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Preface

Coupling between electric and magnetic properties of matters has long been one of the

central issues in the field of solid state physics. The microscopic origin of this cross coupling is

traceable to the fact that the single particle, i.e. electron, hosts both a charge and a magnetic

moment. Besides the scientific interest, the engineering of such cross coupling in materials

can lead to development the era-defining functional devices as shown by examples of modern

magnetic storage and sensors where the various kinds of magnetoresistance effects in metals are

employed.

In insulators, such cross coupling is observed as magnetoelectric effects, where electric polar-

ization is induced by magnetic fields and magnetization by electric fields. The magnetoelectric

effect offers a clue to control and visualize antiferromagnetic domains, both of which are made

difficult by the absence of magnetization in antiferromagnets. It has been shown in numerous

researches that two distinct antiferromagnetic states characterized by different values of electric

polarization of magnetic origin are switchable by electric fields. Furthermore, magnetoelectric

effects in optical frequencies lead to the interference between electric and magnetic fields of light

and hence enable us to optically distinguish two antiferromagnetic states according to whether

electric and magnetic fields interfere with each other constructively or destructively. Imaging

studies of switching dynamics of antiferromagnetic domains in magnetoelectric insulators should

provide us significant insight, which is otherwise entirely inaccessible, into dynamic properties

of antiferromagnetic domains.

In this thesis, we investigate dynamic aspects of magnetoelectric effects in a collinear antifer-

romagnet by means of spectroscopic and imaging experiments. We show that antiferromagnetic

ordering with no magnetization surely induces the nonreciprocal optical effect in visible range.

Exploiting the observed magnetoelectric optical effect, we unveil dynamic properties of anti-

ferromagnetic domain patterns in driving electric and magnetic fields by the visualization of

antiferromagnetic domain patterns in the transient state of the switching process.

This thesis is organized as follows. In Ch. 1, we first introduce background knowledge about

magnetoelectric effects and then state the purposes of this research. Chapter 2 is dedicated to

the experimental methods. Chapters 3-5 are devoted to the findings of this thesis. In these

chapters, results and discussion are shown after the brief introduction of previous researches on

the topics. In Ch. 3, we introduce the target material MnTiO3 and then present the findings

about the nonreciprocal optical effects. In Ch. 4, we demonstrate the antiferromagnetic domain
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imaging technique based on the optical effect studied in the previous chapter. In Ch. 5, we

investigate the switching dynamics in MnTiO3 by the direct observation of the transient states.

The conclusions are drawn in Ch. 6.
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Chapter 1

Background

1.1 Introduction to magnetoelectric effect

1.1.1 Linear magnetoelectric effect

Consideration of free energy

Magnetoelectric (ME) effects are electric induction of magnetization M and magnetic induction

of electric polarization P . Macroscopically, M (P ) is calculated from the magnetic-field H

(electric-field E) derivative of the free energy function F as

P = −∂F
∂E

, (1.1)

M = − ∂F
∂H

. (1.2)

F is expanded in terms of external fields E and H as

F(E,H) = F0 − P0 ·E −M0 ·H − 1

2

∑
µν

χe
µνEµEν −

1

2

∑
µν

χm
µνHµHν −

∑
µν

γµνEµHν − · · · ,

(1.3)

where 3×3 tensors χe and χm are related with, respectively, the dielectric constant and the

magnetic susceptibility. γ is called ME tensor. F0 represents F(E = 0,H = 0). Substituting

Eq. (1.3) for Eqs. (1.1) and (1.2), we obtain

P = P0 + χeE + γH + · · · , (1.4)

M = M0 + χmH + γ⊤E + · · · . (1.5)

In Eq. (1.4), P0 and χeE represent spontaneous and dielectric polarization, respectively. In

Eq. (1.5), M0 and χmH represent spontaneous and magnetic-field induced magnetization, re-

spectively. The contributions γH and γ⊤E in Eqs. (1.4) and (1.5) represent linear ME effects,

where electric polarization and magnetization are induced in proportion to the magnetic and

electric fields, respectively. Both contributions originate from the ME term FME in the free

1
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m

(a) (b)

t

m
(c)

Figure 1.1: Schematic pictures of configurations of magnetic moments m (red arrows) where (a) the

magnetic monopole, (b) the toroidal moment, and (c) the magnetic quadrupole moment exist. Red and

blue spheres in (a) and (c) denote the magnetic monopole with opposite signs. Red cone in (b) denotes

the direction of the toroidal moment t.

energy function,

FME = −
∑
µν

γµνEµHν . (1.6)

As pointed out by Laudau and Lifshitz [1], the linear ME effect occurs only when the spatial-

inversion P and the time-reversal T symmetries are simultaneously broken. Under the spatial-

inversion operation P̂, E and P are odd while H and M are even. Under the time-reversal

operation T̂ , H and M are odd while E and P are even. Since the free energy function F is

invariant for both operations P̂ and T̂ , from Eq. (1.3), we can see that the ME tensor γ is odd

under both P and T operations. Hence, γ is zero in the materials with P or T symmetry.

Relation to odd-parity magnetic multipoles

P and T symmetries are useful to classify various kinds of ferroic ordering [2]. Ferroelectric

ordering is characterized by nonzero spontaneous polarization P0 which is a T -even polar vector.

On the contrary, ferromagnetic ordering is characterized by nonzero spontaneous magnetization

M0 which is a T -odd axial vector. Ferroelastic ordering and ferroaxial ordering are referred to

as the ferroic ordering even to both P and T operations.

Simultaneous breaking of P and T symmetries in linear ME materials gives rise to ferroic

ordering of odd-parity magnetic multipoles. In Ref. [3], definitions of the T -odd pseudoscalar a,

the T -odd polar vector t, and the magnetic quadrupole moment qµν are given as

a =
1

3

∑
i

ri ·m(ri), (1.7)

t =
1

2

∑
i

ri ×m(ri), (1.8)

qµν =
1

2

∑
i

(
xiµmν(ri) + xiνmµ(ri)−

2

3
δµνri ·m(ri)

)
, (1.9)

respectively, using the spatial distribution of magnetic moments m as a function of the position

ri of the i-th particle. δij denotes the Kronecker delta. Magnetic textures with nonzero a, t,



1.1. Introduction to magnetoelectric effect 3

and q are illustrated in Figs. 1.1(a)-(c). a and t are termed the magnetic monopole and the

toroidal moment, respectively.

The connection between the ME tensor γ and the odd-parity magnetic multipoles become

clearer by rewriting Eq. (1.6) as [3]

FME = −ãE ·H − t̃ · (E ×H)−
∑
µν

q̃µν(EµHν + EνHµ). (1.10)

Here, the trace-like term ã = 1/3
∑

i γii is a T -odd pseudoscalar and have the same symmetry as

the magnetic monopole. The antisymmetric term t̃µ = 1/2
∑

νλ εµνλγνλ is a T -odd polar vector

and have the same symmetry as the toroidal moment. The remaining traceless symmetric term

q̃µν = 1/2{γµν + γνµ − (2/3)δµνγii}, where εµνλ denotes the Levi-Civita symbol, has the same

symmetry as the magnetic quadrupole moment. In addition to the above mentioned similarity

in the symmetry, the relation between the magnetic multipoles and the ME susceptibilities has

been derived in several theoretical studies [4, 5].

1.1.2 Example materials

Since the T symmetry cannot be spontaneously broken without magnetic ordering, intensive

studies on ME effects have been performed in magnetic materials. The ways of symmetry

breaking and resultant ME effects are classified into three categories as shown in this subsection.

Simultaneous P and T symmetry breaking by magnetic ordering

In 1961, the first observation of the ME effect was performed on Cr2O3 where the P and T
symmetries are simultaneously broken by antiferromagnetic ordering [6]. Cr2O3 crystallizes in

the corundum structure with centrosymmetric the space group R3̄c [see Fig. 1.2(a)]. Due to

inversion centers located at bond centers of Cr3+-Cr3+, γ is zero in the paramagnetic phase.

Below the Néel temperature TN = 307 K, Cr2O3 adopts easy-axis collinear antiferromagnetic

ordering with the magnetic symmetry 3̄′m′ where the P and T symmetries are absent [see

Fig. 1.2(a)]. As pointed out by Dzyaloshinkii in 1960 [7], the ME tensor γ has the following

form:

γ =


γ⊥ 0 0

0 γ⊥ 0

0 0 γ∥

 , (1.11)

under this magnetic symmetry. From Eqs. (1.6), (1.10), and (1.11), the magnetic monopole a

and the qz2-type magnetic quadrupole moment are not zero in Cr2O3 below TN. Figure 1.2(b)

shows the temperature dependence of these ME tensor elements obtained by measurements of

electric-field induced magnetization at various temperatures [6]. As shown in Fig 1.2(b), the

ME effects are clearly observed below TN where the P and T symmetries are simultaneously

broken by antiferromagnetic ordering.
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(a)
(b)

Figure 1.2: (a) Two possible antiferromagnetic ordering in rhombohedral unit cells of Cr2O3. Cr3+ ions

are denoted by white circles. Inversion centers are located at the center of each cell. Black arrows

represent magnetic moments. (b) Temperature dependence of the ME tensor elements in Cr2O3. α⊥ and

α∥ correspond to γ⊥ and γ∥ in Eq. (1.11), respectively. Figures are taken from Ref. [6].

Antiferromagnetic ordering without doubling the crystallographic unit cell plays a crucial

role in the scenario of the simultaneous symmetry breaking at the onset of magnetic ordering in

Cr2O3. In centrosymmetric materials, ferromagnetic ordering, in which all magnetic moments

are aligned in the same direction, do not violate the P symmetry. Antiferromagnetic ordering

doubling the unit cell never breaks the T symmetry because the operation T̂ is equivalent to the

translational operation of a lattice vector for such antiferromagnetic ordering [see Fig. 1.3(a)].

Therefore, in order for antiferromagnetic ordering to break the T symmetry, a crystallographic

unit cell must contain more than one magnetic atom.

The honeycomb structure which contains two atomic sites in a structural unit cell is where

simple collinear antiferromagnetic ordering can simultaneously break the P and T symmetries.

The inversion operation connecting two sublattices is no longer the symmetry operation in

antiferromagnetic ordering depicted in Fig 1.3(b). In particular, the honeycomb structure is

seen in various kinds of materials partly because the honeycomb network is realized by properly

connecting the two-thirds of the octahedral vacancy of a hexagonal closed packing array of

anions. Many linear ME materials including A4B2O9 (A= Mn, Fe, Co / B=Nb, Ta), MnTiO3,

and BaNi2(PO4)2 have collinear antiferromagnetic ordering on the honeycomb structure [8, 9,

10, 11, 12, 13, 14] 1.

1As will be mentioned in Ch. 3, Cr2O3 has the similar crystallographic structure to that of MnTiO3.
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(a)

(b)

, translation
×

Figure 1.3: (a) Antiferromagnetic spin chain as an example of cell-doubling magnetic ordering. Black and

blue dotted boxes denote crystallographic and magnetic unit cells. (b) Antiferromagnetic ordering on

honeycomb structure. In (b) an inversion center is denoted by a cross mark. In (a) and (b), red arrows

denote magnetic moments.

P and T symmetry breaking in noncentrosymmetric magnets

The P and T symmetries are independently broken by the noncentrosymmetric crystallographic

structure and the presence of net magnetization, respectively. In 1964, the first observation of

the ME effect in such noncentrosymmetric ferromagnets was performed on GaFeO3 [15]. GaFeO3

crystallizes in the orthorhombic polar structure with the space group Pc21n [16]. Spontaneous

polarization is oriented along the b axis. Below the critical temperature Tc = 210 K, GaFeO3

adopts ferrimagnetic ordering with spontaneous magnetization along the c axis. For the resultant

magnetic point group symmetry of m′2′m, the ME tensor has the following form:

γ =


0 0 0

0 0 γbc

0 γcb 0

 . (1.12)

Judging from Eqs. (1.6), (1.10), and (1.12), the a-component of the magnetic toroidal moment

ta and the qbc-type magnetic quadrupole moment are not zero in GaFeO3. Figure 1.4(a) shows

magnetic-field induced polarization in GaFeO3 [17]. The linear ME effect arising from γbc in

Eq. (1.12) is clearly observed while γcb seems to be absent. The striking asymmetry between γbc

and γcb indicates that the antisymmetric ME effect related to the toroidal moment ta and the

symmetric effect related to the qbc-type quadrupole moment is comparable in GaFeO3.

In GaFeO3, the toroidal moment t is induced along the outer product P0×M0 of spontaneous

polarization P0 and magnetization M0. Generally speaking, the toroidal moment is induced

perpendicular to both polarization and magnetization in polar ferromagnets [see Fig. 1.4(b)],

because the outer product of a T -even polar vector and a T -odd axial vector always becomes

T -odd polar vector. This relation between polarization and magnetization, and the toroidal

moment can be seen from Eq. (1.8). By neglecting the spatial variation of magnetic moments

and substituting m(rα) = m0 for Eq. (1.8), we obtain

t =
1

2

(∑
i

ri

)
×m0. (1.13)
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(a) (b)
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t // p × m
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Figure 1.4: (a) Magnetic-field induced electric polarization in Ga2−xFexO3 at 4.2 K. (b) Illustration of

the relation between the toroidal moment t and the magnetic dipole m in (left) polar and (right) chiral

materials. In the left panel, an electric dipole moment p is denoted by a blue arrow. In the right panel,

a tetrahedral arrangement of nonmagnetic atoms is shown by spheres. (a) is taken and arranged from

Ref. [17].

With the definition of the electric dipole moments [see Eq. (1.14)], Eq. (1.13) directly leads to

the relation t ∥ P0 ×m0.

Another way of constructing the T -odd polar vector quantity is to multiply the T -odd axial

vector by a T -even pseudoscalar. Chirality in materials is characterized by the similarity to

T -even pseudoscalar observables such as natural optical rotation [18]. Therefore, the presence

of nonzero toroidal moment along magnetization is always symmetry-allowed in chiral magnets

[see Fig. 1.4(b)]. The toroidal moment induced parallel to magnetization in chiral magnets

reverses the direction when the direction of magnetization or the sign of chirality reverses.

Microscopically, spatial distribution of magnetic moments in atomic scale originating from the

orbital hybridization between magnetic and nonmagnetic atoms might be the origin of the

toroidal moment along the magnetization of the magnetic atom [19].

P-symmetry breaking by magnetic ordering

Revival in the researches of ME materials in this decade or so owes itself to discoveries of large

nonlinear ME effects in certain manganese oxides at the beginning of this century. Nonlinear

ME effects where electric polarization is modified by the application of the magnetic field are

symmetry-allowed when the P and PT symmetries are broken. Large effects are expected in

cases where the P symmetry is broken at the onset of magnetic ordering.

In 2003, Kimura et al. reported a colossal nonlinear ME effect in TbMnO3 [20]. TbMnO3

crystallizes in the orthorhombically distorted perovskite structure with the centrosymmetric

space group symmetry Pbnm. Below the critical temperature Tc = 27 K, TbMnO3 adopts

cycloidal helimagnetic ordering with the magnetic propagation vector q = (0, 0.27, 1) [21]. The

P symmetry is broken by the cycloidal helimagnetic ordering and electric polarization arises

along the c axis of the crystal below Tc even in the absence of magnetic fields [see Fig. 1.5(a)].
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(a) (b)

a c

b

P

Figure 1.5: (a) Schematic illustration of the magnetic structure of TbMnO3 below Tc and at 0 T. Magnetic

moments are denoted by red arrows. The direction of electric polarization is described by a blue arrow.

(b) Magnetic-field induced polarization rotation in TbMnO3. The magnetic field is applied along the b

axis. (b) is taken from Ref. [20].

The modulation of cycloidal magnetic ordering by the magnetic field accompanies the large

nonlinear ME effect as shown in Fig. 1.5(b).

1.1.3 Microscopic origin of ME effects

Microscopically, the electric dipole moment p̂ and the magnetic dipole moment m̂ of the elec-

tronic system is given by

p̂ = −e
∑
i

r̂i, (1.14)

m̂ = −µB

ℏ
∑
i

(
l̂i + gŝi

)
, (1.15)

using the position r̂i and the orbital and spin angular momentums l̂i and ŝi of the i-th electron,

respectively. Here e, µB, ℏ, and g denote the elementary charge, the Bohr magneton, the Planck

constant, and the g factor.

Coupling between magnetic ordering and electric polarization gives rise to the ME effects.

Magnetic ordering is the arrangement of magnetic moments m(r) as a function of positions of

magnetic atoms. The modification of magnetic ordering by the application of the small magnetic

field ∆H is expressed as

m(r,∆H) = m(r, 0) +
∂m(r, 0)

∂H
∆H + · · · . (1.16)

Let us assume that the electric dipole moment pi of the i-th atom is given as a functional Fi of

magnetic ordering m(r) as pi = Fi [m]. From Eq. (1.16), the effect of the small magnetic field
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H on pi is written as

pi(∆H) = pi(0) +

(∫
δFi

δm

∂m(r, 0)

∂H
dr

)
∆H + · · · . (1.17)

Here the second term in the right hand side of Eq. (1.17) describes the magnetic-field modification

of polarization.

Coupling between magnetic ordering and electric polarization can be explained as inverse

effects of various magnetic interactions. Magnetic interactions are influenced by the configuration

of magnetic and nonmagnetic atoms. Since the applied electric field should shift positions of

atoms, the magnetic interaction should be modified by electric fields. The above mentioned

functional Fi is given by computing the electric-field derivative of magnetic interactions. Most

of the observed ME effects are explained in terms of the inverse effects of the magnetic exchange

interaction, the Dzyaloshinkii-Moriya (DM) interaction and the single-ion anisotropy.

A contribution from the inverse effect of the exchange interaction is often referred to as the

exchange striction mechanism and written as

pext,i =
∑
j

Πij {m(ri) ·m(rj)} . (1.18)

The vector Πij is not zero only when there is no inversion center between sites ri and rj . A

theoretical study [22] suggests that the exchange striction mechanism accounts for the linear ME

effect arising from γ∥ in Cr2O3 at high temperature. In Cr2O3, the application of magnetic field

along the c axis changes the magnetic symmetry from 3̄′m′ to 3, where the c-component of Π

is not zero for all pairs of two Cr3+ ions. The exchange striction mechanism also well describes

electric polarization spontaneously arising at the onset of up-up-down-down antiferromagnetic

ordering [23, 24].

A contribution from the inverse effect of the magnetic anisotropy is derived as the single-ion

effect. In Ref. [22], the low temperature part of γ∥ in Cr2O3 is described in terms of the electric-

field-dependent g factor. In 2007, Arima presented the microscopic description of the single-ion

effect by the analysis of spin-dependent hybridization between the d orbital of a magnetic ion

and the p orbital of a nonmagnetic anion [25]. This spin-dependent d-p hybridization mechanism

is conveniently expressed as [26]

ppd,i =
∑
j

cij {m(ri) · eij}2 eij , (1.19)

using unit vectors eij which connects a magnetic ion at ri and the j-th surrounding anion at

rj . cij denotes the coupling coefficient.

A contribution from the inverse effect of the DM interaction is often referred to as the spin-

current mechanism. By the analysis of the minimal model containing a nonmagnetic anion

surrounded by two magnetic ions, Katsura et al. presented the microscopic description of the

effect [27]. The spin-current mechanism is described as

psc,i = cij
∑
j

eij × {m(ri)×m(rj)} , (1.20)
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using the unit vector eij connecting magnetic ions at positions ri and rj and the coupling

coefficients cij . This mechanism successfully explains electric polarization arising from cycloidal

magnetic ordering.

