqq is torsion-free. Therefore

H0pY, g˚f
˚pF |U b OUp´pmDqq b OY p´Hlqq “ 0 for a sufficiently large integer l by

Lemma 4.4.2.

Example 4.4.4. Let X be a normal projective variety which lifts to the ring of
Witt vectors of length two W2pkq with its Frobenius morphism (see [20, Section 2]

for more details). Then there exists a splitting injective map Ω
ris
X ãÑ F˚Ω

ris
X by [20,

Theorem 2]. Let D be a Q-Cartier Z-divisor on X. If κpX,Dq ą 0, then it follows
that

H0
pX, pΩ

ris
X b OXp´Dqq

˚˚
q ãÑ H0

pX, pΩ
ris
X b OXp´peDqq

˚˚
q “ 0

for a sufficiently large and divisible integer e by Lemma 4.4.3. We remark that toric
varieties lift toW2pkq with their Frobenius morphisms, but a stronger assertion than
the above holds on them. We refer to [30, Theorem 2.22] for the detail.

Theorem 4.4.5. Let X be a projective globally F -regular variety and B reduced
divisor on X. Suppose that dimX ě 2 and codimXppX,Bqnsncq ě 3. Then

H0
pX, pΩ

r1s

X plog Bq b OXp´Dqq
˚˚

q “ 0

for every nef and big Q-Cartier Z-divisor D on X.

Proof. First, we show the following claim.
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Claim. H1pU,OUp´Dqq “ 0 for every nef and big Q-Cartier Z-divisor D, where U
denotes pX,∆qsnc.

Proof of the Claim. Let D be a nef and big Q-Cartier Z-divisor. We fix m,n P Zą0

such that D1 :“ pmppn´1qD is Cartier. The bigness of D shows that pmD is linearly
equivalent to an effective Z-divisor for all sufficiently large m " 0. By Remark 4.1.2
(1), there exists l " 0 such that

OX ãÑ Fm`ln
˚ OXppmDq

splits. By restricting to U and tensoring OUp´Dq, we have a splitting injective map

OUp´Dq ãÑ Fm`ln
˚ OUppmD ´ pm`lnDq

“ Fm`ln
˚ OUp´D1

lq,

where D1
l :“ p1`pn `¨ ¨ ¨`ppl´1qnqD1. By taking the cohomology, we have a splitting

injection
H1pU,OUp´Dqq ãÑ H1pU,OUp´D1

lqq,

and thus we may assume that D is Cartier. If dim X “ 2, then U “ X by the
assumption that codimXppX,∆qnsncq ě 3, and the assertion of the claim follows
from [97, Corollary 4.4]. Now we assume that n :“ dim X ě 3. Since X is globally
F -regular, it follows that X is Cohen-Macaulay by Remark 4.1.2 (3) and the line
bundle OXp´Dq satisfies Serre’s condition Sn. By the assumption codimXpZq ě 3
and by [18, Proposition 1.2], we have Hj

ZpX,OXp´Dqq “ 0 for all j ă 3, where Z
denotes pX,∆qnsnc. We consider the spectral sequence

Ei,j
2 “ H ipX,Hj

ZpX,OXp´Dqq ÝÑ H i`j “ H i`j
Z pX,OXp´Dqq.

Since Ei,j
2 “ H ipX,Hj

ZpX,OXp´Dqq “ 0 for all j ă 3, we have

H i
ZpX,Op´Dqq “ H i

“ Ei,0
2 “ H i

pX,H0
ZpX,OXp´Dqq “ 0

for all i ă 3. By the local cohomology exact sequence, we have the exact sequence

H1pX,OXp´Dqq ÝÑ H1pU,OXp´Dq ÝÑ H2
ZpX,OXp´Dqq “ 0.

Therefore, it suffices to show that H1pX,OXp´Dqq “ 0 and this follows from [97,
Corollary 4.4].

Now, we show the assertion of the theorem. Conversely, we assume that

H0
pX, pΩ

r1s

X plog Bq b OXp´Dqq
˚˚

q “ H0
pU,ΩUplog Bq b OUp´Dqq ‰ 0.

Then, by Lemma 4.4.3, there exists l P Zě0 such that

H0pX, pΩ
r1s

X plog Bq b OXp´plDqq˚˚q ‰ 0,

H0pX, pΩ
r1s

X plog Bq b OXp´pl`1Dqq˚˚q “ 0.
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We note that we can use the Cartier operator on U “ pX,∆qsnc. Since X is F -split,
the exact sequence

0 ÝÑ OU ÝÑ F˚OU ÝÑ B1
U ÝÑ 0

splits. By the claim and the splitting of the above exact sequence, we have

H1
pU,B1

U b OUp´plDqq “ 0

for every nef and big Q-Cartier Z-divisor D. Since Z1
Uplog Bq Ă F˚ΩUplog Bq, we

have

H0pU,Z1
Uplog Bq b OUp´plDqq ãÑ H0pU,ΩUplog Bq b OUp´pl`1Dqq

“ H0pX, pΩ
r1s

X plog Bq b OXp´pl`1Dqq˚˚q

“ 0.

Now, since H0pU,Z1
Uplog Bq bOUp´plDqq “ H1pU,B1

U bOUp´plDqq “ 0, the exact
sequence

0 ÝÑ B1
Uplog Bq “ B1

U ÝÑ Z1
Uplog Bq ÝÑ ΩUplog Bq ÝÑ 0

shows

H0pX, pΩ
r1s

X plog Bq b OXp´plDqq˚˚q “ H0pU,ΩUplog Bq b OUp´plDqq “ 0,

a contradiction with the assumption of l.

If X is smooth in Theorem 4.4.5, then we can weaken the assumption that X is
globally F -regular as follows.

Proposition 4.4.6. Let pX,Bq be a log smooth projective variety of dimX ě 2.
Suppose that X is F -split. Then H0pX,ΩXplog Bq b OXp´Dqq “ 0 for every nef
and big Cartier divisor D on X.

Proof. We take a nef and big Cartier divisor D. Since X is F -split, we have a
splitting injective map

H1pX,OXp´Dqq ãÑ H1pX,OXp´peDqq.

By [71, Proposition 2.24], we have H1pX,OXp´peDqq “ 0 for a sufficiently large
integer e and hence H1pX,OXp´Dqq “ 0. Now the argument after the claim of
Theorem 4.4.5 shows the assertion.

Globally F -regular surfaces have only F -regular singularities. We note that
F -regular singularities are klt and in particular the minimal resolutions are log
resolutions. We refer to [43] for more details.

Graf [35] shows that a surface with F -regular singularities satisfies the extension
theorem for the logarithmic differential form.
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Theorem 4.4.7 (cf. [35, Theorem 1.2]). Let X be a normal surface with F -regular
singularities and π : Y ÝÑ X the minimal resolution with the reduce π-exceptional
divisor E. Then π˚ΩY plog Eq – Ω

r1s

X .

Proof. We may assume that k is an algebraically closed field by [35, Proposition
7.4]. By [43, Theorem 1.1], the dual graph of π is one of the following.

1. The graphs of the singularity is a chain.

2. The graphs of the singularity is star-shaped and either

(a) of type p2, 2, dq, d ě 2, and p ‰ 2,

(b) of type p2, 3, 3q or p2, 3, 4q, and p ą 3,

(c) of type p2, 3, 5q and p ą 5.

By applying [35, 7.B Proof of Theorem 1.2 (7.9.5)] (resp. [ibid, (7.9.6)], [ibid, (7.9.7)])
to (1) (resp. (2)(a), (2)(b) and (c)), we obtain the assertion.

Corollary 4.4.8. Let X be a normal projective F -split surface with F -regular sin-
gularities. Then H0pX,Ω

ris
X b OXp´Dqq “ 0 for every i ě 0 and every nef and big

Cartier divisor D on X.

Proof. When i “ 0, we obtain the assertion by the bigness ofD. SinceX is F -split, it
follows that ´KX is effective and hence the assertion holds when i “ 2. Now, we as-
sume that i “ 1. Conversely, we assume that there exists an injective homomorphism
OXpDq ãÑ Ω

r1s

X for some nef and big Cartier divisor D on X. Let π : Y ÝÑ X be the
minimal resolution with the reduced π-exceptional divisor E. Since π is crepant, it
follows that Y is F -split by [17, 1.3.13 Lemma]. Now, by Theorem 4.4.7, we have

an injective homomorphism OY pπ˚Dq ÝÑ π˚Ω
r1s

X – π˚π˚ΩY plog Eq ÝÑ ΩY plogEq,
a contradiction with Proposition 4.4.6.

Lemma 4.4.9. Let f : X ÝÑ Y be a projective surjective morphism of normal
varieties satisfying f˚OX “ OY . Suppose that a general fiber F of f is globally
F -regular and dim F “ 1 or 2. In addition, assume that codimXpXsgq ě 3 when

dim F “ 2. Let D be an f -nef and f -big Q-Cartier Z-divisor on X. Then f˚pΩ
ris
X b

OXp´Dqq˚˚ “ 0 for all i ě 0.

Proof. If dim Y “ 0, then X is a smooth rational curve or a smooth rational surface,
and the assertion follows from Proposition 4.3.4. Thus we assume that dim Y ą 0.
We may assume that Y is affine. Conversely, we assume that there exists an injective
homomorphism s : OXpDq ãÑ Ω

ris
X for some i ě 0. Since the closed point y :“ fpF q

is contained in Yreg, we have IF {I2F “ f˚pmy{m2
yq “ O‘dim Y

F , where IF is the ideal
sheaf of F . Now by the conormal exact sequence, we have

0 Ñ O‘dim Y
Freg

Ñ ΩX |Freg Ñ ΩFreg Ñ 0.

By the generality of F , the restriction s|F : OF pD|F q ãÑ Ω
ris
X |F “

ŹiΩX |F is injective

and we obtain an injective homomorphism OF pD|F q ãÑ Ω
rjs

F b
Źi´j O‘dim Y

F by [34,
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Lemma 3.14]. In particular, we have OF pD|F q ãÑ Ω
rjs

F for some j ě 0. We first
assume that dim F “ 1. Then F – P1

k and D|F is a nef and big Cartier divisor.
This is a contradiction. We next assume that dim F “ 2. Then D|F is a nef and
big Cartier divisor by the assumption that codimXpXsgq ě 3. Now we can derive a
contradiction by Corollary 4.4.8.

Now, we prove a Bogomolov-Sommese type vanishing for globally F -regular
threefolds.

Theorem 4.4.10. Let X be a smooth projective globally F -regular threefold and
OXpDq Ă ΩX an invertible subsheaf. If p ą 3, then κpX,Dq ď 1. Furthermore, if
p ą 7, then κpX,Dq ď 0.

Remark 4.4.11. In the above theorem, we need the assumption that p ą 3 only for
running KX-MMP.

Proof. Let us prove the first assertion of the theorem. We assume that p ą 3 and
κpX,Dq ą 1. Let us show that H0pX,ΩX b OXp´Dqq “ 0. Since X is globally
F -regular, the anti-canonical divisor ´KX is big by [93, Corollary 4.5]. Then by
running KX-MMP, we obtain a birational contraction f : X 99K X 1 and a Mori fiber
space g : X 1 ÝÑ Y by [41, Theorem 1.2]. By Remark 4.1.2 (2), X 1 is a Q-factorial
terminal projective globally F -regular threefold. By Lemma 3.2.1, it suffices to show
that H0pX 1, pΩ

r1s

X 1 bOX 1p´D1qq˚˚q “ 0. Moreover, we have κpX 1, D1q ě κpX,Dq ą 1.
First, we assume that dim Y “ 0. In this case, the divisor D1 is ample since

κpX 1, D1q ą 1 and ρpX 1q “ 1. Since three-dimensional terminal singularities are

isolated by [65, Corollary 2.13], we obtain H0pX 1, pΩ
r1s

X 1 b OX 1p´D1qq˚˚q “ 0 by
Theorem 4.4.5.

Next, we assume that dim Y “ 1. Let G be a general fiber of g. Since ´KX 1

and G form the basis of N1pX 1q bZ Q, we can denote D1 ” ap´KX 1q ` bG for some
a, b P Q, where N1pX 1q is the quotient of PicpX 1q by its subgroup consisting of
all isomorphism classes numerically equivalent to zero. We denote by Pic0pX 1q the
subgroup of PicpX 1q consisting of all isomorphism classes algebraically equivalent
to zero and by NSpX 1q the quotient of PicpX 1q by Pic0pX 1q. Since X 1 is globally
F -regular, it follows from [97, Corollary 4.3] that H1pX 1,OX 1q “ 0. Then by [27,
Theorem 9.5.11], we obtain Pic0pX 1q “ 0 and hence PicpX 1q “ NSpX 1q. Since the
kernel of the natural map NSpX 1q ↠ N1pX 1q is torsion by [76, Corollary 1.4.38], we
obtain PicpX 1q bZQ “ NSpX 1q bZQ “ N1pX 1q bZQ. In particular, D1 is Q-linearly
equivalent to ap´KX 1q ` bG. Since κpX 1, D1q ą 1 “ κpX 1, Gq, it follows that a ą 0
and hence D1|G is ample. Now G is a globally F -regular surface by Theorem 4.1.3

and hence we obtain H0pX 1, pΩ
r1s

X 1 b OX 1p´D1qq˚˚q “ 0 by Lemma 4.4.9.
Finally, we assume that dim Y “ 2. In this case, X 1 is separably rationally

connected by Theorem 4.1.4 (1) and hence so is X. Then we obtain H0pX,ΩX b

OXp´Dqq “ 0 by Proposition 4.3.4.
Now, we show the latter assertion. We assume that p ą 7 and κpX,Dq ą 0.

We take X 1, Y as above. When dim Y “ 0 or 2, we obtain the assertion by the
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essentially same argument as above. When dim Y “ 1, Theorem 4.1.4 (2) shows
that X 1 is separably rationally connected and hence so is X. Therefore we obtain
H0pX,ΩX b OXp´Dqq “ 0 by Proposition 4.3.4.

Remark 4.4.12. LetX be a terminal projective globally F -regular threefold. Suppose
that p ą 3 andOXpDq Ă Ω

r1s

X is a Weil divisorial subsheaf. Then an argument similar
to Theorem 4.4.10 shows that κpX,Dq ď 2 as follows.

By taking a small Q-factorialization and running KX-MMP, the assertion is
reduced to a Mori fiber space g : X 1 ÝÑ Y . Let D1 is the push-forward of D to X 1.
When dim Y “ 0 or 1, we obtain the assertion by the proof of the first assertion of
Theorem 4.4.10. On the other hand, when dim Y “ 2, we need a different argument
from Theorem 4.4.10 since Proposition 4.3.4 cannot be applied to singular varieties.
In this case, since D1 is big and ρpX 1{Y q “ 1, it follows that D1|G is ample and the
assertion follows from Lemma 4.4.9.



Chapter 5

Pathologies of Du Val del Pezzo
surfaces in positive characteristic
(joint work with Masaru Nagaoka)

In this chapter, we prove Theorem 1.3.3, 1.3.4, 1.3.6, and 1.3.8.

5.1 Du Val del Pezzo surfaces

In this section, we gather the basic results of Du Val del Pezzo surfaces.

Definition 5.1.1. Let X be a normal projective surface. We say that X is a Du Val
del Pezzo surface if ´KX is ample and X has only Du Val singularities. We write
DynpXq for the Dynkin type of X. For Dn, En (resp. En), and in no other cases
in p “ 2 (resp. p “ 3), there are more than one, finitely many, isomorphism classes
of singularity sharing the same Dynkin type. They are classified and named as Dr

n

and Er
n by Artin [5], where r is called the Artin coindex of the Du Val singulairty.

We write Dyn1
pXq for the Dynkin type of X with Artin coindices.

Remark 5.1.2. Let X be a normal projective surface with only rational singularities
with Iitaka dimension κp rX,K

rXq “ ´8, where rX ÝÑ X is a resolution. Let us see
that X lifts to every Noetherian complete local ring R with the residue field k.

First, we recall that rX lifts toR (see [27, 8.5.26]). ThenX is formally liftable toR
by [2, Proposition 4.3(1)], and the formal lifting is algebraizable since H2pX,OXq “

0. In particular, all Du Val del Pezzo surfaces lift to R.

Lemma 5.1.3. Let X be a Du Val del Pezzo surface of degree d :“ K2
X . Then the

following hold.

p1q dim | ´ KX | “ d.

p2q | ´ KX | has no fixed part.

54
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p3q A general member of the anti-canonical linear system is a locally complete
intersection curve with arithmetic genus one. Moreover, if p ą 3, then a
general member of the anti-canonical linear system is smooth.

p4q If d ě 3, then | ´ KX | is very ample.

p5q If d “ 4, then X is isomorphic to a complete intersection of two quadric
hypersurfaces in P4

k.

p6q If d “ 3, then X is isomorphic to a cubic hypersurface in P3
k.

p7q If d “ 2, then | ´ KX | is base point free and X is isomorphic to a weighted
hypersurface in Pkp1, 1, 1, 2q of degree four.

p8q If d “ 1, then | ´ KX | has the unique base point and X is isomorphic to a
weighted hypersurface in Pkp1, 1, 2, 3q of degree six.

Proof. We refer to [12, Propositions 2.10, 2.12, and 2.14] and [59, Proposition 4.6]
for the proof.

5.2 Quasi-elliptic surfaces

In this subsection, we compile the results on rational quasi-elliptic surfaces by
Ito [50, 51], which we will use in Sections 5.4 and 5.5.

Theorem 5.2.1 ([50, Theorems 3.1–3.3]). Suppose p “ 3. Then the following hold.

(1) The configurations of reducible fibers of rational quasi-elliptic surfaces and
their Mordell-Weil groups are listed in Table 5.1, where we use Kodaira’s no-
tation.

(2) Rational quasi-elliptic surfaces of each type (1), (2), and (3) uniquely exist.

(3) Sections on rational quasi-elliptic surfaces are disjoint from each other. More-
over, the dual graphs of negative rational curves in rational quasi-elliptic sur-
faces are as in Figure 5.1 and Table 5.2, where black nodes (resp. white nodes)
correspond to p´1q-curves (resp. p´2q-curves).

Table 5.1

Type Reducible fibers MWpZq

(1) II˚
t1u

(2) IV˚, IV Z{3Z
(3) four IV pZ{3Zq2

Theorem 5.2.2 ([51, §5]). Suppose p “ 2. Then the following hold.
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OΘ8,0Θ8,1

Θ8,2

Θ8,3

Θ8,4

Θ8,5

Θ8,6

Θ8,7

Θ8,8

Type (1)

O

P

2P

Θ8,2

Θ8,4

Θ8,6

Θ8,1

Θ8,3

Θ8,5

Θ0,0

Θ0,1

Θ0,2

Θ8,0

Type (2)

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

O
P
2P
Q
2Q
P ` Q
2P ` Q
P ` 2Q
2P ` 2Q

Θ0,0 Θ´1,0 Θ1,0 Θ8,0

Θ0,1 Θ0,2Θ´1,1Θ´1,2Θ1,1Θ1,2 Θ8,1Θ8,2

Type (3)

Figure 5.1: Dual graphs of negative rational curves in rational quasi-elliptic surfaces
of types (1)–(3)

Table 5.2

β “ 0 β “ ´1 β “ 1 β “ 8

Sections adjacent O, 2P ` Q, O,Q, O, P, O, P ` Q,
to Θβ,0 P ` 2Q 2Q 2P 2P ` 2Q
Sections adjacent P,Q, 2P, 2P ` Q, 2Q,P ` 2Q, P, 2Q
to Θβ,1 2P ` 2Q 2P ` 2Q 2P ` 2Q 2P ` Q
Sections adjacent 2P, 2Q, P, P ` Q, Q, P ` Q Q, 2P,
to Θβ,2 P ` Q P ` 2Q 2P ` Q P ` 2Q
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(1) The configurations of reducible fibers of rational quasi-elliptic surfaces and
their Mordell-Weil groups are listed in Table 5.3, where we use Kodaira’s no-
tation.

(2) Rational quasi-elliptic surfaces of each type (a)–(c) and (e) uniquely exist.

(3) For each rational quasi-elliptic surface of one of the types (a)–(e), sections are
disjoint from each other. Moreover, the dual graphs of negative rational curves
in rational quasi-elliptic surfaces of types (a)–(e) are as in Figure 5.2, where
black nodes (resp. white nodes) correspond to p´1q-curves (resp. p´2q-curves).

(4) For each rational quasi-elliptic surface of type (f), sections are disjoint from
each other. There is an element a P kzt0u such that the reducible fiber of
type I˚

0 lies over t “ 1 and reducible fibers of type III lie over the points
t “ 0,8, α1, α2 of the base curve P1

k, where α1 and α2 are two solutions of the
equation t2 ` at` 1 “ 0. Moreover, Figure 5.3 and Table 5.4 describe the dual
graph of the configuration of negative rational curves.

(5) For each rational quasi-elliptic surface of type (g), there are eight pairs of
two sections intersecting with each other transversally and not intersecting
with any other sections. There are no irreducible components of reducible
fibers intersecting with two sections in a pair. Figure 5.4 describes the above
situation.

Table 5.3

Type Reducible fibers MWpZq Type Reducible fibers MWpZq

(a) II˚
t1u (e) I˚

2 , III, III pZ{2Zq2

(b) I˚
4 Z{2Z (f) I˚

0 and four III pZ{2Zq3

(c) III˚, III Z{2Z (g) eight III pZ{2Zq4

(d) I˚
0 , I

˚
0 pZ{2Zq2

Remark 5.2.3. 1. Table 2 of [51] contains misprints. By substituting t “ 1 to the
equations of P2, P3, Q1, and R1 in the bottom of p. 246 of [ibid ], we see at
once that Q1 and P2 in the bottom table should be interchanged with each
other. We also have to replace R3 by R2.

2. In Lemma 5.2.6, we will clarify that Figure 5.5 is the intersection matrix of
negative rational curves in a rational quasi-elliptic surface of type (g).

3. In Corollary 5.5.24, we will give the parametrizing spaces of the isomorphism
classes of rational quasi-elliptic surfaces of type (d), (f), or (g).

