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Chapter 1

Introduction

1.1 Purpose of the thesis

The purpose of this thesis is to study the Helmholtz decomposition of vector fields with
bounded mean oscillation in various domains other than the whole space. Specifically
speaking, the Helmholtz decompositions of vector fields with bounded mean oscillation are
established in the cases where the domain is a half space, a bounded C® domain and a
perturbed C? half space with small perturbation.

The study of Helmholtz decomposition investigates the standard question whether a
space of vector fields, which is defined in some domain, can be decomposed into the direct
sum of a solenoidal subspace and a subspace that is exactly a gradient field. This decompo-
sition plays a fundamental role in the mathematical theory of the Navier-Stokes equations,
see e.g. [9]. This is the reason why we are interested in such problems. For vector fields
of LP spaces over domains with 1 < p < oo, such decompositions are widely studied. It
is well-known that by the Hilbert space method, the Helmholtz decomposition of the L?
vector fields holds for any arbitrary domain. In the case where p is not equal to 2, whether
the Helmholtz decomposition of the LP vector fields holds or not actually depends on the
domain. For bounded domains, the most general result on this decomposition was given by
Fujiwara and Morimoto [6]. Their proof was based on the general theory for elliptic partial
differential equations by Lions and Magenes [16], [17]. Simader and Sohr [22] generalized
this result to both bounded and exterior domains by a variational approach. On the other
hand, Bogovskii [5] showed that there exists an unbounded domain in which the Helmholtz
decomposition does not hold. However, if one considers the LP vector fields where L? is
defined to be L2 N LP for 2 < p < oo and L? + LP for 1 < p < 2, then the Helmholtz
decomposition holds for arbitrary uniformly C? domain, this is the result due to Farwig,
Kozono and Sohr [7]. Their proof was also a variational approach based on duality. In the
case when p equals infinity, the Helmholtz decomposition does not hold even in the whole
space. The projection mapping to the gradient field in this case is a kind of Riesz operator,
which is unbounded in L°°. Hence, we consider vector fields with bounded mean oscillation
as an alternate choice for the L*° vector fields.

In the case of the whole space, the Helmholtz decomposition of the space of vector
fields with bounded mean oscillation was established by Miyakawa [19]. In his work, the
Helmholtz projection was explicitly presented to prove its boundedness in the space of vector
fields with bounded mean oscillation. In the case of the half space, we make use of this
projection to construct the Helmholtz projection in the half space case explicitly through
extending a vector field, defined in the half space, to the whole space by the trick of even
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and odd extensions. In the cases of a bounded C® domain and a perturbed C? half space
with small perturbation, we establish the Helmholtz decomposition by directly constructing
the volume potential. The ideas in this thesis to establish the Helmholtz decomposition
are more of potential-theoretical approaches. Although there is a chance that variational
approaches through duality might also be possible to establish the Helmholtz decomposition,
that would require a thorough understanding for the predual space of space of vector fields
with bounded mean oscillation in domain, i.e., we need to have the theory for spaces of
vector fields in real Hardy space in domains in advanced. At this moment, we are not ready
to consider a variational approach to establish the Helmholtz decomposition for vector fields
with bounded mean oscillation in domains. This would be our future target.

1.2 Introduction to Chapter 2

Chapter 2 is devoted to consider the Helmholtz decompositions for vector fields with
bounded mean oscillation and vector fields in real Hardy spaces over the half space. We
define the space of vector fields with bounded mean oscillation or in real Hardy spaces over
the half space in a way such that the even extension of the tangential component and the
odd extension of the normal component of a vector field are of bounded mean oscillation
or in real Hardy spaces.

By making use of the Helmholtz projection constructed in the whole space case [19],
we construct the Helmholtz projection in the half space case directly by considering even
and odd extensions and restriction. We show that this projection constructed is bounded
linear in both spaces of vector fields with bounded mean oscillation and in real Hardy
spaces over the half space. The famous John-Nirenberg inequality, see e.g. [14, Theorem
3.1.6], says that functions of bounded mean oscillation are indeed locally L?. Hence, for
the space of vector fields with bounded mean oscillation over the half space, the trace can
be taken in the sense of distributions. By finally invoking the De Rahm’s theorem, see e.g.
[9, Lemma III.1.1], we show that our projection that is directly constructed indeed induces
the correct Helmholtz decomposition for vector fields with bounded mean oscillation over
the half space. On the other hand, we do not know how to take the trace properly for
vector fields in real Hardy spaces over the half space, therefore we only obtain a partial
decomposition for vector fields in real Hardy spaces over the half space in this chapter.

Moreover, by considering the restrictions of atoms defined in the theory of real Hardy
spaces in the whole space, we establish the atomic decomposition theorem for the space of
vector fields in real Hardy spaces over the half space defined in this chapter. Following the
duality argument due to Fefferman and Stein [8], we prove that the space of vector fields
with bounded mean oscillation over the half space defined in this chapter is indeed the dual
space of the space of vector fields in real Hardy spaces over the half space defined in this
chapter. We develop two sets of theories of real Hardy spaces and spaces of bounded mean
oscillation defined in the half space which are compatible with the theory of Miyachi [18],
where he established the theory of real Hardy spaces defined in domains.

Chapter 2 is based on the joint work [10] with Professor Yoshikazu Giga.

1.3 Introduction to Chapter 3

In Chapter 3, we introduce local bounded mean oscillation spaces in domains. The local
bounded mean oscillation space defined in the whole space consists of functions of bounded
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mean oscillation that are uniformly locally L' in the whole space. We define different types
of local bounded mean oscillation spaces in a domain by allowing functions to be uniformly
locally L' only in the é-neighborhood of the boundary in that domain for 0 < § < oo.
We give a classification to these different types of spaces according to different values of 4.
We then define a local bounded mean oscillation space of vector fields which admits some
boundary control on the normal component of every vector field. We call the boundary
control as the b” estimate. This b” estimate was introduced in the previous works [1], [2],
[3] and [4].

Due to Jones [20], we see that the bounded mean oscillation space defined in a domain
can be extended linearly continuously to the bounded mean oscillation space defined in the
whole space if and only if the domain is a uniform domain. Following Jones’ argument, we
show that if the domain is a uniform domain, then the local bounded mean oscillation space
defined in this domain can be extended linearly continuously to the local bounded mean
oscillation space defined in the whole space in a way such that the support of every extended
function is contained in a small neighborhood of this domain. Since the local bounded
mean oscillation space is the dual space of the local real Hardy space and multiplication by
a Holder function is bounded linear in the local real Hardy space, see e.g. [21, Chapter 3],
by our extension theorem for the local bounded mean oscillation space defined in a uniform
domain, we deduce that the multiplication by a Hoélder function is bounded linear in the
local bounded mean oscillation space defined in a uniform domain. This means that we can
do cut-off to functions of local bounded mean oscillation defined in a uniform domain.

If the domain is the half space. For a vector field of local bounded mean oscillation
with boundary control on its normal component, by the formula of integration by parts,
we give an estimate on the L° norm of the normal component of the vector field on the
boundary by the local bounded mean oscillation norm of the vector field in the domain, the
b” estimate of the normal component of the vector field on the boundary and the uniformly
locally L™ norm of the divergence of the vector field in the jJ-neighborhood of the boundary.
This can be done as for a L' function defined on the boundary, there exists a bounded
linear lifting operator that maps the L' function to a function that belongs to the Triebel-
Lizorkin space Fll’27 see e.g. [24, Section 4.4.3]. Since the gradient of a function in F1172 is
indeed in the local Hardy space, we can apply the duality relation. We can then generalize
this result to any uniformly C**# domain with 0 < § < 1 by localizing the problem to
small neighborhoods of points on the boundary and then flatten the boundary by invoking
the normal coordinate change in each of these small neighborhoods. When the boundary
is flattened, the problem locally reduces to the half space case. We therefore obtain a trace
theorem that holds for any uniformly C?*# domain.

Chapter 3 is based on the joint work [11] with Professor Yoshikazu Giga.

1.4 Introduction to Chapter 4

Chapter 4 is devoted to the Helmholtz decomposition of the space of vector fields of bounded
mean oscillation defined in a bounded C? domain that requires the normal component of
every vector field to be b¥ bounded. As we have shown in Chapter 3, in the case of a
bounded C? domain, the space of vector fields of bounded mean oscillation that requires
the normal component of every vector field to be b’ bounded is indeed L'. Hence, we do
not need to assume the space of vector fields to be of local bounded mean oscillation. In
the case of a bounded C? domain, multiplication by a Holder function is bounded linear
in the space of vector fields of bounded mean oscillation that implements the ” condition
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on the normal component of every vector field, i.e., we can do cut-off to vector fields with
bounded mean oscillation whose normal components are controlled on the boundary.

Our strategy to establish the Helmholtz decomposition is a potential-theoretic approach.
Simply speaking, we construct the volume potential corresponding to the divergence of a
vector field directly and then solve a Neumann problem with bounded data. The idea of
constructing the volume potential is simply applying the minus Laplacian to the divergence
of a vector field. However, if we apply the minus Laplacian directly to the divergence of a
vector field, we would get a volume potential whose gradient has normal component that is
not necessarily b bounded on the boundary. We construct the volume potential in a delicate
way. We do cut-off to split a vector field into the sum of a vector field supported away from
the boundary and a vector field supported in a small neighborhood of the boundary. For
the vector field supported away from the boundary, we construct the corresponding volume
potential by applying the minus Laplacian to the divergence of the vector field directly. We
can estimate the L* norm of the gradient of this volume potential in a small neighborhood
of the boundary, thus this gradient certainly has 4 bounded normal component. For the
vector field supported in a small neighborhood of the boundary, we extend this vector field
in a way such that the tangential component of the extended vector field is even with respect
to the boundary whereas the normal component of the boundary is odd with respect to
the boundary. Then we consider a finite partition of unity to localize the extended vector
field to finitely many compact small neighborhoods of points on the boundary. In each of
these compact small neighborhoods, we consider the normal coordinate change so that the
boundary becomes flattened. Thus locally the problem can be viewed as in the half space.
Applying the minus Laplacian in normal coordinate to the localized extended vector field,
we construct the corresponding volume potential by Neumann series. Our parity setting for
the extended vector field ensures that the gradient of the volume potential constructed from
each of the compact small neighborhoods has b bounded normal component. Adding up all
volume potentials constructed from each of the compact small neighborhoods together with
the volume potential constructed from the vector field supported away from the boundary,
we obtain our desired volume potential.

Finally, we solve the Neumann problem with bounded data. Since the domain is a
bounded C® domain, we recall the Green’s function from [13]. For a bounded data defined
on the boundary, the unique solution (up to an additive constant) to the Neumann problem
is given by the convolution of the Green’s function with bounded data on the boundary. In
the case of a bounded domain, the Green’s function contains two parts, the first part is the
usual Newton potential F(x—v), the second part h(z,y) has gradient L' with respect to the
y variable on the boundary for any point x in the bounded domain (see [13, Lemma 3.1]).
The gradient of the convolution of this second part with boundary data on the boundary
is thus estimated directly by the L norm of the boundary data on the boundary. It is
sufficient to consider only the Newton potential part. The BMO estimate for the Newton
potential part follows from the standard L — BMO estimate, see e.g. [14, Theorem
4.2.7]. By a direct calculation, we show that the normal derivative of the Newton potential
is L' with respect to the y variable on the boundary. Hence, the normal derivative of
the convolution of the Newton potential with bounded data on the boundary is uniformly
bounded by the L* norm of the boundary data on the boundary. The b estimate of the
normal component of our solution to the Neumann problem follows naturally. Therefore,
we solve our Neumann problem.

Chapter 4 is based on the joint work [12] with Professor Yoshikazu Giga.
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1.5 Introduction to Chapter 5

In Chapter 5, we generalize the extension result in Chapter 3 for local bounded mean
oscillation functions defined in a domain. In Chapter 3, we follow the idea of Jones [20]
and establish an extension theorem for local bounded mean oscillation functions defined
in a uniform domain. In this chapter, we invoke the extension introduced in Chapter 4
which extends a function supported in a small neighborhood of the boundary evenly with
respect to the boundary, in order to establish an extension theorem for local bounded mean
oscillation functions defined in arbitrary uniformly C? domain. Although we requires the
boundary to be uniformly C?, our extension theorem extends Jones’ result [20] in the sense
that local bounded mean oscillation functions defined in a non-uniform domain can also be
extended linearly continuously.

Our strategy is to firstly decompose a function into the sum of a function supported
away from the boundary and a function supported in a small neighborhood of the boundary
in our domain. We can achieve this by multiplying a cut-off test function supported in our
domain. At this stage, multiplication is not necessarily bounded linear as the domain is not
necessarily uniform. However, we can still uniformly estimate the mean oscillation of the
function supported in a small neighborhood of the boundary over all balls in the domain
with sufficiently small radius. This is because for a small ball close to the boundary, we
may find a bounded C? subdomain that is contained in our domain such that the small
ball is contained in this bounded C? subdomain, hence we can perform the multiplication
rule for local bounded mean oscillation functions inside this bounded C? subdomain. For
a small ball lying sufficiently away from the boundary, then the function supported in
a small neighborhood of the boundary is actually zero in this small ball. We then even
extend this function with respect to the boundary, the idea of even extension with respect
to the boundary is introduced in Chapter 4. Since the extended function in this case is
supported in a small neighborhood of the boundary in the whole space, by invoking the
normal coordinate we can also uniformly estimate the mean oscillation of the extended
function over all balls in the whole space with sufficiently small radius. As we have shown
in Chapter 3, if a function is uniformly locally L', then being able to uniformly estimate the
mean oscillation of the function over all balls with sufficiently small radius is equivalent to
prove that the function is of bounded mean oscillation. Hence, the extended function is of
local bounded mean oscillation in the whole space. For the function supported away from
the boundary, we extend it to the whole space by simply considering its zero extension.
Since we can also uniformly estimate the mean oscillation of its zero extension over all
balls in the whole space with sufficiently small radius, this zero extended function is of
local bounded mean oscillation in the whole space. Add up these two extended function
together, we extend our original function to the whole space.

By our extension theorem, we further deduce that the multiplication by any Holder
function is bounded linear in the local bounded mean oscillation space defined in a uniformly
C? domain. Moreover, we also obtain several uniform estimates regarding to a uniformly C?
domain. We show that for each point on the boundary, the gradient of the normal coordinate
change in a small neighborhood of that point with fixed size is uniformly controlled by a
constant depending only on the size of the small neighborhood of that point. We also obtain
a locally finite partition of unity for a small neighborhood of the boundary such that the
C' norm of each partition function is uniformly controlled. These uniform estimates will
also be used in the next chapter.
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1.6 Introduction to Chapter 6

Chapter 6 is devoted to the Helmholtz decomposition of a space of vector fields with
bounded mean oscillation defined in a perturbed C® half space with small perturbation.
A perturbed C? half space is the region above a compactly supported C? function. By
small perturbation we require the C? norm of the boundary function to be small and the
support of the boundary function to be not too big. In Chapter 4, since we consider the
Helmholtz decomposition for vector fields defined in a bounded C® domain, the space of
vector fields of bounded mean oscillation, in which boundary control is implemented on
the normal component of each vector field, is indeed L' in the bounded domain. We do
not need to assume the vector fields to be of local bounded mean oscillation in order to
allow cut-off by multiplication. In the case of a perturbed C® half space, in order to allow
cut-off by multiplication we need some extra integrability, other than requiring the vector
fields to be of bounded mean oscillation and to have b bounded normal components. We
consider the space of L? vector fields that is of bounded mean oscillation having bounded
b” normal components. This is in some sense compatible with the result of Farwig, Kozono
and Sohr [7] where the Helmholtz decomposition of the LP N L? vector fields (2 < p < 00)
was established.

Our strategy follows from the potential theoretical approach introduced in Chapter 4.
We firstly construct the volume potential and then solve a Neumann problem. In the case
of a bounded C® domain, the construction of the volume potential works as the boundary is
compact. There exist finitely many points on the boundary such that small neighborhoods
of these points provide an open cover of a small neighborhood of the boundary. Thus, the
gradient of the normal coordinate change in each of these small neighborhoods is uniformly
controlled. In addition, since we have a finite partition of unity for a small neighborhood of
the boundary, the C'' norm of each partition function is uniformly controlled. In Chapter
5, we see that in the case of a uniformly C? domain, although the boundary is not compact,
the gradient of the normal coordinate change in a small neighborhood of every point on
the boundary is uniformly controlled regardless of where the point is. Moreover, in the
case of a uniformly C? domain, there exist countably many points on the boundary such
that small neighborhoods of these points provide a locally finite open cover of a small
neighborhood of the boundary. By considering the normal coordinate change in each of
these small neighborhood in this locally finite open cover, we can construct a partition of
unity for a small neighborhood of the boundary such that the C' norm of each partition
function is uniformly controlled. Hence by following the argument of constructing volume
potential in Chapter 4, we can generalize the volume potential construction to arbitrary
uniformly C? domain instead of just to a perturbed C? half space.

At the end of Chapter 4, we solve the Neumann problem with bounded data. In this
case of a perturbed C? half space, since we consider the L2 vector fields that are of bounded
mean oscillation, the normal trace is actually L= N H™ 2 on the boundary In this chapter

our target is to solve the Neumann problem under L>* N H™ 3 data. For a L® N H™
boundary data, we consider its double layer potential on the boundary. By separating the
boundary into the straight part and the curved part and then viewing the straight part as
part of the half space boundary and the curved part as part of the boundary of a bounded
C? domain, the trace of this double layer potential on the boundary is indeed an bounded
linear operator in L of the form (%I — 9) acting on the boundary data. By considering
Neumann series, we can construct the inverse to the operator (I —25). The Neumann series
converges if the operator norm of S is small enough. That is why we need the perturbation
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to be small. The unique solution (up to an additive constant) to our Neumann problem
is then given by the single layer potential of 2(I — 25)~! acting on the boundary data.
Similar as in the case of a bounded domain, the BMO estimate of the gradient of our
solution follows from the standard L>° — BM O estimate, see e.g. [14, Theorem 4.2.7]. The
L norm of the normal component of the gradlient of our solution in a small neighborhood
of the boundary is estimated by the L* N H ™2 norm of the boundary data. In the case of
a half space, the solution to the Neumann problem is explicitly given by twice of the single
layer potential of the boundary data. The standard theory says thalut the L? estimate of the
gradient of this solution in the half space is estimated by the H ™2 norm of the boundary
data, see e.g. [23, Remark 1.2 and Remark 1.3], [15, Section 1.7]. In our problem, we again
separate the boundary into the straight part and the curved part. We view the straight
part as part of the boundary of the half space, hence we can invoke the standard theory
of the half space case to estimate the contribution of the straight part in the L? estimate.
The contribution of the curved part in the L? estimate can be calculated directly as the
curved part is compact. Therefore, we have our desired L? estimate for the gradient of our
solution to the Neumann problem.
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Chapter 2

On the Helmholtz decompositions
of vector fields of bounded mean
oscillation and in real Hardy
spaces over the half space

This chapter is concerned with the Helmholtz decompositions of vector fields of bounded
mean oscillation over the half space and vector fields in real Hardy spaces over the half
space. It proves the Helmholtz decomposition for vector fields of bounded mean oscillation
over the half space whereas a partial Helmholtz decomposition for vector fields in real Hardy
spaces over the half space. Meanwhile, it also establishes two sets of theories of real Hardy
spaces over the half space which are compatible with the theory of Miyachi (1990).

2.1 Introduction

In this chapter, we investigate the Helmholtz decompositions of vector fields of bounded
mean oscillation over the half space and vector fields in real Hardy spaces over the half space.
The subject of studying Helmholtz decompositions asks the standard question whether a
vector field, in some specific function spaces over some specific domains, can be decomposed
into the direct sum of a solenoidal subspace and a subspace which is exactly a gradient field.
The reason why we are interested in this subject is due to the well known fact that Helmholtz
decomposition plays an important role in constructing mild solutions of the Navier-Stokes
equations.

Helmholtz decompositions are widely studied for vector fields of LP spaces over many
kinds of different domains when 1 < p < oo. For example, we have the result that for every
open domain  C R” the Helmholtz decomposition holds for vector fields of L?(£2). When
p does not equal to 2, we also know that the Helmholtz decompositions of vector fields of
LP spaces hold for some domains while there exists other domains where the Helmholtz
decompositions of vector fields of LP spaces fail to hold, e.g. see [4]. Although problems
when p does not equal to 2 are much more difficult than the case when p equals to 2, we
still had various results. However, this subject is poorly studied for vector fields of other
function spaces. In the case for vector fields of bounded mean oscillation and vector fields
in real Hardy spaces, we only have a single piece of result, obtained by Miyakawa [8], states
that the Helmholtz decompositions of vector fields of bounded mean oscillation over R™ and

10
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vector fields in real Hardy spaces over R™ hold. This lack of study is due to the fact that
the theories of real Hardy spaces and BM O spaces over domains other than R™ are harder
to deal with and moreover, the proper definitions of the space of vector fields of bounded
mean oscillation and the space of vector fields in real Hardy spaces over other domains are
not known perfectly. The purpose of this chapter seeks to extend the result of Miyakawa
8] from R™ to R = {(x,2,,) € R*! x R|lz,, > 0}. In the meantime, we show that our
definitions of the space of vector fields of bounded mean oscillation over R’} and the space
of vector fields in real Hardy spaces over R} are valid, in the sense that they admit a duality
relation.

In order to define the space of vector fields of bounded mean oscillation over R}, we
need to define two types of BMO spaces over R} firstly, one corresponds to the function
space for the tangent direction while the other one corresponds to the function space for
the normal direction. The BMO space over R’} for the tangent direction we define is
the space BMO,"(R%). In Section 2.5, we prove that BM O, (R") is equivalent to
BMO(RY) := rrn BMO, the restriction of functions of BMO to R}. The BMO space
over R for the normal direction we define is the space BM O~ (R%). In [1], it is proved
that BMO,”™(R") is equivalent to BM Oy (R".) where BMOy(R") is the BMO space
defined by Miyachi in [7]. Therefore the space of vector fields of bounded mean oscillation
over R", denoted by X, can be defined as X := (BMO(R"))"~! x BMOp(R"). The first
main theorem of this chapter reads as follows. Let n be the exterior unit normal of the
boundary of R}, i.e., n = (0,0, —1) so that the inner product v-n denotes the normal trace
to OR'} of a vector field v on R’}

Theorem 2.1.1. Let X be the space of vector fields of bounded mean oscillation over the
half space R" | then X admits the Helmholtz decomposition

X=X,® X,
with the Helmholtz projection P]M where

Xo={veX|divv=0 inR} & v-n=0 onJdRY },
XWZ{VPEX|pEL}OC(M)}'

The key idea of the proof of Theorem 2.1.1 is to consider extension and restriction.
When Miyakawa [8] established the Helmholtz decomposition of vector fields of bounded
mean oscillation over R™ and vector fields in real Hardy spaces over R", he considered the
Helmbholtz projection PP where P; ; := 0;; + R;R; and R; is the i-th Riesz transform for
1 <4,j < n. Here we make use of this idea. We define our projection by IP’]M = TRn PE
where FE is the extension operator which extends vectors in X to vectors in BMO and TR?
is the restriction operator which restricts vectors in BMO back to vectors in X. Then
we prove that our projection Prn is actually a bounded linear map from X to X. Hence
through this projection we have a natural decomposition of our space X of the form

X =Ppr X & (I — Pgo)X.

Then we prove that the subspace ]P’RQX is actually the solenoidal part and the subspace
(I — }P’Ri)X is actually the gradient part. As for the trace problem, we can make use of

the theory of Temam [10] since X C L? (R™). Notice that the space X is not a proper

loc
Banach space due to the fact that the BM O-type norm is just a seminorm. Therefore, in

order to avoid any ambiguity, we mean the Helmholtz decomposition not for X in the usual
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sense but for the quotient space X/(R"~! x {0}). Here we direct the readers to Section 2.2
for the precise definitions of the extension F, the restriction TR™ the space BM OEE’OO(RCLF)
and the space BM O~ (R%).

By similar ideas as above, we need to define two types of real Hardy spaces over R’}
in order to define the space of vector fields in real Hardy spaces over R’f. For the real
Hardy space over R"! in the tangent direction, denoted by ., (R), is defined to be the
restriction of all even functions in the real Hardy space over R" to the half space R!. For
the real Hardy space over R} in the normal direction, denoted by J2),(R"), is defined to
be the restriction of all odd functions in the real Hardy space over R™ to the half space
R". In Section 2.5, we also prove that 5, (R") is equivalent to 5, (R'.) where 52} (R"})
is the real Hardy space defined by Miyachi in [7]. Hence the space of vector fields in real
Hardy spaces over R", denoted by Y, can be defined as Y := (L, (R))"~! x 77, (R™).

Let Yo ={veY|divv=0 inR} & v-n=0 onJdRY }, the second main theorem in
this chapter reads as follows.

Theorem 2.1.2. Let Y be the vector field in real Hardy spaces over the half space R},
then Y admits a decomposition of the form

Y = PRKY DY,
with a bounded linear projection IP’Ri Y — Y where

YUCPRiYC{VEY’diVVZO m Ri},
YW:{VPEYIPGL}OC(M)}‘

Similar to the proof of Theorem 2.1.1, we consider the same projection PRi = rRilP’E
and we prove that ]P)]R’_:_ is also a bounded linear map from Y to Y. Using the same idea,
we can see that Y also admits a natural decomposition of the form

Y =Prn Y @ (I - Prn)Y.

Although the later theory is basically the same as the previous case for vector fields of
bounded mean oscillation, in this case we do not know how to solve the trace problem.
Hence for the subspace Pr» Y we can only say that it is divergence free, we cannot say that
it is the right solenoidal part in the Helmholtz decomposition. We have no problems in
characterizing the subspace (I —Pgrn )Y. Indeed, (I— Prn )Y is the right gradient part, just
like the previous case. For the precise definitions of the spaces .., (R?) and 2., (R"),
we direct the readers to Section 2.2. Notice that if we can solve the trace problem, then
this decomposition turns into the full Helmholtz decomposition immediately. Hence for this
decomposition, we call it a partial Helmholtz decomposition.

By the standard theory of real Hardy spaces, we can see that the space of vector fields
of bounded mean oscillation over R™ is exactly the dual space of the space of vector fields
in real Hardy spaces 7! (R"). In order to make the theory over R". to be compatible with
the theory over R", it is necessary to consider the relation between the spaces X and Y.
Fortunately, we have a positive answer to this question.

Theorem 2.1.3. Suppose v € X. Then the linear functional | defined on Y by

l(u):/IR u-vdx

n
+



2. On the Helmholtz decompositions of vector fields of bounded mean oscillation and in
real Hardy spaces over the half space 13

foru €Y is a bounded linear functional which satisfies ||l|| < c¢- ||v||x with some constant
c. Conversely, every bounded linear functional on Y can be written in the form of

[(u) :/ u-vdx foralueyY
Ry

with v € X and ||v||x < ¢ ||l|| with some constant c. Here ||l|| means the norm of l as a

bounded linear functional on Y.

In short, the above theorem states the simple fact that X is the dual space of Y. To
prove the above theorem, we prove that BMOp->°(R" ) is the dual space of .., (R) and
BMO;”*(R") is the dual space of #.,(R"). The key idea in showing these two duality
relations is again to consider extensions and restrictions. By the theories in the previous
part, we see that the even extension of elements in ., (R"") produce elements in 71 (R")
and the odd extension of elements in ), (R") also produce elements in #'(R"). Since
elements in 2! (R") admit atomic decompositions, by taking the restrictions we can get the
half space version of atomic decompositions of elements in S}, (R") and 52%,(R"). Then
by similar arguments of Fefferman and Stein [3] in proving that BMO is the dual space of
A1 (R™), we can prove the two duality relations concerning 5., (R") and 5L, (R"). The
proof of Theorem 2.1.3 establishes two sets of complete theories for our two types of real
Hardy spaces over R’f. These two sets of theories are indeed compatible with the theory
of Miyachi [7] where he established the theory of real Hardy spaces over arbitrary open
subsets of R". As a result, Theorem 2.1.3 verifies the validity of the definitions of X and
Y.

In the work of Miyakawa [8], he also found the fact that the dual operator of the whole
space Helmholtz projection P is indeed P itself. In this chapter we also investigate the dual

operator of our half space Helmholtz projection IP’Ri and we obtain the following result.

Theorem 2.1.4. The dual operator of Prn : Y =Y is Ppn itself as a map from X to X,
ie., PRi* = Prn as a map from X to X.

The key idea lies in the proof of Theorem 2.1.3. This theorem can be easily deduced by
simply considering the dual operators of F, P and TR™ - By making use of this theorem, we
can further deduce the following important corollary.

Corollary 2.1.5. X, = Y.t and IP’]MY =X,

Notice that here because we do not know how to take the trace of elements in Y properly,
we can only say that IP’RQ Y is the annihilator of X;. If the trace problem is settled, this

relation turns into Y, = X+ immediately.

This chapter is organized as follow. In section 2.2, we give out the basic definitions. In
section 2.3, we investigate the Helmholtz decomposition of X. In section 2.4, we investigate
the Helmholtz decomposition of Y. In section 2.5, we study the duality relationship between
X and Y. In section 2.6, we study the dual operator of our Helmholtz projection IP’]M :
Y —>Y.

2.2 Definitions and notations

Let RY} := {x € R"|x;, > 0} be the half space where x,, here is the n-th component of x and
let ORY := {x € R"|z,, = 0} be the boundary of the half space R. The space L}, .(R%) is

loc
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defined in the usual way as the set
{f:R} — R measurable | [ fllz1() < oo for any open subsets Q CC R} }
and L}

loc(Rﬁ) : (Llloc(Rﬁ))n

Definition 2.2.1. Let f € L} .(R") and B,(x) be the open ball of radius r centered at x,
we define three types of BM O-type seminorms as the following:

o [flamo=®n) = Supnﬁfg\f(Y) — fBldy

where fp 1= |B| J5 f(y)dy and B is an open ball.

o [fle@y) = S‘;%’ WIBT(X)HR” 1f(y)ldy.
xE@Ri
i [f]ba‘x’(Ri) = sup B-(x)NR7| ﬁ]R"| fB (x)NR" ’f( ) fBT ﬂR”’dy
xE@R”
where fp (x)rrn = ng ez [ (V) dy

The seminorm [- Jpee(gy) is already introduced in [1] with a more general form. In [1],
the definition of this seminorm is of the form [‘]bup(g) where v could be any real number
including oo and p € [1,00). In our case, when v is equal to co and p = 1, an easy check
quickly shows that this seminorm is indeed a norm. Therefore it is unambiguous to replace

[ Jose ) BY [ - [[poo

Definition 2.2.2. We define two types of BMO spaces over the half space R’} in the
following way:

o BMOP™(RY) = {f € LL(RY) | |fl|zarop=(r) < oo}

where || fll paroge= gy = [flBmo=mn) + [ fllve@n)-

o BMOy, ™ (R%) == {f € L, (R}) | [f]BMOl‘:;’“’O(Ri) < oo}

where [f]prrogeeemn) = [flBao=®y) + [floace®y)-

Since |[|-[[poe (g ) is indeed a norm, H'HBMOE""’O(R?;) is also anorm. However, [-]pp0p: 0 (R
is simply a seminorm.

Definition 2.2.3. The space of vector fields of bounded mean oscillation over the half
space R’} is defined in the following way:

X(R%,R™) := {(v,v") | v € (BMO;o™(R?))" !, v € BMO;O®(R")}
where v’ := (v',..., 0" 1) and v := (v!,...,v" 1, v"). We define the seminorm [-]x on
the space of vector fields X (R’ ,R") as follow:

n—1

[v]x = Z[ ]BMO"”"(R" + " HBMO"‘“X’(R")
i=1
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From now on, without any ambiguity, we shall denote (X, [-]x) simply by X for abbrevia-
tion.

Next we would like to define two extension operators which extend functions over the
half space R’} to functions over the whole space R".

Definition 2.2.4. Let f : R} — R, we say that E,qq f : R" — R is the odd extension of f
if

/ f(x,x ifx, >0,

Eoga f(x,2n) = ( ,n) "
—f(x,—zp) ifx, <O.

a.e. (almost everywhere).
Definition 2.2.5. Let f: R} — R, we say that E.yen f : R — R is the even extension of
fif

f(x/, Tn) if z, > 0,

Eeven f(xla xn) = { ’

f(x,—mzy,) ifx, <O0.
a.e. (almost everywhere).

Based on these two definitions of extension, we are able to define an extension operator
for vector fields of functions over the half space R'}.

Definition 2.2.6. Let f*: R} - R for 1 <i<nandlet f=(f',..., "1 f"), we define
the extension of f by

Ef = (Ef)l = Eevenfi fOrlSiSn—L
(Ef)" := Eoaqa f-

After we defined the extension operator, we shall now define the restriction operator,
for functions and vector fields.

Definition 2.2.7. The restriction operator is defined as follow in two cases:
e Let f:R" — R, we define the restriction rgn f by rgn f := f |R1: R — R".

e Let f = (f,.... "1, f")and f/ : R* - Rwith1 < i < n, we define the i-th
component of the restriction rgn f by (rgnf )= TR fe

Now we have done enough preparations for defining our vector field of real Hardy space
A over RT.

Definition 2.2.8. We define two types of real Hardy space J#' over the half space R" " in
the following way:

o Hop(RY) = {f € L'(R}) | Hf”ji”l ®) < oo}
where HfH%pl (R?) = H sup R et Boqa f] (x HLl(R")

o HpenRY) = {f € L'RY) ||| ]2

even

)<OO}

where || f]|

Hyen(RY) "= H igg ’TR’JF "> Eeven fl(x HLl (R’
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Here €' is the heat semigroup. In other words, (e'®f)(x) = [z. Gi(x —y)f(y)dy where
x|

Gi(x) = ﬁe‘ft denotes the heat kernel. We also write as (G; * f)(x) by using the
notation of convolution.

Definition 2.2.9. The space of vector fields in real Hardy spaces over the half space R’}
is defined in the following way:

Y(RYERY) = {(u,u") [0 € (e, (RL))" 0 € Ay (RT)}

where u' := (u!,...,u" 1) and u := (u},...,u"" !, u"). We define the norm || - |y on Y by
n—1
e i n
lully = 3" Nl oy + g, e
i=1
From now on, without any ambiguity, we shall denote (Y, || - ||y) simply by Y for abbrevi-
ation.

Definition 2.2.10. We define P by (P);; := d;; + R;R; with 1 < ¢,j < n where R; is the
i-th Riesz transform.

Here P is an n X n matrix whose entries are transforms. This P is exactly the Helmholtz
projection established by Miyakawa in [8].

Definition 2.2.11. We define the half space projection operator PRi by IP’Ri = TR PFE,
that means for v € X (or Y) we have that Prn v :=rgn PEv.

Before we end this section, let us recall the real Hardy space and the BM O space defined
by Miyachi in [7] when the domain Q@ = R’} and p = 1. Let ¢ € C§°(B(0,1)) such that
Jrn ¢(x) dx = 1. For x € R, let dgy (x) := dist(x, (R} )°).

Definition 2.2.12. We denote by £} (R") the set of those f € L'(R"}) such that

sup o * fl(x) < 0.

0<t<d,
<<1R7+1(X)

LY(R?)
Definition 2.2.13. Let f € L}, .(R"), we say f € BMOy(R%) if

IO ®y) = [flBmomn) + [flo@n) < o0

where

1 n
[flBmon) == sup {]Br(x)] 00 |f = fB.(x)|dy | Bar(x) C R+} ;

o) = sup {|B1(X)‘ /B 1119y | Baro) € R and B ()1 (R £ @} .
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2.3 Helmholtz decomposition of vector fields of bounded mean
oscillation over the half space

2.3.1 Boundedness of projection Pg; from X to X
Let v € X and ]P)RKV = TR1 PEv.

Lemma 2.3.1. Let f € BMO,”*(R"), then we have that Eogqf € BMO(R",R) and there
exists a constant C which only depends on n such that

[Eoadf1Bmo < C-||fllpmog=®n)-

Proof. This lemma has already been established in [1, Lemma 7]. O

Lemma 2.3.2. Let f € BMO,.*(R"), then we have that Eeyenf € BMO(R™,R) and
there exists a constant C which only depends on n such that

[Eevenflamo < C - [flpmoge=mn)-

Proof. For simplicity let us denote Eepenf by f, let x € R™ and r > 0. If B,(x) C R} or
B,.(x) C (R})¢, we can easily verify that

1

|B,(x)] Br(x) ) - fBr(x)|dy < [flBmo=(®n)-

(1). If B,.(x)NOR", # @ and x € JR", then due to the fact that f is even with respect
to x,, we have

2 ~
— [Boldy € f(y) = f.xldy
y/ B.(x)] |B,(x) NR%| BT(X)QRZ}_’ &) = I

o)

< - f f n|dy
B (x)mR+!( Br(x)mR:t’ &) = forconmy |

+/ | /B, (x)nr? _fBr(x)|dY) """ (¥1).
B, (x)NR™

Here fBr(x)ﬁ]R’jr = m i) B, (x)"R? f(y)dy. By simple check we can further notice that

FB. 0 f(y)dy.

Br(x) NRE] B, (onrn

Therefore fB7.(x)mR1 = fB,.(x) if x € OR’} and hence
/ | /B, onrn — fBr(x)| dy =0.
r(x)NR%
By continuing the calculation we can deduce that

(¥1) = 1F(¥) = I eonry [ dy < 2+ [flpace(rn)-

[ Br(x) NRY| B, (x)rrn
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Thus if x € OR", then for any r > 0 we have that

1
1Br(%)] Jp, (x)

(2). If B.(x)NORY} # @ and x ¢ OR"}, then 3 x* € B,(x) NOR"} and B,(x) C Bo,(x*).
Notice that

’f<y> - fBT(x)’ dy <2- [f]baoo(Ri).

| Bar(x*)| 1 ; 7
* d . - x* d
o] oo P9 Tl ity < FEtl e [ 1) = ey
< |Bar (x|
= 2n+1 [flbase )

The second inequality here holds because of (1). Notice that

1 _ _
B o F0) Tonc0ldy < (g [ 1700 = ey
1 -
FTB N i,y 07 o0l 49) o),
and
i | Ve = Foldy < i [ 1F0) = el
|B(%)| JB,(x) Bar () = IB LY = 1B ()] By (x) Bar ()|
Therefore
2 3 r n
)< gl o oy O~ ool 49 <272 flumiagy

As a result, for any x € R"! and r > 0, we have that

1

|B-(x)| /5, ) F(y) - fBr(X)| dy < ([flBmo=(r) + ont2. [flbase &)

= 2" [flppog=@n)

by (1) and (2). Therefore it is true that

[flBamo < 272 [f]BMOg:‘Oo(]Ri)'
O

Lemma 2.3.3. Let f € BMO(R™R) and f be odd with respect to &, i.c., f(X,an) =
—f(x', —x,), then we have that e f € BMO,”™(R") and there exists a universal constant
C such that

lree fllyvogeee®n)y < € - [flBamo-

Proof. (1). Notice that

n oo n < — == .
[rrn flBaro (R”_XSS@\BT(X)\ BT(X)\f(Y) I8, dy = [flBMO

r>0



2. On the Helmholtz decompositions of vector fields of bounded mean oscillation and in
real Hardy spaces over the half space 19

(2). Let x € OR" and r > 0. Let B;f (x) := B.(x) NRY and B, (x) := B.(x) N (R})°".
We have that

1
.00 = (o fO08 [ s)ay)

Notice that by change of variables we can easily deduce that

[ sway=-[ ey
By (%) B (%)

Hence

1

Therefore in this case, we have that

L 1
1B ()] /Br<x> ) =00l = BT 0 VY

By taking the supremum, we can deduce that

. c
s [y < s O [0~ Tl dy
>0 - ()NRT r>0 |Br(%)] /B, (x)
x€EORY x€EORY

< C-[flBmo-

Thus
[Ire fllpon) < C - [f]BMO-
Therefore by (1) and (2), we have that

ez fllparoge=@mn) < C - [flBro-
]

Lemma 2.3.4. Let f € BMO(RY,R), then we have that rgy f € BMO,;*(R") and there
exists a universal constant C' such that

[res flpmoge=@n) < C - [flBmo-

Proof. Firstly let us recall the fact that in defining the BM O-seminorm it is equivalent to
consider the supremum over all balls and all squares. Here we make use of this idea. Let
f € BMO(R®,R), x € 0R". and r > 0, let B;(x) be the intersection of the ball B,(x) and
the half space R"}. Let QC be the set of squares whose centers are on the boundary OR’
with sides parallel to the coordinate system. Notice that a simple triangle inequality would
give us the fact that if for each half ball B;"(x) there exists a constant ¢ B (%) such that

1

up ———
xeor? | B (x)| JB; (x)
r>0

|f(y) — CB;r(x)‘ dy < oo, (2.3.1)
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then [flpge < 00. Now we let Q, € Q. be the smallest square that contains B, (x), then we
can easily deduce that

1 QT 1
—foildy < .
|BF (x)] B*(x)|f(y) forldy < 1B (x)] IQ+| QF

- Sup =07 d

where c is a constant independent of the radius 7 and Q™ is the intersection of @ and R%.
Hence by (2.3.1) there exists a constant ¢ such that

|f(y) _fQj’dy

oo (R™) : +|d
[floae &) SSSJQ |/ — fo+|dy.

For the opposite direction let Q* € Qc be the largest square that is contained in the ball
B, (x), then we have

| B} (x)] 1
d ' - dy.

By similar arguments as proving (2.3.1), if we take the supremum over all squares, we have
that

;élg O |/ — forldy < ¢ [flpase(ry)-

Therefore the seminorm | f]baoo(Ri) is equivalent to the seminorm sup ﬁ fQ+ |f(y) —

fo+|dy. To prove Lemma 2.3.4, we only need to check that the seminorm sup ﬁ fQ+ |f(y)—
€Qc

fo+|dy is less than infinity. This is indeed since we always have that

e 1 _
|Q+|/ — foldy < s /Qlf(y) foldy

=c-[flsmo
< 0.

By applying the argument of the square version of (2.3.1) again, we can deduce that

Q_‘_‘/ fQ+\dy<c [f]BMo<OO.

Therefore by taking the supremum, we are done. O
Now we are ready to prove the main lemma in this subsection.

Lemma 2.3.5. IP’Ri : X = X is a bounded linear operator.
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Proof. (1). Let v € X, by Lemma 2.3.1 and Lemma 2.3.2, we can deduce that there exists
a constant C' such that

n—1
[EV]Bmo =Y _[Eeven v'1 830 + [Eoda v B0
=1
n—1 '
<C- (Z[UZ}BMogjm(Ri) + 10" Brogo= @)
=1
<C-[v]x.

Therefore F : X — BMO(R"™,R") is a bounded linear operator.

(2). Since the Riesz transform R; is a bounded linear operator from BMO(R",R") to
BMO(R™,R™) for each i, we can easily deduce that the projection P:= I + R® R is also
a bounded linear operator from BMO(R",R") to BMO(R™,R™). As for the boundedness
of Riesz transforms from BMO to BMO, please refer to Fefferman and Stein [3].