1.2 Application of magnetoelectric effects

1.2.1 Optical magnetoelectric coupling

Formulation

Here we review the formulation of the linear ME effect in a visible electromagnetic wave given

in Ref. [28]. The interaction between materials and the oscillating electric (magnetic) field Eω

(Bω) with angular frequency ω is given by regarding the light-matter interaction V as time-

dependent perturbation to the system. The scalar and vector potentials ϕ and A, respectively,

which satisfy

Eω = −∇ϕ− ∂A

∂t
, (1.21)

Bω = ∇×A (1.22)

are written as

ϕ(r) = ϕ(r0)− r ·Eω(r0)−
1

2

∑
µν

xµxν
∂Eω

ν

∂xµ

∣∣∣∣
r=r0

+ · · · , (1.23)

Aµ(r) =
1

2

∑
νλ

εµνλxλB
ω
ν (r0) +

1

3

∑
νλρ

εµλρxνxρ
∂Bω

λ

∂xν

∣∣∣∣
r=r0

+ · · · . (1.24)

By substituting Eqs. (1.23) and (1.24) for the Hamiltonian H = 1
2me

(p̂kin − eA)2 − eϕ, where

me and p̂kin denote the mass of electron and the momentum operator, respectively, and using

Eqs. (1.14) and (1.15), we obtain the light-matter interaction V as

V = −eϕ(r0)− p̂ ·Eω(r0)− m̂ ·Bω(r0)−
1

3

∑
µν

Θ̂µν
∂Eω

ν

∂xµ

∣∣∣∣
r=r0

+ · · · . (1.25)

Θ̂µν stands for the electric quadrupole moment defined as Θ̂µν = − e
2

∑
i(3xiµxiν − δµνx

2
i ).

One of the most prominent consequences of the optical ME effect is the electromagnetic

wave generated by Bω-induced oscillating polarization. The oscillating electric dipole pω with

angular frequency ω under the radiation with the photon energy ℏω is written as

pω = χeEω + γBω +
1

3ω

∑
µν

A′
µν

∂Ėω
ν

∂xµ
+ · · · , (1.26)
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(a) (b)
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Figure 1.6: (a) Illustration of the origin of the direction-dependent interference between Eω and Hω-

induced polarization. (b) Absorption spectra of Ba2CoGe2O7 for the microwave propagating along the

[11̄0] direction. (b) is taken and arranged from Ref. [29].

using susceptibilities

χe
µν = 2

∑
n

∆n

(∆2
n − ℏ2ω2)− iℏωδn − 1

4δ
2
n

Re (⟨g|p̂µ|en⟩ ⟨en|p̂ν |g⟩) , (1.27)

γµν = 2
∑
n

∆n

(∆2
n − ℏ2ω2)− iℏωδn − 1

4δ
2
n

Re (⟨g|p̂µ|en⟩ ⟨en|m̂ν |g⟩) , (1.28)

A′
µν = −2

∑
n

∆n

(∆2
n − ℏ2ω2)− iℏωδn − 1

4δ
2
n

Re
(
⟨g|p̂|en⟩ ⟨en|Θ̂µν |g⟩

)
. (1.29)

Here |g⟩ and |en⟩ denote the ground state and the n-th excited state with the excitation energy

∆n of the system, respectively. δn represents the corresponding damping factor for the excita-

tion. Equation (1.28) represents the ME effects in optical frequencies. From Eqs. (1.28), the

microscopic origin of the optical ME effects is traceable to the interplay between the electric-

dipole and magnetic-dipole transitions to the excited state. The prominent effects are usually

seen in resonating frequency ℏω ∼ ∆n, where the denominator in Eq. (1.28) takes the minimum

value. The nature of the relevant excitation to the |en⟩ state highly depends on the photon

energy.

Magnetoelectric optical effects

Off diagonal ME coupling arising from the ME tensor element γµν (ν ̸= µ) shows up as the

nonreciprocal optical effect where the optical properties of materials depends on the direction of

light. The mechanism of nonreciprocity is illustrated in Fig. 1.6(a). We take polarized light with

Eω ∥ ex travelling through an ME material with γxy > 0 in the z direction as example. When Eω
x

is positive, Hω
y is also positive for light with kz > 0 because Eω, Hω, and the propagation vector

k must satisfy the relation k×Eω = ωHω. Here the oscillating magnetic field Hω
y > 0 induces

oscillating electric polarization pME along the x axis. γxy > 0 leads to pME,x > 0. Consequently,

the oscillating electric field and induced polarization constructively interfere with each other in
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this case. If we keep the direction of Eω as Eω
x > 0, the reversal of k from kz > 0 to kz < 0

means the reversal of Hω from Hω
y > 0 to Hω

y < 0, which accompanies the reversal of induced

polarization. Hence, oscillating electric field and induced polarization destructively interfere for

light beam with kz < 0. The direction-dependent interference leads to the nonreciprocal optical

effects. In the similar way, even when the direction of light is fixed, the optical ME coupling

shows up as the difference in optical properties for the change in ME susceptibilities γ.

In THz frequency, incident light resonates with collective lattice and magnetic excitations.

In 2011, Kézsmárki et al. reported magnetoelectric optical effects in Ba2CoGe2O7 in THz

frequency [29]. In the experiment, the direction of the toroidal moment t was controlled by

the manipulation of net polarization P and magnetization M [see the inset of Fig. 1.6(b)].

From Eqs. (1.6) and (1.10), the reversal of the toroidal moment leads to the sign change in

the corresponding antisymmetric components in the ME tensor. As shown in Fig. 1.6(b), the

difference in the absorption coefficients was observed for the sign change in γ.

The pronounced magnetoelectric optical effects have been also reported in visible range where

incident light resonates with the intra-atomic d-d excitations. Directional dichroism of light in

visible range is reviewed in Ch. 3. In addition to absorption [30, 31], directional refraction and

luminescence are also observed in an ME weak ferromagnet CuB2O4 [32, 33].

1.2.2 Electric-field control of antiferromagnetic structure

ME coupling enables electric control of antiferromagnetic structures. Antiferromagnetic materi-

als embody various advantageous features for spintronic application such as zero stray fields, ro-

bustness against external magnetic fields, and ultrafast dynamics in THz ranges [34]. To exploit

the full functionality of antiferromagnets, the manipulation of magnetic ordering is inevitable.

However, the lack of interaction between antiferromagnetic ordering with zero magnetization

and external magnetic field disrupts the use of conventional ways of manipulating magnetic

structures employed in ferromagnetic materials.

Voltage control of antiferromagnetic structures in ME antiferromagnets is achieved by the

manipulation of ferroelectric polarization of spin origin. When several types of distinct antifer-

romagnetic ordering give rise to different values of electric polarization, the electric-field control

of polarization leads to control of the antiferromagnetic structure. This methodology works well

in antiferromagnets where the P symmetry is broken at the onset of magnetic ordering. Ferroic

nature of magnetically induced polarization enables nonvolatile control of antiferromagnetic or-

dering where the manipulated antiferromagnetic structure retains even after turning off electric

fields.

In linear ME antiferromagnets where the P and T symmetries are simultaneously broken by

magnetic ordering, antiferromagnetic structures are controlled by the application of both electric

and magnetic fields. Two distinct antiferromagnetic structures connected by the T operation

host γ of opposite signs because γ is also odd under the T operation. In a uniform magnetic
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ℓ

2|γEH|

(a) (b)

(c)

F0+FME

Figure 1.7: (a) Electric-field induced reversal of magnetic-field induced polarization in Cr2O3. (b) Free

energy as a function of ME tensor γ. Red arrows denote relevant antiferromagnetic states. (c) (left)

Schematic illustrations of two kinds of cycloidal structure in TbMnO3. (right) Temperature dependence

of polarization and the difference in magnetic scattering. Subscript ↑ and ↓ denote the direction of

neutron spin. (a) and (c) are taken and arranged from Refs. [35] and [36], respectively.
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field, the direction of magnetic-field induced polarization is opposite for such antiferromagnetic

states. Here, ferroelectric switching of magnetic-field induced polarization is nothing but voltage

control of the antiferromagnetic structure in a magnetic field. Magnetoelectric switching of

antiferromagnetic states in Cr2O3 was demonstrated in 1966 by monitoring the volume fraction

of the two antiferromagnetic states by the measurement of γ over the whole sample [37]. Recent

investigation of the ferroelectric hysteresis loop of magnetically induced polarization in Cr2O3

[35] reveals that the electric field of 0.5 MV/m is large enough to switch antiferromagnetic

states in a magnetic field of 9 T and at 300 K [see Fig 1.7(a)]. The field controllability of

antiferromagnetic ordering has stimulated the engineering of magnetoelectric random access

memory using Cr2O3 [38].

Electric-field control of antiferromagnetic ordering in linear ME antiferromagnets is also

regarded as the ferroic control of odd-parity magnetic multipoles. Figure 1.7(b) shows the

relevant free energy profile as a function of the antiferromagnetic order parameter l. When

antiferromagnetic ordering gives rise to the nonzero linear ME tensor γ, the components of γ are

proportional to l. Below TN, F0+FME is a double-well potential with two minima corresponding

to two distinct antiferromagnetic states. Considering the coupling between ME tensor γ and

magnetic multipoles [see Eqs. (1.6) and (1.10)], the double-well potential in Fig. 1.7 can be

viewed as the expansion of the free energy by relevant multipoles. The conjugate field EH lifts

the degeneracy between two states and enables ferroic switching of magnetic multipoles. We

note that the exact form of the conjugate field for each multipole is seen from Eq. (1.10).

In nonlinear ME antiferromagnets where spontaneous polarization arises at the onset of

magnetic ordering, antiferromagnetic structures are manipulated only by the electric field. In

2007, Yamasaki et al. demonstrated electric-field control of the cycloidal magnetic structure in

TbMnO3. In TbMnO3 where the helimagnetic structure is stabilized by magnetic frustration,

and not by the DM interaction, two kinds of cycloidal structure with opposite helicity [see

Fig. 1.7(c)] is degenerated in the absence of electric fields. From Eq. (1.20), the two kinds of

cycloidal structures give rise to electric polarization in opposite directions. In the experiment,

the helicity of the cycloidal structure was manipulated by the electric field and detected by

means of the neutron diffraction [36].

1.3 Research purpose

Antiferromagnets with little or no spontaneous magnetization are attracting growing atten-

tion by virtue of no stray field and potential high-speed dynamics. The absence of spontaneous

magnetization makes it difficult to control and visualize antiferromagnetic domain structures.

As we have reviewed in this chapter, ME coupling enables electric control of antiferromagnetic

structures and gives rise to the nonreciprocal optical effects which potentially enable imaging

of antiferromagnetic domain patterns. However, the nonreciprocal magnetoelectric optical ef-

fects in the visible range in collinear antiferromagnets with no magnetization have remained



14 Chapter 1. Background

elusive. The discovery of the magnetoelectric optical effect in such antiferromagnets should lit-

erally shed light on the details in the antiferromagnetic domain-wall dynamics, which cannot be

tracked without imaging experiments.

The purposes of this study are (1) to show that collinear antiferromagnetic ordering with

zero magnetization can be a source of a nonreciprocal optical effect, (2) to demonstrate the

domain-imaging technique based on the magnetoelectric optical effects, and (3) to investigate the

electric-and-magnetic-field induced switching dynamics in the antiferromagnet by the imaging

study. To achieve these purposes, we have focused on MnTiO3 where the toroidal moment is

activated by the combination of collinear antiferromagnetic ordering and the locally broken P
symmetry at the atomic sites.



Chapter 2

Experimental Methods

2.1 Sample preparation

Homogenized mixture of the stoichiometric ratio of MnO and TiO2 was pressed into rods

under the hydrostatic pressure of 24 MPa. The rods were then calcined at 1200 ◦C for 24 hours

[see Fig. 2.1(a)] in flowing Ar atmosphere with Ti powder placed beside the rods as a getter

of oxygen. Single crystals of MnTiO3 were grown by the floating zone method in flowing Ar

atmosphere. The seed and feed rods were counter rotated and the typical growth rate was 2

mm/h.

Obtained single crystals [see Fig. 2.1(b)] were characterized by x-ray diffraction. The phase

purity of a representative sample was confirmed by powder x-ray diffraction using a Rigaku

SmartLab diffractometer with Cu Kα radiation. The crystal orientation was determined by

Laue x-ray diffraction in the Institute for Solid State Physics (ISSP). A typical Laue pattern of

the c plane of the crystal is shown in Fig. 2.2. Oriented crystals were cut into plates for each

experiment.

(a)
Temperature 

Time 

1200 ℃

10 h 34 h 38 h

(b)

Figure 2.1: (a) Heating profile. (b) Obtained single-crystalline rod of MnTiO3.

15
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Figure 2.2: Laue pattern of the c plane of a single crystal of MnTiO3. Three fold symmetry is apparent.

2.2 Magnetization and electric polarization measurements

Magnetization

Magnetization was measured using a superconducting quantum interference device (MPMS-XL,

Quantum Design). Magnetic susceptibility χ was obtained by dividing the magnetization by the

magnetic field.

Electric polarization

The temperature (T ), magnetic-field (H), and electric-field (E) dependence of electric po-

larization (P ) was measured using a 9-T superconducting magnet system (Physical Property

Measurement System, Quantum Design, and MagLab, Oxford Instruments). For the change of

the parameter X (X = T,H,E), the displacement current I(t) flows as,

I(t) = S
∂P

∂X

dX

dt
, (2.1)

as a function of time t. Here S is the area of the electrode formed on the surface of the sample.

The change in electric polarization was obtained by integrating the displacement current with

respect to t as

P (X2)− P (X1) =

∫ t2

t1

I(t)d(t), (2.2)

where Xi stands for X(ti). In case we know that electric polarization is zero under the condition

described by the parameter X = X1, P (X2) can be extracted from Eq. (2.2).

The displacement current was measured in the two-terminal setup depicted in Fig. 2.3. The

electrode was formed by silver paste on both surfaces of the plate-shaped sample. The displace-

ment current was measured by electrometers (6517A and 6517B, Keithley). In measurements of

the T - and H- dependence of polarization, ferroelectric domains were poled in the poling process
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acrylic plate

Cu wire Au wire

sample

Ag electrodeCu mask

Figure 2.3: Illustration of the two-terminal setup for the electric polarization measurements. Plate-shaped

sample with electrode formed on both surfaces is placed on an insulating acrylic plate partially masked

by copper.

where electric and magnetic fields were simultaneously applied. Details about the poling process

are given in the following section.

2.3 Optical measurements

Absorption spectroscopy

Optical absorption measurements were carried out in a cryostat equipped with a 15-T magnet

at High Field Laboratory for Superconducting Materials in Tohoku University. A crystal of

MnTiO3 was shaped into a plate with large c planes and polished to reduce the thickness d

to 90 µm. The thin plate of MnTiO3 is transparent and has yellowish red color as shown in

Fig. 2.4(a).

The whole optical setup is schematically illustrated in Fig. 2.4(b). Unpolarized light from

a halogen lamp was introduced to propagate along the c axis of the crystal. The threefold

rotational symmetry around the c axis of the crystal allows no optical anisotropy in the c plane.

The transmitted light was analyzed by a spectrometer (iHR550, HORIBA) equipped with a

charge-coupled device (CCD) detector. In our measurements using a grating of 150 gr/mm, the

spectral resolution was typically better than 1 nm. The electric and magnetic fields were applied

along the c axis of the crystal. For the application of the electric field, gold with a thickness of

250 Åwas sputtered onto both c planes to form electrodes. The propagation direction of light

was switched between kc > 0 and kc < 0 by interchanging the light source and the light detector.

By the Beer-Lambert law, the transmitted light intensity I is expressed as

I = I0e
−αd, (2.3)

using the incident light intensity I0 and the absorption coefficient α. The absorption coefficient

α is computed from I0 and I as

α = ln

(
I0
I

)
d. (2.4)

I0 was measured by collecting light without setting the sample in optical setup. The incident

light spectrum is displayed in Fig. 2.4(c) for the incident photon energy of ℏω = 1.8 - 3 eV.
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Lamp

CCD detector

H,E // c

d

superconducting magnet

(b)

(c)
(a)

Figure 2.4: (a) c-plane photograph of the MnTiO3 crystal. Black bar corresponds to 1 mm. (b) Schematic

illustration of the setup for absorption spectroscopy. (c) Incident light spectrum.
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I0 takes its maximum around 1.8 eV and we did not suffer from the shortage of incident light

below 2.8 eV.

Antiferromagnetic domain imaging

The optical setup for domain imaging experiments is schematically illustrated in Fig. 2.5(a).

Light from a halogen lamp was monochromatized by the blazed grating monochromator (M25,

Bunkokeiki) and was introduced to propagate along the c axis of the crystal. Transmitted light

was detected by a CCD camera (Alta U6, Apogee Instruments). To reduce the influence of the

roughness of the surfaces of the crystal and the spatially inhomogeneous distribution of incident

light, we obtained difference images by subtracting a reference image without domain patterns

from each image. 1 The output light from the monochromator is not completely unpolarized.

In several experiments, polarizer was placed before the sample to obtain linearly polarized light.

Unless otherwise noticed, the imaging experiments were carried out at a photon energy ℏω =

2.16 eV.

Figures 2.5(b) shows the cross-sectional view of the sample mounted on the copper plate.

As in the absorption measurement, single crystals of MnTiO3 were cut into plates with large

c planes and thinned to 0.1-0.15 mm. Both surfaces of the thin-plate sample were carefully

polished using the lapping films of the particle size 0.3 µm to reduce the contribution from

scattering to the transmitted-light profile. For imaging experiments in the electric field, gold

with a thickness of 175 Å was sputtered onto both c planes to form electrodes. The crystal was

placed on the holed copper plate. Figure 2.5(c) shows the photograph of the setup of the sample.

Since all the sample was larger than the optical window in the copper plate, the edge of the

field of view lay in the crystals. The crystal was cooled down in a 4He closed-cycle refrigerator.

Electric and magnetic fields were applied along the c axis of the crystal using a high voltage

supply (Model 2657A, Keithley) and an electromagnet, respectively. A high voltage supply was

often used to generate the pulsed electric field. Figure 2.5(d) shows the shape of the output

voltage pulse for several programed values of the pulse width ∆tset. The rise and fall times are

around 2 and 1 ms, respectively, for every value of ∆tset. In the following, values of ∆tset is

simply used to represent the pulse duration. As shown in Fig. 2.5(e), the effect of the shutter

of the camera appears in several cases.

1See the Appendix A for the details about image processing.
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Lamp

CCD cameraH,E,k // c

φ

(a)

Monochromator

Lens

Sample

k // c

Cu plate

MnTiO3

Cu wire

Au electrode

(b) (c)

(d) (e)

3 ms 5 ms 10 ms

Figure 2.5: (a) Schematic illustration of the setup for the antiferromagnetic domain imaging experiment.

See Ch. 4 for the definition of φ. (b) Illustration of the cross sectional view and (c) photograph of the

sample placed on the copper plate. In (c), black bar corresponds to 1.4 mm. Circular-shaped optical

window in the copper plate placed at the center of the sample appears yellow. (d) Shape of the output

pulsed applied voltage for several values of the pulse width. (e) Obtained image where patterns originating

from the shutter of the camera is apparent.
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Magnetochiral Dichroism in MnTiO3

Magnetochiral dichroism (MCHD) is the directional dichroism of unpolarized light. Nonre-

ciprocal propagation of light is caused by the toroidal moment T acting like a rectifier for the

light beam. It is now established that the directional dichroism is observed in chiral magnets

where T is induced in proportion to magnetization M and in polar magnets where T is induced

in proportion to the outer product P × M of electric polarization P and magnetization. In

both cases, intensity of the MCHD signal is proportional to net magnetization of materials. It

has remained elusive whether antiferromagnetic ordering with no magnetization can be a source

of MCHD in the visible range.

Here, we present the observation of MCHD in a collinear antiferromagnet with zero net

magnetization. We show MCHD in antiferromagnetic MnTiO3 as the difference in absorption

coefficients between two configurations where the light beam is parallel and antiparallel to T .

Based on the detailed investigation of the temperature and external-field dependence of the

difference spectra, we conclude that observed MCHD spontaneously arises from antiferromag-

netic ordering without magnetization. Through the manipulation of T , binary switching of the

absorption coefficient is achieved.