By [77, Theorem 3.1], each cuspidal cubic curve in P2
k,rx:y:zs

with an inflexion point

is projectively equivalent to C “ tx3 `y2z “ 0u. Moreover, since the automorphism
rx : y : zs ÞÝÑ rax : y : a3zs of P2

k with a P k˚ fixes C, the pair of C and a point
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OΘ8,0

Θ8,8

Type (a)

O

P

Θ8,0Θ8,1

Θ8,2

Θ8,3

Θ8,4

Θ8,5

Θ8,6

Θ8,7Θ8,8

Type (b)

O

P

Θ8,0

Θ8,1

Θ0,0

Θ0,2

Type (c)

O

P1

P2

P3

Θ0,0

Θ0,1

Θ0,2

Θ0,3

Θ0,4

Θ8,0

Θ8,1

Θ8,2

Θ8,3

Θ8,4

Type (d)

O

Q

R

P

Θ0,0

Θ0,1

Θ8,0

Θ8,1

Θ1,0

Θ1,1

Θ1,2

Θ1,3

Θ1,4

Type (e)

Figure 5.2: Dual graphs of negative rational curves in rational quasi-elliptic surfaces
of types (a)–(e)

...
...

...
...

¨ ¨ ¨

¨ ¨ ¨

Θ0,0

Θ0,1

Θ8,0

Θ8,1

Θα1,0

Θα1,1

Θα2,0

Θα2,1

O

P1
Q2 R2

Q1

R1

P2 P3

Θ1,0

Θ1,1

Θ1,2

Θ1,3

Θ1,4

Figure 5.3: Dual graph of negative rational curves in a rational quasi-elliptic surface
of type (f)
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Table 5.4

β “ 0 β “ 8 β “ α1 β “ α2

Section intersecting O,R2 O,Q2 O,Q2 O,R2

with Θβ,0 R1, P3 P3, Q1 R1, P2 P2, Q1

Section intersecting P1, Q2 P1, R2 P1, R2 P1, Q2

with Θβ,1 P2, Q1 R1, P2 P3, Q1 R1, P3

γ “ 1
Section intersecting with Θγ,0 O,P1

Section intersecting with Θγ,1 Q2, R2

Section intersecting with Θγ,2 Q1, R1

Section intersecting with Θγ,3 P2, P3

...

...

...

...

...

...

...

...

...

...

...

...

...

...

A0,1

A0,2

“

O

A1,1

A1,2

A2,1

A2,2

A3,1

A3,2

A4,1

A4,2

A5,1

A5,2

A6,1

A6,2

A7,1

A7,2

Θ0,1

Θ0,2

Θ1,1

Θ1,2

Θ2,1

Θ2,2

Θ3,1

Θ3,2

Θ4,1

Θ4,2

Θ5,1

Θ5,2

Θ6,1

Θ6,2

Θ7,1

Θ7,2

Figure 5.4: Dual graph of negative rational curves in a rational quasi-elliptic surface
of type (g)
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p P C is projectively equivalent to the pair of C and r1 : 1 : ´1s unless p “ r0 : 0 : 1s

or r0 : 1 : 0s. From these facts, we can interpret [50, Example 3.8] and [51, Remark
4] as follows.

Lemma 5.2.4 ([50, Example 3.8], [51, Remark 4]). Let Z be a quasi-elliptic surface
of type one of (1)–(3) in characteristic three or one of (a)–(d) in characteristic two.
When Z is of type (1), (a), or (b), we choose a general fiber F in addition. Then,
contracting all curves corresponding to bold white node or black node in Figure 5.1
and Types (a)–(d) of Figure 5.2, we obtain a morphism h : Z ÝÑ P2

k. Moreover,
there are coordinates rx : y : zs of P2

k such that the images of F and negative rational
curves by h are written as follows.

If Z is of type (1), then

hpF q “ tx3 ` y2z “ 0u, hpΘ8,8q “ tz “ 0u, hpOq “ r0 : 1 : 0s.

If Z is of type (2), then

hpΘ8,0q “ tx “ 0u, hpΘ0,0q “ ty “ 0u, hpΘ0,1q “ ty “ zu, hpΘ0,2q “ tz “ 0u,

hpOq “ r0 : 0 : 1s, hpP q “ r0 : 1 : 1s, hp2P q “ r0 : 1 : 0s.

If Z is of type (3), then

hpΘ0,0q “ tx “ 0u, hpΘ0,1q “ tx “ zu, hpΘ0,2q “ tx “ ´zu,

hpΘ´1,0q “ ty “ 0u, hpΘ´1,1q “ ty “ zu, hpΘ´1,2q “ ty “ ´zu,

hpΘ1,0q “ tx ` y “ 0u, hpΘ1,1q “ tx ` y “ ´zu, hpΘ1,2q “ tx ` y “ zu,

hpΘ8,0q “ tx ´ y “ 0u, hpΘ8,1q “ tx ´ y “ ´zu, hpΘ8,2q “ tx ´ y “ zu,

hpOq “ r0 : 0 : 1s, hpP q “ r1 : ´1 : 1s, hp2P q “ r´1 : 1 : 1s,

hpQq “ r1 : 0 : 1s, hp2Qq “ r´1 : 0 : 1s, hpP ` Qq “ r´1 : ´1 : 1s,

hp2P ` Qq “ r0 : 1 : 1s, hpP ` 2Qq “ r0 : ´1 : 1s, hp2P ` 2Qq “ r1 : 1 : 1s.

If Z is of type (a), then

hpF q “ tx3 ` y2z “ 0u, hpΘ8,8q “ tz “ 0u, hpOq “ r0 : 1 : 0s.

If Z is of type (b), then

hpF q “ tx3 ` y2z “ 0u, hpΘ8,8q “ tz “ 0u, hpΘ8,3q “ tx ` z “ 0u,

hpP q “ r0 : 1 : 0s, hpOq “ r1 : 1 : 1s.

If Z is of type (c), then

hpΘ0,2q “ tz “ 0u, hpΘ8,0q “ tx “ 0u, hpΘ8,1q “ txz ` y2 “ 0u,

hpOq “ r0 : 1 : 0s, hpP q “ r1 : 0 : 0s.

If Z is of type (d), then

hpΘ8,4q “ tx “ 0u, hpΘ0,1q “ ty “ 0u, hpΘ0,2q “ ty ` z “ 0u, hpΘ0,3q “ tz “ 0u,

hpΘ0,4q “ r1 : 0 : 0s, hpΘ8,1q “ r0 : 0 : 1s, hpΘ8,2q “ r0 : 1 : 1s, hpΘ8,3q “ r0 : 1 : 0s.
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Rational quasi-elliptic surfaces are naturally endowed with the action of the
Mordell-Weil groups. The next lemma shows that these surfaces may have other
automorphisms.

Lemma 5.2.5. A rational quasi-elliptic surface Z of type (d) has an involution
which sends Θ0,i in Type (d) of Figure 5.2 to Θ8,i for 0 ď i ď 4.

Proof. Let φ : Z ÝÑ P1
k ˆ P1

k be the contraction of O, P1, P2, P3, Θ0,0, Θ0,1,Θ8,2,
and Θ8,3. Then we can choose coordinates prx : ys, rs : tsq of P1

k ˆ P1
k such that

φpΘ0,4q “ tx “ 0u and φpΘ8,4q “ ty “ 0u. Hence the involution prx : ys, rs : tsq ÞÝÑ

pry : xs, rs : tsq induces the desired involution on Z.

The next lemma clarifies the whole configuration of negative rational curves in
a quasi-elliptic surface of type (g).

Lemma 5.2.6. Figure 5.5 is the intersection matrix of negative rational curves on
a rational quasi-elliptic surface of type (g).

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
´1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

´1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1
´1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1

´1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0
´1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0

´1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0
´1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1

´1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
´1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

´1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
´1 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

´1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
´1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1

´1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
´1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

´2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
´2 0 0 0 0 0 0 0 2 0 0 0 0 0 0

´2 0 0 0 0 0 0 0 2 0 0 0 0 0
´2 0 0 0 0 0 0 0 2 0 0 0 0

´2 0 0 0 0 0 0 0 2 0 0 0
´2 0 0 0 0 0 0 0 2 0 0

´2 0 0 0 0 0 0 0 2 0
´2 0 0 0 0 0 0 0 2

´2 0 0 0 0 0 0 0
´2 0 0 0 0 0 0

´2 0 0 0 0 0
´2 0 0 0 0

´2 0 0 0
´2 0 0

´2 0
´2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Figure 5.5: The intersection matrix of A0,1, . . . , A7,1, A0,2, . . . , A7,2, Θ0,1, . . . ,Θ7,1,
Θ0,2, . . . ,Θ7,2 in this order in a rational quasi-elliptic surface of type (g).

Proof. Let Z be a rational quasi-elliptic surface of type (g). Then there are exactly
sixteen p´2q-curves tΘi,ju0ďiď7,1ďjď2 on Z, which satisfies that

pΘi,j,Θi1,j1q ą 0 ðñ pΘi,j,Θi1,j1q “ 2 ðñ i “ i1 and j ‰ j1.

On the other hand, as we described in Theorem 5.2.2 (5), there is exactly sixteen
sections tAk,lu0ďkď7,1ďlď2 on Z, which satisfies that

pAk,l, Ak1,l1q ą 0 ðñ pAk,l, Ak1,l1q “ 1 ðñ k “ k1 and l ‰ l1.
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By Theorem 5.2.2 (5), we may assume that

pΘi,j, A0,2q ‰ 0 ðñ pΘi,j, A0,2q “ 1 ðñ j “ 2, and

pΘ0,2, Ak,lq ‰ 0 ðñ pΘ0,2, Ak,lq “ 1 ðñ l “ 2.

By contracting A0,2,Θ0,2 and Ai,1 for 1 ď i ď 7, we get a birational morphism
h : Z ÝÑ P2

k. Let t “ hpA0,2 YΘ0,2q, ti “ hpAi,1q, and Di “ h˚Θi,1 for 1 ď i ď 7. To
show the assertion, we prepare some claims.

Claim. h˚Θi,j „ OP2
k
pjq for each 1 ď i ď 7 and 1 ď j ď 2.

Proof of Claim. We need only consider the case where i “ 1 by symmetry and
the case where j “ 1 since h˚pΘ1,1 ` Θ1,2q „ h˚p´KY q „ OP2

k
p3q. Suppose by

contradiction that h˚Θ1,1 „ OP2
k
p2q. Then exactly six of A1,1, A2,1, . . . , A7,1 intersect

with Θ1,1 since ph˚Θ1,1q2 ´ Θ2
1,1 “ 6. We may assume that pA1,1,Θ1,1q “ 0.

Assume that h˚Θi,1 „ OP2
k
p2q for some 2 ď i ď 7. Then ph˚Θ1,1, h˚Θi,1q “ 4.

However, at least five of A1,1, A2,1, . . ., A7,1 intersect with both Θ1,1 and Θi,1,
which implies that ph˚Θ1,1, h˚Θi,1q ě 5, a contradiction. Hence h˚Θi,1 „ OP2

k
p1q

and ph˚Θ1,1, h˚Θi,1q “ 2 for each 2 ď i ď 7. For such an i, exactly three of
A1,1, A2,1, . . . , A7,1 intersect with Θi,1 since ph˚Θi,1q

2 ´ Θ2
i,1 “ 3. Moreover, A1,1

intersects with Θi,1 since otherwise we would obtain ph˚Θ1,1, h˚Θi,1q ě 3.
On the other hand, assume that Ak,1 intersects with both Θi1,1 and Θi2,1 for

some 2 ď k ď 7 and 2 ď i1 ă i2 ď 7. Then ph˚Θi1,1, h˚Θi2,1q “ 1 since they are
lines. However, A1,1 also intersects with both Θi1,1 and Θi2,1, which implies that
ph˚Θi1,1, h˚Θi2,1q ě 2, a contradiction.

Hence we may assume that Θi,1 intersects with A1,1, A2i´2,1, A2i´1,1 for 2 ď i ď 4.
However, it implies that ph˚Θ5,1, h˚Θi,1q ě 2 for some 2 ď i ď 4, a contradiction.
Therefore h˚pΘ1,1q „ OP2

k
p1q. ■

Claim. There are coordinates of P2
k such that ttiu1ďiď7 is the set of F2-rational points

and tDiu1ďiď7 is the set of lines defined over F2.

Proof of Claim. By Claim 5.2, tDiu1ďiď7 is a set of lines passing through exactly
three of ttiu1ďiď7. Hence the set Σ :“ tpi, jq | Di passes through tju consists of 21
elements. On the other hand, distinct two lines cannot share two points. Combining
this fact and 7Σ “ 21, we conclude that ttiu1ďiď7 is a set of points contained in
exactly three of tDiu1ďiď7.

Next, let us show that ttiu1ďiď7 contains four points in general position. Chang-
ing the indices of tDiu1ďiď7 and ttiu1ďiď7, we may assume that D1 (resp.D2) passes
through t1 and t2 (resp. t1 and t3). Since three of tDiu1ďiď7 passes through t2, it
contains the line spanned by t2 and t3, say D4. Then there is a unique point, say
t7, in ttiu1ďiď7 disjoint from D1 Y D2 Y D4. Hence t1, t2, t3, and t7 are in general
position.

Then there are coordinates of P2
k such that t1 “ r1 : 0 : 0s, t2 “ r0 : 1 : 0s,

t3 “ r0 : 0 : 1s and t7 “ r1 : 1 : 1s. Then we may assume that t4 “ r1 : 1 : 0s, t5 “

r0 : 1 : 1s and t6 “ r1 : 0 : 1s. Since each of Di is a span of two F2-rational point, it
is also defined over F2. ■
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Fix coordinates of P2
k as above. By construction, t is not contained in Di for

1 ď i ď 7. Now define ζ : t1, . . . , 7u ÝÑ I “ tp1, 2, 4q, p1, 3, 6q, p1, 5, 7q, p2, 3, 5q,
p2, 6, 7q, p3, 4, 7q, p4, 5, 6qu which maps 1, 2, 3, 4, 5, 6, and 7 to p1, 2, 4q, p1, 3, 6q,
p1, 5, 7q, p2, 3, 5q, p2, 6, 7q, p3, 4, 7q, and p4, 5, 6q respectively. By Claims 5.2 and 5.2,
we may assume that Di contains tl for all l P ζpiq and 1 ď i ď 7. Then the following
hold for 1 ď i ď 7.

• Θi,1 is the strict transform by h of the line passing through tl for all l P ζpiq.

• Θi,2 is the strict transform by h of the conic passing through t and tl for all
l P t1, . . . , 7uzζpiq.

• Ai,1 is the exceptional divisor over ti.

• Ai,2 is the strict transform by h of the line passing through t and ti.

• Θ0,1 is the strict transform by h of the cubic passing through t, t1, . . . , t7 which
has a cusp at t.

• The tangent line of hpΘi,2q at t is independent of the choice of i, and A0,1 is
the strict transform of this line by h.

• Z is obtained by blowing up P2
k at tj once for 1 ď j ď 7 and at t twice along

hpA0,1q, and the h-exceptional divisor over t consists of A0,2 and Θ0,2.

From these facts, it is easy to check that Figure 5.5 is the intersection matrix of
A0,1, . . . , A7,1, A0,2, . . . , A7,2, Θ0,1, . . . ,Θ7,1, Θ0,2, . . . ,Θ7,2 in this order.

5.3 Proof of Theorem 1.3.3

This section is devoted to proving Theorem 1.3.3. First, we show that (NL) ñ

(NB).

Proposition 5.3.1. Let X be a Du Val del Pezzo surface whose general member
of the anti-canonical linear system is smooth. Then X is log liftable over every
Noetherian complete local ring with the residue field k.

Proof. Let π : Y ÝÑ X be the minimal resolution. By Proposition 2.4.8 (2), it
suffices to show that H2pX,TXq “ H2pX,OXq “ 0. Since ´KX is ample, it follows
that H2pX,OXq – H0pX,OXpKXqq “ 0. Now we show that H2pX,TXq “ 0. By
the Serre duality, it follows that

H2
pX,TXq –HomOX

pTX ,OXpKXqq

–HomOX
pOXp´KXq,Ω

r1s

X q,

where Ω
r1s

X denotes the double dual of ΩX . Suppose by contradiction that there exists

an injective OX-module homomorphism s : OXp´KXq ãÑ Ω
r1s

X . Let C P | ´ KX | be
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a general member and s|C : OCp´KXq Ñ Ω
r1s

X |C be the restriction of s on C. By
Lemma 5.1.3 (2), we may assume that C is not contained in the zero locus of s. In
particular, s|C is injective. By assumption, we also may assume that C is a smooth

Cartier divisor. In particular, X is smooth along C and hence Ω
r1s

X |C “ ΩX |C .
Let t : OCp´KXq ÝÑ ΩC be the composition of s|C : OCp´KXq ãÑ ΩX |C and the
canonical map ΩX |C ÝÑ ΩC . By the conormal exact sequence, we obtain the
following diagram.

OCp´KXq

xx

s|C

��

t

%%

0 // OCp´Cq // ΩX |C // ΩC
// 0.

Then t is the zero map since OCp´KXq is ample and ΩC “ OC . Hence the above
diagram induces an injective OC-module homomorphism OCp´KXq ãÑ OCp´Cq,
but this is a contradiction because OCp´Cq “ OCpKXq is anti-ample. Therefore we
obtain the assertion.

Next, we prove that (ND) ñ (NL).

Proposition 5.3.2. Let X be a Du Val del Pezzo surface. Let R be a Noetherian
integral domain of characteristic zero with a surjective homomorphism R ÝÑ k. If
X is log liftable over R via the associated morphism α : Spec k ÝÑ SpecR, then
there exists a Du Val del Pezzo surface over C which has the same Dynkin type, the
same Picard rank, and the same degree as X.

Proof. Let m be the kernel of the homomorphism R ÝÑ k. Replacing R with
the completion of Rm, we may assume that R is a Noetherian complete local ring
with residue field k. Thus, by Lemma 2.4.4, the pair pY,Eπq lifts to R, where
π : Y ÝÑ X is the minimal resolution. We denote by Eπ :“

řr
i“1Ei the irreducible

decomposition. Let pY , E :“
řr

i“1 Eiq be an R-lifting of pY,Eπq. We take a subfield
K of the field of fractions of R such that K is of finite transcendence degree over Q,
and the generic fiber of Y and that of each Ei are defined over K. Fix an inclusion
K Ă C and take K Ă C as the algebraic closure of K. For a field extension K Ă F ,
we use the notation YF :“ Y bR F and Ei,F :“ Ei bR F for each i. Since the
geometrical connectedness are open property by [39, Théorème 12.2.4 (viii)], YC and
Ei,C are smooth varieties. Since EC :“

řr
i“1Ei,C has the same intersection matrix

as Eπ, we have a contraction πC : YC ÝÑ XC of EC and XC has the same Dynkin
type as X. By the crepantness of π and πC, we obtain K2

X “ K2
Y “ K2

YC
“ K2

XC
.

Next, we prove that XC is a Du Val del Pezzo surface. For the sake of contra-
diction, we assume that ´KXC is not ample. Since K2

XK
“ K2

XC
ą 0, there exists

an integral curve C0 Ă YC defined over K such that C0 is not contained in EC and
p´KYC ¨ C0q ď 0. We take a finite Galois extension field L of K such that C0 is
defined over L and write C :“

ř

σPGalpL{Kq
σpC0q, which is defined over K. By the

choice of C0, there are no components contained in both C and EK . We denote by
C the closure of C in Y and define an effective divisor Ck :“ C bR k.
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Now, assume that SuppCk Ă Eπ. Then we can write Ck “
řr

i“1 aiEi for
some ai ě 0. Since C and EK have no common components, we have C2

k “

pC ¨
řr

i“1 aiEi,Kq ě 0. By the negative definiteness of Eπ, we obtain ai “ 0 for
1 ď i ď r, a contradiction. Thus there exists an integral curve C 1

k Ă Ck such that
C 1

k is not contained in Eπ. Since ´KY is nef, we have 0 ď p´KY ¨C 1
kq ď p´KY ¨Ckq “

p´KYK
¨Cq “ |GalpL{Kq|p´KYC ¨C0q ď 0. Hence p´KY ¨C 1

kq “ p´KX ¨π˚pC 1
kqq “ 0,

a contradiction with the ampleness of ´KX . Therefore, XC is a Du Val del Pezzo
surface.

Finally, we show that ρpXq “ ρpXCq. Since Y and YC are smooth rational
surfaces, we have ρpYCq “ 10 ´ K2

YC
“ 10 ´ K2

Y “ ρpY q. Then we obtain ρpXq “

ρpXCq because πC contracts the same number of p´2q-curves as π.

Finally, we prove that (NK) ñ (NL).

Lemma 5.3.3. Let f : Z ÝÑ X be a birational morphism of normal projective klt
surfaces and A an ample Z-divisor on X. Suppose that pZ, rf˚As ´ f˚Aq is klt.
Then H ipX,OXp´Aqq “ H ipZ,OZp´rf˚Asqq for i ě 0.

Proof. By [99, Theorem 2.12], it follows that Rif˚OZpKZ ` rf˚Asqq “ 0 for i ě 1.
Then the Leray spectral sequence

Ep,q
2 “ Hp

pX,Rqf˚OZpKZ ` rf˚Asqq ñ Ep`q
“ Hp`q

pZ,OZpKZ ` rf˚Asqq

gives H ipX, f˚OZpKZ `rf˚Asqq – H ipZ,OZpKZ `rf˚Asqq. Since X is klt, we obtain

KZ ` rf˚As “ rKZ ´ f˚KX ` f˚
pKX ` Aqs

“ tf˚
pKX ` Aqu ` F

for some effective f -exceptional Z-divisor F . Then H ipX, f˚OZpKZ ` rf˚Asqq “

H ipX,OXpKX ` Aqq by the projection formula. Hence the assertion follows from
the Serre duality for Cohen-Macaulay sheaves [66, Theorem 5.71].

Proposition 5.3.4. Let X be a normal projective surface and A an ample Q-Cartier
Z-divisor. Suppose that there exists a log resolution f : Z ÝÑ X such that pZ,Ef q

lifts to W2pkq. Then H1pX,OXp´Aqq “ 0.

