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Abstract: This thesis shows some relationships between multi-dimensional continued
fractions and Fujiki-Oka resolutions of cyclic quotient singularities. First, we will show
a necessary and sufficient condition for the Fujiki-Oka resolutions of Gorenstein abelian
quotient singularities to be crepant in all dimensions. This result is obtained in joint work
with Kohei Sato. Second, we introduce n-dimensional complete coprime cyclic quotient
singularities. It has a good resolution which is obtained by subdivision using only points of
Hilbert basis. Moreover, there is one-to-one correspondence between exceptional divisors
of this resolution and the multidimensional continued fraction.
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1 Introduction

1.1 Background

In this thesis, we study the resolution of cyclic quotient singularities which obtained by
multi-dimensional continued fractions. Especially, we pay special attention to crepant
resolutions and Hilbert basis resolutions.

Let G be a finite subgroup of GL(n,C), and let (Cn/G, [0]) be the n-dimensional
quotient singularity. In the case n = 2, the cyclic quotient singularity (C2/G, [0]) has a
unique minimal resolution, and the self-intersection number of each exceptional divisor
of the minimal resolution corresponds to a coefficient of the Hirzebruch-Jung continued
fraction related to the group action of G (see Section 3). As a generalization of the
Hirzebruch-Jung continued fraction, the multi-dimensional continued fraction was intro-
duced by Ashikaga to control the Fujiki-Oka resolution of cyclic quotient singularities of
type 1

r
(1, a1, . . . , an) (cf. [1]). The Fujiki-Oka resolution is a certain resolution of cyclic

quotient singularities proposed by Fujiki [14], and represented by Oka [34] as a toric res-
olution. Especially, the Fujiki-Oka resolution coincides with the minimal resolution in
dimension two.

On the other hands, the minimal resolution of quotient singularities is studied for a
McKay correspondence. If G is a finite subgroup of SL(2,C), then the quotient singularity
is Gorenstein, and the dual of the weighted graph obtained from the exceptional divisors
of the minimal resolution corresponds to the Dynkin diagram obtained from the non-
trivial irreducible representations of G. This correspondence remarked by J. McKay [31] is
called the McKay correspondence. This correspondence has not been shown in the general
dimension. It is because minimal resolutions do not necessarily exist for cyclic quotient
singularities in the case of n ≥ 3. The McKay correspondence has been generalized to
the case of n = 3 by Batyrev and Dais [3] and by Ito and Reid [22] as the following;

{Conjugacy classes of G of age i} ←→ {A basis of H2i(C̃3/G,Q)}

where C̃3/G is a crepant resolution of C3/G, i.e., a resolution whose canonical divisor of
C̃3/G is trivial.

Therefore the existence of crepant resolutions is a necessary condition to construct
the above correspondences, but, unfortunately, there does not necessarily exist a crepant
resolution of arbitrary Gorenstein quotient singularity. Hence, “The Existence Problem of
Crepant Resolutions” is a basic question to hold the McKay correspondence in a higher
dimension.

Existence Problem of Crepant Resolution: Do there exist crepant resolutions of
Cn/G for G ⊂ SL(n,C) with n ≥ 4 ?

As for known results with respect to the existence problem, when n = 2, the minimal
resolutions are always crepant. In the case of n = 3, all Gorenstein quotient singularities
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possess at least one crepant resolution. This result was proved by Ito [18, 19], Markushe-
vich [27, 28, 29] and Roan [36] case by case based on the classification of finite subgroups
of SL(3,C) given by Yau and Yu [41]. In the case of n ≥ 4, the Gorenstein quotient
singularities do not necessarily have a crepant resolution. On the other hand, Dais, Henk,
Ziegler, and others have proved that all complete intersection Gorenstein quotient singu-
larities possess at least one crepant resolution and have constructed some infinite series of
Gorenstein quotient singularities which possess a crepant resolution [7, 8, 9, 11]. Moreover,
some infinite series of Gorenstein quotient singularities that possess a crepant resolution
was constructed by others [15, 37].

In this thesis we introduce a necessary and sufficient condition for the Fujiki-Oka
resolutions to be crepant. And we proposed a crepant resolution of three-dimensional
abelian quotient singularities as a Fujiki-Oka resolution.

The generalization of crepant resolution of toric quotient singularities is a Hilbert ba-
sis resolution. The Hilbert basis resolution was introduced as a Hilb-desingularization in
[6, 7], and also G-désingularization in [2]. If a toric quotient singularity has a crepant res-
olution, then it is a Hilbert basis resolution [7]. We will consider Hilbert basis resolutions
instead of crepant resolutions for quotient singularities. In this thesis, we give a condition
for the Fujiki-Oka resolution that coincides with Hilbert basis resolution. In addition, we
give series of cyclic quotient singularities which holds weakly McKay correspondence on
the Hilbert basis resolution.

1.2 Statement of the results

In this subsection, we will introduce a summary of our results.

Definition 1.1. Let n be an integer greater than or equal to 1. Let a = (a1, . . . , an) and
r ∈ Z such that 0 ≤ ai ≤ r − 1 for 1 ≤ i ≤ n. We call the symbol

a

r
=

(a1, . . . , an)

r

an n-dimensional proper fraction.

We will denote by Qprop
n the union set of n-dimensional proper fractions and {∞}.

For n-dimensional proper fractions, Ashikaga defined the i-th remainder map Ri :
Qprop

n → Qprop
n and the remainder polynomial [1]. The i-th remainder map is defined by

the following. If ai ̸= 0, then

Ri

(
(a1, . . . , an)

r

)
=

(a1
ai , . . . , ai−1

ai , −rai , ai+1
ai , . . . , an

ai)

ai

where xai ≡ x (mod ai) with 0 ≤ xai ≤ ai − 1. If ai = 0, then Ri

(
(a1,...,an)

r

)
=∞.
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The remainder map describes the remainder of the division for one component of the
n-dimensional proper fraction. The remainder polynomial is defined by repeatedly acting
this map. Let a

r
be an n-dimensional proper fraction, and let I = {1, 2, . . . , n} signify the

index set of the variables.

Definition 1.2. The remainder polynomial R∗
(
a
r

)
∈ Qprop

n ⟨x1, . . . , xn⟩ is defined by

R∗

(a
r

)
=

a

r
+

∑
(i1,i2,...,il)∈Il

l≥1

(Ril · · ·Ri2Ri1)
(a
r

)
xi1 · · ·xil

where we exclude terms with coefficient (0,...,0)
1

and ∞.

Multidimensional continued fractions consist of two polynomials. Another polynomial
which is called the round down polynomial is introduced Section 3. The remainder
polynomial (resp. The round down polynomial) indicates the types of the quotient sin-
gularities (resp. the Zn−1-weight) which appear in each step of the Fujiki-Oka resolution
[14, 34]. The definition of the Fujiki-Oka resolution is also introduced in Section 3.

Our first main result is a necessary and sufficient condition for the Fujiki-Oka resolu-
tions of Gorenstein abelian quotient singularities to be crepant in all dimensions. This is
a joint work with Kohei Sato[38]. We shall show that this condition can be expressed by
the coefficients of the remainder polynomials as follows.

Theorem 1.3. (Theorem 4.1.) For a cyclic quotient singularity of 1
r
(1, a2, . . . , an)-type,

the Fujiki-Oka resolution is crepant if and only if the ages of all the coefficients of the
corresponding remainder polynomial R∗

(
(1,a2,...,an)

r

)
are 1.

In Section 4.4, we introduce an extension of the Fujiki-Oka resolutions to the abelian
case, which is named the iterated Fujiki-Oka resolutions. By using them, we shall gener-
alize this theorem to the abelian case.

Proposition 1.4. (Theorem 4.14.) Let ỸH1 , ỸH2 , . . . , ỸHk
= ỸG be a sequence of iterated

Fujiki-Oka resolutions for an n-dimensional Gorenstein abelian quotient singularity Cn/G.
The iterated Fujiki-Oka resolution ỸG is a crepant resolution of Cn/G if and only if the ages
of all the coefficients in the remainder polynomials associated with every ỸHi

(i = 1, . . . , k)
are 1.

As a corollary of this proposition, we have the following result of the existence of
crepant resolutions of three-dimensional Gorenstein abelian quotient singularities.

Corollary 1.5. (Corollary 4.15.) Any three-dimensional Gorenstein abelian quotient sin-
gularity possesses a crepant iterated Fujiki-Oka resolution.
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The proof of this corollary is an alternative proof of the existence of crepant resolutions
for the three-dimensional Gorenstein abelian quotient singularities, and that needs only
simple computations compared with known results.

Our second result is the property of complete coprime Fujiki-Oka resolutions.

Definition 1.6. The remainder polynomial R∗ is complete coprime if arbitrary coeffi-
cients (b1,...,bn)

b0
of R∗ satisfy GCD(bi, bj) = 1 for all i ̸= j. Moreover, the Fujiki-Oka

resolution is complete coprime if it is obtained by a complete coprime remainder polyno-
mial R∗.

In Section 5, we classify the type of cyclic quotient singularity which has a complete
coprime Fujiki-Oka resolution. In this case, the Fujiki-Oka resolution is a Hilbert basis
resolution, and there is one to one correspondence between exceptional divisors of this
resolution and the multidimensional continued fraction. Let G (resp. G′) be a cyclic group
of type 1

r
(a, b) (resp. 1

r
(a, b, 1 . . . , 1)). We denote by YG and YG′ the minimal resolution

of C2/G and the Fujiki-Oka resolution of Cn/G′, respectively. Then the following holds.

Theorem 1.7. (Theorem 5.11.) Under the above assumption, further assume that the
Fujiki-Oka resolution of Cn/G′ is complete coprime. Then the Fujiki-Oka resolution is a
Hilbert basis resolution. Moreover, there is a one-to-one correspondence between excep-
tional divisors of YG and exceptional divisors of YG′.

In addition, Section 5.3 shows several examples of complete coprime cyclic quotient
singularities which satisfy the Euler number of the Fujiki-Oka resolution equal to the
order of G. This is a kind of the generalized McKay correspondence.

Theorem 1.8. (Theorem 5.14.) Let H be of type 1
r
(1, r − n + 1) with r = (n − 1)k + 1

where r, n, k are some positive integers. For h = 1
r
(a, b) ∈ H, we have a two dimensional

proper fraction (a, b)/r. If R∗((a, b)/r) is complete coprime, then the Euler number of the
Fujiki-Oka resolution of Cn/G is the order of G, where G is of type 1

r
(a, b, 1n−2).

Our last main result is characterize binary trees which gives the Fujiki-Oka resolution
of the above two series of cyclic quotient singularities 1

r
(1, a, r− a− 1) and 1

r
(1, a, r− a).

For two-dimensional proper fractions, the remainder polynomial can be represented
by a binary tree (see Section 6). T (a,b)

r

denotes the binary tree which is obtained from

the remainder polynomial R∗

(
(a,b)
r

)
. We call the tree T (a,b)

r

terminal (resp. Gorenstein
canonical) if a+ b = r (resp. a+ b+ 1 = r ). This terminology comes from the fact that
the quotient singularity of type 1

r
(1, a, b) with a+ b = r (resp. a+ b+ 1 = r ) is terminal

(resp. Gorenstein canonical). In the following theorem, we will denote by Tx the binary
tree whose topmost node is x. Our result is:
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Theorem 1.9. (Theorem 6.12) Let T be a full binary tree. Let x1 be an arbitrary node
which has a parent node x, a sibling node x2 and a nephew node y. Then T is terminal
if and only if T satisfies the following conditions.

(i) A sibling node of a leaf is a leaf.

(ii) If | Tx1 |=| Tx2 |, then Tx1 = Tx2 = T (0,0)
1

.

(iii) If | Tx1 |<| Tx2 |, then Tx1 = Ty.

This theorem characterizes the shape of a terminal tree. Section 6 shows the Goren-
stein canonical tree version of this theorem. In addition, this result gives a condition for
combining two terminal trees. Let Σ1 (resp. Σ2) denote the fan which gives the Fujiki-Oka
resolution of the cyclic quotient singularity of type 1

2
(1, 1, 1) (resp. 1

3
(1, 2, 1)).