In Sec. 3.1, previous studies of MCHD in noncentrosymmetric magnets are introduced, fol-

lowing phenomenological and microscopic descriptions of MCHD. In Sec. 3.2, magnetic and ME

properties of the target material MnTiO3 are introduced. Section 3.3 is results and discussion.

The findings are summarized in Sec. 3.4.

3.1 Introduction to magnetochiral dichroism

3.1.1 Theory

Phenomenological description

As thoroughly investigated in Ref. [39], symmetry breaking induces specific optical effects. The

lack of P and T symmetries induces natural circular dichroism (NCD) and magnetic circular

dichroism (MCD), respectively. Nonreciprocal directional dichroism (NDD) of unpolarized light

21
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Figure 3.1: Schematic illustrations of MCHD. Red cones represent the toroidal moments T . Once we

set the direction of T in (a), the directions of (b) and (c) are determined since T is odd under the P
operation. See the main text for the relation among (a), (b), and (c).

was first discussed as MCHD in the context of the correlation between NCD and MCD induced

by simultaneous breaking of P and T symmetries [40].

The P− and T -odd contribution in the absorption coefficient α is the origin of MCHD. When

the propagation vector of incident unpolarized light k is fixed as k = κ3ez, we can decompose

the absorption coefficient α into

α = α++ + α−−, (3.1)

where α++ (α−−) is even (odd) under both P and T operations on the sample and the applied

static fields on the sample. When incident light of the intensity I0 propagates through the sam-

ple with thickness d and the absorption coefficient α = a+ b, where α++ = a and α−− = b, the

transmitted light intensity I1 becomes I1 = I0e
−(a+b)d [see Fig. 3.1(a)]. After the application of

the P operation on the sample and the static external fields, the absorption coefficient changes

to α = a − b while the propagation vector of incident light is unchanged from k = κ3ez [see

Fig. 3.1(b)]. In this situation, the transmitted light intensity becomes I2 = I0e
−(a−b)d. Fig-

ure 3.1(c) displays the situation where the P operation is applied on the whole system depicted

in Fig. 3.1(b) including the sample and incident and transmitted light. The absorption coeffi-

cient is invariant under this global P operation and remains α = a− b. The propagation vector

k is reversed in Fig. 3.1(c), compared with those in Figs. 3.1(a) and (b). Since the operation P̂2

is the identical transformation, in Fig. 3.1(c), the sample is in the same state as in Fig. 3.1(a).

From the comparison between Figs. 3.1(a) and (c), we can see that α−− is odd under the reversal

of the propagation vector of light; the transmitted light intensity changes from I1 to I2 just by

the change of kz from κ3 to −κ3. We note that the above discussion holds for the T operation.

α−− and odd-parity magnetic multipoles have a similar symmetry; both quantities are

nonzero only when P and T symmetries are simultaneously broken. Among three types of

magnetic multipoles discussed in Ch. 1, the toroidal moment T has the exactly same symmetry

as MCHD. Let us take MCHD for light propagating along the z direction as example. Since

MCHD is the optical effect of unpolarized light, MCHD is symmetric under the C∞ rotation
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around the z axis. Furthermore, MCHD is odd under the two-fold rotation around the x axis

which reverses the propagation vector of light. The lowest rank odd-parity magnetic multi-

pole which meets these symmetry requirements is the toroidal moment along the z axis. The

directions of toroidal moments are displayed in Figs. 3.1(a)-(c). Here, MCHD is viewed as

the rectification effect caused by the toroidal moment, where the absorption coefficient changes

depending on the configurations between k and T as

α(k ↑↑ T ) ̸= α(k ↑↓ T ). (3.2)

Here by k ↑↑ T (k ↑↓ T ), we denote that k is parallel (antiparallel) to T .

Formulation

Following the earlier calculation of the magnetic-field induced shift in the absorption coefficient in

chiral paramagnets [40] which corresponds MCHD, the formulation of MCHD based on molecular

property tensors was presented by Barron et al. in 1984 [41]. For unpolarized light propagating

along the z direction, α++ and α−− in Eq. (3.1) are given by

α++ ∝ Im
[
χe
xx + χe

yy

]
, (3.3)

and

α−− ∝ 2

c
Im
[ω
3

{
(A′

xz)x + (A′
yz)y

}
+ (γxy − γyx)

]
, (3.4)

using the dielectric tensor χe, the ME tensor γ, and the imaginary quadrupole tensor A′ [see

Eqs. (1.27), (1.28), and (1.29)]. For visible light with the photon energy ranging around 1-3 eV,

MCHD owes itself to the interference between the electric dipole (E1) and the magnetic dipole

(M1) transitions 1 . Substituting Eq. (1.28) for Eq. (3.4), the contribution from the E1-M1

interference to α−− is given as

αE1−M1 ∝
2

c
Im [γxy − γyx]

=
2

c

∑
n

αn
E1−M1, (3.5)

where

αn
E1−M1 =

2∆nℏωδn
(∆2

n − ℏ2ω2)2 + ℏ2ω2δ2n
{Re (⟨g|p̂x|en⟩ ⟨en|m̂y|g⟩)− Re (⟨g|p̂y|en⟩ ⟨en|m̂x|g⟩)} .

(3.6)

From Eq. (3.4), the microscopic origin of MCHD is traceable to off-diagonal antisymmetric ME

coupling in xy-plane, which is related with the z-component of the toroidal moment Tz.

1MCHD in the x-ray frequency originates from the interference between the E1 and the electric quadrupole

(E2) transitions [42].
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(a) (b)

Figure 3.2: (a) Experimental setup for the first experimental observation of MCHD in α-NiSO4·6(H2O).

L, S, PD, and LA denote the lamp, the sample, the photodiode and the lock-in amplifier, respectively.

(b) Absorption (ABS) and MCHD spectra. MCHD spectra is denoted by MCA with the chirality of the

sample. Figures are taken from Ref. [43].

3.1.2 Experiment

MCHD in noncentrosymmetric magnets

MCHD was first observed in a chiral material where T is induced in proportion to M . For

the observation of MCHD, the difference between α(k ↑↑ T ) and α(k ↑↓ T ) was measured by

switching the direction of M with keeping k fixed. The magnetization direction is reversed by

switching the direction of magnetic field.

After the observation of the magnetochiral effect in the form of the directional asymme-

try in luminescence [44], Rikken and Raupach reported the first observation of MCHD in α-

NiSO4·6(H2O) [43]. α-NiSO4·6(H2O) crystallizes in a chiral tetragonal structure. Two enan-

tiomers denoted by L and D belong to the space group P41212 and P43212 [45]. Figure 3.2(a)

shows their experimental setup. Experiment was carried out at room temperature where α-

NiSO4·6(H2O) is in the paramagnetic phase. Unpolarized incident light travelled through the

sample and transmitted light intensity were measured by a photodiode. The oscillating mag-

netic field with frequency Ω was applied along the direction of light. The direction of light

was fixed along the c axis of the crystal. Since the toroidal moment also oscillated with Ω,

the MCHD signal showed up as the component in transmitted light intensity modulated at Ω.

MCHD spectra is shown in Fig. 3.2(b) along with the absorption spectrum. MCHD is observed

for both enantiomers. The sign reversal of MCHD for the reversal of chirality is consistent with

the P-odd nature of α−−. As shown in the inset of Fig. 3.2(a), the magnitude of MCHD is in

proportion to the applied magnetic field.

The nature and origin of MCHD were further clarified by the observation of MCHD in several

ferro- and ferrimagnets whereM is not proportional toH. In 2010, Train et al. observed MCHD
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(a) (b)

Figure 3.3: (a) Temperature dependence of the magnitude of the MCHD signal ∆T/T (red line) and

magnetization (blue line) of [N(CH3)(n-C3H7)2((S)-s-C4H9)][(∆)-Mn(Λ)-Cr(ox)3]. Spectra of MCHD is

shown in the inset. (b) Temperature dependence of magnetization (dashed line) and the normalized

intensity of NDD (black and white circles) in GaFeO3. Magnetic field dependence of the magnitude of

the NDD signal is shown in the inset. (a) is taken and arranged from Ref. [46]. (b) is taken from Ref. [47].

in chiral ferromagnets below the critical temperature Tc [46]. The temperature dependence of

MCHD in a chiral ferromagnet, which was measured as the difference between α(k ↑↑ H) and

α(k ↑↓ H), is shown in Fig. 3.3(a). The magnitude of MCHD signal is saturated below Tc = 7 K,

where switched magnetization is no more than spontaneous magnetization. The result indicates

that MCHD in chiral magnets is induced in proportion to magnetization M , not necessarily to

H.

NDD of unpolarized light arising from the antisymmetric ME coupling has also been studied

in an achiral polar magnet GaFeO3, where T is induced in proportion to P ×M . As described

in Sec. 1.1.2, in GaFeO3, the combination of spontaneous polarization P ∥ b and magnetization

M ∥ c yields toroidal moment T along a axis below Tc. In Ref. [47], NDD in GaFeO3 was

measured as the difference between α(Hc > 0) and α(Hc < 0) with keeping k ∥ a fixed. As

shown in the inset of Fig. 3.3(b), the difference between α(Hc > 0) and α(Hc < 0) was observed

with Hc of larger than coercive field where T is switched. Figure 3.3(b) shows the temperature

dependence of the magnitude of the NDD signal and magnetization. The magnitude of NDD

behaves similarly to magnetization for the change of temperature; both are negligible above Tc

and grows monotonically with decreasing temperature from Tc. In the polar magnet GaFeO3,

NDD arises when the propagation vector k is perpendicular to magnetization M , in sharp

contrast with the cases in chiral magnets. The observed NDD in chiral and polar magnets

in different configurations are explained in a unified way by regarding the toroidal moment,

not magnetization itself, as the rectifier for unpolarized light. These toroidal-moment induced

MCHD arises from antisymmetric ME coupling in optical frequency.
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MCHD in antiferromagnets

Aside from above mentioned noncentrosymmetric ferro- and ferrimagnets, the toroidal moment

can also be activated by spontaneous magnetic ordering in several linear ME antiferromagnets

[48, 49, 50, 51, 9]. NDD spontaneously activated by antiferromagnetic ordering with non-zero

T is studied for THz range [52]. Recent observations of MCHD for visible range in chiral anti-

ferromagnets such as CsCuCl3 and Ni3TeO6 [53, 54] is of no antiferromagnetic origin, because

the observed MCHD in those chiral antiferromagnets is proportional to the field-induced mag-

netization as is in the chiral paramagnet. In spite of the novel applications such as electric-field

control of color and optical imaging of antiferromagnetic domains [55], MCHD spontaneously

arising from antiferromagnetic ordering for visible range is still uncovered.

3.2 Introduction to MnTiO3

3.2.1 Crystal structure

MnTiO3 crystallizes in the ilmenite structure in which two-thirds of the octahedral sites of

a hexagonal closed packing array of O2− ions are occupied by Mn2+ and Ti4+ cations in an

ordered manner [see Figs. 3.4(a) and (b)] [56]. Buckled honeycomb layers of Mn2+ with S = 5/2

and those of nonmagnetic Ti4+ alternately stack along the c axis, resulting in the space group

R3̄. In each honeycomb layer, inversion centers are located at the bond centers of Mn2+-Mn2+

and Ti4+-Ti4+, but not at the atomic sites [see Fig. 3.4(c)]. Mn2+ cations are coordinated by

six oxygen ions to form octahedral MnO6 clusters. Mn2+ and Ti4+ cations are located at the

Wyckoff position 6c, where the site symmetry is C3.

3.2.2 Magnetic structure

Below the Néel temperature TN = 65 K, MnTiO3 adopts easy-axis collinear antiferromagnetic

ordering in the absence of magnetic field [see Fig. 3.4(c)]. Antiferromagnetic ordering without

doubling the unit cell is characterized by a magnetic propagation vector qm = (101) [56]. At

4.2 K, the spin-flop transition occurs at the magnetic field µ0H
SF
c of 6 T along the c axis

[57]. For Hc < HSF
c , the order parameter is the c component Lc of staggered magnetization

L = MA−MB, whereMi denotes sublattice magnetization of the sublattice labeled i (i = A,B)

in Fig. 3.4(c). Lc > 0 and Lc < 0 states are translationally inequivalent. The magnetic

symmetry is 3̄′. P and T symmetries in the paramagnetic phase are simultaneously broken by

antiferromagnetic ordering. Since Mn2+ on sublattices A and B have magnetic moments in the

opposite directions, there no longer exists inversion centers below TN; the inversion operation

around bond centers transforms the Lc > 0 state to the Lc < 0 state. The operation T̂ which

reverses the direction of magnetic moments also transforms the Lc > 0 state to the Lc < 0 state.

Though P and T symmetries are broken, spontaneous polarization and magnetization are zero
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Figure 3.4: (a) Crystallographic structure of and (b) cation ordering in MnTiO3. (c) Antiferromagnetic

ordering in the honeycomb layer of Mn2+ consisting of two distinct sublattices labelled A and B. Arrows

represent magnetic moments. A white circle denotes an inversion center.

below TN due to the preserved PT symmetry in the antiferromagnetic phase.

3.2.3 Magnetoelectric coupling

The P- and T - symmetries-breaking magnetic symmetry 3̄′ of antiferromagnetic MnTiO3 allows

ME coupling. Taking the x, y, and z axes parallel to the a, b∗, and c axes, respectively, the ME

tensor γ for this magnetic symmetry has the form:

γ =


γ⊥ γt 0

−γt γ⊥ 0

0 0 γ∥

 . (3.7)

The c component of magnetic-field induced polarization Pc = γ∥Hc is displayed in Fig. 3.5(a).

Pc is absent above TN and in 0 T. The magnetic-field induced contribution appears below TN.

As shown in Fig. 3.5(b), Pc is induced in proportion to Hc below HSF
c at 50 K. In-plane ME

effects Pa = γ⊥Ha and Pa = γtHb∗ are not reported yet.

Optical ME coupling arising from the antisymmetric component γt in Eq. (3.7) is the micro-

scopic origin MCHD. From Eqs. (1.6) and (1.10), γt is proportional to the c component of the

toroidal moment Tc as

γt = bTc, (3.8)

where b denotes the coupling constant. The other two components γ⊥ and γ∥ are related with

the magnetic monopole and the qz2-type magnetic quadrupole [see Eqs. (1.6) and (1.10)]. Since
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Cr3+

Figure 3.5: (a) Temperature and (b) magnetic-field dependence of Pc in MnTiO3 in H ∥ c [13]. (c)

Antiferromagnetic structure of Cr2O3 projected along the a axis. Black symbols denote twofold rotation

axes along the a axis. (a) and (b) are taken from Ref. [13].

the ME tensor elements are odd to operations P̂ and T̂ as the order parameter Lc is in MnTiO3,

the leading term in the expansion of γ⊥, γt, and γ∥ by Lc becomes


γ⊥ = g⊥Lc

γt = gtLc

γ∥ = g∥Lc

, (3.9)

with the temperature dependent expansion coefficients g⊥, gt, and g∥. From Eq. (3.9), two

antiferromagnetic states with Lc of opposite signs are characterized by the ME tensor of opposite

signs. Combining Eqs. (3.8) and (3.9), relation between the toroidal moment and the order

parameter is obtained as

Tc =
gt
b
Lc. (3.10)

In MnTiO3, the c-component of the toroidal moment is proportional to that of the staggered

magnetization.

Cation ordering between Mn2+ and Ti4+ is crucial for the presence of γt in MnTiO3. The

corundum structure can be regarded as the disordered ilmenite structure. For example, in

Cr2O3 with the corundum structure, two distinct cation sites in the ilmenite structure are both

occupied by Cr3+. In this case, collinear antiferromagnetic ordering similar to that in MnTiO3

[see Fig. 3.5(c)] [58, 59], gives rise to the ME tensor in Eq. (1.11), where the antisymmetric

term is absent. Comparing Fig. 3.5(c) with Fig. 3.4(c), the two-fold rotational axis along the a

axis, which transforms γt to −γt and Tc > 0 to Tc < 0, is broken in MnTiO3 with the ilmenite

structure.
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3.3 Results and discussion

3.3.1 In-plane magnetoelectric coupling and polarization switching

P, H // [001]

P, H // [100]

P // [100], H // [120]

Figure 3.6: Temperature dependence of magnetic-field induced electric polarization P in MnTiO3 in the

absence of electric field E. To extract the magnetically induced P , P in 0 T is subtracted from that in

µ0Hc = 6 T. Before each measurement, the sample was cooled down from 90 K in the poling electric field

Epoling > 0.08 MV/m. Data are from Ref. [60].

The temperature dependence of magnetic-field induced electric polarization in MnTiO3 is shown

in Fig. 3.6. Aside from the previously reported component Pc = γ∥Hc [13], magnetic-field

induced polarization arising from the in-plane ME coupling Pa = γ⊥Ha and Pa = γtHb∗ is

observed. The values of the in-plane ME susceptibilities at 55 K are estimated to be γ⊥ = 0.1 and

γt = 0.7 ps/m, which are smaller than the out-of-plane susceptibility γ∥ = 3.2 ps/m. Reflecting

the uniaxial magnetic anisotropy, the temperature dependence of γt and γ⊥ is different from

that of γ∥; the former grows monotonically with cooling, while the latter takes its maximum at

53 K and goes down to zero with decreasing temperature below 53 K. The anisotropy of the ME

effect is similar to that in Cr2O3 with similar crystallographic and antiferromagnetic structures,

where anisotropic ME coupling is explained based on the magnetic anisotropy [22].

The linear relationship between Pc and Hc for two distinct states with γ∥ > 0 and γ∥ < 0 is

shown in Fig. 3.7(a). Prior to the measurement for Epoling > 0 (Epoling < 0), an electric field

Epoling of 1.1 MV/m (−1.1 MV/m) was applied along the c axis in a magnetic field µ0Hc = 6 T

at 55 K. Considering the relevant free energy component FME = −γ∥Ecµ0Hc [see Eq. 1.6], γ∥ > 0

and γ∥ < 0 states are favored for EcHc > 0 and EcHc < 0, respectively. As seen in Eq. (1.10) the

conjugate field for the toroidal moment T is E×H [3, 61]. In MnTiO3, EcHc-induced switching

of T ∥ c is made possible by the coupling between Tc and the qz2-type magnetic quadrupole and

magnetic monopole, whose conjugate field includes the product EcHc. After the poling process,

the electric field was turned off and polarization was measured in magnetic-field decreasing
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Figure 3.7: (a) Magnetic-field dependence of Pc in MnTiO3 in the absence of E. (b) Ferroelectric hysteresis

loop of the magnetically induced component of Pc in µ0Hc = 6 T. The electric field-induced polarization,

i.e. the dielectric polarization, is assumed to be linear to Ec and subtracted from the measured Pc. Data

are from Ref. [60].

runs. The magnetic-field induced polarization 15 µC/m2 at µ0Hc = 6 T and 55 K is in good

agreement with magnetic-field induced Pc at 55 K in Fig. 3.6. The linear Pc-Hc relationship

up to µ0Hc = 6 T at 55 K indicates the absence of the spin-flop transition below 6 T, which

should accompany the change in magnetic symmetry from 3̄′ to 1̄′ and consequent discontinuous

jump in magnetic-field induced polarization. Considering the coupling between γ∥ and Lc [see

Eq. (3.9)], the sign reversal of γ∥ indicates that obtained two Pc-Hc curves correspond to Lc > 0

and Lc < 0 states. The Ec-driven reversal of magnetically induced polarization in µ0Hc = 6 T is

further investigated. Ferroelectric switching of PME
c = µ0Hc is shown in Fig. 3.7(b). The value

of residual polarization of 15 µC/m2 at Ec = 0 MV/m in Fig. 3.7(b) is consistent with that of

Pc induced by the magnetic field of µ0Hc = 6 T. It is clearly shown that, at 55 K, an electric

field of 0.25 MV/m isothermally switches the magnetically induced polarization. The value of

the coercive electric field is comparable to that in Cr2O3 [35]. Figure 3.7(b) evidences Lc and Tc

not only γ are isothermally switchable by reversing the direction of the electric field in a fixed

magnetic field 2 .