Proof. By Lemma 5.3.3, it follows that H1pX,OXp´Aqq “ H1pZ,OZp´rf˚Asqq.
Take an f -exceptional effective Q-divisor F such that rf˚A ´ F s “ rf˚As and
f˚A´F is ample. Since Suppprf˚A´F s ´ pf˚A´F qq is contained in Ef , Theorem
2.4.6 shows that H1pZ,OZp´rf˚A ´ F sqq “ 0. Hence we get the assertion.

Now we can prove Theorem 1.3.3.

Proof of Theorem 1.3.3. The assertions (1), (2), and (3) follow from Propositions
5.3.1, 5.3.2, and 5.3.4 respectively.
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5.4 Dynkin types

In this section, we determine the Dynkin types of Du Val del Pezzo surfaces
satisfying (NB). By Lemma 5.1.3 (3),(4), such a del Pezzo surface is of degree at
most two, and p “ 2 or 3. First, we treat the case where the degree is one.

Proposition 5.4.1. Let X be a Du Val del Pezzo surface with K2
X “ 1 and π : Y ÝÑ

X the minimal resolution. Take g : Z ÝÑ Y as the blow-up at the base point of
| ´ KY | and f : Z ÝÑ P1

k the genus one fibration defined by | ´ KZ |.

Z
g
//

f

''

Y π // X

φ|´KX |

��

P1
k

Then the following hold.

(1) X satisfies (NB) if and only if f is a quasi-elliptic fibration.

(2) For another Du Val del Pezzo surface X 1 of degree one, take π1 : Y 1 ÝÑ X 1

and g1 : Z 1 ÝÑ Y 1 as above. Then X – X 1 if and only if Z – Z 1.

(3) Suppose that p “ 3 and Z is a rational quasi-elliptic surface. Then Z is of
type (1) (resp. (2), (3)) if and only if DynpXq “ E8 (resp. A2 ` E6, 4A2).

(4) Suppose that p “ 2 and Z is a rational quasi-elliptic surface. Then Z is of
type (a) (resp. (b), (c), (d), (e), (f), (g)) if and only if DynpXq “ E8 (resp.
D8, A1 ` E7, 2D4, 2A1 ` D6, 4A1 ` D4, 8A1)

Proof. (1): A general member of | ´ KY | is isomorphic to its image by π since it is
disjoint from the exceptional divisor Eπ of π. On the other hand, the base locus of
| ´ KY | consists of one point, say y. Since any two members of | ´ KY | intersect
transversely with each other at y, each f -fiber is isomorphic to its image on Y .
Hence a general f -fiber is isomorphic to its image on X, and the assertion holds.
(2): Take f 1 : Z 1 ÝÑ P1

k as the morphism given by | ´ KZ1 |. Suppose that there
is an isomorphism X – X 1. Then it ascends to an isomorphism Z – Z 1 since the
construction of π, π1, g, and g1 are canonical. On the other hand, suppose that
there is an isomorphism σ : Z – Z 1. Then this isomorphism is compatible with the
genus one fibration structures since ´KZ „ σ˚p´K 1

Zq. In particular, σ maps each f -
section to an f 1-section. Since Eg (resp. Eg1) is an f -section (resp. an f 1-section) and
the Mordell-Weil group MWpZq acts on the set of f -sections transitively, we may
assume that σ maps Eg to Eg1 . Hence it descends to an isomorphism σY : Y – Y 1.
Since both π (resp. π1) is the contraction of all the p´2q-curves on Y (resp. Y 1), σY
also descends to the desired isomorphism σX : X – X 1.
(3) and (4): Since MWpZq acts on the set of f -sections transitively, we may assume
that Eg is the section O in Figures 5.1–5.4. Hence the assertions follows from Figures
5.1–5.5 and Tables 5.2 and 5.4.
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We will use the following proposition in Section 5.6.

Proposition 5.4.2. Let X be a Du Val del Pezzo surface with DynpXq “ 4A2.
Then X satisfies (NB) if and only if p “ 3.

Proof. The only if part follows from Proposition 5.4.1. To show the other direction,
we suppose that p “ 3. Let us take Y and Z as in Proposition 5.4.1. Suppose
by contradiction that a general member of the anti-canonical linear system of X is
smooth. Then Z is an extremal rational elliptic surface with four singular fibers. By
[69, Theorem 2.1], its singular fibers are pI8, I2, I1, I1q, pI5, I5, I1, I1q, or pI4, I4, I2, I2q.
However, this implies that DynpXq “ A1`A7, 2A4, or 2A1`2A3, a contradiction.

Next, we treat the case where the degree is two. The following proposition
claims that the double covering associated to the anti-canonical linear system must
be purely inseparable.

Proposition 5.4.3. Let X be a Du Val del Pezzo surface with K2
X “ 2. Suppose

that the double covering φ|´KX | : X ÝÑ P2
k associated to the anti-canonical linear

system is separable. Then a general member of the anti-canonical linear system is
smooth.

Proof. Take the minimal resolution π : Y ÝÑ X. Let t P P2
k be a general point and

V Ă | ´ KY | the pullback of the pencil of lines in P2
k passing through t. Then the

base locus of V consists of two points, say y1 and y2, such that there are no p´1q-
curves passing through y1 or y2 because t is general and there exist only finitely
many p´1q-curves on Y . Let g : Z ÝÑ Y be the blow-up at y1 and y2, and Ei the
g-exceptional divisor over yi for i P t1, 2u. Then g gives a resolution f : Z ÝÑ P1

k

of the indeterminacy of the pencil φV : Y 99K P1
k. Since any two members of V

intersect transversely at y1 and y2, a general f -fiber is isomorphic to its image on
Y .

Z
g
//

f

&&

Y
π // X

φ|´KX |
//

φV

��

P2
k

P1
k

Now let us show that a general member of | ´ KX | is smooth. Suppose by
contradiction that members of | ´ KX | are all singular. Then Z is a quasi-elliptic
surface, and E1 and E2 are f -sections by the same arguments as in Proposition 5.4.1.
Since there are no p´1q-curves on Y which pass through y1 or y2, each p´2q-curves
in Z either intersects with both E1 and E2 or is disjoint from both E1 and E2.
However, there is no such a choice of two sections by Figures 5.1–5.5 and Tables 5.2
and 5.4, a contradiction.

Proposition 5.4.4. Let X be a Du Val del Pezzo surface with K2
X “ 2 satisfying

(NB). Then p “ 2 and DynpXq “ E7, A1 ` D6, 3A1 ` D4, or 7A1.



68

Proof. By Proposition 5.4.3, the double covering φ|´KX | : X ÝÑ P2
k associated to

the anti-canonical linear system is purely inseparable. In particular, we have p “ 2.
Take π, t and V as in Proposition 5.4.3. By the generality of t, the base locus of
V consists of one point, say y, and no p´1q-curves pass through y. For general
two members C1 and C2 of V , they intersect with each other at y with multiplicity
two since φ|´KX | is a homeomorphism. Moreover, one of them is smooth at y since
otherwise 2 “ K2

Y “ pC1 ¨ C2q ě 4. Thus general members of V are smooth at y,
and have the same tangent direction at y. Hence there is a point y1 infinitely near
y such that the blow-up g : Z ÝÑ Y at y and y1 gives a resolution f : Z ÝÑ P1

k of
indeterminacy of the pencil φV : Y 99K P1

k. Since a general member of V is smooth
at y, a general f -fiber is isomorphic to its image on X. In particular, Z is a quasi-
elliptic surface. By construction, Eg consists of a p´1q-curve E1 and a p´2q-curve
E2. In particular, E1 is an f -section and E2 is contained in a reducible f -fiber.

Suppose that the f -fiber containing E2 has simple normal crossing support. Then
there is another p´2q-curve C intersecting with E2. Since C and E2 are contained in
the same f -fiber, E1 is disjoint from C. This implies, however, g˚C is a p´1q-curve
passing through y, a contradiction with the choice of y. Hence E2 is contained in a
reducible f -fiber whose support is not simple normal crossing. Theorem 5.2.2 now
shows that E2 is contained in a reducible f -fiber of type III, where we use Kodaira’s
notation, and Y is one of the types (c), (e), (f), and (g) in Table 5.3. By Figures
5.2–5.5 and Table 5.4, we conclude that DynpXq “ E7, A1 ` D6, 3A1 ` D4, or
7A1.

Finally, let us show that there are several constructions of Du Val del Pezzo
surfaces of degree two satisfying (NB).

Lemma 5.4.5. Let X be a del Pezzo surface satisfying (NB) such that DynpXq “

E7, A1 ` D6, 3A1 ` D4, or 7A1. Let Y be the minimal resolution of X. Then the
following hold.

(0) K2
X “ 2 and p “ 2.

(1) For each point t P Y not contained in any negative rational curves, there is a
rational quasi-elliptic surface Z, an irreducible component T of reducible fiber
of type III, and a section S of Z intersecting with T such that Y is given from
Z by contracting S Y T to t.

(2) If DynpXq “ E7 (resp. A1 ` D6, 3A1 ` D4, 7A1), then Z as in the assertion
(1) is of type (c) (resp. (e), (f), (g)).

(3) If DynpXq “ E7, A1 `D6, or 3A1 `D4, then the union of the negative rational
curves on Y is a simple normal crossing divisor. Moreover, Figure 5.6 is the
dual graph of the configuration of the negative rational curve, where black nodes
(resp. white nodes) corresponds to a p´1q-curve (resp. a p´2q-curve).

(4) If DynpXq “ 7A1, then there are exactly seven p´1q-curves and seven p´2q-
curves whose intersection matrix is as in Figure 5.7.
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(5) If DynpXq “ E7, then Y is also obtained from the rational quasi-elliptic surface
of type (a) by blowing down O and Θ8,0 in Type (a) of Figure 5.2.

(6) If DynpXq “ A1 ` D6, then Y is also obtained from the rational quasi-ellptic
surface of type (b) (resp. (c)) by blowing down O and Θ8,0 (resp. O and Θ0,0)
in Type (b) (resp. (c)) of Figure 5.2.

(7) If DynpXq “ 3A1 ` D4, then Y is also obtained from a rational quasi-ellptic
surface of type (d) (resp. (e)) by blowing down O and Θ0,0 (resp. O and Θ1,2)
in Type (d) (resp. (e)) of Figure 5.2.

(8) If DynpXq “ 7A1, then Y is also obtained from a rational quasi-ellptic surface
of type (f) by blowing down O and Θ1,0 in Figure 5.3.

Type E7 Type A1 ` D6 Type 3A1 ` D4

Figure 5.6: Dual graphs of negative rational curves in a Du Val del Pezzo surface of
type E7, A1 ` D6, or 3A1 ` D4 satisfying (NB)

¨

˚

˚

˚

˚

˚

˚

˝

´1 0 0 0 0 0 0 1 1 1 0 0 0 0
´1 0 0 0 0 0 1 0 0 1 1 0 0

´1 0 0 0 0 0 1 0 1 0 1 0
´1 0 0 0 1 0 0 0 0 1 1

´1 0 0 0 0 1 1 0 0 1
´1 0 0 1 0 0 1 0 1

´1 0 0 1 0 1 1 0
´2 0 0 0 0 0 0

´2 0 0 0 0 0
´2 0 0 0 0

´2 0 0 0
´2 0 0

´2 0
´2

˛

‹

‹

‹

‹

‹

‹

‚

Figure 5.7: The intersection matrix of negative rational curves in a Du Val del Pezzo
surface of type 7A1
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Proof. The assertion (0) follows from Lemma Propositions 5.4.1 and 5.4.4. The
essentially same proof as in that of Proposition 5.4.4 shows the assertions (1) and
(2). We see at once that the contraction of O and Θ8,0 in Types (c) and (e) of
Figure 5.2 and Figure 5.3 gives the dual graph as in Figure 5.6, and the assertion
(3) holds.

Suppose that DynpXq “ 7A1 and we follow the notation of the proof of Lemma
5.2.6. By contracting A0,2 and Θ0,2 in Figure 5.4, Ai,1, Ai,2, Θi,1, Θi,2 A0,1, and
Θ0,1 become a p´1q-curve, a p0q-curve, a p´2q-curve, a p0q-curve, a p1q-curve, and a
cuspidal curve of self intersection number two respectively for 1 ď i ď 7. Hence the
assertion (4) holds.

Finally, let us show the assertions (5)–(8). Let E be a p´1q-curve in Y and t P E
a point not contained in any p´2q-curve. Then the blow-up Yt of Y at t is a weak
del Pezzo surface whose all members of anti-canonical linear system are singular.
Hence Yt is the blow-down of a section in a rational quasi-elliptic surface Zt.

Now suppose that DynpXq “ E7 and let E correspond the black node in Type E7

of Figure 5.6. Then Yt contains eight p´2q-curves whose configuration is the Dynkin
diagram E8. By Proposition 5.4.1 (4), Zt is of type (a), and hence the assertion (5)
holds.

Similarly, if DynpXq “ A1 ` D6 (resp. 3A1 ` D4), then by Type A1 ` D6 (resp.
3A1 ` D4) of Figure 5.6, there are two possibility of the number of p´2q-curves
intersecting with E, and Yt contains eight p´2q-curves whose configuration is the
Dynkin diagram D8 or A1 ` E7 (resp. 2D4 or 2A1 ` D6). On the other hand, if
DynpXq “ 7A1, then Figure 5.7 shows that E is unique up to symmetry, and Yt
contains eight p´2q-curves whose configuration is the Dynkin diagram D4 ` 4A1.
Therefore Proposition 5.4.1 (4) shows assertions (6)–(8).

5.5 Isomorphism classes

In this section, we determine the isomorphism classes and the automorphism
groups of Du Val del Pezzo surfaces satisfying (NB).

5.5.1 Characteristic three

In this subsection, we treat the case where p “ 3.

Proposition 5.5.1. Let X be a Du Val del Pezzo surface satisfying (NB) in p “ 3
and π : Y ÝÑ X be the minimal resolution. Then the following hold.

(1) K2
X “ 1.

(2) DynpXq “ E8, A2 ` E6, or 4A2. Moreover, X is uniquely determined up to
isomorphism by DynpXq.

(3) If DynpXq “ E8, then Y is constructed from P2
k,rx:y:zs

by blowing up at r0 : 1 : 0s

eight times along tx3 ` y2z “ 0u. Moreover, each negative rational curve is
either exceptional over P2

k or the strict transform of tz “ 0u.
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(4) If DynpXq “ A2 ` E6, then Y is constructed from P2
k,rx:y:zs

by blowing up at

r0 : 0 : 1s twice along ty “ 0u, at r0 : 1 : 1s three times along ty “ zu, and at
r0 : 1 : 0s three times along tz “ 0u. Moreover, each negative rational curve is
either exceptional over P2

k or the strict transform of ty “ 0u, ty “ zu, tz “ 0u,
or tx “ 0u.

(5) If DynpXq “ 4A2, then Y is constructed from P2
k,rx:y:zs

by blowing up all the

F3-rational points on tz ‰ 0u except r0 : 0 : 1s. Moreover, each negative
rational curve on Y is either exceptional over P2

k or the strict transform of
lines passing through two of the eight points as above.

(6) Y and each negative rational curve on Y are defined over F3.

Proof. (1): The assertion follows from Lemma 5.1.3 (3) and Proposition 5.4.4.
(2): The assertion follows from Proposition 5.4.1 and Theorem 5.2.1.
(3)–(5): Let g : Z ÝÑ Y be the blow-up at the base point of | ´ KY |. By Propo-
sition 5.4.1 (3), Z is a rational quasi-elliptic surface of type (1), (2), and (3) when
DynpXq “ E8, A2 `E6, and 4A2 respectively. Since the MWpZq-action on the set of
sections of Z is transitive, we may assume that g is the contraction of the section O
in Figure 5.1. Take h : Z ÝÑ P2

k as in Lemma 5.2.4. Then the assertion follows from
the description of the induced morphism h1 : Y ÝÑ P2

k and the image of negative
rational curves on Z via h.
(6): The assertions directly follow from the assertions (3)–(5).

Corollary 5.5.2. Let X be a Du Val del Pezzo surface satisfying (NB) in p “ 3.
When DynpXq “ E8 (resp. A2 ` E6, 4A2), AutX is isomorphic to

!´

a 0 c
0 1 0
0 0 a3

¯

P PGLp3, kq

ˇ

ˇ

ˇ
a P k˚, c P k

)

(resp. k˚
ˆ Z{2Z,GLp2,F3q).

Proof. We follow the notation of the proof of Proposition 5.5.1.
Since every morphism from Y to X factors through the minimal resolution π,

we have a canonical homomorphism φ : AutX ÝÑ AutY such that σ ˝π “ π ˝φpσq

for all σ P AutX. On the other hand, π is the contraction of all the p´2q-curves
on Y . Since each automorphism of Y fixes the union of p´2q-curves, we also have
a canonical homomorphism ψ : AutY ÝÑ AutX, which is the inverse of φ. Hence
AutX – AutY .

First, suppose that DynpXq “ E8. By Type (1) of Figure 5.1, each negative
rational curve on Y is gpΘ8,iq for some 0 ď i ď 8. The AutY -action on Y fixes
the unique p´1q-curve gpΘ8,0q. It also fixes gpΘ8,1q, which is the unique p´2q-
curve intersecting with gpΘ8,0q. By a similar argument, it fixes each negative ra-
tional curve. Hence the AutY -action descends to P2

k via h1. In particular, AutY
is contained in the subgroup G of PGLp3, kq – AutP2

k fixing h1
˚| ´ KY |. On the

other hand, since h˚| ´ KZ | “ h1
˚| ´ KY | and | ´ KZ | are base point free, Z is

the minimal resolution of indeterminacy of h1
˚| ´ KY |. In particular, the G-action

on P2
k ascends to Z. Since Z has a unique section, it descends to Y . Therefore
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AutY – G. Since hpF q “ tx3 ` y2z “ 0u and hpΘ8,8q “ tz “ 0u, we have
h1

˚| ´ KY | “ tsz3 ` tpx3 ` y2zq “ 0 | rs : ts P P1
ku. Let

A “

´

a b c
d e f
g h i

¯

be an element of G. Since AutY fixes h1pgpΘ8,8qq “ hpΘ8,8q “ tz “ 0u, we have
g “ h “ 0 and i ‰ 0. On the other hand, we have

A ¨ px3 ` y2zq “ pa3x3 ` b3y3 ` c3z3q ` pdx ` ey ` fzq
2
pizq P h1

˚| ´ KY |.

Since the coefficients of y3, x2z, and yz2 must be zero, we have b “ 0, d “ 0, e ‰ 0,
and f “ 0. Since the coefficient of x3 must coincide with that of y2z, we have
a3 “ e2i. Fixing e “ 1, we obtain the assertion.

Next, suppose that DynpXq “ A2 `E6. By Type (2) of Figure 5.1, each negative
rational curve on Y is gpP q, gp2P q, gpΘ0,iq for some 0 ď i ď 2, or gpΘ8,iq for
some 0 ď i ď 6. The AutY -action on Y fixes gpΘ0,0q, which is the unique p´1q-
curve intersecting with one p´1q-curve and two p´2q-curves. Then it also fixes
gpΘ8,2q, gpΘ8,1q, and gpΘ8,0q. On the other hand, there are exactly two p´1q-
curves on Y intersecting with no other p´1q-curves, which are gpP q and gp2P q.
Then the AutY -action on Y fixes gpP qYgp2P q. Similarly, it fixes gpΘ8,4qYgpΘ8,6q,
gpΘ8,3qYgpΘ8,5q, and gpΘ0,1qYgpΘ0,2q. Hence the AutY -action descends to P2

k via
h1. In particular, the AutY -action on P2

k fixes hpOq “ r0 : 0 : 1s, hpΘ8,0q “ tx “ 0u,
and hpΘ0,1q Y hpΘ0,2q “ tzpy ` zq “ 0u. In particular, it fixes hpΘ0,1q X hpΘ0,2q “

r1 : 0 : 0s and hpΘ8,0q X phpΘ0,1q Y hpΘ0,2qq “ tr0 : 1 : 0s, r0 : 1 : 1su. On the other
hand, by construction, every automorphism on P2

k ascends to Y via h1 if they fix
r0 : 0 : 1s, r1 : 0 : 0s, and tr0 : 1 : 0s, r0 : 1 : 1su. Hence AutY is isomorphic to

!´

a 0 0
0 1 0
0 h i

¯

P PGLp3, kq

ˇ

ˇ

ˇ
a P k˚, ph, iq “ p0, 1q or p1,´1q

)

– k˚
ˆ Z{2Z.

Finally, suppose that DynpXq “ 4A2. By Type (3) of Figure 5.1, each p´1q-
curve on Y is either gpΘi,0q for some i “ 0,´1, 1,8, or the image of a section.
The former intersects with another p´1q-curve at gpOq and the latter intersects
with no other p´1q-curves. Hence the AutY -action on Y fixes gpOq and Eh1 . In
particular, it descends to P2

k via h1 and fixes hpOq “ r0 : 0 : 1s and hpEhq, which are
F3-rational points not contained in tz “ 0u. On the other hand, by construction,
every automorphism on P2

k ascends to Y via h1 if they fix r0 : 0 : 1s and hpEhq.
Hence AutY is isomorphic to the subgroup of PGLp3,F3q which fixes tz “ 0u and
r0 : 0 : 1s, which is GLp2,F3q.

Combining these arguments, we complete the proof.

5.5.2 Characteristic two

In this subsection, we always assume that p “ 2.
First let us show that, when the degrees are two, Dynkin types determine the

isomorphism classes of Du Val del Pezzo surfaces satisfying (NB).
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Proposition 5.5.3. The minimal resolution of each del Pezzo surface of type E7

satisfying (NB) is constructed from P2
k,rx:y:zs

by blowing up at r0 : 1 : 0s seven times

along tx3 ` y2z “ 0u. In particular, there is a unique del Pezzo surface of type E7

satisfying (NB).

Proof. We follow the notation of Type (a) of Figure 5.2. Let Z be the rational quasi-
elliptic surface of type (a) and F a general fiber. Let g : Z ÝÑ Y be the contraction
of O and Θ8,0 and π : Y ÝÑ X the contraction of all p´2q-curves. Then the desired
del Pezzo surface must be X by Lemma 5.4.5 (5). Take h : Z ÝÑ P2

k and coordinates
of P2

k as in Lemma 5.2.4. Let h1 : Y ÝÑ P2
k be the morphism induced by h. Then h1

is the blow-up at hpOq “ r0 : 1 : 0s seven times along hpF q “ tx3 ` y2z “ 0u. Hence
it suffices to show that X satisfies (NB).