(3). Notice the fact that (PEv)! is even with respect to x,, for i such that 1 <i <n—1
whereas (PEV)" is odd with respect to x,. This fact will be proved in subsection 2.3.3.
Then by Lemma 2.3.3 and Lemma 2.3.4, we can deduce that there exists a constant C' such

that

[]P’RT_:_V]X S C . [V]X

2.3.2 Trace problem

Let u € X, then by Lemma 2.3.1 and Lemma 2.3.2 we know that Eu € BMO(R",R").
Let L2 (Q) := (L2 (Q))" where Q C R™.

loc loc

Lemma 2.3.6. Let u € X, then we have that u € L (R™).

loc

Proof. Let u € L}, (R%) and Eu € L}, .(R™) be an extension of u.

(1). Bu € BMO implies that Eu € L? (R™). This is indeed true since if we let B be
any open ball in R™, by the John-Nirenberg inequality we have that

1ulfEagny =2 [ onlix € B [Butx) ~ Bup| > a})da

CQOZ

[Eu]pyo ) do

o0
gcl'|B|~/ o - exp(—
0

< Q.

The first equality above is due to ||f|[}, = p [ a? " ds(«) dow where d(e) is the distribu-
tion function of f, for this fact please refer to L.Grafakos [5].

(2). Let K CC R7, it is certainly that K C By(x) NR” for some x € R and r > 0,
then we have that

ullr2ery < Nullz2s,onrn) < Eu[r2(5,x) < o0

Therefore u € L?(K) for any K CC R", that means u € L} (R"7).

loc

For u € X, we have that Fepen u* € BMO for 1 <i<n—1and E,gqu™ € BMO, hence
by (1) and (2) v’ € L? (@) for 1 <i<n. O

loc
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2

2 (R7), we are able to make use

Since we have proved that u € X implies that u € L
of the theory of R.Temam [10] to define the trace.

Definition 2.3.7. We define the space EZOC(M) in the following way :
o Eipe(RY) == {ue L (R}) |divue L2 (R7)}.

loc loc

n

Here div u means the divergence of u, i.e., divu := g O, u’.
i=1

e Let u € E(R% ), we define a family of seminorms || - || p(q,) for all i € N on Ej,c(R7)
by

HuHQE(Qi) = [o, |divul? + [uf? dx

where (2; is an open domain in R’} with C? boundary 05); for each i € N, moreover
we require that B;(0) C 9% for all i € N where B;(0) := {x € B;(0) | ,, = 0} and
Q; TR} as i — oo.
Definition 2.3.8. (Trace space)
e We denote the interior of the region ; N OR" in R by Q;
e TR :={T e R" M| |<T,¢>|<Cilo \|H%( for any ¢ € 2(R"~1) with supp ¢ C

2}

/
)

e We define a family of seminorms {|| - ||y | i € N} on T'(R"!) by:

1Tl == sup [ <T,¢> |
’ e (R,

!
supp ¢CS,,

lell 1+ , =1
H2 ()

It is not hard to verify the fact that these two spaces Ej.(R7) and I'(R" ') are indeed
Frechet spaces, thus we omit the details here and proceed directly to define the trace.

Lemma 2.3.9. Let v : Ejoe(R?) — T(R"!) by u — ~yu, where for ¢ € D(R"1) with
supp ¢ C Q; we have the map

Yu (@) ::/ divu-w+u-Vwdx.
Q;

Here we choose w € HY(Q;) with the trace operator vo : H*(Q;) — H%(ﬁﬁl) such that the
trace of w is ¢. Then we have that the map v is a bounded linear operator.

Proof. Here we make use of the theory of R.Temam [10]. Notice that for each ¢ € Z(R"!)
with supp ¢ C Q;, we can actually find an w € H'(;) such that its trace yow = ¢. Let
¢ € 2(R"1) with supp ¢ C Q;, notice that by definition we have that Q; C ;. We define

a function g on 0€2; by
p(x) if z, =0,
9(x) :=

0 else.
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Since ¢ € Z(R™ 1), an easy check quickly tells us that this function g € H %(691) and

HgHH%(aQi) = H¢HH%(Q{). Then by R.Temam [10], there exists an w € H'(§;) such that its

trace Yow = g. Therefore by the definition of our 7,, we have that
(@) | < [l divul|rz, - llwllre@,) + ullre@,) - 1| VwllLz@,)
< C-([ldivul|rz@, + llullLz@) ) - wlla @)

< C-ullg@) - @l @)

by the triangle inequality and Hélder’s inequality. Since by R.Temam [10], there exists
lo, € L(HY?(89;), H'(Q;)) where lq, is the lifting operator such that lg,g = w, hence by
above we have that
(@) [ < C-llallge,) - o9 1@

< Ci -llulle@) - 191200,

= Ci - llullz@y 161l
The last equality holds since g(x) = 0 for x ¢ Q; Therefore, we can deduce that

17allgy < Ci -1l
where C; is simply a constant which depends on i. As a result, we see that

v Eloc(@) — D(R™ 1)
is indeed a bounded linear operator in the sense of Frechet spaces. O

By Lemma 2.3.6 we know that X C . L? (R%) and by Lemma 2.3.9 there exists a bounded

loc

linear operator v which maps Ej,.(R) to T'(R"™!). For the subspace {u € X | div u €

L7 (R%)} C X, it is trivial to see that the map + is also a bounded linear operator from

{ueX|divue L (R%)} to I'(R"!). This is how we take the trace for elements in X.

loc

2.3.3 Validity of Pg: as the Helmholtz projection

Lemma 2.3.10. Let v € X, then div IP’Riv =0 4n R} in the sense of distributions.

Proof. Let ¢ € C°(R"}). By the definition of distributions, we have that

J

Since supp ¢ CC R’}, we can easily deduce that supp 9,, ¢ CC R} for any 1 < i < n,

therefore
/

Because div (PEvV) = 0 in the sense of distributions, we have that

div [PRZV -pdx = —/ IP)Riv - Vo dx.
¥ RZ

}P’Riv-ngdx:/ PEV'VQSdX:—/ div (PEV) - ¢ dx.

n n

n
+

/ div (PEV) - ¢dx = 0.
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Thus

J

Notice that the above equality holds for any ¢ € C§°(R"}), hence

divPRiv-¢>dx:—/ IP’RKV-Vqﬁdx:/ div (PEV) - ¢dx = 0.
Rn n

n
+ +

div PRiv =0 in R%

in the sense of distributions. As for the reason why div PEv = 0 in the sense of distributions,
by considering Fourier transforms we can quickly prove it through simple calculations. [

Let us recall some facts about Riesz transforms. Notice that the j-th Riesz transform
R; is defined as

Ri(f)(x) := p.v. / T Y p(y) dy.

gn | X —y [

By [9, p.232], we have that R;(f) is well-defined for any f € s#*(R") and 1 < j < n. By
3], we have that for f € BMO and 1 < j < n, R;(f) € #*(R")*. Hence by the fact that
BMO = 571 (R")*, there exists h € BMO such that R;(f) = h in the sense of bounded
linear functionals on #!(R™). Therefore for any f € BMO and 1 < j < n, Rj(f) is
defined by its corresponding h. Based on these facts, we have the next lemma which proves
an interesting property about Riesz transforms.

Lemma 2.3.11. Let f belongs to BMO or #(R"),
(1). If f is even with respect to x,, then

R;(f) is even with respect to x,, for j satisfying 1 < j <mn—1,
R, (f) is odd with respect to x,.

(2). If f is odd with respect to x, then

{Rj(f) is odd with respect to x, for j satisfying1 <j<n-—1,

Ry, (f) is even with respect to x,.

Proof. For f € s*(R"), since R;(f) is well-defined for each 1 < j < n, we can prove this
lemma directly through change of variables. Let g € BMO be odd with respect to x;,, and
1 <j<n-—1,let we BMO such that Rj(g) = w. Let w(x,z,) := w(x,—2,) and
f € #Y(R™), then by change of variables we have that

<, f>=<w, f>=—<g,Ri(f)>.

Notice that the second equality above holds since f € 7 (R") if f € 21 (R™). Again by
change of variables, we can further deduce that

/

Ri(f)(x,20) = Rj(f)(x , —z).
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Then,

’ ’

g(X ) _J:n) : R](f)(x ’xn) dx

/R .
- _/R 9(x ,xn) - Ri(f)(X , —2n) dx
/

’

= /ng(Xl,xn) . Rj(f)(x , Tn) dx
=—<w,f>.

Hence < @ + w, f >= 0 for any f € s#1(R") and thus w is odd with respect to x,. The
other three cases can be proved by similar arguments. O

Lemma 2.3.12. Let v € X, then we have that

(PEV)! is even with respect to x, for i satisfying 1 <i<n—1,
(PEV)™ is odd with respect to x,.

Proof. This is a direct application of Lemma 2.3.11. O

Lemma 2.3.13. Letv € X, then the trace IP’Riv.n = 0 on OR} in the sense of distributions.

Proof. Let Bp be the ball Bg(0). Let B := Bg NR" and By, := BrN (R%)°. Let v € X
and let u :=PEv. By the above lemma we can see that u™ is odd with respect to x,,. Let

u(x/,xn) if 2, >0,
0 if x,, < 0.

u (x, 2,) = {
and

’ 0 if Tp > O,
ug(x ,xy,) =

u(x,z,) it z, <0.

Let ¢ € C3°(Br), then we have that
<divui, ¢ >:=—<u,Ve >

- / v o dx +/ (ur - )¢ A"
BR

{ZEnZO}QBR

where nj is the normal vector on OR’l which points outward BE. In the mean time, we
also have that

<divug, ¢ >:=—<ug, Vo >

:/ div uy -qbdXJr/ (112 'nz)gb dsrmnt
B

R {zn=0}NBg
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where ny is the normal vector on JR’} which points outward By. By similar arguments
as in the proof of Lemma 2.3.10, we can see that div u = 0 in Bg, divu; =0 in BE and
div ug = 0 in By. Therefore

0=<divuy, ¢ >+ < divug, ¢ >

= / div u; - ¢ dx +/ div us - pdx +/ (u1 -nj; +uy - ng) ddam 1
B} B {z,=0}NBg

R R

:/ (ul-nl—ug-nl)qﬁd%”"*l.
{zn=0}NBgr

Thus we see that on {z,, = 0} N Bp, (u1 ‘n; — ug - n1) = 0 in the sense of distributions.
Notice that if x,, < 0, then

’ ’

uy (X, xn) = —ul (X, —2p).
At {z,, = 0} N Bpr, we have that
w -y = (x,0) and uy-ny = —uf (x,0).
and thus u} (x,0) = 0 in the sense of distributions. Notice that

ul (x,0) = Prev-n g, —0ynBy -
Since {x, =0} N Br T OR"} as R — oo, we can easily deduce that the trace
Prrv-n [grr=0
in the sense of distributions. O
Lemma 2.3.14. Let v € X such that
{ divv=0 in RY,
v-n=0 on ORY.

Then we have that v & ]P’RiX. Notice that both equalities above hold in the sense of
distributions.

Proof. Let v € X such that
divv=0 in RY,
v-n=0 on ORY.

in the sense of distributions and let £ be our extension operator. Throughout the proof of
this lemma we mean equal to 0 in the sense of distributions.

(1). Here we prove that div Ev = 0 in R™. Let Bp be the ball Bg(0). Let B}, :== BrNR'}
and Bp := BpN (R%)C. If 2,, > 0, then Ev (x,z,) = v (X ,2,,) and div Ev = div v = 0 in
R” by our assumptions. If ,, < 0, then Ev (x/,xn) = (V/ (x, —Zn), —v"(xl7 —xy,)) and

n—1
div Ev = Z O, V(X , =) + O_g, V" (X, =) = 0
i=1
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since div v =0 in R"}. Let ¢ € C§°(Bg), then
<div Bv,¢ > :=— < Ev,V¢ >
:/ diva-¢dx+/ div Ev - ¢ dx
Bt =

R

[ - B meda
BrN{z,=0}

The first two terms in the last equality equal to 0 since div Ev = 0 in both B+ and Bp
The third term equals to 0 since (Ev), -n, = v"™(x,0), (Ev)_ -n, = (x 0) and
v"™(x',0) = 0 by our assumptions. Hence div Ev = 0 in R™.

(2). Notice that by simply considering Fourier transforms it is easy to verify that
R; ZRjuj = (0 for any 1 < ¢ < n if div u = 0 in R". Therefore if div u = 0 in R", then

J
(Pu)’ = v’ for any 1 <i < n.

Now let u := Ev, by (1) and (2) we have that Pu = u. Then by applying the restriction
on both sides of this equality, we get that ]P’Riv =v. O

Definition 2.3.15. We define the solenoidal subspace X, of X by
si={veX|divv=0in R} & v-n=0 on ORY }.
Here the two equalities hold in the sense of distributions.

By Lemma 2.3.10 and Lemma 2.3.13 we can see that IP’RiX C X,. And by Lemma
2.3.14 we can see that X, C IP’RiX. Therefore }P’Rix = X,. This fact justifies the validity
of PRﬁ as the Helmholtz projection.

2.3.4 Characterization of the subspace (I — P )X

Lemma 2.3.16. Let v € X, then there exists p € L}, .(R) such that (I — Pgr )v = Vp.

loc

Proof. We seek to make use of De Rham’s theorem [4] here. In order to make use of De
Rham’s theorem, it is sufficient to show that

<({I-P)Ev,p>=0 V¢e (5, (R").
Let ¢ € CF5,(R") and u := Ev, notice that

{(I —P)u}’ = —R; ZRuﬂ

Therefore by substitution < (I —P)u, ¢ >= Z < —R; ZR al, ¢t >, Let f = ZR u’

notice that
< _Rl(f)a le > =< fﬁ RZ((#) >
Therefore

<(I-Pu,¢>=> <> Rj R’ >
i
=< > Rj/,) Ri¢' >
i A
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By div ¢ = 0 we can easily deduce that ZRigbi = 0 by considering Fourier transforms.

(2

Thus
<[ =Plu,p>=0 Vo¢e Ci,(R").
Therefore by De Rham [4], there exists p € L}, (R™) such that (I —P)u = Vp. By applying
the restriction operator we have that
rry (I =P)Ev = (I —Pgn) v =rgn Vp.

Notice that we can further deduce that TR? Vp = V(rm p). Indeed since for any ¢ €
C3°(R%) we have that

<TR1Vp,¢> = /RnrRin'gbdx: A Vp - ¢dx
+
= —/ p-divqﬁdx:—/ p-div ¢pdx

= —/ (rRip)-diqudX:/ V(rgnp) - ¢dx
R" R

= < V(rgep), ¢ >.

Therefore we have that (I —Pge)v = V(rgnp). Since p € L} (R™), it is easy to deduce

that TR P eL} (@) ]

loc
Lemma 2.3.17. Let p € L}, .(R™) such that Vp € X, then Vp € (I — IP’Ri)X.
Proof. Let p € L} (R%) such that Vp € X, it is sufficient to prove that Prr Vp = 0. Then

loc
by this fact we can see that

(I = Pgr)Vp = Vp —Pry Vp = Vp.
and thus Vp € (I — Pry)X. Let ¢ be defined as follow:

’ p(xla xn) if x, >0,
Q(X ,l'n) = / .
p(x, —xy) it x, <0.

Since ¢ is the even extension of p, p € L}OC(M) would imply ¢ € Li, (R"). Moreover,
simple calculations would tell us Vg = E Vp. This is indeed since for x,, < 0 we have that

0 / 0 / 0 / 0 /
67% (X 7xn) - aixnp(x ) _!Tn) - _3(—$n) p(X ) _mn) - _Tan(X aZn)

where z, > 0. Again by considering Fourier transforms, it is easy to verify that (PVgq)! = 0
for any 1 < i <n. As a result,

]P’Ri Vp = TRiIP’EVp = TRilP’Vq =0.
Hence Vp = (I — IP’Ri)Vp and we are done. O
Definition 2.3.18. We define the subspace X, of X by
Xr:={VpeX|pe LR}

By Lemma 2.3.16 we can see that (I — Pgn )X C X7 and by Lemma 2.3.17 we can see
that Xr C (I — Prn )X. Therefore (I — Pgy )X = X;. This fact gives the characterisation
of the subspace (I — Prn)X.
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2.3.5 Proof of Theorem 2.1.1

Proof. By Lemma 2.3.5 we see that IP’Ri is a bounded linear operator which maps X to
X. By this bounded linear map we can easily see that the vector field X admits a natural
decomposition

X = PR;;X ® (I - ]P’RTJLF)X
where both PR1 X and (I — IP’RQ )X are linear subspaces of X. Since this natural decompo-

sition is induced by the projection PRi , this decomposition is certainly unique. Moreover,
we have already proved that

PRi X=X,
and
(I — IP’Ri)X = X;.
As a result, Theorem 2.1.1 holds and we are done. ]

Remark 2.3.19. Although the Helmholtz decomposition we established for X is true, due
to the fact that [-]g MO (RY) is a seminorm, it is inevitable to think about the question
where constant vectors are mapped to under this Helmholtz projection IP)Ri. Unfortunately,
this question is not answered in this research, in order to avoid this ambiguity, we shall
consider our Helmholtz decomposition not for the space X but for the quotient space
X /(R*! x {0}). From now on, without causing any ambiguity, we shall denote X /(R"~! x
{0}) simply by X.

2.4 Partial Helmholtz decomposition of vector fields in real

Hardy spaces over the half space

2.4.1 Boundedness of projection Pg; from Y to Y

Let veY and IP’]MV = TR1PEV.
Lemma 2.4.1. Let f € J) (R, then we have that E,qqf € 1 (R™) and
Eodaf||ser = 2 - [1fl|ey,, -

Proof. For simplicity we denote Eoqqf by f. Let Gy be the heat kernel on R™ so that
(et?g)(x) = (G * g)(x) for a function g on R™. By Definition 2.2.8, we have that

111

%1—/ sup\Gt*f](x)dx—l—/ sup\Gt*f](x)dx
R? >0

R™ >0
= (1) +(2).

(1). For x € R} and ¢ > 0, we have that (G¢ * f) (x,t) = (rez (G¢ * f)) (x,1). Since this
is true for all ¢ > 0, by taking the supremum over all ¢ > 0, we have that

sup| Gy * f| (x) = sup| rrrn (G * ) (x).
>0 £>0
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Since the above equality holds for all x € R”}, we can see that

(1) = [ suplrsy (Gox )] () dx

i t>0

= / sup| rry e f(x)dx
R

i t>0
= 1l -

(2). Notice that (Gy * f) (x,t) is actually odd with respect to z,, since f is odd with
respect to x,, hence

|Gt*f_‘(xlvxn?t) :| - (Gt*f) (X,7_$n7t)’: |Gt*f_|(xl¢_xn>t)'

Let fggt (x) == iug] Gy f|(x), f& is even with respect to x,,. Hence,
>

(2) = fé’t(z/, —2,)dz dzy = f(z (z ,2p)dz dz, = (1).

R” R”

Lemma 2.4.2. Let f € 7}, (R"), then we have that Ecpen f € 71 (R") and

[ Eeven fll o1 ny = 2 - [|flln,..7)-

‘even

Proof. For simplicity we denote Eeypenf by f. Let Gi be the heat kernel. By Definition
2.2.8, we have that

Il = [ sl Gon Fl s [ ol G 0 s
— (1) +(2).

(1). For x € R} and t > 0, we have that (G * ) (x,t) = (rrn (G = f)) (x,t). Since this
is true for all ¢t > 0, by taking the supremum over all ¢ > 0, we have that

sup| Gy # f | (x) = sup| rre (G * f) | (%)
t>0 >0
Since the above equality holds for all x € R"}, we can see that

(1) = [If1l

“even (R’i) )

(2). Notice that (Gy * f)(x,t) is even with respect to z;, since f is even with respect to
Zn. We have that fért (x) :=sup| Gy x f | (x) is even with respect to z,. Therefore,
>0

@)= [ Ft )i d :/ f (2 2) A7 dz = (1),
R}

RY
O

I

Lemma 2.4.3. Let f € J*(R") and f be odd with respect to wy, i.e., f(X,T,) =
—f(x',—x,), then we have that ey f € AL (R and

s flLer, @y < I fller-
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Proof. Let f € s (R") such that f is odd with respect to z,,, then

A
ree fller, @n) = /Rn Stl>18|7“R1 e Eoaarrn f | (x) dx
¥

— [ suplre €' 7] ) dx
R

1 t>0

tA <) dx
s/R sup| ¢ £ (x)d

n >0

= |[f1le1 @ny-

O]

!/

Lemma 2.4.4. Let f € S#Y(R") and f be even with respect to my, i.e., f(x,r,) =
f(x',—xy), then we have that e f € AL (R™) and

VEN

[Iree fllen,, eny < |1f]Ler-

reven

Proof. Let f € #*(R") such that f is even with respect to x,, then

A
lres flloes,, @) = /Rn sup| ey €' Eeven iy f | (%) dx
+

=/ sup| rgn €2 f | (x) dx
R

:l_ t>0

< /R sup| ' £ (x) dx

n >0

= |[f1ler @ny-

Lemma 2.4.5. PRi : Y = Y is a bounded linear operator.

Proof. The proof is basically identical to the proof of Lemma 2.3.5. O

2.4.2 Properties of projection Py

Except some places due to the fact that we cannot take the trace properly, the theory in
this subsection is completely identical to the theory in subsection 2.3.3. This is due to the
fact that all properties hold not because of the space where v belongs to, but the properties
of projection PP itself has.

Lemma 2.4.6. Let v €Y, then div }P’RQV = 0w R} in the sense of distributions.
Proof. The proof is completely identical to the proof of Lemma 2.3.10. O
Lemma 2.4.7. Let v €'Y such that

divv =0 in RY,
v-n=0 on OR'.

Then we have that v € IF’RiY. Notice that both equalities above hold in the sense of
distributions.



2. On the Helmholtz decompositions of vector fields of bounded mean oscillation and in
real Hardy spaces over the half space 32

Proof. The proof is completely identical to the proof of Lemma 2.3.14. O

Definition 2.4.8. We define the subspace Y, of Y by
Y, ={veY|divv=0 in R} & v-n=0 on JR" }.
Lemma 2.4.9. In the case for the space Y, we have that
Yo CPrrY C{veY|[divv=0 in R} }.

Proof. By Lemma 2.4.6 and Lemma 2.4.7, we are done. O

2.4.3 Characterization of the subspace (I — Pgy)Y

Due to the fact that the theory in this section depends only on the properties of projection
]P)Ri and the trace problem which we do not know how to deal with is not involved in any
sense, it is completely identical to the theory in subsection 2.3.4.

Lemma 2.4.10. Let v € Y, then there exists p € L, .(R'}) such that (I — Pgn )v = Vp.

loc

Proof. The proof is completely identical to the proof of Lemma 2.3.16. O
Lemma 2.4.11. Let p € L}, .(R%) such that Vp € Y, then Vp € (I — Prn)Y.
Proof. The proof is completely identical to the proof of Lemma 2.3.17. O
Definition 2.4.12. We define the subspace Y, of Y by

Y, ={VpeY|peL,(R}}
Lemma 2.4.13. (I —Pry)Y = Y.

Proof. By Lemma 2.4.10 and Lemma 2.4.11, we are done. O

2.4.4 Proof of Theorem 2.1.2

Proof. By Lemma 2.4.5 we see that PRi is a bounded linear operator which maps Y to
Y. By this bounded linear map we can easily see that the vector field Y admits a natural
decomposition

Y =Pe Y & (I —Pgn)Y

where both PR’_}_ Y and (I — ]P’R1 )Y are linear subspaces of Y. Since this natural decompo-
sition is induced by the projection IF’Ri , this decomposition is certainly unique. Moreover,
we have already proved that

Yo CPrn Y C{veY|[divv=0 in R} }
and
(I —Pg)Y =Y.

As a result, Theorem 2.1.2 holds and we are done. ]
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2.5 Duality theorem

Before we start this section we would like to recall the definition that a function h € 521 (R")
is called a 2-atom if supph C B, |[h|[r2@n) < |B|~1/2 and Jzhdx =0. Here B C R" is an
open ball.

2.5.1 Duality theorem for the case of odd extension

Throughout this subsection, we denote the odd extension operator E, 4y by FE.
Definition 2.5.1. We define the set of symmetric 2-atoms by the set

{Errna|a is a2-atom s.t. suppa C B and BNORY # o}
U {ET’RiB | B is a 2-atom s.t. supp 3 C B C R }.
Let EA)L,(RY) = {Ev | v € #,(RT)}. Then EXL,(RT) C s#1(R") is a linear
subspace.

Lemma 2.5.2. The norm

inf{z |Ai| + Z |l | all symmetric 2-atomic decompositions}
i J

is equivalent to the norm || - || 1 (gny on the subspace EAL (R,

Proof. Let f € #4,(R™), then Ef € 7#1(R").
(1). By the atomic decompositions of functions of the real Hardy space s (R"), we
see that F f admits 2-atomic decompositions. Let

Ef = Z i + Z 1 3;
i J

be a 2-atomic decomposition of Ef. Apply TR™ firstly and then E secondly on both sides
of this 2-atomic decomposition, we can deduce that

Ef= ETRiEf = z )\iErRiai + ZMjETRiﬂj'
( J

This is a symmetric 2-atomic decomposition of E f with exactly the same coeflicients just as
the original 2-atomic decomposition. Hence we see that every 2-atomic decomposition of F f
gives rise to a symmetric 2-atomic decomposition of F f with exactly the same coefficients.
Therefore,

IEfl| o1 mny = inf{z |Ai| + Z || | all 2-atomic decompositions}
i J

> inf Ail + 1| | all symmetric 2-atomic decompositions}.
J
i J

(2). Let Ef = Z )\iErmozi + Z ,qurRiﬁj be a symmetric 2-atomic decomposition.

i J
Pick an ¢, suppose that supp o; C B; where B; is a ball in R" such that B; N dR"} # @.
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Then there exists x* € B; N JR’} such that supp ErRiai C Bsi(x*). Moreover, we have
that

| Errn ol p2eny < 2 |las] [ pogny = 2217 - | Bos(x*)| 712

Since E is the odd extension, we certainly have that

/ ETR?_ (67 dx = 0.
BQZ'(X*)

! Ergna; is a 2-atom in ¢ L(R™) for any i. In addition, since supp 3; C

o5+
Bj C R for some ball B;, for any j we can decompose Ergn Bj into the form §;+ 5, where

Therefore,

f; is a 2-atom which is contained in (R%)¢. Hence we can rewrite the symmetric 2-atomic
decomposition in the following way:

n 1 _
Ef = Z()\ﬂ?“) : (2%+1E7“R104i)+zw '5]“*‘2/% B
A J J

Here (ﬁ%EﬁRi «;), B; and B; are all 2-atoms for any ¢, j. Therefore we can get a 2-atomic

decomposition of Ff from each symmetric 2-atomic decomposition of E f with coefficients
{\; )22, and {u; 321 where A; = \; - 22+ for all i and u; = 2. p; for all j. Notice that

SN+ gl = 2;1+1 SO SN2 Y T2 )
]. !/ !
= 5T (Zp‘z‘ +Z’Mj|)'
i J

Therefore we have that

inf{ E |Ai] + E |pej] | all symmetric 2-atomic decompositions}
i J
1 / , . .
> 95 +1 - inf{ EZ IA;| + Ej 11| | all 2-atomic decompositions}.

Since the norm inf{ Z I\| + Z \ ,u;| | all 2-atomic decompositions} is equivalent to the

i J
norm || - || »1(gn) by the standard theory of real Hardy spaces, we can deduce that
inf {Z |Ai] + Z 15| | all symmetric 2-atomic decompositions} > C| - || 1 (wn)
i J
for some constant C'. 0

By making use of Lemma 2.5.2 we can deduce the half space atomic decomposition for
elements of 2. (R™).

Theorem 2.5.3. Let f € %’;ﬁld(Rﬁ), then there exists sequences of non-negative numbers
{Ai}2y & {11521, a sequence of 2-atoms {a;}32, where for each i supp a; C B; for some
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ball B; and B; N ORY # @ and a sequence of 2-atoms {Bj}?i1 where for each j supp B; C
B; C R"} for some ball Bj such that

f:Z/\i'ai ’rmi +Zuj - Bj-
( J

We refer such a decomposition of f as a half space atomic decomposition of f and moreover,
the norm

inf{z [Ai| + Z lpj] | all half space atomic decompositions}
i J
is equivalent to the norm || - H%ﬂdd(Ri) on HL,(RT).

Proof. By Lemma 2.5.2, we have that

f € Hu(RY). = Ef € AN (R).
— FEf admits 2-atomic decompositions.
= FEf admits symmetric 2-atomic decompositions.
—> f admits half space atomic decompositions by taking

restrictions of symmetric 2-atomic decompositions.

By Lemma 2.4.1 and Lemma 2.4.3, there exists constants C'y and Cs such that
O 111l ey < B FlLagany < Ca- 1l L, .

Moreover, the norm || - |

#1(rr) 18 equivalent to the norm
inf {Z |Ai| + Z |pj] | all symmetric 2-atomic decompositions}
i J

on EAL,(R™) by Lemma 2.5.2. Since each of the half space atomic decomposition of f
gives rise naturally to a symmetric 2-atomic decomposition of Ef with exactly the same
coefficients by odd extension, we have that

inf{z |Ai| + Z || | all half space atomic decompositions} ~ || - ||=%f;1dd(R1)
i J

on k(). m

Definition 2.5.4. We denote the set of all finite linear combinations of symmetric 2-atoms
by A5 (R™).

Notice that %TS(R") C HGFR™) N EAY,(RY) where G (R") is the set of all finite
linear combinations of 2-atoms.

Lemma 2.5.5. E.,(R") is a closed subspace of ' (R™).
Proof. Let F € E%}jd(R’}r)H-H%l(Rn) \ EsL (R™), then there exists a sequence {u,}22, C

A (R'Y) such that Eu, — F in ||+ || 1 gn) as n — oo. Since 51 (R") C L'(R™), we have
that

HEun — FHLI(Rn) < HEun — FHJfI(Rn) — 0.
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This means that Fuy,(x) — F(x) a.e.. Notice that for x € R",

F(x,, X)) Eun(xl,xn) = —Eun(x/, —Ip) — —F(xl, —Zp)-
Therefore, F' is odd with respect to x, a.e. and F' € E%ﬂbd(Ri). O
Lemma 2.5.6. %}S(Rn) is dense in EA) (R™).

Proof. Through the proof of Lemma 2.5.2 we know that every element of £, (R" ) admits
symmetric 2-atomic decompositions and by Lemma 2.5.5 we see that B2, (R") is closed
in 1 (R™). We are done. O

Theorem 2.5.7. Suppose g € BMO;*(R™). Then the linear functional | defined on
Hopga(RLL) by

I(f)=[] f-gdx

R}

for f € AL, (RY) is a bounded linear functional which satisfies ||l|| < c- H9||BMO§°'°°(]R1)

with some constant c. Conversely, every bounded linear functional I on f%”o}id(]R:i) can be
written in the form of

W(f)= [ f-gdx forall f € AL (RY)

RY

with g € BMO,”*(R") and H9||BMO§°*°°(]R1) < ¢ ||l|| with some constant c. Here ||l||

means the norm of I as a bounded linear functional on Jf;}id(R’}r).

Proof. (1). Let f € AL, (R) and g € BMO;”>(R%). Then we have the estimates

1
| regaxi=5-1 [ Ef-oBgax
R? Rr
1
< 5 1Bl @) - 1E9l Bro
<c: Hf”jfoldd(Ri) : HQHBMO?’"X’(RQ)-
Therefore, [ : [ — f-gdx € 25 ﬁ)* and the above inequalities imply that

RY
1] < e llgll prroge= gny with some constz?nt c.

(2). Let I € J5,(R?)". We define I[(Ef) := 2-(f) for all f € %,(R?). Fix a
ball B C R, let L§(B) be the subspace {f € L*(B) | [ fdx = 0}, notice that L§(B) C
AL, (RT). Let uw € L(B) be a 2-atom, i.e., we require that suppu C B C R for some
ball B, [pudx =0 and [[u||r2p) < |B|~1/2. We then have that

[(Bu)| =2 l(u)| <c- el e, e
< e |[Bullpr@ny = ¢ |luh +u” || any
<c- (|t @ + llu”ller@ny) <c-|BIY?
<c-|BI'?. 1Eull przp)-

) HUHLg(B)
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1 _
Here |- ||z() = (Ji |- dx)? and |||l pra(m) = ([pup- |- P dx)7 with B~ := {(x, —z,) |

(x',x,) € B}. For general w € L(B), we have that w = A-u where u € L3(B) is a 2—atom,
then

1(Bw)| =2 [l(w)| = 2 |\| - i(w)| < ¢ |B]'? - || Bl gras)
Thus [ | r2(B) is a bounded linear functional on EL3(B).

Claim 1 : EL3(B)" = EL3(B).

Proof of Claim 1 : Let T € ELZ(B)", by definition we have that IT(Eu)| < c-
HEU||EL§(B)- Let’s define T'(u) for each u € L3(B) by T'(u) = 3 - T(Eu), thus

1
T(u)l =5 -IT [(Bu)| < e || Bullpras) < e lull 2s

Hence T € L3(B)". By the Riesz representation theorem for the Hilbert space LZ(B), we
deduce that there exists g® € L3(B) such that

T(u) = / u-gBdx for all u € L3(B).
B
Notice that
T(Eu):2-T(u):2-/u-gde:/ Eu - EgP dx
B BUB-
and EgP € EL%(B), hence ELZ(B)" = EL(B) and the proof of Claim 1 is finished.

By Claim 1, [ |BL2(B)E EL(B)" = FL3(B) implies that there exists g® € LZ(B) such
that [ ‘EL2 = EgP as a bounded linear functional on EL3(B), i.e.,

I(Fu) = /BUB_ Eu - EgPdx for all Eu € EL:(B).

Since B is any ball in R"}, we can find EgP for any B C R, If By C By C R?, then we
can easily see that EgP? — E¢P' is a constant on By U By .

Consider the ball B,(x) where x € R and r > 0. Let B;f(x) := By(x) NR’}. For
simplicity, we denote B(x) by By. Let u € B;f, notice that Eu € L*(B,) and [ Fudx =0
as E is the odd extension. Since Eu € EL3(B,) and Fu is odd with respect to x,, we
have that L*(B;") C J£),(R"). By similar arguments as above, we see that ] |EL2(B¢) is
a bounded linear functional on EL?(B;"). By the same proof of Claim 1, we have that
EL*(Bf)" = EL*(B;). Hence [ g2y € ELA(B})" = EL*(B;) implies that ] |Br2(8)=
EgB € EL?(B}) as a bounded linear functional on EL*(BT) for some g B G L*(B;}).
For any ball B,(x) where x € OR"}, we can find Eg . If B,, C B,,, then Eg? % EgB’J'rl
is a constant on B,,.

Now we seek to find a uniform Eg¢(x) defined on R”. We define that

1
[B1(0)]

Eg(x) :i= EgBT O _ . / EgPO) dx = EgBHO),
B1(0)
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The last equality holds as Avg EgB;r 0 = 0. For B C R?, we have Eg”(x) defined on B,
B1(0)

then there exists Br(0) for some R large enough such that B C BE(O). Hence

By (x) = Bg®(x) — Eg"x") (x) + Bg”r ) (x)
=cp + Fg(x)
where cp := FgP(x) — EgBr© (x) is a constant which depends on B.
Next we prove that the function g(x) defined by g(x) := rrn Eg(x) belongs to the space

BMObOO’OO(]R’}r).
1*. If B C R}, we have that

|Bg(x) — (—cp)| dx = / |Bg® (x)] dx
w i
1 1
< — Eg¢P|?dx)? - |B|z
5 ([ B Pax) B
_1
— 1BIF BBl sy

where the second inequality above is by the Hélder inequality. Since

‘/ Eg¢® - Fudx
BUB-

we can deduce that

~ 1
= [l(Bu)| < ¢ |B[> - [[Eullpra(p),

= 1
1E9” || ez = Il < c- B2

where ||I]| is the operator norm of [. Therefore we have that

1
B|/\Eg (—ep)|dx < |B|™ 2-c~\B]§:c.

By taking the supremum over all balls in R"}, we can deduce that

sup / |Eg(x) — (—cp)|dx < e
ek Bl

Then by the triangle inequality, we can easily get that

[9]Bro=e(Ry) <2+ sup / lg(x) — (—cp)|dx < 2-c.
ke | B

2*. For balls of the form B,(x) where x € OR", we have that
Eg(x) = Eg%' ™) —¢p,.

Now we integrate this equality over the ball B,.(x), we have that

+
/ Eg(y) dy:/ EgP &) dy—/ cp, dy.
B (x) By (x) B (x)
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Notice that Fg and EgB;r (®) are both odd with respect to z,, we certainly have
/ Eg(y)dy = / EgP ™) 4y = 0.
By (x) By(x)

Hence cp, must equal 0. By making use of this fact and similar arguments as the previous
part, we also have that

1

1B, /5,00 [Eg(y) — (=cB,)|dy < c.
Therefore,
B [Eg|dy = 1/ [Eg|dy <c.
|1Br(x)| /B, (x) 1B (x)| /B x)
As Eg(y) = g(y) in B, (x), we have that

’wl(x)‘ 0 l9(y)ldy <e.

By taking the supremum over all balls centered at JR" , we can easily deduce that

llgll ! lg(y)ldy <c<
gllpoo(rry = SUP —F— gy)ldy <c < oo.
®D ™ 20 1BF®)] Jer
xE(’)Ri

Hence by 1* and 2*, g € BM O~ (R"}).
Let Eu be a (2, s)-atom, we have that

1 -
/ g-udX:§~ Eg-Fudx = = -l(Eu) = l(u).
R

1
Since this representation has been established for the subspace .5 (R") and 7', (R") is
dense in B}, (R™), therefore Eg =1 € E£) (R?)" and thus g =1 € 2£5,(R?)". O

Notice that in the proof of Theorem 2.5.7, there is a step where we proved that for
B C R" and u € L(B) we have that

1
l(Bu)| < c-|B|2 - [|[Eullgrzp)-
For the ball B, (x) with x € OR"! we also have the same estimates. By L.Grafakos [6], the
constant ¢ depends only on the dimension n and it is independent of the ball B or B,(x),
hence the later arguments in the proof are valid.
2.5.2 Duality theorem for the case of even extension
Throughout this subsection, we denote the even extension operator Eeye, by E.

Definition 2.5.8. We define the set of symmetric 2-atoms by

{Errna | ais a 2-atom such that suppa C B & BN IR} # &
& adx = / adx =0}
R7 R™

U {ErRiﬁ | B is a 2-atom such that supp S C B C Rl }.
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Let E

subspace.

even

(R7)}. Then ESZ!

even

(R%) C #H(R") is a linear

Lemma 2.5.9. The norm

inf{z |Ai| + Z |l | all symmetric 2-atomic decompositions}
i J

is equivalent to the norm || - || 1 (gny on the subspace EAL,(RD).
ven

(1). By the atomic decompositions of functions of the real Hardy space s (R"), we
see that F f admits 2-atomic decompositions. Let

Ef =Y Xoi+ > 1B
i J

be a 2-atomic decomposition of Ef. Notice that

Proof. Let f € #.,,(R"), then Ef € 1 (R").

f= TRiEf = Z )\irRiai + Zﬂer’jrBj-
i J

Without loss of generality, assume that supp a; C B; for some ball B; and B; N R} # &,
assume further that supp 8; C B; C R} or R". Therefore we have that

= Nrgnoi+ > ;B
i J

Let Bi+ = B; "R} and B, := B; N R"”. Since «; can be any 2-atom, we know that
/ a;dx = 0 but / a; dx and / «; dx are not necessarily zero. Here we need to do
B; Bf B

i

some tricks to /

a; dx and / «; dx. Since FE is the even extension, except
Bt B
7

i

Ef =Ergn Bf =Y \iBrgnoi + Y piErgn )
i J

we also have that
Ef= ET]RZ Ef= Z )\iETR’jai + Z /,LjE’r'Rﬁﬂj.
( J

Therefore,
2Ef = ET‘RiEf + Ergn Ef

=Y A+ (Brgnoi+ Ergnoq) + Yy - (Ergn 85 + Ergn B5).
i J
Suppose that suppoa; C Bj(x) and B;(x) N OR"} # @, there exists x* € Bj(x) N JR"
such that supp ETRiai C By, (x*) and supp Ergn o; C By, (x*). Therefore we have that
supp (ETR1 a;+Erpr a;) C Bay, (x*). Notice that ETRZ a;+ Ergr ; is also even with respect
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to z,. Let’s consider TR (ErRﬁozi + Erpra;) = rRe Qg + TR? Ergn o;. There is no doubt
that supp (T]M o; + Ry Ergn a;) C Bap, (x*) NRY and

/ rre @ + TR Ergpn o dx = / rre o dX + Ergn a; dx
n N + - N -
+ +

R?
= (074 dx
n

0.

Let o := TR? QG+ TR Ergn oy, notice that

o} || L2@ny = R @ + TR ETRe 03] L2820
< lail|p2@ny + || Erre il L2 (mny
< el |p2@ny + 2 - [|eil | L2 mn)
< 3-2% | By, (x*)| V2.

Let c39 :=3- 2% . Therefore cg_é -aj is a 2-atom and more importantly, we have that

—1 * _ —1 * _
/ C3p - dx = / C3p - a; dx = 0.
" 1

Hence E(cgé o)) = cgé - Fa? is a symmetric 2-atom. We have that
2'Ef:Z/\i . (Ci%-Eaf)—}—Zuj'EﬁRiﬁj +Zﬂj'ETRgﬂj
i J J

where )\; := A - c32. Therefore from a 2-atomic decomposition of Ef we can get a
symmetric 2-atomic decomposition of EFf. In addition, for a 2-atomic decomposition
Ef = Z)‘iai + Z,ujﬂj such that Z |Ai| + Z |pj| < oo, the corresponding symmet-
i j i j
bY
ric 2-atomic decomposition of this 2-atomic decomposition is Ef = Z 51 . (cgé -Eaj) +
i

Z Hi ETRn Bj + Z i - Ergn 3. In this case we have that

Z\M Z!LJ+ZW <325 (Sl + 3 Igl) < oo
i J
Therefore,

Z\M+Z!u;l> Z\AHZM

where )\;/ = % for all ¢ and ,u;»/ = %J for all j. )\;/ and u;-/ are the coefficients of the
corresponding symmetric 2-atomic decomposition induced by the original 2-atomic decom-
position. As a result, we have that

inf {Z |Ai] + Z || | all 2-atomic decompositions}
i J
> () -inf {Z X |+ Z | ,u;/| | all symmetric 2-atomic decompositions}
i J
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322
(2). Let Ef = Z i+ ETRi «; +Z e E""Ri Bj be a symmetric 2-atomic decomposition.
( J

Since «; is a 2-atom, we have that
|| Ergn ol g2y < 221 | By, (x7)[ 712,

Therefore

n 1 N
Ef:Z()\i.22+1),(2%+1 .ErRiOzi)—i-Zﬂjﬁ;—‘f‘Zﬂjﬁj
(2 J J

is a 2-atomic decomposition of Ef. Thus every symmetric 2-atomic decomposition of E f
gives rise to a 2-atomic decomposition. For this symmetric 2-atomic decomposition of E f
where Z |Ai| + Z |pj] < oo, the coefficients of the corresponding 2-atomic decomposition
J

Dol 22 D 2yl <23 QI+ ) ).
j i j

i
of Ef satisfies

%

Therefore,
inf {Z |Ai| + Z |pj] | all symmetric 2-atomic decompositions}
i J
> (y-inf {Z x| + Z | u;\ | all 2-atomic decompositions}
i J
1
where C := Py [

Theorem 2.5.10. Let f € L., (R'}), then there exists sequences of non-negative numbers

{Ai}2y and {u;}52,, a sequence of 2-atoms {a;};2, where for each i suppo; C B; & B; N

ORY #2 & /]R” a; dx = 0 for some ball B; and a sequence of 2-atoms {ﬁ]};’il where for
+

each j supp B; C Bj C R} for some ball B; such that

F=) Niailen +> p- B
i J

We refer such a decomposition of f as a half space atomic decomposition of f and moreover,
the norm

inf{z |Ai] + Z |j] | all half space atomic decompositions}
i J

is equivalent to the norm || - || 41

‘even

(R7) on %})en(R:{)
Proof. By Lemma 2.5.9 we are done. O

Definition 2.5.11. We denote the set of all finite linear combinations of symmetric 2-atoms
by 5 (R™).
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By similar arguments as in the previous subsection, we can easily deduce that %’6{8 (R™) C
AL RYNEAL,, (RT), ESL,, (R is a closed subspace of 7! (R™) and %’6}3 (R™) is dense
in B, (R?). Then by making use of these facts, we can prove our duality theorem for
the case of even extension.