3.3.2 Observation of magnetochiral dichroism

Absorption spectra

Figure 3.8(a) shows the absorption spectrum of MnTiO3. As reported previously [62], two

absorption bands are observed; a peak at 2.15 eV and the monotonic increase above 2.4 eV. The

former peak position of around 2.15 eV is comparable with that in other manganese compounds

2See the Appendix B for the possible origin of the toroidal moment in MnTiO3.
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Figure 3.8: (a) Absorption spectra of MnTiO3 at 55 K and 80 K in µ0Hc = 6 T and Ec = 2.2 MV/m.

Schematic electronic diagrams for the 6A1g ground state and the 4T1g excited state are shown in the

inset. ℏω denotes the photon energy. (b) Difference spectra ∆αd = αd(Ec > 0) − αd(Ec < 0) at 55 K

and 80 K in µ0Hc = 6 T. Data are from Ref. [60].
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of 1.9 - 2.2 eV where Mn2+ ions are octahedrally coordinated by six anions [63, 64, 65]. The

absorption peak is assigned to the intra-atomic d-d excitation from the 6A1g ground state to the

4T1g excited state of octahedrally coordinated Mn2+ with five electrons in d orbitals [66]. The

peak width of more than 0.1 eV would be due to the vibronic contribution to the transition,

where the relevant zero-phonon line is reported at 1.88 eV [62]. The increase in α above 2.4

eV is ascribed to the transition to the 4T2g excited state possibly overlapped with the charge

transfer excitation from O 2p to Mn 3d [62].

Verification of MCHD signal

To verify the MCHD in MnTiO3, we investigate the difference in the absorption coefficient

between two configurations α(T ↑↑ k) and α(T ↑↓ k). We switch the direction of T with

keeping k fixed by the reversal of Ec between ±2.2 MV/m in a magnetic field of µ0Hc = 6 T.

Figure 3.8(b) shows the difference spectra ∆αd = αd(Ec > 0) − αd(Ec < 0). The electric field

of 2.2 MV/m is large enough to fully switch T [see Fig. 3.7(b)]. In Fig. 3.8(b), at 55 K, the dip

is observed around 2.15 eV. Since the difference between αd(Ec > 0) and αd(Ec < 0) is absent

at 80 K > TN, it is clear that antiferromagnetic ordering is crucial for the electrochromic effect

at 55 K.

To confirm that the observed electrochromic effect reflects the difference between α(k ↑↑ T )

and α(k ↑↓ T ), we investigate the difference spectra with changing the direction of k and H.

As shown in Figs. 3.9(a) and (b), the electrochromic effect changes its sign under the reversal

of the magnetic field. For kc > 0, in µ0Hc = −6 T, the peak of ∆αd is observed at 2.15 eV, at

which energy the dip appears in µ0Hc = 6 T [see Fig. 3.9(a)]. The reversal of the electrochromic

effect for the reversal of Hc indicates the following relation

∆α(Hc > 0) = −∆α(Hc < 0)

⇔ α(Ec > 0,Hc > 0)− α(Ec < 0,Hc > 0) = −α(Ec > 0,Hc < 0) + α(Ec < 0,Hc < 0) ̸= 0.

(3.11)

Since the Ec of 2.2 MV/m is large enough to switch Tc in µ0Hc = 6 T at 55 K, the sign of Tc is

in one-to-one correspondence with the sign of the product EcHc. Assuming bg∥/gt to be positive

[see Eqs. (3.8), and (3.9)], the Tc > 0 state is realized for EcHc > 0, while the Tc < 0 state is

realized for EcHc < 0. Here the relation Eq. (3.11) leads to

∆α(Hc > 0) = α(Tc > 0)− α(Tc < 0) ̸= 0 (3.12)

for kc > 0.

Comparing Figs. 3.9(a) and (b), we can see that the observed electrochromic effect also

changes its sign for the reversal of the propagation vector k. In µ0Hc = 6 T, for kc < 0 the peak

of ∆αd is observed at 2.15 eV, at which energy the dip appears for kc > 0. Incorporating the
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Figure 3.9: The variation of the difference spectra ∆αd = αd(Ec > 0) − αd(Ec < 0) for the reversal of

magnetic field and the propagation vector of light k at 55 K. Data are from Ref. [60].
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Figure 3.10: (a) Magnetic-field and (b) temperature dependence of the MCHD intensity IMCHD around

2.15 eV.

the reversal of ∆αd for the reversal of k, Equation (3.12) becomes

∆α(Hc > 0, kc > 0) = −∆α(Hc > 0, kc < 0)

⇔ α(Tc > 0, kc > 0)− α(Tc < 0, kc > 0) = −α(Tc > 0, kc < 0) + α(Tc < 0, kc < 0) ̸= 0 (3.13)

Equation (3.13) represents nothing but the directional dichroism; the absorption coefficient

depends whether k is parallel or antiparallel to the toroidal moment T . At this stage, we

conclude that the observed k- and H- odd electrochromic effects in MnTiO3 are ascribed to the

MCHD.

Detailed investigation of MCHD

The magnetic-field and temperature dependence of the magnitude of the MCHD signal IMCHD

is shown in Figs. 3.10(a) and (b). IMCHD is computed as IMCHD = |
∫ 2.3eV
2.0eV ∆αd dω|, using

∆αd = αd(Ec > 0)−αd(Ec < 0). Judging from Fig. 3.10(a), the magnitude of the MCHD signal

at 55 K is independent of the magnetic field below µ0H
SF
c = 6.4 T. The spin-flop transition at

HSF
c accompanies a discontinuous decrease in IMCHD. Staggered ordering of the c-component

of magnetic moments, which is absent above µ0H
SF
c , would be a major source of MCHD in

MnTiO3.

We compare the temperature dependence of the MCHD signal with the relevant antisym-

metric ME effect in DC frequency. As seen in Fig. 3.10(b), IMCHD decreases as the temperature

increases from 60 K to TN. Below 60 K, IMCHD looks independent on the temperature. The

behavior of IMCHD below 60 K is not in agreement with that of Pa = γtHb∗ , which monotonically

increases as decreasing temperature below TN down to 15 K [see Fig. 3.6]. Substituting ω = 0

for Eq. (1.28), the ME tensor γ in DC frequency is approximately obtained as,

γµν(ω = 0) ∝
∑
n

2Re (⟨g|p̂µ|en⟩ ⟨en|m̂ν |g⟩)
∆n

. (3.14)
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Figure 3.11: Difference spectrum at 55 K measured in the absence of external electric and magnetic fields.

Data are from Ref. [60].

From Eq. (3.14), the monotonic growth of γt with decreasing the temperature is ascribed to the

growth of Re (⟨g|p̂µ|en⟩ ⟨en|m̂ν |g⟩) at lower temperature. At this stage, the discrepancy in the

temperature dependence of the MCHD signal and the antisymmetric ME effect Pa = γtHb∗ is

attributable to the existence of temperature dependency of in the phenomenological damping

parameter δn in Eq. (3.6). The vibronic contribution to the damping parameter should be

suppressed at low temperatures. The temperature invariant behavior in IMCHD below 60 K

would be the result of monotonic growth of the Re (⟨g|p̂x|en⟩ ⟨en|m̂y|g⟩)−Re (⟨g|p̂y|en⟩ ⟨en|m̂x|g⟩)
compensated by the suppression of δn. We note that vibronic coupling is recently found to play

a key role for MCHD [67].

To confirm that MCHD in MnTiO3 is a spontaneous effect arising from antiferromagnetic

ordering and not a field-induced effect, we investigate the MCHD signal in the absence of electric

and magnetic fields. Figure 3.11 shows the difference spectra ∆αd = (α+ − α−)d at 55 K

measured in the absence of electric and magnetic fields. Before measuring α+d (α−d), the

electric field of Ec = 2.2 MV/m was applied in a magnetic field of µ0Hc = 1 (−1) T. Judging

from IMCHD at 1 T in Fig. 3.10(a), Ec of 2.2 MV/m is large enough to reverse the direction of

T even in the magnetic field of µ0Hc = 1 T. α+−α− represents the difference in the absorption

coefficient between k ↑↑ T and k ↑↓ T configurations in the absence of external fields. The dip

at 2.15 eV in Fig. 3.11 clearly evidences that MCHD in MnTiO3 is observed in the absence of

external fields. MCHD in a collinear antiferromagnet is a spontaneous effect which originates

from antiferromagnetic ordering and appears in zero net magnetization, in sharp contrast with

the magnetic-field induced MCHD in chiral antiferromagnets [53, 54]. Using the sample thickness

d = 90 µm, the difference ∆αd ∼ 0.01 at 2.15 eV in Fig. 3.11 corresponds to α−− of 0.56 cm−1.
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(a) (b)

kc > 0, 55 K, �0Hc = 6 T kc > 0, 55 K, Ec = 2.2 MV/m

Figure 3.12: (a) Electric and (b) magnetic fields dependence of the αd integrated over 2.0 - 2.3 eV,

I =
∫ 2.3eV

2.0eV
αdω. Data are from Ref. [60].

Binary switching of color

In Figs. 3.12 (a) and (b), we demonstrate binary switching in the absorption coefficient around

2.15 eV, where the MCHD is evidently seen, by the isothermal cyclic reversal of electric and

magnetic fields. The integrated absorption intensity I is switched between I ∼ 1.202 and

I ∼ 1.200 by switching the direction of T for kc > 0. The electric and magnetic fields control

of the absorption coefficient is achieved through the control of T . In Fig. 3.12 (a), the coercive

electric field to switch I is around 0.25 MV/m at 55 K in µ0Hc = 6 T, comparable with the

value in the PME
c － Ec loop [see Fig. 3.7(b)]. For the magnetic-field induced switching of I at

55 K in Ec = 2.2 MV/m, the coercive magnetic field is around 0.5 T. Threshold fields to switch

I is consistent with each other; both indicates that the product EcHc of roughly 1 TW/m2 is

required to switch T , which corresponds to ME free energy γ∥EcHc of 1 neV/f.u. in Eq. (3.7).

Above the threshold field, I is nearly independent of the strength of the external electric and

magnetic fields.

3.3.3 Microscopic origin of MCHD in MnTiO3

Microscopic origin of MCHD in MnTiO3 is discussed in view of chirality and magnetization of

each MnO6 cluster. We neglect the contribution from TiO6 cluster because the intra-atomic

d-d excitation is absent in Ti4+ with d0 electronic configuration. As shown in Fig. 3.4(c),

each antiferromagnetic honeycomb layer consists of two kinds of sublattices labeled A and B.

Considering the site symmetry C3 at Mn2+ sites, each MnO6 cluster in itself has chirality. Two

edge-sharing MnO6 clusters, one on sublattice A and the other on sublattice B, are connected

with each other by P operation which inverts chirality. When we regard the chirality of MnO6

clusters on sublattice A as left-handed, MnO6 clusters on sublattice B has right-handed structure

[see Fig. 3.13]. Below TN, each MnO6 cluster can be viewed as a chiral object magnetized along
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Sublattice A

Sublattice B

(left-handed, －)

(right-handed, +)

Mn2+O2－

Lc > 0 state Lc < 0 state

Figure 3.13: Relation among the coordination environment, local magnetization (+/−), and the sign of

MCHD of each MnO6 cluster. Pairs of two MnO6 clusters with the same sign of MCHD are shaded with

the same color. Schematic top view of each MnO6 cluster along the c axis is shown in the left column.

Purple and blue spheres represent Mn2+ and O2− ions, respectively. Arrows on Mn2+ ions represent

magnetic moments. Chirality of each cluster is denoted by left- and right- handed, regarding that MnO6

cluster on sublattice A has left-handed structure.

ordered moments of Mn2+ ions. Once the sign of the order parameter Lc is fixed, the direction of

the magnetic moments is in one-to-one correspondence with the sublattice which MnO6 cluster

belongs to [see Fig. 3.13]; MnO6 clusters with opposite chirality always magnetized in opposite

direction. As pointed out in Ch. 1, in chiral materials, the toroidal moment T is induced parallel

to magnetization as T = ηTMM , where the sign of coefficient ηTM reverses for the reversal of

chirality. Staggered ordering of magnetic moments in concert with staggered ordering of chirality

make all the MnO6 clusters host T of the same direction, which constructively contribute to the

MCHD in antiferromagnetic MnTiO3. The toroidal moment on each MnO6 cluster switches the

direction for the reversal of the order parameter Lc and the MCHD signal consequently changes

its sign, as illustrated in Fig. 3.14. We note that polarity of MnO6 clusters along the c axis does

not give rise to MCHD because the product P ×M is zero when magnetic moments are along

the c axis.

Contribution from each MnO6 cluster to MCHD is understood by the analysis of the d-

d excitation. MCHD in MnTiO3 is prominently seen for the incident photon energy ℏω of

around 2.15 eV, which resonate with the intra-atomic d-d excitation in octahedrally coordinated

Mn2+ ions. The observed peak-shaped spectra of MCHD coincides with what is expected from

Eq. (3.5). Localized nature of the excitation allows us to discuss the transition taking only the d5

electronic configuration of the single Mn2+ ion into account. The group theoretical consideration

tells us a little detail about the excited and ground states involved in the E1-M1 interference

responsible for MCHD. The S = 5/2 ground state 6A1g belong to the irreducible representation

(irrep) A of the point group C3. For light propagating along the c axis, both E1 and M1

terms p̂ ·Eω and m̂ ·Bω [see Eq. (1.25)], respectively, belong to irrep E in C3. Therefore, for
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Re (⟨g|p̂x|en⟩ ⟨en|m̂y|g⟩)− Re (⟨g|p̂y|en⟩ ⟨en|m̂x|g⟩) to be not zero, the |en⟩ must belong to irrep

E of C3. The relevant S = 3/2 excited state |en⟩ for ∆n = 2.15 eV belongs to irrep T1g of the

point group Oh. If the MnO6 cluster is an undistorted regular octahedron, this 4T1g states are

triply degenerated in orbital degree of freedom 3. In the trigonal C3 symmetry at the Mn2+

sites in MnTiO3, the degeneracy is lifted and the 4T1g states split into two levels; one belongs

to irrep E of C3 and the other belongs to irrep A of C3. MCHD at 2.15 eV originates from the

transition to the 4E states of C3 which is derived from the 4T1g state of Oh.

Orbital part of the magnetic dipole operator m̂L = −µBl̂/ℏ usually accounts for the M1

transition of the d-d excitation. Hereafter, by |e0n,α⟩ we denote the n-th eigenstate of Hel−el +

HCEF, where Hel−el and HCEF denote the on-site Coulomb interaction and the crystal field. α =

1 · · ·Nn stand for the degeneracy. n = 0 corresponds to the ground state. Since Hel−el +HCEF

commutes with the position operator r̂, real part of ⟨eiα|p̂µ|ejβ⟩ ⟨ejβ |m̂Lν |eiα⟩ is always zero for

all possible i, j, α, β, µ, and ν.

By taking spin-orbit coupling HSO into account, ⟨eiα|p̂µ|ejβ⟩ ⟨ejβ |m̂Lν |eiα⟩ can become not

zero. By the first order perturbation of HSO, the eigenstate |e0iα⟩ of Hel−el +HCEF is modified

as 4

|e0nα⟩ → |enα⟩ = |e0nα⟩+
∑
m ̸=n

∑
β

⟨e0m,β|HSO|e0n,α⟩
∆0

n −∆0
m

|e0m,β⟩ . (3.15)

Here, ∆0
n and ∆0

m are unperturbated eigenenergies for |e0nα⟩ and |e0mβ⟩, respectively. Substituting
Eq. (3.15) for |en⟩ in Eq. (3.6) and m̂L for m̂, we obtain

αn
E1−M1 =

∑
m

αnm
E1−M1, (3.16)

where

αnm
E1−M1 ∝

∑
m,αβ

2∆0
nℏωδn

(∆0
n
2 − ℏ2ω2)2 + ℏ2ω2δ2n

1

∆0
n −∆0

m

{
Re
(
⟨e00|p̂x|e0m,β⟩ ⟨e0m,β|HSO|e0n,α⟩ ⟨e0n,α|m̂y|e00⟩

)
− Re

(
⟨e00|p̂y|e0m,β⟩ ⟨e0m,β|HSO|e0n,α⟩ ⟨e0n,α|m̂x|e00⟩

)
+Re

(
⟨e00|p̂x|e0n,α⟩ ⟨e0n,α|HSO|e0m,β⟩ ⟨e0m,β|m̂y|e00⟩

)
−Re

(
⟨e00|p̂y|e0n,α⟩ ⟨e0n,α|HSO|e0m,β⟩ ⟨e0m,β|m̂x|e00⟩

)}
. (3.17)

In the calculation of αnm
E1−M1, |e00⟩ is substituted for |g⟩ and Re

[
⟨e00|p̂µ|e0iα⟩ ⟨e0iα|m̂Lν |e00⟩

]
is used.

From Eq. (3.17), αnm
E1−M1 satisfies

δnα
nm
E1−M1

(
ω =

∆0
n

ℏ

)
= −δmαmn

E1−M1

(
ω =

∆0
m

ℏ

)
. (3.18)

The contribution αnm
E1−M1 (αmn

E1−M1) appears in αn
E1−M1 (αm

E1−M1) which describes the contri-

bution to MCHD from the transition to n- (m-) th excited state. MCHD originating from the
3As long as we focus on a single MnO6 cluster, the site symmetry at the Mn2+ site is determined by the

configuration of surrounding six oxygens and not affected by other octahedrons.
4The normalization factor is neglected for simplicity.
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Figure 3.14: Schematic illustration of MCHD in MnTiO3 for two distinct antiferromagnetic states Lc > 0

and Lc < 0. Red arrows denote magnetic moments. The sign of order parameter Lc = [MA −MB ]c is

in one-to-one correspondence with that of Tc.

transition to |en⟩ and |em⟩ should be almost entirely opposite in sign when the MCHD is pre-

dominantly described using the three levels |g⟩ , |enα⟩, and |emβ⟩. In Figs. 3.9(a) and (b), MCHD

of opposite sign to that at 2.15 eV is seen above 2.3 eV. The reversal of sign in MCHD at 2.15

eV and above 2.3 eV indicates that the hybridization by HSO between 4T1g and 4T2g states of

Oh is key to describe observed MCHD in MnTiO3.

3.4 Summary

In this chapter, we have investigated the MCHD in a collinear antiferromagnet MnTiO3.

MCHD in MnTiO3 is observed as the difference in the absorption coefficient between two con-

figurations k ↑↑ T and k ↑↓ T , following the verification of the in-plane off-diagonal ME

couplings. Observed MCHD is a spontaneous effect arising in the absence of external electric

and magnetic fields. Exploiting MCHD and the controllability of the toroidal moment T , we

have achieved binary switching of the absorption intensity. The origin of MCHD is staggered or-

dering of magnetic moments in phase with that of chirality of MnO6 octahedrons in honeycomb

antiferromagnetic structure.





Chapter 4

Magnetochiral Imaging of Antiferromagnetic Domain in

MnTiO3

The knowledge of patterns and dynamics of magnetic domain structures is of great impor-

tance for manipulation of magnetic properties of materials. Several kinds of techniques have

been and are being developed for observation of antiferromagnetic domain structures concur-

rently with the discovery and implementation of functionalities of antiferromagnetic materials.

Due to the absence of magnetization, observation of antiferromagnetic domain structures is

rather difficult than that of ferromagnetic ones, which is made possible by magneto-optical ef-

fects with which we can probe the direction and orientation of spontaneous magnetization. Novel

T -odd optical effects of antiferromagnetic origin should enable us to visualize spatial distribution

of direction of staggered magnetization, even in the absence of magnetization.

Here, we demonstrate MCHD-based imaging of antiferromagnetic domain patterns in MnTiO3.