Since π and h1 is an isomorphism around a general member of | ´ KX |, we are
reduced to proving that h1

˚| ´ KY | has only a singular member. By construction,
h1

˚|´KY | consists of cubic curves intersecting with hpF q “ tx3`y2z “ 0u at hpOq “

r0 : 1 : 0s with multiplicity seven. Then it is generated by tx3 ` y2z “ 0u, tz3 “ 0u,
and txz2 “ 0u. The Jacobian criterion now shows that h1

˚|´KY 1 | has only a singular
member, and the assertion holds.

Corollary 5.5.4. Let X be the del Pezzo surface of type E7 satisfying (NB) and
π : Y ÝÑ X the minimal resolution. Then the following hold.

(1) Y and each negative rational curve on Y are defined over F2.

(2) AutX is isomorphic to

!´

a 0 d2a
d 1 f
0 0 a3

¯

P PGLp3, kq

ˇ

ˇ

ˇ
a P k˚, d P k, f P k

)

.

Proof. We follow the notation of the proof of Proposition 5.5.3.
(1): By the construction of h1, Y and each irreducible component of the exceptional
divisor Eh1 of h1 are defined over F2. Since Z is of type (a), Lemma 5.2.4 shows that
a negative rational curve on Y is either a component of Eh1 or the strict transform
of hpΘ8,8q “ tz “ 0u. Hence the assertion holds.
(2): As in the proof of Corollary 5.5.2, we have AutX – AutY . By Type E7

of Figure 5.6, the AutY -action on Y fixes the p´1q-curve and each p´2q-curve.
In particular, the AutY -action naturally descends to P2

k via h1. Hence AutY is
contained the subgroup G of PGLp3, kq which fixes the net h1

˚| ´ KY | “ tsz3 `

tpxz2q ` upx3 ` y2zq “ 0 | rs : t : us P P2
ku.

On the other hand, | ´ KY | is base point free by Lemma 5.1.3 (7). Since p´1q-
curves on Y are of p´KY q-degree one, every blow-down of Y collapses the base point
freeness of |´KY |. Hence Y is the minimal resolution of indeterminacy of h1

˚|´KY |.
In particular, we obtain G Ă AutY .

Therefore AutY – G. Let

A “

´

a b c
d e f
g h i

¯
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be an element of G. Then

A ¨ z3

“i3z3 ` gi2xz2 ` pg3x3 ` h2iy2zq ` h3y3 ` g2hx2y ` g2ix2z ` h2gxy2 ` hi2yz2.

Since the coefficient of y3 must be zero, we have h “ 0. Now the coefficient of x3

also must be zero. Hence g “ 0 and i ‰ 0. Similarly,

A ¨ xz2 “ ci2z3 ` ai2xz2 ` bi2yz2

implies that b “ 0 and

A ¨ px3 ` y2zq “ pc3 ` f 2iqz3 ` ac2xz2 ` pa3x3 ` e2iy2zq ` pa2c ` d2iqx2z

implies that a3 “ e2i and a2c “ d2i. Fixing e “ 1, we obtain the assertion.

Proposition 5.5.5. The minimal resolution of each del Pezzo surface of type A1 `

D6 satisfying (NB) is constructed from P2
k,rx:y:zs

by blowing up at r0 : 1 : 0s five times

along tx3 ` y2z “ 0u and at r1 : 1 : 1s twice along tx3 ` y2z “ 0u. In particular,
there is a unique del Pezzo surface of type A1 ` D6 satisfying (NB).

Proof. We follow the notation of Type (b) of Figure 5.2. Let Z be the rational
quasi-elliptic surface of type (b) and F a general fiber. Let g : Z ÝÑ Y be the
contraction of O and Θ8,0 and π : Y ÝÑ X the contraction of all p´2q-curves. Then
the desired del Pezzo surface must be X by Lemma 5.4.5 (6). Take h : Z ÝÑ P2

k and
coordinates of P2

k as in Lemma 5.2.4. Let h1 : Y ÝÑ P2
k be the morphism induced by

h. Then h1 is the composition of the blow-ups at hpP q “ r0 : 1 : 0s five times along
hpF q “ tx3 ` y2z “ 0u and at hpOq “ r1 : 1 : 1s twice along tx3 ` y2z “ 0u. Hence
it suffices to show that X satisfies (NB).

Since π and h1 is an isomorphism around a general member of | ´KX |, it suffices
to show that h1

˚| ´ KY | has only a singular member. By construction, h1
˚| ´ KY |

consists of cubic curves intersecting with hpF q “ tx3 `y2z “ 0u at hpP q “ r0 : 1 : 0s

five times and at hpOq “ r1 : 1 : 1s twice. Then it is generated by tx3 ` y2z “

0u, tpx ` zqz2 “ 0u, and tpx ` zq2z “ 0u. The Jacobian criterion now shows that
h1

˚| ´ KY | has only a singular member, and the assertion holds.

Corollary 5.5.6. Let X be the del Pezzo surface of type A1 ` D6 satisfying (NB)
and Y the minimal resolution of X. Then the following hold.

(1) Y and each negative rational curve on Y are defined over F2.

(2) AutX is isomorphic to
"ˆ

a 0 a3`a
d 1 a3`d`1
0 0 a3

˙

P PGLp3, kq

ˇ

ˇ

ˇ

ˇ

a P k˚, d P k

*

.

(3) There is a birational morphism h1
1 : Y ÝÑ P1

k,rx:ys
ˆ P1

k,rs:ts such that each
negative rational curve on Y is either h1

1-exceptional or the strict transform of
tx “ 0u, ty “ 0u, or ts “ 0u. Moreover, h1

1 is decomposed into six blow-ups at
F2-rational points.
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Proof. We follow the notation of the proof of Proposition 5.5.5.
(1): By the construction of h1, Y and each irreducible component of Eh1 are defined
over F2. Since Z is of type (b), Lemma 5.2.4 shows that a negative rational curve
on Y is either a component of Eh1 or the strict transform of hpΘ8,8q “ tz “ 0u or
hpΘ8,3q “ tx ` z “ 0u. Hence the assertion holds.
(2): Analysis similar to that in the proof of Corollary 5.5.4 shows that AutX –

AutY is the subgroup of PGLp3, kq which fixes h1
˚| ´ KY | “ tsppx ` zqz2q ` tppx `

zq2zq ` upx3 ` y2zq “ 0 | rs : t : us P P2
ku, and the assertion holds.

(3): Take h1 : Z ÝÑ P1
k ˆP1

k as the contraction of O, P , and Θ8,i for i “ 0, 2, 3, 5, 6,
and 7. The induced morphism h1

1 : Y ÝÑ P1
k ˆ P1

k satisfies the first assertion. The
second assertion follows from (1).

Proposition 5.5.7. The minimal resolution of each del Pezzo surface of type 3A1 `

D4 satisfying (NB) is constructed from P2
k,rx:y:zs

by blowing up at r1 : 0 : 0s once,

at r0 : 0 : 1s twice along ty “ 0u, at r0 : 1 : 1s twice along ty ` z “ 0u, and at
r0 : 1 : 0s twice along tz “ 0u. In particular, there is a unique del Pezzo surface of
type 3A1 ` D4 satisfying (NB).

Proof. We follow the notation of Type (d) of Figure 5.2. Let Z be a rational quasi-
elliptic surface of type (d). Let g : Z ÝÑ Y be the contraction of O and Θ0,0 and
π : Y ÝÑ X the contraction of all p´2q-curves. Then the desired del Pezzo surface
must be X by suitable choice of Z by Lemma 5.4.5 (7). Hence it suffices to show
that X is independent of the choice of Z and satisfies (NB). Take h : Z ÝÑ P2

k and
coordinates of P2

k as in Lemma 5.2.4. Let h1 : Y ÝÑ P2
k be the morphism induced

by h. Then h1 is the composition of the blow-ups at hpΘ0,4q “ r1 : 0 : 0s once,
at hpΘ8,1q “ r0 : 0 : 1s twice along hpΘ0,1q “ ty “ 0u, at hpΘ8,2q “ r0 : 1 : 1s

twice along hpΘ0,2q “ ty ` z “ 0u, and at hpΘ8,3q “ r0 : 1 : 0s twice along
hpΘ0,3q “ tz “ 0u. Hence it suffices to show that X satisfies (NB).

Since π and h1 is an isomorphism around a general member of | ´ KX |, we are
reduced to proving that h1

˚|´KY | has only a singular member. By construction, h1
˚|´

KY | consists of cubic curves intersecting with hpΘ0,iq at hpΘ8,iq with multiplicity two
for 1 ď i ď 3 and passing through hpΘ0,4q. Then it is generated by tx2y “ 0u, tx2z “

0u, and tyzpy` zq “ 0u. The Jacobian criterion now shows that h1
˚| ´KY | has only

a singular member, and the assertion holds.

Corollary 5.5.8. Let X be the del Pezzo surface of type 3A1 `D4 satisfying (NB)
and Y the minimal resolution of X. Then the following hold.

(1) Y and each negative rational curve on Y are defined over F2.

(2) AutX – k˚ ˆ PGLp2,F2q.

Proof. We follow the notation of the proof of Proposition 5.5.7.
(1): By the construction of h1, Y and every irreducible component of Eh1 are defined
over F2. Since Z is of type (d), Lemma 5.2.4 shows that a negative rational curve
on Y is either h1-exceptional or the strict transform of one of ty “ 0u, ty ` z “ 0u,
tz “ 0u, or hpΘ8,4q “ tx “ 0u. Hence the assertion holds.
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(2): By the symmetry of Type 3A1 ` D4 of Figure 5.6, the AutX – AutY -action
on Y naturally descends to P2

k via h1. Hence AutY is isomorphic to the subgroup
of AutP2

k generated by automorphisms fixing tr0 : 1 : 0s, r0 : 1 : 1s, r0 : 0 : 1su and
r1 : 0 : 0s, which is

!´

a 0 0
0 e f
0 h i

¯

P PGLp3, kq

ˇ

ˇ

ˇ
a P k˚,

`

e f
h i

˘

P PGLp2,F2q

)

– k˚
ˆ PGLp2,F2q.

Proposition 5.5.9. The minimal resolution of each del Pezzo surface of type 7A1

is constructed from P2
k,rx:y:zs

by blowing up all the F2-rational points. In particular,
there is a unique del Pezzo surface of type 7A1.

Proof. We follow the notation of the proof of Lemma 5.2.6. Since [103] shows that
the desired surface satisfies (ND), it also satisfies (NB) by Theorem 1.3.3.

Let Z be a rational quasi-elliptic surface of type (g). Let g : Z ÝÑ Y be the
contraction of A0,2 and Θ0,2 and π : Y ÝÑ X the contraction of all p´2q-curves.
Then the desired del Pezzo surface must be X by a suitable choice of Z by Lemma
5.4.5 (1) and (2). Claim 5.2 in the proof of Lemma 5.2.6 now shows that the
morphism h1 : Y ÝÑ P2

k induced by h : Z ÝÑ P2
k is the blow-up of all the points in

P2
k defined over F2.

Remark 5.5.10. Cascini-Tanaka [21, Proposition 6.4] proved that some del Pezzo
surfaces constructed by Keel-McKernan [62, end of section 9] are isomorphic to the
del Pezzo surface constructed by Langer [74, Example 8.2]. Proposition 5.5.9 gives
another proof of this fact. Moreover, Proposition 5.5.9 says that this surface is also
isomorphic to a counterexample to the Akizuki-Nakano vanishing theorem in [35,
Proposition 11.1 (1)] with p “ n “ 2.

Corollary 5.5.11. Let X be the del Pezzo surface of type 7A1 and Y the minimal
resolution of X. Let h1 : Y ÝÑ P2

k be the blow-up of all the F2-rational points. Then
the following hold.

(1) p´1q-curves (resp. p´2q-curves) on Y are h1-exceptional (resp. the strict trans-
form of lines in P2

k are defined over F2). In particular, Y and every negative
rational curve on Y are defined over F2.

(2) The class divisor group of Y is generated by the seven p´1q-curves and any
one of p´2q-curves.

(3) AutX – AutY – PGLp3,F2q.

(4) AutY acts on both the set of p´1q-curves on Y and that of p´2q-curves tran-
sitively.

(5) For each p´1q-curve E on Y , the stabilizer subgroup of AutY with respect to
E is isomorphic to F2

2 ¸PGLp2,F2q. The first (resp. second) factor acts on E
trivially (resp. as AutP1

F2
).
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Proof. (1): There are seven h1-exceptional curves and the strict transform of lines
in P2

k defined over F2, which are p´1q-curves and p´2q-curves respectively. On the
other hand, Lemma 5.4.5 (4) shows that Y contains exactly seven p´1q-curves and
seven p´2q-curves. Hence the assertion holds.
(2): The assertion is obvious from the assertion (1).
(3): By the assertion (1), the AutY -action on Y fixes Eh1 and descends to P2

k via
h1. Hence AutY equals the stabilizer subgroup of PGLp3, kq with respect to the set
of F2-rational points on P2

k, which is PGLp3,F2q.
(4): The assertion is obvious from the assertion (3).
(5): Fix coordinates rx : y : zs of P2

k. By the assertion (4), we may assume that E
is the strict transform of tx “ 0u Ă P2

k. Then the stabilizer subgroup of AutY with
respect to E is

!´

1 0 0
d e f
g h i

¯

P PGLp3,F2q

)

–

!´

1 0 0
d 1 0
g 0 1

¯

P PGLp3,F2q

)

¸

!´

1 0 0
0 e f
0 h i

¯

P PGLp3,F2q

)

– F2
2 ¸ PGLp2,F2q,

and the assertion holds.

Next, we treat the case where the degree is one.

Proposition 5.5.12. Let X be a Du Val del Pezzo surface satisfying (NB). Suppose
that p “ 2 and DynpXq “ E8, D8, A1 ` E7, or 2A1 ` D6. Then the isomorphism
class of X is uniquely determined by DynpXq.

Proof. By Proposition 5.4.1 (4), the minimal resolution of X is obtained from the
rational quasi-elliptic surface Z of type (a), (b), (c), or (e) by contracting a section.
Since Z is unique up to isomorphism for each types by Theorem 5.2.2, the assertion
follows from Proposition 5.4.1 (2).

Lemma 5.5.13. Let X be a Du Val del Pezzo surface satisfying (NB) and π : Y ÝÑ

X be the minimal resolution. Suppose that p “ 2 and DynpXq “ E8, D8, or A1 `E7

in addition. Then the following hold.

(1) Y and every negative rational curve on Y are defined over F2.

(2) AutX is isomorphic to
!´

a 0 0
0 1 f
0 0 a3

¯

P PGLp3, kq

ˇ

ˇ

ˇ
a P k˚, f P k

)

when DynpXq “ E8,
!´

1 0 0
d 1 d
0 0 1

¯

P PGLp3, kq

ˇ

ˇ

ˇ
d P k

)

– k

when DynpXq “ D8, and
!´

1 0 0
0 e 0
0 0 e2

¯

P PGLp3, kq

ˇ

ˇ

ˇ
e P k˚

)

– k˚

when DynpXq “ A1 ` E7.
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Proof. Let g : Z ÝÑ Y be the blow-up at the base point of |´KY |. When DynpXq “

E8 (resp. D8, A1 `E7), Z is the rational quasi-elliptic surface of type (a) (resp. (b),
(c)) by Proposition 5.4.1 (4). We may assume that g is the contraction of O in Types
(a)–(c) of Figure 5.2 by virtue of the MWpZq-action on Y . From now on, we follow
the notation of Lemma 5.2.4. Then h : Z ÝÑ P2

k induces a morphism h1 : Y ÝÑ P2
k.

(1): First, suppose that DynpXq “ E8. Then h1 is the blow-up of P2
k at hpOq “

r0 : 1 : 0s eight times along hpF q “ tx3 ` y2z “ 0u. Hence Y and each irreducible
component of Eh1 are defined over F2. Since each negative rational curve on Y is
either a component of Eh or the strict transform of hpΘ8,8q “ tz “ 0u, the assertion
holds.

Next, suppose that DynpXq “ D8. Then h1 is the composition of the blow-up
of P2

k at hpP q “ r0 : 1 : 0s five times along hpF q “ tx3 ` y2z “ 0u and the blow-
up at hpOq “ r1 : 1 : 1s three times along tx3 ` y2z “ 0u. Hence Y and each
irreducible component of Eh1 are defined over F2. Since each negative rational curve
on Y is either a component of Eh1 or the strict transform of hpΘ8,8q “ tz “ 0u or
hpΘ8,3q “ tx ` z “ 0u, the assertion holds.

Finally, suppose that DynpXq “ A1 ` E7. Then h1 is the composition of the
blow-up of P2

k at hpP q “ r1 : 0 : 0s six times along hpΘ8,1q “ txz ` y2 “ 0u and the
blow-up at hpOq “ r0 : 1 : 0s twice along hpΘ8,0q “ tx “ 0u. Hence Y and each
irreducible component of Eh1 are defined over F2. Since each negative rational curve
on Y is either a component of Eh1 or the strict transform of txz ` y2 “ 0u, tx “ 0u,
or hpΘ0,2q “ tz “ 0u, the assertion holds.
(2): From Types (a)–(c) of Figure 5.2, it is easily seen that the AutY -action on Y
fixes each negative rational curve. In particular, the AutY -action naturally descends
to P2

k via h1. Hence AutY is contained in the subgroup G of PGLp3, kq which fixes
the net h1

˚| ´ KY |.
On the other hand, we have h1

˚| ´ KY | “ h˚| ´ KZ |. Since | ´ KZ | is base
point free, Z is the minimal resolution of indeterminacy of h1

˚| ´ KY |. Hence the
G-action on P2

k ascends to Z. When DynpXq “ E8, it descends to Y since there is
a unique section on Z. On the other hand, when DynpXq “ D8 or A1 ` E7, it also
descends to Y by the asymmetry of Eh. Therefore AutY – G. By the choice of
coordinates rx : y : zs of P2

k, h
1
˚| ´ KY | is generated by tx3 ` y2z “ 0u and tz3 “ 0u

(resp. tx3 ` y2z “ 0u and tpx ` zq2z “ 0u, tpxz ` y2qx “ 0u and tz3 “ 0u) when
DynpXq “ E8 (resp. D8, A1 ` E7). Hence an easy computation as in the proof of
Corollary 5.5.4 gives the assertion.

Lemma 5.5.14. Let X be the Du Val del Pezzo surface of type 2A1 `D6 satisfying
(NB) and π : Y ÝÑ X be the minimal resolution. Then the following hold.

(1) Y and every negative rational curve on Y are defined over F2.

(2) AutX is isomorphic to

!´

1 0 0
0 1 0
0 0 1

¯

,
´

1 0 0
0 1 1
0 0 1

¯

P PGLp3, kq

)

– Z{2Z.
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Proof. Since π is the minimal resolution, we have AutY – AutX. Let g : Z ÝÑ Y
be the blow-up at the base point of | ´ KY |. Then Z be the rational quasi-elliptic
surface of type (e) by Proposition 5.4.1 (4). In what follows, we use the notation of
Type (e) of Figure 5.2. Then we may assume that g is the contraction of O. By the
shape of Type (e) of Figure 5.2, the AutY -action on Y fixes gpΘ1,2q. By Lemma
5.4.5 (7), the contraction of gpΘ1,2q gives a morphism h : Y ÝÑ W to the minimal
resolution of the Du Val del Pezzo surface of type 3A1 `D4 satisfying (NB). Hence
AutY is isomorphic to the stabilizer subgroup of AutW – k˚ ˆ PGLp2,F2q with
respect to t “ h ˝ gpΘ1,2q.
(2): By Type (e) of Figure 5.2, E “ h ˝ gpΘ1,3q is the unique negative rational
curve containing t. Hence the AutY -action on W fixes E. Moreover E is a p´1q-
curve intersecting with exactly two p´2q-curves, which are E1 “ h ˝ gpΘ1,0q and
E2 “ h ˝ gpΘ1,4q. We have seen in the proof of Corollary 5.5.8 that the first factor
(resp. the second factor) of AutW – k˚ˆPGLp2,F2q acts on EzpEXpE1YE2qq – k˚

freely and transitively (resp. acts as a permutation of the third nodes from the top
in Type 3A1 ` D4 of Figure 5.6). Hence the assertion holds.
(1): By Corollary 5.5.8, W and each negative rational curve on W are defined
over F2. By virtue of the k˚-action on W , we may assume that t is an F2-rational
point. Hence Y and each negative rational curve on Y except gpΘ0,0q and gpΘ8,0q

are defined over F2. On the other hand, gpΘ0,0q and gpΘ8,0q are defined over F2m

for some m ą 0 since Y is defined over F2, and are the unique p´1q-curves on Y
intersecting with gpΘ0,1q and gpΘ8,1q twice respectively. Since the field extension
F2m{F2 is Galois, they are also defined over F2. Hence the assertion holds.

To determine the isomorphism classes of Du Val del Pezzo surfaces of one of the
types 2D4, 4A1 ` D4, and 8A1 satisfying (NB), we need the following notation and
auxiliary lemmas.

Definition 5.5.15. For coordinates of Pn
k , let Dn Ă Pn

k denote the complement of
all the hyperplane sections defined over F2. Note that PGLpn`1,F2q naturally acts
on Dn.

Lemma 5.5.16. Let Σt be the stabilizer subgroup of PGLp2,F2q with respect to
t P D1. Then the following hold.

(1) Σt is trivial unless t is an F4-rational point.

(2) The PGLp2,F2q-action on the set D1pF4q of F4-rational points on D1 is tran-
sitive.

(3) Σt “ Z{3Z if t is an F4-rational point.

(4) D1{PGLp2,F2q – A1
k with a distinct point which corresponds to D1pF4q.

Proof. (1): Suppose that there is a non-trivial element A P Σt. Since PGLp2,F2q is
isomorphic to the symmetric group of three letters, it has exactly three conjugacy
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classes. Since A1 “ p 0 1
1 0 q and A2 “ p 0 1

1 1 q are non-trivial and have different minimal
polynomials, A is conjugate to Ai for some i. Then Ai also fixes some point in D1.