Fig. 1: Fujiki-Oka resolutions for type 1
2
(1, 1, 1), 1

3
(1, 2, 1) and 1

5
(1, 2, 3).

By combining two fans as in Figure 1, we obtain a new fan Σ which gives the Fujiki-Oka
resolution of the quotient singularity of type 1

5
(1, 2, 3). In general, we can’t determine the

type of this quotient singularity. However, since the binary tree T which is obtained by
combining T (1,1)

2

and T (2,1)
3

satisfies the conditions in Theorem 1.9, this tree is terminal.
In this case, the type of the quotient singularity is determined by denominators 2 and 3,
that is, it is the type of 1

2+3
(1, 2, 3) (the first component is always one). By combining

two terminal trees, we get a new economic resolution from two economic resolutions for
terminal quotient singularities.

T (1,1)
2

= Tv1 T (2,1)
3

T

vl

+
v1 v2

v

=
vl

v1 v2

v
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At the end of this section, we will introduce how this paper is organized. In Section
2, we recall some definitions and properties of cyclic quotient singularities as toric va-
rieties. In particular, we introduce a crepant resolution and a Hilbert basis resolution.
Section 3 explains multi-dimensional continued fractions and Fujiki-Oka resolutions. The
definitions of the proper fraction, the remainder map, and the remainder polynomial are
introduced in this section. In addition, we summarize the Fujiki-Oka resolution. In Sec-
tion 4, we will show the our first main result which is the condition for the Fujiki-Oka
resolution to be crepant. This section contains some application of our first result. We
will define the iterated Fujiki-Oka resolution and prove any three-dimensional Gorenstein
abelian quotient singularity possesses a crepant Fujiki-Oka resolution. Section 5 defines
the complete coprime quotient singularities and shows that the Fujiki-Oka resolution of
this singularity coincides with Hilbert basis resolution. In section 6, we will characterize
binary trees which gives the Fujiki-Oka resolution of the above two series of cyclic quotient
singularities 1

r
(1, a, r − a− 1) and 1

r
(1, a, r − a).

2 Quotient singularities
In this section, we construct certain crepant resolutions of the quotient singularity Cn/G,
for G is an abelian group using the methods of toric variety.

Most of the necessary fact in toric geometry can be found Oda [33], and the facts
about Hilbert basis resolution based on Bouvier and Gonzalez-Sprinberg[2].

2.1 Notations from Toric Geometry

The purpose of this section is to introduce some basic notions of toric geometry. Let
G be a finite abelian subgroup of GL(n,C) of order r. Then all elements in G are
simultaneously diagonalizable. Therefore, any element in G can be written as the form
g = diag(e

2a1π
√
−1

r , . . . , e
2anπ

√
−1

r ) where 1 ≤ i ≤ n and 0 ≤ ai < r. For simplicity, the
matrix diag(e

2a1π
√
−1

r , . . . , e
2anπ

√
−1

r ) is denoted by 1
r
(a1, . . . , an).

LetN be a free Z-module of rank n andNR = N⊗ZR. Let e1, . . . , en be a fixed basis of
N . If the convex hull Conv{0,n} contains no elements in N except 0 and n, the element
n ∈ N is said to be primitive. For n1, . . . ,nk ∈ N , the subset τ = R≥0n1+ · · ·+R≥0nk ⊂
NR satisfying τ ∩ (−τ) = 0 is called a rational strongly convex polyhedral cone where R≥0

is the set of all non negative elements in R. For simplicity, τ also signifies the finite fan
consists of all faces of τ . The dimension of a cone τ is defined as the dimension of R · τ
as vector space over R. If the dimension of a cone τ is n, then the cone is said to be
maximal. Let σ = R≥0e1 + · · ·+ R≥0en ⊂ NR . The toric variety X(N, σ) determined by
N and the finite fan σ is isomorphic to Cn. There exists a morphism of toric varieties
φT : X(N, σ)→ X(NG, σ) corresponding to the quotient map φ : Cn → Cn/G where NG

is the free Z-module of rank n satisfying N ⊂ NG and NG/N ∼= G as groups. Therefore,
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there is an element ḡ = 1
r
(a1, . . . , an) ∈ NG for each g ∈ G. We set NG as the following:

NG = N +
∑

1
r
(a1,...,an)∈G

1

r
(a1, . . . , an)Z,

and ḡ = 1
r
(a1, . . . , an) ∈ NG maps to g = 1

r
(a1, . . . , an) ∈ G by the composition of

the quotient map and the isomorphism from NG to G. We note that NG,R satisfies
NG,R = NG ⊗Z R.

Definition 2.1. Define the age of an element g = 1
r
(a1, . . . , an) ∈ G to be

age(g) =
1

r

n∑
i=1

ai.

Similarly, we define the age of an element ḡ = 1
r
(a1, . . . , an) ∈ NG to be

age(ḡ) =
1

r

n∑
i=1

ai.

Definition 2.2. Let g ∈ G and IG be the unit of G. Then, the rank

rank(g − IG)

is called the height of g and denoted by ht(g).

Proposition 2.3. ([3, Prop. 5.2.]) Let g ∈ G. The following formula holds.

ht(g) = ht(g−1) = age(g) + age(g−1).

We shall recall the definition of a crepant resolution in matters of toric geometry. If
a fan Σ subdivides the fan σ, then we have a birational map f : X(NG,Σ)→ X(NG, σ),
and the following relation holds between the canonical divisors:

KX(NG,Σ) = f ∗(KX(NG,σ)) +
∑

τ∈Σ(1)

aτDτ ,

where Dτ is an exceptional divisor corresponding to the one dimensional cone τ ∈ Σ(1)
in Σ and aτ = age(Aτ )− 1, where Aτ is the primitive element in τ . The rational number
aτ is called the discrepancy of Dτ .

Remark 2.4. Let Σ be a subdivision of σ by using only lattice points whose ages are 1.
If the toric variety X(NG,Σ) is smooth, then X(NG,Σ) is a crepant resolution of Cn/G.
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The convex hull sG ⊂ NG,R spanned by e1, e2, . . . , en is called the junior simplex.
An element in the junior simplex is called a junior element. By Remark 2.4, a crepant
resolution X(NG,Σ) can be identified with a basic triangulation of sG by using points in
NG. As for this fact, a necessary condition for the Gorenstein abelian quotient singularities
to admit a crepant resolution via Hilbert basis is known as follows.

Definition 2.5. ([8, p.11]) Let HlbNG
(σ) be as follows:

HlbNG
(σ) =

n ∈ σ ∩ (NG\{0})

∣∣∣∣∣∣
n can not be expresed as

the sum of two other vectors
belonging to σ ∩ (NG\{0})

 .

The set HlbNG
(σ) is called the Hilbert basis of σ with reference to the lattice NG.

Theorem 2.6. ([8, pp. 30–31]) Let Cr/G be a Gorenstein abelian quotient singularity.
If sG has a basic triangulation, then

HlbNG
(σ) = sG ∩NG,

i.e., each of the members of the Hilbert basis of σ has to be either a junior element or a
vertex of sG.

2.2 Hilbert basis resolution

The exceptional divisors corresponding to the Hilbert basis play a very important
role in the toric version of the “Nash problem”, and it is known that those divisors are
essential divisors over X (see [2, 20]). An essential divisor over X is an exceptional divisor
of which the center on Y is an irreducible component of f−1(SingX) for every resolution
f : Y → X. If ρ ∈ ∆(1) is a ray, then there exists a primitive vector n(ρ) ∈ NG ∩ ρ with
ρ = R≥0n(ρ). The set of minimal generators of σ ∈ ∆ is defined by

Gen(σ) := {n(ρ) | ρ ∈ ∆(1), ρ ≺ σ}.

For ∆, we define analogously Gen(∆) :=
⋃

σ∈∆Gen(σ).

Definition 2.7. The subdivision ∆ of σ is called a Hilbert basis resolution of σ if ∆
satisfies the following conditions:

• ∆ is smooth.

• Gen(∆) = HilbNG
(σ).

The Hilbert basis resolution is a resolution of which all exceptional divisors are essen-
tial, and it is called Hilb-desingularization in [6, 7], and also G-désingularization in [2].
The previous works on Hilbert basis resolutions related to this paper are as follows.
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• For two-dimensional toric singularity (i.e. cyclic quotient singularity C2/G), the
minimal resolution is a Hilbert basis resolution.

• In dimension three, Bouvier and Gonzalez-Sprinberg shows existence of Hilbert basis
resolutions [2]. However, it is not necessarily unique.

• They give an example of singularity in dimension four which has no Hilbert basis
resolutions [2].

• If a toric quotient singularity in any dimension has a toric crepant resolution, then
it is an Hilbert basis resolution [7].

• For three-dimensional terminal quotient singularities, Danilov [12] and Reid [35]
introduce the economic resolution which is obtained by a sequence of weighted blow-
ups. It coincides with an Hilbert basis resolution. We will introduce in Section 6.

2.3 Weighted blow-ups

In this subsection, we introduce the weighted blow-ups for cyclic quotient singularities.
We fix a primitive lattice point v = 1

r
(a1, . . . , an). Assume that v ganerates NG/N .

We consider the subdivision of σ = Cone(e1, . . . , en) at v. Namely, let σk denote a
n-dimensional cone Cone(e1, . . . , êk, v, . . . , en) for k = 1, . . . , n, and Σ denote the fan
consisting of these cones and their all faces. The subdivision Σ → σ is called the star
subdivision. In addition, we call the induced toric morphism f : X(NG,Σ) → X(NG, σ)
"the weighted blow-up" of X(NG, σ) with weight 1

r
(a1, . . . , an).

Example 2.8. Let G be the cyclic group of type 1
5
(1, 2, 3), and NG = Z3 + 1

5
(1, 2, 3)Z.

Then the fan Σv1 obtained by weighted blow-up with weight v1 = 1
5
(1, 2, 3) is the following.

Let NG,k be the sublattice of NG which is generated by e1, . . . , êk, v, ek+1, . . . , en for
k = 1, . . . , n. Then the dual lattice MG,k := Hom(NG,k,Z) has dual basis {ξ1, . . . , ξn}
which satisfy:

ξj =

xjx
− ai

ak
k if j ̸= k,

x
r
ak
k if j = k.

The affine toric variety X(NG, σk) has a cyclic quotient singularity of type
1
ak
(a1, . . . , ak−1,−r, ak−1, . . . , an) with coordinates {ξ1, . . . , ξn}. Note that this singularity

type is obtained by the image of the k-th remainder map Rk

(
1
r
(a1, . . . , an)

)
. If the lattice

point v′ = Rk

(
1
r
(a1, . . . , an)

)
of NG,k generates NG,k/N , then we can repeat the above

operation.
The Fujiki-Oka resolution introduced in the next section is the obtained by repeating

this weighted blow-up.
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3 Multidimensional Continued fractions

3.1 Hirzebruch-Jung continued fractions

In this section, we shall mention relations between the minimal resolution of an An sin-
gularity and the Hirzebruch-Jung Continued Fraction obtained from the type of quotient
singularities. Let C2/G be a quotient singularity of 1

r
(1, a)-type where a ∈ Z and r ∈ N

are coprime. The Hirzebruch-Jung continued fraction of r
a

is defined as follows:

r

a
= x1 −

1

x2 − 1
x3−··· 1

xs

= [x1, . . . , xs]

where x1, . . . , xs ∈ Z>0.
Let C2/G ∼= X(NG, σ). We set that σ = R≥0e1 + R≥0e2, NG = Z2 + 1

r
(1, a)Z,

v0 = e2 and vs+1 = e1. The Newton polygon L is given as the convex hull of lattice points
(NG ∩ σ) \ {(0, 0)} (see Fig. 2).
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Fig. 2: The minimal resolution of C2/G and the Newton Polygon

Let X(NG,Σ) be the minimal resolution of C2/G. The fan Σ is the subdivision of σ
by the half lines from (0, 0) to the primitive elements v0 = e2, v1 =

1
r
(1, a), . . . , vs+1 = e1

in NG. These elements are on the edge of L. Moreover, it is known that the following
formula holds for the coordinates of these primitive elements and coefficients x1, . . . , xs
which appear in the Hirzebruch-Jung continued fraction:

vi+1 + vi−1 = xivi ( i = 1, . . . , s).