Antiferromagnetic domain structures are clearly visualized exploiting the asymmetry in absorp-

tion coefficients between two distinct antiferromagnetic states with staggered magnetization in

opposite directions. The MCHD-based imaging technique is featured with light-polarization in-

dependence and the absence of multiphoton optical processes, both of which lead to the reduced

exposure time compared with that required in previously reported techniques.

In Sec. 4.1, we introduce two categories of antiferromagnetic domains and present pros and

cons of several established imaging techniques of these domain structures. In Sec. 4.2, we

demonstrate the MCHD-based imaging technique and report several features of antiferromag-

netic domains in MnTiO3. The findings are summarized in Sec. 4.3.

4.1 Introduction to antiferromagnetic domain imaging

4.1.1 Orientational and antiphase domains

Two distinct regions are in different antiferromagnetic domains when magnetic order parameters

take different values in two regions. In the most general form, magnetic order parameters O are

41
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Figure 4.1: Schematic illustrations of the (a) antiphase and (b) orientational domains and domain walls

(dashed lines). Black arrows denote staggered magnetization L. By antiphase (orientational) domains,

we denote two different domains separated by the antiphase (orientational) domain walls. Time-reversal

and rotation operations which relates distinct domains are depicted in (a) and (b).

written as

O =
∑
α

∑
r

m(r)eiqαr, (4.1)

using the magnetic propagation vector qα and magnetic moments m as a function of the position

r. For collinear commensurate antiferromagnets with magnetic unit cells containing N magnetic

atoms, it is convenient to use staggered magnetization, or the Néel vector,

L =
N∑

α=1

cαm(rα), (4.2)

as magnetic order parameters instead of O. rα denotes the position of the α-th magnetic atoms

in the magnetic unit cell. Here the coefficients cα originate from eiqαr terms in Eq. (4.1).

Domain walls are D − 1 dimensional objects which separates two distinct domains in D

dimensions [see Fig. 4.1]. In antiferromagnets where staggered magnetization L is properly

defined, there are two kinds of domain walls: antiphase and orientational domain walls. The

antiphase domain wall separates two domains characterized by Néel vectors in opposite directions

[see Fig. 4.1(a)]. Antiphase domain walls are seen in antiferromagnets with uniaxial magnetic

anisotropy. The orientational domain wall separates two domains characterized by Néel vectors

in different orientations [see Fig. 4.1(b)]. Orientational domain walls are seen in antiferromagnets

with multiaxial or easy-plane magnetic anisotropy. 1

Antiphase and orientational domains are distinguished from the symmetry aspect. Antiphase

domains are connected by the T operation which inverts the direction of magnetic moments [see

Fig. 4.1(a)]. Orientational domains are connected by the rotation operation which changes

orientation of L [see Fig. 4.1(b)]. We note that, as mentioned in Ch. 1, the T operation is

1Antiphase domain walls are seen in antiferromagnets with multiaxial or easy-plane magnetic anisotropy, too,

while the orientational domain wall is not seen in uniaxial antiferromagnets.
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(a) (b)

Figure 4.2: (a) (right) SP-STM image of the [001] plane of Fe monolayer. (middle) Simulated SP-STM

image for the spin texture shown in the left panel. Arrows in the left panel denote spins. (b) Maps of the

intensity of the reflection at (0,0,1 − δ) in antiferromagnetic chromium at 130 K. (a) and (b) are taken

from Refs. [68] and [71], respectively.

equivalent with a certain translational operation in collinear antiferromagnets with the magnetic

unit cell larger than the crystallographic unit cell [see Fig. 1.3(a)]. Antiferromagnets where the

T operation is not equivalent to any translational operation are suitable for the implementation

to magnetic storage because L = +l and L = −l states can be distinguished by bulk properties.

4.1.2 Antiferromagnetic-domain imaging techniques

Scanning imaging techniques

With respect to the size of the probed area in a single measurement, we classify magnetic-domain

imaging techniques into two categories: scanning imaging techniques and optical imaging tech-

niques. Scanning imaging techniques are featured by the probed area in a single measurement

much smaller than a area of the single magnetic domain. The best spatial resolution among

all the imaging techniques is achieved in scanning imaging techniques using nanometric tips as

probes, at the expense of temporal resolution and the bulk sensitivity. As shown in Fig. 4.2(a),

with the spin-polarized scanning tunneling microscopy (SP-STM), spin textures on the out-

ermost surface of a sample are visualized with atomic resolution [68]. The middle panel of

Fig. 4.2(a) shows a simulated SP-STM image of the spin texture depicted in the left panel.

The image should look brighter (darker) if spins direct this (the other) side of the paper. The

obtained SP-STM image of an antiferromagnetic Fe monolayer on W is in great agreement

with the simulated image [see Fig. 4.2(a)]. Antiphase domains and a domain wall is clearly

captured. The microscopic technique probes individual moments m(r) in Eqs. (4.1) and (4.2)

and in principle applicable to distinguish all kinds of magnetic domains. For antiferromagnetic

insulators to which STM techniques are not applicable, other microscopic techniques including

the magnetoelectric force microscopy and the NV center magnetometry have been developed

[69, 70].

Scanning imaging experiments are also performed at synchrotron facilities by using focused
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x-ray beams as a probe [71, 72]. In x-ray microscopy imaging, different from imaging experi-

ments with visible electromagnetic waves, spatial inhomogeneity in detected signals in a single

measurement provides us information in reciprocal space, which is not accessible in other kinds

of imaging experiments. In 2003, Evans et al. demonstrated scanning x-ray microdiffraction

imaging of body-centered chromium. Below the Néel temperature 311 K, chromium adopts

spin-density-wave (SDW-) type antiferromagnetic ordering characterized by the magnetic prop-

agation vector (0,0,1 − δ), with δ of around 0.05. With decreasing temperature from 311 K,

orientation of spin S changes at TSF = 123 K from S ⊥ q to S ∥ q [73]. Figure 4.2(b) shows the

image obtained at 130 K. In Fig. 4.2(b), blue (yellow) regions are featured with higher (lower)

intensity of the reflection at (0,0,1 − δ). Blue regions are interpreted as antiferromagnetic do-

mains with q ∥ [001] and S ⊥ q and yellow ones are characterized with other orientations of q

or S.

Optical imaging techniques

By optical imaging techniques, areas large enough to cover several magnetic domains are probed

in a single exposure. Usually, better temporal resolution is achieved with optical imaging tech-

niques than that in scanning imaging techniques. The optical effects which we employ in imaging

of a specific domain is determined based on the broken symmetry at the onset of the domain

formation.

(a) (b) (c)

Figure 4.3: (a) Orientational antiferromagnetic domain pattern in NiO visualized by LB-based imaging.

(b) SHG image of a antiphase domain pattern in Cr2O3. Sample size is 6×3 mm2. (c) NLD image of an

antiphase domain pattern in Pb(TiO)Cu4(PO4)4. (a), (b), and (c) are taken from Refs. [74], [75], and

[76], respectively.

Magnetic linear birefringence (LB) and dichroism (LD) are utilized to visualize orientational

domain patterns. A certain rotational symmetries around the axis perpendicular to L is broken

in domains on both sides of an orientational domain wall. The lack of Cn (n ≥ 3) rotational

symmetry along the z direction results in the anisotropy in the dielectric tensor as χe
xx(ω) ̸=

χe
yy(ω). Such anisotropy gives rise to LD and LB. Magnetic contributions to LD and LB shows

up as the difference in the complex refractive index ∆n as

∆n = n∥ − n⊥, (4.3)
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where n∥ (n⊥) represents the refractive index when magnetic moments are parallel (perpen-

dicular) to the polarization of light. The difference in n enables us to detect the orientation,

not the direction, of L. In 1960, Roth performed magnetic-LB based imaging of orientational

domains of cubic NiO. NiO is a collinear antiferromagnet with multiaxial magnetic anisotropy.

The obtained domain pattern in NiO is shown in Fig. 4.3(a). The stripe-like domain pattern is

clearly visualized exploiting the optical phase retardation depending on the relative orientation

between L and the polarization of light.

Optical imaging of antiphase domain patterns is rather difficult compared with that of ori-

entational domain patterns. When two antiferromagnetic states are connected to each other

by a translational operation, the domain pattern is nearly indistinguishable. Even when the

T symmetry is broken in the magnetic point group which describes symmetry of the magnetic

texture, optical imaging of antiferromagnetic antiphase domain patterns is not straightforward

because MCD, which is activated by the lack of the T symmetry and exploited to visualize

ferromagnetic domains, is absent in antiferromagnets with zero magnetization due to the PT or

two-fold symmetry.

In ME antiferromagnets, the P symmetry, not only the T symmetry, is broken at the onset

of the formation of antiphase domains. The second harmonic generation (SHG) signal is signifi-

cantly influenced by breaking of the P symmetry. SHG is a nonlinear optical process where the

frequency doubled light with photon energy 2ℏω is generated in response to the incident light

beam with ℏω. In materials where the P symmetry is broken, electric-dipole (ED) contribution

to the SHG signal arises in addition to the magnetic-dipole (MD) contribution, latter of which

is always symmetry-allowed. In 1995, Fiebig et al. demonstrated the first optical imaging of the

antiphase domain pattern in a linear ME antiferromagnet Cr2O3 exploiting SHG. For circularly

polarized light with intensity Iσ propagating along the c axis of Cr2O3 below TN, intensity of

the SHG signal ISHG is given as

ISHG ∝ I2σ
(
|χMD|2 + |χED|2 −∆

)
, (4.4)

where

∆ = 2 [Re(χMD)Im(χED)− Im(χMD)Re(χED)] . (4.5)

Here χED (χMD) denote complex susceptibilities of ED- (MD-) SHG [77]. Since χED is odd and

χMD is even under the P operation, the sign of ∆ in Eq. (4.5) is different for antiphase domains

connected by the P operation. The remaining terms in Eq. (4.4) which are quadratic in χED

and χMD is always positive. Figure 4.3(b) shows the obtained domain pattern in Cr2O3. The

antiferromagnetic domain pattern clearly shows up as the spatial inhomogeneity in the SHG

signal. After this demonstration of SHG-based imaging in Cr2O3, SHG has been employed

to visualize domains in numerous ME antiferromagnets where the formation of the antiphase

domain accompanies P-symmetry breaking [49, 61, 78, 79, 80] and become established as a
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major technique to visualize antiphase domains in ME antiferromagnets. However, the nonlinear

optical process requires the long-time irradiation of the light beam with a high photon density,

which often poses problems of temporal resolution worse than a few minutes and heating of

specimens.

Utilizing linear optical ME coupling arising from the simultaneous breaking of the P and T
symmetries is a promising way of imaging antiphase domains in ME antiferromagnets with reduc-

ing the exposure time compared with SHG-based imaging. In 2020, Kimura et al. demonstrated

optical imaging of antiphase domains in an ME antiferromagnet Pb(TiO)Cu4(PO4)4 using the

magnetic-quadrupole induced nonreciprocal linear dichroism (NLD) [76]. Pb(TiO)Cu4(PO4)4 is

a noncoplanar antiferromagnet with the nonzero qa2−b2-type magnetic quadrupole 2[81]. Two

antiferromagnetic states on both sides of antiphase domain walls are featured with the differ-

ent signs of qa2(= −qb2) [see Eq. (1.9)]. NLD is the directional dichroism of linearly polarized

light, where absorption intensity for the polarized light depends on the sign of the magnetic

quadrupole moment. The NLD signal is odd under P and T operations. Figure 4.3(c) shows

the obtained image in Pb(TiO)Cu4(PO4)4. The antiphase domain pattern is clearly seen as the

spatial inhomogeneity of transmitted light intensity. In this NLD-based imaging, exposure time

of less than 0.5 s is achieved.

MCHD is another linear optical effect with which we can visualize antiphase domain pat-

terns in ME antiferromagnets. MCHD-based imaging technique has not been developed because

materials where spontaneous MCHD is observed has been limited to ferromagnets where mag-

netic domain patterns are easily visualized with MCD-based imaging. Since MCHD is the optical

rectification effect caused by the toroidal moment T , the spatial distribution of T should be visu-

alized in MCHD-based imaging. Antiphase magnetic domains are in one-to-one correspondence

with the ferrotoroidic domains in several collinear ME antiferromagnets. MCHD-based imaging,

which is applicable to antiferromagnets where the toroidal moment is not zero, regardless the

presence of the quadrupole moments, would be a complementary technique to NLD-based ones.

2In Pb(TiO)Cu4(PO4)4, we denote 180◦ domain by antiphase domains.
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4.2 Results and discussion

Demonstration of MCHD-based domain imaging
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Figure 4.4: Difference images at 60.0 K for incident light with (a) ℏω = 2.16 eV and (b) ℏω = 1.91 eV.

Images at 65.0 K are used as the reference. Eω denotes the polarization of incident light. The exposure

time is 2 s for (a) and 0.25 s for (b).

Figures 4.4(a) and (b) show difference images of a MnTiO3 crystal at 60.0 K (< TN = 65 K)

without gold electrodes. Before recording the images, the sample was cooled down from 120 K

to 3 K. To realize the multidomain state, we applied no electric and magnetic fields during the

cooling process. Both images were recorded at 60 K in a subsequent warming run in the absence

of electric and magnetic fields. Figures. 4.4(a) and (b) were recorded in the different warming

run. The rate of temperature change at 65 K in the cooling runs was 5-6 K/min and that at 60

K in the warming runs was 0.6 K/min. In Fig. 4.4(a), a pronounced domain pattern is observed

in the circular field of view. The incident photon energy of ℏω = 2.16 eV lies at the peak of the

MCHD spectra [see Fig. 3.11]. Figure 4.4(b) is a difference image recorded with ℏω = 1.91 eV,

at which energy MCHD is absent. Only the interference fringes and the shutter of the camera

is seen in Fig. 4.4(b).

Using original images recorded in the same warming run as Fig. 4.4(a), we investigated

the temperature dependence of the difference of transmitted light intensity per pixel between

brighter and darker regions. We chose square-shaped regions labeled A and B [see Fig. 4.5(a)]

as the representatives of brighter and darker areas in the difference image taken with ℏω of 2.16

eV, respectively. IX (X = A,B) is computed as

IX =

∫
X
drI(r)/

∫
X
dr, (4.6)

using transmitted light intensity I as a function of the pixel position r.
∫
X dr denotes the integral

over a region labeled X. The temperature dependence of ∆IAB/IAB = (IA − IB)/(IA + IB) is

shown in Fig. 4.5(a). The value of ∆IAB/IAB of −1.8% in the paramagnetic phase above 65 K is
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Figure 4.5: (a) Temperature dependence of ∆IAB/IAB for ℏω = 2.16 eV in the absence of electric and

magnetic fields. Inset shows the position and size of square-shaped brighter A region and darker B region

in the difference image at 60 K. (b) Temperature dependence of the magnetic susceptibility χ along the

c axis.

attributable to the contribution from the spatially inhomogeneous distribution of incident light.

In addition to this nonmagnetic contribution, the magnetic contribution is seen in ∆IAB/IAB

below TN; antiferromagnetic ordering at 65 K, which is characterized by the anomaly in the

temperature dependence of the magnetic susceptibility χ in Fig. 4.5(b), accompanies the rise

in ∆IAB/IAB. The positive magnetic contribution in ∆IAB/IAB below TN accounts for why

A region is brighter than B region in the difference image at 60 K despite the ∆IAB/IAB is

negative.

The difference in brightness between A and B regions is accountable to the difference in

the absorption coefficients of antiferromagnetic origin. The magnetically induced change in

∆IAB/IAB at 55 K is as large as 1%. Incorporating the inhomogeneous distribution of light, IA

and IB is expressed as I0(1− ϵ)e−αAd and I0(1 + ϵ)e−αBd, respectively. I0(1− ϵ) and I0(1 + ϵ)

denote incident light intensity for A and B regions, respectively. αX (X = A,B) denotes the

absorption coefficients for the region labeled X. ∆IAB/IAB becomes

∆IAB

IAB
=

I0(1− ϵ)e−αAd − I0(1 + ϵ)e−αBd

I0(1− ϵ)e−αAd + I0(1 + ϵ)e−αBd

∼ −ϵ− (αA − αB)d

2
. (4.7)

The second term −(αA − αB)d/2 represents the difference in absorption coefficients originating

from the difference in antiferromagnetic order parameters between two regions, while the non-

magnetic contribution of −1.8% is represented by the temperature-invariant first term −ϵ. Using
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Figure 4.6: Light-polarization-direction dependence of difference image. Images at 65.0 K (φ = 0◦), 65.4

K (φ = 45◦), and 65.7 K (φ = 90◦) are used as references, respectively.

the sample thickness of d = 150µm, −(αA −αB)d/2 of 1% at 55 K corresponds to (αB −αA)/2

of 0.67 cm−1, which is comparable to α−− of 0.56 cm−1 at 55 K for ℏω = 2.16 eV derived in

Ch. 3. The approximation in Eq. (4.7) is valid since ϵ and (αA − αB)d/2 is far smaller than

one. Judging from Fig. 4.5(a), the magnetic contribution (αA − αB)d/2 is saturated at 50 K as

decreasing temperature from TN, as the magnitude of the MCHD signal does in Fig. 3.10(b).

Since MCHD is the directional dichroism of unpolarized light, obtained pattern by imaging

technique based on MCHD should not depend on the direction of polarization of incident light.

Figure 4.6 shows difference images recorded with linearly polarized incident light for several

polarization directions φ. All the images were recorded in series in an identical warming run,

which was a different run from that of Figs. 4.4(a) and (b). Temperature profile is the same as

that of Figs. 4.4(a) and (b). We obtained the same pattern for all the polarization direction,

which is in contrast with the cases for the imaging technique based on LB and NLD.

From above examination of several images obtained with varying photon energy, temper-

ature, and the polarization direction of incident light, we conclude that domain patterns in

difference images in Fig. 4.4(a) and Fig. 4.6 below TN map the spatial distribution of α−− in

Eq. (3.1). Since the propagation vector k of incident light is fixed along the c axis in the present

imaging experiment, the spatial distribution of α−− reflects the c-component T c of the toroidal

moment, i.e. the ferrotoroidic domain pattern, over the sample. Brighter and darker regions in

difference images are in T c > 0 and T c < 0 states. Considering the coupling between L and T

in MnTiO3 [see Eq. (3.10)], observed ferrotoroidic domain pattern is nothing but the antiphase

antiferromagnetic domain pattern.

Structural and thermal properties of domain patterns

Observed patterns represent the projection along the c axis of the original domain distribution in

three dimensions because the present MCHD-based domain imaging is performed in transmission

geometry. Judging from the estimated value of (αA − αB)/2, domain walls seem to be oriented

perpendicular to the c plane of the crystal. Let us assume that α++ = a and α−− = b (−b)
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Figure 4.7: (a) Difference images at several temperatures. Images at 65.0 K is used as reference. All

the images are recorded in the same warming run as Fig. 4.4(a) and Fig. 4.5(a). (b) Line intensity

profile in the difference image at 63.71 K along the path denoted by a dotted arrow in the inset. (c)-(d)

Temperature dependence of the domain-boundary (c) position and (d) thickness. In the inset of (c), the

definition of the boundary position is illustrated by red arrows.

for T c > 0 (T c < 0) states. When the X (X = A,B) region in the inset of Fig. 4.5(a) is the

rX : 1− rX mixture of T c > 0 and T c < 0 states, αX becomes

αX = a+ (2rX − 1)b. (4.8)

By substituting Eq. (4.8), (αA − αB)/2 becomes (rA − rB)b. Observed (αA − αB)/2 of over

100% of the value of α−− at 55 K indicates that rA and rB are nearly equal to one and zero,

respectively.

The typical size of the antiferromagnetic domains in MnTiO3 is of 0.1-1 mm in width [see

Fig. 4.4(a) and Fig. 4.6], which is similar to those in bulk samples of several kinds of collinear

antiferromagnet such as Cr2O3 and LiCoPO4 [61, 75]. The three-fold symmetry is unrecognizable

in the antiferromagnetic domain pattern of MnTiO3, in spite of the trigonal symmetry of the

underlying crystallographic lattice. The absence of the trigonal symmetry in magnetic domain

patterns indicates that the strength of the exchange interaction in c plane is so isotropic that

orientation of domain walls is not bounded as long as it lies parallel to the c axis.