In P1
k,rx:ys

, the fixed point locus of A1 (resp. A2) equals tr1 : 1su (resp. tr1 : ss |

s2 ` s ` 1 “ 0u). Hence i “ 2 and t P D1pF4q.
(2): Since A1 interchanges two points in D1pF4q with each other, the assertion holds.
(3): Since the order of Σt equals |PGLp2,F2q|{|D1pF4q| “ 3, we obtain Σt “ Z{3Z.
(4): D1{PGLp2,F2q is naturally embedded into P1

k{PGLp2,F2q – P1
k. The comple-

ment is a point since PGLp2,F2q acts on P1
kpF2q transitively.

Lemma 5.5.17. Let Σt be the stabilizer subgroup of PGLp3,F2q with respect to
t P D2. Then the following hold.

(1) Σt is trivial unless t is an F8-rational point.

(2) The PGLp3,F2q-action on the set D2pF8q of F8-rational points on D2 is tran-
sitive.

(3) Σt “ Z{7Z if t is an F8-rational point.

(4) D2{PGLp3,F2q is a surface with a unique singular point, which corresponds to
D2pF8q.

Proof. (1): Suppose that there is a non-trivial element A P Σt. By [55, 27.1 Lemma],
PGLp3,F2q – PSLp2,F7q has exactly six conjugacy classes. Since

A1 “

´

1 1 0
0 1 0
0 0 1

¯

, A2 “

´

1 1 0
0 1 1
0 0 1

¯

, A3 “

´

1 0 0
0 0 1
0 1 1

¯

, A4 “

´

0 1 0
0 0 1
1 1 0

¯

, and A5 “

´

0 1 0
0 0 1
1 0 1

¯

are non-trivial and have different minimal polynomials to each other, A is conjugate
to Ai for some 1 ď i ď 5. Then Ai also fixes some point in D2.

In P2
k,rx:y:zs

, the fixed point locus of Ai equals

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ty “ 0u pi “ 1q

tr1 : 0 : 0su pi “ 2q

tr1 : 0 : 0su Y tr0 : 1 : ss | s2 ` s ` 1 “ 0u pi “ 3q

tr1 : s : s2s | s3 ` s ` 1 “ 0u pi “ 4q

tr1 : s : s2s | s3 ` s2 ` 1 “ 0u pi “ 5q

Hence i “ 4 or 5, and t P D2pF8q. We have proved more, namely that A is of order
seven and fixes exactly three points in D2pF8q. By [55, 27.1 Lemma], the size of its
conjugacy class is 24.
(2): P1

kpF8q (resp. P2
kpF8q) consists of nine (resp. 73) points. Since P2

kzD2 is the
union of seven P1

k’s passing through three F2-rational points, D2pF8q consists of
73´ 7 ¨ 9` p3´ 1q ¨ 7 “ 24 points. The Burnside lemma now shows that the number
of the PGLp3,F2q-orbits is

|D2pF8q{PGLp3,F2q| “
1

168
p24 ¨ 3 ` 24 ¨ 3 ` 1 ¨ 24 ` p168 ´ 24 ´ 24 ´ 1q ¨ 0q “ 1.
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Hence PGLp3,F2q acts on D2pF8q transitively.
(3): Since the order of Σt equals |PGLp3,F2q|{|D2pF8q| “ 7, we obtain Σt “ Z{7Z.
(4): The quotient morphism D2 ÝÑ D2{PGLp3,F2q is étale outside the image of
D2pF8q. Hence the assertion holds.

Finally, let us investigate Du Val del Pezzo surfaces of one of types 2D4, 4A1`D4,
and 8A1 satisfying (NB).

Proposition 5.5.18. Let W be the minimal resolution of the Du Val del Pezzo
surface of type 3A1 ` D4 satisfying (NB) and E the p´1q-curve intersecting with
three p´2q-curves. Note that E is unique by Lemma 5.4.5 (3) and W and E are
defined over F2 by Corollary 5.5.8. Then the following holds.

(1) The minimal resolution of each Du Val del Pezzo surface of type 2D4 satisfying
(NB) is obtained from W by blowing up a point in EzEpF2q – D1.

(2) Let ht : Yt ÝÑ W be the blow-up at t P EzEpF2q. Then Yt is the minimal
resolution of a Du Val del Pezzo surface of type 2D4 satisfying (NB). Moreover,
for t1 P EzEpF2q, Yt – Yt1 if and only if t1 is contained in the PGLp2,F2q-orbit
of t.

(2) The isomorphism classes of del Pezzo surfaces of type 2D4 satisfying (NB)
corresponds to the closed points of D1{PGLp2,F2q.

Proof. We follow the notation of Type (d) of Figure 5.2.
(1): Let Z be a rational quasi-elliptic surface of type (d). Let g : Z ÝÑ Y be the
contraction of O. Then the minimal resolution of each del Pezzo surface of type
2D4 satisfying (NB) is isomorphic to Y by suitable choice of Z by Proposition 5.4.1
(4). On the other hand, by Lemma 5.4.5 (7), the contraction of gpΘ0,0q gives a
morphism h : Y ÝÑ W . We check at once that E “ h ˝ gpΘ0,4q and it contains
the point t “ h ˝ gpΘ0,0q, which is not contained in any p´2q-curves. By Corollary
5.5.8, the set of F2-rational points on E is the intersection of E and all p´2q-curves.
Therefore Y is the blow-up of W at t P EzEpF2q.
(2): By Lemma 5.4.5 (7), Yt is obtained from a rational quasi-elliptic surface of type
(d) by contracting a section. Hence the former assertion follows from Proposition
5.4.1 (4).

We have seen in the proof of Corollary 5.5.8 that first (resp. second) factor of
AutW “ k˚ ˆ PGLp2,F2q acts on hpΘ8,4q trivially (resp. as AutP1

F2
). The same

conclusion can be drawn for E by the choice of its coordinates. In particular,
t1 P EzEpF2q is contained in the PGLp2,F2q-orbit of t if and only if it is contained
in the AutW -orbit of t in W . On the other hand, Yt – Yt1 if t1 is contained in the
AutW -orbit of t. Hence it remains to prove that t1 is contained in the AutW -orbit
of t if Yt – Yt1 .

Suppose that there is an isomorphism σ : Yt – Yt1 . Since the involution as in
Lemma 5.2.5 fixes the section O, it descends to an involution τ P AutYt. Then,
replacing σ with σ ˝ τ if necessary, we may assume that σpEhtq “ Eht1 . Hence σ
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descends to an isomorphism σ P AutW such that σptq “ t1, and the latter assertion
holds.
(3): This is an immediate consequence of (1) and (2).

Corollary 5.5.19. Let Xt be the contraction of all p´2q-curves in Yt as in Proposi-
tion 5.5.18. Then AutXt – AutYt – pk˚ ˆ Z{3Zq ¸ Z{2Z when t is an F4-rational
point of D1 and k˚ ¸ Z{2Z otherwise. In particular, there is a unique Du Val del
Pezzo surface Xp2D4q satisfying (NB) such that AutX – pk˚ ˆ Z{3Zq ¸ Z{2Z.

Proof. We follow the notation of Proposition 5.5.18. Let Σ be the stabilizer subgroup
of AutW with respect to t. Then Σ “ k˚ ˆ Σ1 for some Σ1 Ă PGLp2,F2q since k˚

acts on E trivially. By Lemma 5.5.16, Σ “ k˚ ˆ Z{3Z if t P D1pF4q and Σ “ k˚

otherwise. On the other hand, we can identify Σ with the stabilizer subgroup of
AutYt with respect to Eht . For η P AutYt, either η or η ˝ τ belongs to Σ. Hence
AutYt – Σ ¸ Z{2Z, where the last factor is generated by τ , and the first assertion
holds. Since PGLp2,F2q acts on D1pF4q transitively, the second assertion follows
from Proposition 5.5.18 (2).

Proposition 5.5.20. Let W be the minimal resolution of the Du Val del Pezzo
surface of type 7A1 and E a p´1q-curve. Note that W and E are defined over F2

and E is unique up to the AutW -action on W by Corollary 5.5.11 (1) and (4).
Then the following hold.

(1) The minimal resolution of each Du Val del Pezzo surface of type 4A1 ` D4 is
obtained from W by blowing up a point in EzEpF2q – D1.

(2) Let ht : Yt ÝÑ W be the blow-up at t P EzEpF2q. Then Yt is the minimal
resolution of a Du Val del Pezzo surface of type 4A1 ` D4. Moreover, for
t1 P EzEpF2q, Yt – Yt1 if and only if t1 is contained in the PGLp2,F2q-orbit of
t.

As a result, there is a one-to-one correspondence between the isomorphism classes
of del Pezzo surfaces of type 4A1 ` D4 and the closed points of D1{PGLp2,F2q.

Proof. We follow the notation of Figure 5.3. Note that, since [103] shows that
4A1 ` D4 is not feasible over C, every Du Val del Pezzo surface of type 4A1 ` D4

satisfies (NB) by Theorem 1.3.3.
(1): Let Z be a rational quasi-elliptic surface of type (f). Let g : Z ÝÑ Y be the
contraction of O. Then the minimal resolution of each del Pezzo surface of type
4A1 ` D4 is isomorphic to Y by suitable choice of Z by Proposition 5.4.1 (4). On
the other hand, by Lemma 5.4.5 (8), the contraction of gpΘ1,0q gives a morphism
h : Y ÝÑ W . We may assume that E “ h ˝ gpΘ1,4q. Then E contains the point
t “ h ˝ gpΘ1,0q, which is not contained in any p´2q-curves. By Corollary 5.5.11
(1), the set of F2-rational points on E is the intersection of E and all p´2q-curves.
Therefore Y is the blow-up of W at t P EzEpF2q.
(2): By Lemma 5.4.5 (8), Yt is obtained from a rational quasi-elliptic surface of type
(f) by contracting a section. Hence the former assertion follows from Proposition
5.4.1 (4).



83

Let Ct be the strict transform of E in Yt, which is a p´2q-curve. By Figure
5.7, Ct intersects with three p´2q-curves in Yt. Hence Ct is the central curve of the
Dynkin diagram D4. In particular, every automorphism of Yt fixes Ct.

By Corollary 5.5.11 (5), t1 P EzEpF2q is contained in the PGLp2,F2q-orbit of t if
and only if it is contained in the AutW “ F2

2 ¸ PGLp2,F2q-orbit of t in W . On the
other hand, Yt – Yt1 if t1 is contained in the AutW -orbit of t. Hence it remains to
prove that t1 is contained in the AutW -orbit of t if Yt – Yt1 .

Suppose that there is an isomorphism σ : Yt – Yt1 . Then σpCtq “ Ct1 . By Figure
5.3, Eht is the unique p´1q-curve intersecting with Ct. Hence σpEhtq “ Eht1 and σ
descends to an isomorphism σ P AutW such that σptq “ t1, and the latter assertion
holds.

Corollary 5.5.21. Let Xt be the contraction of all p´2q-curves in Yt as in Proposi-
tion 5.5.20. Then AutXt – AutYt – pZ{2Zq2 ¸Z{3Z when t is an F4-rational point
and pZ{2Zq2 otherwise. In particular, there is a unique Du Val del Pezzo surface
Xp4A1 ` D4q such that AutX – pZ{2Zq2 ¸ Z{3Z.

Proof. We follow the notation of Proposition 5.5.20. Since each automorphism of
Yt fixes Eht , the group AutYt equals the stabilizer subgroup Σ of AutW “ F2

2 ¸

PGLp2,F2q with respect to t. Then pZ{2Zq2 – F2
2 Ă AutYt since F2

2 acts on E
trivially. The rest of the proof runs as in Corollary 5.5.19.

Proposition 5.5.22. Let W be the minimal resolution of the Du Val del Pezzo
surface of type 7A1 and B the union of all negative rational curves on W . Note that
W and B are defined over F2 and W zB – D2 by Corollary 5.5.11 (1). Then the
following hold.

(1) The minimal resolution of each Du Val del Pezzo surface of type 8A1 is obtained
from W by blowing up a point in W zB.

(2) Let ht : Yt ÝÑ W be the blow-up at t P W zB. Then Yt is the minimal resolution
of a Du Val del Pezzo surface of type 8A1.

(3) For t P W zB, Figure 5.8 is the intersection matrix of negative rational curves
on Yt. Moreover, there is a p´2q-curve Ct such that Eht is a unique p´1q-curve
intersecting with Ct twice.

(4) For t P W zB, AutYt is contained in the affine linear group F3
2 ¸ GLp3,F2q

and contains its normal subgroup F3
2, which acts on the set of p´2q-curves

transitively.

(5) For t and t1 P W zB, Yt – Yt1 if and only if t1 is contained in the AutW –

PGLp3,F2q-orbit of t.

As a result, there is a one-to-one correspondence between the isomorphism classes
of del Pezzo surfaces of type 8A1 and the closed points of D2{PGLp3,F2q.
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´1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0

´1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0
´1 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0

´1 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
´1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

´1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
´1 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

´1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
´1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1

´1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
´1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

´2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
´2 0 0 0 0 0 0 0 2 0 0 0 0 0 0

´2 0 0 0 0 0 0 0 2 0 0 0 0 0
´2 0 0 0 0 0 0 0 2 0 0 0 0

´2 0 0 0 0 0 0 0 2 0 0 0
´2 0 0 0 0 0 0 0 2 0 0

´2 0 0 0 0 0 0 0 2 0
´2 0 0 0 0 0 0 0 2

´1 1 1 1 1 1 1 1
´1 1 1 1 1 1 1

´1 1 1 1 1 1
´1 1 1 1 1

´1 1 1 1
´1 1 1

´1 1
´1

˛

‹

‹
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‹

‹

‹

‹

‹

‹

‹
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‹

‹
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‚
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Figure 5.8: The intersection matrix of the p´1q-curves and p´2q-curves in a del
Pezzo surface of type 8A1

Proof. We follow the notation of the proof of Lemma 5.2.6. Note that, since [103]
shows that 8A1 is not feasible over C, every Du Val del Pezzo surface of type 8A1

satisfies (NB) by Theorem 1.3.3.
(1): Let Z be a rational quasi-elliptic surface of type (g). Let g : Z ÝÑ Y be the
contraction of A0,2. Then the minimal resolution of each del Pezzo surface of type
8A1 is isomorphic to Y by suitable choice of Z by Proposition 5.4.1 (4). On the
other hand, by Lemma 5.4.5 (1) and (2), the contraction of gpΘ0,2q gives a morphism
h : Y ÝÑ W such that t “ h ˝ gpΘ0,2q P W zB. Therefore Y is the blow-up of W at
t P W zB.
(2): By Lemma 5.4.5 (1) and (2), Yt is obtained from a rational quasi-elliptic surface
Zt of type (g) by contracting a section. Hence the assertion follows from Proposition
5.4.1 (4).
(3): By Lemma 5.2.6, Zt has exactly sixteen p´1q-curves A0,1, . . . , A7,1, A0,2, . . . , A7,2

and exactly sixteen p´2q-curves Θ0,1, . . . ,Θ7,1, Θ0,2, . . . ,Θ7,2, whose intersection ma-
trix is Figure 5.5. We may assume that the contraction of A0,2 gives a morphism
gt : Zt ÝÑ Yt and Eht “ gtpΘ0,2q. Then gtpA0,1q is a p0q-curve and A1

i,j :“ gtpAi,jq is a
p´1q-curve for 1 ď i ď 7 and j “ 1, 2. Moreover, Θ1

i,1 :“ gtpΘi,1q and Θ1
i,2 :“ gtpΘi,2q

is a p´2q-curve and a p´1q-curve respectively for 0 ď i ď 7. Hence Figure 5.8 is the
intersection matrix of A1

1,1, . . . , A
1
7,1, A

1
1,2, . . . , A

1
7,2, Θ

1
0,1, . . . ,Θ

1
7,1, Θ

1
0,2, . . . ,Θ

1
7,2 in

this order. Moreover, Eht “ Θ1
0,2 is a unique p´1q-curve intersecting with Ct “ Θ1

0,1

twice.
(4): Suppose that an automorphism of Yt fixes each p´1q-curve and each p´2q-curve.
Then it fixes A1

1,1, . . . , A
1
7,1, and Θ1

0,2. By Claim 5.2 in the proof of Lemma 5.2.6,
it descends to an automorphism of P2

k fixing all the F2-rational points, which is the
identity. Thus an automorphism of Yt is determined by the image of all p´1q-curves
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¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

´1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1
´1 0 0 0 1 0 0 0 1 1 0 0 1 0 1

´1 0 0 0 1 0 1 0 0 1 0 1 0 1
´1 0 0 0 1 0 1 0 1 1 0 0 1

´1 0 0 0 0 1 0 1 0 1 1 0
´1 0 0 1 0 0 1 1 0 1 0

´1 0 0 1 1 0 1 0 1 0
´1 1 0 1 0 0 1 1 0

´1 1 0 0 0 0 0 0
´1 0 0 0 0 0 0

´1 1 0 0 0 0
´1 0 0 0 0

´1 1 0 0
´1 0 0

´1 1
´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Figure 5.9: The intersection matrix of the p´1q-curves in Y

and p´2q-curves.
Let S8 be the permutation group of t0, 1, . . . , 7u. By Figure 5.8, the images

of all p´1q-curves are determined by those of p´2q-curves Θ1
0,1, . . . ,Θ

1
7,1. Hence

there is an injection ι : AutYt ÝÑ S8 which sends η P AutYt to σ P S8 such that
ηpΘ1

i,1q “ Θ1
σpiq,1 for 0 ď i ď 7. Moreover, p08q, p18q, and fourteen rows in the p1, 3q

block or p2, 3q block of Figure 5.8 form the r8, 4, 4s extended Hamming code, which is
also the Reed-Muller code Rp1, 3q. Hence ι factors through the automorphism group
of Rp1, 3q, which is the affine linear group F3

2 ¸ GLp3,F2q Ă S8 by [81, Chapter 13,
§9, Theorem 24]. Since the normal group F3

2 Ă S8 is generated by p01qp23qp45qp67q,
p02qp13qp46qp57q and p04qp15qp26qp37q, it acts on t0, 1, . . . , 7u transitively. Hence
it suffices to show that F3

2 Ă AutYt. We show only the existence of η P AutYt
such that ιpηq “ p01qp23qp45qp67q; the same proof works for p02qp13qp46qp57q and
p04qp15qp26qp37q.

Let φ : Yt ÝÑ Y be the contraction of A1
1,1, A

1
2,1, and A1

4,1. Set si “ φpA1
i,1q

for i “ 1, 2, and 4. Then Y is a smooth del Pezzo surface of degree four since
each p´2q-curve in Yt intersects with A1

1,1, A
1
2,1, or A1

4,1. Generally speaking, a
smooth del Pezzo surface of degree four contains sixteen p´1q-curves, and each
p´1q-curve intersects with five p´1q-curves. In the present case, Ai,1 “ φpA1

i,1q,

Ai,2 “ φpA1
i,2q, Θj,1 “ φpΘ1

j,1q, and Θk,1 “ φpΘ1
k,1q are p´1q-curves on Y for i “

3, 5, 6, or 7, 2 ď j ď 7, and k “ 0, 1. Figure 5.9 is the intersection matrix of
A3,1, . . . , A7,1, A3,2, . . . , A7,2, Θ2,1, . . . ,Θ7,1, Θ0,2, and Θ1,2 in this order. In particular,
M “ pΘ1,2, A3,2, A5,2, A6,2, A7,2q and M1 “ pΘ0,2, A3,1, A5,1, A6,1, A7,1q are the 5-
tuples of p´1q-curves intersecting with Θ0,2 and Θ1,2 respectively.

Since M and M1 satisfy the condition (1) of [48, Theorem 2.1], there is an auto-
morphism η of Y which interchanges M with M1. By Figure 5.9, η also interchanges
Θ2,1 with Θ3,1, Θ4,1 with Θ5,1, and Θ6,1 with Θ7,1. Then η fixes s1 “ Θ2,1 X Θ3,1,
s2 “ Θ4,1 XΘ5,1, and s4 “ Θ6,1 XΘ7,1. Hence η induces an automorphism η P AutYt,
which interchanges Θ1

0,2 with Θ1
1,2, Θ

1
2,1 with Θ1

3,1, Θ
1
4,1 with Θ1

5,1, and Θ1
6,1 with Θ1

7,1.
Since Θ1

0,1 (resp. Θ1
1,1) is the unique p´2q-curve which intersects with Θ1

0,2 (resp.
Θ1

1,2) twice, η also interchanges Θ1
0,1 with Θ1

1,1. Hence ιpηq “ p01qp23qp45qp67q, and
the assertion holds.
(5): If some automorphism of W sends t to t1, then it ascends to an isomorphism
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Yt – Yt1 . On the other hand, suppose that there is an isomorphism Yt – Yt1 . By the
assertion (4), we may assume that this isomorphism sends Ct to Ct1 . Then by the
assertion (3), it also sends Eht to Eht1 . Hence it descends to an isomorphism of W ,
which sends t to t1.

Corollary 5.5.23. Let Xt be the contraction of all p´2q-curves in Yt as in Proposi-
tion 5.5.22. Then AutXt – AutYt – pZ{2Zq3 ¸Z{7Z when t is an F8-rational point
and pZ{2Zq3 otherwise. In particular, there is a unique Du Val del Pezzo surface
Xp8A1q such that AutX – pZ{2Zq3 ¸ Z{7Z.

Proof. We follow the notation of Proposition 5.5.22. Let Σ Ă AutYt be the stabilizer
subgroup with respect to Ct. Since F3

2 – pZ{2Zq3 is a normal subgroup of AutYt
which acts on the set of p´2q-curves in Yt transitively, we obtain AutYt – pZ{2Zq3¸

Σ. By Proposition 5.5.22 (3), Σ is the same as the stabilizer subgroup of PGLp3,F2q

with respect to t P D2. Now the first assertion follows from Lemma 5.5.17. Since
PGLp3,F2q acts on D2pF8q transitively, the second assertion follows from Proposition
5.5.22 (5).