Therefore, the coordinates of v1, . . . , vs can be computed from the Hirzebruch-Jung con-
tinued fractions concretely. Every exceptional divisor Ei of the minimal resolution corre-
sponds to the primitive element vi, and its self-intersection number is −xi.
Example 3.1. If a = 8 and r = 11, then the Hirzebruch-Jung continued fraction is as
follows:

11

8
= 2− 1

2− 1
3− 1

2

= [2, 2, 3, 2].

The following list is on the exceptional divisors of the minimal resolution of X(NG,Σ).

Exceptional Divisors Primitive Elements in NG Self-Intersection Number
E1 v1 =

1
11
(1, 8) −2

E2 v2 =
1
11
(2, 5) −2

E3 v3 =
1
11
(3, 2) −3

E4 v4 =
1
11
(7, 1) −2

Conversely, type of a quotient singularity is given by series of coefficients of continued
fraction. In the case of [3, 2, 2], the given quotient singularity is of 1

7
(1, 3)-type.
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3.2 Ashikaga continued fractions

We shall introduce a generalization of Hirzebruch-Jung continued fractions by Ashik-
aga [1]. This generalized continued fractions summarizes information of the Fujiki-Oka
resolution (see [14, 34]) for semi-isolated quotient singularities (i.e., cyclic quotient singu-
larities of 1

r
(1, a2, . . . , an)-type). The Fujiki-Oka resolution is a canonical resolution of any

semi-isolated quotient singularity. We call this continued fraction Ashikaga’s continued
fraction.

Definition 3.2. Let n be a positive integer. Let a = (a1, . . . , an) ∈ Zn and r ∈ N which
satisfies 0 ≤ ai ≤ r − 1 for 1 ≤ i ≤ n. We call the symbol

a

r
=

(a1, . . . , an)

r
= (a1, . . . , an)/r

an n-dimensional proper fraction.

Definition 3.3. Define the age of an n-dimensional proper fraction a
r
= (a1,...,an)

r
to be

age
(a
r

)
=

1

r

n∑
i=1

ai.

In the following, the symbol Qprop
n (resp. Qprop

n ) means the set of n-dimensional
proper fractions (resp. the set Qprop

n ∪ {∞}). Similarly, Zn = Zn ∪ {∞}. Moreover,
Qprop

n [x2, . . . , xn] (resp. Zn[x2, . . . , xn]) denotes the set consisting of all noncommutative
polynomials with n − 1 variables over Qprop

n (resp. Zn), and I = {2, . . . , n} signifies the
index set of the variables x2, . . . , xn.

Ashikaga’s continued fraction consists of a round down polynomial and a remainder
polynomial, and these polynomials are obtained via round down maps and remainder
maps for a semi-unimodular proper fraction (i.e., a proper fraction such that at least one
component of a is 1). Roughly speaking, these maps are division for just one component
of the vector a by r. In the following, we may assume that the first component of a
semi-unimodular proper fraction is always 1 by changing coordinates.

Definition 3.4. ([1, Def 3.1]) Let (1,a2,...,an)
r

be a semi-unimodular proper fraction.

(i) For 2 ≤ i ≤ n, the i-th remainder map Ri : Qprop
n → Qprop

n is defined by

Ri

(
(1, a2, . . . , an)

r

)
=

{
(1ai , a2ai ,..., ai−1

ai , −r
ai , ai+1

ai ,..., anai)
ai

if ai ̸= 0

∞ if ai = 0

and Ri(∞) = ∞ where ajai is an integer satisfying 0 ≤ aj
ai < ai and aj

ai ≡ aj
modulo ai.
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(ii) For 2 ≤ i ≤ n, the i-th round down map Zi : Qprop
n → Zn is defined by

Zi

(
(1, a2, . . . , an)

r

)
=

{ (
⌊ 1
ai
⌋, ⌊a2

ai
⌋, . . . , ⌊ai−1

ai
⌋, ⌊−r

ai
⌋, ⌊ai+1

ai
⌋, . . . , ⌊an

ai
⌋
)

if ai ̸= 0

∞ if ai = 0

and Zi(∞) =∞ where ⌊x⌋ is the greatest integer not exceeding x.

Example 3.5. If v = (1,2,5,7)
8

, then

Z2(v) = (0,−4, 2, 3),
Z3(v) = (0, 0,−2, 1),

R2(v) =
(1, 0, 1, 1)

2
and

R3(v) =
(1, 2, 2, 2)

5
.

Definition 3.6. [1, Def 3.2] Let a
r

be an n-dimensional semi-unimodular proper fraction.

(i) The remainder polynomial R∗
(
a
r

)
∈ Qprop

n [x2, . . . , xn] is defined by

R∗

(a
r

)
=

a

r
+

∑
(i1,i2,...,il)∈Il, l≥1

(Ril · · ·Ri2Ri1)
(a
r

)
· xi1xi2 · · ·xil

where we exclude terms with coefficients ∞ or (0,0,...,0)
1

.

(ii) The round down polynomial Z∗ ∈ Zn[x2, . . . , xn] is defined by

Z∗

(a
r

)
=

n∑
j=2

Zj

(a
r

)
xj +

n∑
j=2

∑
(i1,i2,...,il)∈Il, l≥1

(ZjRil · · ·Ri2Ri1)
(a
r

)
· xi1xi2 · · ·xilxj.

Remark 3.7. In the case n = 2, the series of the coefficients of Z∗
(
a
r

)
coincides with the

series of the coefficients of Hirzebruch-Jung continued fraction.
Example 3.8. Let v = (1,2,8)

11
, then the remainder polynomial is

R∗

(
(1, 2, 8)

11

)
=

(1, 2, 8)

11
+

(1, 1, 0)

2
x2 +

(1, 2, 5)

8
x3

+
(1, 0, 1)

2
x3x2 +

(1, 2, 2)

5
x3x3

+
(1, 1, 0)

2
x3x3x2 +

(1, 0, 1)

2
x3x3x3.

The round down polynomial is

Z∗

(
(1, 2, 8)

11

)
= (0,−6, 4)x2 + (0, 0,−2)x3

+ (1,−4, 2)x3x2 + (0, 0,−2)x3x3
+ (0,−3, 1)x3x3x2 + (0, 1,−3)x3x3x3.
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3.3 Fujiki-Oka resolution

The remainder polynomial consists of datum of blow-up centers of a Fujiki-Oka resolution.
In this subsection, we shall summarize Fujiki-Oka resolutions. For the details of Definition
3.9 and Lemma 3.10, see the articles written by Ashikaga [1] and Oka [34] respectively.

Definition 3.9. Let P1, . . . , Pn be primitive elements in NG. If an n-dimensional cone
τ = R≥0P1 + · · · + R≥0Pn in NG,R has a smooth facet R≥0P1 + · · · + R≥0Pn−1, then we
call the cone semi-unimodular over the vertex Pn.

If a cone τ is semi-unimodular over all vertices P1, . . . , Pn ∈ NG, then the toric variety
X(NG, τ) has an isolated singularity or no singularities. If the toric variety X(NG, σ)
has a quotient singularity of 1

r
(a1, . . . , an)-type satisfying GCD(r, ai) = 1, then σ is semi-

unimodular over ei, and X(NG, σ) has a semi-isolated singularity.

Lemma 3.10. Let an n-dimensional cone τ = R≥0P1 + · · · + R≥0Pn ⊂ NG,R be semi-
unimodular over P1 and r = |det(P1, P2, · · · , Pn)|. If C ∈ Zn is a primitive element such
that the n-dimensional cone R≥0C + R≥0P2 + · · · + R≥0Pn is smooth, then there exist
integers 0 ≤ a2, . . . , an ≤ r − 1 such that

C =
P1 +

∑n
i=2 aiPi

r
.

This element C ∈ NG is called a Oka center of τ over P1. The Oka center exists
uniquely for a cone which is semi-unimodular over an element.

Lemma 3.11. ([14, Lemma 3]) Suppose (X, [0]) is a cyclic quotient singularity of 1
r
(a1, a2, . . . , an)-

type, where GCD(r, a1, . . . , an) = 1 and a1a2 · · · an ̸= 0. Then there exist a variety X̃,
a finite affine open covering U = {U1, . . . , Ul} of X̃ for an integer 1 ≤ l ≤ n, and
a proper birational morphism f : X̃ → X such that Ui is the quotient singularity of
1
ri
(ai1, ai2, . . . , ain)-type for each i, where the integers ri and aij (1 ≤ j ≤ n) are deter-

mined by the following formula:
ri = ai/d where d = GCD(a1, . . . , an),
aij ≡ rj modulo ri and 0 ≤ aij < ri (j ̸= i),
aij + r ≡ 0 modulo ri (j = i).

The proper fraction a
r
= (1,a2,...,an)

r
obtained from Lemma 3.10 and Lemma 3.11 is

called the proper fraction of τ over P1.

Lemma 3.12. ([1]) If a cone τ = R≥0P1 + · · · + R≥0Pn ⊂ NG,R contains a primitive
element C ∈ NG in Lemma 3.10, then the toric variety X(NG, τ) has a quotient singularity
of 1

r
(1, a2, . . . , an)-type.
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By Lemmas 3.10, 3.11 and 3.12, any semi-isolated quotient singularity is resolved by
blow-ups with the Oka center repeatedly, and these toric resolutions are called Fujiki-Oka
resolutions. Each coefficient which appears in a remainder polynomial coincides with the
type of quotient singularities appearing in each step of the Fujiki-Oka resolution.

Lemma 3.13. ([1]) Let τ = R≥0P1+ · · ·+R≥0Pn ⊂ NG,R be a semi-unimodular cone over
P1 and C be the Oka center of τ . Then the cone

τi = R≥0P1 + · · ·+ R≥0Pi−1 + R≥0ci + R≥0Pi+1 + · · ·+ R≥0Pn

is semi-unimodular over P1 and its Oka center is

ci =

∑
j ̸=i,n aj

aiPj +−d
ai
Pi

ai
.

By Lemma 3.13, each remainder polynomial can be understood as a overview of a
Fujiki-Oka resolution of a semi-isolated quotient singularity.

Assume that G = 1
r
(1, a2, . . . , an). We consider the consecutive star subdivision, which

starts with subdivision at v. Then the type of quotient singularities appearing at each
stage of star subdivisions is obtained from the remainder polynomialR∗

(
1
r
(1, a2, . . . , an)

)
.

The induced toric morphism is called the Fujiki-Oka resolution (see [1] for more detail).

Example 3.14. Let X(NG, σ) have a quotient singularity of 1
11
(1, 2, 8)-type, i.e., NG =

Z3 + 1
11
(1, 2, 8)Z and σ = R≥0e1 + R≥0e2 + R≥0e3. Then, the cone σ is semi-unimodular

over e1, and the Oka center is c = 1
11
(1, 2, 8), and the remainder polynomial of the proper

fraction (1,2,8)
11

is as follows:

R∗

(
(1, 2, 8)

11

)
=

(1, 2, 8)

11
+

(1, 1, 0)

2
x2 +

(1, 2, 5)

8
x3

+
(1, 0, 1)

2
x3x2 +

(1, 2, 2)

5
x3x3

+
(1, 1, 0)

2
x3x3x2 +

(1, 0, 1)

2
x3x3x3.

This expanding of Ashikaga’s continued fraction indicates that the toric variety after
the blow-up with the Oka center 1

11
(1, 2, 8) has two semi-isolated quotient singularities of

1
2
(1, 1, 0)-type and 1

8
(1, 2, 5)-type. For these quotient singularities, the corresponding cones

which appear in σ after the subdivision by 1
11
(1, 2, 8) ∈ NG are σ2 = R≥0e1+R≥0c+R≥0e3

and σ3 = R≥0e1+R≥0e2+R≥0c respectively. 1
2
(1, 1, 0) and 1

8
(1, 2, 5) are the Oka center of

semi-unimodular cones σ2, σ3 over e1 respectively. Therefore, we can take blow-ups with
the Oka centers again. The blow-up with Oka centers of X(NG, σ3) consists a smooth
toric variety and quotient singularities of 1

2
(1, 0, 1)-type and 1

5
(1, 2, 2)-type respectively.