Antiferromagnetic domain patterns are erased by warming up the sample above TN. As for

the shape and positions of domain boundaries, there is no similarity between the two images

recorded in the different warming runs [see Fig. 4.4(a) and Fig. 4.6]. While the similar domain

patterns are reported to repeatedly arise even after erasing pattern in ME antiferromagnets such

as Cr2O3 [75] and Pb(TiO)Cu4(PO4)4 [76], such memory effects in domain formation is absent

in MnTiO3.
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The domain structure is stable up to just below TN. Temperature dependence of domain

patterns near the critical temperature is shown in Fig. 4.7(a). The obtained difference images

become less contrasted with approaching TN, reflecting the temperature dependence of the mag-

nitude of the MCHD signal. Domain patterns seem invariant under the change of temperature

from 60 K to 64.5 K. We examine the line profiles of difference images for qualitative discussion.

Figure 4.7(b) shows the line profile along the path highlighted in the inset which intersects the

domain boundary. To extract the position and the width of the domain boundary, the line

profile is fit by the relation

Ipath(y) = A arctan

(
y − yDW

dDW

)
+ c. (4.9)

Here, Ipath(y) represents brightness of the difference image at the position y along the path. A,

yDW, dDW, and c are fitting constants. yDW and dDW denote the position and the thickness of

the domain boundary, respectively. Figures 4.7(c) and (d) show the temperature dependence of

the domain-boundary position and the thickness, respectively. To cope with the thermal shift

in the sample position, the positions of boundary are measured from the edge of the sample [see

the inset of Fig. 4.7(c)]. No systematic change is observed in Fig. 4.7(c), which qualitatively

evidences the thermal stability of domain patterns. From Fig. 4.7(d), the change in the domain-

wall thickness larger than 10 µm is not observed. We note that thickness of magnetic domain

walls is typically smaller than a micro meter [82] which is smaller than the spatial resolution of

the present imaging experiments.

4.3 Summary

In this chapter, we have demonstrated the antiferromagnetic domain imaging technique based

on MCHD. Antiphase domains in antiferromagnetic MnTiO3 are clearly visualized exploiting

the asymmetry in absorption coefficients between two antiferromagnetic states with Lc > 0 and

Lc < 0. The present imaging technique do not require polarized light and is performed with

exposure time of at most 2 s. Observed submillimeter-sized domain patterns are not constrained

by the trigonal symmetry of the crystal. Shape and position of the domain boundary are found

to persist up to just below TN and completely erased by warming up the sample above TN.





Chapter 5

Imaging Study of Magnetoelectric Domain Reversal

Switching between two metastable antiferromagnetic states is achieved by external-field-

driven displacement of boundary which spatially separates two different antiferromagnetic do-

mains. Dynamic properties of domain walls such as velocity and mobility are key factors which

determine switching speed. Since domain walls are a kind of defects which occupy far smaller

volume than domains themselves do, their behavior can hardly be tracked by measurements of

the macroscopic physical properties. Direct observation of the temporal evolution of domain

patterns is one of the most powerful techniques to investigate the role of domain walls in the

switching process.

Here, we investigate domain-wall dynamics in the ME antiferromagnet MnTiO3 by means

of MCHD-based imaging of the domain patterns in transient states. Millisecond dynamics of

the domain patterns in the abruptly switched electric fields is clearly captured exploiting the

memory effect in the switching process. Based on the velocity-force relationships of domain

walls obtained at several temperatures, the temperature dependence of domain-wall mobility

and the pinning field are found to be responsible for the enhancement of switching speed near

the critical temperature.

In Sec. 5.1, recent studies about switching dynamics in ME antiferromagnets are introduced

based on the previous researches in other ferroic materials. In Sec. 5.2, the imaging study of the

domain switching process in MnTiO3 is presented. Following the observation of quasistatic and

millisecond dynamics of the domain patterns, domain-wall dynamics is focused on. Results and

discussion are summarized in Sec. 5.3.

5.1 Introduction to switching dynamics in ferroic materials

5.1.1 Temporal evolution of switched areas

In ferroic materials characterized by a order parameter X, two states with X > 0 and X < 0

are switched by reversal of the conjugate field Y which satisfies X = −∂F
∂Y . The X > 0 state is

energetically favored in Y > 0 and the X < 0 state is favored in Y < 0. (X,Y ) is (M,H) for

53
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θ = 0, Y > 0

X > 0

θ = 1, Y < 0

X < 0
0 < θ < 1, Y < 0

Figure 5.1: Illustration of the transient state in the switching process. Initial and reversed domain is blue

and brown colored, respectively.

ferromagnets and (P,E) for ferroelectric materials. As mentioned in Ch. 1, (X,Y ) is (γij , EiHj)

for linear ME antiferromagnets where the antiferromagnetic order parameter is switched by the

simulnaous application of electric and magnetic fields.

The switching process from the X > 0 state to the X < 0 state is composed of the nucleation

of the X < 0 domain followed by the expansion of the nucleated domain achieved by the domain-

wall displacement. Even when the external field is abruptly switched from Y > 0 to Y < 0, it

takes some time for the switching process to be accomplished. The faster manipulation of the

ferroic order parameter is achieved by the reduction in the switching time. In this subsection,

we first show how several factors including domain-wall velocity are employed to theoretically

describe the temporal evolution of the volume fraction of switched domains and then introduce

several corresponding experimental studies.

Theory

By θ(t), we denote the fraction of the X < 0 domain at time t after the external field is abruptly

switched from Y > 0 to Y < 0 at t = 0 [see Fig. 5.1]. θ(0) = 0 and θ(∞) = 1. In 1962, Fatuzzo

presented a theoretical framework where θ(t) was calculated from the nucleation rate and the

initial radius of domains and the domain-wall velocity [83]. While the formulation in Ref. [83]

was done to describe the temporal evolution of θ(t) in ferroelectric materials, the theory is valid

for other kinds of ferroic materials.

The areas A− of the X < 0 domain at time t is computed as

A−(t) =

∫ t

0
ds S(t− s)

dN

dt

∣∣∣∣
t=s

, (5.1)

using the number of X < 0 domains N(t). S(t) denotes an area of a X < 0 domain at time

t after its nucleation. Assuming that the nucleation of domains is a random statistical process

[84] which happens with the probability R, we set N(t) to obey the following equation;

dN

dt
= R(N0 −N) ⇔ N(t) = N0

(
1− e−Rt

)
. (5.2)

Here, N0 denotes the number of all possible nucleation sites. Once we suppose domains to be

circular, the area S(t) is computed as S(t) = πr(t)2, using the radius r(t) of the domain. Using
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the domain-wall velocity vDW, r(t) is written as

r(t) = r0 + vDWt, (5.3)

where r0 denotes the initial radius of the domain just after the nucleation.

To obtain the fraction θ(t), the overlap among switched domains, which is neglected in the

derivation of Eq. (5.1), must be taken into account. Based on the discussion in Ref. [85], it is

pointed out [83] that the relation between θ and A− becomes

θ = 1− exp

[
−
(
A− − πr20N(t)

Sall
+

πr20N0Rt

Sall

)]
. (5.4)

Sall denotes the area of the sample. By substituting Eqs. (5.1)-(5.3) for Eq. (5.4), θ is computed

as

θ(τ) = 1− exp

[
−2k2

{
1−

(
τ +

1

k

)
+

1

2

(
τ +

1

k

)2

− e−τ

(
1− 1

k

)
+

1

2k2
(1− τ)

}]
, (5.5)

using dimensionless parameters k = vDW/Rr0 and τ = Rt 1.

According to the above formulation, the form of θ(τ) is determined by the single parameter

k which is proportional to the domain-wall velocity vDW. By the definition of k, the switching

process predominantly described by the domain-wall motion corresponds to k ≫ 1 and that

described by the nucleation of the numerous domains corresponds to smaller values of k. We

note that it is difficult to experimentally obtain the parameter k for the switching process with

k ≫ 1 because θ(τ) curves do not vary so much for the change of k.

Experiments

Equation (5.5) successfully explains the temporal evolution of the switched areas observed in

ferroic materials. Figure 5.2(a) shows the time dependence of the magnetization reversal process

of two ferromagnets where the switching processes are governed by the different mechanisms.

In ferromagnets, the temporal evolution of θ is investigated by time-resolved measurements of

magnetization. The switching process in a GdFe sample was well described by θ with k ∼ 2000

and that in a TbCo sample was described with k ∼ 0 [86]. Magnetic domain patterns visualized

exploiting the magneto-optical Kerr effect [see the inset of Fig. 5.2(a)] clearly evidence that the

switching process in the GdFe with larger k is driven by the domain-wall motion and that in

the TbCo is described by the nucleation of numerous domains. The validity of Eq. (5.5) was

also confirmed in ferroelectric materials by time-resolved measurements of displacement currents

[83].

So far, several studies have shown that the electric-field induced switching of the cycloidal

magnetic textures typically takes more than a millisecond [79, 87, 88, 89]. In 2011, Hoffmann et

al. visualized the transient state in the switching process of the cycloidal ME antiferromagnet

1In the derivation of Eq. (5.5), Sall is equated to N0πr
2
0.
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(a) (b)

Figure 5.2: (a) Time dependence of the magnetization process of a GdFe sample (k ∼ 2000) and a TbCo

sample (k ∼ 0). B in the vertical axis stands for the volume fraction of the original domain. t50 in the

horizontal axis is defined so that B(t50) to be 0.5. Magnetic domain patterns in the transient state is

shown in the inset. (b) SHG-based imaging of the switching process in MnWO4 at 11.8 K (< TN = 12

K). (a) and (b) are taken from Refs. [86] and [79], respectively.

MnWO4 [79]. MnWO4 is a cycloidal antiferromagnet where the P symmetry is broken at the on-

set of magnetic ordering and the helicity of the magnetic texture is in one-to-one correspondence

with the direction of electric polarization [90]. In MnWO4, the helicity of the cycloidal magnetic

structure is switched by reversal of the electric field [91]. Judging from the helimagnetic domain

patterns visualized by the SHG-based imaging technique, the switching process in MnWO4 is

described by the domain-wall displacement [see Fig. 5.2(b)]. In MnWO4 the reduction of the

switching time near the Néel temperature and that in larger driving electric fields is reported

[79, 51]. The similar temperature and external-field dependence of the switching time is also

observed in other cycloidal ME magnets by the study of θ(t) tracked by time-resolved polarized

neutron diffraction experiments [88, 89]. However, the origin of the reduction in the switching

time in those ME antiferromagnets remains a matter of the speculation due to the lack of the

visualization of the transient states.

5.1.2 Domain-wall velocity in driving fields

Theory in pure crystal

Driving force for a domain wall is proportional to the energy gap between two states separated

by the boundary. When the two regions with X = η > 0 and X = −η < 0 are separated by

the domain wall at x = l as depicted in Fig. 5.3, the total energy of the system in the conjugate

field Y becomes E = ηY LyLz(Lx−2l). The driving force fDW on the domain wall per unit area

is computed from the gradient of E as

fDW = − 1

LyLz

∂E

∂l
= 2ηY. (5.6)
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X = � > 0

X = －� < 0

Ly

Lz

x

x = ℓ

Lx

Figure 5.3: Illustration of the two domains with X = η > 0 and X = −η < 0 separated by the domain

wall at x = l. Domain wall is depicted by a red line. LyLz is an area of the domain wall.

The equation of motion is necessary to calculate domain-wall velocity vDW from the driving

force on the wall. In the following, based on the discussion in Ref. [92], we show how vDW is

computed for linear ME antiferromagnets. The Lagrangian density Lspin for antiferromagnets

with easy-axis anisotropy is written as [93]

Lspin =
1

2

(
ρ|ṅ|2 −A|∇n|2 −Kzzn

2
z

)
, (5.7)

where ρ, A, and Kzz denote the mass, the exchange interaction, and the magnetic anisotropy,

respectively 2 . Here, the unit vector n(r, t) = (sin θ cosϕ, sin θ sinϕ, cos θ) represents the direc-

tion of the Néel vector at position r. Domain-wall profile in Fig. 5.3 is represented by θ and ϕ

set as cos θ(x, t) = tanh x−l(t)
λDW

ϕ = ϕ(t)
. (5.8)

λDW in Eq. (5.8) denotes the thickness of the domain wall placed at x = l. By substituting

Eq. (5.8) for Eq. (5.7), we obtain the Lagrangian Lspin as

Lspin =

∫ ∞

−∞
dxL(x, t) = ρl̇2

λDW
+ ρϕ̇2λDW + const. (5.9)

As in Ref. [92], we deal with the longitudinal ME effect where electric polarization along the

z axis is induced in proportion to the magnetic field along the z axis. The domain wall at x = l

separates two regions with γzz > 0 and γzz < 0. The potential energy V of the domain wall

originating from the ME term in the free energy FME [see Eq. (1.6)] is V = 2γzzEzHzl+ const.

Using Lspin and V , the equation of motion of the domain wall becomes

2ρ

λDW
l̈ = −4α0J

λDW
l̇ + 2α∥EzHz. (5.10)

2In Eq. (5.7), Zeeman coupling between applied magnetic fields and electric-field induced magnetization is

neglected for simplicity. This approximation is valid for the small electric field where the effect of precession of n

on vDW is absent.
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(a) (b)

Figure 5.4: Domain-wall velocity as a function of (a) the applied magnetic field in ferromagnetic Co film

and (b) as a function of the applied pulsed electric field in Cr2O3. In (b), electric fields were applied in the

magnetic field of µ0Hc = 4 T and at 285 K. (a) and (b) are taken from Refs. [94] and [95], respectively.

Here the friction term 4α0J
λDW

l̇ originates from the viscous drag represented as

R = α0J
∫ ∞

−∞
dx|ṅ|2 = 2α0J

(
l̇2

λDW
+ ϕ̇2λDW

)
, (5.11)

where α0 and J stand for the Gilbert damping factor and the angular momentum per unit cell,

respectively. By substituting l̈ = 0 for Eq. (5.10), we obtain the domain-wall velocity vDW in

the steady state as

vDW =
γzzHzλDW

2α0J
Ez. (5.12)

Velocity-force relationships in disordered materials

In contrast to Eq. (5.12), the domain-wall velocity in ferroic materials is usually not linear in the

driving force on the domain wall. The nonlinearity arises from the pinning force acting on the

domain wall. Figure 5.4(a) shows the magnetic-field dependence of vDW in a ferromagnetic Co

film. As pointed out in Ref. [96], there are two regimes in the domain-wall motion in response

to the applied field: creep motion and the viscous flow of the domain wall. The domain-wall

creep is thermally activated motion of the domain wall for the external fields below the pinning

threshold. Creep motion of the domain wall was first clearly observed in Ref. [94], where the

domain-wall velocity vDW in creep regime is fitted to the relation

vDW ∝ exp

[
− Uc

kBT

(
Hp

H

)ν]
, (5.13)

where kB, Uc, and Hp denote the Boltzmann constant, the pinning potential, and the pinning

threshold. The exponent ν is related with the dimensionality of the order parameter and of
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the system. For applied fields larger than the pinning threshold, the viscous flow, or sliding

motion, of the domain wall occurs. Viscous flow of the domain wall is characterized by the

linear relationship between the domain-wall velocity and the applied field. For ferromagnetic

domain walls driven by the magnetic field, the vDW-H relationship is expressed as [97]

vDW = v0 + µ(H −Hp), (5.14)

using v0 and µ which denote the contribution from the creep motion and the domain-wall

mobility, respectively.

Despite the fact that dynamic properties of domain walls cannot be understood without

the investigation of the velocity-force relationship, the applied-field dependence of vDW in ME

antiferromagnets has rarely been studied. Figure 5.4(b) shows the electric-field dependence of

vDW in a linear ME antiferromagnet Cr2O3 measured in electric and magnetic fields both along

the c axis. In the experiment [95], pulsed electric fields were applied in the magnetic field

to displace the antiferromagnetic domain wall in Cr2O3. vDW was computed using two images

recorded before and after the application of the pulsed electric field. In Fig. 5.4(b), the nonlinear

relationship between vDW and the applied field, which is similar to that in ferromagnetic film

[see Fig. 5.4(a)], is clearly observed.

5.2 Results and discussion

5.2.1 Quasistatic domain reversal

The quasistatic switching process of antiferromagnetic states in MnTiO3 at 64.0 K under electric

and magnetic fields along the c axis is shown in Fig. 5.5. Before measurements, the sample was

cooled down from 70 K (> TN = 65 K) to 64.0 K in the absence of external fields to realize the

multidomain state. At 64.0 K, a magnetic field of µ0Hc = 0.1 T was applied and then the electric

field was ramped up from Ec = 0 MV/m to 7.9 MV/m at the rate of smaller than 0.05 MV/s.

After the initial sweep, Ec was swept between ±7.9 MV/m for two cycles. The transmitted light

intensity averaged over the whole image I =
∫
drI(r)/

∫
dr is shown in Fig. 5.5(a).

∫
dr denotes

the integral over a whole image. For the cyclic reversal of the electric field in the magnetic field,

transmitted light intensity I shows hysteresis loops with a temporal drift. Judging from the

I-Ec curve in Fig. 5.5(a), the darker (brighter) antiferromagnetic state with the larger (smaller)

absorption coefficient is favored in EcHc > 0 (EcHc < 0).

The quasistatic switching process at the verge of the coercive fields for the first loop of Ec

is shown in Figs. 5.5(b) and 5.5(c). In Fig. 5.5(b), a darker monodomain state is realized at

Ec = −3.8 MV/m. At Ec = −3.9 MV/m, the brighter domain nucleates around a crack of

the sample. The brighter region expands by decreasing Ec to −4.0 MV/m, clearly evidencing

an electric-and-magnetic-fields-driven motion of the antiferromagnetic domain wall in MnTiO3.

From Fig. 5.5(b), the quasistatic domain reversal process in MnTiO3 is composed of the nu-
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(a)

(b)

(c)

(d)

ⓑ

ⓒ

ⓓ

－3.8 MV/m－3.9 MV/m－4.0 MV/m

－3.7 MV/m－3.8 MV/m－3.9 MV/m

＋3.2 MV/m ＋3.5 MV/m ＋3.8 MV/m

μ0Hc = 0.1 T, 64 K

Figure 5.5: (a) Change in the averaged transmitted light intensity I with sweeping the electric field along

the c axis in the magnetic field of µ0Hc = 0.1 T at 64.0 K. Values of I in the initial sweep, the first loop,

and the second loop of Ec are plotted with light-red, deep-red, and light-blue dots, respectively. (b-d)

Difference c-plane images recorded at each electric field. Images at Ec = −7.9 MV/m in the first loop,

Ec = 7.9 MV/m at the end of the first loop, and Ec = −7.9 MV/m in the second loop are used as the

reference for (b), (c), and (d), respectively. The white scale bar in the left panel of (b) corresponds to

0.5 mm. Panels in (b), (c), and (d) were recorded during the first decrease, the second increase, and the

second decrease in Ec. In the right panel of (b), a crack of the sample is highlighted by a dotted box.
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cleation of the submillimeter-sized domain followed by the displacement of the domain wall as

in several other linear ME antiferromagnets [61, 76] and not of the nucleation of the numerous

domains nor the coherent rotation of magnetic moments. The switching process is similar for

an Ec-increasing run. In Fig. 5.5(c), a brighter monodomain state realized at 3.2 MV/m be-

comes a multidomain state at 3.5 MV/m and the darker region expands by increasing Ec from

3.5 MV/m to 3.8 MV/m. Comparing Figs. 5.5(b) and 5.5(c), the switching processes in the

Ec-increase and the Ec-decrease runs are slightly asymmetric; while the coercive electric field is

around 4.0 MV/m for both cases, switching in the Ec-increasing run is not as steep as that in the

Ec-decreasing run where a monodomain state persists up to −3.8 MV/m. Furthermore, propa-

gation directions of the domain wall are different while the nucleation occurs at the position of

the crack in both cases.