Corollary 5.5.24. There are one-to-one correspondences between the isomorphism
classes of rational quasi-elliptic surfaces of type (d), (f), and (g), and the closed
points of D1{PGLp2,F2q, D1{PGLp2,F2q, and D2{PGLp3,F2q respectively.

Proof. By Proposition 5.4.1, there is one-to-one correspondence between isomor-
phism classes of del Pezzo surfaces of type 2D4 satisfying (NB) (resp. type 4A1`D4,
type 8A1) and those of rational quasi-elliptic surfaces of type (d) (resp. (f), (g)).
Hence the assertion follows from Propositions 5.5.18, 5.5.20 and 5.5.22.

Now we can prove Theorem 1.3.4.

Proof of Theorem 1.3.4. The assertions (0), (1), and (2) follow from Lemma 5.1.3
(3),(4), Proposition 5.4.1, and Propositions 5.4.3 and 5.4.4 respectively. The as-
sertion (3) follows from Propositions 5.5.1, 5.5.3, 5.5.5, 5.5.7, 5.5.9, 5.5.12, 5.5.18,
5.5.20, and 5.5.22.

5.5.3 List of automorphism groups

As a consequence, we obtain the list of automorphisms of Du Val del Pezzo
surfaces satisfying (NB) and rational quasi-elliptic surfaces as follows.

Theorem 5.5.25. Let X be a Du Val del Pezzo surface satisfying (NB). Then AutX
is described in Table 5.5. Furthermore, suppose that p “ 2. Then for each of types
2D4, 4A1 `D4, and 8A1, there is a unique del Pezzo surface of the given type such
that the group G in Table 5.5 is non-trivial.

Proof. The assertion follows from Corollaries 5.5.2, 5.5.4, 5.5.6, 5.5.8, 5.5.11, Lem-
mas 5.5.13, 5.5.14, Corollaries 5.5.19, 5.5.21, and 5.5.23.
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Table 5.5

DynpXq Characteristic Automorphism groups

E8
p “ 2

!´

a 0 0
0 1 f
0 0 a3

¯

P PGLp3, kq

ˇ

ˇ

ˇ
a P k˚, f P k

)

p “ 3

!´

a 0 c
0 1 0
0 0 a3

¯

P PGLp3, kq

ˇ

ˇ

ˇ
a P k˚, c P k

)

A2 ` E6 k˚ ˆ Z{2Z
4A2 GLp2,F3q

D8

p “ 2

k
A1 ` E7 k˚

2D4 pk˚ ˆ Gq ¸ Z{2Z with G “ t1u or Z{3Z
2A1 ` D6 Z{2Z
4A1 ` D4 pZ{2Zq2 ¸ G with G “ t1u or Z{3Z

8A1 pZ{2Zq3 ¸ G with G “ t1u or Z{7Z
E7

!´

a 0 d2a
d 1 f
0 0 a3

¯

P PGLp3, kq

ˇ

ˇ

ˇ
a P k˚, d P k, f P k

)

A1 ` D6

"ˆ

a 0 a3`a
d 1 a3`d`1
0 0 a3

˙

P PGLp3, kq

ˇ

ˇ

ˇ

ˇ

a P k˚, d P k

*

3A1 ` D4 k˚ ˆ PGLp2,F2q

7A1 PGLp3,F2q

Corollary 5.5.26. Let Z be a rational quasi-elliptic surface and O Ă Z a section.
Take g : Z ÝÑ Y as the contraction of O and π : Y ÝÑ X the contraction of all the
p´2q-curves. Then AutZ – MWpZq ¨ AutX. In particular, AutZ – pZ{pZqn ¨ H
for some 0 ď n ď 4 and for some group H listed in Table 5.5.

Proof. Note that X is a Du Val del Pezzo surface satisfying (NB) by Proposition
5.4.1 (1) and AutY – AutX since π is the minimal resolution. Since hpOq is the
base point of | ´ KY |, h induces an isomorphism between AutY and the stabilizer
subgroup of AutZ with respect to O. Hence the first assertion follows from the
transitivity of the MWpZq-action on the set of sections on Z. The second assertion
follows from Theorems 5.2.1, 5.2.2, and 5.5.25.

Remark 5.5.27. We follow the notation in Corollary 5.5.26. We have described the
reduced scheme structure of AutY and AutZ. We can also describe the scheme
structure of them by virtue of [82, Main Theorem], which calculates the identity
component of AutY as a scheme.

On the other hand, what is still lacking is the determination of the scheme
structure of AutX since the contraction of p´2q-curves may thicken the scheme
structures of the automorphism groups. For example, smooth K3 surfaces in char-
acteristic p ą 0 admit no non-trivial µp-actions but RDP K3 surfaces may admit
such actions (see [83, Remark 2.3]).
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5.6 Log liftability

In this section, we determine all the Du Val del Pezzo surfaces which are not log
liftable over W pkq. Note that by Theorem 1.3.3 (1), it suffices to consider Du Val
del Pezzo surfaces satisfying (NB).

Proposition 5.6.1. Let X be a Du Val del Pezzo surface satisfying (NB) and
π : Y ÝÑ X the minimal resolution. Suppose that p “ 3 and DynpXq “ E8 or
A2 ` E6. Then the pair of pY,Eπq lifts to SpecZ via SpecF3 ÝÑ SpecZ. As a
result, X is log liftable both over Z via SpecF3 ÝÑ SpecZ and over W pkq.

Proof. Note that Y and each p´2q-curve on Y are defined over F3 by Proposition
5.5.1 (6). Suppose that DynpXq “ E8. Take a birational morphism h1

Z : YZ ÝÑ P2
Z

as the blow-up at r0 : 1 : 0s eight times along tx3 ` y2z “ 0u. By Proposition 5.5.1
(3), we have Y – YZbZF3 and each negative rational curve on Y is the specialization
of either an h1

Z-exceptional curve or the strict transform of tz “ 0u Ă P2
Z via h1

Z.
Hence we obtain the desired lift. The proof for the case where DynpXq “ A2 ` E6

is similar by virtue of Proposition 5.5.1 (4).

Proposition 5.6.2. Let X be a Du Val del Pezzo surface satisfying (NB) and
π : Y ÝÑ X the minimal resolution. Suppose that p “ 2. Then the following
hold.

(1) Suppose that DynpXq “ E7, A1`D6, or 3A1`D4. Then the log smooth pair of
Y and the union B of negative rational curves lifts to SpecZ via SpecF2 ÝÑ

SpecZ.

(2) Suppose that DynpXq “ E8, D8, A1 `E7, or 2A1 `D6. Then the pair pY,Eπq

lifts to SpecZ via SpecF2 ÝÑ SpecZ.

As a result, X is log liftable both over Z via SpecF2 ÝÑ SpecZ and over W pkq.

Proof. By Theorem 1.3.4, X is uniquely determined up to isomorphism by DynpXq.
Moreover, we have shown in §5.5 that Y and each negative rational curve on Y are
defined over F2.
(1): By Lemma 5.4.5 (3), the pair pY,Bq is log smooth. Now suppose that DynpXq “

E7. Take a birational morphism h1
Z : YZ ÝÑ P2

Z as the blow-up at r0 : 1 : 0s seven
times along tx3 ` y2z “ 0u. By Proposition 5.5.3, we have Y – YZ bZ F2 and each
negative rational curve on Y is the specialization of either an h1

Z-exceptional curve
or the strict transform of tz “ 0u Ă P2

Z via h1
Z. Hence we obtain the desired lift.

The proof for the cases where DynpXq “ A1 `D6 and 3A1 `D4 is similar by virtue
of Corollary 5.5.6 (3) and Proposition 5.5.7 respectively.
(2): By Proposition 5.4.1 (4) and Lemma 5.4.5 (5)–(7), for some Du Val del Pezzo
surface of type E7, A1 `D6, or 3A1 `D4 satisfying (NB) and its minimal resolution
W , there exist a p´1q-curve E Ă W and an F2-rational point t P E not contained in
any p´2q-curves such that Y is the blow-up of W at t. Hence the assertion follows
from the assertion (1) and [7, Proposition 2.9].
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By Proposition 5.5.18, there are infinitely many Du Val del Pezzo surfaces of
type 2D4 satisfying (NB). In particular, they are not defined over F2 in general. On
the other hand, we can show their log liftability over W pkq as follows.

Proposition 5.6.3. Let X be a Du Val del Pezzo surface of type 2D4 satisfying
(NB) in p “ 2. Take R as a Noetherian irreducible ring with surjective ring ho-
momorphism f : R Ñ k. Then X is log liftable over R via the induced morphism
Spec k ÝÑ SpecR.

Proof. Let π : Y ÝÑ X be the minimal resolution. By Proposition 5.5.18 (1), on the
minimal resolution W of the Du Val del Pezzo surface of type 3A1 ` D4 satisfying
(NB), there are the p´1q-curve E Ă W intersecting with exactly three p´2q-curves
and a closed point t P E not contained in any p´2q-curves such that Y is the blow-up
of W at t.

Let D be the union of the p´2q-curves in W . By Proposition 5.6.2 (1), the log
smooth pair pW,DYEq lifts to SpecZ via SpecF2 ÝÑ SpecZ. Take pW ,D Y Eq as
the base change of such a lifting by the natural homomorphism Z ÝÑ R.

Fix coordinates rx : ys of E – P1
R and choose a, b P k so that t “ ra : bs P P1

k,rx:ys
.

Since f : R ÝÑ k is surjective, we can take a lifting ra (resp. rb) of a (resp. b). Then
rt “ rra : rbs P E – P1

R is a lifting of t. Let Φ: Y ÝÑ W be the blow-up along rt. Then
pY ,Φ´1

˚ pD Y Eqq is the desired lift.

Proposition 5.6.4. Let X be a Du Val del Pezzo surface with DynpXq “ 4A1 `D4,
8A1, or 7A1. Then X is not log liftable over any Noetherian integral domain R
of characteristic zero via any morphism Spec k ÝÑ SpecR induced by a surjective
homomorphism R ÝÑ k.

Proof. By [103, Theorem 1.2], the surface X satisfies (ND). Hence the assertion
follows from Proposition 5.3.2.

Proposition 5.6.5. Let X be a Du Val del Pezzo surface of type 4A2 in p “ 3.
Then X is not log liftable over W pkq.

Proof. We note thatX satisfies (NB) by Proposition 5.4.2. Suppose by contradiction
that X is log liftable over W pkq. Take π : Y ÝÑ X as the minimal resolution and
pY , Eq as a W pkq-lifting of pY,Eπq. We follow the notation used in the proof of
Proposition 5.3.2. Then the blow-up ZK ÝÑ YK at the base point of | ´KYK

| gives
the morphism fK : ZK ÝÑ P1

K associated to the anti-canonical linear system. Let
G be the strict transform of EK “

ř8
i“1Ei,K in ZK . Then fKpGq consists of four

K-rational points. We fix coordinates of P1
K such that fpGq “ t0, 1,8, αu for some

α P P1
Kzt0, 1,8u.

On the other hand, by Proposition 5.3.2, XC is the del Pezzo surface of degree
one of type 4A2. By [103, Table 4.1], the blow-up ZC ÝÑ YC at the base point
of | ´ KYC | gives an elliptic fibration fC : ZC ÝÑ P1

C with four singular fibers of
type I3. Since fKpGq Ă P1

C is the singular fiber locus of fC, [8, Théorème] now
yields the existence of σ P AutP1

C which sends fKpGq to t1, ω, ω2,8u, where ω is a
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primitive cube root of unity. An easy computation shows that α “ ´ω and hence
ω P K. However, by the Eisenstein criterion and the Gauss lemma, the cyclotomic
polynomial t2 ` t` 1 is irreducible in Krts, a contradiction. Therefore pY,Eπq does
not lift to W pkq.

Remark 5.6.6. One question still unanswered is whether Xp4A2q in p “ 3 is log
liftable over any Noetherian integral domain of characteristic zero.

Remark 5.6.7. As we saw in the proof of Propositions 5.5.9, 5.5.20, and 5.5.22 (resp.
Proposition 5.5.1 (4)), the surfaces as in Proposition 5.6.4 (resp. Proposition 5.6.5)
are obtained from the configuration of all the lines in P2

k defined over Fp, which is not
realizable in P2

C by the Hirzebruch inequality for line arrangements (see [47] and [86,
Example 3.2.2]). This is the reason why we cannot apply the proof of Proposition
5.6.1 for such surfaces.

5.7 Kodaira type vanishing theorem

In this section, we determine all the Du Val del Pezzo surfaces which violate the
Kodaira vanishing theorem for ample Z-divisors. Note that by Theorem 1.3.3 (3),
it suffices to consider Du Val del Pezzo surfaces satisfying (NL).

Lemma 5.7.1 (cf. [59, Theorem 4.8]). Let X be a Du Val del Pezzo surface and A
an ample Z-divisor on X. If H1pX,OXp´Aqq ‰ 0, then p “ 2 and p´KX ¨ Aq “ 1.

Proof. We refer to the proof of [59, Theorem 4.8] for the details.

Proposition 5.7.2. Let X be a del Pezzo surface of type 8A1. Then there is an
ample Z-divisor A such that H1pX,OXp´Aqq ‰ 0.

Proof. We follow the notation of the proof of Proposition 5.5.22. Let π : Y ÝÑ X
be the minimal resolution and A :“ π˚pA1

1,1 ` A1
2,1 ´ A1

4,1q. Then A is ample since
ρpXq “ 1 and p´KX ¨ Aq “ 1. By Figure 5.8, we have

rπ˚As

“rA1
1,1 `

1

2
pΘ1

0,1 ` Θ1
1,1 ` Θ1

2,1 ` Θ1
3,1q ` A1

2,1 `
1

2
pΘ1

0,1 ` Θ1
1,1 ` Θ1

4,1 ` Θ1
5,1q

´ A1
4,1 ´

1

2
pΘ1

0,1 ` Θ1
1,1 ` Θ1

6,1 ` Θ1
7,1qs

“A1
1,1 ` A1

2,1 ´ A1
4,1 ` Θ1

0,1 ` Θ1
1,1 ` Θ1

2,1 ` Θ1
3,1 ` Θ1

4,1 ` Θ1
5,1

In particular, rπ˚As2 “ ´3 and p´KY ¨ rπ˚Asq “ 1. Lemma 5.3.3 now yields
H ipY,OY p´rπ˚Asqq “ H ipX,OXp´Aqq for i ě 0. Since rπ˚As is big, we have
H0pY,OY p´rπ˚Asqq “ 0.

Next assume that H2pY,OY p´rπ˚Asqq ‰ 0. Then there is an effective divisor
C „ KY ` rπ˚As by the Serre duality. Since p´KY ¨ Cq “ 0, the curve C is
a sum of p´2q-curves. Since p´2q-curves in Y are disjoint from each other, we
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have pC ¨ Θ1
0,1q P 2Z. However, pC ¨ Θ1

0,1q “ prπ˚As ¨ Θ1
0,1q “ ´1 by Figure 5.8, a

contradiction.
Combining these results and the Riemann-Roch theorem, we conclude that

dimkH
1
pX,OXp´Aqq “ dimkH

1
pY,OY p´rπ˚Asqq

“ ´χpY,OY p´rπ˚Asqq

“ ´pχpY,OY q `
1

2
pp´rπ˚Asq2 ` p´KY ¨ ´rπ˚Asqqq “ 1.

Therefore H1pX,OXp´Aqq ‰ 0.

Proposition 5.7.3. Let X be a del Pezzo surface of type 4A1 ` D4. Then

H1
pX,OXp´Aqq “ 0

for any ample Z-divisor A.

Proof. Let π : Y ÝÑ X be the minimal resolution. By Proposition 5.4.1 (4), there
exist a rational quasi-elliptic surface Z of type (f) and a section O such that the
contraction of O gives a birational morphism g : Z ÝÑ Y . In what follows, we use
the notation of Figure 5.3. For a birational morphism Z ÝÑ S and a curve C Ă Z,
we denote pCqS the strict transform of C in S.

By Lemma 5.4.5 (8), the contraction of pΘ1,0qY gives a morphism h : Y ÝÑ W
to the minimal resolution of the Du Val del Pezzo surface V of type 7A1. Let
ξ : W ÝÑ V be the contraction of all the p´2q-curves and ν “ ξ ˝ h. By Corollary
5.5.11 (2), the class divisor group of W is generated by pΘ1,4qW , pR2qW , pQ2qW ,
pR1qW , pQ1qW , pP3qW , pP2qW , and any one of p´2q-curves. Since the point hppΘ1,0qY q

lies on pΘ1,4qW and π contracts all the p´2q-curves, the class divisor group of X is
generated by pR2qX , pQ2qX , pR1qX , pQ1qX , pP3qX , pP2qX , and pΘ1,0qX , whose anti-
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canonical degrees are one. Then an easy computation shows the following.

π˚
pΘ1,0qX “ pΘ1,0qY ` pΘ1,1qY ` pΘ1,2qY ` pΘ1,3qY ` 2pΘ1,4qY

“ 2ppΘ1,0qY `
1

2
pΘ1,1qY `

1

2
pΘ1,2qY `

1

2
pΘ1,3qY ` pΘ1,4qY q ´ pΘ1,0qY

“ 2ν˚
pΘ1,4qV ´ pΘ1,0qY ,

π˚
pQ1qX “ pQ1qY `

1

2
pΘ0,1qY `

1

2
pΘα1,1qY

`
1

2
pΘ1,1qY ` pΘ1,2qY `

1

2
pΘ1,3qY ` pΘ1,4qY

“ ppQ1qY `
1

2
pΘ0,1qY `

1

2
pΘα1,1qY `

1

2
pΘ1,2qY q

` ppΘ1,0qY `
1

2
pΘ1,1qY `

1

2
pΘ1,2qY `

1

2
pΘ1,3qY ` pΘ1,4qY q ´ pΘ1,0qY

“ ν˚
pQ1qV ` ν˚

pΘ1,4qV ´ pΘ1,0qY ,

π˚
pR1qX “ ν˚

pR1qV ` ν˚
pΘ1,4qV ´ pΘ1,0qY ,

π˚
pQ2qX “ ν˚

pQ2qV ` ν˚
pΘ1,4qV ´ pΘ1,0qY ,

π˚
pR2qX “ ν˚

pR2qV ` ν˚
pΘ1,4qV ´ pΘ1,0qY ,

π˚
pP2qX “ ν˚

pP2qV ` ν˚
pΘ1,4qV ´ pΘ1,0qY ,

π˚
pP3qX “ ν˚

pP3qV ` ν˚
pΘ1,4qV ´ pΘ1,0qY .

Now let us show the assertion. Let A be an ample Z-divisor on X. By Lemma
5.3.3, we only have to show that H1pY,OY p´rπ˚Asqq “ 0. By Lemma 5.7.1, we
may assume that p´KX ¨ Aq “ 1. Then A „ n1pR2qX ` n2pQ2qX ` n3pR1qX `

n4pQ1qX `n5pP3qX `n6pP2qX `n7pΘ1,0qX with n1`¨ ¨ ¨`n7 “ 1. Set B “ n1pR2qV `

n2pQ2qV ` n3pR1qV ` n4pQ1qV ` n5pP3qV ` n6pP2qV ` n7pΘ1,4qV . Then we obtain
π˚A “ ν˚pB ` pΘ1,4qV q ´ pΘ1,0qY . Since ν sends Eh “ pΘ1,0qY to a smooth point of
V , the support of rν˚pB ` pΘ1,4qV qs ´ ν˚pB ` pΘ1,4qV q is contained in Eξ. Since Eh

is disjoint from Eξ in Y , we obtain pEh ¨ rπ˚Asq “ pEh ¨ ν˚pB ` pΘ1,4qV q ´ Ehq “ 1.
Hence we have an exact sequence

0 // OY p´rν˚pB ` pΘ1,4qV qsq // OY p´rπ˚Asq // OEh
p´1q // 0.

Thus H1pY,OY p´rπ˚Asqq – H1pY,OY p´rν˚pB ` pΘ1,4qV qsqq. Since pY,Eνq is a log
smooth pair, Lemma 5.3.3 yieldsH1pY,OY p´rν˚pB`pΘ1,4qV qsqq – H1pV,OV p´pB`

pΘ1,4qV qqq. Since p´KV ¨ B ` pΘ1,4qV q “ 2, Lemma 5.7.1 yields H1pV,OV p´pB `

pΘ1,4qV qqq – 0. Hence the assertion holds.

Now we can prove Theorem 1.3.6.

Proof of Theorem 1.3.6. By Theorem 1.3.3, it suffices to show the assertions when
X satisfies (NB), i.e., X is listed in Table 1.1. Then the assertions (1) and (2)
follow from Propositions 5.6.1–5.6.5 and [31, Theorem 2, Table (II)] respectively.
Finally, we show the assertion (3). Suppose that X satisfies (NK). Then p “ 2 and
X satisfies (NL) by Lemma 5.7.1 and Theorem 1.3.3 (3) respectively. The assertion
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(1) now shows that DynpXq “ 7A1, 8A1, or 4A1 ` D4. If DynpXq “ 7A1, then X
satisfies (NK) by [22, Theorem 4.2 (6)] with pd, q1, q2q “ p3, 1, 2q. If DynpXq “ 8A1,
then X satisfies (NK) by Proposition 5.7.2. If DynpXq “ 4A1 ` D4, then X does
not satisfy (NK) by Proposition 5.7.3. Hence we get the assertion (3).

5.8 Classification of Du Val del Pezzo surface of

rank one

In this section, we prove the following theorem.

Theorem 5.8.1. Let X be a Du Val del Pezzo surface over an algebraically closed
field of characteristic p ą 0. Suppose that X is singular and the Picard rank of X
is one. Then the following holds.

(1) The Dynkin types of X and the number of the isomorphism classes of the del
Pezzo surfaces of the given Dynkin type are listed in Table 5.6.

(2) When p “ 2 (resp. p “ 3), X is uniquely determined up to isomorphism by
its Dynkin type with Artin coindices except when its Dynkin type is D8, 2D4,
4A1 ` D4, or 8A1 (resp. 2D4).