By repeating blow-ups with Oka centers, we have the smooth toric variety (see Fig. 3).
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Fig. 3: The basic triangulation of sG by Fujiki-Oka resolution

Let X(NG, σ) have a semi-isolated quotient singularity. The cone σ ⊂ NG,R can be
semi-unimodular over e1 by exchanging basis of NG. For a semi-unimodular cone σ over
e1, we call the terminal smooth fan obtained from its Fujiki-Oka resolution the continued
fraction fan, and that fan is denoted as CFFe1(σ) or, more simply, CFF(σ). Clearly, there
exists at least one CFF(σ) for a semi-unimodular cone σ.

As seen above, the remainder polynomial controls the Fujiki-Oka resolution. On the
other hand, the round down polynomial gives the Zn−1-weight of (n−1)-dimensional cone.
For simplicity, we treat only Z2-weight in this paper.

Definition 3.15. Let σ1 = Cone(v, v′, v1) and σ2 = (v, v′, v2) be three-dimensional
smooth cone. Then the two-dimensional common face τ = Cone(v, v′) has a Z2-weight (α, β) ∈
Z2 which satisfies

α · v + β · v′ + v1 + v2 = (0, 0, 0).

Note that a Z2-weight gives a self intersection number of a curveX(N, τ) onX(N,Cone(v))
and X(N,Cone(v′)).

Proposition 3.16. ([1, Lemma5.1]) Let σ = Cone(v1, v2, v3) and v = 1
r
(v1, a · v2, b · v3).

After a star subdivision at v, we have two-dimensional cones τ2 = Cone(v, v2) and τ3 =
Cone(v, v3). The Z2-weighting of τi coincides with the image of the i-th round-down map
Zi

(
1
r
(a, b)

)
for i = 2, 3.

4 Crepant property of Fujiki-Oka resolution

4.1 Sufficient condition of crepant resolution

The purpose of this subsection is to show a sufficient condition of existence of a crepant
resolution of semi-isolated cyclic quotient singularities. In particular, all isolated cyclic
quotient singularities are included in this case.

Theorem 4.1. For a cyclic quotient singularity of 1
r
(1, a2, . . . , an)-type, the Fujiki-Oka

resolution is crepant if and only if the ages of all the coefficients of the corresponding
remainder polynomial R∗

(
(1,a2,...,an)

r

)
are 1.
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Let G =
〈
1
r
(1, a2, . . . , an)

〉
= ⟨g⟩, we will denote by Gi the cyclic group which is

generated by gi, where gi is determined by the image of the i-th remainder map

Ri

(
(1, a2, . . . , an)

r

)
=

(1, a2
ai , . . . , ai−1

ai ,−rai , ai+1
ai , . . . , an

ai)

ai
,

i.e., Cn/Gi is the cyclic quotient singularity of 1
ai
(1, a2

ai , . . . , ai−1
ai ,−rai , ai+1

ai , . . . , an
ai)-

type. We first show that the generator g = 1
r
(1, a2, . . . , an) satisfies age(g) = 1 if Cn/G

has a crepant resolution.

Proposition 4.2. Assume that 1 + a2 + · · ·+ an ≥ 2r for G =
〈
1
r
(1, a2, . . . , an)

〉
. Then,

Cn/G has no toric crepant resolutions.

Proof. Assume that Cn/G ∼= X(σ,NG) has a toric crepant resolution X(Σ, NG). Since G
has the generator of which the first component is 1

r
, we see that there are no lattice points

on sG ∩ τ1 where τ1 is an n − 1 dimensional cone with vertices e2, . . . , en. Therefore,
there is a lattice point q ∈ NG such that age(q) = 1 and Cone(q, e2, e3, . . . , en) ∈ Σ.
Since G is generated by 1

r
(1, a2, . . . , an) with 1 + a2 + · · · + an ≥ 2r , we can write

q = 1
r
(i, a2i

r
, a3i

r
, . . . , ani

r
) where i ̸= 1. Thus, we have {q, e2, e3, . . . , en} as Z-basis of

NG, so there exist integers k1, . . . , kn ∈ Z such that

p =
1

r
(1, a2, . . . , an) = k1q +

n∑
j=2

kjej.

We now turn to the first component. This formula gives 1
r
= k1i

r
, but it contradicts

i ̸= 1. Therefore, if 1 + a2 + · · ·+ an ≥ 2r, then Cn/G has no crepant resolutions.

Proposition 4.3. Let G =
〈
1
r
(1, a2, . . . , an)

〉
with 1 + a2 + · · · + an = r. If Cn/Gi have

a crepant resolution of all i = 2, . . . , n , then Cn/G have a crepant resolution.

Proof. Let X(Σi, Ni) be a toric crepant resolution of Cn/Gi where Ni = Zn + giZ with
canonical basis e1 . . . , en. For simplicity of notation, we write NiR insteads of Ni⊗ZR. Fix
a smooth cone in Σi, and write this cone σ = Cone(v1, . . . ,vn). For x = (x1, . . . , xn) ∈
NiR, the map φi : NiR ↪→ NG,R is defined as follows:

φi(x) =

(
x1 +

1

r
xi, x2 +

a2
r
xi, . . . , xi−1 +

ai−1

r
xi,

ai
r
xi, xi+1 +

ai+1

r
xi, . . . , xn +

an
r
xi

)
.

The proof will be divided into two steps. The first step is to check φi(x) satisfies
age(φi(x)) = 1 for a point x ∈ NiR with age(x) = 1, the second step is to prove
φi(σ) ⊂ NG,R is also smooth.

(i) If x = (x1, . . . , xn) ∈ Ni satisfies age(x) = 1, then age(φi(x)) = x1 + x2 + · · ·+ x̂i +
· · · + xn + 1

r
(1 + a2 + · · · + an)xi. By assumption, we have x1 + · · · + xn = 1 and

1 + a2 + · · ·+ an = r. These formulae give age(φi(x)) = x1 + · · ·+ xn = 1．
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(ii) Since σ is smooth on Ni, {v1, . . . ,vn} is a Z-basis of Ni, namely genarates the
canonical basis e1, . . . , en of Ni and q = 1

ai
(1, a2

ai , . . . ,−rai , . . . , anai). Let vj denote
φi(vj), then we have φi(σ) = Cone(v1, . . . ,vn). It is easy to see that φi(ej) and φi(q)
are generated by V = {v1, . . . ,vn}, where j ∈ {1, . . . , n}\{i}. To show V is a Z-
basis of NG, it is sufficient to prove that ei is generated by V . Let us denote by Qz

the quotient of z devided by ai. We have

q = φi(q) =
1

r
(−Q−r, Qa2r − a2Q−r, . . . , (−r)− aiQ−r, . . . , Qanr − anQ−r),

and we get the formula

q +Q−rp =
1

r
(0, Qa2r, . . . , Qai−1

r,−r,Qai+1
r, . . . , Qanr).

Therefore, the following equation holds

ei = q +Q−rp−
∑

j∈{1,...,n}\{i}

Qajej.

This implies that {v1, . . . ,vn} generates ei. Thus, {v1, . . . ,vn} is a Z-basis of NG.

From (i) and (ii), we see that if Cn/Gi has a crepant resolution X(Σi, Ni), then we
have a fan on NG corresponding to a crepant resolution of Cn/G by taking the union of
all φi(Σi).

Proof of Theorem 4.1: Assume that the ages of all coefficients of the remainder
polynomial of (1,a2,...,an)

r
are equal to 1. By Proposition 4.3, whether Cn/G has a crepant

resolution depends on whether Cn/Gi has a crepant resolution of all i. It is obvious that
the order of Gi is less than the order of G. The repeated application of the remainder
map enables us to get Gi1i2···ij = 1

k
(1, c2, c3, . . . , cn) with cj ∈ {0, 1} for all j. Since

age
(
1
k
(1, c2, c3, . . . , cn)

)
= 1, the Fujiki-Oka resolution of Cn/Gi1i2···ij is crepant. By

the proof of Proposition 4.3, the Fujiki-Oka resolution of Cn/G is crepant. Conversely,
if the Fujiki-Oka resolution of Cn/G is crepant, then age

(
1
r
(1, a2, a3, . . . , an)

)
= 1 and

age(gi) = 1 for i = 2, . . . , n. Therefore, the ages of all the coefficients of the remainder
polynomial are 1, which completes the proof.

The Gorenstein property of Cn/Gi comes from the property of the cyclic group G. We
have the following lemma.

Lemma 4.4. Assume that 1 + a2 + a3 + · · · + an = r for G =
〈
1
r
(1, a2, . . . , an)

〉
. Then

age
(
Ri

(
(1,a2,...,an)

r

))
is an integer.
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Proof. It is enough to prove in the case of i = 2. We have the equation R2

(
(1,a2,...,an)

r

)
=

(1,−r
a2 ,a3a2 ,...,ana2 )

a2
. We claim that 1 + −ra2 + a3

a2 + · · · + an
a2 is divided by a2. It is

sufficient to show that 1 + (−r) + a3 + a4 + · · ·+ an is divided by a2. By the assumption
1 + a2 + a3 + · · · + an = r, we have 1 + (−r) + a3 + a4 + · · · + an = a2. Therefore,
age

(
R2

(
(1,a2,...,an)

r

))
is an integer.

Lemma 4.4 and Theorem 4.1 lead to the following corollary.

Corollary 4.5. For all three dimensional semi-isolated Gorenstein quotient singularities,
the Fujiki-Oka resolutions are crepant.

Proof. Let G =
〈
1
r
(1, a, b)

〉
where 1+ a+ b = r. we have R2

(
(1,a,b)

r

)
= (1,−r

a
,b
a
)

a
, and the

age of R2

(
(1,a,b)

r

)
is an integer by Lemma 4.4. Clearly, 1 +−ra + b

a
< 2a. So, the age of

R2

(
(1,a,b)

r

)
is equal to 1. Thus, the ages of all coefficients of R∗

(
(1,a,b)

r

)
are equal to 1.

By Theorem 4.1, the Fujiki-Oka resolution X(NG,CFF(σ)) is crepant.

4.2 First Existence Criterion via Continued Fractions

We will give the continued fraction version of Theorem 2.6.

Definition 4.6. The term with the variable xi · · ·xi in a remainder polynomial is called
iterated where 1 ≤ i ≤ n, and the lattice point in NG corresponding to the coefficient of
iterated terms is also called to be iterated.

Every iterated point can be written as φ−1
i (a

r
) ∈ NG for the coefficient a

r
of an iterated

term.
We shall consider a relationship between iterated points and Hilbert basis, and apply

the relationship to Theorem 2.6.
In the following, for a cyclic group

〈
1
r
(1, a2, . . . , an)

〉
⊆ SL(n,C) satisfying 1 + a2 +

· · ·+ an = r, the symbol Ai denotes the cyclic subgroup
〈
1
r
(1, ai)

〉
⊂ GL(2,C) for ai ̸= 0,

and vi1 , . . . ,vis denote the lattice points in NAi
= Z2 + 1

r
(1, ai)Z such that

vij−1
+ vij+1

= αijvij for j = 1, . . . , s

where the integers αi1 , . . . , αis are the entries of the Hirzbruch-Jung continued fraction
r
ai

= [αi1 , . . . , αis ] and vi0 = (0, 1),vis+1 = (1, 0). The lattice point vij can be written as
vij =

1
r
(kij , ai · kij

r
) for some positive integer kij .

Definition 4.7. Let r, ai and kij be as above. We define an i-th minimal point uij ∈ NG

as follows:
uij =

1

r
(kij , a2 · kij

r
, . . . , an · kij

r
).

23



We note that vi0 , . . . ,vis+1 are elements in HlbNAi
(σAi

), where σAi
= Cone((1, 0), (0, 1)) ⊂

NAi
⊗ R. One of the good properties of minimal points is that they are in Hilbert basis

as shown in the next lemma.

Lemma 4.8. All minimal points are in HlbNG
(σ).