Theorem 2.5.12. Suppose g € BMO,."°(R™). Then the linear functional I defined on
Hen(RYL) by

even

=[] f-gdx
R%
for f € AL, (RY) is a bounded linear functional which satisfies ||I|| < ¢ - [Q]BMO§°'°°(R1)
with some constant c. Conversely, every bounded linear functional | on L., (R) can be
written in the form of

I(f)= [ f-gdx forall f € #p.,(R})
RY
with g € BMOy > (R") and 9] Broge gy < c||Ul| with some constant c. Here ||l|| means

the norm of l as a bounded linear functional on ., (R™).

Proof. The only difference from the proof of Theorem 2.5.7 is the last part where here we
prove that the unified function g(x) € BM Oy, (R") instead of BMO,”>(R'.). For the
rest of the details, please refer to the proof of Theorem 2.5.7.

We define the unified function Fg(x) on R™ by

1
|B1(0)| /B, (0)

— BP0 _ Ay mgBtO),
B1(0)

Eg(x) = Eg™© EgP ) dx

For B C R" we have EgP(x) defined on the ball B, then there exists B,(0) for some r large
enough such that B C B,(0). We can rewrite Eg?(x) as

EgB(x) = EgB(x) — EgBj(O) (x) + EgB:r(O) (x) — AnggBj(O) + AnggBj(O).
B1(0) B1(0)

Notice that Fg?”(x) — EgB’T(O) (x) and AnggB:r(O) are both constants which depend on B,
B1(0)

hence let cp := Fg®(x) — EgBr(O) (x) + AnggBr(O), we have that E¢?(x) = cp + Eg(x).
B;1(0)
Next we prove that the function g(x) defined by g(x) := rry Eg(x) € BMO,™ (RY}).
x1. If B C R, we have that

1 _
51 [ 1B96) — (~emldx < - [BI2 - |Eg® oz
1Bl JB

by the Holder inequality. Since

[ B Budx = (B < o[BI | Bull iy



2. On the Helmholtz decompositions of vector fields of bounded mean oscillation and in
real Hardy spaces over the half space 44

we have that
1EG® | pr2s) = NIl < c- |B|'/2.

Therefore we can deduce that
1
/ |[Eg(x) — (—cp)|dx < c.
1B| JB

Notice that the ¢ here is just a number which is independent of B. Therefore by taking the
supremum over all balls contained in R"!, we can see that

1
sup B/ |Eg(x) — (—cp)|dx < c.
ool 1Bl /s

and thus,
[ren Eglprosry) = [9lpmo=ry) < 2-c.

¥2. If B,.(x) is a ball where x € OR"} and r > 0, we have that Fg(x) = EgB:r (x) —cp,.
Therefore we have the following calculations:

2-/Br+g(x)dx:/BrEg(x)dx

= EgB:r(x) dx—/ cp, dx
B .

210-—CBT'LBTL

Hence cp, = —gp+ and we have that

1 1
57 [ 10 = (el dx = [ 1Bg() g

1
= |Br+’/B+ lg(x) — gp+|dx <ec.

Take the supremum over all balls centered on R” , we have that

1
sup ———
r>0 |Bif| Jp+
xeaRi

[9)base (mr) = l9(x) — gp+ldx <c

and hence g € BMO,.* (R"). O

2.5.3 Proof of Theorem 2.1.3
Proof. By Theorem 2.5.7 and Theorem 2.5.12, we are done. O
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2.5.4 Comments

Remark 2.5.13. If we look at the proof of Lemma 2.4.1 and Lemma 2.4.2, we can see that
it is completely all right for us to replace the heat kernel e'2 in the definition of /%, (R?)
and A%, (R) by any radial symmetric function ¢ € .#(R") such that [z, pdx = 1.
Therefore, the definitions of the norms [ - |[ 1 ey and [| - [| 1 ,(rn) are independent of

even

the choice of ¢ if ¢ is radial symmetric with integral over R™ equals 1.

Remark 2.5.14. When we established the half space atomic decompositions for ., (R'})
and 2%, (R"), we made use of the 2-atomic decomposition of J#1(R") in order to carry
out the arguments of Fefferman and Stein [3] to prove the duality theorem. However, if
we carry out the arguments using the p-atomic decomposition of .7#!(R") instead where
p > 1, then we get the half space atomic decompositions for /!, (R") and J£},(R?) in
the form of symmetric p-atomic decompositions.

In [1], it is proved that BMOy(R") and BMO,;*°(R":) are actually the same space.
Since BM Oy (R%) is the dual space of 4 (R%}) and BMO,;”*(R"%) is the dual space
of L, (R"), it is natural to ask the question about the relation between ) (R") and
45 (R). Here we give an answer to this question.

Lemma 2.5.15. JZ) (R") = 7 (R%).

Proof. (1). By the theory of Miyachi [7], f € s} (R") implies that f admits the half space
atomic decomposition of the form

f= Z)\i@i +Zujﬁj
( J

where {;}32; is a sequence of l-atom such that j3; is supported on some ball B; with
2B; C R for each j and {a;}$2, is a sequence of (1,R’})-atom such that «; is supported
on some ball B; with 2B; C R} but 5B; N (R})¢ # & for each i. Let B; = B,(x;) and
x* 1= (x;,0). Since 2B; C R” but 5B;N(R")¢ # @, we can easily deduce that B; C B, (x*).
Notice that «; = TR E,qq0; and f Bon (x*) FEygq0; dx = 0, therefore we have that

1
Eoaaf =) (\i-6")- (gn  Bodacri) + > 1jFodaB;. (2.5.1)
i J

Here 6% - E,gq0y; is a 1-atom for any i, hence by (2.5.1) we see that E,q4qf € ' (R") and
thus by Remark 2.5.14 f € 2}, (R").

(2). Let f € L, (R), let n be the standard mollifier. For x € R? and 0 < t <
dist(x,0R" ), we have that (n; * f)(x) = (0 * Eoqaf)(x) since suppn; C B;(0). Hence for
x € R",

sup e fl(x) = sup 1t * Eoqa f](x)
0<t<dist(x,0R"}) 0<t<dist(x,0R"})

< sup | * Eoqa f|(x).
>0
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Thus

Pl = [ sup g fl() dx
R 0<t<dist(x,0R")

< /R sup | * Eogaf|(x) dx

n >0
= Il @n)
and therefore f € 2 (R™). O

Remark 2.5.16. Let us consider a function f € L?(B;(0)) with integral over B;"(0) not
equals to 0. Notice that although | B (0) fdx # 0, the odd extension E,4;f has integral

zero over the ball B.(0). Hence we have that E,yqf € L?(B,.(0)), fBr(o) Eogafdx = 0
and thus E,qqf € ' (R"). Then f € ) ,(R"). However, fBi(o)de # 0 implies
that fBT(U) Eepenfdx # 0 and thus Eeyenf ¢ 1 (R™). Hence f ¢ 1., (R"). Therefore
AL, (RT) and L

Zven(R) are two different spaces.

Remark 2.5.17. Let us consider the function log|x|, by the standard theory of BMO
spaces we see that log|x| € BMO. Then log|x| gy € BM Oy, (R ). However, log|x| [rn ¢

BMO,”* (R") since the integral

1

—_— log|x||dx — 00 as r — oo.
B0 o0

Therefore BMO,”™ (R":) and BMOy.*°(R":) are also two different spaces.

Remark 2.5.18. Notice that by Theorem 2.5.3 we can easily see that J2),(R?) = 71 (R"})
where S (R") = {ren fI f € Y (R™)}. Moreover, by Lemma 2.3.2 and Lemma 2.3.4, we
can also see that BM O™ (R") = BMO(R',) where BMO(RY}) := {rg f| f € BMO(R™)}.
As a result, we can clarify the relationship between various function spaces in this chapter
as follow:

BMO(RY}) = BMOR™(RY) =" #,,(RY)
U N
BMOF™(RY) =* A (RY) = A (RY)

I I
BMOy(RY) =" ;(RY).

Here A =* B means that A is the dual space of B.

2.6 Dual operator of the Helmholtz projection

2.6.1 Dual operators of F,;,; and TR?

In this subsection, for simplicity, we shall denote the odd extension operator E,qq by E.
Since E : J5,(RY) — EA5,(RY), we have that E* : ES£L,(R™)" — J4,(R?)". By the
theories in section 2.5 we have that £* : EBMO,**(R") — BMO,”>™ (R ).

Lemma 2.6.1. The dual operator of E is indeed 2 - TRY, L€ Er=2. TR™ .
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Proof. Let f € s£%,(R?) and g € BMO,”*(R"), by the definition of dual operator, we
can deduce that

<E*Eg,f >:=<Egq,Ef >=2<gq,f>.
Therefore, we have that
< E*Eg—2g,f>=0 for all f € s.,(R").

Let B,(0) be the ball centered at 0 with radius r and B, (0) := B,(0) NR".. For simplicity,
we denote B,f(0) by B;F. Notice that from the previous chapter, we see that L?(B;) C
AL (R™). Hence fix r > 0, we have that

< E*Eg—2g,f >=0 forall f € L*(B;).
Since C§°(B;F) C L?(B;}), by the fundamental lemma of variational calculus, we see that
E*Eg—2g=0 ae. in B}.
This means E* = 2 - TR? and we are done. O

By similar arguments as above, we can also deduce that TRi* : BMO”*(RY) —
EBM Ol?o’oo (R%) and the dual operator of TR™ where rR? corresponds to the restriction of
E)L,(RY), is indeed 1 - E.

2.6.2 Dual operators of F,,., and Ry

We denote the even extension operator Egyen, by E. By similar arguments as in the previous
subsection, we have that the dual operator of F is indeed 2 - TRY and the dual operator of
(R7), is indeed 3 - E.

rre, which corresponds to the restriction of B,

2.6.3 Proof of Theorem 2.1.4

Proof. Since PRi is a bounded linear operator from Y to Y and X is the dual space of Y,
we have that

]P)RTJLF*X—)X

Then let v € X and u € Y, we have that

n—1
<Pgr*v,u>=Y " <v' rg; (PEu)’ >+ <v",rg; (PE)" > .
i=1
Notice that (PEu)’ is even with respect to z,, for 1 < i < n — 1 and (PEu)" is odd with

respect to x,. Hence for 1 <i < n—1, the TRY in TR™ (PEu)? corresponds to the restriction
of EAL ., (R") whereas for i = n, the rry in o (PEu)™ corresponds to the restriction of

EA,(RY). Therefore,

1
<]P’Ri*v,u>:§<Ev,]P’Eu> ...... (%).
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By [8], we see that the dual operator of P : #1(R") — J#1(R") is itself as a map from
BMO to BMO. Therefore

1
(%) = 3 <PEv,FEu >

1 n—1 . '
- 5(2 < (HJ)EV)ZvEevenuz >+ < (PEV)”, Eogqu™ > )
i=1

1 n—1 o
= 5(2 < 2rgy (PEV)", u' > + < 2rge (PEV)", u" > )
i=1
=< IPR?_V,U > .

O]

Remark 2.6.2. When we are considering the dual operator of IP’Ri, notice that the space
X must be viewed as X/(R"~1 x {0})!

2.6.4 Proof of Corollary 2.1.5
Proof. By [2, Th 2.19] and Theorem 2.1.4 in this chapter, we are done. O



REFERENCES 49

References
[1] M. Bolkart, Y. Giga, T. Suzuki, and Y. Tsutsui, Equivalence of BMO-type norms with applications to
the heat and Stokes semigroups, Potential Anal. 49 (2018), no. 1, 105-130.
[2] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer,
New York, 2011.
[3] C. Fefferman and E. M. Stein, H? spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137-193.
[4] G.P.Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, 2nd ed., Springer
Monographs in Mathematics, Springer, New York, 2011. Steady-state problems.
[6] L. Grafakos, Classical Fourier analysis, 3rd ed., Graduate Texts in Mathematics, vol. 249, Springer,
New York, 2014.
[6] L. Grafakos, Modern Fourier analysis, 3rd ed., Graduate Texts in Mathematics, vol. 250, Springer, New
York, 2014.
[7] A. Miyachi, H? spaces over open subsets of R™, Studia Math. 95 (1990), no. 3, 205-228.
[8] T. Miyakawa, Hardy spaces of solenoidal vector fields, with applications to the Navier-Stokes equations,
Kyushu J. Math. 50 (1996), no. 1, 1-64.
[9] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical
Series, No. 30, Princeton University Press, Princeton, N.J., 1970.
[10] R. Temam, Navier-Stokes equations, Revised edition, Studies in Mathematics and its Applications,

vol. 2, North-Holland Publishing Co., Amsterdam-New York, 1979. Theory and numerical analysis;
With an appendix by F. Thomasset.



Chapter 3

Normal trace for a vector field of
bounded mean oscillation

We introduce various spaces of vector fields of bounded mean oscillation (BMO) defined
in a domain so that normal trace of a vector field on the boundary is bounded when
its divergence is well controlled. The behavior of “normal” component and “tangential”
component may be different for our BMO vector fields. As a result the zero extension of
the normal component stays in BM O although such property may not hold for tangential
components.

3.1 Introduction

One of basic questions on vector fields defined on a domain © in R™ (n > 2) is whether
the normal trace is well controlled without estimating all partial derivatives when the
divergence is well controlled. Such a type of estimates is well known when a vector field
is LP (1 < p < o0) or L*>®. Here are examples. Let © be a bounded domain with smooth
boundary I'. Let n denotes its exterior unit normal vector field on I'. For simplicity, we
assume that a vector field v satisfies divev = 0. Then there is a constant C' independent of
v such that

[0 nlly-1/m01y < CllvllLe) (3.1.1)

[v - 1oy < Cllol|pe (- (3.1.2)

Here W*P denotes the Sobolev space which is actually a Besov space B, , for non-integer
s. The first estimate is a key to establish the Helmholtz decomposition of an LP vector
field; see e.g. [6]. The second estimate is important to study, for example, a total variation

flow; see e.g. [1, Appendix C1]. These estimates (3.1.1), (3.1.2) hold for various domains
including the case that € is a half space R, i.e.,

R = {(ml,...,ajn) ‘ T >0}.

Our goal in this chapter is to extend (3.1.2) by replacing ||v|| e (q) by some BMO type
norm. However, it turns out that the normal trace on I' = R} of divergence free BMO
vector fields in R™ may not be bounded. Indeed, consider

v=(v',v?), vl(z)=0%()=log|r, — zs|. == (x1,22) € R

20
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This vector field is in BMO(R?) and it is divergence free in distribution sense. Indeed,

1 - .
| v Vedo =3 [ oglcl((@c~ 805 + (0, + 0,)5) dédy = o
R?2 R2

(=x1— 22, 1=+

for all compactly supported smooth function ¢, i.e., ¢ € C°(R?). Here, ¢(¢,n) = gD((C +
n)/2,(n — ¢)/2). However, if we consider Q = R3 and I' = {zy = 0}, then v-n = —vy
on I' is clearly unbounded. This example indicates that we need some control near the
boundary. Such a control is introduced in [?BG|, [?BGS], [?BGMST|, [?BGST]. More precisely,
for f € L () and v € (0, 00], they introduced a seminorm

loc
[f]pv := sup {7“_”/ ()] dy
QNB,(z)

where B, (x) denotes the closed ball of radius r centered at x. For u € (0, 00], they define

zel, 0<7“<1/},

1
[flBmor = sup {|-Br($)‘ /Br(z) ‘f - fBr(x)‘ dy ’ By (z) cQ, r< N}7

1
where fp = @ / f(y) dy, the average over B; here |B| denotes the Lebesgue measure of
B
B. The BMO type space BM O} introduced in these papers is the space of f € L ()

having finite
I llBrropr = [flBror + [fle-

This space is very convenient to study the Stokes semigroup in [2], [4], [3], [5] as well as the
heat semigroup [5]. One of our main results (Theorem 3.4.7) yields

[ pe(ry < Cllvll paros (3.1.3)

for any p,v € (0, 00] for any uniformly C'*# domain with 8 € (0, 1).

However, for applications, especially to establish the Helmholtz decomposition, requiring
all components to be BM OgL " bounded is too strong so we would like to estimate by a
weaker norm. We only use b¥ seminorm for normal component of a vector field v. To
decompose the vector field, let do(x) be the distance of = € Q from the boundary T, i.e.,

do(z) := inf{|z — y| ’ yeTl}.

If © is uniformly C?, then dq is C? in a é-tubular neighborhood T's of I' for some 6 < R,
where R, is the reach of " [10, Chapter 14, Appendix], [11, §4.4]; here

[5:={ze ’ do(z) < d}.

Instead of (3.1.3), our main results (Theorem 3.4.2, 3.4.3) together with Theorem 3.2.9
read as
v - n”Loo(l") < C([U]BMOH + [Vdg - U]bu) (3.1.4)

for v < 6, p € (0,00] provided that Q is a bounded C**? domain with 8 € (0,1). The
quantity Vdg - v is a kind of a normal component of v.
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Our main strategy is to use the formula

/F(v-n)w’ﬂn—l :/Q(divv)gpd:z—/ﬂv-Vgodaz

for any ¢ € C°(Q) with ¢ |r = v, where dH" ! denotes the surface element. This formula
is obtained by integration by parts. If divev = 0, then it reads

/F(v-n)wdH“ = —/Qv-Vgodx. (3.1.5)

Our estimate (3.1.4) follows from localization, flattening the boundary and duality argu-
ment. To get the flavor, we explain the case when (2 is the half space R'}. For v € LY(T)
it is known that there is ¢ € Ff’Q(R”) such that its trace to the boundary equals to ;
see e.g. [19, Section 4.4.3]. Here F 1172 denotes the Triebel-Lizorkin space which means that
Vo € h!, alocal Hardy space. We may assume that ¢ is even in x,,. We extend v = (v, v,)
even in x,, for tangential part v’ and odd in z,, for the normal part v, = Vdg -v. Although
extended v’ is still in BM O (R™), the extended v,, may not be in BMO>(R™) unless we
assume [v,|pr < 00. Here we invoke [Vdg - v]pr < 0o. By these extensions, our (3.1.5) yields

1
/F(U-n)wd”l-l”_l = —2/nv-Vg0d:U, (3.1.6)

where v denotes the extended vector field. We apply h'-bmo duality [16, Theorem 3.22] for
(3.1.6) to get

e

where bmo = BMO N L}, a localized BMO space. Here L}, denotes a uniformly local L'
space; see Section 3.2 for details. Since [|¢| g1, < C||¢]|z1, this implies

< Cllvllemoliellry,»

v 0l gy < Cllvllmomrr)

(3.1.7)
<C ([U]BMow(Q) + [l o) + [Vda - U]b%) :
Here and hereafter C' denotes a constant independent of v and its numerical value may be
different line by line.

In the case of a curved domain we need localization and flattening procedure by using
a normal (principal) coordinate system. The localized space bmof = BMO* N Ll (Ts) is
convenient for this purpose. Again we have to handle normal component Vdg, - v separately.
If the domain has a compact boundary, we are able to remove L. term in (3.1.7) and we
deduce the estimate (3.1.4). Note that in this trace estimate only the behavior of v near I'
is important so one may use finite exponents in BM O and b”.

As a byproduct we notice the extension problem of BMO functions. In general, zero
extension of v € BMO*(2) may not belong to BMO*(R") but if v is in BMO}"”, as
noticed in [5], its zero extension belongs to BMOH*(R™) for v > 2u. We also note that it is
possible to extend general bmog (2) to BMO* whose support is near Q. We develop such
a theory to explain the role of b.

This chapter is organized as follows. In Section 3.2 we introduce several localized BM O
spaces and compared these spaces. Some of them are discussed in [5]. We introduce a new
space vbrmof’” which requires that the b seminorm of the normal component is bounded in
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(bmog )™. A key observation is that if the boundary of the domain is compact, i.e., either a
bounded or an exterior domain, the requirement in L} (I's) is redundant in the definition
of vbmoé’y. In Section 3.3 we discuss extension problem as well as localization problem. In
Section 3.4 we shall prove our main results. In Appendix we discuss coordinate change of
vector fields by normal coordinates for the reader’s convenience.

3.2 Spaces

In this section we fix notation of important function spaces. Let L. (R") be a uniformly
L' space, i.e., for a fixed 79 > 0

z€R™ J Br (

Ly(R") = {f € Lioo(R") \ I £llz:, = sup / |f(y)| dy < oo}.

The space is independent of the choice of ry. For a domain €2, the space Lll11 is the space of

all L] _ functions f in Q whose zero extension belongs to L (R™). In other words,

Liy(Q) = {f € Li,.(Q) ' 1f11L1 () = sup / |f(y)|dy < OO}-
T By ()N

€Rn
As in [2], we set
BMOM(Q) := {f € Ljp.(Q) ’ [f1Bron < oo}.
For ¢ € (0, 00], we set
bmo () := BMO*(Q)NLYy(Ts) = {f € BMO*(Q) | restriction of f on I'y is in Li(Ts)}.
This is a Banach space equipped with the norm
Hf”bmog = [flemor) + [flrs,  [flrs = ”fHLgd(r(;)a
where the restriction of f on I'y is still denoted by f. If there is no boundary, we set
bmo(R™) := BMO*(R") N L, (R™)

which is a local BMO space and it agrees with the Triebel-Lizorkin space Fc?o,23 see e.g.
[19, Section 1.7.1], [16, Theorem 3.26].

For vector-valued function spaces, we still write BMO* instead of (BMO")™. For
example, for vector field v, by v € bmof (2) we mean that

v=(v1,...,0,), v €bm(Q), 1<i<n.

We next introduce the space of vector fields whose normal component has finite b” of the
form

vbmo™” (Q) == {v € bmof (Q) ‘ [Vdg - v]pw < o0}

for v € (0, 00]. This space is a Banach space equipped with the norm

||UHvbmogL’” = Hv”bmog + [Vdﬂ ’ v]b”'



3. Normal trace for a vector field of bounded mean oscillation 54

Similarly, we introduce another space
vBMOM(Q) := {v € BMO*(Q) | [Vdq - v]w < oo}
equipped with a seminorm
[V]vBromy = [v]Bpon + [Vdg - vy
Of course, this is strictly larger than the Banach space
BMOY"(Q) := {v € BMO*(Q) | [v]pr < oo}
equipped with the norm

ol Baropr = [v]Baron + [v]er

introduced essentially in [2]. Indeed, in the case when (Q is the half space R",
vBMO™"(R) = (BMO*(R))"™! x BMO!"(R2), (3.2.1)

where in the right-hand side the each space denotes the space of scalar functions not of
vector fields. This shows that vBMO**(R') is strictly larger than BMO}"(R) for
n > 2.

Although there are many exponents, the spaces may be the same for different exponents.
By definition, for 0 < pu1 < ps <00, 0 < v <1p <00, 0 <1 <o < 00,

[flemor < [flemorz,  [flon < [flor2s [flrs, < [flrs,-

Proposition 3.2.1. Let Q) be an arbitrary domain in R™.

(i) Let 0 < 1 < p2 < oo. Then seminorms [-|pyor and [-|parors are equivalent. If
18 bounded, one may take py = co.

(4) Let 0 < 01 < 02 < oo and p € (0,00]. Then there exists a constant C' > 0 depending
only on n, u, 61, 62 and 2 such that

[flrs, <C ([f]BMOu + [f]n;l) .

uoare equivalent. If ) is bounded, one
2

wand H : ||bmo

In particular, the norms || - Hbm%
1

may take do = 00.

Proof. (i) This is [5, Theorem 4] which follows from [5, Theorem 3].

(i) Since the space L} (T's) is independent of the radius ro in its definition, without
loss of generality, we may assume that ro > §;. Let us firstly consider the case where the
dimension n > 1. Let k be the smallest integer such that 27% < % and z € R™. Notice

that

/ mwzf m@+/ fldy,
By (z)ﬁl“(;Q Br, (x)ml“(;l Br, (a:)m(F52\F51)

we can estimate || fz1(z,, (x)ry,) directly by [f]rs,- Assume that I's, \ I's, # 0. Let Dy(z)
be the set of dyadic cubes of side length 2% that intersect with B,,(z) N (I's, \ Ts, ). For a
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dyadic cube Q; € Dy(z), we define B; to be the ball which has radius @ -27% and shares
the same center with Q;. Let Ci(z) := {B; | Q; € Di(z)} and ¥ := {z € Q|dq(x) = 01}.
For Q; € Dy(z) that intersects X, we seek to estimate | f|[1(p;)- Let ¢; be a point
on ¥ N Qj, we have that Bs, (¢j) C Q. Indeed as otherwise, there exists z € By, (¢;) N Q°.
Then the line segment joining c¢; and z must intersect I" at some point, say z*. Then
|z* —¢j| < |z —¢j| < 01. This contradicts the fact that do(c;) = d1. For y € Bj,
ly —cj] < v/n-6Q;) = /n-27% < 6. So Bj C Bs,(c;). Let dj € T be a point such that
|c; — dj| = 61, then on the line segment joining ¢; and d;, we can find a point o; such that
loj —d;| = 4 27k For y € B@.z—k(oﬁ')’ we have that |do(y) — da(oj)| < |y — 0j|. Hence

da(y) < da(o;) + |y — oj| < v/n-27% < §;. This means that B@-Q*k (0j) C T'5,. Moreover,

@.2*’6:51.

.o~k
+ 2

lcj =yl <lej —oj| +|oj —y| < 61—

vn
2

Thus B w ,_,(0j) C Bs,(¢j). Denote B, _,(0j) by Bj. We have that
2 2

\f|dys/ 1~ fs c.\dy+/ fs CA—fBafdy+/ fel dy.
/B- Bs, (¢) () Bay(eyy 1 Bs, ()’

J

Notice that

IN

/ |f = IBs (el Ay Cy - 07 - [flBmon,
Bs, (¢5)
| Bs, (¢))[?

f Y= ferldy < ——=7—"flBMoOHK,
/Bal(q)’ Bar(ca) BJ| |Bj| i '
Bsy(c;) 7

—ar -
Since |Bs, (c;)| = Cp - 67 and Bolo)l — _Cudt o C f

A

IA

g = Cn, ||fllz1(B;) is therefore

| B;|
[B] - (@.Q%)n — (%1
controlled by Cs, ,, - ([f]BMOM + [f]rél).
Next we consider Q;- € Dy(x) that does not intersect ¥. Suppose that Q; € Dy(x) has

a touching edge with Q;-. There exists a ball Bg of radius @ - 27k which is contained
in B; N B; where Bj, B; are the smallest balls that contain @Q;, Q;. respectively. Similar to
above, as Bg C By,

/B,_ |fldy

IN

[ s tulavs [ 1y~ faldy+ [ 1yl
Bj J Bj J ? Bj l

/ |B;I” ||
< |Bj| - [flBmon + —% ‘[f]BMOH+j<'/ |fldy
’ |Bg| |Bf| Bj

7

Therefore if || || L1(3,) is controlled by Cj, - ([f]BMou + [f]rs, >, HfHLl(B’.) is also controlled
J

by Csyn - ([f]BMOu + [f]r51)~
Since By, (z) N (I's,\I's, ) is connected, we can estimate || f||z1(p;) for every Q; € Dy(z)
where Bj is the smallest ball that contains Q);. For each Q; € Djy(x), there exists y €
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Q; N Byy(z), so for any z € Bj, |z — x| < |z —y| + |y — 2| < v/n-27% + 19 < 7o + 61. Thus
U Bj C Byyts,(x). Let N(Dg(x)) be the number of cubes in Dy (z), we have that
Q€D ()

N(Dy(z)) < [Bro+é, ()] <O, - To + 01 ,
92—kn 51

Therefore,

flay < [ 1y

B;ECy, (x) 7 Bi
N(Di()) - Cs,n - ((flmnion + [y, )
< Croiro ([f]BMOu + [f]n;l) :

/Bro ()N(T5,\Ts,)

IN

For the case where the dimension n = 1, we let k£ to be the smallest integer such that
27k < %1 and Dy, to be the set of dyadic cubes of side length 27% that intersects s, \Is, -
Notice that the region I's,\I's, is indeed a union of intervals. Without loss of generality, we
can assume ) to be (0,00) and take p = oo by part (i) of this proposition. Thus in this
case I'5,\I's, = (01,02). For Qo € Dy, such that é; € Q,

/O|fdy§/2Q0f|dy§/2QO|f—f2Qordy+/2Qoszo—fQ;|dy+/2Q0 fo:
<C- ([f]BMow+[f]F51>,

dy

where Qf = 2Q0\ (Qo U [61,00)) and £(Qf) = 20(Qp) = 2= *+1).

We then put an ordering on the elements of Dy in the following way. For j € N, suppose
that we have ordered intervals Qo, Q1,...,Q;j—1, we pick Q; € Dp\{Qo, Q1,...,Qj—1} such
that @; has a touching edge with Q;_1. For Q; € Dy, similarly we have that

/Q.Ifldyﬁ/wj |f|dys/2Q

J

|f_f2Qj|dy+/ Ifzczj—f@;ldw/ ;1 dy
] Q, 2Q;

J 2 J

<C- ([f]BMO“’ + [f]F61> ’

where Q5 = 2Q;_1 N2Q; and £(Q%) = £(Q;) = 2.
Let N(Dy) be the number of elements of Dy, we have that

_ 4(85y —
dy — 01 ta< (02 — 1)

2
2k - 01 +

N(Dyg) <

and therefore

/ng\rgl |fldy < Cs, s, - ([f]BMO“ + [f]rgl) :

The proof is now complete. O

By this observation, when we discuss the space bmog , there are only four types of spaces

(e}

bmog

bmol, bmo3°,  bmok,
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for finite p,d > 0. If  is bounded, it is clear that these four spaces agree with each other.
However, if € is unbounded, these four spaces may be different because they requires
different growth at infinity. Indeed, if Q = (0, c0)

bmo C bmog®

since log(z 4 1) € bmo$® while it does not belong to brmoZ. Moreover, since z € bmof but
it does not belong to neither bmos, nor bmo§°, we see that

bmog® C bmof,  bmok, C bmof.

It is possible to prove that bmoX = bmohs. Indeed, bmo () C bmok(Q) is simply by
the definition of the BM O seminorm. It is sufficient to show the contrary, i.e., [f]|prmo <
C - ([flemor + [f]r., ). Without loss of generality, in defining the seminorm [-]L11(Fm), we

set the radius of the ball to be 4 For B,(x) C Q with r < p,
=i - fmeld <]
BT — /B (z < [fIBmor-
1B ()| JB, () Br ()

For B,(z) C Q with r > p, if r < 4, then

1 / 2
T [ = IB.a dyé/ fldy < Cupn - [flr..
Bl Sy~ TP wamwgﬁ@mﬁ‘ o [l
27

Ifr > 4, B, (x) is contained in the cube @, with center x and side length 2([r] 4+ 1), here
[r] is the largest integer less than or equal to r. By dividing each side length of @, equally
into 2([r] + 1) parts, we can divide the cube @, into (2[r] + 2)"™ subcubes of side length 1.
Let Sg, be the set of these (2[r] +2)" subcubes of Q,. For Q% € S, , let B! be the smallest
ball that contains Q¢. Let Cq, := {B! | Q% € Sp, }. We have that

(
/ fldy <
Byr(x)

2[r]+2)"

; /B}m [fldy < 2[r]+2)" - [f]r.-

Since r > u,

1 2
1 f—frxdyé/ fldy < Con- [l
Bo@)] o @Y S B 0 e

Therefore bmo3 = bmoty and thus bmofy - bmoﬁo.
We summarize these equivalences.

Theorem 3.2.2. Let  be an arbitrary domain in R™. Then
bmo3S(Q2) = bmok, () C brnog® () C bmo ()

for finite 8, > 0. The inclusions can be strict when Q is unbounded. If Q is bounded, all
four spaces are the same.

As a simple application of Proposition 3.2.1, we conclude that the space BMO}" is
included in bmol, since [f], < c[f]w (v < 00) with ¢ > 0 depending only on v and n.
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Theorem 3.2.3. Let Q be an arbitrary domain in R™. For p € (0, 00| the inclusion
BMO" () C bmol ()
holds for v € (0, 00).

Since b”-seminorm controls boundary growth stronger than L' sense, this inclusion is
in general strict even when € is bounded. Here is a simple example when 2 = (0,1). The
b”-seminorm of f(z) = logz is infinite but || f||11(q) is finite.

We next discuss the space vbmo (5’”.

Remark 3.2.4. As proved in [5, Theorem 9], if 2 is a bounded Lipschitz domain, the space
BMOY"Y (u,v € (0,00]) agrees with the Miyachi BMO space [14] defined by

BMOM(Q) = {f € L, () | Il garom < o0},
Il Brrom = [flprom + [flpn,

1
[f1Bmom = sup {M/Br@ |f = IB,(x)|dy

1
M = e a— d

Proposition 3.2.5. Let Q) be an arbitrary domain in R™. Let 0 <1 < 1o < 6§ < o00. Then
there exists a constant ¢ > 0 depending only on n, vy, Vs, § such that

BQT(.:U) C Q} ,

Ba,(x) C Q and Bs,(x) NQ° # (Z)} .

[Vdgq - v]pre < [Vdg - v + ],
for all v € L (Ty).

Proof. We may assume that 11 < oo. Let @Q,.(x) denote a cube centered at x with side
length 27, Since |Vd| =1 and B,(z) C Q,(x), we see that

1
[VdQ"U]bUQ - [VdQ'U}bul §Sup{n/ |VdQU’dy
B, (z)NQ2

s

1
Ssup{rn/Q ( )\@Idy

where 0 denotes the zero extension of v to R™. Since vo < 6 so that Q,(x) NQ C T's, we
see that

x € 09, 1/1§T<1/2}

x € 09, l/lgrgug}

sup / 10dy < |[vl[zr r,) for v <r<wy
2€dQ JQr(x) u

provided that vs is finite by taking an equivalent norm of Lllﬂ; in fact, we take ro = \/n 1.
This implies that

1
[Vdq - vlys = [Vdg - v]pn < [0,
1

If vy = § = 0o, we may assume 7 = 2°v;. We divide Q,(z) into subcube Q;, j = 1,...,2"
of side length 2v1. Then

[ el g 2/ Bldy < =l < 5]
v —_— v —— ||V 1 — ||V 1
Q@) Jor @ Yy= 20 (20, )1 ~ Ja, ¥y= 20n(2ppyn ! M = (2 T
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where rg in L}, norm is taken as /n v1. We thus observe that

Vd - v]pra — [Vd - v]p1 < c[v]r.

By Proposition 3.2.1 and 3.2.5, we do not need to care about v. More precisely,

Theorem 3.2.6. Let 2 be an arbitrary domain in R™. Assume that p € (0,00] and
that 6 € (0,00]. Then norms || - wer and || -

Hvbm05 g2 are equivalent provided that
0 < v <y <oo. In the case § = oo, we may take vy = 0.

||vbmo

In general, different from Theorem 3.2.3, the space vBMO*" may not be included
in bmof, even for finite u by the decomposition (3.2.1) and the fact that BMO" is not
contained in L} (T's) for any §. However, if each connected component of the boundary I'
of Q has a curved part, we are able to compare these spaces.

Definition 3.2.7. Let Q be a uniformly C' domain in R” and I' be a connected component
of the boundary I' of Q. We say that T'° has a fully curved part if the set of all normals of
I'Y spans R". In other words, the set {n(z) € R" | € I'’} contains n linearly independent
vectors, when n denotes the unit exterior normal of IT'.

We introduce b”(I'?)-seminorm for convenience. Let us decompose I into its connected

component I'V so that I' = U;n:l I'7. We set

(£l () izsup{rn /mB ( )\f(y)|dy

Evidently, [f]pr = maxi<j<m[f]p(rs) at least for small v > 0.
The existence of a fully curved part implies “non-degeneracy” of the seminorm [Vd- f]pv.

mefj, 0<7’<1/}.

Lemma 3.2.8. Let Q be a uniformly C? domain in R™. Let IV be a connected component
of the boundary I' of Q. If c € R™ satisfies

[VdQ . C]b”(Fj) = 0,
for some v > 0, then ¢ = 0 provided that T7 has a fully curved part.

Proof. If Q is uniformly C?, then dg is C? in (IV)s for sufficiently small § > 0. Since
—Vdq(z) at € TV equals n(z), we see that

1

— Vda(y)dy — con(z) as r—0

™ JB.(z)NQ
with scalar constant ¢p. Our assumption now implies that ¢-n(z) = 0 for x € IV. If IV has
a curved part, then by definition this implies that ¢ = 0. 0

Here is a few comments on examples of such domains. All connected components of the
boundary of a bounded domain, exterior domain has a fully curved part. A perturbed half
space

w={( z,) eR" | zn > ¥(2'), 2’ = (21,...,29-1) ER"'}
with ¢ € CH(R" 1), ¢ # 0 is another example. However, a half-space R, cylindrical
domain G x R" % with k > 1, G C RF does not have a boundary having a fully curved
part. Our goal is to show that for a domain with boundary components having a fully curved
part the space vBMO"" is comparable with vbmo 5’” space if the boundary is compact.
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Theorem 3.2.9. Let Q be a C? bounded or exterior domain in R™ so that each component
of the boundary has a fully curved part. For p € (0,00] and v € (0, R.) the identity holds:

vBMO"Y(Q2) = vbmob”.
Proof. Let TV be a j-th connected component of the boundary I' = 99 such that I' =
Ujzy 7. Since IV is C? and compact, there is a number r¢ € (0,7/2) such that
V), = | int Byy(x), A C (T9),,
rEA

where IV is a connected component of I and (I'V), denotes its v-neighborhood. The next

lemma shows that
vBMO""(Q) C LL(T,)

which yields the desired result. Note that we may assume v < p by Proposition 3.2.1. [

Lemma 3.2.10. Under the same assumption of Theorem 3.2.9 with u < v assume that
ro < v/2 < Ry/2 is taken so that

(), = | J int By, (2)
zEA

with some A C (I7),. Then there exists C > 0 depending only on 1o, n, IV, v such that

1
< j . v(T7) |-
igﬁ By ()] By ) |f(y)| dy < C’([f]BMOu((F ) T [Vda - flo(r ))

Proof. We shall suppress ro dependence since it is fixed. We shall prove the average fp(,) =

1
—_ f dy has an estimate

|B(z)| JB()
weh B < C([f]BMO#((FJ')V) +[Vd- f]bv(ﬁ'))- (3.2.2)

If this is proved, applying the triangle inequality

1
(/D) ) < M/B(a:) |f = f@)| 4y + |fB@)|

yields the desired result.
We shall prove the key inequality (3.2.2) by contradiction argument. Assume the in-
equality (3.2.2) were false. Then, there would exist a sequence {f* }22, such that

2k ([ o+ [T 11,)

Here we suppress (I'),, and I'V in the right-hand side. Since

1 =sup ’fg(x)
xEA

sup ck(x)’ =1 with *(z)= fllg,(x) e R",
€A

there is a sequence {z;};-; in A with the property

1> ’ck(xk)‘ >1/2.
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By taking a subsequence, we may assume that x; converges to some & € (Fj ), since IV is
compact and d (mk, 8(I‘j)y) > ro, where d(zy, A) denotes the distance from a point xj to a
set A. Since I'V is connected, there is an increasing sequence {K,}7°, of connected compact
sets in (), such that int K; 3 & for £ > 1 and (IV), = ;2 K,. By compactness, there is
a finite subset Ay of A with the property that

K, C U int B(x), Ay C Apsq
ISV

and the right-hand side is connected. By taking a further subsequence, we may assume
that c*(z) — c(z) for € A;. However, since [f*] — 0 so that

as k — 0o, we see that c(z) = c(y) if int B(x) Nint B(y) # 0. Since

U int B(x)

€Ny

BMOH#

fk—ck’d:c—>0

is connected, ¢(x) is independent of € Ay, say ¢ = ¢y. By taking a further subsequence of
{ f* }, we may assume that c*(x) — ¢, in Ay. By a diagonal argument, there is a subsequence
of {fk} such that

&) —ec for ze LJAg::AOO C A
=1
‘We thus observe that

If we take B(z) such that & € int B(z), ¢ should not be equal to zero since |c*(zy)| > 1/2
and zp — T as k — co. We now invoke the property that

fk(y)—c’dy%O for z€A as k— oo.

[Vdﬂ : f’“}bu 0.

Since

(Fj)V: U B(z),

[L'GAoo

we observe that f¥ — ¢ in LllOC ((Fj )l,) By taking a subsequence we may assume that
f¥(x) = cfor a.e. x € (TY), so that Vdgq - f¥ — Vdgq - ¢, a.e. By lower semicontinuity of in-
tegrals (Fatou’s lemma) and supremum operation, the seminorm 4" is lower semicontinuous
under this convergence. We thus conclude that

[Vdg - ], < lim [Vdg : f’“}by =0.

k—o0

By Lemma 3.2.8, this ¢ must be zero which leads to a contradiction. We thus proved the
key estimate (3.2.2). This completes the proof of Lemma 3.2.10. O
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3.3 A variant of Jones’ extension theorem

Different from L*° functions, it is in general impossible to extend BM O function by setting
zero outside the domain. Indeed, the zero-extension of logmin(z,1) € bmo2(RY) does
not belong to BMO>(R). The goal in this section is to give a linear, extention operator
of BMO type function so that the support of extended function is contained in an e-
neighborhood of the original domain, of a function.

For this purpose we recall an extension given by P. W. Jones [15]. Since we modify
the way of construction, we will give a sketch of this construction. We first recall a dyadic
Whitney decomposition of a set A in R™. Let A = {Q; }jen be a set of dyadic closed cubes
with side length £(Q;) contained in A satisfying following four conditions.

(i) A=Uu;Q;,
(i) int@Q; Nint Qx = 0 if j = k,

(i) vn <d(Q;,R™A)/((Q;) < 4y/n for all j €N,
(iv) 1/4 <0(Qr)/0(Q;) <4if Q; NQy # 0.

We say that A is called a dyadic Whitney decomposition of A. Such a decomposition exists
for any open sets; see [18, Chapter VI, Theorem 1]. Here d(B,C) for sets B,C in R" is
defined as

d(B,C)=inf{|lz—y||z€ B, yeC}.

If B is a point x, we write d(z,C) instead of d ({z},C).