Table 5.6

Dynkin type E8 D8

Characteristic p “ 2, 3 p ą 3 p “ 2 p ą 2
No. of isomorphism classes 3 2 8 1

A8 A1 ` A7 2A4 A1 ` A2 ` A5 A3 ` D5 4A2 2A1 ` D6

p ą 0
1 1 1 1 1 1 1

A2 ` E6 A1 ` E7 2D4 2A1 ` 2A3 4A1 ` D4 8A1 A7

p ą 0 p ą 2 p “ 2 p ą 0
2 2 8 1 8 8 1

E7 A1 ` D6 A2 ` A5 3A1 ` D4

p “ 2 p “ 3 p ą 3 p “ 2 p ą 2 p ą 0
3 2 1 2 1 1 1

A1 ` 2A3 7A1 E6 A1 ` A5 3A2 2A1 ` A3

p ą 0 p “ 2 p “ 2, 3 p ą 3 p ą 0 p ą 0
1 1 2 1 1 1 1

D5 A4 A1 ` A2 A1

p “ 2 p ą 2 p ą 0 p ą 0 p ą 0
2 1 1 1 1
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When p ą 3, the assertion (1) has already proven by [67, Theorem B.7]. For this
reason, we assume that p “ 2 or 3 in this section. The proof is similar in spirit to
[103]. However, we have to follow Ye’s method carefully because the classification
of extremal rational elliptic surfaces in p “ 2 or 3 is quite different from that in
p ą 3 and rational quasi-elliptic surfaces appear in p “ 2 or 3. We also investigate
Dyn1

pXq of some Du Val del Pezzo surfaces X to get the assertion (2).

5.8.1 Defining equations of Du Val del Pezzo surfaces

In this section, we calculate defining equations satisfying (NL).

Proposition 5.8.2. There are coordinates rx : y : z : ws of Pkp1, 1, 1, 2q such that the
defining equation of the Du Val del Pezzo surface Xp7A1q is w

2 `xyzpx`y`zq “ 0.

Proof. Let Y be the minimal resolution of X. Fix coordinates rs : t : us of P2
k.

Then there is the blow-down h : Y ÝÑ P2
k such that hpEhq Ă P2

k is the set of closed
points defined over F2 by Proposition 5.5.9. Set x :“ stps ` tq, y :“ tupt ` uq, z :“
uspu ` sq, and w :“ stups ` tqpt ` uqpu ` sq. Then x, y, z P H0pP2

k, h˚OY p´KY qq

and w P H0pP2
k, h˚OY p´2KY qq because H0pP2

k, h˚OY p´nKY qq Ă H0pP2
k,OP2

k
p3nqq

consists of elements which have zero of order at least n at each points in hpEhq

for n ě 1. Moreover, it is easy to check that tx2, y2, z2, xy, yz, zx, wu is a basis of
H0pP2

k, h˚OY p´2KY qq. Hence X is the closure of the image of the map

Φ: P2
k ÝÑ Pkp1, 1, 1, 2q

rs : t : us ÞÝÑ rx : y : z : ws.

Now an easy computation gives the desired equation.

Proposition 5.8.3. Let X be a Du Val del Pezzo surface of degree one which is
not log liftable. When p “ 2, set Dn Ă Pn

k as the complement of the union of all
the hyperplane sections defined over F2 for n “ 1, 2 in addition. Then the defining
equation of X in Pkp1, 1, 2, 3q is listed as in Table 5.7.

Proof. We give the proof only for the case DynpXq “ 8A1; the other cases are left
to the reader. Let Y be the minimal resolution of X. Fix coordinates rs : t : us

of P2
k. Then there is t “ ra : b : cs P D2 and the blow-down h : Y ÝÑ P2

k such
that t P hpEhq and hpEhqzttu Ă P2

k is the set of closed points defined over F2 by
Proposition 5.5.22. Set

x :“cpa ` bqstps ` tq ` apb ` cqtupt ` uq ` bpc ` aquspu ` sq,

y :“c2stps ` tq ` a2tupt ` uq ` b2uspu ` sq,

z :“ppb ` cqs ` pc ` aqt ` pa ` bquq
2stups ` t ` uq, and

w :“ppb ` cqs ` apt ` uqqppc ` aqt ` bpu ` sqqppa ` bqu ` cps ` tqq

ˆ stups ` tqpt ` uqpu ` sq.
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Table 5.7

characteristic Dynkin type defining equation of X Ă Pkp1, 1, 2, 3qrx:y:z:ws

p “ 3 4A2 w2 ` z3 ´ x2y2px ` yq2 “ 0
p “ 2 4A1 ` D4 w2 ` z3 ` abx2z2

`y4z ` pa2 ` ab ` b2qx2y2z
`abpa ` bqx3yz “ 0 for some ra : bs P D1

8A1 w2 ` abcz3

`ppab ` bc ` caq2 ` abcpa ` b ` cqqy2z2

`pa ` b ` cqpa ` bqpb ` cqpc ` aqxyz2

`pab ` bc ` caq2x2z2

`pa ` b ` cq2pa ` bqpb ` cqpc ` aqxy3z
`pa ` b ` cq2ppa ` b ` cq3 ` abcqx2y2z
`pa ` b ` cq2pa ` bqpb ` cqpc ` aqx3yz
`pa ` b ` cq2abcx4z
`pa ` bq2pb ` cq2pc ` aq2y6

`ppa ` b ` cq3 ` abcq2x2y4

`pa ` bq2pb ` cq2pc ` aq2x4y2

`a2b2c2x6 “ 0 for some ra : b : cs P D2

Then we can see that x, y P H0pP2
k, h˚OY p´KY qq, z P H0pP2

k, h˚OY p´2KY qq and
w P H0pP2

k, h˚OY p´3KY qq because H0pP2
k, h˚OY p´nKY qq Ă H0pP2

k,OP2
k
p3nqq con-

sists of functions which has zero of order at least n at each points in hpEhq for
n ě 1. Moreover, it is easy to check that tx3, x2y, xy2, y3, xz, yz, wu is a basis of
H0pP2

k, h˚OY p´3KY qq. Hence X is the closure of the image of the map

Φ: P2
k ÝÑ Pkp1, 1, 2, 3q

rs : t : us ÞÝÑ rx : y : z : ws.

Now an easy computation gives the desired equation.

5.8.2 Rational genus one fibrations

In this section, we compile the results on rational extremal elliptic surfaces by
Lang [69, 70] and rational quasi-elliptic surfaces by Ito [50, 51], which we will use
in Section 5.8.

Theorem 5.8.4 ([69, 70, 52]). When p “ 2 (resp. p “ 3), the configurations of
singular fibers of extremal rational elliptic surfaces and the order of their Mordell-
Weil groups are listed in Table 5.8 (resp. Table 5.9) using Kodaira’s notation.

Moreover, there is a unique extremal rational elliptic surface with each configu-
ration of singular fibers in the table except for the type I (resp. type VI). In this case,
there are infinitely many isomorphism classes of extremal rational elliptic surfaces
with that configuration of singular fibers.
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Table 5.8

No. Singular fibers |MWpXq| No. Singular fibers |MWpXq|

I I˚
4 2 VII IV, IV˚ 3

II II˚ 1 VIII IV, I2, I6 6
III III, I8 4 IX IV˚, I1, I3 3
IV I˚

1 , I4 4 SI I9, I1, I1, I1 3
V III˚, I2 2 SII I5, I5, I1, I1 5
VI II˚, I1 1 SIII I3, I3, I3, I3 9

Table 5.9

No. Singular fibers |MWpXq| No. Singular fibers |MWpXq|

I II˚ 1 VIII I˚
1 , I1, I4 4

II II, I9 3 IX I˚
2 , I2, I2 4

III IV˚, I3 3 X I˚
4 , I1, I1 2

IV II˚, I1 1 XI III˚, I1, I2 2
V III˚, III 2 SI I8, I2, I1, I1 4
VI I˚

0 , I
˚
0 4 SII I5, I5, I1, I1 5

VII III, I3, I6 6 SIII I4, I4, I2, I2 8

Definition 5.8.5. For a smooth weak del Pezzo surface Y and the union D of all
the p´2q-curves in Y , a curve E Ă Y is called a nice exceptional curve (NEC for
short) if E is a p´1q-curve such that pE ¨ Dq “ 1.

Lemma 5.8.6. Let X be a Du Val del Pezzo surface with ρpXq “ 1 and d “ K2
X ď 7.

Let Y ÝÑ X be the minimal resolution. Then there are an extremal rational elliptic
surface or a rational quasi-elliptic surface Y0 and blow-downs tfi : Yi´1 ÝÑ Yiu1ďiďd

of p´1q-curves such that Yd “ Y and Efi is an NEC for 2 ď i ď d.

Proof. Since a general member of the anti-canonical linear system is a curve with
arithmetic genus one by Theorem 5.1.3 (3), the same proof as in [67, Theorem
B.6] remains valid for this case after admitting for Y0 to be a rational quasi-elliptic
surface.

In the remaining of this section, we follow the notation in Tables 5.8–5.1. In
addition, we use the following notation.

Definition 5.8.7. We denote by Y m
n plq the successive blow-down of a section and

NECs from an extremal rational elliptic surface or a rational quasi-elliptic surface of
type m such that the anti-canonical degree is n and the configuration of p´2q-curves
is the Dynkin diagram l.

5.8.3 Characteristic two

In this subsection, we treat the case where p “ 2. Let X be a singular Du Val
del Pezzo surface with Picard rank one. By the same proof as in [103, pp.14–15],
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we obtain that K2
X ‰ 7, 9, and X is the quadric cone in P3

k when K2
X “ 8. For this

reason, we assume that K2
X ď 6. We follow the notation of Lemma 5.8.6.

We start with the case where K2
X “ 1. The pairs of Y0 and Y “ Y1 are listed as

in Table 5.10, where n is the number of the NECs on Y1.

Table 5.10

Type of Y0 Y1 n Type of Y0 Y1 n

I Y I
1 pD8q 2 SII Y SII

1 p2A4q 0
II Y II

1 pE8q 1 SIII Y SIII
1 p4A2q 0

III Y III
1 pA1 ` A7q 1 (a) Y

(a)
1 pE8q 1

IV Y IV
1 pA3 ` D5q 1 (b) Y

(b)
1 pD8q 2

V Y V
1 pA1 ` E7q 1 (c) Y

(c)
1 pA1 ` E7q 1

VI Y VI
1 pE8q 1 (d) Y

(d)
1 p2D4q 2

VII Y VII
1 pA2 ` E6q 1 (e) Y

(e)
1 p2A1 ` D6q 1

VIII Y VIII
1 pA1 ` A2 ` A5q 0 (f) Y

(f)
1 p4A1 ` D4q 1

IX Y IX
1 pA2 ` E6q 1 (g) Y

(g)
1 p8A1q 0

SI Y SI
1 pA8q 2

The isomorphism class of Y1 is independent of the choice of Ef1 by virtue of the
MWpY0q-action. Hence there is one-to-one correspondence between the isomorphism
classes of Y0 and those of Y1. Theorems 5.8.4 and 5.2.2 now show the assertion (1)
of Theorem 5.8.1 in the case where K2

X “ 1 and p “ 2.
Next, we consider the case where K2

X “ 2. Then Y “ Y2, which is the blow-down
of an NEC in one of Y1 listed in Table 5.10. The pairs of Y1 and Y2 are listed as in
Table 5.11, where n is the number of the NECs on Y2.

Table 5.11

Y1 Y2 n Y1 Y2 n

Y I
1 pD8q Y I

2 pA7q 2 Y SI
1 pA8q Y SI

2 pA2 ` A5q 1

Y I
1 pD8q Y I

2 pA1 ` D6q 1 Y
(a)
1 pE8q Y

(a)
2 pE7q 1

Y II
1 pE8q Y II

2 pE7q 1 Y
(b)
1 pD8q Y

(b)
2 pA7q 2

Y III
1 pA1 ` A7q Y III

2 pA1 ` 2A3q 0 Y
(b)
1 pD8q Y

(b)
2 pA1 ` D6q 1

Y IV
1 pA3 ` D5q Y IV

2 pA1 ` 2A3q 0 Y
(c)
1 pA1 ` E7q Y

(c)
2 pA1 ` D6q 1

Y V
1 pA1 ` E7q Y V

2 pA1 ` D6q 1 Y
(d)
1 p2D4q Y

(d)
2 p3A1 ` D4q 0

Y VI
1 pE8q Y VI

2 pE7q 1 Y
(e)
1 p2A1 ` D6q Y

(e)
2 p3A1 ` D4q 0

Y VII
1 pA2 ` E6q Y VII

2 pA2 ` A5q 1 Y
(f)
1 p4A1 ` D4q Y

(f)
2 p7A1q 0

Y IX
1 pA2 ` E6q Y IX

2 pA2 ` A5q 1

Remark 5.8.8. The isomorphism class of Y SI
2 pA2 ` A5q is independent of the choice

of Ef2 because MWpY SI
0 q – Z{3Z and two NECs in Y SI

1 pA8q are the images of the
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sections in Y SI
0 . The isomorphism class of Y

(d)
2 p3A1 `D4q is also independent of the

choice of Ef2 because it maps to the other NEC in Y
(d)
1 p2D4q by the involution τ on

Y
(d)
1 p2D4q constructed as in the proof of Proposition 5.5.18.

Lemma 5.8.9. We have the following isomorphisms:

(1) Y I
2 pA7q – Y

(b)
2 pA7q.

(2) Y I
2 pA1 ` D6q – Y V

2 pA1 ` D6q.

(3) Y III
2 pA1 ` 2A3q – Y IV

2 pA1 ` 2A3q.

(4) Y VII
2 pA2 ` A5q – Y IX

2 pA2 ` A5q – Y SI
2 pA2 ` A5q.

(5) Y
(b)
2 pA1 ` D6q – Y

(c)
2 pA1 ` D6q.

(6) Y
(d)
2 p3A1 ` D4q – Y

(e)
2 p3A1 ` D4q.

Proof. We give the proof only for the assertions (1), (2), (5), and (6): the proof of
the assertions (3) and (4) run as in [103, Claim 4.5 (4) and (2)] respectively.
(1): Let Z ÝÑ Y I

2 pA7q be the contraction of two sections of an extremal rational
elliptic surface of type I. Then there is one to one correspondence between the
isomorphism classes of Y I

2 pA7q and those of Z, which are uniquely determined by
those j-invariants α P k˚ by [70, p.432].

On the other hand, Y 1 :“ Y
(b)
2 pA7q is obtained from the rational quasi-elliptic

surface of type (b) by contracting two sections. Fix coordinates rx : y : zs of P2
k

and take C :“ tx3 ` y2z “ 0u. By [51, Remark 4], Y 1 is also obtained from P2
k

by blowing up four points on C infinitely near r0 : 1 : 0s and three points on C
infinitely near r1 : 1 : 1s. Moreover, the push forward of | ´ KY 1 | to P2

k is generated
by x3 ` y2z, px ` zq2z and px ` zqpy ` zqz. Now take Cα as the strict transform of

tx3 ` y2z ` α
1
8 px ` zqpy ` zqz “ 0u Ă P2

k in Y 1. Then Cα is a smooth member of
| ´KY 1 | whose j-invariant equals α. By blowing up Y 1 at the intersection of Cα and
two NECs on Y 1, we obtain the extremal rational elliptic surface of type I whose
j-invariant is α, which is isomorphic to Z. Therefore Y I

2 pA7q – Y
(b)
2 pA7q.

(2): Let Z ÝÑ Y I
2 pA1 ` D6q be the blow-up at a general point of the unique NEC.

Then | ´KZ | has a smooth member and Z contains eight p´2q-curves whose config-
uration is the Dynkin diagram A1 `E7. Since members of the anti-canonical linear
system of Y

(c)
1 pA1`E7q are all singular, Table 5.10 now shows that Z – Y V

1 pA1`E7q.
Hence Y I

2 pA1 ` D6q – Y V
2 pA1 ` D6q.

(5): It follows from Proposition 5.5.5.
(6): It follows from Proposition 5.5.7.

Lemma 5.8.10. We have the following:

(1) Y I
2 pA1 ` D6q fl Y

(b)
2 pA1 ` D6q.

(2) Y
(a)
2 pE7q fl Y II

2 pE7q and Y
(a)
2 pE7q fl Y VI

2 pE7q.
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Proof. A general member of the anti-canonical linear system of Y I
2 pA1 ` D6q is

smooth and that of Y
(b)
2 pA1 ` D6q is singular by Proposition 5.5.5. Hence we have

the assertion (1). Similarly, Proposition 5.5.3 gives the assertion (2).

We will show that Y II
2 pE7q fl Y VI

2 pE7q in Corollary 5.8.14. In conclusion, there
are 10 isomorphism classes of X with K2

X “ 2.
Next, we deal with the case where K2

X “ 3. Then Y “ Y3, which is the blow-
down of an NEC in one of Y2 listed in Table 5.11. The pairs of Y2 and Y3 are listed
as in Table 5.12, where n is the number of the NECs on Y3.

Table 5.12

Y2 Y3 n Y2 Y3 n

Y I
2 pA7q Y I

3 pA1 ` A5q 1 Y VII
2 pA2 ` A5q Y VII

3 p3A2q 0

Y II
2 pE7q Y II

3 pE6q 1 Y
(a)
2 pE7q Y

(a)
3 pE6q 1

Y V
2 pA1 ` D6q Y V

3 pA1 ` A5q 1 Y
(b)
2 pA1 ` D6q Y

(b)
3 pA1 ` A5q 1

Y VI
2 pE7q Y VI

3 pE6q 1

Remark 5.8.11. The isomorphism class of Y I
3 pA1 `A5q is independent of the choice

of Ef3 because the MWpY0q-action naturally descends to Y I
2 pA7q, which sends one

NEC to the other.

Lemma 5.8.12. We have the isomorphisms Y V
3 pA1`A5q – Y I

3 pA1`A5q – Y
(b)
3 pA1`

A5q.

Proof. It follows from Lemma 5.8.9 (1) and (2).

Lemma 5.8.13. It holds that Y
(a)
3 pE6q – Y II

3 pE6q and Y
(a)
3 pE6q fl Y VI

3 pE6q.

Proof. Fix coordinates rx : y : zs of P2
k and let C :“ tx3 ` y2z “ 0u. By Proposition

5.5.3, Y
(a)
3 pE6q is obtained by blowing up six points on C infinitely near t :“ r0 : 1 :

0s. The anti-canonical linear system of Y
(a)
3 pE6q corresponds to the linear system

Λ of cubic curves intersecting with C at t with multiplicity at least six. Then
Λ “ tapx3 ` y2zq ` bz3 ` cxz2 ` dyz2|ra : b : c : ds P P3

ku. It is easy to check
that r0 : 1 : 0 : 0s corresponds to the member 3tz “ 0u and the locus of singular
members of Λ is tad “ 0u. In particular, a pencil in Λ passing through r0 : 1 : 0 : 0s

either consists of singular members or contains exactly one singular member, which
is 3tz “ 0u.

On the other hand, we recall that the configuration of singular fibers of the
extremal rational elliptic surface of type II (resp.VI) is pII˚

q (resp. pII˚, I1q), where
we use Kodaira’s notation. Since an elimination of a general pencil in Λ passing
through r0 : 1 : 0 : 0s gives the extremal rational elliptic surface of type II, we

conclude that Y
(a)
3 pE6q – Y II

3 pE6q. On the other hand, there is no pencil in Λ
passing through r0 : 1 : 0 : 0s which contains exactly two singular members. Hence

Y
(a)
3 pE6q fl Y VI

3 pE6q.
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Corollary 5.8.14. It holds that Y II
2 pE7q fl Y VI

2 pE7q

Proof. Suppose the assertion of the lemma is false. Then Y II
3 pE6q – Y VI

3 pE6q, a
contradiction to Lemma 5.8.13.

Therefore there are four isomorphism classes of X with K2
X “ 3.

Next, we deal with the case where K2
X “ 4. Then Y “ Y4, which is the blow-

down of an NEC in one of Y3 listed in Table 5.12. The pairs of Y3 and Y4 are listed
as in Table 5.13, where n is the number of the NECs on Y4.

Table 5.13

Y3 Y4 n

Y I
3 pA1 ` A5q Y I

4 p2A1 ` A3q 0
Y VI
3 pE6q Y VI

4 pD5q 1

Y
(a)
3 pE6q Y

(a)
4 pD5q 1

Lemma 5.8.15. It holds that Y
(a)
4 pD5q fl Y VI

4 pD5q.

Proof. We follow the notation of the proof of Lemma 5.8.13. Then Y
(a)
4 pD5q is

obtained by blowing up five points on C Ă P2
k infinitely near t and the anti-canonical

linear system of Y
(a)
4 pD5q corresponds to the linear system Λ1 “ tapx3 `y2zq ` bz3 `

cxz2 ` dyz2 ` ex2z|ra : b : c : d : es P P4
ku. It is easy to check that r0 : 1 : 0 : 0 : 0s

corresponds to the member 3tz “ 0u and the locus of singular members of Λ1 is
tad “ 0u. In particular, there is no pencil in Λ1 passing through r0 : 1 : 0 : 0 : 0s

which contains exactly two singular members. Hence Y
(a)
4 pD5q fl Y VI

4 pD5q.

Therefore there are three isomorphism classes of X with K2
X “ 4.

Finally, we deal with the case where K2
X “ 5 or 6. When K2

X “ 5, the surface Y

is isomorphic to either Y
(a)
5 pA4q or Y VI

5 pA4q by Table 5.13.

Lemma 5.8.16. It holds that Y
(a)
5 pA4q – Y VI

5 pA4q.

Proof. We follow the notation of the proof of Lemma 5.8.13. Then Y
(a)
5 pA4q is

obtained by blowing up four points on C Ă P2
k infinitely near t and the anti-canonical

linear system of Y
(a)
5 pA4q corresponds to the linear system Λ2 “ tapx3 `y2zq ` bz3 `

cxz2 ` dyz2 ` ex2z ` fxyz|ra : b : c : d : e : f s P P5
ku. Since tx3 ` y2z ` xyz “ 0u

is a nodal cubic, an elimination of the pencil xz3, x3 ` y2z ` xyzy Ă Λ2 gives the

extremal rational elliptic surface of type VI. Hence Y
(a)
5 pA4q – Y VI

5 pA4q.

By blowing down the unique NEC in Y
(a)
5 pA4q, we obtain Y

(a)
6 pA1 ` A2q.

Now we can prove Theorem 5.8.1 in the case where p “ 2.