Proof. Let u = (u1, . . . , un) ∈ NG be an i-th minimal point and v = (u1, ui) ∈ NAi
be

the element corresponding to u. If u /∈ HlbNG
(σ), then there exists X = (x1, . . . , xn)

and Y = (y1, . . . , yn) in NG such that u = X + Y . By focusing on the first and i-th
components, the following equations hold:

u1 = x1 + y1,

ui = xi + yi.

Let Xi = (x1, xi), Yi = (y1, yi) ∈ NAi
, then we have v = Xi + Yi by the above formula.

This contradicts the fact that v ∈ HlbNAi
(σAi

). Therefore, we get u ∈ HlbNG
(σ).

An iterated point is either a minimal point or a sum of canonical basis and a minimal
point. An iterated point is minimal if and only if it satisfies the conditions of the proper
fractions. See Definition 3.2.

Proposition 4.9. Let Cn/G be a quotient singularity of 1
r
(1, a2, . . . , an)-type satisfying

1 + a2 + · · · + an = r. If the remainder polynomial R∗

(
(1,a2,...,an)

r

)
contains an iterated

term of which the age of the coefficient is equal to or larger than 2, then Cn/G has no
toric crepant resolutions.

The problem with Proposition 4.9 is that if G has some representation 1
r
(1, a2, . . . , an),

1
r
(b1, 1, b3, . . . , bn) and so on, their remainder polynomials are different from each other,

so if necessary, we have to calculate iterated points for all representations. Moreover, in
higher dimension, there are many groups which fulfil Theorem 2.6 and possess no crepant
resolutions. For example, G =

〈
1
39
(1, 5, 8, 25)

〉
.

4.3 Two parameter Gorenstein cyclic quotient singularities

D. I. Dais, U. U. Haus and M. Henk have proposed a condition for Cn/A where A =
1
r
(a, b, 1, . . . , 1) with r = a + b + (n − 2) to possess a crepant resolution of all dimension

[10]. We call this "two-parameter Gorenstein cyclic quotient singularities". After that, a
new criterion for these quotient singularities to admit a crepant resolution is introduced by
S. Davis, T. Logvinenko and M. Reid [13]. In this subsection, we will give the remainder
polynomial version of their results. What’s better than their results is that if a crepant
resolution exists, it can be concretely constructed as Fujiki-Oka resolution. This is the
first application of Theorem 4.1 and Proposition 4.9.

We consider two-parameter cyclic quotient singularities Cn/A where A denote a cyclic
group generated by 1

r
(a, b, 1, . . . , 1). These singularities have the following three cases:
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(1) GCD(r, a, b) = d > 1,

(2) GCD(r, a, b) = 1, GCD(r, a) = d1 > 1 and GCD(r, b) = d2 > 1,

(3) GCD(r, a) = 1 or GCD(r, b) = 1.

If A satisfies (1), it is easily seen that Cn/A has a crepant resolution (see [13]). In the
case of (2), Cn/A has a crepant resolution if and only if lattice points 1

r
(0, k1, r1, . . . , r1)

and 1
r
(k2, 0, r2. . . . , r2) are on the junior simplex with r = ri · di and r = ki + ri(n− 2) for

i = 1, 2.
From now on, we assume that GCD(r, a) = 1. In other words, we treat only the case

A = 1
r
(1, d, c, . . . , c) with r = 1 + d+ (n− 2)c.

Applying Theorem 4.1 and Proposition 4.9 to the cyclic group A = 1
r
(1, d, c, . . . , c)

gives the conditions to the existence of crepant resolutions.

Lemma 4.10. If R∗
(
(1,d,c,...,c)

r

)
with 1+d+(n−2)c = r does not satisfy the condition

(i) , then R∗
(
(1,d,c,...,c)

r

)
satisfies the condition (ii), where the condition (i) and (ii) are

the followings;

(i) The remainder polynomial R∗

(
(1,a2,...,an)

r

)
contains an iterated term of which the

age of the coefficient is equal to or bigger than 2.

(ii) The ages of all coefficients of R∗

(
(1,a2,...,an)

r

)
are 1.

Proof. It is easily to check that the age of Ri

(
(1,d,c,...,c)

r

)
= (1,d

c
,0,...,0,−r

c
,0,...,0)

c
is equal

to 1 for i = 3, . . . , n. By the proof of Corollary 4.5, R∗

(
Ri

(
(1,d,c,...,c)

r

))
satisfies the

condition (ii). On the other hand, by assumption, the image of the remainder map
(R2 · · ·R2)

(
(1,d,c,...,c)

r

)
is 1

r′
(1, d′, c′, . . . , c′) for some positive integer r′, d′, c′ with 1 + d′ +

(n− 2)c′ = r′. Thus, R∗

(
Ri

(
(1,d′,c′,...,c′)

r′

))
satisfies the condition (ii) for i = 3, . . . , n. By

induction, it follows that R∗(
(1,d,c,...,c)

r
) satisfies the condition (ii).

Lemma 4.10 and Theorem 4.1 lead to the following theorem.

Theorem 4.11. Let Cn/G be a quotient singularity of 1
r
(1, d, c, . . . , c)-type. Cn/G has a

crepant resolution if and only if the ages of all coefficients of the remainder polynomial
R∗

(
(1,d,c,...,c)

r

)
are 1.
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4.4 Iterated Fujiki-Oka resolutions

In this section, we give a way to construct Fujiki-Oka resolutions for Gorenstein abelian
quotient singularities by using Ashikaga’s continued fractions repeatedly. As the goal of
this section, we prove that iterated Fujiki-Oka resolutions for three dimensional Gorenstein
abelian quotient singularities are crepant.

4.5 Basic Generating Systems of G

Let G ⊂ SL(n,C) be a finite abelian subgroup. Since all the elements in G are simultane-
ously diagonalizable, there exists a conjugacy class of G which is generated by diagonal
matrices. Therefore, we may assume that G is generated by diagonal matrices. By Propo-
sition 2.3, if G ⊂ SL(3,C), then it is possible to take elements in G of which age is one as
the generators of G. In higher dimensional case, we assume that the ages of all generators
of G are one, because it is clear that Cn/G has no crepant resolutions if the ages of a
generator g and the inverse g−1 in G are more than one by Proposition 4.2. Therefore,
we assume the ages of the generators of G are one. By the fundamental theorem of finite
abelian groups and the Chinese remainder theorem, there exists a generating system of
G as follows:{

1

r1
(a11, a12, . . . , a1n),

1

r2
(0, a22, . . . , a2n), . . . ,

1

rn−1

(0, . . . , 0, an−1 n−1, an−1 n)

}
where ri, aij (1 ≤ i ≤ n−1, i ≤ j ≤ n) are positive integers satisfying LCM(r1, . . . , rn−1) =
|G| and the following conditions:

(i) if aii = 0, then aij = 0 for i ≤ j ≤ n,

(ii) if aii ̸= 0, then aii = 1 and
n∑

j=i

aij = ri.

In this paper, we call a generating system of G satisfying the above conditions a basic
generating system of G. Additionally, G can be decomposed to the cyclic components as
follows:

G ∼=
〈

1

r1
(a11, a12, . . . , a1n)

〉
× · · · ×

〈
1

rn−1

(0, . . . , 0, an−1 n−1, an−1 n)

〉
.

Clearly, every cyclic component can be decomposed to the product of p-Sylow sub-
groups.
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4.6 Iterated Fujiki-Oka resolutions

We shall introduce the iterated Fujiki-Oka resolutions in general dimension. Let G ⊂
SL(n,C) be a finite abelian subgroup and H be a component of a decomposition by
cyclic subgroups of G. If the singularity Cn/H is semi-isolated, then we have the Fujiki-
Oka resolution (ỸH ,FO1) and the toric partial resolution (YG, φ) satisfying the following
diagram:

Cn

πH
��

ỸH
FO1

Fujiki-Oka Resolution
//

πG/H

��

Cn/H

πG/H

��

⟳

ỸH

/
(G/H) = YG

ϕ

Toric Partial Resolution
// Cn/G

where πH (resp. πG/H) is the quotient map by H (resp. G/H). Let X(NG,Σϕ) = YG. If
all maximal cones in Σϕ are semi-unimodular with respect to NG, then we have the Fujiki-
Oka resolution (ỸG,FO2) for the quotient singularities corresponding to the maximal cones
in Σϕ.

ỸG
FO2

Fujiki-Oka Resolution
// YG

We note that every singularity in YG corresponding to a maximal cone in Σϕ is at worst
a Gorenstein cyclic quotient singularity which is canonical but not terminal because of
the construction.

Definition 4.12. We call the resolution (ỸG,FO2 ◦ φ) in the above diagrams an iterated
Fujiki-Oka resolution of Cn/G.

Let G′ be a finite abelian subgroup which acts on ỸG equivariant with the torus
action and G be a component of a decomposition by cyclic subgroups of G′. Let YG′ =
X(NG′ ,Σϕ′). If all maximal cones in Σϕ are again semi-unimodular with respect to NG′ ,
then we have a new iterated Fujiki-Oka resolution by extending the above diagram.
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Cn

πH

��
ỸH

FO1 //

πG/H

��

Cn/H

πG/H

��
ỸG

FO2 //

πG′/G

� �

YG
ϕ

T.P.R.
// Cn/G

πG′/G

��
ỸG′

FO3 // YG′
ϕ′

T.P.R.
// Cn/G′

As (ỸG′ ,FO3 ◦φ′) in the above, iterated Fujiki-Oka resolutions can be extended under the
suitable conditions. We also call these resolutions and the ordinary Fujiki-Oka resolutions
iterated Fujiki-Oka resolutions.

Lemma 4.13. Let G ⊂ SL(n,C) be a finite abelian subgroup. There exist at least one
iterated Fujiki-Oka resolution of Cn/G.

Proof. Let
{

1
r1
(a11, a12, . . . , a1n), . . . ,

1
rn−1

(0, . . . , 0, an−1 n−1, an−1 n)
}

be a basic generat-
ing system of G. We set

H1 =

〈
1

rn−1

(0, . . . , 0, an−1 n−1, an n)

〉
.

Then, we have the Fujiki-Oka resolution X(N1,Σ1) of the singularity Cn/H1 such that the
maximal cones in Σ1 are obtained from subdividing the two dimensional junior simplex s2
spanned by en−1 and en into rn−1 equal sections. Let Ei be the edge of which endpoints
are i−1

rn−1
en−1 +

rn−1−i+1
rn−1

en and i
rn−1

en−1 +
rn−1−i
rn−1

en for i = 1, . . . , rn−1 on s2.
As the next step, we set

H2 =

〈
1

rn−1

(0, . . . , 0, an−2 n−2, an−2 n−1, an−2 n)

〉
×
〈

1

rn−1

(0, . . . , 0, an−1 n−1, an−1 n)

〉
.

We have the quotient map πH2/H1 : Cn/H1 → Cn/H2 = X(N2,Σ1). Focus the three
dimensional junior simplex s3 spanned by en−2, en−1 and en. By the definition of the
basic generating system, there are no lattice points on the edges Ei ⊂ s2 ⊂ s3 for all
i. Therefore, every maximal cone in Σ1 is semi-unimodular, and we have an iterated
Fujiki-Oka resolution X(N2,Σ2).

By repeating similar operation to the above for the subgroup sequence:

H1 ⊂ H2 ⊂ · · · ⊂ Hn−1 = G,
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we have the sequence of iterated Fujiki-Oka resolutions:

ỸH1 = X(N1,Σ1), ỸH2 = X(N2,Σ2), . . . , ỸG = X(Nn−1,Σn−1).

By applying Theorem 4.1, Proposition 4.3 and Lemma 4.13 to the iterated Fujiki-Oka
resolutions, we have the following theorem.

Theorem 4.14. Let ỸH1 , ỸH2 , . . . , ỸHk
= ỸG be the sequence of iterated Fujiki-Oka reso-

lutions for an n-dimensional Gorenstein abelian quotient singularity Cn/G. If the ages of
all the coefficients in the remainder polynomials associated with every ỸHi

(i = 1, . . . , k)

are 1, then the corresponding iterated Fujiki-Oka resolution ỸG for Cn/G is crepant.