There are at least two important distance functions on A. For Q;,Q € A, a family
{Q(O)}r, C Ais called a Whitney chain of length m if Q(0) = Q; and Q(m) = Q) such
that Q(£)NQ(L+1) # 0 for £ with 0 < ¢ < m — 1. Then the length of the shortest Whitney
chain connecting @); and Q) gives a distance on A, which is denoted by d;(Q;, Qx). The
second distance for Q;, Q € A is defined as

0(Q;) g‘ 0(Qj, Q)
£(Qr) 0Q;) + Q)

Note that d; and d9 are invariant under dilation as well as translation and rotation. P. W.
Jones [15] gives a necessary and sufficient condition for a domain such that there exists a
linear extension operator. A domain € is called a uniform domain if there exist constants
a,b > 0 such that for all z,y € € there exists a rectifiable curve v C Q of length s(y) <
alr — y| with min {s (v(x, 2)), s(v(y,2))} < bd(z,0R), where v(zx, z) denotes the part of
between z and z on the curve; see e.g. [8]. It is equivalent to saying that there is a constant
K > 0 such that

dg(Qj, Qk) = log + lo +1].

d1(Qj, Qk) < Kda(Qj, Q) (3.3.1)
for all @Q;, Q) € A and some dyadic Whitney decomposition A of Q.

Theorem 3.3.1. Let A C R" be a uniform domain. Then there is a constant C(K)
depending only on K in (3.3.1) such that for each f € BMO®(A) there is an extension
f € BMO>(R"™) satisfying

E] BMO>(R"™) < C(K)[f]BMOOO(A)

The operator f — f is a bounded linear operator. Conversely, if there exists such an
extension, then A is a uniform domain.
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A bounded Lipschitz domain is a typical example of a uniform domain. The constant
K in (3.3.1) depends only on the Lipschitz regularity of the domain. A Lipschitz half space
R is another example of a uniform domain; here v is a Lipschitz function on R* 1.

We next note that if we modify the construction by P. W. Jones, the support of the
extension f is contained in an e-neighborhood of Q if f is also in L%ﬂ type space.

Theorem 3.3.2. Let ) C R™ be a uniform domain. For each € > 0 there is a constant
C = C(K,e) with K in (3.3.1) such that for each f € bmoX () there is an extension

f € bmo () such that
[ﬂ bmoL (Q2e) =< C[f]bm‘)%(g)

and supp f C Q., where
Q.= {zeR"|d(z,9) <e}.

The operator f — f is a bounded linear operator.

This can be proved almost along the same way as in [15]. We shall give an explicit
proof.

Proof. Let k. be the smallest integer such that 27% < f So 27k > 10f Let £ ={Q;}

be the Whitney decomposition of 2 and E = {Qj} be the Whitney decomposition of Q€.

Let F, be the set of Whitney cubes in E whose side length is strictly greater than 27",
For each @, € F,, we define a function g,, on Q by

mia)i= { g oS4

0, else

and we further define a function g on 2 by

2. gm

Here fq,, = o le fQ y)dy for each Q,, € E,. Let g be the zero extension of g from €2 to
R™.

Without loss of generality, we assume that the radius rg of the ball equals 1 in defining
the space L} (£2). Notice that

1
gml| Lo S‘/ fldy.
gm Il o (@) O] Qm\l

Let ko be the smallest integer such that 27%0 <
[f]r... In this case, as £(Qy,) > 27F=,

1
gl e s-/ fldy <
lomllmoy < g [ Ifldy <

If £(Q.) > 2750, we divide Q,, into (62(6_’2,?8))" small subcubes of side length 27%0. Hence,

7 M UQm) <27, then || fllr1q,.,) <

O (f..

Qm /2 ko )n )

/Qm!f\dy— > /|f|d<

)" [free < 1Qml =12 - [flre,
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in this case ||gm/|z~ @) < nz - [f]r... Therefore,

19/l @) < Cne - [flre

and we deduce that g € bmo3L(Q2) as L>=(Q2) C bmo(S2).
Let f* := f —g € bmoX(2). We do Jones extension to f* If € is unbounded, for
each Q € E', we find a nearset Q; € E satisfying £(Q;) > Z(Q ). We define that f* = f*

on  and f*( ) = fQj for x € QJ. If © is bounded, we pick Qo € E such that ¢(Qy) =
sup £(Q;). We define that f* = f* on Q, f*(z) = f§, for z € Q; where £(Q}) < £(Qo)

Q;eE

and f*(z) = [, for z € Q;- where £(Q;) > ¢(Qo). By Jones [?PJ], f* € BMO and
[f*]smo < Ck - [f*]Bmo~ (). By this extension, for f*( ) # 0, either z € Q or z € QI
such that E(Q;) < 27k, Since d(Q ) < 4yn - 0(Q ) pick x € Q and z € I' such
that |z — z| :d(Q' ). For any y € Q ly — z| < |y—x]+|x—z| < 5yn - 4(Q ) So
intQ;- C B5\/E-Z(Q;)( z) for some z € T'. Since 5\/n - £(Q ) < 5yn 27k < g th C Q..

Let f:: f* +gand f = f |2,., We have that supp f C Q. and by previous calculation,

[f1Bro> (©.) [fleao < [F¥lemo + [8lBmo < Ck - [f]aom() + 219l

<
< Ckme ([flBMo=@©) + [fIre)-

Let B(z) denotes the ball of radius 1 centered at x and I'* := {z € Q¢|dq(x) < ¢}. For

B(z)N Q. #0,
/ Fldy = / fldy + / Fldy.
B(z)NQe B(z)NQ B(z)Nre

The first integral on the right hand side is directly estimated by [f]~, so we only need
to consider the second integral. Let Q; be a largest Whitney cube in E' that intersects
B(z) nT*. For Q/ € E', [15, Lemma 2. 10] says that if Q; € E is a nearest Whitney

cube satisfying £(Q;) > E(Q ), then d(Q;, Q ) < 65K2- E(Q;) Consider Q; € E' such that
Q]ﬂB( z)NIe # 0, let z; € Q; where Q; is a nearest Whitney cube satisfying £(Q;) > E(Q;),
let a:; € Q;- NB(x)NT* and z, € Q, NB(z)NI*. By choosing K large such that K2 > 2y/n,
we have that

|2 — | < |2, — x|+ |oj — 2] < 24 2v/n - UQ)) + 65K - £(Q)) < 2+ 66K £(Q).

Since 4(Q;) < 26(62;-) < 20(Q,) < 20(Q.) where Q. € F is a nearest cube satisfying
0Q.) > UQ.), |x; — x| <2+ 132K% - 4(Q,).

If B(z)NT # 0, then v/n - £(Q.) < d(Q.,Q) < 2. Hence £(Q,) < 2/(Q.) < \F’
zj € Qj, |rj — x| <2+ 133K2. ﬁ’ Consider the cube 627* with center z, and side length

4+ %. For each Q; € E such that Q; N B(x) NT¢ # (), the corresponding nearest

Q; € E such that £(Q;) > E(Q;) we choose to define f* is contained in CZ, ie, Q; C EZ

Hence,
|fldy = > / f dy</ frldy.
/B(x)ﬁf‘s Q €E’, Q NB(z)Nre QJ’ Q.NQ ’

QJmB(x)ml“e;é(Z)

for any
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Let p be the largest integer such that 277 > 4 + 10?/451{ , 50 27P < 8+ 2128\/5 Let 622 be

contamed in a larger cube Q where Q has center x* and side length 27P. We can divide @
into (5= . ) subcubes of side length 27%0 thus

(2—P /2= ko)n

Jo > 1 S G e < O

If B(z)NT =0, ie, B(z) C Q. Let By := {Q; € E'|Q; N B(x) # 0}. Let £y, =

inf £(Q ) and Q, be a largest Q;- € E,. If £, = 0, then there exists z € I'N dB(z).
J By

In this case, v/n - £(Q.) < d(Q,,Q) < 2. Therefore same argument as in the case where

B(x)nI' # (Dglves that ||f||L1 (B(a)re) < Ckp (¥ If0 < € < 2, then pick Q,, € E} such

that £(Q.,,) = smcef 0Q.) < d(Q*, Q) < 24/n-4(Q.,)+d(Q,, Q) < 2+10/n, we
have that E(Q*) f+20 Hence |z; —x,| < 2+133K?. (f+20) Following the argument

as in the case where B(z) NT' # (), we can deduce that ||f||L1 onre) < Cron - [ffrg- If

Ly, > 2, then B(x) intersects at most 2" Whitney cubes in E' Wlthout loss of generality,
assume that Ei has 2" elements. Then

|B(z) N Q;
/B(I)mralf\dy< Z/ |fQ1|dy<QZE |Qz / |F*| dy.

Divide Q); into (%)n subcubes of side length 2750 we have that

[t (532) e <100 - £

Therefore,
[ < (Y B@Nai) ke £ Co [P
B(z)nre
QeF,
Since [f*Ir. < [flr. + [9]r.. and [g]r., is estimated by C), . - [f]r.., we are done. O

As an application we give an estimate for the product of a Hélder function and a function
in bmoZZ. We first recall properties of point multipliers. It is known that for a local hardy
space h! = FﬂQ [16, Theorem 3.18], there is a constant C' such that

legllro, < Cliellerllglize, g€ Frs (3.3.2)
for p € C7(R"™), v € (0,1), where

lollev = sup [p(z)|+ sup |o(z) — )| / |z —y|";
zeR"™ z,yeR™
TFY

see e.g. [16, Remark 4.4]. Since
bmo = BMO*>(R"™) N LY (R™)
equals to ng2 [16, Theorem 3.26], it is a dual space of h! = Fﬁz [16, Theorem 3.22]. Thus

[efllomo < Clleller | £lbmo- (3.3.3)
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Theorem 3.3.3. Let Q C R"™ be a uniform domain. Let ¢ € C7(2), v € (0,1). For each
f € bmoX (), the function of € bmo2(S2) satisfies

e f lomoze ) < Cllellcr @)1 f lbmoz )
with C' independent of p and f.

Proof. By [13], there exists g € C7(R") such that @ |q = ¢ and

[Pllev ey < llellerve)-

For our current purpose it suffices to set p = max{min{p., ||¢|lcc}, —||¢|lcc} With

ps(z) = nf {o(y) + [¢lor - |z — 9|7},
yE

le(@)—o)].
[z—y|7

where ||l cv ) = 10l @) Felcr@)s @lle @) = Sug!@(l‘)’ and [¢]cv ) = sup.
S x,ye

we often suppress 2. By definition ¢.(z) < ¢(z). Moreover, since p(z) < go(y) + [¢lev -
|x —y|Y for x,y € Q, we see that p(z) < p.(z) which implies p = ¢, on . For any x € R"
and € > 0 there is y. € 2 such that

©(ye) + [l - o — ye| " < @u(z) + €.

For z1 € R™ we observe that

(1) =9 (7) < @(ye)+[plor-[T1—ye|"—{p(ye) + [plor - |2 — ye| 3 +e < [plor- |z —z1]7 +e.

Since ¢ is arbitrary, we see that ¢.(r1) — v«(z) < [p]cv - |* — z1]7. Interchanging the role
of x1 and x, we conclude that

(el rry < [Pl )

Since [|¢|loc < 00, P = ¢ on Q and P is still Holder. More precisely, [@]cv < [¢«]cv. By
definition ||¥]lco < ||¢]loo 80 We conclude that |||y < |lollon-

Extending f € bmo2(2) to f € bmo by Theorem 3.3.2, we conclude from multiplication
estimate (3.3.3) that

HQObemo%(Q) < ||¢?||bmo
< C-@llevmny - 1 fllbmo
< C-lellev@) - 1 lbmos -

O

Remark 3.3.4. If we prove that the extension f ~— f constructed in Theorem 3.3.1 is
bounded from bmo3 to bmo = BMO N Lllﬂ, then the support condition will follow by
taking ¢ € C7(R") in Theorem 3.3.3 as a cut off function of 2, i.e., ¢ = 1 on  with
supp ¢ C Q.. In other words, we consider f — ¢f. However, the proof that f & Lil needs
some argument so we give a direct proof of Theorem 3.3.2.

For BM O;f °° function in 2 it is easy to see that its zero extension is in BMO space;
see e.g. [b, Lemma 4].
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Theorem 3.3.5. Let Q0 be an arbitrary domain in R™. Assume that p € (0,00]. For
f € BMOYY(Q) with v > 2p, let fo be the zero extension to R™, i.e., fo(x) =0 for z € Q°
and fo(x) = f(x) for x € Q. Then fo € BMO*(R"™) and [folpmor < C[f]BMo;j*” with C
independent of f.

Proof. If the ball B of radius < p is in §2, then

|;/B’fo—fojg\dy < [flBmor-

If Bis in Q°, then [5|fo — fopldy = 0. It remains to estimate the integral if B has
nonempty intersection with the boundary T' = 9. For each B,.(z) NT # (), r < p, we take
xo € By(x) NI. Then, B,(z) C Bay(zo) and thus

i | 1 mldr < Aoty < 27 1)
- — z y S — y ~ . 21y
1B (@)] gy 0 OB 1By ()] Sy Wn o

where w,, is the volume of an n-dimensional ball. O

Remark 3.3.6. In [5, Lemma 4], it is assumed that Q = Q' x R"* where Q' is a bounded
Lipschitz domain in R¥. However, from the proof above it is clear that we do not need this
requirement. Thus we give a full proof here.

As an application of boundedness of multiplication, we give invariance of function spaces
under coordinate changes. We say that ¥ is a global C*+# (resp. CF¥)-diffeomorphism if
C*+8 (resp. C*¥)-norms of ¥ and ¥~ are bounded in R™, where k € N and 3 € (0,1).

Proposition 3.3.7. The space bmo is invariant under bi-Lipschitz coordinate change and
the space h' is invariant under global CYtP-diffeomorphism.

Proof. For f € bmo, by a simple change of variables on the equivalent definition of the
seminorm [f]pyo where

flowo = sup inf [ 7() ~cldy,
BCR» ¢€R J
see e.g. [9, Proposition 3.1.2], we can easily deduce that bmo is invariant under bi-Lipschitz
coordinate change.
Let g € h'(R™) and ¥ be a global C'*A-diffeomorphism. We have that

lgoWllp = sup
”f”bmoSl

f-go‘lldy‘.
R

By change of variable we have that

o fy)-go¥(y) dy' = ‘/Rn fou(z) g(x) Jy-1(z)da

Y

where Jy-1 is the Jacobian which is of regularity C®. Then by the bmo — k' duality
[16, Theorem 3.22] and multiplication estimate (3.3.2), we deduce that

fou ™t g Jy-rdz| <|If o U lomo - lgTu-1llmr < If 0 U™ oo - 1 Tw-1lles - [lgllns-

Je
Since bmo is independent of bi-Lipschitz coordinate change, we have that

lg o ®llp < C- VO [z - [ Tg-1llcs - lgllm

for some constant C' independent of g and W. O
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Proposition 3.3.8. The space Ff’Q(R”) is invariant under global CY P -diffeomorphism.

Proof. Let g € F1172 and ¥ be a global C''*A-diffeomorphism. By multiplication estimate
(3.3.2) and Proposition 3.3.7, we have that

IV(goW)llpo, < C-IV s (Va)oUllps, < C-IVElgs- VO |z | Tu-1 o [Vl o,

where Jy-1 is the Jacobian for U~! and C is a constant independent of g and ¥. Hence
V(goW) € FRQ by ||V9||Fﬁ2 < C’HgHFll’2 since the differentiation mapping is bounded from
Fj, to Fggl for p € (0,0), g € (0,00] and s € R, see e.g. [16, Theorem 2.12]. Since
V(go W) € F}y, we also get A(go ¥) € F1_21 Since F}, < F{,, Proposition 3.3.7 tells
us that go ¥ € F10,2 C Ff21 Therefore, (I — A)(go V) € Ff21 Notice that [16, Theorem

2.12] also tells us that for o € R, (I — A)? is an isomorphism from F$  to F5,?°. Hence
by letting 0 = —1, we deduce that

lg oWl , = (I = A) (I~ A)go W)y,
<C (T = A)(go V)l

<C-(lgoWlpy, + V(g0 ), )
<C (U4 IV¥es) IV oo - gl - Nl

where C is a constant independent of g and W. O

Remark 3.3.9. The proof of Proposition 3.3.8 also says that Fll’z ={f e FﬂQ | Vf €
(FP)"}.

3.4 'Trace problems

In this section we show that the normal trace of a vector field in vbmoj™” is in L>(T') if its
divergence is well controlled. We begin with the case that € is the half space R'}.

We first recall that the trace operator (Trf)(z’) = f(2/,0) for f € F1172(R”) gives a
surjective bounded linear operator from F},(R") to L'(R"1); see [19, Section 4.4.3].

Proposition 3.4.1 ([19]). The operator Tr from Fll,2 to LY(R"™1) is surjective for n > 2.
Actually, surjectivity holds for a smaller space Bil. There exists an inverse operator called
the extension which is a bounded linear operator.

For a C? domain €2 a normal trace v-n on I' = 9Q of v is well-defined as an element of
I/Vlgcl/p’p(I‘) if v and divo is in Lt ; see e.g. [6] or [7]. If v € vbmof™(2) so that v € L] ,
then by an interpolation inequality (see e.g. [5, Theorem 11]) v is in LI = for any p > 1.
Thus if dive is in LY., v - n is well-defined. We derive L™ estimate for v - n when  is the

loc?
half space.

Theorem 3.4.2. Let u,v,0 be in (0,00] and n > 2. Then there is a constant C =
C(p,v,9,n) such that

ol ey < € (Il ) + Il divellig ) )

for all v € vbmof” (RY).
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Proof. Let v € vbmo§™ (R7). By definition, the n-th component v, of v = (v/,v,) belongs
to BMO,""(R). For zy € R" 1 we co,nsider the region U = By (z4) x (=0, 8) where By (z)
denotes the ball in R*! centered at xy with radius 1. Let vy, denotes the restriction of v
on UNRY, ie., vpe =0 ‘UﬂRi' We have that v € brno3 (U NRY) and

1
SUp s |(Vre)n| dy < o0.
e (@) 1Br@ 0 b (' o)
r<v

Let (vre)n be the zero extension of (vre)n to U. By Theorem 3.3.5, (vre)n is in BMO>(U).
Let v, be the even extension of v., to U of the form

o { Upe (2!, ), x € B1(m6) and z,, >0

- / 3.4.1
Ve (2, ) V(2 —xy), x € Bi(zy) and z, <0 ( )

and set 7 = (v),, (ye)n). We have that & € bmo22(U). By Theorem 3.3.2 its Jones’ extension
vy belongs to bmo2(R™).
Integration by parts formally yields

/ vy -npdr’ = /
Rn—1 R

By Proposition 3.4.1 there is an extension operator Ext : L'(R"~') — F,(R") such that

(divoy)pdz — / vy - Vpdz. (3.4.2)
R%

n
TroExt is the identity operator on L. For ¢ € C° (B; (m6)> we set o = Ext ¢. Multiplying
2

a cut off function § € C2°(U) such that § =1 in %U and considering p = 0o, we still find
pE F1172(R") by a multiplier theorem [16, Theorem 3.18], [19, Section 4.2.2]. We estimate
(3.4.2) to get

_l’_

< ‘/ (divoy)p dx
U

dp
n d
+ ‘/ . VU o, T
We may assume that p is even in z;,, by taking (p(2’, z,,) + p(2', —2,,)) /2 so that the second
term is estimated by bmo-h! duality (h!)* = (FBQ)* = FQQQ = bmo as follows

1
/ vy - Vpde :‘/ vy - Vpdx
R 2 n

:’l;
< Cllogllemoll Vol -

/ vy - Vipdr
R

n
+

l/ vy -npda’
Rn—1

=1+1I+ 1.

I =

The third term is estimated as

dp

m < CH'UU"Hbmo %
n

hl
The first term is estimated by

I < ||div ool pe@nllpll prse-n )
< Clldivol[zr Vel



3. Normal trace for a vector field of bounded mean oscillation 70

by the Sobolev inequality. Since |[|[Vp||r1 < ||[Vp|n and [|[Vp|[n < HpHFi2 < C’||<,0|L1(

collecting these estimates yields

v.nwdajl SC Vllvbmo™” (R? + div vl 7 n .
/- s () (1ol + 11 i ol

1
2
This yields the desired estimate since CZ° (B 1 (336)) is dense in L! (B 1 (x6)> and C' in the
2 2
right-hand side is independent of z{, € R"~L. O

We now consider a curved domain. Let  be a uniformly C? domain in R™ so that the
reach R, of T is positive and 3 € (0, 1).

Theorem 3.4.3. Let Q be a uniformly C**8 domain in R™ with n > 2. Let p,v,d be in
(0,00]. Then there is a constant C' = C(u,v,0,) such that

o il ry < € (Iollpmop @) + Il div el m,) )

for all v € vbmof™” ().

We shall prove this result by localizing the problems near the boundary and by using a
normal coordinate system. Let Q be a uniformly C**# domain. In other words, there exist
74, 0, > 0 such that for each zy € I', up to translation and rotation, there exists a function
h., € C**B(B, (0")) with

(V')*hoy| < L in B, (0) for k=0,1,2,
(V) s, ) < 09 V' hep(0) = 0, hog (0) = 0

such that the neighborhood

Urs g (20) = {(2',20) € R™ [ ey (2') = 60 < 2y < hag(2) + 6., 2] <1}

satisfies
QN Uy, 50y (20) = {(&,20) € R [ hay () < 2 < b (&) + 6, |2 < 7}

and
02N Uy, 5. 1., (20) = {(2',2n) € R™ | @y = hoy(2), 2| < 1)

For x € , let mx be a point on I' such that |x — mz| = dg(z). If  is within the reach
of I, then this 7wz is unique. There exist r < r, and ¢ < d, such that
U(z) = {z € R"| (rz) € B.(0), dp(z) < 6}

is contained in Uy, s, ., (20). Since dgq is C**# in T, for o < R, [10, Chap. 14, Appendix]
[11, §4.4], we may take ¢ smaller (independent of zg) so that dg is C**# in U(z) N Q.
We next consider a normal coordinate system in U(zp)

{ z = y/ + ynv/dQ (y/’ oz (y/)) (3.4'3)
Tp = hy V') + ynOr, da (v, Dz, ))
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or shortly
x = mx — do(z)n(rx).

Let this coordinate change be denoted by z = v¥(y), ¥ € C*3(V), where V is a neigh-
borhood defined below. Notice that Vi (0) = I. If we consider r and ¢ small, this
coordinate change is indeed a local C'-diffeomorphism which maps U(zg) to V where
V := B,(0') x (=4,8). Moreover, by [12], we extend ¢ to a global C'-diffeomorphism
@Z such that J\V = 1 and HV@ZHLw(Rn) < 2. Let the inverse of ¢ in V' be denoted by ¢,
ie., o= L

Lemma 3.4.4. Let W be a vector field with measurable coefficient in I'y, 0 < R, of the

form
oS
N i1 K

Let y be the normal coordinate such that y, = do(x). Let W be W in y coordinate of the
form W =370 0 (y)d/dy;. Then

wn(y) = Vdg (2(y)) - w (2(y)) -
We shall prove this lemma in Appendix which follows from a simple linear algebra.

Proof of Theorem 3.4.3. We first observe that the restriction of v on U(zp) N Q2 belongs
to bmo32 (U(zp) N ). By considering the following equivalent definition of the seminorm

[f]Bro= (D) Where

1
f w(py= sup inf —— Fy) = cldy,
[ ]BMO (D) Br(z)cD cER |Br(x)| By (z) | ( ) |

(see [9, Proposition 3.1.2]), we can deduce that the space bmo3X on a bounded domain is
independent of bi-Lipschitz coordinate change. We introduce normal coordinate for a vector
field v = Y1 | v;0/0z; with v; € bmoZ (U(z) N Q). Let w be the transformed vector
field under the normal coordinate y. By Lemma 3.4.4, w, of w = >, w;0/0y; fulfills
wy, = Vdg (2(y)) - v (z(y)). Since v € vbmof” (), this implies that w € bmoZ(V NRY)
and moreover,

sup E_”/ |wy,| dy < oo.
£<8, Be(z)CV By(z)NRY

Thus, as in the proof of Theorem 3.4.2, the zero extension of w,, for y, < 0 is in bmo(V),
we still denote this extension by w,. Let J = J(y) denote the Jacobian of the mapping
y — x in V. For tangential part w of w= (w/, wy,), we take an even extension with weight
J of the form

/ /
0
v :{ w' (Y yn), Yn > 3.4.4

(&' 9) W (Y, =yn) I, =Yn) [T Y s yn)s Y <O (344

and set @W(y,yn) = (W', wy). Let W denote the unweighted even extension of w’ to V,
thus w € bmoZ(V N R7) implies that @ € bmoX (V). Let f be the function defined on
V such that f =1 for y, > 0 and f = J(y', —yn)/J (¥, yn) for y, < 0. Since J(y)~! =
|det D (y)|~! = |det Do (p(y))| for y € V, we have that f € C5(V). Notice that @'(y) =
w'(y) f(y), therefore by Theorem 3.3.3, we can deduce that @ belongs to bmo2(V). By
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Theorem 3.3.2, the Jones’ extension wy of W belongs to bmoL(R™). Its expression in x
coordinate is vy which is only defined near T.
If the support of p is in U(zp), then integration by parts implies that

/UU ‘npdH" " = /(div vy)pde — / vy - Vpdz. (3.4.5)
r Q Q

We shall estimate the left-hand side as in the case of R'!. The first integral in the right-
hand side can be estimated similarly as in the proof of Theorem 3.4.2. It is sufficient to
only consider the second integral. Let ¥ : B,(0') — I'NU(z) by (v',0) = (¢, hs(y ))
Extend h,, € C?*(B,(0')) to h € C2(R"') such that h|p () = hz. Define ¥ : R"!
R(R™ 1) by (y/,0) — (v, h(y')). Hence ¥ |B.(0) = ¥. Extend further U to U* : R® — R"
by (v/,d) — U(y',0) + (0',d). Notice that this U* is a global C2-diffeomorphism whose
derivatives are bounded in R™ up to second-order. We may assume zg = 0 by translation.
Let ¢ > 0 be a constant to be determined later. For ¢ € CHT N (U(z)), we observe
that o o U € CL(B.,(0/)). Let 0 = Ext(p o V) as in the proof of Theorem 3.4.2 and let
o =5 o (U*)~1. With this choice of o, we observe that for (i/,h.,(y')) € I' N CU (),

oy hao(y) = T 0 (U) My ey () = 3(y,0) = 90 U(y,0) = o(y hay (¥)).

Thus ¢ is an extension of . Since (U*)~! is a global C2-diffeomorphism and & € Fl,(R™),
we observe that o € F1172(R”), see e.g. see Proposition 3.3.8 or [19, Section 4.3.1].
For each zp € I, there exists €,, > 0 such that we can find a cut off function 6,, €

C(U(z0)) for which 6,, = 1 within €,,U(zp) and

Z D0 || oo (mn) < M
|| <2

for some fixed universal constant M > 1 independent of zg. By multiplying this cut off
function 6.,, we have that p = 6.,0 € F 5(R") and ol p, @y < M - |lo|lp1,gn)- Hence

we take the constant ¢ above to be €.
By coodinate change, we observe that

/QUU'Vpd:L:/ sz pdw—/vmnz g(Pow(y))dy

+ 7=1
The n-th component equals

/VmR1 WUn(y)J(y)ail(pow(y))dyz/unn(y),]( -

Do (pov(y))dy

since wy, equals zero for y, < 0. Considering extensions of Holder functions [13] and local
diffeomorphism [12], by the F{y — FY, , duality [16, Theorem 3.22] and Proposition 3.3.7,
we conclude that

0 " ~
/V%UUn(y)J(y)c’)y(pO%b(y))dy‘ < CY wogllbmo - 1 les vy - 10y ¥llosary - Vo0 Pl
" i=1
< C- HwUn”me : va”hl

For tangential part we may assume that

(pod)(W yn) = (po ) (¥, —yn) for y, <O. (3.4.6)
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In fact, for a given p we take

9 yn) = (po (W s yn) + po (Y, —yn)) /2

which satisfies evenness g(y', yn) = 9(v/, —y») and
g(y', 0) =0o w(y,7 0) ©00 @D(y', 0) = O(y/, hzo (y,)) : Qp(y,7 hzo (y/))

It suffices to take p such that p o (y) = g(y). Thus, we may assume that p o 1) is even in
Yn so that 9, (p o) is also even in y, for j =1,2,...,n — 1. Since wy,J is even in y, for
y in V', we observe that

0 1 0

/V - wu; () (y) 5~ (po ) dy = 5 /V ij(y)J(y)a—yj( ) dy

for 1 < j <n—1. Similar to the case for the n-th component, we thus conclude that

/ wy; (y)J (y) 0
\%4

dy;

(0o ) do| < C s i [l
Collecting these estimates, we conclude that

/ (R 1 N0 dz" 1 < CHwUHbmoHvP”hl
'NezqU(20)

< CHvHvbmog"V(Q)||90HL1(FH6ZOU(ZO))'

Thus HU ’ n”L‘X’ < CHU”vbmog’V(Q)' O

Remark 3.4.5. (i) Since BMO}"" C vbmof"” for § < oo, the estimate in Theorem 3.4.3
holds if we replace vbmoé’y by BM Of Y. Moreover, since we are able to use zero
extension in this case. We can follow the proof of Theorem 3.4.3 directly without the

necessity to invoke normal coordinates. We shall state a version of Theorem 3.4.3 for
BMO}"" in the end of this section.

(i) By Theorem 3.2.9 we may replace vbmo§™” by vBMO**(Q) in the estimate in Theo-
rem 3.4.3 since we may always take § < v < R, provided that 2 is a bounded or an
exterior domain.

Remark 3.4.6. If we assume that the vector field v is continuous in €, then by Lebesgue
differentiation theorem we have the natural estimate ||v - n[| oy < C[Vdgq - v]p for some
constant C' independent of v. Therefore, if we replace the space vbmog Y (Q) by the vbmo 5’”
closure of C2°(€2), then Theorem 3.4.2 and 3.4.3 trivially hold. However, the vbmo 5’” closure
of C°(Q) seems to be strictly smaller than the space vbmos™ () since it is known that
a similar space VMO, the BMO closure of C$°(R"™), is a proper subspace of BMO [17].
Thus, our trace theorems stay non-trivial. Generally speaking, we cannot directly estimate
the L*° norm on the boundary by the b”-seminorm. Here is an example. In dimension 1,

for any m € N N {0} we define f in (0,1) by

Sy mt 1, if € (g o)
0, otherwise.
A simple calculation tells us that [f]p < 2->77; 21—, < 00 but for any M > 0 there exists

0pr > 0 such that there exists a subset S C (0,057) with Lebesgue measure |S| > 0 and
f(z) > M for any = € S.
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Theorem 3.4.7. Let Q be a uniformly C'8 domain in R™ with n > 2. Let p,v,d be in
(0,00]. Then there is a constant C' = C(u,v,0,$) such that

[v- 0l gy < Clvll Barosv o) + Idivollze ry)
for allv e BMOJ™ ().

Proof. For zg € T', let U(z20) = Uy, s, h.,(20) With é» < R,. We then follow the proof of
Theorem 3.4.3 without invoking the normal coordinates. For v € BMOL"(Q), let vy be
the zero extension of v. We have that vg € bmo32(U(zp)). Let vy be the Jones’ extension
of ry(zo)vo by Theorem 3.3.2 where 7y, vo denotes the restriction of vy on U(zp). For
¢ € CHI'NLU(29)), we construct the function o in the same way as in the proof of Theorem
3.4.3. Since the boundary T is uniformly C1t7, U* is a global C!*-diffeomorphism. By
Proposition 3.3.8, we have that o = 5 o (U*)~! € Ff}Q(R”). Pick 6 in C°(U(z0)) such that
0 =1 within $U(20) and let p = 0o, we deduce that p € F}(R") and

/ vy - Vpdz
Q

Therefore,

< C - lvollemo - Vel < C - lvllsaoprr @) - VAl

v-ngde" | < C-vllparorr ) - 1ol ot :
/FﬂéU(zo) BMOyTED LNz UGzo))

The proof is therefore complete. O

3.5 Appendix

We shall prove Lemma 3.4.4. We first recall a simple property of a matrix.

Proposition 3.5.1. Let A be an invertible matrix

when a; =t (@ij)1<i<n 5 a column vector. Assume that @, is a unit vector and orthogonal
to @j with 1 < j < n—1. Then n-row vector of A~" equals ta@,. In other words, if one
writes A™1 = (bij)i<ij<n, then byj = aj, for 1 < j <n.

Proof. By definition the row vector b = (bnj)1<j<n must satisfies b- aj=0(=1,...,n-1),
b-d, = 1. Since {d; }?:_11 spans R" ! orthogonal to @,, first identities imply that b is parallel

to @,. We thus conclude that b = @, since b - @, = 1 and |d@,| = 1. O

Proof of Lemma 3.4.4. We recall the explicit representation (4.4.1) of the normal coordi-
nate system. The Jacobi matrix from y — « is of the form

@n=—"n(y,¢¥(y)) where n=—Vdo.
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Note that the vector (d;5, 8jw(y’))1<i<n_1 is a tangential vector to I". Moreover, the vector
(9jn1,...,0;n,) is also tangential since ;n - n = 9;/n|?/2 = 0. Thus d; is orthogonal to
dn for 1 < j < n —1. The invertibility of A is guaranteed if y, < Rx.

By a chain rule we have

w =" w;(y)(0/0y;)
j=1

i=1 j=1
so that
oL Ox; -
wi (w(y)) =Y _wi(y)5 = ie, w=Au,
=1 Yi
where A = (0z;/0y;)1<ij<n, W =" (Wj, ..., W), w =" (wy,...,wy,). Thus
w=A"1w.

By Proposition 3.5.1, the last row of A~! equals Vdq.
We thus conclude that w,, = Vdgq - w. This is what we would like to prove. O
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Chapter 4

The Helmholtz decomposition of a
space of vector fields with bounded
mean oscillation in a bounded
domain

We introduce a space of vector fields with bounded mean oscillation whose “tangential”
and “normal” components to the boundary behave differently. We establish its Helmholtz
decomposition when the domain is bounded. This substantially extends the authors’ earlier
result for a half space.

4.1 Introduction

The Helmholtz decomposition of a vector field is a fundamental tool to analyze the Stokes
and the Navier-Stokes equations. It is formally a decomposition of a vector field v =
(v',...,v") in a domain © of R" into

v =g+ Vg; (4.1.1)

here vy is a divergence free vector field satisfying supplemental conditions like boundary
condition and Vg denotes the gradient of a function (scalar field) ¢. If v is in LP (1 <
p < 00) in , such a decomposition is well-studied. For example, a topological direct sum

decomposition
(LP()" = LE(Q) & GP(Q)

holds for various domains including €2 = R", a half space R'', a bounded smooth domain
8]; see e.g. G. P. Galdi [9]. Here, L5 (Q) denotes the LP-closure of the space of all div-free
vector fields compactly supported in 2 and GP(€2) denotes the totality of LP gradient fields.
It is impossible to extend this Helmholtz decomposition to L* even if {2 = R" since the
projection v — Vq is a composite of the Riesz operators which is not bounded in L. We
have to replace L™ with a class of functions of bounded mean oscillation. However, if the
vector field is of bounded mean oscillation (BMO for short), such a problem is only studied
when (2 is a half space R} [10], where the boundary is flat.

Our goal is to establish the Helmholtz decomposition of BM O vector fields in a smooth
bounded domain in R"™, which is a typical example of a domain with curved boundary.

7
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Although the space of BMO functions in R is well studied, the situation is less clear
when one considers such a space in a domain, because there are several possible definitions.
One should be careful about the behavior of a function near the boundary I' = 0€2. In
this chapter we study a space of BMO vector fields introduced in [11] and establish its
Helmholtz decomposition when €2 is a bounded C? domain.

Let us recall the space vBM O(f?) introduced in [11]. We first recall the BM O seminorm
for 1 € (0,00]. For a locally integrable function f, i.e., f € LL () we define

loc

1
[f]BMOH(Q) ‘= sup { B, (2)] /Br(x) ’f(y) - fBr(ac)} dy ‘ By (z) CQ, r< #} )

where fp denotes the average over B, i.e.,

1
o= /B f() dy

and By (z) denotes the closed ball of radius r centered at x and |B| denotes the Lebesgue
measure of B. The space BMO* () is defined as

BMOM(Q) :={f € Li,.(Q) | [flBmor < o} .

This space may not agree with the space of restrictions rqf of f € BMO*(R™). As in [1],
[2], [3], [4] we introduce a seminorm controlling the boundary behavior. For v € (0, o], we

set
[f]pw = sup {r‘"/ |f(y)| dy
QNB,(z)

In these papers, the space

zel, 0<7“<V}.

BMOM () := {f € BMO*(Q) | [flw < oo}

is considered. Note that this space BMO,** () is identified with Miyachi’s BMO intro-
duced by [19] if © is a bounded Lipschitz domain or a Lipschitz half space as proved in
[4]. However, unfortunately, it turns out such a boundary control for whole components of
vector fields is too strict to have the Helmholtz decomposition. We separate tangential and
normal components. Let dr(z) denote the distance from the boundary T, i.e.,

dr(z) :=inf{|lx —y|, yeT}.
For vector fields, we consider
vBMOWY(Q) = {v € (BMO*(Q))" | [Vdr - v]p < oo},

where - denotes the standard inner product in R™. The quantity (Vdr -v)Vdr on I is the
component of v normal to the boundary I'. We set

[V]vBrromy (@) = [V]Brmor) + [Vdr - v]pe.

If © is the half space, this is not a norm but a seminorm. However, if it has a fully
curved part in the sense of [11, Definition 7], then this becomes a norm [11, Lemma §]. In
particular, when  is a bounded C? domain, this is a norm. Roughly speaking, the boundary
behavior of a vector field v is controlled for only normal part of v if v € vBMO*"(Q2). For
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a bounded domain, this norm is equivalent no matter how p and v are taken; in other
words, vBMOMY (Q) = vBMO°>®(Q). This is because vBMO*"(Q) C L'(Q) when  is
bounded, which follows from the characterization of vBMO*"(€2) in [11, Theorem 9]. We
shall simply write vBMO""(Q) as vBMO(S2). We are now in a position to state our main
result.

Theorem 4.1.1. Let Q be a bounded C* domain in R"™. Then the topological direct sum

decomposition
vBMO(Q) =vBMO,(Q2) @ GuBMO(Q2) (4.1.2)

holds with

vBMO,(Q) := {v € vBMO(Q) |divv=0inQ, v-n=0onT},
GvBMO(Q) := {Vq € vBMO(Q) | ¢ € Lj,.(Q)},

where n denotes the exterior unit normal vector field. In other words, for v € vBMO(S),
there is unique vo € vBMO4(2) and Vg € GuBMO(R?) satisfying v = vo + Vq. Moreover,
the mapping v — vg, v — Vq is bounded in vBMO(Q).

As shown in [11], the norm trace v - n is well defined as an element of L*°(I") for
v € vBMO(R) with dive = 0. So far, the Helmholtz decomposition BMO type space in a
domain is only known for v BMO°*° when (2 is the half space

R} ={z=(z1,...,2,) € R" | 7, > 0}

as shown in [10], where the normal trace is taken in locally H~1/2
Here is our strategy to show Theorem 6.1.1. For a vector field v, we construct a linear

map v — g1 such that ¢; satisfies

sense.

—Aq =dive in

where the divergence is taken in the sense of distribution. There are many ways to construct
such a map because there is no boundary condition. A naive way is to extend v in a suitable
way to a function v on R" so that v —— v is linear. We next consider the volume potential
of divw, i.e.,

qo(x) == E(x —y)divo(y)dy = E x div,
Rn

where F is the fundamental solution of —A in R", i.e.,

B(z) = {— gjﬂ/% (n=2)
|z[*7/ (n(n = 2)a(n))  (n2=3),

where a(n) denotes the volume of the unit ball By(0) of R™. By the famous BMO-BMO
estimate due to Fefferman and Stein [7], we have

[Vaol rios@mny < Colt] prros mn)

with Cp > 0 independent of . However, it is difficult to control [Vdr-Vqo|p so we construct
another function ¢; instead of qq.
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Although BMO space does not allow the standard cut-off procedure, our space is in
L', so we are able to decompose v into two parts v = v + v9 such that the support of v, is
close to I' while the support of v; is away from I'; see Proposition 6.2.4. For v; we just set

qi = Exdivu,

by extending v1 as zero outside its support. Then, the L*° bound for Vq% is well controlled
near I', which yields a bound for " semi-norm. To estimate vs, we use a normal coordinate
system near I" and reduce the problem to the half space. Let d denotes the signed distance
function where d = dr in €2 and d = —dr outside €). We extend v to R™ so that the normal
part (Vd-72)Vd is odd and the tangential part 73 — (Vd - 72)Vd is even in the direction
of Vd with respect to I'. In such type of coordinate system, the minus Laplacian can be
transformed as

L = A — B + lower order terms, A = —A,, B = Z On; bii 0y 5

1<4,j<n—1

where 7, is the normal direction to the boundary so that {n, > 0} is the half space. By
choosing a suitable coordinate system to represent I" locally, we are able to arrange b;; = 0
at one point of the boundary of the local coordinate system. We use a freezing coefficient
method to construct volume potential ¢? and g3, which corresponds to the contribution
from the tangential part 73'" and the normal part v3"°" respectively. Since the leading
°T in normal coordinate consists of the differential of 7, only, if we extend
the coefficient b;; even in 7, ¢} is constructed so that the leading term of Vd - V¢} is
odd in the direction of Vd. On the other hand, as the leading term of div v3**"® in normal
coordinate consists of the differential of " = (1, ..., 7,—1) only, the even extension of b;; in
N gives rise to ¢? so that the leading term of Vd - Vg2 is also odd in the direction of Vd.
Disregarding lower order terms and localization procedure, we set ¢> and ¢} of the form

qi = —L 7 tdivo" = —A~1(I — BA™Y) "t divok™®,
¢ =—-L ' divey” = —A7'(I - BA™) " divoy™,

term of divwog™

One is able to arrange BA~! small by taking a small neighborhood of a boundary point.
Then (I—BA™')~1 is given as the Neumann series Y oo_ (BA™1)™. We are able to establish
BMO-BMO estimate for V¢i and Vg3, i.e.

[VQ%] BMO(R™) < C(/) [Egan] BMO(R™)’ [VQ?] BMO(R™) < C’(/) [ﬁgor]BMO(R”)

with some constant C{y independent of 73. Since the leading term of Vd - (Vq% + Vq%) is
odd in the direction of Vd with respect to I', the BM O bound implies b bound. Note that
[02"" | aro(rny is controlled by [vo]pr and [va2] paro(a) since 12" is odd in the direction of
Vd with respect to I'. By the procedure sketched above, we are able to construct a suitable
operator by setting ¢1 = q% + q% + qi’.