Figure 5.5(d) shows the switching process in the second loop of Ec. The transient state in

the second loop of Ec is similar to that in the first loop, indicating a certain memory effect in

this isothermal quasistatic switching process. The multidomain state realized at −3.8 MV/m in

Fig. 5.5(d) is similar to that realized at −3.9 MV/m in the first loop in Fig. 5.5(b). The striking

similarity in the domain patterns in transient states indicates the presence of the energetically

favored pathway for the moving domain wall in the switching process in EcHc > 0. Such memory

effect is often regarded as the consequence of the pinning effect [79].

The coexistence of several magnetic multipoles all activated by the simple collinear anti-

ferromagnetic structure is advantageous for the present imaging study of the domain-switching

dynamics in MnTiO3. As discussed earlier, antiferromagnetic domains are made visible by the

magnetoelectric optical effect related with the P-odd magnetic multipoles. Visible multipoles

which interact with a transverse electromagnetic wave do not inherently couple to the DC elec-

tric and magnetic fields parallel to the propagation vector k of light. For the imaging study

of the field-driven motion of antiferromagnetic domains, thin plates of antiferromagnets where

staggered magnetization L is controllable with E ∥ k is suitable for applying a high electric

field without the compensation of a large field of view. In MnTiO3, antiferromagnetic domains

are visualized with incident light with k ∥ c exploiting the relation between L and the toroidal

moment T . In addition, antiferromagnetic domains in MnTiO3 are manipulated by the electric

and magnetic fields E,H ∥ c thanks to the relation between L and the γ∥, which is related with

the magnetic monopole and the qz2-type quadrupole. It is of note that MCHD-based imaging

experiments in the same configuration is possible in antiferromagnets with several magnetic

symmetries including tetragonal 4̄′ and 4/m′ and hexagonal 6̄′ and 6/m′, where the toroidal

moment and the magnetic monopole and quadrupole coexists in the same way as in MnTiO3.
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Figure 5.6: (a) Timing scheme of the repetitive imaging experiment. Reference images were recorded in

every poling process. All the measurements were performed in the presence of the magnetic field along

the c axis. In the positive magnetic field, the averaged transmitted light intensity (blue dotted line) takes

the maximum after poling with the negative voltage and decreases by ∆I in response to the application

of the positive pulsed electric field for ∆t. (b) The change in the transmitted light intensity ∆I at 64 K

as a function of ∆t for µ0Hc = ±0.1 T.

5.2.2 Dynamic domain reversal

Imaging of the millisecond dynamics

The deterministic nature in the domain reversal process enables the investigation of the dynamic

switching process under the abrupt reversal of the external fields between EcHc > 0 and EcHc <

0 by repetitive imaging of domain patterns. A timing scheme of the experiment is shown in

Fig. 5.6(a). All the measurements were performed in the magnetic field of |µ0Hc| = 0.1 T. Each

cycle of measurements consists of three parts: (i) First, a negative electric field of Epole = −7.9

MV/m, which is large enough to switch antiferromagnetic states at 64.0 K [see Fig. 5.5(a)], was

applied along the c axis for more than a second to realize the monodomain state. (ii) Second, a

positive pulsed electric field of Epulse was applied along the c axis for time ∆t. The electric field

was then turned off. (iii) Finally, the domain image was recorded at zero electric field. Since the

driving force fDW = 2γ∥EcHc for the domain wall is zero in the absence of the electric field, the

domain pattern exactly at time ∆t after abrupt switching of Ec from Epole to Epulse is recorded

in the third step. The degree of the temporal evolution of the domain pattern before recording

the image is controlled by changing ∆t. The overall picture of the switching dynamics can be

grasped by collecting images with varying ∆t.

The change in the ratio between two antiferromagnetic domains caused by the application of

the pulsed electric field appears as the difference between the averaged transmitted light intensity

in the main frame Imain and that in the reference image Iref . Figure 5.6(b) shows the pulse-width



5.2. Results and discussion 63

(a)

(b)

�t = 0 ms �t = 15 ms �t = 35 ms �t = 55 ms �t = 75 ms �t = 95 ms
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�0Hc = 0.1 T

�0Hc = －0.1 T

Figure 5.7: Difference images recorded at several values of ∆t at 64.0 K for (a) µ0Hc = 0.1 T and (b)

−0.1 T. The white bar in (a) corresponds to 0.5 mm.

dependence of a change in the averaged transmitted light intensity ∆I = Imain − Iref at 64.0

K for Epulse = 7.9 MV/m. Under the magnetic field of µ0Hc = 0.1 T, effects of application

of the pulsed electric fields clearly appear in ∆I when the pulse width exceeds 30 ms. Under

the positive magnetic field, the monodomain state of the brighter antiferromagnetic domain is

favored in the negative electric field of Epole < 0 [see Fig. 5.5]. The decrease in the transmitted

light intensity suggests that the darker region arises in the field of view by the application of

the electric field Epulse for time ∆t. The gradual drop in ∆I in µ0Hc = 0.1 T for ∆t of 30

ms < ∆t < 90 ms indicates that the transient states is realized in the field of view, where the

darker region expands in response to the application of the positive electric field. Judging from

Fig. 5.5(a), the complete reversal of the antiferromagnetic domain should be characterized by

|∆I| of around 100. Such value of |∆I| is achieved for ∆t of more than 90 ms. The pulsed

electric field with the pulse width shorter than 30 ms retains ∆I ∼ 0. Such inactiveness in

the beginning of the switching process is indicative of the switching dynamics dominated by the

domain wall displacement [83, 86]. The pulse-width dependence of ∆I is similar for µ0Hc = −0.1

T except for the reversed sign of ∆I. The reversal of sign of ∆I between µ0Hc = 0.1 T and

−0.1 T is consistent with the picture that the antiferromagnetic domain is controlled by the

product EcHc. The brighter (darker) antiferromagnetic state is energetically favored in negative

(positive) EcHc. In the negative magnetic field, the darker monodomain state is realized in the

negative poling electric field. The application of the positive pulsed electric field for time ∆t

gives rise to the brighter antiferromagnetic state when ∆t is larger than 30 ms. Darker domain

favored for EcHc > 0 is realized in the poled state for µ0Hc = −0.1 T and brighter domain,

which is realized in poled state for µ0Hc = 0.1 T, is induced by pulsed electric field.

The transient states in the millisecond switching process are visualized in difference images

at several values of ∆t at 64 K in |µ0Hc| = 0.1 T and Epulse = 7.9 MV/m, as shown in Fig. 5.7.

As pointed out in the analysis of ∆I-∆t curve in Fig. 5.6(b), for µ0Hc = 0.1 T, the ratio
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of the darker region in the field of view continuously increases by increasing ∆t from 15 ms

to 95 ms, while that of the brighter region increases by increasing ∆t for µ0Hc = −0.1 T.

In both magnetic fields, the domain pattern continuously changes from a monodomain state

to the other monodomain state. Note that the antiferromagnetic domain is poled back after

every exposure. The continuous deformation in the domain pattern with varying ∆t for each

magnetic field indicates the existence of the memory effect in the dynamic switching process. The

millisecond dynamics in the antiferromagnetic domain switching process driven by electric and

magnetic fields in an ME antiferromagnet MnTiO3 is clearly captured. The dynamic domain-

switching process in the abruptly switched electric field is clearly described by the domain-wall

displacement as in the quasistatic switching process. The submillimeter-sized domains observed

in the transient state with ∆t of 35, 55, and 75 ms is qualitatively similar in scale to those

observed in the transient states of the quasistatic switching process and in multidomain state

realized by zero-field cooling. The ∆I ∼ 0 region for ∆t < 30 ms in Fig. 5.6(b) corresponds to

the absence of the nucleation of the domain and the domain-wall motion for ∆t of 0-15 ms in

Fig. 5.7. In contrast to the case of the quasistatic switching process, the nucleation site in the

field of view seems not confined at the position of a crack of the sample. The asymmetry in

the switching process for EcHc > 0 and EcHc < 0 is seen in the different routes of propagating

domain walls between Figs. 5.7(a) and (b); the domain wall propagates from left bottom to

right top of the difference image in Fig. 5.7(a) and from right bottom to left top in Fig. 5.7(b).

The almost complete monodomain state for ∆t = 95 ms of Figs. 5.7(a) and (b) shows that

monodomain ferrotoroidic state is realized by the application of electric and magnetic fields

along the toroidal moment. Considering the coupling among the toroidal moment, the magnetic

monopole and the ferroaxial degrees of freedom, we conclude that the sample is in a monodomain

ferroaxial state 3.

We investigate the dynamic switching process at different temperature and the pulse am-

plitude Epulse. Figures 5.8(a) and (b) show the switching process at 63.75 K and 64.25 K,

respectively. The reversal process at 63.75 K is slower than that at 64.25 K; while the complete

switching of the antiferromagnetic state is achieved with the pulse width of ∆t = 80 ms in

Fig. 5.7(b), it takes more than 120 ms for the domain to be reversed in Fig. 5.7(a). The decrease

in the strength of the pulsed electric field also slows down the reversal process [see Fig. 5.8(c)

and Fig. 5.7(a)]. The slowing-down behaviors in smaller electric fields and at lower temperature

is observed in the switching process in several multiferroics by the investigation of the temporal

evolution of the volume fraction of the domain [87, 88, 89]. The switching processes at various

conditions shown in Figs. 5.8(a)-(c) are accomplished by the domain-wall displacement. Fur-

thermore, in all the conditions, domain walls propagates the similar routes: from bottom left to

top right. Present imaging study, with which we can visualize the transient state, reveals that

3See the Appendix C for the details about the relation between the ME tensor components and the axial

degree of freedom.
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64.25 K, Epulse = 7.9 MV/m

(a)

(b)

�t = 0 ms �t = 40 ms �t = 80 ms �t = 120 ms

�t = 0 ms �t = 40 ms �t = 80 ms

63.75 K, Epulse = 7.9 MV/m

64 K, Epulse = 6.9 MV/m(c)

�t = 0 ms �t = 40 ms �t = 80 ms �t = 120 ms �t = 160 ms

Figure 5.8: Difference images recorded at several values of ∆t in the repetitive imaging experiment in

µ0Hc = 0.1 T. T and Epulse is 63.75 K and 7.9 MV/m in (a), 64.25 K and 7.9 MV/m in (b), and 64.0 K

and 6.9 MV/m in (c). The white bar in (a) corresponds to 0.5 mm.

the change in the switching speed of the antiferromagnetic domain reversal is attributable solely

to the temperature and electric-field dependence of the domain-wall velocity, not to the change

in the nucleation process and/or the route of the domain wall motion.

Dynamic properties of domain wall

To evaluate the domain wall velocity, we performed the different imaging experiment with a

multidomain initial state where the domain wall is driven back and forth. Figure 5.9(a) shows

timing scheme of this oscillating domain wall imaging in a fixed magnetic field of µ0Hc = 0.1

T. Prior to the experiment, at 64.0 K, a negative electric field of Epole = −7.1 MV/m was

applied for poling and then a positive pulsed electric field with amplitude EDW = 5.7 MV/m

was applied for 400-450 ms to realize the initial multidomain state. Throughout the experiment,

temperature was kept below TN to retain the domain pattern. The domain-wall velocity vDW

was investigated as a function of a strength of the driving electric field Edrive > 0. For a given

value of Edrive, two images were recorded at given temperature T to evaluate vDW; one after the

application of the positive pulsed electric field with amplitude Epulse for tpulse = 10 ms, and the

other after the application of the negative pulsed electric field with the same amplitude for the

same duration [see Fig. 5.9(b)]. vDW was simply estimated by dividing the shift in the position

of domain walls between two images by tpulse.

A nonlinear enhancement of vDW in response to the increase of Edrive is observed. Fig-

ure 5.10(a) shows the Edrive dependence of the domain wall velocity vDW at 64.0 K. In a fixed

magnetic field, the driving force of the antiferromagnetic domain wall in MnTiO3 is proportional
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E

Edrive

time

(a)

0

reference

main frame

(b)

Figure 5.9: (a) Timing scheme of the oscillating domain wall imaging in a fixed magnetic field. Reference

image was recorded in the poling process. (b) Difference image at 64.0 K recorded just after the application

of Edrive of 7.1 MV/m for 10 ms at 64.0 K. The white bar corresponds to 0.5 mm. The domain-wall

profile is shown by a red line. After the application of −Edrive for 10 ms, the brighter region expands

and the domain wall moves to the position denoted by a blue line.

to the electric field. The nonlinear velocity-force relationship is similar to those widely observed

in other ferroic materials [94, 95]. From Fig. 5.10(b), the critical electric field Ep which separates

the creep and the viscous flow regimes of the domain wall motion is roughly estimated to be

around 5.5 MV/m. By fitting vDW in the viscous regime to the phenomenological relationship

vDW = µE(Edrive − Ep) + v0 [see Eq. (5.14)], we obtain the electric-field based mobility µE . At

64.0 K, µE is estimated to be 4.56 m2/(GV·s) [see Fig. 5.10(a)].

Obtained domain wall velocity in the antiferromagnet MnTiO3 is relatively small compared

with that in other ferroic materials. For example, vDW of 8.3 mm/s in Epulse = 7 MV/m at 64.0

K in MnTiO3 is five orders smaller than that of ferroelectric BaTiO3 in the same electric field

[98]. From Eq. (5.14), once we neglect the contribution from the creep motion, the difference in

vDW in the viscous regime should result from the difference in the mobility µ and the driving

force fDW for the domain wall. To compare the domain wall mobility of the different kinds of

ferroics, we introduce the energy based mobility µ∆ which represents the rate of the increase in

vDW in response to the increase in the energy gap between two states separated by the domain

wall. µ∆ in MnTiO3 at 64.0 K is computed as µ∆ = µE/(γ∥µ0Hc) = 4.7×10−2 m4/J·s, which is

comparable with µ∆ of 10−3 m4/J·s in BaTiO3. Hence, the relatively slow domain-wall dynamics

in antiferromagnetic MnTiO3 compared with that in ferroelectric BaTiO3 is largely due to the

tiny driving force even in the same electric field. Toward the faster domain wall motion, stronger

Ec and Hc [95] as well as a reduction of the pinning energy at the verge of the spin-flip transition

where the effective magnetic anisotropy becomes small [99] might be useful. In fact, vDW of 20

m/s is achieved in the film of linear ME antiferromagnet Cr2O3, where the µ∆ is estimated to be

around 5 × 10 −2 m4/J·s, in the electric and magnetic fields of 133 MV/m and 4 T, respectively

[95].

The role of the strength of the magnetic field was investigated by the similar imaging exper-

iments under several values of Hc. Figure 5.10(b) shows the vDW-EcHc relationship at 64.0 K.
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(b)

64 K, μ0Hc = 0.1 T

(a)
64 K, Edrive = 7.1 MV/m

64 K, μ0Hc = 0.1 T

time

reference

main frame

time

7.1 MV/m

Figure 5.10: (a) Edrive dependence of vDW at 64.0 K in µ0Hc = 0.1 T. Dotted line shows the fitting curve

vDW = µE(Edrivee − Ep) + v0. (b) EcHc dependence of vDW at 64.0 K obtained by two different ways.

See the main text for the detail. The timing scheme for the oscillating domain wall imaging in various

magnetic fields is depicted in the inset.

Blue dots were obtained by the same type of experiment as that performed to obtain Fig. 5.10(a).

Red dots were obtained by the oscillating domain wall imaging experiment where Edrive is fixed

and the magnetic field µ0Hc was varied [see the inset of Fig. 5.10(b)]. From the similarity be-

tween vDW measured in two different ways, we conclude that the vDW is surely the function

of the product EcHc. The effect of the magnetic-filed induced modification of the underlying

magnetic texture on the domain-wall dynamics is negligible for µ0Hc of smaller than 0.1 T.

To elucidate the origin of the temperature-induced change in the switching speed, we inves-

tigate the temperature dependence of the dynamic properties of the domain wall. Figure 5.11(a)

shows the temperature dependence of the electric-field based mobility µE . Divergent enhance-

ment in µE , which is advantageous for the faster switching process, with approaching TN is

observed. Assuming the Gilbert constant α0 in Eq. (5.12) to be independent of temperature

and that γzz is proportional to J [13], the enhancement of µE might be ascribed to the increase

of the domain-wall thickness λDW near the TN. We also examined the temperature dependence

of the pinning field Ep. Since it is hard to clearly separate the contribution from the creep

motion v0, we show the temperature dependence of Ep−(v0/µE), which we simply regard as the

pinning field in the following, in Fig. 5.11(b). The faster domain inversion at higher temperature

in a fixed electric field in Figs. 5.8(a) and (b) is also attributable to the decrease in pinning field.

The value and the temperature dependence of the pinning electric field is similar to that of the

coercive electric field to switch domains, which is determined from the I-Ec curve [see the inset

of Fig. 5.11(b)]. The vanishing behavior in Ecoercive near the critical temperature is similar to

that in other linear ME materials [100, 101]. The resemblance of Ep with Ecoercive indicates that

the domain reversal occurs when the electric field reaches the threshold value where the domain

wall is depinned and set to motion. The effect of the domain nucleation seems absent even in
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(a)

μ0Hc = 0.1 T

(b)

Ecoercive

64 K

Ep－(v0/μE)

Figure 5.11: Temperature dependence of (a) µE and (b) Ep. Measurements were performed for the

different multidomain state from Fig. 5.10. In (b), temperature dependence of the coercive electric field

Ecoercive to switch the antiferromagnetic domain is also shown. The inset of (b) shows the change in

transmitted light intensity for a cycle of electric field, where the definition of Ecoercive is graphically

shown by gray dotted lines.
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the determination of the coercive field.

5.3 Summary

In this chapter, we have performed an MCHD-based imaging study of the antiferromagnetic

domain dynamics in a collinear antiferromagnet MnTiO3. Exploiting the memory effect in the

domain reversal, which is clarified in the imaging of the quasistatic static switching process,

we captured millisecond dynamics in the antiferromagnetic domain switching in driving electric

and magnetic fields. Switching dynamics is dominated by the domain-wall displacement within

the current experiment. By the detailed investigation of the domain-wall dynamics, we revealed

dynamical properties of the electric and magnetic fields driven motion of the antiferromagnetic

domain wall.





Chapter 6

Conclusion

In this thesis, we have studied the antiferromagnet MnTiO3, where the toroidal moment

is activated by antiferromagnetic ordering with zero magnetization. Dynamic aspects of ME

effects have been investigated by means of spectroscopic and imaging experiments. The major

findings are summarized as follows.

Observation of MCHD

We observed MCHD spontaneously arising from antiferromagnetic ordering. The toroidal mo-

ment of purely antiferromagnetic origin, which gives rise to antisymmetric ME coupling in

optical frequency, is shown to work as a rectifier for an unpolarized light beam. The dichroism

was confirmed by the investigation of the absorption spectra with manipulating the direction of

the toroidal moment. Exploiting the controllability of the toroidal moment, we achieved binary

switching of color by sweeping electric and magnetic fields.

Magnetochiral imaging of domain patterns

We demonstrated MCHD-based imaging of the antiferromagnetic domain pattern. Simultaneous

breaking of P and T symmetries enabled us to visualize antiphase domain patterns with the

linear optical effect even in the presence of PT symmetry. Two antiferromagnetic states with the

toroidal moment in opposite directions were distinguished by the difference in transmitted light

intensity. The present imaging technique has several advantageous features such as polarization

independency and exposure time less than a few seconds.

Imaging study of domain reversal dynamics

We captured millisecond dynamics in the antiferromagnetic domain reversal process under the

abruptly switched electric fields. The temporal evolution of domain pattern is not accessible

without imaging experiments. Both quasistatic and dynamic reversal process was found to be

solely described by the domain-wall displacement in various temperature and driving fields. By

the detailed investigation of the dynamic properties of domain walls, we revealed that change
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in domain-wall mobility explains the observed thermal and electric-field effects on the switching

speed.