Theorem 4.14 and Corollary 4.5 lead to the following corollary.

Corollary 4.15. Assume that G is a finite abelian subgroup of SL(3,C). Then a crepant
iterated Fujiki-Oka resolution exists for C3/G.

4.7 Examples of Iterated Fujiki-Oka resolutions

At first, we shall see an example of iterated Fujiki-Oka resolutions in three dimension.

Example 4.16. Let G =
〈
1
4
(1, 3, 0), 1

4
(1, 0, 3)

〉
, then X = C3/G has a Gorenstein hyper-

surface singularity defined by xyz−w4 = 0. In this case, we have the set {1
4
(1, 2, 1), 1

4
(0, 3, 1)}

as a basic generating system of G. According to Lemma 4.13, we set H =
〈
1
4
(0, 3, 1)

〉
.

Then the junior simplex of the iterated Fujiki-Oka resolution is transformed as Fig. 6.
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Fig. 4: The iterated Fujiki-Oka resolution of
〈
1
4
(1, 3, 0), 1

4
(1, 0, 3)

〉
On the other hand, if we choose 1

4
(1, 2, 1) as a generator instead of 1

4
(0, 3, 1), then we

obtain an iterated Fujiki-Oka resolution via a subgroup H ′ =
〈
1
4
(1, 2, 1)

〉
(see Fig. 7). In

general, the iterated Fujiki-Oka resolution is not unique, and it depends on the choice of
the generator.

The next example is in four dimensional case.

Example 4.17. Let G = ⟨1
2
(1, 1, 0, 0), 1

2
(1, 0, 1, 0), 1

2
(1, 0, 0, 1)⟩, then X = C4/G has a

Gorenstein canonical hypersurface singularity. It is known that X has crepant resolu-
tions. However, G-Hilb(C4) is not a crepant resolution, it is a blow-up of certain crepant
resolutions.

We can obtain a crepant resolution of X by iterated Fujiki-Oka resolutions. Let H =〈
1
2
(1, 1, 0, 0)

〉
⊂ G. In addition, this crepant resolution is not blow-down of G-Hilb(C4).

In general, the iterated Fujiki-Oka resolution and G-Hilb give different fans.
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5 Complete coprime cyclic quotient singularities

5.1 Complete coprime remainder polynomials

This section deals with a complete coprime Fujiki-Oka resolution of Cn/G where G is a
cyclic group of GL(n,C). This resolution is one of Hilbert basis resolutions.

Definition 5.1. The remainder polynomial R∗ is complete coprime if arbitrary coeffi-
cients (b1, . . . , bn)/b0 ofR∗ satisfies GCD(bi, bj) = 1 for all i ̸= j. Moreover, the Fujiki-Oka
resolution is complete coprime if it is obtained by a complete coprime remainder polyno-
mial R∗.

Example 5.2. Let G be the following type. Then the Fujiki-Oka resolution of Cn/G is
complete coprime.

(i) G = 1
r
(1, a) ⊂ GL(2,C) with GCD(r, a) = 1.

(ii) G = 1
r
(1, a, r − a) ⊂ GL(3,C) with GCD(r, a) = 1.

Note that a Fujiki-Oka resolution of the case (i) is a minimal resolution. In the case (ii),
C3/G has a terminal singularity. A Fujiki-Oka resolution coincides with a Hilbert basis
resolution which is called an economic resolution.

Remark 5.3. Let ΣG denote the fan corresponding to the Fujiki-Oka resolution of Cn/G.
Suppose that the Fujiki-Oka resolution is complete coprime. Then Cone(e1, vi) is in ΣG

for any one dimensional cone τi = Cone(vi) which is element of ΣG(1)\σ(1). Moreover,
the equation #{ΣG(n)} = (n− 1)#{Σ(1)}+ 1 holds.

Lemma 5.4. If a remainder polynomial R∗ is complete coprime, then any coefficients
(a1, . . . , an)/a0 in R∗ satisfy ai + aj ≤ r for all i ̸= j.

Proof. It is sufficient to prove that R∗ ((a, b)/r) is not complete coprime when a+b > r
and r > b > a. Let c denote the positive integers which satisfies a + b + c = r. Suppose
thatR∗ ((a, b)/r) is complete coprime. The image of second remainder map R2 ((a, b)/r) is
(a,−rb)/b. Since 2b > r > b, we have r−rb = b. It follows that a+−rb = a+b−rb = b−c.
By our assumption, we have a,−rb ̸= 0 and GCD(a,−rb) = 1. Then the above discussion
can be repeated, which contradicts that the term of the remainder polynomial is finite.

Lemma 5.5. Let a, b and r be positive integers with r > b > a and r − b > a. Assume
that v1 = (a, b)/r and v2 = (a, r − b)/r is complete coprime. Then b

a
and r − ba is an

even number.
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Proof. Since b or r − b is greater then r
2
, there is no loss of generality in assuming

r − b > r
2
. The images of the remainder map for v1 and v2 are as follows. All of the

following two-dimensional fraction are complete coprime.

v1 =
(a,b)
r

R1

yyttt
tt
tt
tt

R2

$$J
JJ

JJ
JJ

JJ
v2 =

(a,r−b)
r

R1

wwppp
ppp

ppp
pp

R2

&&MM
MMM

MMM
MMM

(−r
a
,b
a
)

a
(a,−r

b
)

b

R1zzvvv
vvv

vvv

(−r
a
,r−b

a
)

a
(a,r−2b)

r−b

R1xxrrr
rrr

rrr
r

(−b
a
,−r

b
a

)
a

(−(r−b)
a
,r−2b

a
)

a

If ba > r − ba, then we have

−(r − b)
a
+ r − 2b

a
= a− (r − b)

a
+ r − ba − ba + a

= 2a− ba > a.

We apply Lemma 5.4 to R1R2(v2) = (−(r − b)
a
, r − 2b

a
)/a, then it contradicts complete

coprime. We thus get r − ba > b
a, and then r − 2b

a
= r − ba − ba holds.

We show that assuming ba is an odd number contradicts complete coprime. If r − ba is
even, then we see that ra is odd and −ra is even. It follows that R1(v2) = (−ra, r − ba)/a
is not complete coprime. On the other hands, if r − ba is odd, then r − ba and r − 2b

a

is even. It contradicts to R1R2(v2) is complete coprime. Therefore, we conclude ba is an
even number. Since R1(v1) = (−ra, ba)/a is complete coprime, we have −ra is odd. It
follows that r − ba is also an even number.

Proposition 5.6. Let v be (a, b, c)/r with 1 < a < b < c. Then R∗(v) is not complete
coprime.

Proof. We can assume that one of numerators of Ri(v) equals to 1 for i = 1, 2, 3. If
not, we should consider R∗(Ri(v)) instead of R∗(v) for some i. Since this assumption and
R3(v) = (a, b,−rc)/c, we have −rc = 1.
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v = (a,b,c)
r

R1

uukkk
kkk

kkk
kkk

kk

R2
��

R3

((QQ
QQQ

QQQ
QQQ

QQQ
Q

(−r
a
,b
a
,ca)

a
(a,−r

b
,cb)

b

R1

vvlll
lll

lll
lll

l
(a,b,1)

c

R1

vvnnn
nnn

nnn
nnn

n

R2
��

(−b
a
,−r

b
a

,cb
a
)

a
(−c

a
,b
a
,−r

ca
)

a
(a,−c

b
,1)

b

R1

wwnnn
nnn

nnn
nnn

(−b
a
,−c

b
a

,1)
a

If cb = 1, then −cb = b− 1 and a + b− 1 > b. This leads to R2R3(v) is not complete
coprime by Proposition 5.4. We thus get −rb = 1. Similar arguments apply to the case
ca = 1, we have −ra = 1.

On the other hand, either ba or −ba is an even number, and either ca or −ca is also an
even number. Since R1(v) and R1R3(v) are complete coprime, ba is odd number. Thus
−ba is an even number. For R2(v) = (a, 1, cb)/b and R2R3(v), we have cb + a < b and
−cb + a > b. By Lemma 5.5, cb

a
and −cb

a

is an even number. Therefore, R1R2R3(v) =

(−ba,−cb
a

, 1)/a is not complete coprime.
As a corollary of Proposition5.6, the following theorem holds.

Theorem 5.7. Let G be a cyclic group of type 1
r
(a1, . . . , an). If the remainder polynomial

R∗ ((a1, . . . , an)/r) is complete coprime, then G is isomorphic to a cyclic group of type
1
r
(a, b, 1, . . . , 1).

5.2 The resolution of complete coprime quotient singularities

From now on, G and G′ denote the cyclic group of type 1
r
(a, b) and 1

r
(a, b, 1n−2), respec-

tively. In our case, the lattice NG := Z2 + 1
r
(a, b)Z.

Assume that the remainder polynomial R∗ ((a, b)/r) is complete coprime. We propose
the resolution of C2/G which is obtained by the remainder polynomial R∗ ((a, b)/r). By
the assumption, v = 1

r
(a, b) ∈ NG generate NG/Z2. It follows that remainder maps

indicate the types of quotient singularities corresponding each three dimensional cone
after star subdivision at v. We now apply this argument again, with G = 1

r
(a, b) replaced

by G1 = 1
a
(−ra, ba) (resp. G2 = 1

b
(ab,−rb) ) and NG1 = Z2 + 1

a
(−ra, ba)Z (resp. NG2 =

Z2 + 1
b
(ab,−rb)Z) until the fan which is obtained by consecutive subdivisions is smooth.

Then we have the resolution which is called a continued fractional resolution of C2/G.
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Definition 5.8. Let COEF{R∗ ((a, b)/r)} be the set of all coefficients in R∗ ((a, b)/r).
Then there is a natural map φG : COEF{R∗ ((a, b)/r)} → NG.

We will denote by ψi the natural injective morphism ψi : Im(φNGi
) → Im(φNG

) for
i = 1, 2.

Example 5.9. Let G be of type 1
5
(2, 3). Then the remainder polynomial is

R∗

(
(2, 3)

5

)
=

(2, 3)

5
+

(1, 1)

2
x2

+
(2, 1)

3
x3 +

(1, 1)

2
x3x2.

The image of φG, φG1 and φG2 are

Im(φG) =

{
1

5
(1, 4),

1

5
(2, 3),

1

5
(3, 2),

1

5
(4, 1)

}
,

Im(φG1) =

{
1

2
(1, 1)

}
, and

Im(φG2) =

{
1

3
(1, 2),

1

3
(2, 1)

}
.

We have ψ1

(
1
2
(1, 1)

)
= 1

5
(1, 4), ψ2

(
1
3
(1, 2)

)
= 1

5
(3, 2) and ψ2

(
1
3
(2, 1)

)
= 1

5
(4, 1).

Proposition 5.10. Let G = 1
r
(a, b). Then Im(φG) coincides with HilbNG

(σ)\{(1, 0), (0, 1)}.

Proof. We give proof by induction on the order of G. It is easily seen that the statement
holds for r = 2, 3. We show that if the statement holds for r ≤ k − 1, then it holds for
r = k.
Assume that v = 1

r
(a, b) is not in HilbNG

(σ). We will denote by v0, v1, . . . , vs, vs+1 the
elements of HilbNG

(σ) in order of the smallest x coordinates, where v0 = e2, vs+1 = e1.
By assumption, there exists a integer t (1 ≤ t ≤ s) such that v = vt + vt+1.
Let G1 be a cyclic group of type R1(v) =

1
a
(−ra, ba) and G2 be of type R2(v) =

1
b
(a,−rb).

The coordinate of ψ−1
1 (vt) in NG1 is 1

a
(i, 1) for some integer i. Since vt−1, vt, v are not on

the same straight line, we get 2i > a. Similarly, the coordinate of ψ−1
2 (vt+1) is 1

a
(1, j),

and we have 2j > a.
On the other hand, the coordinate of vt is 1

r

(
i, bi+r

a

)
and vt+1 is 1

r

(
−r

b
+r
b

+ j, −r
b
+bj
a

)
inNG.