Theorem 4.1.2 (Construction of a suitable volume potential). Let Q be a bounded C3
domain in R™. Then, there exists a linear operator v — q1 from vBMO() to L*°(Q)
such that

—Aq =dive in Q

and that there exists a constant C1 = C1(Q) satisfying
IVaillosrmo) < Cillvlloprroc)-

In particular, the operator v — Vqi is a bounded linear operator in vBMO(S).
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By this operator, we observe that w = v — Vg is divergence free in 2. Unfortunately,
this w may not fulfill the trace condition w-n = 0 on the boundary I'. We construct another
potential g2 by solving the Neumann problem

Age =0 in Q

0

% =w-n on [I.
We then set ¢ = ¢1 + g2. Since dg2/0n = Vqo - n, vg = v — Vq gives the Helmholtz

decomposition (6.1.1). To complete the proof of Theorem 6.1.1, it suffices to prove that
IVa2llyBaro(q) is bounded by a constant multiply of ||v][,zaro(0)-

Lemma 4.1.3 (Estimate of the normal trace). Let Q be a bounded C*** domain in R"
with k € (0,1). Then there is a constant Cy = Co(Q2) such that

|w - 0l peory < CallwllyBrro@)
for allw € vBMO(Q) with divw = 0.

This is a special case of the trace theorem established in [11]. We finally need the
estimate for the Neumann problem.

Lemma 4.1.4 (Estimate for the Neumann problem). Let 2 be a bounded C? domain. For
g € L°(T") satisfying ngd?'-[,”_1 = 0, there exists a unique (up to constant) solution u to
the Neumann problem

Au=0 i

ou (4.1.3)
— =g on T

on

such that the operator g — w is linear and that there exists a constant Cs = C3(2) such
that

IVullysro) < Callgll Lo -
Combining these two lemmas, Theorem 6.1.2 yields

IVazlluprro) < C3C2llv — Vaillupro)
< C3C2(1+ Ch)lvllvBmo)-

Setting ¢ = q1+¢2 and vg = v— Vg, we now observe that the projections v — vy, v — Vq
are bounded in vBMO(2), which yields (6.1.3) in Theorem 6.1.1.

To show Lemma 6.1.4 let N(z,y) be the Neumann Green function. Then a solution
of (6.1.4) is given by [ N(z,y)g(y)dH" . It is well-known (see e.g. [12, Appendix]) that
leading part of N is E(x — y). We have to estimate

IVE * (0r ® 9)|l,sarosr (o) -

Here ot denotes the delta function supported on I, i.e.,

o : ) /FmH"l
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for 1 € C°(R™). We take a C? cutoff function 6 > 0 such that 6(c) = 1 for o < 1, 8(c) = 0
for ¢ > 2. We take § small so that 26 is smaller than the reach of I'. By this choice,
04 = 6(d/5) is C? in R™, where d denotes the signed distance function from I' so that
Vd= —nonT. For g € L>®(T"), we extend ¢ so that Vd - g = 0 near the 2d-neighborhood
of I'. Let g. denotes this extension and set g.. = 049.. A key observation is that

or®g=(Vlg-Vd)ge, = div (geclaVd) — 1o div (ge,.Vd)
0'(d/9)
(5 967

where 1q is the characteristic function of 2. The leading (singular) part of VE % (ér ® ¢g) is
the term involving div (g .1qoVd). The famous L>-BMO estimate for the singular integral
operator VFE x div yields

IVE % div (96,019Vd)||BMo(Rn) < C”ge,cvdHLw(Q) < C/HQHLOO(F)

div (ge,cVd) = ge,cAd + Vd - Ve e = ge,cAd +

with C and C” independent of g. All other terms can be estimated easily since the integral
kernel is integrable. A direct calculation gives an L estimate near I for Vd-VE * (ér ® g)
which yields

[Vd-VE * (0r ® g)]y < Callgllpee(r)

with Cy independent of g, but it is impossible to estimate b”-seminorm of the tangential
part. This is the main reason why we use vBMO instead of BMOy-type space where
b”-boundedness of ALL components of vector fields is imposed; see the end of Section 6.3.2.

To extend our results to a more general domain it seems to be reasonable to consider
vBMO N L?. This is because LP N L? (p > 2) admits the Helmholtz decomposition for
arbitrary uniformly C? domains as proved in [5], [6].

Our approach in this chapter is to derive the boundedness of the operator v — Vg by a
potential-theoretic approach. In LP setting there is a variational approach based on duality
introduced by [21]; see also [5]. The key estimate is

IVallLr) < Cs Sup{/QVq-Vgodm ‘ Vel e ) < 1}

with C5 independent of ¢, where 1/p+1/p’ =1, 1 < p < oo. Formally, this estimate yields
the desired bound [|Vq||rrq) < Cs[[v| 1r(q) since

/Vq'Vgod:z::/v-Vgod:r.
Q Q

At this moment, it is not clear that similar estimate holds if one replaces LP(2) by vBMO
since the predual space of vBMO is not clear.

For BM Oy, type solution, it is known that the Stokes semigroup is analytic [1], [3]. How-
ever, it is nontrivial to extend to the space vBM O since in the half space the Stokes operator
with Dirichlet boundary condition does not generate a semigroup because [u(t)], 51,0 for
the solution u(t) may be non-zero for ¢ > 0 for initial data ug with [ug],pymro = 0 so that
uf may be a non-zero constant [1, Example 6.5].

This chapter is organized as follows. In Section 4.2, to construct a volume potential
of div v, we localize the problem and reduce the problem to small neighborhoods of points
on the boundary. In Section 4.3, we construct a leading part of the volume potential by
a perturbation method called the freezing coefficient method. In these two sections, we
complete the proof of Theorem 6.1.2. In Section 4.4, we prove Lemma 6.1.4 by estimating
the single layer potential.
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4.2 Construction of volume potential

For v € vBMO(f), we shall construct a suitable potential ¢; so that v — Vg is a bounded
linear operator in vBM O as stated in Theorem 6.1.2. In this section, as a preliminary, we
reduce the problem to the case that the support of v is contained in a small neighborhood
of a point on the boundary and it consists of only normal part.

4.2.1 Localization procedure

Let © be a uniformly C* domain in R™ (k > 1). In other words, there exists 7, . > 0 such
that for each zp € I', up to translation and rotation, there exists a function h,, which is Cck
in a closed ball B, (0') of radius r, centered at the origin 0’ of R"~! satisfying following
properties:

(i) Kr :=supg, (o) [(V')?hs| < 0o for s =0,1,2,..., k, where V' denotes the gradient
in 2’ € R"1; V'h(0') =0, h(0) = 0,

(i) QNUr, 5.0, (20) = {(@,25) € R™ | hey(2)) < @y < By (') + 6y, [2!| <7} for

*7h20

Ur. 60h2 (20) := {(ﬂv',:r:n) eR" ‘ hao(2) — 6 < p < hyy(2) + sy |2'] < 7“*} ,

(i) T'N Ur. 60he (20) = {(:r’,xn) e R" ‘ Ty, = hy(2)), |2/] < r*}.

A bounded C* domain is, of course, a uniformly C* domain.
Let d denote the signed distance function from I' which is defined by

inf |z —y| for z€Q,

_ yel’
dlz) =4 _ inf [x —y| for z¢&Q (4.2.1)
yel’

so that d(x) = dr(z) for z € Q. If Q is a bounded C? domain, then there is R, > 0 such
that if |d(x)| < R., there is unique point 7z such that |z — 72| = |d(z)|. The supremum of
such R, is called the reach of €} and €°. Moreover, d is C? in the R,-neighborhood of T,
ie,deC?(I'R") with

IR = {zeR"||d(z)| < R.};

see [13, Chap. 14, Appendix], [17, §4.4]. Note that R, satisfies
R, =min (R}, RY"),

where RY is the reach of T' in Q while R® is the reach of T' in the complement Q° of Q.

Let K} := max {Kr,1}. There exists 0 < pg < min(r, 0, &=, ﬁ) such that

Up(20) := {w € R" | (wz)' € int B,(0), |d(z)| < p}

is contained in the coordinate chart Ur*,5*7h20 (z0) for any p < po.
We always take p < pg. Since 2 is bounded and

U Up(2)

zel’
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covers the compact set K = cl (Fff/’;), there exists a finite subcover {Up(Zj)};.n:l of K,
where the number m depends on p. For ¢ > 0, we denote that

Q7 = O\, Uy = Us(z).
Observe that

Qc v, v
j=1

Let {¢;}}]Lo be a partition of the unity associated with {U, ;} U {Qr/2} in the sense that
, 0<p; <1 for j=1,...,m,
<1, ¢9=1 in QF

and

Here C2°(W) denotes the space of all smooth function in W whose support is compact in
wW.

Throughout this chapter, unless otherwise specified, the symbol C' in an inequality
represents a positive constant independent of quantities that appeared in the inequality.
For a fixed p > 0, C, represents a constant depending only on p. (), represents a constant
depending only on n and Cgq,, represents a constant depending only on €2 and n.

4.2.2 Cut-off and extension

In general, multiplication by a smooth function to BMO is not bounded in BMO. Fortu-
nately, our space is closed by multiplication.

Proposition 4.2.1 (Multiplication). Let Q be a bounded C? domain in R™. Let p € C7(£),
~v € (0,1). For each v € vBMO(RQ), the function gv € vBMO(R) satisfies

levllvrmow) < Clleller@llvllvparow)
with C' independent of p and v.

Proof. Since
[Vd - pv]y < llollpe (o) [Vd - v]y

it suffices to establish the estimate
[l grio@) < cllellcr@llvllvsrom) (4.2.2)

with ¢g independent of ¢ and v. Since a bounded Lipschitz domain is a uniform domain,
we are able to apply [11, Theorem 13] to get

[‘PU]BMO(Q) < ClH@HCv(Q)([U]BMO(Q) + ||U||L1(Q))-

This is based on the product estimate of a Hélder function and a function in bmo(R"™) :=
BMO(R™) N LY (R™) where

Ly(R") := {f € Liy.(R") ’ ”f”Lgd(Rn) ‘= sup / ‘f(y)‘ dy < 00}-
Bi(x)

zeR™
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The space bmo(R") is equipped with the norm
1/ lbmo(rny := [f]Bmomn) + I1f 1 ()

for f € bmo(R"™). The product estimate for bmo follows from a similar result for a local
Hardy space h' = F}, [20, Remark 4.4] and duality bmo = (h')’ [20, Theorem 3.26]. To
handle a function in €, we need an extension to conclude [11, Theorem 13]. Fortunately,
by the characterization of vBMO for a bounded C? domain [11, Theorem 9],

[vllz1@) < e2llvllvBrmo@)-

Here c; denotes a constant independent of v and ¢ for j = 1,2. Combining these two
estimates, we obtain (4.2.2) with ¢y = ¢1(1 + ¢2). This yields Proposition 6.2.4. O

For a bounded C? domain, we next consider an extension based on the normal coordinate
in U,(29) for p < pg of the form

Tn = hy (77,) + nnaxnd(nla hz, (77/))'

Let V, := B, (0')x(—0,0) for o € (0, pp). We shall write this coordinate change by = = 1 (n)
with ¢ € C*(V,,) and

/ o / / / VY.
{ X = 0 +nmV d(nahzo(n ))7 (4.2.3)

r=mnzr —d(z)n(rz), n(rz)=-Vd(rz).
We consider the projection to the direction to Vd. For x € I‘E)n, we set
P(z) = Vd(rz) ® Vd(rz) = n(rx) ® n(rz).

For later convenience, we set Q(z) = I—P(x) which is the tangential projection for z € T’ E(”Jn.

For a function f in F}}n NQ, let foven (resp. foqq) denote its even (odd) extension to I‘?n
defined by

feven (mx + d(z)n(mz)) = f (rz — d(z)n(7x)) for =€ F?n\ﬁ,
fodd (mz + d(x)n(rx)) = — f (rx — d(z)n(rz)) for =€ F?n\ﬁ.

We denote ry to be the restriction in W for any subset W C R"™. Let f be a function (or
a vector field) defined in V, for some o € (0,00]. We set Egvenf to be the even extension
of fin V, NRY to V, with respect to the n-th variable, i.e.,

Eevenf(n,> _nn) = f(77/7 77n)

for any (n',m,) € Vo N R B
For v € vBMO(Q) with supp v C U,(20) N2, let T be its extension of the form

0(z) = (Pvodd)(z) + (QVeven)(2) (4.2.4)

for x € U,y(20). Notice that supp v C U,(2), U is indeed defined in R"™ with @(x) = 0 for
any x € Up(20)°. Define

Ly:= sup  max{|Ve| e, + IV 1o, () 1}-
20€l’, p<po

Since the boundary T is uniformly C3, L, is finite that depends on 2 only. We set pg . =
po/lZL*
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Proposition 4.2.2. Let Q C R™ be a bounded C? domain, zo € T and p € (0, po). There
exists a constant C,, which depends on p only, such that

©lsmomn) < Collvllvprro),
[Vd -0y 1y < Cpllvllupro@)

for all v € vBMO(Q) with supp v C Uy(20) N Q and v > 0.

In the normal coordinate, PU = Puyqq is odd in 7, and QU = QUeyen is even in n,.
The key idea of proving this proposition is to reduce the problem to the case where the
boundary is locally flat by invoking the normal coordinate.

Proof. Since vBMO()) C LY(Q), see e.g. [11, Theorem 9], by considering the normal
coordinate change y = () in U,(zp) we can deduce that veyen, voad € L' (R™) satisfying

[veven| L2 (ny = [|voadll L1 @y < 2L7|vll 1 (q)-

Hence 7 € L'(R") satisfies the estimate 1)l L mrny < Canllvlli)- Since Q is a uniform
domain, by [16, Theorem 1] there exists vy € BMO(R") with rqu; = v and

[wilpmomr) < Canlvlpro=(q)-

Suppose that B,.(¢) C V:%;L* := Vipr, N RY. The mean value theorem implies that
Y(Br(¢)) C Br,r(x) with x = ¥((). By change of variables y = v(n) in Us,r, (20), We see
that

1

1
S o —cldn< Ly  ——— —cld
Be(Q)] S, 7Y el = |BT<<>|/MBT<<» o) = eldy

1

<C Lt ———
" |Br.r(@)| /B, @)

lvs(y) — ¢l dy
for any constant vector ¢ € R"™. By considering an equivalent definition of the BMO-
seminorm, see e.g. [14, Proposition 3.1.2], we deduce that

By recalling the results concerning the even extension of BMO functions in the half space,
see [10, Lemma 3.2] and [10, Lemma 3.4], we can deduce that

[Veven © Y] Br0>(Vi,1,) < ConlvlBro=(q)- (4.2.5)

Next, we shall estimate the BMO-seminorm of veyen. Let B,(z) be a ball with radius
r < B, If either B,(x) NUy(20) = 0 or B.(x) C Q, there is nothing to prove. It is
sufficient to consider B,(x) that intersects both U,(zp) and Q°. In this case we can find
xo € B,(x) N U,(20). Since B,(x) C Bar(x9) C Bay(20) C Usy(20), by considering change of
variables y = 1(n) in Ug,(xo), we have that

1 L,
TS TN Veven\Y) — C dy < / Veven © ¥ n)—=c¢ d77
B.@ o " TNV S B @] P
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For any y € B,(x), we have that |y — zo| < 4p. Hence ¢ (B, (z)) C Br.,(¢) C Bapr.(0) C
Vipr,- By (5.4.1), we deduce that

1
m /B (@) ‘Ueven(y) - (Ueven)BT(z)| dy < CQ,“[U]BMOOO(Q).

Thus, we obtain that
[Ueven]BM02 Rr) = < Canlv ]BMOOO(Q)-

For a ball B with radius r(B) > £, a simple triangle inequality implies that

Ch
|B’/ |Ueven Ueven)B‘dy_ |B|/ ’Ueven )|dy_ o ||UevenHL1 R")

Therefore, we obtain the BMO estimate for veyen, i.€.,

CQ,n
[Veven] BrrO®RR) < o [vlluBaro)-

We shall then give the BMO estimate for Pvyqq. Since Vd € C* (I’g}n), there exists
D, € C'(R") such that || Dellc1mny < ”Vd”cl(r[l;{on) and T’F[BO”De = Vd, see the proof of
[11, Theorem 13]. By the multiplication rule for bmo functions, we have that (Pv)g :=
(De - Veven)De € bmo(R'™), see also [11, Theorem 13]. Consider the normal coordinate
change in Uypr, (20). Since (Pv)g = Pv in Ug,r, (20) N €, same argument in the second
paragraph implies that

CQ n

[Pvod]prom(y, ) < Canl(PU)Elmown) < — =llvllupro)-

Let ¢ € Vigpr, = @ZJ_l(UlgpL* (20)) with ¢, = 0. Let B,(¢) C Vigpr, and = = 9(({). Since

F(B-(¢) ﬂVl'gpL*) C Br,,(x)N$, by considering change of variables y = ¥(n) in Ui2,1. (20),

we can deduce that

1

— | Puoqa © ()| dn < LTV - v]ye. (4.2.6)
1B (O] B, ()i,

Recall the results concerning the odd extension of BMO functions in the half space, see
[10, Lemma 3.1], we have the estimate

Can

[Pvoad © Ylparo=vi,..) < — = Ivllermow): (4.2.7)

By considering (4.2.7) and the fact that Pv,qq = (Pv)g in €, same argument in the third
paragraph implies the BM O estimate for Pvgyqq, i.e.,

CQ n

[Pvoddl Bro®n) < — = Iv[lvBmo@)-

Combining the BM O estimates for veven and Puyqq, we have that
CQ n

©lpmomn) < —=lvllvBrmo@)-
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Notice that Vd-T = vo9q-Vdin R"™. Let z € ' and r < L%. If B, (z)NU,(20) = 0, then voqq =
0 in B,(x). Suppose that B,(x) N Uy(z0) # 0. Then we can find zo € By(xz) N U,(zp) NT.
Let Go = ¢~ " (20), we have that 1~ (B,(z)) C Bar,,(¢o) C Vizpr.. Hence,

2L,
r_”/ [Vodd - Vd|dy < — / |(v-Vd)o|dn
By () r B2L*T(CO)OV1J5,;L*
22
<2k / Vd - o] dy < Con[Vd- oy
r B2L§r(x0)m9

For r > L%’ we simply have that

_ Caq, Caq,
r n/B [Vodd - Vd| dy < pnnHUoddHLl(R") < pnnHvHvBMO(Q)-
- (

4.2.3 Volume potentials

To construct mapping v — ¢ in Theorem 6.1.2, for some p, to be determined later in the
next section, we localize v by using the partition of the unity {¢; };-":0 associated with the
covering

Ui U Qr/?

as in Section 6.2.1, where p is always assumed to satisfy p < p,/2. Here and hereafter we
always assumed that  is a bounded C® domain in R".

Proposition 4.2.3. There exists a constant C,, which depends on p only, such that
[Vailprro=@mn) < Cpllvlluparow@).
qu%(x)HLOO(F?/Z) < CyllvllvBrmo)
for ¢t = E *div (pov) and v € vBMO(R). In particular,
[VCJHbV(p) < CyllvllvBrmo)
forv < p/4.

Proof. By the BMO-BMO estimate [7], we have the estimate
[V(JHBM()(RTL) < C[@OU]BMO(R")'

Consider z € FPR/Z. Since Vgi is harmonic in FE;; and Be (x) C I‘f};;, the mean value
property for harmonic functions implies that
C
= Vai(y) dy.

p BLZr ()

By Holder’s inequality, we can estimate |Vqi (x)| by p%% IVqil|L2(mny- Since the convolution

with V2E is bounded in L? for any 1 < p < oo, see e.g. [14, Theorem 5.2.7 and Theorem
5.2.10], an interpolation inequality (cf. [4, Lemma 5]) implies that

1 1
IVaill 2 mny < Cllwovlzemny < Cllwovll 7 gy [90v] aromny:
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View pgv as the extension of pgv from €2 to R™. By the extension theorem for bmo functions
[11, Theorem 12], we estimate [pov]promn) by Cplpov]prmo=(q). Since vBMO(S) C
LY(9), see [11, Theorem 9], Proposition 6.2.4 implies that

Vi ()] < CollvllvBrro@)
R?’l
for any z € Fp/4. O

We next set v1 := @ov and vy := 1 —v1. For each pjvs (j = 1,.,m), we extend as in
Proposition 6.2.5 to get ;72 and set

m
Vg 1= g P;jU2.
J=1

Indeed, this extension is independent of the choice ¢;’s but we do not use this fact. We
next set

m
'lTQtan = QFQ = Z Q (90jv2)even'

J=1

For 1 < j <m, ¢; € C>(U,;NQ) implies that the even extension of ¢; in U, ; with respect
to I' is Holder continuous in the sense that (¢j)even € C%*(U, ;). Moreover, we have that
(¢j)even € COH(R™) satisifes

[(@5)evenllcor @y < Cpll(@i)evenllcor(w, ;)-

For simplicity of notations, we denote @ (¢;v2)even by w;an for every 1 < 7 < m. Now,

we are ready to construct the suitable potential corresponding to v3t".

Proposition 4.2.4. There exists px > 0 such that if p < p«/2, then for every 1 < j < m,

there exists a linear operator v — pi*™ from vBMO(Q) to L™(R") such that

—Ap;an = div w;-an in Usp; NQ

and that there exists a constant C,, independent of v, such that

VP Bromny < Collvllvprmow)s

1 n
sup  — Vd - Vo™ dy < Cyllvlluprow)-
z€lyr<p T Br(z)

Having the estimate for the volume potential near the boundary regarding its tangential
component, we are left to handle the contribution from v5°" := vy — v, We recall its
decomposition

m
T = P (pjv2)odd-
=1

For simplicity of notations, we denote P (¢;jv2)odd by wj for every 1 < j < m. With a
similar idea of proof, we can establish the suitable potential corresponding to v5°".
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Proposition 4.2.5. There exists p, > 0 such that if p < ps/2, then for every 1 < j < m,

there exists a linear operator vi— pi* from vBMO(S) to L>(R™) such that

—ApI = diva}™ in Usy;NQ

and that there exists a constant C,, independent of v, such that

(Vi Bromn) < Collvlluprro):

1 nor
sup  — (Vd - Vp;”|dy < Cpllvlluprro)-
xelr<p T B, (z)

Once these two propositions are proved, we are able to prove Theorem 6.1.2.

Theorem 6.1.2 admitting Proposition 6.2.7 and 6.2.8. Fix 1 < j < m. Let us first consider
the contribution from the tangential part. We take a cut-off function 6; € C°(Us, ;) such
that 6; =1 on U,; and 0 < 6; < 1. We next set

qfijn = jp;an + B x (p;-anAQj + 2V9j : Vp;-an) .

By definition, Proposition 6.2.7 says that

—Ag = —A0;p") + P AY; + 2V0; - Vit

—0.d; tan __ 3: tan
= 0;div w;™ = div w;

in  as supp w;an C U, ;. By interpolation as in the proof of Proposition 6.2.7, we observe

that [|p$*"|| Lo (rr)s | VP |Lrmr) are controlled by ||v]| paro(q)- Since VE is in LP (Bg) for
p <n/(n—1) where R = diam Q + 4p, it follows that

Sup | VE ("0 + 296, - V)| < Cyllolumaroqe.

Thus, by Proposition 6.2.7, we conclude that the restriction of ¢i*" on 2, which is still

1,5
denoted by ¢}, fulfills
IVai*Mluemow) < Collvllvprow)- (4.2.8)

By Proposition 6.2.8, a similar argument yields an estimate of type (4.2.8) for

qI% == 0;p1% + E % (pITAG; + 2V6; - Vi),

Set
m m
a=> " = 4% a=a+d+d
j=1 J=1
Observe that ¢ and ¢} satisfy the desired estimates in Theorem 6.1.2. Moreover, by
construction we have that

—Ag = —Aqi — Agi — Ag}

m m
=divuy + Z div w;-an + Z div wj*"
j=1 j=1
=div(v1 +v2) =divw

in €. O
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4.3 Volume potentials based on normal coordinates

Our goal in this section is to prove Proposition 6.2.7 and Proposition 6.2.8. We write
the Laplace operator by a normal coordinate system and construct a volume potential
keeping the parity of functions with respect to the boundary. For this purpose, we adjust
a perturbation method called a freezing coeflicient method which is often used to construct
a fundamental solution to an operator with variable coefficients.

4.3.1 A perturbation method keeping parity

We consider an elliptic operator of the form

Ly=A-B, A=-A,, B= Y 0,b;no,

1<i,j<n—1
in a cylinder Vj,. We assume that
(B1) (Regularity) b;; € Lip(Va,) (1 <i,j <n—1),
(B2) (Parity) b;; is even in 1y, i.e., bij (7', nn) = bij(n', —nn) for n € Vi,
(B3) (Smallness) b;;(0) =0 (1 <i,j <n-—1).
For p > 0, let Y, denotes the space
{g € BMO(R™) N L*(R") ‘ suppg C V,, g(n',mn) = g(n', —ny) for n € Vp} ,

whereas Z, denotes the space

{f € BMO(R") ‘ supp f C V,, f'smn) = —f(',—ny) for n € Vp} .
The oddness condition in Z, guarantees that
1
r Br(n',0)

for any 7 > 0 and ’ € R"~!, which implies that

1
— |fldn < [flBmomm)
r BT(nlvo)

for any r» > 0 and n’ € R"~!. Hence f is L' in R".

Lemma 4.3.1. Assume that (B1) — (B3). Then, there exists p, > 0 depending only on
n and b such that the following property holds provided that p € (0,p.). There exists a
bounded linear operator f — q, from Z, to L>°(R") such that

()
[VadolBro®r) < ClflBmomny  for all  f € Z,
with some C' independent of f;
(i)
Logo = O, [ in Vap;
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(111) qo is even in R™ with respect to ny, i.e. qo(n',nn) = qo(n', —mn) V1 € R™;
(iv)
1 _
wpd [ ol dn| 0.<r < o0.f € R < Clflavom
r By (n',0)

Proof. By (B3) and (B1), we observe that
. 1—
1{}&)1 1bijllcv v,y / P77 < o0

for any v € (0,1) and 1 < 4,5 <n —1. Indeed, for 1 <i,j <n—1, (B1) and (B3) imply
that
Hbij||L°°(V4p) < 8Lp7

sl vy += sup { b3 () = bis(Q)] / In = ¢7 | m.€ € Vi }
< L(16p)' ™,
where L is the maximum of Lipschitz bound for b;; for all 1 <17,j <n —1. We next take a

cut-off function. We take § € C2°(Vy) such that § =1 on V5 and 0 < 6 <1 in V4, we may
assume 6 is radial so that 6 is even in 7,,. We rescale 6 by setting

0,(n) = 0(n/p)

so that 6, =1 on V5,. Since ||V,|/sp is bounded as p — 0, we see that

T 5,7 < .

Hence, the estimate

[0pbijlcrva,) < [0plcr v 10l Loe (va,) + [Bigler vap) 101l oo (vay)

implies that
i . 1—
lplfol ”Hpbu”CW(V4P) /p 7 < oo.

We then set

Ll :A_Bla B1 - Z anlbfjan]7 bfj :bwep

1<i,j<n—1

For 1 < 4,7 < n — 1, notice that bfj satisfies the same property of b;; in (B1) — (B3).
Moreover,
bP

1—
ij < cpp ’Y’p>0

c (V4p)

supp bfj C Vi, and

with some ¢, independent of p. Since supp bij C Viyp, we actually have that bfj € C7(R")
together with the estimate

167 vy < 051l (va,)-
For a given f € Z,, we define ¢, by

o = ZA (Bra ™) o, 1,
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where formally for a function h we mean A~'h by E * h. The parity condition (iii) is clear
once ¢, is well defined as a function. Since

Ligo=)_ (Bra ) o, f - 3 (ByA N 0, f =0, f
k=0 k=1

in R"™, the property (ii) then follows since L1 = Lg in V3.
It remains to prove the convergence of ¢, as well as (i). For this purpose, we reinterpret
¢o in a different way. We rewrite

n—1
By =div' -V with V=) 0,

j=1 1<i<n—1

and observe that

Qo = ZA_I div'-G* - Vi A1, f + A7'0,, f,
k=0
G:=VzA 1 div.

Denote

b= (bf’.) .
) 1<i,j<n—1

Since c')naAflanﬁ is bounded in BMO [7] and also in LP (1 <p < o0) for all a, B =1,...,n,
see e.g. [14, Theorem 5.2.7 and Theorem 5.2.10], by a multiplication theorem we can deduce
the estimates

|Gh| Lrrny < Cpllb?|| Loc ey 10| Lo (R7) s (4.3.1)
[GhlEmomny < Coollt’ ey ([P Bavomny + 1Rl L1 @) (4.3.2)

provided that supp h C Vi, and p < 1. Here C}, and C are independent of p and h.
Similar estimate holds for V3 A719,,,. Since 1flcrmny < ColflBpmomn) for f € Z,, by
an interpolation (cf. [4, Lemma 5]) we see that the LP norm of f is also controlled, i.e.,
Iflerry < ColflBmomny for any 1 < p < co. By the support condition, A~1div’ and
A719,, is bounded from LP — L™ for p > n with bound K, we see that

> GPVRATO,, f

k=0

90l oo (rny < K + 1 £l e (rm)

Lr(R")
<K (Z CS“Hb”II'ZiJ(Rn)HfHLp(Rn) + ”f”LP(R")> , p>n.
=0

If p is taken small so that

o0

Z(Cp -8Lp)M! < oo,
k=0

then g, converges uniformly in R" and ||gol|zocrn) < Cplflpmomn) with some C, inde-
pendent of f.
Set

Al Brrorr ey = [RlBro®n) + 1Rl e (rn)-
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By estimates (4.3.1) and (4.3.2), we observe that

IGhllBrrorr®ny < Cullb?llcvmmy IRl BrroLr ), 1 <P < 00,

where C, = Cp + CL_ - C,, with C, independent of p and h. We next estimate Vg,. By the
similar estimate for Vi3 A~ div’ and Vi3 A719,, , we have that

Vol prrorrmny < (Z CEPHIDPIES (g + C*||bp||C”f(R")> £l Brory @n)-
k=0

We fix p > n and take p < ﬁ sufficiently small so that

o0

k+1
Z epptT < 00.
k=0

Then we get our desired estimate

Vol Brorr@ny < CollfllBmorr®mny < ColflBromn)

for f € Z,. This completes the proof of (i).
Since 0y, qo is odd in 7, so that

1
— O Qo dn =0
rn B"”(nlvo) n °

for any ¥ € R" !, the left-hand side of (iv) is estimated by a constant multiple of
[On,.90] BAMrORR), Which is estimated by a constant multiple of [f]pyomn). The proof of
(iv) is now complete. O

Similarly, we are able to establish the following which corresponds to a version of Lemma
4.3.1 for the space Y,,.

Lemma 4.3.2. Assume that (B1) — (B3). Then, there exists p. > 0 depending only on n
and b such that the following property holds provided that p € (0, ps). For each1 <i<n-—1,
there exists a bounded linear operator g — qe; from'Y, to L>°(R") such that

(1)
[Vaeilmomn) < Cllgllsvorzmny  forall g€y,
with some C' independent of f;
(i)
Logei = Op,g  in - Vap;

(111) qe,i is even in R™ with respect to ny, i.e. qei(n, M) = qei(n', —mn) V1 € R";

(iv)
7,
sup § —
{7“” B, (1/,0)

)

|0y, Ge,il dn | 0 <1 < o0, 7 € Rn_l} < CllgllBmorz@®n)-
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Proof. Fix 1 <1i <n — 1. Since g is even in R" with respect to n,, 0y,g is also even in R"
with respect to 7,. This means that 0,,¢ has the same parity with J,, f in Lemma 4.3.1.
By considering

o0
Qe =S AN BLAT YD,
k=0
exactly the same arguments of the proof of Lemma 4.3.1 finish the rest of the work. 0

We take p, in Lemma 4.3.1 and Lemma 4.3.2 to be

, 1 1 \15
pri= i P grE \ G g :

4.3.2 Laplacian in a normal coordinate system

Take zg € T'. Let us recall the normal coordinate system (4.2.3) introduced in Section 6.2.1,
i.e.,

{ g = g4+, Vdn hay(0));
Tn = hzo(ﬁl)+7lnannd(77,ahzo(77/))

in Uy, (z0) with V'h;,(0") =0, h,(0') = 0 up to translation and rotation such that zy = 0
and

—n. (0, hay (1) = (=V'hzo(0), 1) / (1 + }V,zoh(U,)F)l/zv 1" € By,

Since I' is C3, the mapping z = ¥(n) € C%(V,,) in Uy, (20), it is a local C?-diffeomorphism.
Moreover, its Jacobi matrix D1 is the identity at 0, i.e.,

V(0) = I = Vi~ 1(0).

A direct calculation shows that in Up,,(z9) N €2,

n—1
Ay = -7, — Z VijOn; On; + Z(W N 1)8’%
1<i,j<n—1 J=1

i#]
n

&nj On; On;
T2 O T Gy

1<i,j<n v
Note that 7;;(0) = 1 while 7;;(0) = 0 if i # j. Changing order of multiplication and
differentiation, we conclude that
—A, =Lo+ M,
Ly:=A-B, A:=-A, B:= > 0,bij(n)y,

1<ij<n—1
n

M =" &(n)dy,

j=1

with ZN)Z‘]' = ")/ij—(sij, 5]' = — Zn il +Z?:1 8771%-]-. Note that if I' = 9 is C?’, [N)ij S C’l(VpO)

=1 ax%

and ¢ € C(V,,). We restrict b;;, ¢ in V,, NR% and extend to Vj, so that the extended
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function b;;, ¢;’s are even in V,, with respect to 7,, i.e., we set b;; = FEeyen T'Vp MR bij

and ¢; = Eeven T'VpNR™ ¢;. By this extension, b;; may not be in C 1 but still Lipschitz and
cj € C(V,,). We set

B = Z &,Z.bij(n)am,

1<i,j<n—1
n
M = ch(n)ﬁm
j=1
and

L:=Ly+M, Ly=A-B.

The operator L may not agree with —A, outside Up,(zp) N 2. We summarize what we
observe so far.

Proposition 4.3.3. Let T' = 0Q be C? and py be chosen as in Section 6.2.1. For zy € T,
Ly satisfies (B1) — (B3). Moreover, —A, = L in Uy (20) N and the coefficient of M is in
C(Vio)-

Although we do not use the explicit formula of A in normal coordinates, we give it for
n = 2 when we take the arc length parameter s to represent I'. The coordinate transform
is of the form

21 = ¢1(x) + 7¢(s)
w2 = pa(x) — ¢} (s)
with ¢/2 + ¢%2 =1 and r = d(z). A direct calculation yields

1 0sJ 1 1
_Am - _As,r _as (,]2 - 1) as - ?as - ; <1 - J) 8’!‘7

where J = 1+ rk and & is the curvature. We see that that the even extension of coefficient
does not agree with —A, outside 2.
4.3.3 bmo invariant under local C!-diffeomorphism

Before we give the proofs to Proposition 6.2.7 and 6.2.8, we shall first establish the fact
that the bmo estimate of a compactly supported function is preserved under a local C'-
diffeomorphism. Let V,U C R™ be two domains, we consider a local C'-diffeomorphism
1 : V — U. Suppose that

IVl Loo vy + ”Vﬂﬁ*lHLw(U) < o0.

Let p > 0. Assume that there exist two bounded subdomains V, C V,U, C U such that
PV, U, is also a local C L_diffeomorphism. Set

K, i=max {1, |Vt zoeory + | Vatd iz } -

We assume further that there exists a constant ¢y such that for some 7y € V,,
V;J - Bcop(no) C BK*(co+3)p(770) cV, UP - Bcop(x()) - BK*(co+3)p(x0) -y

where xg = ().



4. The Helmholtz decomposition of a space of vector fields with bounded mean oscillation
in a bounded domain 97

Proposition 4.3.4. Let f € bmo(R™) with supp f C V,, then foy~1 € bmo(R™) satisfies

Hf o w_lemo(R") < CPHbemo(R”)'

Proof. Since supp f o~1 C U,, we can treat f o1 ~! as a function in R" with value zero
outside U,. The compactness of V, in R" implies that || f{|ymomr) = | fl oL mn)- Thus,
the L' estimate

If o imny < Cllflpr@my
is obvious. Since 1 € C!(V,), an equivalent definition of the BMO-seminorm (cf. [15,
Proposition 3.1.2]) implies that

[fo ¢_1]BM00°(B(COH),,(:¢O)) <NVaty Moy - IVl oo vy - [ Bro®n)-

As U, C Beyp(z0), by the extension theorem of bmo functions [11, Theorem 12], we obtain
that

1 0% Hlomomn) < Collf o ¢_1Hbmog(3(co+1)p(mo)) < Gl f lbmo(rr)-
O

Similarly, if g € bmo(R") with suppg C U,, then we have that g o ¢ € bmo(R")
satisfying
19 © Yllpmo®mn) < Collgllomomn)-

Even if we are considering vector fields instead of scalar functions, similar results hold.

Proposition 4.3.5. Let V,,f € bmo(R") with supp V., f C V,,, then Vy(foyp™!) € bmo(R")
satisfying
Ve (f o™ Dlomomn) < Coll VS lomomn)-

Proof. Since V,,f is compactly supported, the L' estimate

IVa(f o™ Dlsi@mny < ClIVafll@mny

is obvious. Pick a cut-off function 0., € Cg°(Bk,(co+3)p(0)) such that 0., = 1 in
B, (co+2)p(0).  Consider By.(z) C Biey41)p(w0) with 7 < p. Let n = ¢~(z). Since
1B (%)) C Bi, (co+2)p(m0), we have that

1 _ K,
- |00, (f o ™!) = cldy < —=

o o dn
™ JB.(z ™ Jyp=1(Br(z))

ony
Z 6*,P<8xi>waﬁlf_c

1<i<n

for any ¢ € R™, 1 <14 < n. By considering an equivalent definition of the BM O-seminorm,
see e.g. [15, Proposition 3.1.2], we deduce that

- ony
V(7 0 0 a0y oo < K| 3 000G 00
(B(cg+1)p(20)) 1<;l<n ’\ oz, p m BAMO®R)
< CPHvaHbmo(R")-
As U, C Beyp(z0), by the extension theorem of bmo functions [11, Theorem 12], we obtain
that

IV (f 0 0™ llomomn) < CollValf © ™) lbmoze (B 1yp o)) < Coll Vi lomo(mn)-
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If V,g € bmo(R") with supp V,g C U,, same proof of Proposition 4.3.5 shows that
V(g o) € bmo(R™) satisfying
an(g ° qzz))Hbmo(R") < CpHvxgHbmo(R")'

Let h be either a scalar function or a vector field which is compactly supported in U,,, for
simplicity of notations we denote h,, := hot. If h is a vector field, we denote hy, ; := h; o
for1<i<n.

4.3.4 Volume potential for tangential component

Let p € (0,p+/2) and fix 1 < j < m. Since @;jvs € vBMO(S2) with supp p;v2 C U, ; N,
Proposition 6.2.5 implies that (©;v2)even € BMOL'(R™). By the product estimate for bmo
functions [11, Theorem 13], we see that wi™ = Q(p;v2) € BMOLY(R"™) with supp wi™ C
U, ;- For simplicity of notations, we set v j := (;jV2)even-

Let v : Vi, — Uy, ; be the normal coordinate change defined by (4.2.3) in Section 6.2.1.
Since p < p./2, we have that

Vip C Bi2p(0) C Baar,p(0) C Vi, Uspj C Bizp(2j) C Baar.p(zj) C Upy ;-

By Proposition 4.3.4 and 4.3.5, we see that 1, in this case, is a local C?-diffeomorphism
that preserves bmo estimates for functions or vector fields compactly supported in Vj,. As
a result, (vg )y € BMOLY(R") satisfies the estimate

||(U2,j)w”BMOL1(Rn) < CpHUQ,jHBMOLl(R")‘
Note that similar conclusions hold if we consider 1~ : Usp,j = Vi, instead.

Proposition 6.2.7. For 1 <i<nand1l<k<n-—1, we define

Ong O, O
<8:cz‘>* = Boven TVpnR <3xi>¢ and g = (ami . w23)p

We consider

: an 67]
(dive wi™)y = {8nkgi,k—ank<ax’?) '(v2,j)w,z'}
v

1<i<n,
1<k<n—1
877k> Z Onn 0%x;
-y : (v2,4)p1- | 5 '
1<i<n, <8x" ¥ \1<i<n Oxr )y | OnkOny
1<k<n-1

in V3, = ¢ ~Y(Usp;). Let L = Lo+ M be the operator in Proposition 4.3.3 and Ly ' be the
operator in Lemma 4.3.2. Let 1 <i<nand 1<k <n-—1. We set

'7k pp— -1
q;‘,w = —0,Lg Oy 9ik

where 0, is the cut-off function defined in the proof of Lemma 4.3.1. There exists (8"’“ )« €
CYL(R"™), see e.g. [11, Theorem 13], such that the restriction of (gg’z )« in Vi, equals (gix’:)*

0 0 .. 5
and H(é)Z’j )*HCO,I(Rn) < ||(a’l’§)*||00’1(v4p)- By viewing g; 1 as (62’:)* - (v2,5),i, We see that
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gix € BMOL*(R"™). Hence, q;’f » € L(R") is well-defined which satisfies all conditions

in Lemma 4.3.2. Let f;f¢ = MﬂpLalankg@k. We can define
7;7k -— ka —1 l,k e Z,k’ —1
G = Gy o 1= fi o ¥
in Uy, ;. Notice that supp qj-:lf,supp f;f C Uyp,j, we can indeed treat q;’f, ;f as functions
defined in R™ where their values outside Uy, ; equal zero. Proposition 4.3.5 shows that
qu;-’]f € BMO(R") satisfies the estimate

[VoaiilBromny < CollVuaiy yllmorz@mny < Collginl Brrorz@n)-

Let po¥ := E % % By Lemma 4.3.2 a ain, we can prove that
Pj1 g1 PY &

1951 oo ey + IV 1 Lo mr) < Coll f57 yllLr(va,) < Collgikll o mn)

with some p > n. Thus, p;]i is well-defined. By Proposition 6.2.5, we have that

9kl Brror mry < CollvzjllBrorwey < Collvlloprro(n)-

Hence, by an interpolation (cf. [4, Lemma 5]),

gikll e ®n) < CollvlluBrro)
for any 1 < p < oo. ' ‘ '
For lower order term qjgw = 8%(‘3%’:)1/, - (v2,5)p,i, We set q;l; = q;;“w ol in U, ;.
Similar as q;.’]f, we can treat ng as a function in R" with value zero outside U, ; since

supp q;l; C Up,j. Define pé’; = F % q;’; Since E and V F are locally integrable, we have
that

19751l oe(®n) + IVl Loo@ny < Collaia ylliev,) < Collvaillirw, ;)
for some p > n. By an interpolation (cf. [4, Lemma 5]) again, we deduce that
1P 5l Los®ny + [ Vapi sl e rr) < Cpllvllupmo()-
This argument also holds for lower order term

ik (O . O P
Y30 "= <axl » Z (UQJ)%N o, v 8771967771.