Proof of Theorem 5.8.1 in the case where p “ 2. The assertion (1) follows from the
above arguments in this subsection. The assertion (2) will be proved once we prove
the proposition below.
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Proposition 5.8.17. Let X be a Du Val del Pezzo surface with ρpXq “ 1 and
p “ 2. If DynpXq ‰ D8, 2D4, 4A1 ` D4, or 8A1, then its isomorphism class is
uniquely determined by its Dynkin type with Artin coindices.

Proof. Let Y be the minimal resolution of X. By Theorem 5.8.1 (1), we may assume
that DynpXq “ D5, E6, E7, A1 ` D6, E8, A1 ` E7, or A2 ` E6.

When DynpXq ‰ A1 ` E7 or A2 ` E6 in addition, we calculate the defining
equation of X as in the proof of Propositions 5.8.2 and 5.8.3; firstly, we choose a
suitable blow-down h : Y ÝÑ P2

k and calculate a basis of Λ :“ h˚|´nKY | with n “ 1
(resp. “ 2, “ 3) when K2

Y ě 3 (resp. “ 2, “ 1). Then X is the closure of the image
of the map from P2

k to P :“ Pd
k with d “ K2

Y (resp. Pkp1, 1, 1, 2q, Pkp1, 1, 2, 3q) defined
by Λ when K2

Y ě 3 (resp. “ 2, “ 1). Finally we compute the defining equation of
X in P to determine Dyn1

pXq. As a result, we get the defining equation of X as
in Table 5.14, where rx0 : ¨ ¨ ¨ : x4s stands for coordinates of P4

k and rx : y : z : ws

stands for coordinates of P3
k,Pkp1, 1, 1, 2q, or Pkp1, 1, 2, 3q.

Table 5.14

K2
Y Y defining equation of X Ă P Dyn1

pXq

4
Y

(a)
4 pD5q x22 ` x1x4, x0x1 ` x2x4 ` x23 D0

5

Y VI
4 pD5q x22 ` x1x4, x0x1 ` x2x4 ` x23 ` x2x3 D1

5

3
Y

(a)
3 pE6q wz2 ` x3 ` y2z E0

6

Y VI
3 pE6q wz2 ` x3 ` y2z ` xyz E1

6

2

Y
(a)
2 pE7q w2 ` yz3 ` xy3 E0

7

Y II
2 pE7q w2 ` yz3 ` xy3 ` y2w E2

7

Y VI
2 pE7q w2 ` yz3 ` xy3 ` yzw E3

7

Y
(b)
2 pA1 ` D6q w2 ` xyz2 ` y3z A1 ` D0

6

Y I
2 pA1 ` D6q w2 ` xyz2 ` y3z ` yzw A1 ` D2

6

1
Y

(a)
1 pE8q w2 ` z3 ` xy5 E0

8

Y II
1 pE8q w2 ` z3 ` xy5 ` y3w E3

8

Y VI
1 pE8q w2 ` z3 ` xy5 ` yzw E4

8

Finally, suppose that DynpXq “ A1 ` E7 or A2 ` E6. Then a suitable choice
of blow-down Y ÝÑ Y 1 gives the minimal resolution Y 1 of a del Pezzo surface of
Picard rank one of type E7 or E6 as in Table 5.15.

Table 5.15

Y Y 1 Dyn1
pXq

Y
(c)
1 pA1 ` E7q Y

(a)
2 pE7q A1 ` E0

7

Y V
1 pA1 ` E7q Y VI

2 pE7q A1 ` E3
7

Y VII
1 pA2 ` E6q Y

(a)
3 pE6q A2 ` E0

6

Y XI
1 pA2 ` E6q Y VI

3 pE6q A2 ` E1
6

Combining these results, we get the assertion.
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5.8.4 Characteristic three

In this subsection, we treat the case where p “ 3. Let X be a singular Du Val
del Pezzo surface with Picard rank one. As in the case where p “ 2, we may assume
that K2

X ď 6. We follow the notation of Lemma 5.8.6.
We start with the case where K2

X “ 1. The pairs of Y0 and Y “ Y1 are listed as
in Table 5.16, where n is the number of the NECs on Y1.

Table 5.16

Type of Y0 Y1 n Type of Y0 Y1 n

I Y I
1 pE8q 1 X Y X

1 pD8q 2
II Y II

1 pA8q 2 XI Y XI
1 pA1 ` E7q 1

III Y III
1 pA2 ` E6q 1 SI Y SI

1 pA1 ` A7q 1
IV Y IV

1 pE8q 1 SII Y SII
1 p2A4q 0

V Y V
1 pA1 ` E7q 1 SIII Y SIII

1 p2A1 ` 2A3q 0

VI Y VI
1 p2D4q 2 (1) Y

(1)
1 pE8q 1

VII Y VII
1 pA1 ` A2 ` A5q 0 (2) Y

(2)
1 pA2 ` E6q 1

VIII Y VIII
1 pA3 ` D5q 1 (3) Y

(3)
1 p4A2q 0

IX Y IX
1 p2A1 ` D6q 1

By virtue of the MWpY0q-action, there is one to one correspondence between the
isomorphism classes of Y0 and those of Y1. Theorems 5.8.4 and 5.2.1 now show the
assertion (1) of Theorem 5.8.1 in the case where K2

X “ 1 and p “ 3.
Next, we consider the case where K2

X “ 2. Then Y “ Y2, which is the blow-down
of an NEC in one of Y1 listed in Table 5.16. The pairs of Y1 and Y2 are listed as in
Table 5.17, where n is the number of the NECs on Y2.

Table 5.17

Y1 Y2 n Y1 Y2 n

Y I
1 pE8q Y I

2 pE7q 1 Y IX
1 p2A1 ` D6q Y IX

2 p3A1 ` D4q 0
Y II
1 pA8q Y II

2 pA2 ` A5q 1 Y X
1 pD8q Y X

2 pA7q 2
Y III
1 pA2 ` E6q Y III

2 pA2 ` A5q 1 Y X
1 pD8q Y X

2 pA1 ` D6q 1
Y IV
1 pE8q Y IV

2 pE7q 1 Y XI
1 pA1 ` E7q Y XI

2 pA1 ` D6q 1
Y V
1 pA1 ` E7q Y V

2 pA1 ` D6q 1 Y SI
1 pA1 ` A7q Y SI

2 pA1 ` 2A3q 0

Y VI
1 p2D4q Y VI

2 p3A1 ` D4q 0 Y
(1)
1 pE8q Y

(1)
2 pE7q 1

Y VIII
1 pA3 ` D5q Y VIII

2 pA1 ` 2A3q 0 Y
(2)
1 pA2 ` E6q Y

(2)
2 pA2 ` A5q 1

Analysis similar to that in Remark 5.8.8 shows that Y II
2 pA2 `A5q and Y

VI
2 p3A1 `

D4q are unique up to isomorphism.

Lemma 5.8.18. We have the following isomorphisms:

(1) Y III
2 pA2 ` A5q – Y II

2 pA2 ` A5q – Y
(2)
2 pA2 ` A5q.
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(2) Y V
2 pA1 ` D6q – Y X

2 pA1 ` D6q – Y XI
2 pA1 ` D6q.

(3) Y VI
2 p3A1 ` D4q – Y IX

2 p3A1 ` D4q.

(4) Y VIII
2 pA1 ` 2A3q – Y SI

2 pA1 ` 2A3q.

Proof. We give the proof only for the isomorphism Y II
2 pA2 ` A5q – Y

(2)
2 pA2 ` A5q:

the proof of the other assertions run as in [103, Claim 4.5].

Let Z ÝÑ Y
(2)
2 pA2 ` A5q be the blow-up at a general point of a p´1q-curve

which is not an NEC. Then Z contains eight p´2q-curves whose configuration is the

Dynkin diagram A8. Hence Z “ Y II
1 pA8q and Y II

2 pA2 ` A5q – Y
(2)
2 pA2 ` A5q.

Lemma 5.8.19. It holds that Y
(1)
2 pE7q – Y I

2 pE7q and Y
(1)
2 pE7q fl Y IV

2 pE7q.

Proof. First we recall the construction of Y
(1)
2 pE7q. Fix coordinates rx : y : zs

of P2
k and let C :“ tx3 ` y2z “ 0u. By [50, Example 3.8], an elimination of the

pencil xx3 ` y2z, z3y is the rational quasi-elliptic surface of type (1). Thus Y
(1)
2 pE7q

is obtained by blowing up seven points on C infinitely near t :“ r0 : 1 : 0s and

the anti-canonical linear system of Y
(1)
2 pE7q corresponds to the linear system Λ “

tapx3 ` y2zq ` bz3 ` cxz2|ra : b : cs P P2
ku. It is easy to check that r0 : 1 : 0s

corresponds to the member 3tz “ 0u and the locus of singular members of Λ is
tac “ 0u. In particular, a pencil in Λ passing through r0 : 1 : 0s either consists of
singular members or contains exactly one singular member, which is 3tz “ 0u.

On the other hand, we recall that the configuration of singular fibers of the
extremal rational elliptic surface of type I (resp. IV) is pII˚

q (resp. pII˚, I1q), where we
use Kodaira’s notation. Since an elimination of a general pencil in Λ passing through
r0 : 1 : 0s gives the extremal rational elliptic surface of type I, we conclude that

Y
(1)
2 pE7q – Y I

2 pE7q. On the other hand, there is no pencil in Λ passing through r0 :

1 : 0s which contains exactly two singular members. Hence Y
(1)
2 pE7q fl Y IV

2 pE7q

In conclusion, there are seven isomorphism classes of X with K2
X “ 2.

Next, we deal with the case where K2
X “ 3. Then Y “ Y3, which is the blow-

down of an NEC in one of Y2 listed in Table 5.17. The pairs of Y2 and Y3 are listed
as in Table 5.18, where n is the number of the NECs on Y3.

Table 5.18

Y2 Y3 n Y2 Y3 n

Y II
2 pA2 ` A5q Y II

3 p3A2q 0 Y X
2 pA7q Y X

3 pA1 ` A5q 1

Y IV
2 pE7q Y IV

3 pE6q 1 Y
(1)
2 pE7q Y

(1)
3 pE6q 1

Y V
2 pA1 ` D6q Y V

3 pA1 ` A5q 1

Analysis similar to that in Remark 5.8.11 shows that Y X
3 pA1 `A5q is unique up

to isomorphism.

Lemma 5.8.20. We have the isomorphism Y V
3 pA1 ` A5q – Y X

3 pA1 ` A5q.
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Proof. The assertion follows from Lemma 5.8.18 (2).

Lemma 5.8.21. It holds that Y
(1)
3 pE6q fl Y IV

3 pE6q.

Proof. We follow the notation of the proof of Lemma 5.8.19. Then Y
(1)
3 pE6q is

obtained by blowing up six points on C Ă P2
k infinitely near t and the anti-canonical

linear system of Y
(1)
3 pE6q corresponds to the linear system Λ1 “ tapx3 ` y2zq ` bz3 `

cxz2 ` dyz2|ra : b : c : ds P P3
ku. It is easy to check that r0 : 1 : 0 : 0s corresponds

to the member 3tz “ 0u and the locus of singular members of Λ1 is tac “ 0u. In
particular, there is no pencil in Λ1 passing through r0 : 1 : 0 : 0s which contains

exactly two singular members. Hence Y
(1)
3 pE6q fl Y IV

3 pE6q.

Therefore there are four isomorphism classes of X with K2
X “ 3.

Finally, we deal with the case where 4 ď K2
X ď 6. When K2

X “ 4, the pairs of
Y3 and Y “ Y4 are listed as in Table 5.19, where n is the number of the NECs on
Y4.

Table 5.19

Y3 Y4 n

Y IV
3 pE6q Y IV

4 pD5q 1
Y V
3 pA1 ` A5q Y V

4 p2A1 ` A3q 0

Y
(1)
3 pE6q Y

(1)
4 pD5q 1

Lemma 5.8.22. It holds that Y
(1)
4 pD5q – Y IV

4 pD5q.

Proof. We follow the notation of the proof of Lemma 5.8.19. Then Y
(1)
4 pD5q is

obtained by blowing up five points on C Ă P2
k infinitely near t and the anti-canonical

linear system of Y
(1)
4 pD5q corresponds to the linear system Λ2 “ tapx3 `y2zq`bz3 `

cxz2 `dyz2 `ex2z|ra : b : c : d : es P P4
ku. Since tx3 `y2z`x2z “ 0u is a nodal cubic,

an elimination of the pencil xz3, x3 ` y2z ` x2zy Ă Λ2 gives the extremal rational

elliptic surface of type IV. Hence Y
(1)
4 pD5q – Y IV

4 pD5q.

Therefore there are two isomorphism classes of X with K2
X “ 4. By blowing

down the unique NEC on Y
(1)
4 pD5q, we obtain Y

(1)
5 pA4q. Then it also contains a

unique NEC, and the blow-down of this NEC gives Y
(1)
6 pA1 ` A2q.

Now we can prove Theorem 5.8.1 in the case where p “ 3.

Proof of Theorem 5.8.1 in the case where p “ 3. The assertion (1) follows from the
above arguments in this subsection. The assertion (2) will be proved once we prove
the proposition below.

Proposition 5.8.23. Let X be a Du Val del Pezzo surface with ρpXq “ 1 and p “ 3.
If DynpXq ‰ 2D4, then its isomorphism class is uniquely determined by its Dynkin
type with Artin coindices.
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Proof. We follow the notation as in Proposition 5.8.17. By Theorem 5.8.1 (1), we
may assume that DynpXq “ E6, E7, E8, A1 ` E7, or A2 ` E6. When DynpXq ‰

A1 `E7 or A2 `E6 in addition, analysis similar to that in the proof of Proposition
5.8.17 gives the defining equation of X in P as in Table 5.20.

Table 5.20

K2
Y Y defining equation of X Ă P Dyn1

pXq

3
Y

(1)
3 pE6q wz2 ` x3 ` y2z E0

6

Y IV
3 pE6q wz2 ` x3 ` y2z ` x2z E1

6

2
Y

(1)
2 pE7q w2 ` yz3 ` xy3 E0

7

Y IV
2 pE7q w2 ` yz3 ` xy3 ` y2z2 E1

7

1
Y

(1)
1 pE8q w2 ` z3 ` xy5 E0

8

Y I
1 pE8q w2 ` z3 ` xy5 ` y4z E1

8

Y IV
1 pE8q w2 ` z3 ` xy5 ` y2z2 E2

8

Finally, suppose that DynpXq “ A1 ` E7 or A2 ` E6. Then a suitable choice
of blow-down Y ÝÑ Y 1 gives the minimal resolution Y 1 of a del Pezzo surface of
Picard rank one of type E7 or E6 as in Table 5.21.

Table 5.21

Y Y 1 Dyn1
pXq

Y V
1 pA1 ` E7q Y

(1)
2 pE7q A1 ` E0

7

Y XI
1 pA1 ` E7q Y IV

2 pE7q A1 ` E1
7

Y
(2)
1 pA2 ` E6q Y

(1)
3 pE6q A2 ` E0

6

Y III
1 pA2 ` E6q Y IV

3 pE6q A2 ` E1
6

Combining these results, we get the assertion.

5.9 Proof of Theorem 1.3.8

In this subsection, we prove Theorem 1.3.8. We also give a corollary of this
theorem.

The following lemma is an immediate consequence of Fedder’s criterion [28,
Proposition 1.7].

Lemma 5.9.1. Fix coordinates rx : y : z : ws of Pkp1, 1, 2, 3q (resp. Pkp1, 1, 1, 2q,P3
k)

and let fpx, y, z, wq “ 0 be the defining equation of a Du Val del Pezzo surface X of
degree one (resp. two, three). Then X is F -split if and only if fp´1 R pxp, yp, zp, wpq.

Proof. Let R :“ krx, y, z, ws{pfq. By Fedder’s criterion [28, Proposition 1.7], Spec R
is F -split if and only if fp´1 R pxp, yp, zp, wpq. Since R –

À

mě0H
0pX,OXp´mKXqq

and ´KX is ample, it follows that X is F -split by [96, Proposition 4.10].



106

Lemma 5.9.2 ([68, Proposition 2.1]). Let X be a normal F -split variety and Z a
smooth closed subscheme of codimension d which is contained in the smooth locus of
X. Let Σ P |p1´pqKX | be a splitting section. If Σ passes through Z with multiplicity
at least pd ´ 1qpp ´ 1q, then the blow-up of X along Z is F -split.

Proof. We refer to the proof of [68, Proposition 2.1] for the details.

Proposition 5.9.3. Let X be a Du Val del Pezzo surface. Suppose that p “ 2 and
X is F -split. Then the set of ordinary elliptic curves in | ´ KX | is dense.

Proof. Conversely, suppose that the closure H of the set of ordinary elliptic curves
in |´KX | is the proper closed subset. Choose C P |´KX |zH such that X is smooth
along C. Let Σ be the splitting section of X and V the pencil generated by C and
Σ. Then a general member of V is not an ordinary elliptic curve. When K2

X ‰ 2, we
may assume that C is smooth along Σ by Lemma 5.1.3 (4). In particular, a general
member of V is also smooth along Σ. Next, suppose that K2

X “ 2. For general two
members C1 and C2 of V , both C1XΣ and C2XΣ coincides with C1XC2. Moreover,
one of them is smooth along C1 X C2 since otherwise 2 “ K2

Y “ pC1 ¨ C2q ě 4. As a
result, a general member of V is smooth along Σ without the assumption on K2

X .
Let φ : Z ÝÑ P1

k be an elimination of a rational map associated to the pencil
V . Then Z is normal and F -split by Lemma 5.9.2. Thus a general φ-fiber is an
ordinary elliptic curve by [90, Corollary 2.3] and Remark 4.1.2 (5). Since a general
member of V is smooth along Σ, a general fiber of φ is isomorphic to its image on X.
Therefore a general member of V is an ordinary elliptic curve, a contradiction.

Remark 5.9.4. Let f : V ÝÑ W be a smooth projective morphism between varieties.
Yoshikawa [104, Proposition 2.11 (2)] showed that the subset tw P W |Vw is F -splitu
is constructible, where Vw denotes the geometric fiber over w. Making use of this,
we can show that a general member of | ´KX | as in Proposition 5.9.3 is an ordinary
elliptic curve as follows.

Let π : Y ÝÑ X be the minimal resolution. It suffices to show that a general
member of | ´ KY | is an ordinary elliptic curve. Note that a member of | ´ KY | is
corresponding a fiber of the projection pr2 : H ÝÑ | ´ KY |, where H :“ tpy,Dq P

Y ˆk | ´ KY | | y P Du Ă Y ˆk | ´ KY |. Since H is Cohen-Macaulay, | ´ KY | is
smooth, and pr2 has equi-dimensional fibers, it follows that pr2 is flat. Proposition
5.9.3 shows there exists a dense subset U Ă | ´ KY | such that Hs is an ordinary
elliptic curve for all s P U . By shrinking | ´ KY |, we may assume pr2 is smooth.
Hence ts P | ´ KY ||Hs is F -splitu is constructible by [ibid.], and U contains a non-
empty open subset.

Remark 5.9.5. Proposition 5.9.3 does not hold without the assumption of character-
istic. For example, assuming p “ 3, consider a Du Val del Pezzo surface tw2 ` z3 `

x2y2z´x4z`x6 “ 0u Ă Pkp1, 1, 2, 3qrx:y:z:ws. Then we can see that it is F -split, but a
general member of the anti-canonical linear system is tw2`z3`a2x4z´x4z`x6 “ 0u

with a P kzt˘1u, which is a supersingular elliptic curve.

Now we prove Theorem 1.3.8.
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Proof of Theorem 1.3.8. By Lemma 5.1.3 (3), we may assume that p “ 2 or 3.
When p “ 2, the assertion follows from Proposition 5.9.3.

Now suppose that p “ 3. Let Y be the minimal resolution of X. If Y – Y
(1)
1 pE8q

(resp. Y
(3)
1 p4A2q) as in Table 5.16, then X is not F -split by Table 5.20 (resp. Table

5.7) and Lemma 5.9.1, a contradiction. Hence it suffices to show that Y is not

isomorphic to Y
(2)
1 pA2 `E6q by Theorem 1.3.4 and Proposition 5.4.1. On one hand,

Table 5.20 and Lemma 5.9.1 show that Y
(1)
3 pE6q is not F -split. Combining Table

5.21 and Remark 4.1.2 (2), we conclude that Y
(2)
1 pA2 ` E6q is also not F -split. On

the other hand, Y is F -split by Remark 4.1.2 (4). Hence Y fl Y
(2)
1 pA2 ` E6q.

At the end of this paper, let us state a corollary of Theorem 1.3.8. The second
cohomology of the tangent bundle is important because this contains local-to-global
obstructions to deformations (cf. [78, Theorem 4.13]). In characteristic p “ 2 or 3,
there exists a Du Val del Pezzo surfaceX such thatH2pX,TXq ‰ 0 by Theorem 1.3.6
(1). On the other hand, if X is F -split, then Theorem 1.3.8 shows the following.

Corollary 5.9.6. Let S be a normal projective surface with only Du Val singularities
such that κpS,KSq “ ´8. Suppose that S is F -split. Then H2pS, TSq “ 0.

Proof. By running a KS-MMP, we obtain a birational contraction φ : S ÝÑ S 1 and
a Mori fiber space S 1 ÝÑ B. Note that KS is not pseudo-effective. Since

φ˚pΩ
r1s

S b OSpKSqq ãÑ pφ˚pΩ
r1s

S b OSpKSqqq
˚˚

“ Ω
r1s

S1 b OS1pKS1q,

the Serre duality yields

H2
pS, TSq – H0

pS,Ω
r1s

S b OSpKSqq Ă H0
pS,Ω

r1s

S1 b OS1pKS1qq,

where Ω
r1s

S denotes the reflexive hull of ΩS. When dim B “ 1, then the assertion
follows from [59, Theorem 5.3 (1)]. Now we assume that dimB “ 0. Since S 1 is F -
split, it follows that a general member of |´KS1 | is smooth by Theorem 1.3.8. Hence

the proof similar to Theorem 5.3.1 shows that H0pS,Ω
1r1s

S b OS1pKS1qq “ 0.
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