Since v = vt+vt+1, we have ab = bi+bj+−rb+r. It follows that b(a−i−j) = −rb+r > 0.
However, leads to a − i − j < 0, a contradiction. Therefore, we conclude that Im(φG)
coincides with HilbNG

(σ)\{(1, 0), (0, 1)}.

Let YG and YG′ denote the minimal resolution of C2/G and the Fujiki-Oka resolution
of Cn/G′, respectively. It is clear that the remainder polynomial R∗ ((a, b, 1

n−2)/r) and
R∗ ((a, b)/r) have the same number of terms. By Proposition 5.10, the following holds.

34



Theorem 5.11. Under the above assumption, further assume that the Fujiki-Oka reso-
lution of Cn/G′ is complete coprime. Then the Fujiki-Oka resolution is a Hilbert basis
resolution. In addition, there is one-to-one correspondence between exceptional divisors
of YG and exceptional divisors of YG′.

Note that minimal resolution (it coincides with Hilbert basis resolution) of a toric
surface quotient singularity has no (−1)-curves. A complete coprime Fujiki-Oka resolution
of three-dimensional cyclic quotient singularities has the same properties.

Proposition 5.12. Let G = 1
r
(a, b, 1). If a Fujiki-Oka resolution of C3/G is complete

coprime, then there is no exceptional (−1,−1)-curves.

Proof.
It suffices to show that all Z2-weight of τ ∈ ΣG(2) is not equal (−1,−1). By Propo-

sition3.16, if τ has not e3 as a generator, then Z2-weight of τ is obtained by the round
down polynomial Z∗ ((a, b)/r). Clearly, the image of the round down map is not equal
(−1,−1).

Assume that the Z2-weight of τ = Cone(e3, v) is (−1,−1) where v = (x1, x2, x3).
Let Σmin denote the fan corresponding a minimal resolution of the quotient singularity
of type 1

r
(a, b), and let v′ = (x1, x2) in NG′ . Then Σmin has a one dimensional cone

τ ′ = Cone(v′) which corresponding to an exceptional (−1)-curve, which contradicts the
minimal resolution has no (−1)-curves. Therefore, all Z2-weight of two dimensional cone
in ΣG is not equal (−1,−1).

5.3 McKay correspondence of Fujiki-Oka resolutions

We show several examples of Fujiki-Oka resolutions which satisfies the Euler number equal
to the order of G. Since the number of conjugacy classes of G is just the order of G for
a cyclic group, this can be considered a kind of generalized McKay correspondence. In
toric geometry, the following fact is well known.

Fact 5.13. Let XΣ denote a toric variety associated with a fan Σ. Then the Euler number
of XΣ equals the number of cones of maximal dimension in Σ.

Theorem 5.14. Let H be of type 1
r
(1, r − n+ 1) with r = (n− 1)k + 1 where r, n, k are

some positive integers. For h = 1
r
(a, b) ∈ H, we have a two dimensional proper fraction

(a, b)/r. If R∗((a, b)/r) is complete coprime, then the Euler number of the Fujiki-Oka
resolution of Cn/G is the order of G, where G is of type 1

r
(a, b, 1n−2).

Proof. Let χG denote the Eular number of the Fujiki-Oka resolution of Cn/G. ΣG

(resp. ΣH) denote the fan corresponding to the Fujiki-Oka resolution of Cn/G (resp.
C2/G). By remark 5.3, we have χG = (n− 1)#{ΣG(1)}+ 1.
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On the other hand, #{ΣG(1)} is the number of terms in the remainder polynomial
R∗((a, b, 1, . . . , 1)/r). Theorem5.14 now leads to

# {R∗ ((a, b, 1, . . . , 1)/r)} =# {R∗ ((1, r − n+ 1)/r)} = k

where #{R∗} denote the number of terms in the remainder polynomial. It follows that
χG = (n− 1)k + 1 = r.

There are at least two elements of H that satisfy Theorem5.14. Actually, if we choose
1
r
(1, r − n− 1) or 1

r
(k, 1) in H, remainder polynomials R∗ are complete coprime.

Example 5.15. Let us consider the case of n = 3 and r = 11 , that is H = 1
11
(1, 9).

Remainder polynomials R∗((1, 9)/11) and R∗((4, 3)/11) are complete coprime. The fol-
lowing figure shows the cross section of each fans corresponding to a Fujiki-Oka resolution
of C3/Gi, where G1 = 1

11
(1, 9, 1) and G4 = 1

11
(4, 3, 1). Since there are eleven three-

dimensional cones, the Eular number of Fujiki-Oka resolutions is 11.

Example 5.16. Let G be following type. Then the Fujiki-Oka resolution of Cn/G has
the Euler number equal to the order of G.

• 1
6k+1

(1, 3, 6k − 5)

• 1
6k−1

(1, 3, 3k − 2)

6 Three dimensinal quotient singularities and binary
trees

In this section, we construct a binary tree by using remainder polynomial, and we char-
acterize binary tree which gives the Fujiki-Oka resolution for two series of cyclic quotient
singularities. Originally, the remainder polynomial has no terms with coefficient [0,...,0]

1

and ∞. In this section, we allow a remainder polynomial to have these terms to define
full binary tree.

For n-dimensional proper fractions, we defined the extended i-th remainder map
Ri : Qprop

n ∪{−∞} → Qprop
n ∪{−∞} and the remainder polynomial [1]. The i-th remainder

map is defined by the following. If ai ̸= 0, then

Ri

(
(a1, . . . , an)

r

)
=

(a1
ai , . . . , ai−1

ai , −rai , ai+1
ai , . . . , an

ai)

ai

where xai ≡ x (mod ai) with 0 ≤ xai ≤ ai − 1. If ai = 0, then Ri

(
(a1,...,an)

r

)
= ∞. In

addition, we define Ri(∞) = −∞ and Ri(−∞) = −∞.
In the original paper [1], both∞ and −∞ are written as∞. Since we will represent the

continued fraction as full binary trees, the two symbols are distinguished in this section.
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Definition 6.1. The extended remainder polynomial R∗
(
a
r

)
∈ Qprop

n [x1, . . . , xn] is
defined by

R∗

(a
r

)
=

a

r
+

∑
(i1,i2,...,il)∈Il

l≥1

(Ril · · ·Ri2Ri1)
(a
r

)
xi1 · · ·xil

where we exclude terms with coefficient −∞.

Example 6.2. Let v = (2,3)
5

. Then the extended remainder polynomial is

R∗

(
(2, 3)

5

)
=

(2, 3)

5
+

(1, 1)

2
x1 +

(2, 1)

3
x2

+
(0, 0)

1
x1x1 +

(0, 0)

1
x1x2 +

(1, 1)

2
x2x1 +

(0, 0)

1
x2x2

+ ∞x1x1x1 +∞x1x1x2 +∞x1x2x1 +∞x1x2x2

+
(0, 0)

1
x2x1x1 +

(0, 0)

1
x2x1x2 +∞x2x2x1 +∞x2x2x2

+ ∞x2x1x1x1 +∞x2x1x1x2 +∞x2x1x2x1 +∞x2x1x2x2.

6.1 Binary tree and continued fraction

We note that remainder polynomials can be represented by trees and proper fractions as
follows. Each term of a remainder polynomial corresponds to node of tree, and we connect
two nodes if these nodes correspond to the terms with variable xi1 · · ·xil and xi1 · · ·xil ·xj
for some l and j. In the above example, the binary tree obtained by two-dimensional
proper fraction is the following.

∞ ∞

(0,0)
1

∞ ∞

(0,0)
1

(1,1)
2

∞ ∞

(0,0)
1

∞ ∞

(0,0)
1

(1,1)
2

∞ ∞

(0,0)
1

(2,1)
3

(2,3)
5

We will introduce the definition of binary trees.

Definition 6.3. The topmost node of a tree is called the root. Every node is the root,
or is connected by a directed edge from one node which is called a parent node. On the
other hand, every node connects to some nodes which are called child nodes. A node
with no children is called a leaf, and node with the same parent is called a sibling.
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Definition 6.4. A binary tree is a tree whose elements have at most 2 children. In
addition, the tree is a full binary tree if each node has exactly zero or two children. Since
each node can have only two children, we name them a left child and a right child.

We will denote by Tv the binary tree whose root is the node v. For example, v11 and
v12 are children of v1 and v2 is sibling of v1 in the following tree Tv0 . A subtree Tx of a
tree T is a tree consisting of a node x in T and all of its descendants in T.

v11 v12

v1

v211 v212

v21 v22

v2

v0

In this paper, we define a nephew node as follows.

Definition 6.5. Let v be an arbitrary node which is a left (resp. right) child. If there
exists a left (resp. right) child of a sibling node of v, then we call this node a nephew of
v.

In the above figure, v21 is a nephew of v1 and v212 is a nephew of v22. We will denote by
T (a,b)

r

the binary tree obtained by two-dimensional proper fraction (a,b)
r

, and we call this
tree the continued fractional tree. For convenience, we define the tree which consists
only one node is also the continued fractional tree. We call this tree trivial.

Definition 6.6. The size of tree T , denoted by |T|, is defined to be the number of leaves.

6.2 Terminal trees

We define a terminal tree and show some properties of this one.

Definition 6.7. A two-dimensional proper fraction (a,b)
r

is terminal if a + b = r and
GCD(r, a) = GCD(r, b) = 1. In addition, T is terminal if it is obtained by terminal
fraction, or it is trivial or (0,0)

1
.

Since a + b = r, we can write terminal fraction as (a,r−a)
r

. The multidimensional
continued fraction for (a,r−a)

r
gives the economic resolution of the quotient singularity of

type 1
r
(1, a, r− a). This quotient singularity is terminal, so we call this fraction terminal.
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Proposition 6.8. For given two 2-dimensional terminal proper fractions (a1,b1)
r1

and (a2,b2)
r2

,

if the lifting (a0,b0)
r0

which satisfies
(

(a0,b0)
r0

)
= (a1,b1)

r1
and R2

(
(a0,b0)

r0

)
= (a2,b2)

r2
exists and it

is terminal, then it is uniquely determined.

Proof. By Definition 6.1, the lifting (a0,b0)
r0

satisfies a0 = r1 and b0 = r2. Since the lifting
is terminal, it follows that r0 = r1 + r2.

This proposition says that the proper fraction corresponding to the parent node is
uniquely determined from the denominator of two child nodes in terminal tree.

Remark 6.9. A Gorenstein canonical proper fraction (see Definition 6.14) also has this
property.

Proposition 6.10. If T (a,b)
r

is terminal, then all subtrees are also terminal.

Proof. We claim that the image of remainder map Ri(
(a,b)
r
) is also a terminal two-

dimensional proper fraction for i = 1, 2. Since R1(
(a,b)
r
) = (−r

a
,b
a
)

a
and −r + b = −a,

we have −ra + b
a ≡ 0 (mod a). By assumption, 0 ≤ −ra < a and 0 ≤ b

a
< a, it follows

−ra + b
a
= a.

Corollary 6.11. Let T (a,b)
r

be a terminal tree, then the sibling node of a leaf is a leaf.
Especially, |T (a,b)

r

| = 2r.

Proof. The leaves correspond to∞ as coefficient of the remainder polynomial. We claim
that there are no nodes which correspond to (α,0)

r
or (0,α)

r
where 0 < α < r. If this node

exists, then we have α + 0 = r by Proposition 6.10. This contradicts GCD(r, a) = 1.

Theorem 6.12. (Theorem 1.9) Let T be a full binary tree. Let x1 be an arbitrary node
which has a parent node x, a sibling node x2 and a nephew node y. Then T is terminal
if and only if T satisfies the following conditions.

(i) A sibling node of a leaf is a leaf.

(ii) If | Tx1 |=| Tx2 |, then Tx1 = Tx2 = T (0,0)
1

.

(iii) If | Tx1 |<| Tx2 |, then Tx1 = Ty.

Proof. First, we show the sufficient condition. Let x be the internal node of a terminal
tree T, then x corresponds to the two-dimensional proper fraction (a,b)

r
, where a+ b = r.