1<i<n

By letting ng = qj’gw oy~ lin Upo,j and p;{f.) = F % q;];, we can show that

19731l Lo (mn) + IV} 3l Lo mny < Cpllvllorro)-

Set,
PRt = Y (4 R ey Py

1<i<n,
1<k<n—1
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Since a direct calculation implies that

. an an
(divy wf™)y = Y (a; )w'ank(w,j)w,i

1<i<n,
1<k<n—1
- <ax.> ' Z(U27j)w,l'<a$ ‘s
1<i<n, Y \i<i<n L/ NkOn
1<k<n—1

in normal coordinate in Vi, = 1/~1(Uy, ), it is easy to see that

—Axp‘;an = div w}an

in Usp j N Q. Calculations above ensures that
[Vapi™ romny < Collvlluprio)-

Since supp q;’f C Uy, j, we consider z € I" and r < p such that B,.(x)NU, ; # (. By change
of variables y = v(n) in Uy, ;, we deduce that

[ makvdaze [ ot
Br(2)NUap, Br.r(Q)

where ¢ = ¢~!(z) and ¢,, = 0. By Lemma 4.3.2, we see that

)
/ o Tl <Gl
Lyxr

*

Since Vmp;f € L>*(R") for [ = 1,2, 3, we finally obtain that

1

7 Vi - Vyd| dy < Cpllvllupo)-

T

4.3.5 Volume potential for normal component
Consider p € (0, p4/2) and 1 < j < m. Welet g; := Vd-(¢;v2)0dd. Since gjva € vBMO()
with supp ¢,va C U, ; N Q, by Proposition 6.2.5 we see that g; € BMO(R™) Nv”(T). In
particular, we have the estimate

l9ilBrmomn) + 951 ) < Collvlluprow)-

Considering the normal coordinate in Uy, j, g; is odd in 7,. Note that wi*t = g;Vd.

Proposition 6.2.8. Since Vd € C’I(Upo,j), by Proposition 6.2.5 we have that

[wi*lsmomn < ClIVdllovw,, HllgillBrorimm < Cpllvlvpaow)-
We note that

div, w}lor =V.gj - Vad + gjA.d.
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Let g;y := gj o1 in U, j. We may treat g;, as a function in R"™ with value zero outside
V,. By Proposition 4.3.4, we have that

950 Bro®ny < CollgillBror mn)-

In normal coordinate, V,g; - Vod = 0y,9;. We introduce the operator L = Lo + M in
Proposition 4.3.3. Since g; € Z,, we set

—1
P1jy = 0oLy On,gjy

where 0, is the cut-off function of V5, in the proof of Lemma 4.3.1. p; ;, satisfies all
conditions in Lemma 4.3.1. Set f; := —MﬁpLal&Ingj,d,. We define

Py = prjw o fj = fipo!
in Up,,;. Notice that p;; € L*(R") and f; € LP(R") with some p > n. By Proposition
4.3.5,
[Vapiilpromn) < ColVaprjplmomny < CplgjulBromn).-
Set

nor

pj - =Dp1jtp2;tps;

with po j = E'x f; and p3 ; = E % (g;A.d). This e satisfies all desired properties required.

For lower order terms po ; and p3 j, we have that

P2/l o) + VD2l Lo ®n) + VD3]l Loo(rn) + D3]] Lo mr) < Cpllgill rmrn)

as E and V,FE are both locally integrable. By an interpolation (cf. [4, Lemma 5]), we
obtain that

[Vep; | Bromn) < Collgjllerormny < Collvllvprro)-

Since supppi; C U, ;, we consider z € I' and r < p such that B,(z) N U,; # 0. Set
¢ = ¢~ (x) with ¢, = 0. Consider change of variable y = 9(n) in Uy, j, by Lemma 4.3.1
we see that

/ V,yd- Vypiyldy < C / O g0l 0 < Colgs) marogme.
Br(z)NU, ; Br,.(€)

By the L*°-estimates of Vyps and V,p3, we get that

1

o (Vyd - Vypi® | dy < Cpllv|lupmo)-
" JB.(z)

Finally, a simple substitution shows that

_Amp?or = vxd : v;tgj - fj + fj + g]Aa?d = divac w;}or

in ng(Z()) N Q. ]
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4.4 Neumann problem with bounded data

We consider the Neumann problem for the Laplace equation problem (6.1.4) for the Laplace
equation. If € is a smooth bounded domain, as well-known, for g € H_l/Q(F), there is a
unique (up to constant) weak solution u € H'(Q) provided that g fulfills the compatibility
condition

/gd’H”_l = 0; (4.4.1)
T

see e.g. [18]. The main goal of this section is to prove that Vu belongs to vBM O ()
provided that g € L(T"). In other words, we prove Lemma 6.1.4.

To prove Lemma 6.1.4, we represent the solution by using the Neumann-Green function.
Let N(z,y) be the Green function, i.e., a solution v of

—Ayu=0(z—y)—|Q? in Q
ov
o 0 on 0N

for y € Q. It is easy to see that the solution u of (6.1.4) satisfying [, udz = 0 is given as

ue) = [ Nz an ).
The function N is decomposed as
where h € C*°(Q x Q) is a milder part. We recall h(z,y) = h(y,z) and
k 146
sup/ ‘Vyh(:v,y)‘ dy < oo
zeN JQ

for k = 0,1, 2 with some ¢ > 0; see [12, Lemma 3.1]. In particular, by applying the standard
LP estimate for the Neumann problem in the proof of [12, Lemma 3.1] to V,A(-,y), we can
deduce that

sup/ \vayh(a:,y)\pr‘s dy < oo.
zeQ JQ

Hence, we see that V, h(z,-) € WHH9(Q,). By the trace theorem for Sobolev space
Wh1+9(Q,), this yields

My := sup/ IVah(z,y)|' 0 dH"(y) < oo. (4.4.2)
zeQJT

We decompose u as

u(w) = Bx (v @ g)+ [ hag)oy)an () =T+
r
The estimate (4.4.2) yields
VI poo () < Mollgll oo 1y

so to prove Lemma 6.1.4 it suffices to estimate VI. In other words, Lemma 6.1.4 follows
from the next lemma.
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Lemma 4.4.1. Let Q be a bounded domain in R™ with C? boundary T' = 0.

(i) (BMO estimate) There exists a constant C1 such that

[V (E * (0r ® 9)l prpromny < CillgllLe(ry (4.4.3)
for all g € L>(T).
(i) (L estimate for normal component) There exists a constant Ca such that
[Vd -V (E* (6r @ )|l poorrr gy < C2llgll Lo (ry (4.4.4)
£0
for all g € L>(T).

Here E*(r ® g) is defined as E « (6r ® g)(z) := [ E(z —y)g(y) dH"*(y) for a function
g on I'. We shall prove Lemma 6.3.3 in following subsections.

4.4.1 BMO estimate

To see the idea, we shall prove (4.4.3) in the case where I' is flat. Let I' = OR/. and
R} = {(z1,...,2n) | z, > 0}. In this case,

\% (E * ((51“ & g)) = V@an * 1R1§

where g € L>®(R") is defined by g(a’, z,) := g(a’,0) for any x € R™. By the L*°-BMO
estimate for the singular integral operator [15, Theorem 4.2.7], we obtain (4.4.3) when
I'=0R].

n

Lemma 6.3.3 (i). Note that the signed distance function d is C* in T¥", see [13, Section
14.6]. Let & € pg/2. We take a C? cut-off function § > 0 such that 8(c) = 1 for ¢ < 1 and
9(c) = 0 for ¢ > 2. By the choice of §, we see that 5 = 0(d/5) is C? in R". We extend
g € L®(I) to g. € L®(TR") by setting

ge(x) := g(mx)

for any x € I‘%ﬂ with 7z denoting the projection of x on I'. For = € Fg%n, by considering
the normal coordinate x = v (n) in Uss(mx), we have that

(vwd)dJ ’ (V:vge)w = 877n (96)1/; =0

as (ge)y(n', ) = (ge)y(n, B) for any |n'| < 20 and a, B € (—26,25). Hence, we see that
Vd-Vge=0inTR".
Let us consider ge . := 049.. A key observation is that

5r @ g=(Vig-Vd)gee
= div(ge,c1aVd) — 1g div(ge Vd),
0'(d/9)

div(ge,cVd) = ge,cAd + Vd - Ve e = gecAd + 5 Je-

Thus
VE % (51“ ® g) = Vdiv (E * (gevclng)) — VE % (1Qgef975) =1+ 1
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where fg 5 := 03Ad + %. By the L*°-BM O estimate for the singular integral operator
[15, Theorem 4.2.7], the first term is estimated as

] srmomr) < Cllge,eVdll o) < CllgllLoory
Since
A= sup |z|"7M|VE(z)| < oo,
2€R"\ {0}

for € R with d(z,Q) = infycq | — y| < 1 we have that

n@<4 | gt ol l9eel ) <

with Cq s depending only on Q and 6. For z € R™ with d(z,Q) = infycq |z —y| > 1,
the above estimate is trivial as |z — y|~("~1) < 1 for any y € Q. The proof of (i) is now
complete. O

4.4.2 Estimate for normal derivative

‘We shall estimate normal derivative of E.

Lemma 4.4.2. Let Q be a bounded domain in R™ with C? boundary I'. Then
(1) .
/ ——(x—y)dH" ' (y) =1 for z€Q,
T 8ny

sup/
zeQ JT

Proof. (i) This follows from the Gauss divergence theorem. We observe that

(i) oF
O - y>] 1 (y) < oo.
)

0FE
r Ony

—(z—y)dH" (y /AEac—

Since AyE(x —y) = —d0(z — y), we obtain

23 n—1 _
g 8le(l‘ —y)dH" " (y) = -1

for z € Q.

(i) We recall our local coordinate patches {U;};", with U; = U,; as in Section 6.2.1.
For z € Q9 and y € T, obviously |VE(z — y)| < Cp~ Y. Let z € FRn NnQ. If
d(z,U; NT) > p, similarly |VE(z — y)| < Cp~ Y for y € U; NT. Hence, it is
sufficient to consider U; such that d(z,U; NT') < p, i.e., it suffices to prove

Sf;(m — y)' dH" 1 (y) < oco.
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for U; such that d(z, U;NI") < p. Since —0F /On,(x—y) is invariant under translations
and rotations, we can write —0FE/0n,(z — y) in the local coordinate. Let U; be such
that d(z,U; NT') < p and denote h,, by h; for simplicity. Let us observe that

—n (v, hi(y) = (=V'hi(y). 1) Jwi(y)
with wi(y’) = (1+ ]V’hi(y’)|2)1/2, where V' is the gradient in 3y’ variables. This
implies that
OF ai(y’)

na(n) o2 (g ) = :
on, @) (12 = 2+ (o~ hil))?) "

for y € I'; with
oi(y) == =V'hi(y) - (' — ) + (:L'n — hi(y')) where z,, > hi(z'), 2’ € Bs,(0').

We set

Vi
Ki(leay/a‘/nn) = O-Z(y) n/2'
(I = 9P + (20 — hi(y))?)

By the Taylor expansion

with
1
ri(x'y) = (2’ — y’)T . / (1- Q)V’th (Hx/ +(1- G)y’) do - (x' —v),
0
we obtain
oi(y') = xn — hi(2') + ri(a’, y)

with an estimate
ri(@’, )| < IV Rill Lo By, 0y 12" = P (4.4.5)

We decompose K; into a leading term and a remainder term
K2,y x,) = K(«'y ,2n) + Ri(2, o/, )
with
Ty — hi(x')
(1o = o/ + (@0 — s (¥))?)
ri(z,y)
(\x’ —y' 12+ (zn — hi(y’))Q)n/Q‘

Ké(%’/,y/?mn) = n/2

Ri(.T/, y/7 {L’n) =

The term K is very singular but it is positive. The term R; is estimated as

/|27n

|Ri(, 4, 20) | < IVhill Lo (8,0 12" — ¥
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by the estimate (6.3.5). Hence,

/];ﬂUi

with C independent of p and i. By (i), we observe that

na(n) = /B Y Mdy/
p

Wz
i:d(z, U nr)<

—na(n) Z /Umr On, @ =)W

j:d(z,U;N) >

1

Ri(mla ylaxn)
B (0 [ —y["2

n—1
wi(y') M) <C

dy' <Cp

Since K is positive for any 4 such that d(z,U; NT) < p,

/ Komyxn)d,gna(n)'(lew)er‘C'p
By(0)

OJ n—1
i:d(z, UZOF ¢ P

where S(I') denotes the surface area of I', which is bounded. Thus, the estimate

OF 1 Ki + |R;
/ (wy)‘ dH"H(y) < / L||cly’ <
Uil B,(0')

on, ~ na(n) wi(y')
holds for any U; such that d(z,U; NT') < p. The proof of (i) is now complete.

O
Based on Lemma 6.3.4, we are able to prove Lemma 6.3.3 (ii).
Lemma 6.3.3 (4). We decompose
Vd(a) -V (B + (50 ©.9)) (1) = [ (Vd(a) = Vilw) - VE = )as) a3 0)
/a (= y)g(y) dH" ' (y) = T + In.

Let z € Fg)n and 7z be the projection of x on I'. For y € U, (nx), there exists a constant
L', independent of x and y, such that

Vd(z) — Vd(y)| < L'|lz —yl.

For y € Fg}n \ Upy(mx), we have that |z —y| > &. Since Fg;? is compact in R™, by
considering a finite subcover of U,erU,,(2) we are able to show that there exists M > 0

such that the estimate
|Vd(x) — Vd(y)| < M|z — y|

holds for any z,y € F}})ﬂ. Thus,
H(z,y) = (Vd(z) — Vd(y)) - VE(z — y)
is estimated as

H < =
H o) <
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. Rn Rn
in I‘po X Fpo . We observe that

sup |h(z)] < sup /F H(z,y) dH" (9)|lg] o)

zelR" NQ z€lR"NO
den—l y
<M oy [
zelR"NQJT [z —yl
Since
23 n—1
sup |Ia(z)| < sup oo @ )| AT W)l ),
zelR"NQ zerR N JT |01y

Lemma 6.3.4 (i) now yields (4.4.4). The proof is now complete. O

We wonder whether the tangential component of V Ex(dr®g) satisfies the same estimate.
Unfortunately, the estimate

IV (E* (0r @ 9)l| oo rre gy < Cllgllzos ()
should not hold even if T" is flat. Even weaker estimate

[V (E* (6r @ 9))lpwry < Cligllee(r)

should not hold in general.
To illustrate the problem, we consider the case that I' is flat. We may assume I' = OR” |
R" = {z, > 0}.

Lemma 4.4.3. The estimate
1
10z,, (£ (Or ® 9))l| oo my) < 59l mr-1)

holds for g € L®(R"1).

Proof. This is because —0,,, (E * (0r ® g)) is the half of the Poisson integral, i.e.,

1
00 (B3 (v 09) (0) =5 [ Pala! =9)o(s)a
where P,  denotes the Poisson kernel. Thus the desired L™ estimate follows from the
maximum principle of the Dirichlet problem for the Laplacian or from the property that
Jrn-1 Pe, (2')dz’ =1 and P,, > 0. O

Theorem 4.4.4. There is a bounded sequence of smooth functions {ge}een C L¥(R"1)
such that
lim [0y (E * (6r ® gr))]yr = 00

l—00

for any v > 0.

Proof. If g is smooth, then E * (ér ® g) is smooth up to the boundary. In this case, if
[0y (E * (or @ g))] is bounded by C|g|| oo (1), |02 (E * (00 ® g))|| oo (ry is also bounded
by coC||g|| oo (rn-1) With a constant ¢y depending only on n since the mean value over r-ball
around x converges to its value at « as r — 0.



4. The Helmholtz decomposition of a space of vector fields with bounded mean oscillation
in a bounded domain 108

We consider the Neumann problem

Au=0 in R,
ou

-9 oo I'=0R].

By using the tangential Fourier transform, we see that
u(z,t) = A exp(—z,A)g

where A = (—A)/2. If [V'ullgeory < Cllgllpoemn—1y were true, sending x, > 0 to zero
would imply L boundedness of the Riesz operator V/A~!, which is absurd.

The operator E'x (dor®g) is the half of the solution operator of the Neumann problem, so
L bound for V'E x (r ® g) should not hold even if it is restricted to smooth functions. [

Corollary 4.4.5. Assume that Q0 = R'. Let v — Vq be the Helmholtz projection to a
gradient field. Then, this projection is unbounded from (L>(2))" to (BMO" ()" for
any p,v > 0.

Proof. We consider
v = ((), ..., 0, Un(x'))

with v, € L (R"!). This evidently solves divv = 0. The normal trace equals —v,,(2'). If
[Valy < Cllonllpee@n-1)

for all v, € L®°(R"!) with C independent of v, then this would contradict Theorem
4.4.4. O
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Chapter 5

Extension theorem for bmo 1in a
domain

In this chapter, we establish an extension theorem for functions defined in an arbitrary
uniformly C? domain in the local BMO space. This extension theorem results in a product
estimate for the local BMO space in an arbitrary uniformly C? domain.

5.1 Introduction

For a function space defined in an open domain 2 C R", it is natural to consider the problem
if functions of this space can be continuously extended from €2 to R". For example, if f is
in LP(Q2) with 1 < p < oo, its zero extension f*¢ = f-1q naturally belongs to LP(R"™) where
1o denotes the characteristic function for domain 2. Although such extension problem is
trivial for LP, the story completely changes when it comes to the space of bounded mean
oscillation (BMO for short). In the case for BMO, f € BMO®>(Q) is not sufficient to
have that f*¢ € BMO(R™). In fact, there exist domains 2 where bounded linear extension
operator from BMO>(2) to BMO(R"™) does not exist. P. W. Jones [11] gives a necessary
and sufficient condition for a domain such that there exists a bounded linear extension
operator.

An open connected subset D C R" is called a uniform domain if there exists constants
a,b > 0 such that for all z,y € D there exists a rectifiable curve v C D of length s(y) <
alx — y| with min{s (y(z,2)),s(v(y,2))} < bd(z,0D), where v(z, z) denotes the part of -y
between = and z on the curve and d(z,0D) = inf,,csp |z — w| denotes the distance from
z to the boundary 9D; see e.g. [6]. Let D C R" be a uniform domain. Jones’ extension
theorem guarantees that there is a constant C; such that for each f € BMO> (D), there
is an extension f € BMO(R") satisfying

[flBromn) < Cilflrmo=(p)

with C; independent of f. The operator f — f is a bounded linear operator. Conversely,
if there exists such an extension, then D is a uniform domain.
In [8], a small modification was made to Jones’ extension theorem so that we obtained

an extension theorem regarding the local BMO space bmo2 (D) := BMO>(D) N L} (D)
where

LY(D) = {feL%OCw) \ g0 = sup | |f<y>\dy<oo}.
z€R™ J By (z)ND

110
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If D is a uniform domain, the modified Jones’ extension theorem says that for f € bmogg(D)
there exists f € bmo := BMO N L} (R™) satisfies

”?Hme(R") < Cyllf lbmoge (D) (5.1.1)

with C'; independent of f. Moreover, the support of f is contained in a small neighborhood
of D. The reason why we are interested in such local BMO spaces (bmo) is that multipli-
cation by a Holder function in such spaces is bounded, i.e., for ¢ € C7(D) with v € (0,1),
we have that pf € bmo2 (D) satisfies the product estimate

o f lomoze(py < Cullellcr oy 1 f lomogs () (5.1.2)

with C; independent of ¢ and f. Because of this multiplication principle, cut-off becomes
possible in the space bmo% (D). The product estimate for bmo follows from the fact that
such estimate holds for the local Hardy space h' and bmo is the dual space of h', see e.g.
[13, Section 3.

Since the extension theorem and the product estimate for bmo32(D) relies heavily on
the original extension theorem by Jones, we don’t know if these results hold or not in the
case where D is not a uniform domain. For instance, an aperture domain is an example for
a non-uniform domain which is of special interests in fluid mechanics.

Our goal in this chapter is to establish the extension theorem for bmo32(2) in the case
where Q is any arbitrary uniformly C? domain. We would like to clarify several relevant
concepts before we state our main theorem. Let  C R” be a uniformly C? domain with
n > 2. Let I' ;== 00 denotes the boundary of Q. Let Ry be the reach of the boundary
I' = 092. By considering Ry sufficiently small, we may assume that Ry is not only the reach
of I' in € but also the reach of I' in 2¢. Let d denote the signed distance function from I'
which is defined by

d(z) = { i.nfyep |z —y| for ze€Q,
—infyer |z —y| for ¢ Q

so that d(z) = dr(z) for z € Q. For 0 < p < Ry, let I, be the p-neighborhood of I" in 2,
i.e.,

I, ={zeQ|dr(z) <p}
and I'? be the p-neighborhood of I' in R™, i.e.,
I = {z € R" | |d(2)| < p}.

We recall the BMO#-seminorm for p € (0,00] which was defined in [1], [2], [3], [4]. For
f €L (Q), we define

loc

1
[flBrmor (@) = sup { B, ()] /BT(I) ’f(y) - fBT(x)} dy ‘ By(z) CQ, r< H} ;

where fp denotes the average over B, i.e.,

1
o= /B f(y) dy

and B, (z) denotes the closed ball of radius r centered at = and |B| denotes the Lebesgue
measure of B. The space BMO#(€2) is defined as

BMO*(Q) := {f € LIIOC(Q) ’ [flBron < OO}
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As in [8], for 0 € (0, 00] we set
bmok () := BMO"(Q) N Ly(Ts)

with the norm
||UHbmof; = [v]pmon(a) + [U]L‘lﬂ(l‘(;)'

We are now in a position to state our main result.

Theorem 5.1.1. Let Q C R™ be a uniformly C* domain with n > 2. There exists cf, > 0
such that for any p € (0,cg) and v € bmo(QQ), there is an extension v € bmo(R™) such
that

~ C
0llbmo(mny < E”“Hbmog(ﬂ)
with C independent of v and p. Moreover, suppv C 97210 where
Qop:={z € R" | d(z,Q) < 2p}.
The operator v — v is a bounded linear operator.

Different from the construction by Jones which delicately deals with the Whitney de-
composition of both © and Q€ our strategy firstly decomposes v into the sum of v; and v
such that the support of v; is close to I' whereas the support of vs is away from I'. Such de-
composition of v is achieved by the multiplication of v with a cut-off function 6, supported
in a small neighborhood of T', i.e., vy := 6,v. Since (2 is not necessarily uniform, at this
moment we cannot apply the product estimate that was established for the case of uniform
domains to vy directly. Instead, we apply a localization argument so that we can estimate
the BM OP-seminorm of vy in €). The key idea of the localization argument is as follow. If
a ball B of radius r(B) < p in 2 is away from the boundary, then v; vanishes in this ball. If
B is close to the boundary, then we can find a bounded Lipschitz domain W, such that the
boundary of W, coincides with I for a small part and B C W,,. Since I is uniformly C?,
by considering the normal coordinate change in I'#0, we are able to show that the Lipschitz
regularity of W, can be uniformly controlled. As ry,v1 € bmoZ(W,), we can apply the
product estimate to ry,v1 in W,. Since a bounded Lipschitz domain is a typical example of
a uniform domain and the constant Cy in (5.1.1) and (5.1.2) depends only on the Lipschitz
regularity of the domain, we obtain a uniform estimate for [v;]g MO#(Q)-

Next, we recall the extension introduced in [9] for functions supported in a small neigh-
borhood of I'. We extend v; to v{ in R™ so that v{ is even in the direction of Vd with respect
to I'. By considering the normal coordinate change, we then reduce the problem to the half
space and prove that v$ € bmos(R™). Since the BMO>-seminorm can be estimated by
the bmob.-norm, we thus deduce that v§ € bmo(R™). For vg, we simply zero extend it. By
a similar argument, it is not hard to show that its zero extension v3¢ € bmo(R"). Setting
v = v{ + v3° gives us Theorem 5.1.1.

Since there exists a bounded linear extension operator from C7(€2) to C7(R™) for arbi-
trary domain €, the product estimate for bmo33(€2) follows naturally from Theorem 5.1.1.

Theorem 5.1.2. Let Q C R"™ be a uniformly C? domain with n > 2. Let ¢ € C7(Q) with
v € (0,1). For each v € bmoX (), the function pv € bmo () satisfies

levllbmoss @) < Clleller@)llvllomoss ()

with C' independent of p and v.
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This chapter is organized as follow. In Section 5.2, we establish several uniform estimates
which are essential for our localization argument. In Section 5.3, we perform the localization
argument to do the cut-off to v and get v;. In Section 5.4, we extend v; from €2 to R™ and
prove Theorem 5.1.1 and Theorem 5.1.2. Besides, we apply a similar argument to further
obtain an extension theorem for bmof§ () in the case where 6, 4 < co. In Section 5.5, we
give a simple application of our main extension theorem to construct an example regarding
the space BMO,~>°(€). In Section 5.6, we update an extension result that is essential in
establishing the Helmholtz decomposition of vector fields of BMO in a domain.

5.2 Uniform estimates

We denote 2’ := (x1,29,...,2p-1) for x € R™ and V' := (01,04, ...,0p—1). Since Q is a
uniformly C? domain, there exists 7, d,, Lt > 0 such that for each wy € T, up to translation
and rotation, there exists a function v, € C?(B,, (0')) with

V*uo| < Lr in B, (0) for k=0,1,2,
v/wwo (O/> = 0/7 (O (O/) =0
such that the neighborhood

(5.2.1)

Ur. bs by (W0) 1= {(2',20) € R™ [y (") — 0 < T < hugg (27) + 0, |2] < 7}

satisfies

QNOUr, 6. 1w, (wo) = {(/, 2n) € R™ |y (2') < Ty < gy (2') + Oy |2 < 74}
and
QN Ur, 5. 4, (Wo) = {(@, ) € R™ | @, = by (27), |2 < i}

For simplicity of explanation, we say that € is of type (74, dx, Lr). For z € Q, let 7z be a
point on I' such that |z — mx| = dp(x). If « is within the reach of I', then this 7z is unique.
There exists 0 < pp < min {ry, dx, Ro, 1} such that for any wy € T,

Upo(wo) := {x € U, 6. 1ps (o) | (72)" € By (0), |d()| < po} (5.2.2)

is contained in UTM;*,wwO (wp). . . '
We next consider the normal coordinate in Up, (wo), i.e.,

_ _ [0 VA e (1));
x=F(n) = { Voo (1) + T, A7 s (7)) (5.2.3)
or shortly

x =7z — d(z)n(rx).

For each wg € ', F is indeed a local C!-diffeomorphism which maps V,,, to U, (wo) where
Vo 1= By (0') x (—po, po). We indeed have that F' € C'(V,,) and (V,F)(0) = I. Our first
uniform control is for the gradient of F' with respect to different wy € I

Proposition 5.2.1. Let Q C R" be a uniformly C? domain with n > 2, € € (0,1). Then
there exists a constant cg > 0, depending on , n and € only, such that for any p € (0, g
and wg € T,

IVE — I||Loo(vp) <g,
IVE™ = I o (0, (o)) < €

hold simultaneously.
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Proof. Let 0 < e < 1 and fix wg € I', p < pg. By the mean value theorem together with
the upper bound of second order derivatives of ¥, in (5.2.1), we deduce that

[V %o ()] = 1V g (1) = Voo ()] < NVl Lo (0 - 10| < Lrop - (5.2.4)
for any |n'| < p. Since
&Uxi = (52',]' + M - 87,.(8zid)

J
— 5 aﬁj aﬂi¢w0 ZZ;% amwwo ’ 87% ¢wo ’ 8771 aﬁk wwo
— U3 M - + Mn 3
(L4 V9w [?) 2

(L4 [V )2
in V, for 1 <1i,j <n—1, by estimates (5.2.1) and (5.2.4) we have that
|0y, %i(n) — 8i 5| < Lrp + (n— 1) - (Lrp)?
for any n € V,,. By similar calculations, for n € V,, we can also deduce that
|Opzi(n)| < Lrp
foreach1 <i<mn-—1and
0p, 20 ()| < Lrp+ (n—1) - (Lpp)?® for 1<j<n-—1,
O, n(n) =1 < (n = 1) - (Lrp)*.

Notice that for an invertible matrix A, we have that A~! = m -adj(A) where adj(A)
denotes the adjugate of matrix A. Since we have obtained estimates for each entry of VF,
by considering the inverse of VF we can deduce similar estimates for entries of VF~1.
Denote ¢, := Lrp + (n — 1) - (Lpp)?. Assume that Lrp << 1, then for any n € V,,

(I—crpp)" —n! 'C%rp (14 ch)”_Q < |det(VF)(n)| < (1 +crpp)" +n! 'C%Fp (14 cLFp)"_Q.
By considering the adjugate of VI, in V,, we also have that
(L=crpp)" ' =(n=1)cf p(Lerp) ™ < [Oumi(n)] < (Irery)" - (n=1)let e (1erep)" ™
for every 1 <14 < n and

[0, mi ()] < (0= D! eppp - (L4 crpp)" ™

for every 1 < i,j < n with i # j. Therefore, if p is chosen to be sufficiently small, then for
each wg € I' we can have

IVE — IHLOO(VP) <g,
IVE™ = I o (0, (wo)) < €

simultaneously.

Next we determine how small for p is enough. It is easy to see that if p < min {ﬁ, m},
we have that |[VF — Iz (y,) < &. Suppose further that cr., < 2Lrp << 1, then in V, we

have that

L—crpp-(n+1)1-2" <|det(VEF)(n)| < 1+crpp-(n+1)1-2"
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Hence if 2Lrp < 0 then

1
nr)l2n 1)

1
l—cppp-(n+D-2"" < <1 4ep, (n+1)-20
T |det(VF)(n)| e

in V,. Since
L—cppp-n!-2" <|0n,mi(n)] <1+ cpp,-nl- 27,

we deduce that

’!det(VF)(n)l + O mi(n) — 1‘ <cppp- (4 12 22F8

for every 1 <4 < n in V,. Similar calculations enable us to also obtain that
: 0 i | 2n+1
W' e Mi(0)| < cLpp-nt-

for every 1 <i,j <n with ¢ # j in V.
Therefore, if p < ¢ := min { £

R .
RN (CEBY LR 2}, we indeed have

HVF IHLoo < g,
|IVE~! — f!!Loo(Up(wo)) <e

simultaneously. O

We would like to give a uniform estimate, regardless of wg € I', on the size of the ball
centered at wg that is contained in U,(wy).

Proposition 5.2.2. Let € € (0,1). If p <min{gf_, po}, then

Bp(lf%)(UJ()) C Up(’u}o)
for any wg € T'.

Proof. For aball B, (wp) to be contained in U,(wo), we must have r < p. If B, (wq) intersects
U,(wp)® with some r < p, we can find z € B, (wy) of the form (1, hy, (7')) +7V (1, huy (7))
with || = p and |7| € [0, p). Notice that

= wol? = (0, hu ()P + 72 + 27 (1 oy (1)) - V(' B ().

By the mean value theorem, we can estimate |0y, hy, (1')| by pLr and |y, (7')| by p*Lr for
any || < pand 1 <i<mn—1. Thus, we deduce that

(1, Py ()2 472 4 270 hy () - VA, by (1)) > p* + 72 — d7p* L

for any |n’| < p. Since pLr < §, we have that

3 g
—wo| > py/1— = 1—-
|z —wol > p 2>p( 2)

for any z of the form (1, hy,(n )) +7Vd(n/, hwo( ")) with || = p and |7| € [0, p). Hence
for any wo € T, we have that B, _<)(wo) C Uy(wo). O

2
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Next, we establish a partition of unity for a small neighborhood of the boundary I" in
which not only partition functions but also their gradients are uniformly controlled.

Proposition 5.2.3. Let @ C R" be a uniformly C* domain withn > 2, p € (0,52). There
exist a countable family of points in T, say S := {x; € I' | i € N}, and a natural number
N, € N such that

F2p: U ng(l’i)

z, €S

and for any x; € S, there exist at most N, points in S, say {xj,,...,x;y } C S, with

Uzp(xj) N Uzp(z5,) # 0
for each 1 <1 < N,.

Proof. Let k, € N be the smallest integer such that 275 < %. Let 2 be the collection of
all dyadic cubes of the form

{1, yn) ER™ | my27F <y < (my + 1)27F},

where m; € Z. Since Z covers the whole space R", we can pick out the set of dyadic cubes
in 7 that intersect the boundary I'. Let this subset be denoted by G = {Q; € Z | i € N}
and we have that

rclJae.

€N
We choose x; € Q; NI for each 7 € N and set S to be the set of these points.
This is indeed the set of points we are seeking. For y € I'??, there exists yo € I' such
that d(y) = |y — yo|- As G covers the boundary I', we have that yy € Q; for some j € N.
Hence y € Uay(x;). We have that

F2p= U ng(.%i).

T, ES

By the mean value theorem, we can deduce that

sup |y — x| < 5p
y€Uzp ()

for every x € I'. We fix 2; € S. For Q; € G with d(Q;, Qi) > 10p, by the triangle inequality
we obviously have that
Usp(wj) N Uszp(wi) = 0.

This means that if Us,(x;) intersects Usy(x;), we must have that d(Q;,Q;) < 10p. If
d(Q;. Qs) < 10p, then
sup |y —z| < 12p.
YEQR;, zEQ;
Denote x;, to be the center of the cube Q;. If Us,(x;) intersects Us,(x;), we have that
Qj C Q7 where ()7 is the cube of side-length 24p with center z; . Since elements of S
belong to cubes that do not intersect, we can choose N, to be 24™ - ne. O

Based on {Ucz (z;) | z; € S}, a locally finite open cover of ', our desired partition of
unity for '@ can be constructed as follow.
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Proposition 5.2.4. There exist p; € C1(I'°%) for each i € N and a constant Cyr such that
properties

0<p; <1 forany i€ N,

supp @i C Ue (w;) for any i € N,

oo

Z pi(r) =1 forany z € e, (5.2.5)
i=1

sup [[Voill oo ety < Cu

ieEN | lHL ()

hold.

Similar proposition appears in [5]. For the completeness of the theory, we shall provide
a proof here.

Proof of Proposition 6.2.3. Let us recall an empirical cutoff function that is widely used in
various contents, e.g. see [12, Lemma 2.20 and Lemma 2.21]. We consider

[ exp(=1) t>0,

and
f2-1)
fE=1)+f(2-1)
for t € R. A simple calculation tells us that § € C°(R) with 6(t) = 1 for |¢t| < 1 and
0(t) = 0 for |t| > 2. For i € N, we define that

¢i(z) == 0(2/(F(2))']/d)

for x € cha] (z;) where F' in this case is the normal coordinate change between ch and
Ue, (x;). By Proposition 6.2.2, there exists S; := {z;,, Ziy, ..., x;,, } C S with m < N, and
Ues, (%4,) NUes (z;) # 0 for any 1 <1 < m. Without loss of generality, we assume that i; #
for each 1 <1 < m. Then we define ¢; in '@ by

0(t) :==

s o
pi(z) = { POTEL 64 @) xEG Ues, (21),
0 z €0\ Ug (z:).

It is trivial to see that 0 < ¢; <1 for any ¢ € N and
o0
Zcpl(a:) =1 in I,
i=1

It is sufficient to estimate the gradient of ¢;. Note that
Dips = 0i9i ¢ (0idi + 33%, 0i¢u)
’ ¢i + Z?il Qbiz (¢ + Z;il ¢il)2

Let 2 € Ueg (7;) and 7wz be the projection of x in I'. By the construction of the set S in the

proof of Proposition 6.2.2, there exists x;, € S; such that |7z —x;, | < % This means that

|(F*1(x))/| < %3’ i.e., we have that ¢; (z) = 1. Hence, we deduce that

G+ ¢y =1 in U (i)
=1
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As a result, we have the estimate
m
10501 < 21050 + > 1061
1=1

For any k£ € N, we have that

16| o (R - HVF_lHLoo(Uca(zk))-

Ch
IV kIl oo 0, @)y < e

By Proposition 6.2.1, we have a uniform estimate for HVF_1||L°°(U,,5 (2x))- Therefore, com-
Q

bining all estimates together, we finally obtain that

CnN
SUp [[Vpill oo pegyy < —
ieN Lo (ree) p

0'l| oo (w)-

5.3 Cut-off

We consider v € bmoZ2(£2). Let 0 < p < ¢,/32 be sufficiently small for which the smallness
of p will be determined later. For z € F%n, we set 0,(x) := 0(d(x)/p) where 6 is defined in
the proof of Proposition 6.2.3. Note that 6, € C*(R"™). We then consider vy := 6,v.

Lemma 5.3.1. vy € bmo5 (Q) satisfies the estimate

C
V1 lpmot, (@) < ;HUHbmog(Q)

with C' independent of v and p.

Since the domain € is not assumed to be a Jones domain, this lemma cannot be derived
by applying the product estimate to bmo functions directly. To establish Lemma 5.3.1, we
consider a localization argument in which we apply the product estimate to bmo functions
locally. For wy € I', we invoke the normal coordinate change x = F'(n)) in Usg,(wo). There
exists a bounded C? domain W such that VigNRY} C W C V3aNRY and OWNR™ 1 x {0} =
Bis(0") x {0}. Without loss of generality, we assume that W is of type («, 3, Low) with
some constant Law. Let W, := {px | v € W}. A simple check tells us that W), is of type

(Oép, 5/); L(’?W/p)

Proposition 5.3.2. F'(W,) is a bounded Lipschitz domain with Lipschitz constant depend-
ing on Law only. Moreover, we have that Uis,(wo) N Q C F(W,) C Usap(wy) N Q and
8F(Wp) NI'= U16p(wo) NT.

Proof. Since the normal coordinate change F is a C''-diffeomorphism, we see that F (W,)isa
bounded domain which satisfies F'(0W,) = 0F (W,). Let 19 € 0W, and § < min {ap, Sp, p}.
Without loss of generality we may assume that § = cgp for some sufficiently small universal
constant cg. Since OW,, is uniformly C?, there exist a rotation R, and h, € C?*(Bs(0'))
such that 7y := Ry, (no — 70) satisfies

(70)n = hey (70")
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for any ng € OW, with || < 6. Let yo := F(79) and e, to be the unit normal through
7o with respect to boundary OW,. We set 7, := 19 + der, and y, := F(7,,). There exists
another rotation matrix Ry, such that Ry, (y, —vo) = de, where e, = (0',1). Let ¢y € OW,
such that |Co| < & where (y := Ry (Co — 70). We set zg := F(¢o) and 2o := F(no). In
the coordinate system centered at yg with ¥, lying on the n-axis in the positive direction,
the coordinate of xg becomes zg := Ry, (xo — yo) whereas the coordinate of zy becomes
20 := Ry, (20 — yo). By applying the mean value theorem, we have that

1 ~
(#0)n — (Fo)n = Rypn - /0 (VF) (o + t(Co — m0)) dt - RL - (Go — i)

with Ry, , denoting the n-th row of rotation matrix Ry,. Since (C0)n — (T0)n = hTO(C~0,) -
. (70"), we deduce that

— ~ ~/ ~
[(Z0)n — (20)n] < NIVE|zoo(vig,) - (14 hr | zoo(Bs(0ry)) - [C0 — 70 (5.3.1)

Applying the mean value theorem again to rewrite CNO — 1o back to g —zg, for 1 <i<n-—1
we have that

_ 1
(Co)i — (M0)i = Ry - /0 (VE ™Y (2 + t(xg — 2)) dt - Ry_o1 - (zo — 20) (5.3.2)

with R, ; denoting the i-th row of rotation matrix R,.
Fix 1 <i <n — 1. By deducting the identity matrix I from VF~! in (5.3.2) and then
adding I back, we have that

[(C0)i = ()il S IVE™ = I o U, o)) - [0 = 20l + [Rri - Ryt (@0 — ).

In the coordinate system centered at 79, there exists 1; € Vg, such that R, (n; — 7o) = de;
where e; denotes the vector whose j-th entry equals d; ; for each 1 < j < n. Hence, R, ; =
%(m — 7p). Similarly, in the coordinate system centered at 3o, we can find y; € Usa,(wo)
such thaut1 Ryo’iT: %(yz — yo) where Ry, ; denotes the j-th row of Ry, for any 1 < j < n.
Since R, = R, , we see that

Ry Ry - (Z0 — 20) = (Rrgi — Ryo) - Ry, - (F0 — 20) + (T0)i — (20)i-

Focus on the term that involves (o), — (20)n, characterizations of rows of R, and R, say
that

(@)~ (35)e) (s~ o) Rap) = L2000 0y = ) ().

For ¢ € V39,

F(Q) = ¢ = (0, (¢') = Gn) + Gn - (VA)(C', 10y (€1))-

An easy check gives that
G (D, A)(C g ()] < UG+ (Og;%u) ()] < Crpp®

for1<j<n-—1and

%o ()] + 1l 102, ) (¢ Yuig () = 1] < Crpnp®
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Hence, for any ¢ € V32,, we have the estimate

By the mean value theorem, we see that

CLrn
(o = 70) - (Yn — w0)| < [F(70) = 70 - |[F(T0) — F(70)| < 25’ NV Fll e (va,) - 07 (5.3.3)
0

On the other hand,

(i = i) - (Yn = y0)| <10 = 70) - (Yn — w0)| + [(70 = %0) - (Yn — o) + (w0 — %i) - (yn — w0)I-
By decomposing y,, — yo into (yn — ) + (7n — 70) + (70 — yo) and applying the estimate
(5.3.3), we deduce that

[0 = i) - (Yn = y0)| < (0 = 70) - (Yn — )| + |(m: — 70) - (70 — wo)| + [(70 — w0) - (yn — w0)|

CL n
< S @ |V i)
C

0

V32,

Therefore,

CL[‘,TL

|(@0)n — (Zo)n) (Rmyi — Rysi) - Ryom)| < 2

S(L+ IVF| oo (v3s,)) - 6 - [(Z0)n — (20)nl-
If p < ¢g/32, by Proposition 6.2.1 we see that

1~ o~ . _ Crrn N ~
|Regi* Ry + (0 = 20)| < (n +1) - [(@0)" = (20)'] + 275 0 (@0)n — (20)nl-
0

Hence,

(G = )] < (n2)- @) = () + (52 8-+-2) - (@) — (Gl

Substitute this estimate back to the inequality (5.3.1), we obtain that

(@) = ()l < Cot G = ()| + 2001+ Low) - (S5 -5 +2) - [T — ()l

2 £
Therefore, if we take € < m and p < min { Sl 0 221, then we have that

1+Low ) -Crp,n’ 32
|(@0)n — (20)nl < 2Cn, Lo [(Z0)" — (20)']-
O

Based on this proposition, we have the tool to localize the problem and then to apply
the product estimate for bmo functions in a bounded domain.
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Proof of Lemma 5.3.1. Obviously, the estimate ||v1|z1(B, (2)n0) < [V]|L1(B, (2)ne) holds for
any z € R". It is sufficient to estimate the BM Of-seminorm for v;. Let r < p. For z €
such that d(z) > 3p, v1 =0 in B,(z) as By(z) C 2\ Fg’{p", there is nothing to prove in this
case. We then consider z € Q with d(x) < 3p and B,(z) C Q. Let mx be the projection of
xz on I, ie., d(x) = |v — mx|. We have that B,(x) C Ug,(mz) N . By Proposition 5.3.2,
we see that B,.(z) C F(W,) C Usgp(mx) N2 where F in this case is the normal coordinate
change between Usa,(mx) and V32,. Since a bounded Lipschitz domain is a uniform (Jones)
domain, we can apply the product estimate for bmo functions [8, Theorem 13] in F'(W,),
i.e., we have that

1
\B(x)/B - [v1(y) = (v1) B, (@) @Y < V1 llbmozs (rw,)) < CollOpllcr (rw, ) 10 lbmoge (F(w,))

where Cjy depends only on the Lipschitz constant of 0F (W), which is universal by Propo-
sition 5.3.2. Therefore, we obtain that

C
[v1] Baror (@) < 70”1)Hbmo§(ﬂ)-

O]

Next, let us consider further cut-offs induced by the partition of unity for I'’*?. For
it € N, we set vy ; := ;v1 where ¢; is the cut-off function defined in Proposition 6.2.3.