The results in this thesis show that collinear antiferromagnetic ordering in an ME antiferro-

magnet induces the nonreciprocal optical effect in visible range and unveil static and dynamic

properties of antiferromagnetic domain patterns in driving electric and magnetic fields. Ob-

servation of MCHD in the absence of magnetization should stimulate further exploration of

various kinds of magnetochiral effects including nonreciprocal transport of electron, phonon,

and magnon in antiferromagnetic materials. The structural simplicity of the target material

MnTiO3 allows us to apply the present MCHD-based imaging technique to investigate patterns

and dynamics of antiferromagnetic domain walls, which is indispensable for the manipulation of

the functional antiferromagnets.
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Appendix A

Processing for obtaining difference images

Magnetic domain patterns were analyzed based on the difference in transmitted light in-

tensity as a function of the two-dimensional pixel position r between the images obtained at

a given condition Imain and that at a reference condition Iref [see Figs. A.1(a) and (b)]. The

2L+ 1× 2L+ 1-pixel median filter was applied to both images asImain(r)
2L+1pixelmedian filter−−−−−−−−−−−−−−→ ILmain(r)

Iref(r)
2L+1pixelmedian filter−−−−−−−−−−−−−−→ ILref(r)

for the noise reduction. We employed L = 10 for original images with S = 1024×1024 pixels.

We adopted two different display methods for isothermal field-induced changes and for thermal

changes.

Difference from isothermally recorded reference images

Reference images analyzed in Ch. 5 were recorded at the same temperature as main images. In

this case, the difference ILdiff(r) between two images was computed as

ILdiff(r) = ILmain(r)− ILref(r − ρ).

ρ was computed from the difference in positions of the edge of the circular field of view between

two images. ρ is almost negligible for the isothermally recorded reference images. To remove

contributions from inhomogeneous distribution of incident light and thickness of the sample, we

obtained ĪLdiff(r) as

ĪLdiff(r) =
ILdiff(r)Ω(r)

ILref(r − ρ)
.

The denominator reflects the spatial inhomogeneity in the transmitted light intensity originating

from incident light distribution and the sample thickness. Region function Ω(r) takes unity if

r is in the field of view and zero if r is out of the field of view. See Fig. A.1(c) for the relation

75



76 Appendix A. Processing for obtaining difference images

among ILmain, I
L
ref , and ĪLdiff . From ĪLdiff(r), we obtained 8-bit TIFF images IL(r) as follows;

IL(r) =


0 if ĪLdiff(r) < α

255Ω(r)
(
ĪLdiff(r)−α

β−α

)
if α ≤ ĪLdiff(r) ≤ β

255Ω(r) if ĪLdiff(r) > β

. (A.1)

Unless otherwise noticed, we employed (α, β) = (−0.0125, 0.00125) to obtain difference images

where the bright monodomain state is used as references, while we did (α, β) = (−0.00125, 0.0125)

where the dark monodomain state is used as reference.

Difference from reference images recorded in the paramagnetic phase

The reference images in Ch. 4 in the main text were recorded at a temperature just above TN.

To cope with the temperature dependence of the transmitted light intensity of nonmagnetic

origin, we computed the difference ILdiff(r) between two normalized images as

ILdiff(r) =
ILmain(r)

1
S

∫
drILmain(r)

−
ILref(r − ρ)
1
S

∫
drILref(r)

.

The nonmagnetic contribution to the change in intensity of transmitted light can originate from

the thermal displacement of the optical stage against the light source, temperature dependence

of the optical absorption irrelevant to the magnetism, and so on. Correspondingly, ĪLdiff(r) here

was computed as

ĪLdiff(r) =
ILdiff(r)Ω(r)

ILref(r−ρ)
1
S

∫
drILref(r)

.

From this ĪLdiff(r), we obtained 8-bit TIFF images IL(r) according to Eq. (A.1). This display

method is also used to obtain difference image in Fig. 5.9(b) where the temporal drift of the

transmitted light intensity might occur. We employed (α, β) = (−0.0125, 0.0125) to obtain

difference images.
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(a) main image (b) reference image

I
L

main

I
L

ref

(c)

Figure A.1: Image processing to obtain the middle panel of Fig. 5.5(c). (a),(b) TIFF image obtained

from (a) ILmain and (b) ILref . Scale bars are omitted. (c) Profiles of ILmain, I
L
ref , and ĪLdiff along the path

represented by a green arrow on the difference image in the inset.





Appendix B

Possible microscopic descriptions of the toroidal moment

in MnTiO3

Here, we propose that the on-site d-p hybridization in Mn2+ ions gives rise to the toroidal

moment T along the ordered magnetic moment in MnTiO3. We show that the z component of

toroidal moment arises from the spatial distribution of the orbital contribution to the magnetic

dipole moments when Mn2+ ion with the d5 electronic configuration and easy-axis magnetic

ordering is placed in a chiral environment with the point group symmetry C3. In this chapter,

we use atomic units, where e, ℏ, and the Bohr radius a0 are equal to one.

Model

We consider a minimal model of single Mn2+ ion placed in a chiral environment with the point

group symmetry C3. The three-fold axis is oriented along the z direction. We consider the on-

site hybridization between 3d and 4p orbitals. Mn2+ ion is characterized by the 3d5 electronic

configuration.

Instead of dealing with multiplets composed of five electrons, we deal with five single-electron

states and add up contributions from each state to calculate the toroidal moment. A single-

electron state in the 3d orbital is uniquely determined by the set (lz, sz) of the z-component of

the orbital and spin angular momentums. Hund’s rule allows us to focus on the single-electron

states with sz = 1/2 because the ordered magnetic moments lie along the three-fold axis in the

antiferromagnetic phase of MnTiO3. In the same way, a single-electron state in the 4p orbital is

uniquely determined by the set (lz, sz = 1/2). By |d, lz⟩ (|p, lz⟩), we denote the single-electron

state in the 3d (4p) orbital with (lz, sz = 1/2). Hereafter the matrix representation of the
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operator O is given as

⟨d,−2|O|d,−2⟩ · · · ⟨d,−2|O|d, 2⟩ ⟨d,−2|O|p,−1⟩ · · · ⟨d,−2|O|p, 1⟩
...

. . .
...

...
. . .

...

⟨d, 2|O|d,−2⟩ · · · ⟨d, 2|O|d, 2⟩ ⟨d, 2|O|p,−1⟩ · · · ⟨d, 2|O|p, 1⟩
⟨p,−1|O|d,−2⟩ · · · ⟨p,−1|O|d, 2⟩ ⟨p,−1|O|p,−1⟩ · · · ⟨p,−1|O|p, 1⟩

...
. . .

...
...

. . .
...

⟨p, 1|O|d,−2⟩ · · · ⟨p, 1|O|d, 2⟩ ⟨p, 1|O|p,−1⟩ · · · ⟨p, 1|O|p, 1⟩


. (B.1)

The Hamiltonian of our model is given by

H = Hatom +HSO +HCEF. (B.2)

Hatom in Eq. (B.2) describes the atomic energy difference between 3d and 4p orbitals. In the

matrix form, Hatom is expressed as

Hatom = ∆dp



0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0

0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 1


, (B.3)

using ∆dp > 0.

HSO in Eq. (B.2) describes the atomic spin-orbit coupling. Generally, HSO is expressed as

HSO =
∑

i ξili ·si using the coupling constant ξi. Here, for simplicity, we set ξi to be λ regardless

whether the i-th electron is in the 3d orbital or in the 4p orbital. In the matrix form, HSO is

expressed as

HSO =
λ

2



−2 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 2 0 · · · 0

0 · · · 0 −1 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 1


. (B.4)

HCEF in Eq. (B.2) describes the crystalline electric field (CEF). For the atom placed at the

origin, the CEF Hamiltonian is expanded by the spherical harmonics Ykm(θ, ϕ) as,

HCEF =
∑
k,m

AkmrkC(k)
m (θ, ϕ), (B.5)

where

C(k)
m (θ, ϕ) =

√
4π

2k + 1
Ykm(θ, ϕ). (B.6)
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We decompose the CEF Hamiltonian into the sum of the even-parity one HCEF,even and the

odd-parity one HCEF,odd. Hereafter, we use spherical coordinates with the polar axis parallel

to the three-fold axis. With imposing the point group symmetry C3, HCEF,even and HCEF,odd

become

HCEF,even = HCEF,cubic +HCEF,trigonal, (B.7)

HCEF,odd = HCEF,polar +HCEF,chiral, (B.8)

where

HCEF,cubic = −14Dq

{
C

(4)
0 +

√
10

7

(
C

(4)
3 − C

(4)
−3

)}
, (B.9)

HCEF,trigonal = γD3d
C

(2)
0 , (B.10)

HCEF,polar = γpolar,1C
(1)
0 + γpolar,3C

(3)
0 + γpolar

{
C

(3)
3 − C

(3)
−3

}
, (B.11)

HCEF,chiral = iγ̃chiral

{
C

(3)
3 + C

(3)
−3

}
. (B.12)

HCEF,cubic in Eq. (B.9) describes the CEF Hamiltonian in the point group symmetry Oh.

10Dq represents the energy difference between so-called eg orbitals and t2g orbitals. In the

matrix form, HCEF,cubic is expressed as,

HCEF,cubic = Dq



−2
3 0 0 −10

√
2

3 0 0 0 0

0 8
3 0 0 10

√
2

3

0 0 −4 0 0
...

...
...

−10
√
2

3 0 0 8
3 0

0 10
√
2

3 0 0 −2
3 0 0 0

0 · · · 0 0 0 0

0 · · · 0 0 0 0

0 · · · 0 0 0 0


. (B.13)

HCEF,trigonal in Eq. (B.10) describes the other P-even contribution in HCEF. γD3d
is a real

coefficient. HCEF,even = HCEF,cubic + HCEF,trigonal describes the CEF Hamiltonian in the D3d

site symmetry. HCEF,trigonal originates from the elongation of the MnO6 octahedron along the

three-fold axis.

HCEF,polar in Eq. (B.11) and HCEF,chiral in Eq. (B.12) describe the P-odd contributions in

the CEF Hamiltonian HCEF which hybridize the 3d orbitals and the 4p orbitals. γpolar,1, γpolar,3,

γpolar, and γ̃chiral are real coefficients. HCEF,polar originates from the polar distortion of the

MnO6 octahedron and HCEF,even + HCEF,polar describes the CEF Hamiltonian in the C3v site

symmetry. HCEF,chiral originates from the chiral twist of the MnO6 octahedron along the three-

fold axis and HCEF,even +HCEF,chiral describes the CEF Hamiltonian in the D3 site symmetry.
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In the matrix form, HCEF,chiral is expressed as,

3γ̃chiral
7



0 · · · 0 0 0 −i

0 0 0
...

. . .
... 0 0 0

0 0 0

0 · · · 0 −i 0 0

0 0 0 0 i 0 0 0

0 0 0 0 0 0 0 0

i 0 0 0 0 0 0 0


. (B.14)

Formulation of the toroidal moment

From Eq. (1.8), the contribution from the spatial distribution of the orbital part of the magnetic

dipoles mL = −µBl̂/ℏ to the toroidal moment t is written as

tL =
1

2

∑
i

ri ×
(
−µB

ℏ
li

)
. (B.15)

Using the symmetrized expression [102], the z-component of tL is proportional to

τ̂L,z =
(x̂l̂y − ŷl̂x) + (x̂l̂y − ŷl̂x)

†

2
. (B.16)

We evaluate τ̂L,z in Eq. (B.16). Matrix representations of the position operators are calcu-

lated as

⟨d,m|x̂|p,m′⟩ =
∫ ∞

0
dr

∫ 2π

0
dϕ

∫ π

0
dθ (r cosϕ sin θ)r2 sin θR32(r)Y

m
2 (θ, ϕ)

{
R41(r)Y

m′
1 (θ, ϕ)

}∗
,

(B.17)

and

⟨d,m|ŷ|p,m′⟩ =
∫ ∞

0
dr

∫ 2π

0
dϕ

∫ π

0
dθ (r sinϕ sin θ)r2 sin θR32(r)Y

m
2 (θ, ϕ)

{
R41(r)Y

m′
1 (θ, ϕ)

}∗
,

(B.18)

using

Rnl(r) = 2l+1e−
r
n

√
(−l + n− 1)!

n4(l + n)!

( r
n

)l
L2l+1
−l+n−1

(
2r

n

)
, (B.19)

with the associated Laguerre polynomials Lk
n. For any set of (m,m′), ⟨d,m|x̂|d,m′⟩ and ⟨p,m|x̂|p,m′⟩

are zero and the same hold for ŷ. Since we are using basis sets which diagonalize l̂z, the matrix

elements for l̂x and l̂y are computed as

⟨d,m|l̂x|d,m′⟩ = 1

2
(δm,m′+1 + δm+1,m′)

√
2(2 + 1)−mm′, (B.20)

⟨d,m|l̂y|d,m′⟩ = 1

2i
(δm,m′+1 − δm+1,m′)

√
2(2 + 1)−mm′, (B.21)

⟨p,m|l̂x|p,m′⟩ = 1

2
(δm,m′+1 + δm+1,m′)

√
1(1 + 1)−mm′, (B.22)

⟨p,m|l̂y|p,m′⟩ = 1

2i
(δm,m′+1 − δm+1,m′)

√
1(1 + 1)−mm′. (B.23)
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For any set of (m,m′), ⟨d,m|l̂x|p,m′⟩ and ⟨d,m|l̂y|p,m′⟩ are zero. Using Eqs. (B.17)-(B.23), the

matrix representation of τ̂L,z is computed as

2
√
2µ√
5



0 · · · 0 0 0 0

−
√
3i 0 0

...
. . .

... 0 −2i 0

0 0 −
√
3i

0 · · · 0 0 0 0

0
√
3i 0 0 0 0 0 0

0 0 2i 0 0 0 0 0

0 0 0
√
3i 0 0 0 0


, (B.24)

using µ = 7962624
5764801 .

Results and discussions

We calculate the expectation value of τ̂L,z as

⟨τ̂L,z⟩ =
8∑

j=1

⟨j|τ̂L,z|j⟩ f(εj). (B.25)

|j⟩ and εj are the eigenstate and eigenvalue of H. f(ε) is the Fermi-Dirac distribution function.

The chemical potential is set so that electron filling
∑8

j=1 f(εj) becomes five.

Figure B.1 shows the γ̃chiral dependence of ⟨τ̂L,z⟩. Results are obtained for the model param-

eters, ∆dp = 20, λ = 1, Dq = 1, γD3d
= γpolar,1 = γpolar,3 = γpolar = 0, and kBT = 0.1. ⟨τ̂L,z⟩

is induced in proportion to the parameter γ̃chiral, which represents the strength of the chiral

contribution in the CEF Hamiltonian. The result in Fig. B.1 suggests that the toroidal moment

is induced parallel to the ordered magnetic moment in the presence of the chiral CEF.
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Figure B.1: HCEF,chiral dependence of ⟨τ̂L,z⟩ for the d5 electric configuration. γD3d
= γ̃polar,α = γ̃polar,β =

γpolar = 0 and kBT = 0.1.



Appendix C

Axial degree of freedom in MnTiO3

The presence of the axial moment which characterizes ferroaxial ordering is not forbidden by

the point group symmetry 3̄ in MnTiO3. The ferroaxial moment A is a T -even axial vector.

Microscopically, A is computed as

A =
1

2

∑
i

ri × p(ri), (C.1)

using electric dipoles p at positions ri. In the ilmenite structure with the point group symmetry

3̄, the c component Ac of A is not zero while the in-plane components Aa and Ab∗ are absent

due to the three-fold symmetry. In the absence of external fields, Ac > 0 and Ac < 0 states are

energetically degenerated.

The sign of the coupling constant gt/g∥ [see Eq. 3.7] which connects the antisymmetric term

γt in the ME tensor with diagonal term γ∥ is determined by the sign of Ac. Let us assume that

the ME tensor γ for the Lc > 0 and Ac > 0 state is given as

γ(Lc > 0,Ac > 0) =


a1 a2 0

−a2 a1 0

0 0 a3

 , (C.2)

using constants a1, a2, and a3. Since the ME tensor is odd under T operation which inverts the

direction of L, γ for the Lc < 0 and Ac > 0 state becomes

γ(Lc < 0,Ac > 0) = T̂ †γ(Lc > 0,Ac > 0)T̂ =


−a1 −a2 0

a2 −a1 0

0 0 −a3

 . (C.3)

Judging from Eq. (C.1), the ferroaxial moment A is odd under the two-fold rotation operation

along the axis perpendicular to A. By applying the two-fold rotation operation around the a

axis Ĉ2,a to γ(Lc > 0,Ac > 0) in Eq. (C.2), we obtain

γ(Lc > 0,Ac < 0) = Ĉ†
2,aγ(Lc > 0,Ac > 0)Ĉ2,a =


a1 −a2 0

a2 a1 0

0 0 a3

 . (C.4)
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Here we assume that L ∥ c is invariant under the two-fold rotation. Using Eq. (C.4), γ(Lc <

0,Ac < 0) is computed as

γ(Lc < 0,Ac < 0) = T̂ †γ(Lc > 0,Ac < 0)T̂ =


−a1 a2 0

−a2 −a1 0

0 0 −a3

 . (C.5)

From Eqs. (C.2)-(C.5), we can see that values of gt/g∥ = γ∥/γt is a3/a2 for the Ac > 0 state and

−a3/a2 for the Ac < 0 state.

Poling of ferrotoroidic domains by electric and magnetic fields along the c axis in Ch. 5

evidences that the MnTiO3 samples are in the ferroaxial monodomain state. Since MCHD

is caused by the toroidal moment acting like a rectifier for light beam, the present imaging

technique based on MCHD in principle visualizes the distribution of T c. Judging from the

monocolored difference image taken in the external fields larger that the coercive fields [e.g.

see the right panel of Fig. 5.5(b)], the sample is in ferrotoroidic monodomain state. In the

ferrotoroidic monodomain state, the sign of γt is homogeneous over the sample [see Eq. 3.8].

Since the γ∥ > 0 (γ∥ < 0) state is energetically favored in the external fields with EcHc > 0

(EcHc < 0), the sign of γ∥ should be also homogenous over the sample in external electric and

magnetic fields along the c axis larger than coercive fields. Considering the relation between

the signs of Ac and γ∥/γt, we can conclude that the direction of the ferroaxial moment A ∥ c is

aligned in the same direction in the observed ferrotoroidic state realized in electric and magnetic

fields along the c axis.

When a MnTiO3 sample is in a ferroaxial multidomain state, ferrotoroidic domains are not

poled by the application of electric and magnetic fields along the c axis. In such case, MCHD-

based imaging in electric and magnetic fields along the c axis larger than coercive fields visualizes

the distribution of Ac. If we assume a3 in Eqs. (C.2)-(C.5) to be positive, the Lc > 0 and Ac > 0

state and the Lc > 0 and Ac < 0 state are favored by external fields with EcHc > 0. Since the

sign of γt is opposite, these two states with Ac in opposite signs should be distinguished with

the MCHD-based imaging technique. The absence of ferroaxial domain wall in MnTiO3 would

be related with the absence of the ferroaxial phase transition 3̄m → 3̄ [103] below the melting

point in MnTiO3, in sharp contrast with the case of NiTiO3 [104] with the same crystallographic

structure.
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and M. Braden, Phys. Rev. Lett. 127, 097601 (2021).

[90] K. Taniguchi, N. Abe, T. Takenobu, Y. Iwasa, and T. Arima, Phys. Rev. Lett. 97, 097203

(2006).

[91] H. Sagayama, K. Taniguchi, N. Abe, T.-h. Arima, M. Soda, M. Matsuura, and K. Hirota,

Phys. Rev. B 77, 220407 (2008).

[92] K. D. Belashchenko, O. Tchernyshyov, A. A. Kovalev, and O. A. Tretiakov, Appl. Phys.

Lett. 108, 132403 (2016).

[93] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
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