By definition of the remainder map, the nodes x1 and x2 correspond to (−r
a
,b
a
)

a
and (ab,−r

b
)

b
,

respectively. If x1 is a leaf, then x2 is also a leaf by Corollary 6.11. If x1 is not a leaf , then
there exists a nephew node of x1. The node y denotes this nephew node. If | Tx1 |=| Tx2 |,
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then a = b and Tx1 = Tx2 = T (0,0)
1

by Corollary 6.11. Hence Theorem 6.12 holds in this
case.

If | Tx1 |<| Tx2 |, then the nephew node y corresponds to (−b
a
,−r

b
a

)
a

. Since (a,b)
r

is
terminal type, we have a+ b

a
= ra. This gives ba = ra − aa = ra, and so −ba = −ra.

Therefore, (−r
a
,b
a
)

a
is equal to (−b

a
,−r

b
a

)
a

by Proposition 6.10.
Next we will show the converse. Assume that a tree T satisfies conditions (i) ∼ (iii).

Let x be the internal node which has a left child node x1 and a right child node x2.
Clearly, the followings hold.

(∗) If x1 or x2 is a leaf , then Tx = T (0,0)
1

is a terminal tree by condition (i).

(∗∗) If |Tx1| = 2 and |Tx2| = 2b ≥ 2, then Tx corresponds to T (1,b)
b+1

by condition (ii).

We need only consider the case where |Tx1| = 2a ≥ 2 and |Tx2 | = 2b ≥ 2 hold. We
claim that if Tx1 = T (a1,a2)

a

and Tx2 = T (b1,b2)
b

are terminal trees, then Tx is equal to the
terminal tree T (a,b)

a+b

. It is sufficient to show equations

a1 = −(a+ b)
a
= −ba,

a2 = b
a
,

b1 = a,

and b2 = −(a+ b)
b
= −ab.

Since Tx1 and Tx2 are terminal, we have a1 + a2 = a and b1 + b2 = b. We can assume
b > a, and then there exists the nephew node of x1. By condition (iii), Ty is equal to
Tx1 = T (a1,a2)

a

where y is the nephew node of x1. On the other hand, Ty = T
(−b

b1 ,b2
b1 )

b1

holds by the definition of the remainder map. It follows that a = b1, a1 = −b
b1
= −ba and

a2 = b2
b1
= b2

a. By the assumption b > a and b1+b2 = b, we have b2 = b−b1 = b−a = −ab

and a2 = b− aa = b
a.

Therefore, whether Tx is terminal depends on whether Tx1 and Tx2 are terminal.
Since the orders of subtrees Tx1 and Tx2 are strictly smaller than that of Tx, we need
only consider the cases of (∗) and (∗∗). Thus the binary tree T which satisfies conditions
(i) ∼ (iii) is terminal.

Example 6.13. Let us show an example. By Theorem 6.12, the following tree Tv is a
terminal tree.
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v11 v12

v1

v211 v212

v21 v22

v2

v

Clearly, this tree satisfies the condition (i). Since the subtrees Tv11 , Tv12 , Tv211 and Tv212

are equal to T (0,0)
1

, so condition (ii) holds. The node v1 has a nephew node v21, and we
have |Tv1 | < |Tv2| and Tv1 = Tv21 . This means condition (iii) holds for v1. Similarly,
condition (iii) holds for v22. The other nodes have no nephew or satisfy |Tx1| > |Tx2|, so
all internal nodes satisfy the condition (i),(ii) and (iii). Actually, the terminal tree T (2,3)

5

coincides with the above tree.

In general, if Tv satisfies the conditions (i),(ii),(iii) , |Tv1| = 2a and |Tv2| = 2b, then
Tv = T (a,b)

a+b

, where v1 and v2 are children of v.
As an application of this theorem, the Fujiki-Oka resolution of a new terminal quotient

singularity can be constructed by combining two binary trees. Let Tv be a terminal tree
which has a left child v1 and a right child v2. We will denote by Tl (resp. Tr) the terminal
tree which coincides with Tv1 (resp. Tv2). Then we can combine Tl with Tv from left,
or Tr with Tv from right. This tree is a terminal tree by Theorem 6.12. The following
shows the example of Tv = T (2,1)

3

.

T (2,1)
3

T (0,0)
1

= Tvr = Tv2 T (2,3)
5

v1 v2

v

+

vr

=

v1 v2

v vr
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T (1,1)
2

= Tv1 T (2,1)
3

T (2,3)
5

vl

+
v1 v2

v

=
vl

v1 v2

v

6.3 Gorenstein canonical trees

We charactrize the shape of Gorenstein canonical trees as in the previous section. Let
G be a cyclic subgroup of SL(3,C). Then C3/G has a Gorenstein canonical singularity
([35], [40]). To consider the Fujiki-Oka resolution, we assume C3/G has a semi-isolated
singularity (see Section 2.2). In other words, G is generated by 1

r
(1, a, r − a− 1). Hence

we treat the two-dimensional proper fraction (a,r−a−1)
r

in this section.

Definition 6.14. A two-dimensional proper fraction (a,b)
r

is Gorenstein canonical if a +
b + 1 = r. In addition, T (a,b)

r

is Gorenstein canonical tree if it is obtained by Gorenstein
canonical fraction, or it is a trivial tree.

The following proposition is proved almost in the same way as Proposition 6.10.

Proposition 6.15. If T (a,b)
r

is a Gorenstein canonical tree. Then all subtrees are also
Gorenstein canonical.

Corollary 6.16. Let T (a,b)
r

be a Gorenstein canonical tree. Then |T (a,b)
r

| = r + 1.

Proof. We can easily confirm that the claim holds for T (r−1,0)
r

, T (0,r−1)
r

and T (0,0)
1

. We
assume the claim holds for r ≤ k − 1. If r = k , that is T (a,b)

k

with a, b ̸= 0, we have the
equation

|T (a,b)
k

| = |T (−k
a
,b
a
)

a

|+ |T
(ab,−k

b
)

b

|.

Since a, b ≤ k−1, |T (a,b)
k

| = a+1+b+1 = k+1 by assumption. Therefore, the statement
holds by induction.

We will give the Gorenstein canonical tree version of Theorem 6.12. This theorem can
be proved in the same way as Theorem 6.12. In the following theorem, a and b denote
positive integers.
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Theorem 6.17. Let T be a full binary tree. Let x1 be an arbitrary node which has a
parent node x, a sibling node x2 and a nephew node y. Then T is Gorenstein canonical
if and only if T satisfies the following conditions.

(i) If |Tx1| = |Tx2|, then Tx1 = T (a−1,0)
a

and Tx2 = T (0,a−1)
a

.

(ii) If |Tx1| < |Tx2| and x1 is a leaf, then y is also a leaf.

(iii) If |Tx1| < |Tx2| and x1 has two children y1 and y2 with |Ty1| = α, |Ty2| = 1, then y
has two children z1, z2 such that |Tz1 | = 1, |Tz2| = α.

(iv) If |Tx1| < |Tx2| and x1 has two children y1 and y2 with |Ty1| = α, |Ty2| = β > 1,
then y has two children z1, z2 such that |Tz1 | = α + 1, |Tz2 | = β − 1.

Proof. First, assume that T is a Gorenstein canonical tree. We check the case (i). If
|Tx1| = |Tx2|, then

Tx1 = T (b,a−b−1)
a

and Tx2 = T (c,a−c−1)
a

for some positive integers a, b and c. This leads to Tx = T (a,a)
2a+1

. Thus we see that

b = a− 1 and c = 0.
In the case (ii), we have Tx = T (0,a−1)

a

. It follows that Tx2 = T (0,a−2)
a−1

and the

nephew node y is a leaf.
Next, we check the cases (iii) and (iv) . Let Tx = T (a,b)

r

with a + b + 1 = r, a <
b. Then the two-dimensional proper fractions corresponding to Tx1 ,Tx2 and Ty are
(−r

a
,b
a
)

a
, (a,−r

b
)

b
and (−b

a
,−r

b
a

)
a

, respectively.

y1 y2

x1 :=
(−r

a
,b
a
)

a

z1 z2

y := (−b
a
,−r

b
a

)
a

x2 :=
(a,−r

b
)

b

x := (a,b)
r

If |Ty1| = α, |Ty2| = 1, then Tx1 = T (α−1,0)
α

. It implies ba = −ba = 0. Thus (iii) holds.

In the case of |Ty1| = α and |Ty2| = β > 1, we have ba ̸= 0 and −ba = a − ba. Since Ty

is a Gorenstein canonical tree, −ba + −rb
a

+ 1 = a. It follows that −rb
a

= b
a − 1. We

conclude from Corollary 6.16 that β = |Ty2| = b
a
+ 1 and |Tz2| = −r

b
a

+ 1 = b
a
= β − 1.
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On the other hand, we have α = |Ty1| = −r
a
+ 1 = a − b

a since Tx1 is a Gorenstein
canonical tree. Hence |Tz1| = −b

a
+ 1 = a− ba + 1 = α + 1.

It remains to prove that if a full binary tree T satisfies conditions (i) to (iv) then T
is a Gorenstein canonical tree. Let x′ denote the root of T, and x′1, x′2 the children of x′.
In the same way as in the proof of Theorem 6.12, if Tx′

1
= T (a1,a2)

a

and Tx′
2
= T (b1,b2)

b

are
Gorenstein canonical trees where a, b > 0 , then Tx′ is equal to the Gorenstein canonical
tree T (a,b)

a+b+1

. We need only consider the case where x′1 or x′2 is a leaf. If x′1 and x′2 are
leaves, then T = T (0,0)

1

. Suppose that Tx′
1
= T (a1,a2)

a

and x′2 is a leaf. By the condition (ii),
Tx′ = T (a,0)

a+1

and it is Gorenstein canonical tree. Therefore we obtain the latter assertion
by the similar inductive arguments.

Let us explain how conditions (i)∼(iv) characterize the shape of a binary tree. First,
the condition (i) means that subtree Tx of a Gorenstein canonical tree coincides with
the following tree (Fig.5) if |Tx1| = |Tx2 |. The condition (ii) means that a nephew node
of a leaf is also a leaf if it exists in the Gorenstein canonical tree. Figure 6 shows the

...

x1

...

x2

x

Fig. 5: The tree which satisfies condition (i).

v11 v12

v1

v21

v221 v222

v22

v2

v

Fig. 6: The Gorenstein canonical tree T (3,10)
14

.

example of a Gorenstein canonical tree obtained by (3,10)
14

. In this case, let us focus on
the node v1. Since | Tv1 |<| Tv2 | and v1 has two children v11 and v12 with |Tv11| = 2
and |Tv12 | = 2 > 1, this is the case where the condition (iv) is applied. Actually, v21 has
children of size three and one respectively. Similarly, the relationship between v21 and v221
is obtained by the condition (iii). In general, the proper fractions of the nodes which are
nephew nodes each other in the canonical Gorenstein tree have the following properties.
Namely, they have the same denominator and the numerators systematically change as

(a, b)

r
→ (a+ 1, b− 1)

r
→ · · · → (a+ b− 1, 1)

r
→ (a+ b, 0)

r
→ (0, a+ b)

r
→ (1, a+ b− 1)

r
→ · · · .

In this example, the nodes v1, v21, v221 are nephew nodes each other such that their proper
fractions are (1,1)

3
, (2,0)

3
and (0,2)

3
respectively.
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Fig. 7: Fujiki-Oka resolutions of type 1
7
(1, 3, 3) and 1

14
(1, 3, 10).

Next, let us see the subdivision in the case (i) and (iii). Figure 6 shows the fans
which are subdivided by the Fijiki-Oka resolutions for the quotient singularity of type
1
7
(1, 3, 3) and 1

14
(1, 3, 10). In these cases, the subdivision processes occur at the common

Oka centers of the common faces of both sides of semi-unimodular cones. Generally, the
subtree which satisfies the condition (i) or (iii) induces the above subdivision.

Similarly as for a terminal tree, we can get a new Gorenstein canonical tree by con-
necting two Gorenstein canonical trees which satisfy the conditions of Theorem 6.17. In
other words, we can construct a crepant resolution for the quotient singularity of a higher
order cyclic group. Thus, if we can extend this result to the case of general dimensions
(we need the n-ary tree instead of the binary tree), we can construct many examples of
cyclic quotient singularities which possess a crepant resolution in higher dimension.
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