Lemma 5.3.3. v1; € bmo5 () satisfies the estimate

[v1illbmot, () < ;HUHbmog(Q)

with C' independent of v and p.

Proof. The estimate [|v1][11 (B, (x)n0) < V[ 11(B) (@)ne) is trivial for any z € R™. Let r < p.
We only need to consider « € €2 such that d(x) < 3p, By(z) C Q and B,(x) N Usp(x;) # 0.
Proposition 5.2.2 ensures that if ¢ < % and p < ﬁ, then B,.(x) C Br,(z;) NQ C Usgp(zi) N
Q) C F(W,) where F in this case is the normal coordinate change that maps V32, to Usa,(x;).
Again, by applying the product estimate for bmo functions [8, Theorem 13] in F(W,), we
have that

1
’B (.T)‘ /; ( ) lvl,i(y)_(vl,i)B,,(z)’dy S HULiHbmo%(F(WP)) S Clngzucl(F(Wp))Hvl”bmog(F(Wp))

with C depending only on the Lipschitz constant of 0F(W,). Note that bmoZS(F(W),)) =

bmobe (F(W,)). Since F(W,) C Usg,y(z;) NQ C I'°e, by Proposition 6.2.3 and Proposition

5.3.2 we can deduce that

Ci(1+ Cy)(1+ Cy)
p

[Ul,i]BMOP(Q) < HUHbmog(Q)-
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5.4 Extension

5.4.1 Extension to a neighborhood of I

We are now in a position to extend v ; with respect to the boundary I' for ¢ € N. Let us
recall the extension introduced in [9]. For a function h defined in I'’° N €Y, let h¢ denote the
even extension of A with respect to I' to ' defined by

he (rz + d(x)n(nz)) = h (rx — d(z)n(rz)) for x € TP\ Q.
Let h° denote the odd extension of h with respect to I' to I'?° defined by

h® (rx + d(z)n(nz)) = —h (rz — d(x)n(rz)) for =€ TP\ Q.

Lemma 5.4.1. Let p < % There exists a constant C, independent of v and p, such that
the estimate

. C
[V iJbmo(rny < p*nHUHbmog(Q)
holds for any i € N.

Proof. 1t is trivial to see that

| etddy < 20Vl IF e [ ol
Uap(x; Uzp(z; )N

Since suppvy; C Ugp(x;), p < % implies that

1v1,ill o mey < 8llvnill iy @one) < 8llvllbmogs @)-

Since F(W,) is a bounded Lipschitz domain and vy ; € bmoZS(F(W))), by the extension
theorem for BMO functions [11], there exists Ui]ﬂ- € BMO(R") satisfying "”F(W,J)Uil,i = U1
and

(v I Bmomn) < Cloril Bros(row,))
where by Proposition 5.3.2 the constant C' depends on Lgys only. Let ¢ € R™ be a constant
Vecto}f. For B,(¢) C Vfgp, by change of variable n = F~1(y) in Vig, = F~H(Urp(2:)), we
see that

1 / . 1
o150 F() — | dn < IVF | pre (0se, (o)) - o / fori(y) — | dy.
B0 Joi) IVE e wiooe * B Jrmion

Let x = F(¢). By Proposition 6.2.1, p < % implies that HVF*1|]L00(U16P(IZ.)) < 2 and
F(By(¢)) C Bar(z). Thus,

1 / 1 §
] vi(y) —cldy <2" - vi;(y) — ¢ dy.
Bl Jrimiey ) Bor(@)] Sy, 1)

By considering an equivalent definition of the BM O-seminorm, see e.g. [10, Proposition
3.1.2], we deduce that

[V llbmoss (©)-

C,
(o150 Flpao=viy,) < Cnlrdao=rov,) < —°
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By recalling the results concerning the even extension of BM O functions in the half space,
see [7, Lemma 3.2] and [7, Lemma 3.4], we can deduce that

(4 Cn
[V 0 Flaato=(,) < ~lltllmoz @) (5.4.1)

Let B,.(z) be a ball with radius r < p. If B,(2) NUs,(z;) = 0, there is nothing to prove.
It is sufficient to consider B,(z) that intersects Us,(x;). Proposition 5.2.2 ensures that if
e < 1, then B,(z) C Bry(w;) C Usp(z;). By change of variable y = F(n) in Ugp(x;), we
have that

L 1
Tily) — < || VE| i e o F(p) — .
B o, )~ Ay S Il g [ 0 B el

Since Ffl(Br(:v)) C B, (¢) C Bg,(0) C Vg, by (5.4.1) we deduce that

1 C
—_— v§ (1Y) — (V) B | Ay < =210 pmose () -
B0 oo 50~ L0001y < ooz

Thus, we obtain that
e C”
[v] il BMOr(RP) < 3 [V [lbmogs (©2)-

For a ball B with radius r(B) > p, a simple triangle inequality implies that

B|/‘Ulz Ulz>B‘dy< ’B‘/’vlz |dy_

Therefore, we obtain the BM O estimate for v ;, i.e.,

(R™)-

. Cn
(Vi BMomn) < — o 0 llbmozs (@) -

O]

Since {Us,(;) | ; € S} is a locally finite open cover of I'??, we are able to estimate the
bmo norm for vf.

Lemma 5.4.2. v{ € bmo(R"™) satisfies the estimate

C
VT 1lbmo(mn) < p7|fv\|bmog(9)

with C independent of v and p.

Proof. Let r < p and consider B,(x) that intersects I'??. By the construction of S in
Proposition 6.2.2, there exists z;, € S such that |7z — z;,| < p. Thus, by Proposition
5.2.2 we have that B,(x) C Bs,(xi,) C Usp(zi) as € < % If x; € S such that Us,(x;) N
B,(z) # 0, then Usy(x;) N Usp(xi,) # 0. This means that the number of z; € S such that
Usp(z;) N By(x) # () is smaller than the number of z; € S such that Us,(z;) N Usp(xi,) # 0.
Same proof of Proposition 6.2.2 also shows that for any 3 € S, the number of z; € § such
that Usp(z;) N Usp(xx) # 0 is smaller than some N, o € N independent of zj;. Hence, we
can find at most N, o points in S, say {z;,, ""ij*,o} C S, such that Usp,(z;,) N Br(z) # 0
for each 1 <1 < N, .
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The L' norm of v in B,(z) is estimated as

N*O

[vTllL1 (B, (z)) < Z 107 | L2 (Bo @)Uy (25,)) < BNw0llVllbmoge (-
=

Since this estimate holds regardless of z € R™, we obtain that
1051l 21 (mny < 8N 0llvllbmoge(e)-

Since

2

=0
I

e
"B (z)V "By (x)V1,5;5

N
Il
MR

we have that

N*O

B o 0~ 0 |dy—Z,B 5 o 1450~ @0l

By Lemma 5.4.1, we deduce that
>k OC

[vi]Bror(RR) < [V lbmogs (©2)-

Let B be a ball in R™ with radius r(B) > p. By the triangle inequality,

|B‘/”U1 Q}1 B‘dy<‘B’/‘Ul ‘dy

Let M € N be the largest integer such that Mp < r(B). By definition we have that
(M +1)p > r(B). Note that the ball B is contained in a cube @ of side length (M + 1)p
which shares the same center as B. Separating each side of @) equally into M + 1 parts, we
can divide @ equally into (M + 1)™ subcubes of side length p. Hence, we have that

[ty < [ Wiwldy < Cala+ 1 553, 0
B Q
Since r(B) > M p, we deduce that

o7 [ okl < 2 oty e

Therefore, we finally obtain the estimate

*OC

[T lbmo(mr) < 1V [lbmogs (©2)-
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5.4.2 Extension to R"

Let vo := v — v1. Note that suppva C 2\ T',. Let v3° denote the zero extension of vy to
R", ie.,

2(2) = va(z) for x €,
V2 W= 0 for z¢Q.

We next estimate the bmo norm of v3°.

Lemma 5.4.3. v3° € bmo(R") satisfies the estimate

C
03 lpmo(rn) < ﬁ”vubmog(ﬂ)

with C' independent of v and p.

Proof. Since rqu{ = vi, Lemma 5.4.2 implies that v; € bmo(§2) with the estimate
C
1] bmoss (@) < p*nHUHbmog(Q)-
Hence, vy = v — v1 € bmo () satisfies the estimate
C
[v2][bmoss (@) < p*nHUHbmog(Q)-

Since 03¢ is the zero extension of vy, the estimate H’U;eHL‘lﬂ(Rn) < H'UQHL‘lll(Q) is trivial.

Let B C R" be a ball with radius r(B) < p/2. If B intersects Q\ I',, then B C Q. In this
case, we naturally have that

] / [v3°(y) — (v3°) Bl dy < [v2] BrrO= (-

If BNQ\T, =0, then v3° =0 in B, there is nothing to prove in this case. Hence, we have
the estimate

ze C
2 Baorame) < [valBro=@) < 5 [llmozs 0

Let B C R" be a ball with radius r(B) > p/2. By same argument in the proof of Lemma
5.4.2 that decomposes the smallest cube ) containing B into small subcubes of side-length
p/2, we deduce that

1 ze
B L5 = sl < 5 [ 5ty < e

Therefore, we finally obtain that

C
vae”bmo(R") < p7‘|v||bmo£(9)~

Up till here, we have gathered enough results to prove our main theorem.
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Proof of Theorem 5.1.1. Let

1
e ———,
8n(1 + Law)
e _ €
co = mln{LF - ((n T 1)')2 ) 22n+4’ 90}7
i %

}.

¢ i= min{ 16n(1+ Low) - Crpm’ 64

We set 0 := 0§ +v3¢ and let p < ¢f,. An easy check ensures that supp v C s, and rov = v.
By Lemma 5.4.2 and Lemma 5.4.3, we see that v = v{+v3¢ € bmo(R") satisfies the estimate
C

[0 llbmo(rry < p*nHUHbmog(Q)-

O
The product estimate for v € bmo32(Q2) follows directly from the extension theorem.

Proof of Theorem 5.1.2. Let v € (0,1). By [8, Theorem 13|, we see that for ¢ € C7(Q),
there exists ¢ € C7(R"™) such that rqp = ¢ and

[ellevmny < lleller -

Extending v € bmo(£2) to v € bmo(R™) by Theorem 5.1.1, we naturally have that

v llmoze ) < 19V lbmomn) < Cll@llor@m 10llomomny < Clleller @)1V lbmogs ()-
O
By almost the same proof of Theorem 5.1.1, we are able to further establish an extension

theorem for bmof () with &, 4 < co. We recall that bmo2(Q2) C bmof () for arbitrary
domain €2 and 6, 4 < oo [8, Theorem 2].

Theorem 5.4.4. Let Q C R™ be a uniformly C* domain with n > 2 and u,d € (0, 00).
There exists ¢, > 0 such that for any p € (0,¢8) and v € bmof (), there is an extension
v € BMO*(R™) N LY (1) such that

C
[0lBron@ny + 0] sy < ;HUHbmog‘(Q)

with C independent of v and p. Moreover, suppv C 972;) where
Qop :={z € R" | d(z,Q) < 2p}.
The operator v +— v is a bounded linear operator.

Proof. By [8, Proposition 1], we see that the space bmoj! (Q2) and the space bmoj?(Q) are
equivalent for any 0 < d1, 6o, p1, o < co. Without loss of generality, we may assume that
p,0 > cf, where ¢, is defined in the proof of Theorem 5.1.1. Let p € (0,cf,). Follow the
proofs of Lemma 5.3.1, Lemma 5.3.3, Lemma 5.4.1 and Lemma 5.4.2, we can deduce that
v§ € BMOP(R™) N L} (%) satisfies the estimate

e e C
[Ul]BMOP(Rn) + [Ul]Lllﬂ(Fé) < ;Hv”bmog(Q)'
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Moreover, in this case it is trivial that vi® € BMOP(R™) N LY (I'%). Still by setting v =
v{ + v3°, we finally obtain that v € BMOP(R") N LL(T?) satisfies the estimate

C
[0lBrmoe ) + V)1 () < EHvamog(Q)

with C' independent of v and p. O

5.5 Application of the extension theorem

As defined in [1], [2], [3], [4], we recall a seminorm that controls the boundary behavior.
For v € (0, 0], we set

[l = sup {r—” /Q Wy

We define the space

zel, 0<7“<1/}.

BMOL"(Q) == {f € BMO"(Q) | [flww < o0}
with
1 Barosr () = [flemon(o) + [flw
Let po,v9 < co. In [4, Example 1], we see that there exist examples in BMO},*"™
BM 05 0% and BM Ol?o’uo. By making use of the extension theorem and the product es-
timate established in this chapter, we shall give an example of a function that belongs to
BMO,” but does not belong to L™.

We consider the case where the domain  is the half space R%. Let f = logz, defined
in the layer domain Dy, := {0 < x5 < 1}. For a cube Q = [a,a+1] x [b, b+ 1] that intersects

Dy, we have that
b+1
/ llog x| dx = —/ log zo dxo < 1.
QNDyp, 0

Hence, we see that f € bmoZ(Dr). By Theorem 5.1.1, we can find f € bmo(R2) such
that rp, f = f and supp f C {—1 < x2 < 2}. Set g(x1,22) = f(x1,22 — 2) for any
r = (71,72) € R? and g := TRiﬁ. Note that suppg C {1 < z2 < 4}.

Proposition 5.5.1. g € BMO,”>(R%) but g ¢ L>(R3?).

Proof. 1t is trivial to see that g € BMO™(R?%) and g ¢ L>(R2). We only need to estimate
the b>°-norm for g. Since suppg C {1 < z3 < 4}, it is sufficient to estimate

2
1@+ (@)] Jo, ()rm2

for r > 1 and = = (21,0) € R where Q,(z) denotes the square with center z of side-
length 2r. Without loss of generality, we may assume that g is only a function of x5. Hence,
a direct calculation shows that

2 1 x1+7

oldy =5 | U v <2 [ gzl dn <2

lg| dy
2

1@+ (@)] Jo, ()rm2
O

Remark 5.5.2. Let ¢ € C°(Bg(0)) with ¢ =1 in Bg(0), by Proposition 5.5.1 we see that
¢g € BMO;”™(R%) N L?(R2) but ¢g ¢ L=(R2).
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5.6 Extension of vector fields in bmo in a domain

Note that Lemma 5.4.1 basically coincide with [9, Proposition 2] in the statement. However,
the proof of Lemma 5.4.1 involves the localization argument in this chapter, which actually
improves [9, Proposition 2] in the sense that [9, Proposition 2] holds for any uniformly C?
domain instead of just for bounded domain. Here we provide an update of [9, Proposition
2].

We consider the space

vbmo(Q) := {u € bmo3 () | [Vd - ulpr < o0}
equipped with the norm

||u”1)bmo(ﬂ) = Hqumog(Q) + [Vd : u]b”-

This space is independent of v € (0,00]. Let u € vbmo(Q2). We set u; = ,u, ui; = @u;.
Let Puf,; := (Vd - ug,;)Vd denotes the normal component of u{; whereas Quf; := uf; —
(Vd - uf ;)Vd denotes the tangential component of uf ;.

Lemma 5.6.1. Let p < %. There exists a constant C, independent of v and p, such that
the estimates

o c
[Pul,i]bmo(R") < pinHqubmo(Q)v

C
[Vd . Puii]bw(f‘) < p7||u||vbmo(9)

hold for any i € N and v € (0, o0].
Proof. Follow the proofs of [9, Proposition 2] and Lemma 5.4.1, we are done. O

Lemma 5.6.2. Puf € bmo(R") satisfies the estimates

C
Hpu(l)Hbmo(R”) < pinHqubmo(Q)a

o C
[Vd - Puflpes(ry < pTLHUHvbmo(Q)

with C' independent of u and p.

Proof. Follow the proof of Lemma 5.4.2, we are done. O
Similar as in [9, Proposition 2|, we set
uy = Puf + Quf.

By Lemma 5.4.2, we have that u; € bmo(R"™). Let us := uw — u; and u3® be the zero
extension of ug to R™. Since uy coincide with u in €, following the proof of Lemma 5.4.3
we can show that u3® € bmo(R"™) satisfying

C
||u§e||bmo(R") < p7 ”qubmo(Q)

with C independent of u and p. Therefore, by setting w := uy + u3°, we obtain an extension
of u whose normal component in a small neighborhood of I'" is odd with respect to I'
whereas the tangential component in a small neighborhood of I' is even with respect to I'.
We summarize the extension theorem for a vector field of bmo in a domain as follow.
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Theorem 5.6.3. Let Q C R™ be a uniformly C? domain with n > 2. There exists cy >0

such that for any p € (0,c) and u € vbmo(Q), there is an extension u € bmo(R"™) such
that

[l + V- Wiy < ot
with C' independent of u and p. Moreover, suppu C @ where
Qo :={z € R" | d(z,Q) < 2p}.
The operator u — u is a bounded linear operator.
The constant ¢y can be taken as

2 5
6 679}
16%(1 + Law) . CLr‘,TL’ 96"

cq = min{
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Chapter 6

The Helmholtz decomposition of a
space of vector fields with bounded
mean oscillation in a perturbed

half space with small perturbation

We introduce a space of vector fields with bounded mean oscillation whose “tangential”
and “normal” components to the boundary behave differently. We establish its Helmholtz
decomposition when the domain is a perturbed half space with small perturbation. This
substantially extends the authors’ earlier results for a half space and a bounded domain.

6.1 Introduction

The Helmholtz decomposition of a vector field is a fundamental tool to analyze the Stokes
and the Navier-Stokes equations. It is formally a decomposition of a vector field v =
(v',...,v") in a domain © of R" into

v =g+ Vg; (6.1.1)

here vy is a divergence free vector field satisfying supplemental conditions like boundary
condition and Vg denotes the gradient of a function (scalar field) ¢. If v is in LP (1 <
p < 00) in , such a decomposition is well-studied. For example, a topological direct sum

decomposition
(LP()" = LE(Q) & GP(Q)

holds for various domains including €2 = R", a half space R'', a bounded smooth domain
8]; see e.g. G. P. Galdi [9]. Here, L5 (Q) denotes the LP-closure of the space of all div-free
vector fields compactly supported in 2 and GP(€2) denotes the totality of LP gradient fields.
It is impossible to extend this Helmholtz decomposition to L* even if {2 = R" since the
projection v — Vq is a composite of the Riesz operators which is not bounded in L. We
have to replace L™ with a class of functions of bounded mean oscillation. If the vector field
is of bounded mean oscillation (BMO for short), such a problem is studied in the cases
when Q is a half space R [10] and a bounded C? domain [12]. Our goal in this chapter
is to establish the Helmholtz decomposition of BMO vector fields in a perturbed C? half
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space with small perturbation in R"™, which is an example of a domain with curved and
non-compact boundary.

Let us recall the BM O space of vector fields introduced in [11] and [12]. We first recall
the BMO seminorm for ;1 € (0, 00]. For a locally integrable function f, i.e., f € LL () we
define

1
f i= sup / fY) = I, dy‘Brx CQ r<pg,
[ ]BMOH(Q) |Br($)| BT(x)‘ ( ) B ( )} ( )
where fp denotes the average over B, i.e.,

1
o= /B f(y) dy

and B, (z) denotes the closed ball of radius 7 centered at z and |B| denotes the Lebesgue
measure of B. The space BMO#((2) is defined as

BMO"(Q) := {f € Lioo(Q) | [f]Bmon < 0}

This space may not agree with the space of restrictions rof of f € BMO*(R"™). As in [2],
[3], [4], [5] we introduce a seminorm controlling the boundary behavior. For v € (0, o], we

set
[flpv = sup {r‘” /mBr@) 1f(y)| dy

In these papers, the space

zel, 0<r<y}.

BMOY" (Q) := {f € BMO*(Q) | [flw < oo}

is considered. Note that this space BMO,”™(?) is identified with Miyachi’s BMO in-
troduced by [22] if € is a bounded Lipschitz domain or a Lipschitz half space as proved
in [5]. Unfortunately, it turns out such a boundary control for all components of vector
fields is too strict to have the Helmholtz decomposition. We separate tangential and normal
components. Let d denote the signed distance function from I" which is defined by

B infyer |z —y| for x€Q,
d(z) = { —infyer |z —y| for z¢Q

so that d(z) = dr(x) for z € Q.
For vector fields of bounded mean oscillation, we consider

vBMO*" () := {v € (BMO*(Q))" | [Vd - v]pw < o0},

where - denotes the standard inner product in R™. We call the quantity (Vd-v)Vd on I’
to be the component of v normal to the boundary I'. We set

[U]vBMow(Q) = [U]BMou(Q) + [Vdr - v]pe.

In the case where Q is the half space R}, [-],pyporv(q) is not a norm but a seminorm if
either p or v is finite. However, if the boundary I' has a fully curved part in the sense
of [11, Definition 7], then this becomes a norm [11, Lemma 8]. In particular, when 2
is a bounded C? domain, this is a norm. Roughly speaking, the boundary behavior of
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a vector field v is controlled for only normal part of v if v € vBMO*¥(Q). If Q is a
bounded domain, this norm is equivalent no matter how p and v are taken; in other words,
vBMOM (Q) = vBMO°>(Q). This is because vBMO*¥(Q) C L*(2) when € is bounded,
which follows from the characterization of vBMO*¥ () in [11, Theorem 9]. Without loss
of generality, we can simply write vBMO""(Q) as vBMO(f) in this case. However, if
is an unbounded space, then I' does not necessarily have a fully curved part. Hence in this
case, [],paromv(q) is not necessarily a norm. Moreover, the space vBM O (Q2) depends
on the value of 1 and v. As a result, instead of working with vBM O () directly, we
consider its intersection with the (L2(£2))", i.e., we consider the space

vBMOL2(Q) := vBMO™(Q) N (L*())"

with
IvllvBarorz) = Wlvsrrorr @) + IVl (2))n-
Note that this space vBMOL?(Q) is a Banach space which is independent of y, v € (0, oc].

We denote 2’ := (z1,72,...,2n-1) for z € R™. Let h € CJ(R"!). We define the
perturbed half space R} to be the space

po={z = (2,2,) € R" ’ xp > h(z)}.

Without loss of generality, we may assume that supph C Bpg, (0') for some R, > 0 where
Bp, (0') denotes the ball in R"~! with center 0/ and radius R,. Let Ci > 0 be a fixed
constant that are going to be determined later in this chapter. We say the perturbed C3
half space R}, is of small perturbation if the condition

1

CTeA (6.1.2)

(Ry ™" + DIk c2ma-1) <

holds. Now we are ready to state our main theorem.

Theorem 6.1.1. Let Q) be a perturbed C* half space in R™ with small perturbation. Then
the topological direct sum decomposition

vBMOL?(Q) = vBMOL2(Q) ® GuBMOL?*(Q) (6.1.3)
holds with
vBMOLZ(Q) := {v € vBMOL*(Q) | divo=0inQ, v-n=0 on T},
GuBMOL?*(Q) := {Vq € vBMOL*(Q) | q € L1,.(Q)},

where n denotes the exterior unit normal vector field. In other words, forv € vBMOL?*(Q),
there is unique vo € vBMOL2(Q)) and Vq € GvBMOL?(Q) satisfying v = v + Vq.
Moreover, the mappings v + vg, v — Vq are bounded in vBMOL?*(Q).

Our strategy to prove Theorem 6.1.1 follows from the strategy we used to establish the
Helmholtz decomposition in a bounded C? domain [12]. Let E be the fundamental solution
of —A in R", i.e.,

_ [~loglal/2n (n=2)
E(x): {|$|2—n/ (n(n —2)a(n)) (n>3),
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where a(n) denotes the volume of the unit ball B;(0) of R™. By [Theorem 5.1.2, Chapter 5],
we see that as long as the regularity of I is of uniformly C2, the space BM O (£2) N L?(£2)
allows the standard cut-off, i.e., we are able to decompose v into two parts v = v + vo with
v1 = v and vy = v — vy with some ¢ € C§°(€2). Then, the support of vy lies in a small
neighborhood of I' whereas the support of v; is away from I'. For v; we just set

qi = E xdivu,

by extending vy as zero outside its support. Then, the L*> bound for V¢i is well controlled
near I', which yields a bound for ” semi-norm. To estimate vs, we use a normal coordinate
system near I" and reduce the problem to the half space. Let d denotes the signed distance
function where d = dr in Q and d = —dr outside €). We extend v to R™ so that the normal
part (Vd-72)Vd is odd and the tangential part 73 — (Vd - v2)Vd is even in the direction
of Vd with respect to I'. In such type of coordinate system, the minus Laplacian can be
transformed as

L = A — B +lower order terms, A = —A,, B = Z On; bii Oy 5

1<4,j<n—1

where 7, is the normal direction to the boundary so that {n, > 0} is the half space. By
choosing a suitable coordinate system to represent I' locally, we are able to arrange b;; = 0
at one point of the boundary of the local coordinate system. We use a freezing coefficient
method to construct volume potential ¢t*" and ¢!'°", which corresponds to the contribution
from the tangential part 72" and the normal part 75"°" respectively. Since the leading
term of divwa™®" in normal coordinate consists of the differential of 7, only, if we extend
the coefficient b;; even in 7,, ¢ is constructed so that the leading term of Vd - Vgi'' is
odd in the direction of Vd. On the other hand, as the leading term of div v3*®® in normal
coordinate consists of the differential of n’ = (11, ...,7,—1) only, the even extension of b;; in
N, gives rise to ¢f*" so that the leading term of Vd - Vgi* is also odd in the direction of
Vd. Disregarding lower order terms and localization procedure, we set ¢i*" and ¢°" of the

form
¢ = —L N divoyn = Y1 - BA Y L divat®,

=AM -
¢ = —L7 ' divoy™ = —A7N (I — BA™Y) " hdivis®

One is able to arrange BA~! small by taking a small neighborhood of a boundary point.
Then (I—BA~1)~1 is given as the Neumann series Y oc_ (BA™1)™. We are able to establish
BMO-BMO estimate for Vg{*® and Vgi', i.e.

—nor

V™| prromny < Co [05™] prromn) - (VO sro@n < Co 05" | spomn)

with some constant C{), independent of v3. Since the leading term of Vd - (Vg{*® 4+ Vi) is
odd in the direction of Vd with respect to I', the BM O bound implies b bound. Note that
[02""| aro(mrny is controlled by [va]p and [v2] prroee () since V2" is odd in the direction of
Vd with respect to I'. By the procedure sketched above, we are able to construct a suitable
operator by setting q; = q% + @§*™ + ¢}°". Since many steps in the construction of volume
potential ¢; in this case follows exactly from the theory in [12, Section 3] and Chapter 5,

for these parts we provide necessary results directly without giving their proofs.
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Theorem 6.1.2 (Construction of a suitable volume potential). Let Q be a uniformly C3
domain in R™. Then, there exists a linear operator v — g1 from vBMOL?*(Q) to L>(Q)
such that

—Aq =dive in Q

and that there exists a constant C1 = C1(RQ) satisfying

IVaillosrorz ) < Cillvllurrorz(a)-
In particular, the operator v — Vqy is a bounded linear operator in vBMOL?(Q).

By this operator, we observe that w = v — V¢ is divergence free in 2. Unfortunately,
this w may not fulfill the trace condition w-n = 0 on the boundary I'. We construct another
potential g2 by solving the Neumann problem

Aga =0 in Q

0

% =w-n on [I.
We then set ¢ = ¢1 + g2. Since Jg2/0n = Vqo - n, vg = v — Vq gives the Helmholtz

decomposition (6.1.1). To complete the proof of Theorem 6.1.1, it suffices to prove that
IVa2llvprrorz (o) is bounded by a constant multiply of ||v||,grror2()-

Lemma 6.1.3 (Estimate of the normal trace). Let Q be a uniformly C*T~ domain in R
with k € (0,1). Then there is a constant Cy = Co(Q2) such that

Jw - n”Loo(r)mH—%(r) < Co|lwllvsrmorzc)

for all w € vyBMOL?(Q) with divw = 0.

The L* estimate of w - n follows from the trace theorem established in [11]. For the
H~3 estimate for w - n, we split the boundary into the straight part and the curved part.
Since we hlave the L*° estimate for w - n and the curved part is compact, the contribution
in the H™ 2 estimate for w-n that comes from the curv?d part can be estimated by the L>
norm of w - n directly. For the contgibution in the H™ 2 estimate of w - n that comes from
the straight part, we invoke the H™ 2 estimate of w - n in the case of the half space. Hence,
we finally need the estimate for the Neumann problem.

Lemma 6.1.4 (Estimate for the Neumann problem). Let Q C R" be a perturbed C? half
space with small perturbation. For g € L*(I") satisfying frgdH”_l = 0, there exists a
unique (up to constant) solution u to the Neumann problem

Au=0 in

ou (6.1.4)
— =g on T

on

such that the operator g — wu is linear and that there exists a constant Cs = C5(£2) such
that

[Vullysrmorz) < Cs HgHLw(r)mH—% o
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Combining these two lemmas with Theorem 6.1.2 yields

IVazlloprorz o) < CsCallv — Vaillupaorz)
< C3C(1 + C)|[vllwsrrorz)-

Setting ¢ = q1+¢2 and vg = v— Vg, we now observe that the projections v — vy, v — Vq
are bounded in vBMOL?((2), which yields (6.1.3) in Theorem 6.1.1.

For g € L>*(T') N H_%(F), we consider the single layer potential

Ex (0r @ g)(x) == /FE(:E —y)g(y) dH" " (y)
for x € R™. To show Lemma 6.1.4, we firstly estimate

IVE * (6r © )]l pasomer ) -

For the BMO estimate, we set ¢1(y', h(y')) := 1B2Rh(0/)(y’)g(y’, h(y")) for (v/,h(y')) € T and
g2 := g — g1. By setting g3(y',0) = 0 for |y'| < 2Rj and g2(y',0) = g2(y/', 0) for [y/| = 2R,
we see that the equality

Ex (or @ go)(z) = E * ((S(;zRgLr ®7g2)(x)

holds for any x € R™. Thus, the BMO estimate of VE x (dr ® g2) follows from the BMO
estimate of E (58Ri ® g2). Since g1(-, h(-)) is compactly supported in R"~!, the BMO
estimate for VE x (0r @ ¢1) follows directly from [12, Lemma 5], which contains a similar
estimate that is established in the case of a compact boundary. It is very subtle but by a
direct calculation, we may deduce the estimate

sup /
zel', JT

where I'), := {z € Q | d(z) < v} denotes a small neighborhood of I" in 2. Let z € I',. By
making use of this estimate, we can show that

aE n—1
ale(JU —y)‘ dH"(y) < oo,

Vd(x) -V (E * (or @ 1)) ()| < Cligllzoe(r)-

Since the kernel | -/ 17" is integrable in L?(By;(0')¢) for any M > 0, we are able to prove
that
[Va(z) - V(2 5r © 02)) @)] < Cllgl, -
Hence, we obtain an estimate for ||Vd - VE * (6r ® g)||z(r,) by HgHLm(F)mH_%(F). The b”
estimate therefore follows.
Let g € L*°(T"). The trace of the double layer potential

OF

(Pg)(z) = | = =(x—y)g(y) dH" ' (y), = €Ty
r Y

is of the form )
(v(Pg)) (', h(a")) = F9(@’ h(a') = (Sg) (', h(z")),

where S is a bounded linear operator on L*°(I") satisfying

151 oo () oo (r) < CoRY Bl o2 (e
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for some constant C, independent of h. Moreover, we have that Sg € L?(I") satisfies the
estimate

1S9/l L2y < C°R HgHLoo

with some constant C* independent of h and g. Therefore, if Q is a perturbed half space
of small perturbation, tlhe inverse of I — 2S5 is well-defined as a bounded linear map from
L>(T) to L*(I') N H™2(I") by the Neumann series

o0

(I-28)7"=> (29)"

i=0
Since Pg is harmonic in €2, the solution to the Neumann problem (6.1.4) is formally given
by
u(z) = Ex (0r® (2(I —25)"'g))(z), z€Q.
If we can estimate the L? norm of Vu in Q, then we are done. Fortunately, we indeed
have this estimate. In the case of a half space, if g € H~ (aR”) satisfies

/ o(y) M"Y (y) = 0,
OR

then the estimate

IVE * @Gorey @ )z < gl oy

holds with some constant C' independent of g. This estimate holds for the reason that the
single layer potential E x (56R1 ® g) is exactly half of the solution to the Neumann problem
in the half space, and the Neumann problem in the half space admits a unique weak solution
(up to an additive constant) v € H'(R") which satisfies

IV ullzz e < ol o

with C independent of g, see e.g. [26, Remark 1.2 and Remark 1.3], [21, Section 1.7]. In
the case that € is a perturbed C? half space, for g € L°(I') N H_%(I‘), we consider g as a
sum of g; and go. If the integral of g on I' equals zero, then there exists a constant I. € R
such that

| m)+ 1wan ) =0
OR%

with

F.(20 0 for |2/| > 2M),
s(7,0) = 7|BQJWI}CL(0/)| for |2'| < 2M,.

Since g3 + fs € H *%(8Rﬁ), by the L? estimate in the half space case, we deduce that

IVE % (dory ® 32) lz2rryye < IVE * (Sory ® fs) 2w yn + Cllal MnE-3 )
In addition, if the support of g(-/,h(-)) is contained in Bsg, (0’), we apply the idea in
[12, Lemma 5] which extends g € L®(T') to g. € L>®(I'?) by letting g.(z) := g(wx)
for any & € I'? with 72 denoting the projection of z on I'. By multiplying a cutoff
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function 64 to g. where 6g4(x) = 1 for |d(z)| < ¢ and 64(x) = 0 for |d(x)| > 2, we see that
Ge,c := 0qge € L>°(R™) is of compact support. Since

or® g = (VlQ . Vd)ge,c
= div(ge,clng) —1q diV(gQCVd),
div(ge,cVd) = ge,cAd +Vd - Ve = ge,cAd+ (Vd - V4)ge,

we have that
VE % (0p ® g1) = Vdiv (E # (ge.c10Vd)) — VE x (1agefo) = I1 + I

where fp := 0;Ad+Vd-V0,. Since Vdiv E is LP for any 1 < p < oo, see e.g. [15, Theorem
5.2.7 and Theorem 5.2.10], I; can be estimated as

111l (z2@®myym < Cllge,claVli2@nyr < Cllgllzee )

Since VE ~ |- [17", the famous Hardy-Littlewood-Sobolev inequality [1, Theorem 1.7]
implies that
120l (L2mryn < Clllagefoll(L2@mryn < Cllgllpoom

Hence, it can be deduced that
IVE * (dory ® fs) | (z2mnyn + IVE * (00 @ g1)llz2())n < Cllgllpoo .-
Since VE x* (53R1 ® ﬁ) =VE x (51“ ® gg), we finally obtain our desired L? estimate

IVE s (or @ g)ll (2@ < CHgHLoo(r NH=Z(T)’

If g e L) N H_%(F) N LY(T'), then without assuming the integral of g on I' to be
zero, we can deduce the L? estimate

IVE % (6r @ 9) | (r2(@))» < C”g”Loo(r)mH*%(F)nLl(F)

in a similar way. Since we also have Sg € L!(T') for g € L>(T'), the series Y o0,(25)"g is
well-defined in L*(T") as long as the smallness condition

(B~ + Dl o@n) < 56

is satisfied. Therefore, the L? estimate for Vu holds. We obtain Lemma 6.1.4.

Our approach in this chapter is to derive the boundedness of the operator v — Vg by a
potential-theoretic approach. In LP setting there is a variational approach based on duality
introduced by [23]; see also [6]. The key estimate is

IVallreo) < C5SUP{/QVQ'V¢dx ‘ IVl Lo () < 1}

with C5 independent of ¢, where 1/p+1/p’ =1, 1 < p < oo. Formally, this estimate yields
the desired bound [|Vq| () < Cslv][r(q) since

/Vq~Vg0dx:/v‘chdw.
Q Q
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At this moment, it is not clear that similar estimate holds if one replaces LP(Q2) by vBMO
since the predual space of vBMO is not clear.

This chapter is organized as follows. In Section 6.2, we construct a volume potential
corresponding to divv. We localize the problem and reduce the problem to small neigh-
borhoods of points on the boundary. Here we invoke the theory established in [12] and
Chapter 5 to give a proof to Theorem 6.1.2. In Section 6.3, we establish Lemma 6.1.4 by
estimating the single layer potential.

Throughout this chapter, unless otherwise specified, the symbol C' in an inequality
represents a positive constant independent of quantities that appeared in the inequality.
For a fixed p > 0, C, represents a constant depending only on p. (), represents a constant
depending only on n and Cgq,, represents a constant depending only on €2 and n.

6.2 Volume potential construction in a uniformly C® domain

For v € vBMOL?()), we shall construct a suitable potential ¢; so that v — V¢ is a
bounded linear operator in vBMOL? as stated in Theorem 6.1.2. The construction in the
case where Q is a uniformly C® domain basically follows from the theory in [12], in which
Q) is assumed to be a bounded C? domain.

6.2.1 Localization tools

Let us recall the uniform estimates established in Chapter 5. We denote 2’ = (21, x2, ..., Tp—1)
for z € R" and V' := (01,0, ...,0n_1). Let Q be a uniformly C? domain in R™. In other
words, there exists ry,d, > 0 such that for each zy € I', up to translation and rotation,
there exists a function h,, which is C? in a closed ball B, (0') of radius 7. centered at the
origin 0/ of R"~! satisfying following properties:

(i) Kr:=supg, (0 [(V')hs| < oo for s =0,1,2; V'A(0') = 0, h(0') = 0,
(i) QNUp, s, 0., (20) = {(@ @) € R™ | huy(2) < @p < by (2') + O, |@!| <7} for

Ur, 6. by (20) := {(x’,xn) e R" ‘ ha (@) — 0 < Ty < by (@) + 0, |2| < r*} )

(i) I'n Ur, 6.z, (20) = {(a:’,azn) e R ‘ Ty, = hy(2)), |2/] < 7"*}.

We say that Q is of type (74, dx, KT).

Since  is a uniformly C? domain, there is R, > 0 such that if |d(z)| < R, there is
unique point 7 such that |z — 7z| = |d(z)|. The supremum of such R, is called the reach
of Q and Q°. For ¢ € (0, R.], we set that

.= {z e R" | |d(z)| < &}

and
[s5:={2z€Q|dr(z) <d}.

Moreover, d is C? in the R,-neighborhood of T, i.e., d € C?(T'f+); see [14, Chap. 14,
Appendix], [20, §4.4]. Note that R, satisfies

R, = min (R?, RY"),
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where R is the reach of T' in Q while R is the reach of T in the complement Q° of Q.
Let K} :=max {Kp,1}. There exists 0 < py < min(ry, 0, 2, ﬁ) such that
Uy(20) := {z € R" | (mz)’ € int B,(0'), |d(x)| < p}

is contained in the coordinate chart Uy, s, n.,(20) for any p < po.
We next consider the normal coordinate in Up, (o)

_ _ 0 VA hey (1)
T = d}( ) - { hzo (’f]/) + nnaxnd(n/7 hZO (,'7/)) (621)

or shortly
r=mnzr —d(z)n(rz), n(rz)=—-Vd(rz).

For each 29 € T, v is indeed a local C'-diffeomorphism which maps V,,, to U,,(z0) where
Vo = By (0') x (—po, po). We indeed have that ¢ € C*(V,,) with (V,1)(0) = I. Let

e € (0,1) and ¢, := min{KF.((nH‘E)!)QQQn%,%0}. Regardless of 2y € T', we can uniformly

estimate the gradient of ¥ and ¥~ simultaneously.

Proposition 6.2.1 (Chapter 5). Let Q C R" be a uniformly C* domain with n > 2. Then
for any p € (0,cq) and zg € I', the estimates

IVE = I 1o v, <&,
IVF™ = Il Lo, (20)) < €
hold simultaneously.
For p € (0, p0/2), there exists a locally finite open cover of I'?, i.e., we have that

Proposition 6.2.2 (Chapter 5). Let Q C R" be a uniformly C? domain with n > 2. There
exist a countable family of points in T, say S := {x; € T | i € N}, and a natural number
N, € N such that

and for any x; € S, there exist at most N, points in S, say {xj,,...,x;y } C S, with
Up(zj) N Up(zs) # 0
for each 1 <1 < N,.
Based on this open cover of I'?, a partition of unity for I'” can be constructed as follow.

Proposition 6.2.3 (Chapter 5). There exist ¢; € C1(I'P) for each i € N and a constant
Cu such that properties
0<p; <1 forany i€ N,

supp ¢; C Up(z;) for any i € N,
supp @; 0 Y C By(0') x [—p, pl,

o (6.2.2)
Z vi(x) =1 forany = e€TI”,

i=1

sup [|Vi||Leorey < Cu

€N

hold.
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6.2.2 Cut-off and extension

In general, multiplication by a smooth function to BM O is not bounded in BMO. However,
such multiplication is bounded in bmo.

Proposition 6.2.4 (Multiplication). Let Q C R™ be a uniformly C? domain, n > 2. Let
© € CV(Q) with v € (0,1). For each v € vBMOL?(Q), the function pv € vBMOL?(Q)
satisfies

levllvprorz ) < Cllellev@llvliloprmorz)
with C' independent of ¢ and v.

Proof. Since
[Vd - vy < lollpe (o) [Vd - vl

this proposition follows trivially from the product estimate [Theorem 5.1.2, Chapter 5], by
which [|ov]|ymoss () is estimated by the product of |¢[|cv (o) and [[v||pmoegs (@) With a constant
C independent of ¢ and v. O

We consider the projection to the direction to Vd. For x € I'", we set
P(z) = Vd(rz) ® Vd(rz) = n(rz) @ n(rx).

For later convenience, we set Q(x) = I — P(x) which is the tangential projection for x € T'?.
For a function f in I’ N Q, let feven (resp. fodd) denote its even (odd) extension to I'P0
defined by

feven (mz + d(z)n(rx)) = f (mx — d(z)n(7x)) for ze€T™\Q,
foda (mz + d(x)n(rx)) = — f (rx — d(x)n(wz)) for € T*\Q.
We denote ry to be the restriction in W for any subset W C R"™. Let f be a function (or

a vector field) defined in V, for some o € (0,00]. We set Egyenf to be the even extension
of fin V, N R’ to V, with respect to the n-th variable, i.e.,

Eevenf(nly _nn) = f(77/7 77n>

for any (1/,m,) € Vo, NR}.
For v € vBMOL?() with supp v C U,(20) N, let ¥ be its extension of the form

f(.ﬁ) = (ondd)(x) + (Q’Ueven)(x) (623)

for x € U,(20). Notice that supp v C U,(2), v is indeed defined in R" with v(x) = 0 for
any x € Up(20)°. Let ¢ < ¢5/96 be the constant defined in Chapter 5.

Proposition 6.2.5. Let Q@ C R"™ be a uniformly C* domain, 29 € T and p € (0,cf’). There
exists a constant C, independent of v and p, such that

_ C
@l pmorzmn) < p7||UHvBM0L2(Q),

_ C
[Vd - 0y ry < p*nHUHuBMoH(Q)

for all v € vBMOL?*(Y) with supp v C Uy(20) N Q and v > 0.
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This proposition is simply the vBMOL? version of [12, Proposition 2].
Proof. By considering the normal coordinate change y = 1(n) in U,(2p), we can deduce
that Veyen, Voad € L2(R™) satisfying
[vevenL2(Rr) = l|VodallL2mn) < 4llV]L2(0)-
Hence v € L?(R™) satisfies the estimate 19l L2rmy < Cullv|lr2()- Hence, this proposition
follows from the estimate

_ _ C
Il Brro@n) + [Vd - Wyee(ry < p7||UHuBM0L2(Q)a

which is guaranteed by [Theorem 5.6.3, Chapter 5]. O

6.2.3 Volume potentials

In this subsection, we always assume that € is a uniformly C® domain in R". Let p €
(0, px/2) for some sufficiently small p, that is to be determined later. We consider a cut
off function § € C°(R) such that 0 < 0 <1, §(t) =1 for any 0 < |t| < 1/2 and (t) =0
for any [t| > 1. Set 6, := 6(d(x)/p). Note that 6, € C3(R"). We then let v := 6,0 and
vy := (1 —0,)v. Same proof of [Theorem 5.1.1, Chapter 5] implies that v; € BMOL?*(R")
and v3 € BMOL?*(R™) Nv*(T).

To construct the mapping v — ¢; in Theorem 6.1.2, we localize vo by using the partition
of the unity {¢;}2, associated with the covering {U,;}°; of I'’. Here for each i € N,
U, denote U,(x;) in Proposition 6.2.3. The corresponding volume potential to v; can be
estimated directly.

Proposition 6.2.6. There exists a constant C,, which depends on p only, such that

HVQ%HBMOLQ(R") < CpllvllvBrorz(@)

qu%”Lw(Fi‘/Z) < Cpllvllvmorz(@)
for ¢t = Exdiv vy and v € vBMOL?*(Q). In particular,
[V(ﬁ]bu(p) < CpllvllvBrmorz(@)
forv < p/4.
Proof. By the BMO-BMO estimate [7] and Proposition 6.2.4, we have the estimate
[V(JHBMO(Rn) < Clulpmorn) < CpllvllvBrorz@)-

Consider z € FRZ. Since Vgi is harmonic in I‘E;; and Bg (x) C FpR/nz, the mean value
property for harmonic functions implies that

C
Vai(z) = = / Vai(y) dy.
p Bp ()
4
By Holder’s inequality, we can estimate |Vqi (x)| by p%% IVqi || L2(mny- Since the convolution

with V2E is bounded in L? for any 1 < p < oo, see e.g. [15, Theorem 5.2.7 and Theorem
5.2.10], we have that

IVaillrz@mn) < Cllullrzmny < Cllvll 2@
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Therefore, the estimate
Vi (2)| < Cyllvlluparor2 ()

holds for any x € I’E‘/Z. O

For i € N, we extend (rqy;)vs as in Proposition 6.2.5 to get (rqp;)v2 and set

oo
vy = Z (rapi)ve.
i=1

Indeed, this extension is independent of the choice of {¢;}5°, as long as {¢;}7°, is a partition
of unity for I'’. We next set

@tan = Q@ = Z Q ((Pi(v2)even) .
=1

For i € N, we have that ¢; € Cz(Up,i). For simplicity of notation, we denote ©;(v2)even
by v2;. Proposition 6.2.3 and the construction of vo imply that va; € BMOL?(R™) with
suppva; C Uy ;. In addition, we denote Q va; by wi*™. Now, we are ready to construct the
suitable potential corresponding to

o0
Ty = E Q.
=1

Proposition 6.2.7 ([12]). There exists p, > 0 such that if p < p./2, then for every
1 € N, there exist bounded linear operators v — paaln and v — paaQn from vBMOL?*(Q) to
L>°(R™) such that

—Api* = divwi*™ in Uspi N2

1

with i .= pginer;a;, suppp;?in C Uspi. Moreover, there exists a constant C,,, independent

of v, such that

IVDit | Brorzwny < Collvall Brorzmn)s

VDS e mry < Collvlluparorz)s

sup

- IVd - Vpi* | dy < Cyllvllusrorz)-
z€lr<p T By (x)

This proposition is simply a rewrite of [12, Proposition 4]. Having the estimate for
the volume potential near the boundary regarding its tangential component, we are left to
handle the contribution from v5°" := vy — v5". We recall its decomposition

B = P (¢i(v2)oda) -
i=1

For simplicity of notations, we denote Vd - (¢i(v2)oda) by ¢i and P (¢;(v2)odd) by wi* for
every ¢ € N. By this notation w}**" = ¢;Vd. With a similar idea of proof, we can establish
the suitable potential corresponding to 75°".
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Proposition 6.2.8 ([12]). There exists px > 0 such that if p < p«/2, then for every
it € N, there exist bounded linear operators v — p;9" and v — pig’ from vBMOL?*(Q) to
L>°(R™) such that

—Apit = divw;*" in U, N2

with ;" = pi{" +p;9", supp pi{" C Uszpi. Moreover, there exists a constant Cy, independent
of v, such that

VDS | Brrorzmny < Collgill BrorL2(mry:
VDS | Lo rny < CpllvlloBrrorz )

1 nor
Sup "/B ( )Wd' Vpi®ldy < Cyllvlluparor -

zel',r<p r

Similarly, this proposition is just a rewrite of [12, Proposition 5]. By these two propo-
sitions, we are now ready to prove Theorem 6.1.2.

Proof of Theorem 6.1.2 admitting Proposition 6.2.7 and 6.2.8. Let i € N. We first con-
sider the contribution from the tangential part. We take a cut-off function 6; € C2°(Ua,;)
such that §; =1 on U,; and 0 < 0; < 1. We next set

qﬁn = 0;pf*™ + E x (p}:anAOi + 2V, - than) .
By definition, Proposition 6.2.7 says that

_Aqtan _ _A(elpizgan) +p12:anA0 + 2v9 vptan

= 0; div w!®™ = divw!™

in Q as supp wi* C U, ;. We then set

tan . tan
Zq ~

Since supp ptan C Uspi, by Proposition 6.2.7 we see that

Z ||v lpz 1

Since our partition of unity for I'” is locally finite according to Proposition 6.2.2 and 6.2.3,
we can deduce that

(R")
i=1

ZszHm Rn) < 8Niflv2]|p2(q) < 8Nu||v]lr2(q)
=1

with the constant N, defined in Proposition 6.2.2. Suppose that B is a ball of radius
r(B) < p. If B does not intersect I, then

1 LIVt = (V) Ly = 0
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for each i € N. If B intersects I'?”, then by the proof of [Lemma 5.4.2, Chapter 5], we see
that B intersects at most N, neighborhoods of {Us,(z;)|z; € S}. Hence in this case, we
have that

(Oipi) — (ZV praln> 'dy<z 0,05 Bro®mn)

< CPN*HU||UBMOL2(Q)-

Thus, we deduce that

tan

Zl% 1

< CpNi|vllupmorz@)-
BMOL?(R™)

Since supp HZptan C Uspi, by Proposition 6.2.7 and 6.2.2 we have that

[Z V(i)

In addition, as

tan

lpz 5) < CpN, ||UHUBMOL2(Q)'

] BMO(R")

IV | p2@ny < Uil "1V (015 | 1 (rm) < Cpllvzill 2 e

similar argument as above implies that

Zv @ ga;

Hence, we obtain that

< Z IV @i |2y < Co Y 2l z@mey < CoNellvll 2y

R™) i=1

tan

ZpZ

< CpNillvlluBrmorz(e)- (6.2.4)
BMOL?(R")

Let ffon = pfanAf; + 2V, - Vpia™. Since supp ff*" C Us;, we actually have that

HfitanHLl(UQ,J,,-) < |Ugpl? - ”fz'tanHL2(U2p,i)~

By the same argument in the above paragraph which proves the estimate (6.2.4), we can
show that -
fi™ + I < CpNi|lv]]
i NLYRr) = UplV«||VlyBMOL2(0)-
BMO(R") =1
By an interpolatlon (cf. [5, Lemma 5], [19, Theorem 2.2], [18, Theorem 1 and Remark 1]),
we see that the estimate

tan tan

> ] -

LI(R") |: i=1 BMO(R")

o) (6.2.5)

: zf;an

=1

BMOL(R™)
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holds for any 1 < s < co. Since VE is in L” (Bg,(0)) for 1 < p' < n/(n —1), it follows that

sup |VE x <foan)’ <C, foan .
R™ i=1 i—1 LP(R™)

Thus, we deduce that

< CpNi|vllomorz@)-

vr . (3 0)

=1

sup
R'n
By the well-known Hardy-Littlewood-Sobolev inequality, see e.g. [1, Theorem 1.7], the

estimate - -
HVE . ( > ff*m) >_fm
i=1 i=1

holds with r = HQ—fQ Hence by (6.2.5), we get that

o+ ()

Combine with (6.2.4), we finally obtain that

<C
)

L2(R" L7 (R")

< CpNilvllusmorz@)-
BMOL?(R™)

V@™ | Brorz@) < CoNellvlluprorz)-

tan

By Proposition 6.2.7, the control on the boundary with respect to ¢;*" is estimated by
1
sup  — [Vd - Vg™ dy < C,Ni||vllyprmor ()
xzelr<p T By ()

as the partition {U,(x;) | x; € S} is a locally finite open cover of I'” according to Proposition
6.2.2.
Set
@ = 0ipi™ + E x (p"Ab; +2V0; - Vpi')

1

and
x
nor ,_ nor
q = E a1 -
i=1

By making use of Proposition 6.2.8 and repeating the whole argument above that treats

the case for ¢i*", we can prove that

IV ooz ) < CoNullvlluprorz(o)
in the same way. Then we set
o= g + g™t + g
By our construction we have that
—Aqy = —Aqi — Agi™ — Al
[e.e] oo
=divu, + Z div w*™ + Z div w;*

i=1 i=1
= div(v; + v2) = divo

in . We are done. O
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6.3 Neumann problem with bounded data in a perturbed C?
half space with small perturbation
We consider the Neumann problem for the Laplace equation in a perturbed C? half space

in R™ with L*°-initial data. We shall begin with the half space. Let E be the fundamental
solution of —A in R™. A solution of the Neumann problem

Au=0 in R

ou (6.3.1)
- d o OR'}
is formally given by
u(@) = [ N(z,y)g(y) dH" ", (6.3.2)
OR™

where N denotes the Neumann-Green function. In the case of a half space, it is well-known
that
N(x7y) = E(.Z' - y) +E((IZI - ylvxn +yn)

Its exterior normal derivative ON/dn, for y, = 0 is nothing but the Poisson kernel with
the parameter x,,. By symmetry we observe that

7i r / / 1 /
. /Rn1 E(@' —y,zn)g(y) dy’ — 59(2")

as T, > 0 tends to zero. Thus u gives a solution of (6.3.1) formally. The function

E x (Somn ® g) = B2~y 2n)g(y') dy
+

is called the single layer potential of g. For g € L*(9R"}), we let g(z',z,,) := g(2’,0) for
any z € R". Natrually, g € L*(R"). Let lrn be the characteristic function associated
with the half space R. In this case, we have that

VE % (0orr ®g) = V0y,E *1rng

Hence by the L>*-BM O estimate for the singular integral operator [16, Theorem 4.2.7], we
recall the following.

Proposition 6.3.1 ([12]). There exists a constant C, independent of g, such that

[V(E * (borr ® 9))lpmomn) < CligllLeomn)-

Since —0,, (E * (or ® g)) is the half of the Poisson integral, i.e.,
1
00 (B oy 99)) = 5 [ Paa = yale/) )
Rn—1
we also have the following.
Proposition 6.3.2 ([12]). The estimate
1
|0x, (E * (domr: ®g))HLoo(Ri) < 59z~ (omr)

holds for g € L>(0R'Y).
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We then seck to establish these estimates for the case where € is a perturbed C? half
space with small perturbation. Here and hereafter, we set

QO =R} ={(2,2,) e R" |2, > h(z))}

with o € C2(R"!) satisfying smallness condition (6.1.2) and I' = ORY. Let 1 o

Ry (0)
the characteristic function associated with Bag, (0') in R"™1. We define g1, g2 € LOO(F)
setting g1 (2', (') 1= U, o (@)g(a!, b)) and go(a, h(a')) := g(a’, h(x')) 1 (a', (")
for any 2’ € R* L.

be
by

Lemma 6.3.3. Let Q2 = R} be a perturbed C? half space in R™ with boundary T = ORJ.
(i) (BMO estimate) There exists a constant Cy such that
[V(E*(r ® 9))lprmomn) < Cillglle=) (6.3.3)
for all g € L>(T).

(i) (L estimate for normal component) There exists a constant Cy such that

V-V (B % (6 @ 0 peqronriy < Col9l, oy - (6.34)
for all g € L>*(T") N H_%(F).
Here E* (or ® g) is defined as Ex (dr ® g)(z) := [ E( g(y) dH"1(y) for a function

g on I'. We shall prove Lemma 6.3.3 in followmg subsectlons

6.3.1 BMO estimate
Lemma 6.3.3 (i). We define g3 € L*°(0R}) by setting

| g2(2!,0) for |2'| > 2Ry,
ga(’,0) = { 0 for |a'| < 2Ry

By Proposition 6.3.1, the estimate

[V(E * (0orz ® 2))]Bmo®n) < Cllg2ll Lo omn) < CligllLee(r)

holds with C' independent of g.

Note that the signed distance function d is C? in T'?°, see [14, Section 14.6]. Let § < pg/2.
We take a C? cut-off function 6 > 0 such that #(c) = 1 for 0 < 1 and 6(c) = 0 for o > 2.
By the choice of &, we see that 0 = 6(d/d) is C? in R". We extend g; € L>®(T) to
g§ € L>=(I'?) by setting

g1(x) := g1(mx)
for any = € I'?® with mz denoting the projection of z on I'. For 2 € I'%| by considering the
normal coordinate x = 9 (n) in Uss(mz), we have that

(de)w : (ngf)w = 67711 (gf)iﬁ =0

s (gD)y (0, ) = (95)¢ (1, B) for any || < 26 and «, 8 € (—24,20). Hence, we see that
Vd-Vg§=0inT?
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Let us consider g7 . := 0497. A key observation is that

or ® g1 = (Vlg - Vd)gs .
= dlv(giclﬂvd) — 1o diV(giCVd),
0'(d/s) .

diV(giCVd) = gicAd + Vd - v.gic = gicAd + 5 g1-

Thus
VE % (51“ & g1) = Vdiv (E * (giClQVd)) — VE % (1ngf9’5) =1L +1

where fp 5 := 03Ad + w. By the L*°-BM O estimate for the singular integral operator
[16, Theorem 4.2.7], the first term is estimated as

] Bro®n) < CllgiVdll L) < Cllgllpe(r)
Let U, := {x € T?||(nz)'| < 2Ry,}. Since

A= sup |z|"7V|VE(z)| < oo,
2€R™\ {0}

for z € R with d(z,Q) = infycq |z — y| < 1 we have that

I(x)] < A / L dylfosllze o 9 ey < Crysllglem

with Cg, s depending only on Ry, and 6. For x € R" with d(z,U.) = infyep, |z — y| > 1,
the above estimate holds trivially as |z —y|~~1 <1 for any y € U.. The proof of the first
part of Lemma 6.3.3 is now complete. O

6.3.2 Estimate for normal derivative

We shall estimate normal derivative of E.

Lemma 6.3.4. Let Q be a perturbed C? half space in R™ with ' = 0Q, v < py. Then

(Z) oF 1
o o n—1 _ _
- on, (x —y)dH" " (y) 5 for xel,,
(i)
S £ ( )‘ dH" 1 (y) <
u —(x — 0.
:):Ellz T any Y Y

Proof. (i) This follows from the Gauss divergence theorem. For a bounded smooth do-
main D, we have that

8—E( )dH" H(y /AEQB—

oD 3ny
Since AyFE(x —y) = —0(z — y), we obtain that
OFE

[ — n—1 —_
- 811y(fﬂ y) dH" " (y) 1
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for x € D. We take the domain Dpg as

Dr:=Rj;N {(yayn) | yn < HhHL"O(R"*U + 6} N {’y/| < R}

with € > 0. Suppose that R > Rj. By applying the Gauss divergence theorem in Dpg,
we deduce that

OE OE
1= = a i)+ [ Sy iy
yo=hllcote, Oy yer, Ony
ly'I<R ly/|<R
oF
+ 2 o= ) (),
0<yn<[hlocte, Iy
ly'|=R

The last term tends to zero naturally as R — oo. In the first term, since n,, is pointing
upward but z is located below {(v/, yn) | yn = ||h|loo + €}, the kernel is exactly the half

of the Poisson kernel. Hence, the first term tends to —% as R — co. We obtain (i).

Let us observe that
—n (y,h(y) = (-=V'h(y).1) /w(y)
with w(y’) = (1 + ]V’h(y’)|2)1/2, where V' is the gradient in 3’ variables. This implies
that
OE o(y')

n0(n) 92 (¢ — ) = ;
oy o) (12— P+ (@ — n(w))?) "

for y € I' with
o(y) = -V'hy) (&' —y) + (2, — h(y')) where z, > h(z'), 2,y € R" L.

We set ,
o(y)

(!x’ — )2+ (2 — h(y’))Q)n/Q.

By the Taylor expansion, for |2/ — 3’| < 1 we have that

K(x/> y/7 iL‘n) =

h(z') = h(y) + V'R - (2" = o) +r(@,y))
with
r@y) = @ — )T /01(1 —0)Vh (62" + (1— 0)y) O - (o' — ).
We obtain that

o(y) = an — (@) +r(2'y")

with an estimate
(@, y")| < IVl oo By @y |2 = - (6.3.5)

We decompose K into a leading term and a remainder term

Ky, xn) = Ko(@, Y, 2n) + R(2', Y, z0)
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with
Ty — h(2)

(I = 12 + (w0 — nly))?)

R(x’,y’,xn) — r(z,y)
(I = 12 + (@0 — nly))?)

KO(m/7y/7le) = n/2

n/2’

The term R is estimated as
|R(:L'/,y,, xn)‘ < HvlzhHLOO(BM:L"))’x/ - y/‘Z—n
for |2’ — y/| < 1 by (6.3.5). Hence,
/ ‘R(w’, Y n)
yel’, w(y,)

|z’ —y’|<1

dH" " (y) < Cnl| V2R oo (mr-1),-

Since
o) < V'R 2" = Y| + 2] + [R(Y)]
for any ¢/ € R"™!, we have that

[ e |

Iy —2!|>1 ly/ix/|21
y'—z'|>
+/ |xn| dyl
ly'—x’|>1 |£C/ - y/|n

Since the support of h is contained in Bg, (0’), the first two terms of (6.3.6) can be
estimated by Cg,, nllh||c1(rn-1). Note that there exists a constant C, independent of
x € I',, such that the estimate

YRy dy + / Ih(y)| dyf

ly'—2/|>1

(6.3.6)

|z, — h(2')| < Cv

holds for any = € I',. The third term of (6.3.6) is estimated by C(v + ||h|| o (rn-1))-
By (i), we observe that

TLO((TL) / K(xlvy/>mn) n—1 / KO(:LJ?y,axn)
= ST gL (y) + 05T
2 yel, w(y/) ( ) yel, w(y/)

ly/—='|>1 ly/ —='|<1

dH" " (y)

R(.I/,y/,l'n) —1
[ R g
yel’, w(y/) ( )

ly/—2’|<1

The term K is very singular but it is positive for z € I',,. Hence, we have that

Ko(ZL‘/,y/,l‘n) -1 na(n)
AN LA Rk VAP L WL < m - .
/yeF, w(y) H" (y) < 5 +CRr,, (H ||02(R 1+ 1/)

ly/—a2'|<1

Therefore, we finally obtain the estimate

/8E
r

omy
which holds for any « € T',. The proof of (i) is now complete.

na(n)
2

dH" ! (y) <

(z —y) + Crym - (12llc2mn-1y +v),
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6.3.3 Review of boundary integral equation
For g € L*>(T"), we define the double layer potential

oE

(Pg)(@) = | 5=(x—y)g(y) dH" '(y), zel,,
I Yy

where 0/0n, denotes the exterior normal derivative with respect to y-variable.
Theorem 6.3.5. Assume that v < pg.

(i) There exists a constant Cy,, depending only on h, such that
1Pgll Lo (r,) < Chllgll Lo r)-

(ii) The boundary trace is of the form

(4(Pg)) ', (') = 59(a! h(a')) ~ (So) (o', h(a))
for g € L>°(T"), where S is a bounded linear operator on L>°(I") satisfying
1]l zoo(ryss poo(ry < Co(RETH 4+ DAl c2rn1y
with some constant C, independent of h and g.
Proof. (i) This follows from the second part of Lemma 6.3.4 directly.

(ii) Suppose that x € ', with |2/'| > 2Rj,. By decomposing ¢ into a straight part and a
curved part, we see that

OF
(P9)®) /{yefly’lzmh} any( ¥)92(y) (¥)
+/ gi(w — g1 (y) dH " y) = L (x) + L(x).
{yer||y'|<2R;} 9Ny

Note that

Ii(z) = — / P, (2" =y )g2(y) dy' = — / Py, (2 =y gy dy'.
|y/‘22Rh Rnfl

Let x tends zg on the boundary, in this case we have that I; tends to %ﬁ(mg), which
is indeed 3g(zo). Recall the proof of the second part of Lemma 6.3.4, if |z{| > 2Ry,
then we have that

[I2(20)| < CoRy 1Bl c2@n—1) 191 oo (Bag, (0)-
For zy € T with |z(| > 2Ry, by setting

(Tsg) (w0) = / 87E(ﬂco —y)g(y) dH" " (y),

{wer | ly'|<2R,} 9Ny

we get that .
(7(Pg)) (z0) = 59(x0) + (Tsg) (o)
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with

I Tsllop < CuBy ™ IRllo2mn-1)-
Suppose that = € T, with |2/| < 2Rj,. There exists a bounded C? domain D, C
such that 0D, NT' = {y € T'| || < 2Rp}. Let us recall a standard result concerning
the double layer potential, see e.g. [17, Lemma 6.17]. Let f € L*°(0D.), then the

boundary trace of the double layer potential
OF _
@NE) = | —(z=9fly)dH" (y), z¢€D.

8Dc 8ny
is of the form

(@) = 51w+ [ Cw—piw @)

for w € 0D.. We define g. € L*(0D,) by letting

oF

(w) = gi(w) for wedD.NT,
9l =90 for we dD.\T.

Without loss of generality, we may assume that {x € T, ||2'| < 2Ry} C D.. Thus,
for z € ', with |2/| < 2Ry, we have that

(Qge)(z) = (Pg1)(x).
Let x tends to g on the boundary, we see that
(1(P1)) (o) = (+(Que)) () = (o) + (Teg) (o).

where (T¢.g) (o) is defined as
(Tig)e0) = [ OF (2o — y)g(y) M1 (y).

{yel | ly'|<2R,} Ony

Again, the proof of the second part of Lemma 6.3.4 tells us that
| Teg(x0)| < CuRy ™ hllo2 1) 19ll Lo (Bar, (01))-
Note that in this case,
OPg)eo) == [ Pugylah — 1 oals')
ly'[>2R,

By the argument in proof of Lemma 6.3.4 (ii), we can deduce that

Pa) o < [ IV bl g / WMzegey
ly'—zp|<1 |‘TO -y ’ ly' —z(|>1 |‘TO -y ’

< Cullbllc2@n—1)ll9ll Lo (ry-
Therefore, by setting
oF

(89) (o) = = | 5=(z0=9)g(y) dH" " (y)
r ony
for zp € T’ with |z(| < 2R}, and
OF
Sg)(xo) = — / —(z0 — y)g(y) dH"(y)
(9) {yel | ly'|<2R,} 9Ny

for zp € T’ with || > 2R},, we obtain the second part of Theorem 6.3.5.
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6.3.4 Solution to the Neumann Problem

We would like to give an essential tool for proving Lemma 6.3.3 (ii). Let us recall that for
fe H%(F) we mean that the norm

_ 2 >
Ly = (W + [ [ ZIOE oy areii)

is finite, see e.g. [24, Section 1.3.6]. Our essential tool is a similar result to [13, Lemma 3.2].

Proposition 6.3.6. Let n > 3. Suppose that f € C*(R" ') satisfies
supp f C B1(0)°,  [f(2)]- [2'["" < e, [VIf(@)] - |2'[* < e

with some constants ¢1 and ¢y independent of ©' € R"™1. Then the quantity

1|2
gy + [ /R ) /<|3>| i dy

1s finite which depends on n, c1 and co only.

Proof. By a direct calculation, we see that

11721y < 01/ P2

dy' < Chey.
B1(0)¢ |y

It is sufficient to estimate

YV
RrRn-1 JRn—1 y|

We follow the argument that proves [13, Lemma 3.2].

Assume that |2’| < [y'| and connect 2’ and 3 by a geodesic curve in B,/ (0')¢. Since the
curve length is less than (7/2)|2' — ¢/|, by a fundamental theorem of calculus, we observe
that

IN

[f(@") = f)| < (m/2)l2" — o/ | - sup{|V'f()| | 2" € Bl (0')°}

(m/2)cala’ — /| - || 7"

IN

Since the integrand of I is symmetric with respect to 2’ and 3/, we now estimate
I N /|2
2 Dy p, 12—V

Dy={@"y) [ 1<l <yl |2 = o/| < |2/},
Dy ={(a"y) [ 1< || <yl |2 —o/| = |2/}

with

To estimate I;, we observe that

@) = £ 2 -
‘ (’xa_y/in) S(?T/2)02|33,| 2 ’$/_y/| (n—2)

< (7T/2)62|$,‘_2n+1+6|$/ _ y/|—(n—2)—1—5
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for 0 < 0 < 1 since |2’ —¢/| < |2/|. Thus,

hei | [ s
Bl(OI)C Bl(x’)

+ (7_‘_/2)02/ / |y/ B :L_/|—(n—2)—1—(5 dy/|$,‘_2n+1+6 dZEl < 0.
Bl(ol)c Bl /)C
To estimate I, we observe that

£ = FGOP _F@OE + @O

< 4 n (2n—2)
e
since |2/| < |¢/|. Since |2’ —y/| > |2/| in this case, we have that
|x/ o y/|—n|$/|—(2n—2) < ‘CL’I _ y/|—(n—2)|x/|—2n‘
and
‘IL‘/ N y/’7n|x/‘f(2n72) < ’:B/ N y/|7(n76)‘m/’—(2n72)76
for 0 < 0 < 1. Hence,
I2<401/ / =2 gy |2 |72 da!
B1(0")¢ J By(z')
+401/ / ly' — 2|~ dy/ |2/~ e < .
Bl(ol)c Bl(xl)c

Now we are ready to give a proof to Lemma 6.3.3 (ii).

Proof of Lemma 6.3.3 (ii). Let x € T'p,. Suppose that |2/| > Rj,. In this case, we decom-
pose

Vd(z) - V(E * (0r © 9))(x) = 0, (E+ (5F®9))()
0, (B + (Gomz 0 ) 0) + [ S = n)on(s) a1 o)

By Proposition 6.3.2, we see that

_ 1, 1
00, (% (Bomy ©79)) (2)] < 2T om) < glglliecr
By Lemma 6.3.4 (ii), we have that

oF _
A (@ = y)g1(y) dH " (y)| < Cllglpoe(r)

r 8ny

Thus for z € T',, with |2'| > Ry, we show that
[Vd(z) - V(E * (or ® 9)) ()| < Cllgllz~r)

with C' independent of g.
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Suppose that |2/| < Rj,. We decompose

Vd(a) -V (B (v © 1)) (@) = [ (Vd(a) = V() - VE( = y)on () a0

OF
/3 —(z—y)g1(y) dH" y) = I, + L.
n,

For |y'| < 2Ry, there exists a constant M, independent of z and y, such that the estimate
Vd(z) — Vd(y)| < M|z — y|

holds. In this case, we have that

[ (V@) - Vi) - VEG - Do) dH“@)\ <M s gl

ly'|<2R,, [T —

Thus, |1(z)] is estimated by Cp, M Ry||g| oo (r). By Lemma 6.3.4 (i), |I2(z)| is estimated

by Cl|gll Lo (r
We deﬁne that

Hy(y') = (Vd(w) VE((y', h(y) - 9«“)) g, (@) (Y)
for 5/ € R"~!. With this notation, we have that

|Vd(z) - V(E % (6p @ g2)) ()] S/Rnl |Ha(y)g(y', h(y"))| dy'.

Note that H,(-') € C*(R""!) satisfies
supp Hy (') C Br, ('), |[Ho(y)| - |2 =/ |" <er, [V Ho(y) - 2" = ¢/|" < e

with some constant c1 and ¢p independent of 2,3y’ € R"~!. By Proposition 6.3.6, we deduce
that H, () € H? (T"). By the duality relation, we see that

91l -3y < Cnllgl

|Vd(z) - V(E * (5r @ g2)) ()] < [|Ho ()| by =

HE(T) H-3(r)
Combining all estimates above regarding different 2/ € R"~!, we are done. O

Finally, if we can show that Sg € H _%(F) for g € L>°(T") with the operator norm

P

sufficiently small, then we solve Neumann problem (6.1.4). Fortunately, we have an affir-
mative answer to this question.

Lemma 6.3.7. For g € L°(T"), we have that Sg € L*(T') satisfies the estimate

n—1
1591l 2(ry < C* (k]| c2mn-1y + (B + 1R, lgllzeery

with some constant C* independent of h and g.
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Proof. Let x € T with |2'| < 3Ry,. Since

1591 oo (ry < Cu(BRy™ + D2l c2ma—1) 9]l Lo (r)
by Theorem 6.3.5 (ii), we have that

2
<A F||3R}wmwﬁdﬂmﬁa) < ooz gl mn({z € T 12'] < 3R1))
S z'|<3Rp

NI

where p({z € T'||2/| < 3Rp,}) denotes the surface area of {x € I'||2/| < 3Ry} and C, ) =
C.(Ry~" +1). Thus,

1
(/ wmaﬁw#*vﬁ < Con BT oo 9l
{z€l'| |2/|<3Rp}

Suppose that x € T with |2/| > 3Ry,. For y € T’ with |y/| < 2R}, the triangle inequality
implies that |z’ — | > |2/| — 2R}. In this case, we have that

1 [ Bar,, (0)] - llgll oo (r)
S < ——dy o) < b
Sl [ e Wl < SR

Hence,

- 1
Sg(@)|2dH" (z) < CRX™ V9] / da'.
/{xermzmh}‘ ()] (z) no gllzee ) (ar>3R,) (|| — 2Rp) 2=

Assume that R;, < 1. We have that

%

1 / > (T‘ + ZRh)n § n—2—i o
/ | —9R;)2(n—1) do’ < C 2n— dr < CZ R / 2n—2 dr.
{l>3Ry} (|| = 2Rp) Ry T = Ry T

Therefore, we obtain that

1
2 n—1
(/ wmw?wﬂ*@QQSCRﬁ|mmﬂm
{zel'||2’|>3Rp}

O
Since L?(T) C H_%(I’) is a natural embedding, for g € L*°(I") we have that Sg €
H _%(F) satisfies the estimate

n—1
HSQHH_%(F) < C*(||hllc2ra-1y) + DR+ DR,Z gl

with some constant C* independent of h and g.

Proof of Lemma 6.1.4. For ¢ € N, we have that

128) gl -y oy < 2C* (IRl c2mn-1) + DB + 1R, 7 1l(29) Y9l ooy

3(n)

< (20" (Ihllcaro-1) + DR, )2Z TR+ DR a1y 9 pe )
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and
1(25) gll oo (ry < 2°CLRL™ + 1)'||All ez g1y 9l Lo ()

Let the perturbation A be sufficiently small so that

(B! + Dl ome) < 56

with C, defined in Theorem 6.3.5 (ii). Then the operator I — 25, which is bounded linear

from L*(T') to L*(I') N H 7%(1“), has a bounded inverse by a standard Neumann series
argument. The inverse of I — 2.5 can be constructed as

o0

(I-29)"" =) (25),

1=0

which is well-defined as a bounded linear map from L*°(I") to L>(I') N H 7%(11) since the
operator norm
||25||L°° () Loe(mynE-3 @) < 1

Therefore, for g € L>®(I')NH -2 (T"), the solution to the Neumann problem (6.1.4) is formally
given by
u(z) = Ex* (6r ® (2(1 —25)7'g))(z), z€Q

since Pg is harmonic in €.
If the L? estimate

IVE + (3r @ (2L = 25) ' 9) lzz@ne < €120 =28) 01l o b

holds, then we are done. Fortunately, we indeed have this L? estimate, we shall give a
proof to this estimate in the next subsection. Combine this estimate with Lemma 6.3.3, we
obtain our desired estimate

HVUHUBMOLZ( < CHg”Loo(I‘ NH™ ?(F)

with a constant C' independent of g. O

6.3.5 L? estimate to the solution of the Neumann problem

Firstly, we start with the half space case.

Proposition 6.3.8. For g € Hfé(c?R?}r) satisfying

/ g(y) dH " (y) =0,
OR™

the estimate

IVE (53Rn ®9)H L2(R%))" < C’||g||H 2(9R7)

holds with some constant C independent of g.



6. The Helmholtz decomposition of a space of vector fields with bounded mean oscillation
in a perturbed half space with small perturbation 159

Proof. Since

B lbory 99) = [ B = o)) d

the single layer potential E * (5331 ® g) is exactly half of the solution to the Neumann
problem (6.3.1). Since g € Hfé(aRZ‘r) satisfying

/ o) dH" () =0,
OR™

there exists a unique weak solution (up to an additive constant) u, € H'(R") to the
Neumann problem (6.3.1) which satisfies

IVt | L2y ))e < C”g”H’%(aRﬁ)

with C' independent of g, see e.g. [26, Remark 1.2 and Remark 1.3], [21, Section 1.7].
Therefore, the single layer potential 2F x (56R1 ® g) indeed differs from wu, by an additive
constant. We do have that

1
IVE (o @ 9)llz2myyyr = S IVllcamyys < Cllall -3 ogy -
We then generalize this result to any perturbed half space R}.
Lemma 6.3.9. Let Q0 = R} be a perturbed C? half space with T = 0. For any g €

L>*(T) N Hfé(lj) that satisfies

/ o(y) dH" () = 0,
T

the estimate
IVE * (or @ g)llz2(@ym < CNIN oo 1y

holds with some constant C independent of g.

Proof. Without loss of generality, we may assume that supp h C Byy, (0') for some My, > 0.
We set

n (¥, hY)) =1, )@ )9 (), 92y 1Y) = 9, MY)) — 91y, h(y'))
for any 3’ € R"!. Since g € L>(I), it is trivial to see that g; € L*(I") C Hfé(F). Hence,

we deduce that g1, g2 € L>(I') N H_%(I‘). Since supp g1 (-, h(-")) C Bap, (0'), there exists a
constant I. € R such that

o= [ awaw ) = - [ g
r r
Let g2 € L*°(0R'}) be defined by

sy [ 92@,0) for 2| > 2M,
gl 0) = { 0 for || < 2Mj,.
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Note that T : n — ¢ with ((v/,h(y")) = n(y’,0) for any v/ € R""! is an isomorphism
between H%(aRi) and Hé(I‘) For any n € H%(ORSLF), we have that

/ B)ny) dH () = / R W)C(y) dH(y).
3R:L_ I

By considering

1930, 3 ppeey = SUD

[l

, — d?‘[n_l ,
b (oRz) P /<9R1 92(y)n(y) (y)
HZ(8R7)

we can deduce that gz € H 3 (OR) satisfies the estimate

g2 < Cllgall,,

-3 o) < < Cllgl

“5(r H-3(I)

with C independent of g. Let f, € L>(0R) N Hfé(aRZ‘r) be defined by

0 for |2'| > 2M,,

,0) = i
fs(2',0) {|B2th(0,)| for |2/ < 2M,

where |Bapy, (0')| denotes the size of the ball Bayy, (0') in R"~1. Note that
| m)+ Ly an o) =o,
OR™

Let us recall an argument from the proof of Lemma 6.3.3 (i). Let § < po/2 < R./2. We
take a O cut-off function § > 0 such that (o) = 1 for ¢ < 1 and (o) = 0 for ¢ > 2. By the
choice of §, we see that 6; = 6(d/§) is C? in R". We extend g; € L=(T") to ¢§ € L>=(I'%)
by setting

g1(x) := g1(mx)
for any 2 € T2 with 72 denoting the projection of z on I'. As explained in the proof of
Lemma 6.3.3 (i), we have that Vd - Vg§ = 0 in T'?°. Set 9% . = 0ag{. Since

or ® g1 = (Vlg - Vd)g5 .
= dlv(giclﬂvd) —1la diV(giCVd),

e
gla

0'(d/s
div(giCVd) = gicAd + Vd - VgiC = gicAd + (5/ )

for any x € R™ we have that
VE  (6p ® g1)(x) = Vdiv (E * (¢f 1aVd)) (z) — VE  (1agi fo,s) (x) = Ii(x) + I2(2)

where fps5 = 04Ad + w. Since Vdiv E is bounded in L? for 1 < p < o0, see e.g.
[15, Theorem 5.2.7 and Theorem 5.2.10], we deduce that

11l (z2mmyn < Cllgf 1oVl (L2@nyyn < Cllgllpe(r)

as suppgf,. C {z € R"||d(z)| < 24,[(mz)'| < 2M}}. Since VE ~ |- |1=" by the famous
Hardy-Littlewood-Sobolev inequality, see e.g. [1, Theorem 1.7], we have that

1221l (22 < Clllags fosllrme)
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where r = m As supp g5 fo.s C {z € R™||d(z)| < 20, |(mz)'| < 2M},}, the estimate

I1agi fosllor@mny < CllgllLoe(r)
holds. Hence, we obtain the L? estimate for g1, i.e., it holds that
IVE * (6r ® g1)ll(z2()» < Cligllzee(r)-

By Proposition 6.3.8, we have the estimate

IVE * (dory ® (@2 + f3)) lz2wnyyn < C (72l - ory) T 1fsll -3 8Rn))

with some C independent of g. Since fs € L*(OR"), we have that

<

h2 Mh2

£l o Se - llgllzo=(r)

where S. := u({y € T'||y/| < 2My}) denotes the surface area of the curved part {y €
I'||y'| < 2M}}. Hence, we get that

IVE * (Sorr @ 52) l(z2mayn < IVE * (Sory © fi)lz2@nyn + Cligl oo iy oy

Since f, € L>°(0R'}) and supp fs C Bap, (0'), by the argument in the above paragraph, we
can deduce that

C

.I’.
Z‘ril ’c
iTzL

IVE x (dorr @ fs)ll 2wz < Cllfsllze@ory) <

Note that for any = € €, it holds that
VE x (0r ® g2)(x) = VE * (0gry ® g2)(2).
In addition, for z = (2/,z,) € R, we have that
[VE % (0ory @ G2) (2, —a5)| = |[VE * (Jory @ 32) (2, 2)|-
Hence, we deduce that

IV % (B © )l oy < 2VE * (omy @)y < 9l by

Combine with the L? estimate for VE * (6r ® g1), we finally obtain our desired L?
estimate

IVE (o0 @ g)ll 2@y < CNN e i3 )

with some constant C' independent of g. 0

Ifge L>*(I)N H 2 (T)N LY(T'), then we obtain a similar lemma to Lemma 6.3.9 which
does not need to require the integral of g on I' to be zero.

Lemma 6.3.10. Let 2 = R} be a perturbed C? half space with T = 0. For any g €
L) N H2(T) N LY(T), the estimate

holds with some constant C independent of g.
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Proof. Since ||g||1(ry is finite, there exists a constant I. € R such that

/F gay) AH" () = I,

where g2(y', h(y')) = 1B2Mh(0/)c(y’)g(y’,h(y’)). Since we can estimate [Ic| by ||g| 1y di-
rectly, following the proof of Lemma 6.3.9 gives us Lemma 6.3.10. O

For g € L>(T'), by Lemma 6.3.7 we see that Sg € L?(I'). Actually, we can also estimate
the L' norm of Sg.

Lemma 6.3.11. For g € L*(T), we have that Sg € L'(T") satisfying the estimate
1Sgll iy < C((RE™ + DAl c2mn-1y + 1) Ry lgll oo (ry
with some constant C independent of g and h.

Proof. Let x € T with |2/| < 3Ry,. Since

1Sl oo (ry < Cu(BRy ™ + DAl c2n-1) 9]l oo ()

by Theorem 6.3.5 (ii), we have that
/ 1S9() dH™ (=) < Conllbllcamn—sylgll ey - 1({z € T[] < 3R4Y)
{z€el'| |2'|<3Rp}

where p({z € T'||2/| < 3R),}) denotes the surface area of {x € I'||2'| < 3R} and C, ) =
Cy (R} +1). Thus,

/ 1Sg(2)| dH™1(2) < Con Rl oz (o1 llgl o (r-
{zel'| |2'|<3Rp}

Suppose that « € I with |2/| > 3Rj,. Then we have that

1
/ |59($,70)\ da' < / |91(y/ah(y,))| ) (/ ,_,nldﬂvl> dy’.
la/|>3Rp, {vel | ly'|<2R,} jo/[>3R, [T =Y/

By Holder’s inequality, we deduce that

1 2
/ |Sg(a",0)] dz” < Ac1:/2||9”L°°(F) ) / </ Imdx’) dy’
|z'|>3Rp, ly'|<2Rp |z’|>3Ry, 2" — 3|

where A, := p({y € T'||y] < 3R,}) denotes the surface area of the curved part {y €
T'||y'| < 2Rp}. By Minkowski’s inequality for integrals, see e.g. [25, Appendices A.1], we

see that
2
/ </ 71 da:') dy’
<2k, \Jjo’|>3m, 17 — Y"1
/ </ 1 . 1/2 .
< — dx ) dy
ly'|<2Rp, |z'|>3Ry, |z — 3//’2("_1)

1/2

1/2
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For y € T with |y/| < 2R, the triangle inequality implies that |z’ —y'| > |2’| — 2Rj. In this
case,

1 1
— __di' < / dx’.
/|:c’|>3Rh |2/ — y/|2(n=1) w|>3R, (|2 = 2Rp)2(=1)

Recall the calculation in the proof of Lemma 6.3.7, it can be deduced that

JA——
x < .
@/|>3R,, (|2'] = 2Rp)2(n—1) Ry
Therefore,
n—1
Lo, 1896 0lds" < AVZCRE gl
Tz h
Combine with the L! estimate of |Sg| on {x € T'| |2| < 3R}, we are done. O

Proof of Lemma 6.1.4 (Continued). If
n—1 1
(Rh =+ 1)||h||C2(R"*1) < 2761*,

then Theorem 6.3.5, Lemma 6.3.7 and Lemma 6.3.11 together imply that

o

> (28)'g

=1

< Cllgllzoe(ry

=

Loo(D)NH ™ 2 (D)NL ()

with some constant C' independent of g. Let us view VE (5F ® (2(I — 25)*19) as

VE * (0r ®2g) + VE * <5F ® (2 i@sy’g)). (6.3.7)
=1

Since the integral of g on I' is zero, by applying Lemma 6.3.9 to the first term of (6.3.7),
we obtain that

IVE * (61 @ 20) 2oy < Cl9ll b oy

Since
oo

3 (25)ig € LXT) N L) N H-3(D),
=1

by applying Lemma 6.3.10 to the second term of (6.3.7) and estimating the L' norm of
>2i21(28)'g by ||gllzeo(r), we get that

vEs (5w (20080%) )| <Clal ey
H Z (L2(Q))" Leo(TNH™2(T)

=1

This completes the proof of Lemma 6.1.4. O
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