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Chapter 1

Introduction

1.1 Nuclear fusion energy

1.1.1 Nuclear fusion

Nuclear fusion is one of advanced energy sources and has been being continuously
studied towards practical use of it as an electrical source. It is the process in
which multiple light nuclei are combined to be a heavy nucleus. The deuterium-
tritium (DT) reaction, which is shown in the following equation, is thought to
be the most effective fusion reaction for the use of fusion energy on the earth.

D + T −→ 4He(3.52MeV) + n(14.06MeV). (1.1)

The product of the DT reaction is a helium4 (4He) nucleus and a neutron (n).
It is known that the fusion reactivity ⟨σv⟩ is a function of temperature. The
reactivity of DT reaction has a peak at nearly 50 keV and takes higher value
around 10 keV than other candidate fusion reaction such as deuterium-deuterium
reaction and deuterium-helium3 reactions. Here, σ and v are reaction cross
section and relative velocity of ions, respectively. Therefore, extremely high-
temperature plasma in the order of 10 keV is necessary to utilize fusion energy.

Here, energy confinement is an important concept for nuclear fusion in mag-
netic confinement plasma. Assume the plasma consisting of the 50-50 mixture
of deuterium and tritium. Thermal energy of the plasma per unit volume Wp

is described as following equation, where n, Ti and Te are plasma density, ion
temperature, and electron temperature. Note that the temperatures are in units
of energy, eV.

Wp =
3

2
n(Ti + Te). (1.2)
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Plasma energy confinement time τE is defined as

τE ≡ Wp

Ploss
≈ 3nT

Ploss
, (1.3)

where Ploss is energy loss per unit volume and unit time, and Ti = Te = T is
assumed.

In one DT reaction, an alpha particle that has Qα = 3.52MeV and an neutron
that has Qn = 14.06MeV are created. Since the created alpha particles are
charged, they remain in the plasma and heat electrons and ions by Coulomb
collision. The heating power by alpha particle per unit volume is denoted as
Pα = nDnT⟨σv⟩Qα, where nD and nT are density of deuterium and tritium ions.
By the assumption that the density of deuterium and tritium is equal to each
other, i.e., nD = nT = n/2, Pα is denoted as follows:

Pα =
n2

4
⟨σv⟩Qα. (1.4)

To sustain fusion reaction without any external input power, Pα ≥ Ploss is re-
quired. Therefore, the following conditional expression is derived:

nτE ≥ 12T

⟨σv⟩Qα
. (1.5)

This expression is called Lawson criterion, which is a criterion to sustain fusion
reaction without any external heating [6].

As an extension of this criterion, “fusion triple product” nTτE is often used
because it is proportional to fusion energy gain factor. Fusion energy gain factor
is defined as Q = Pfusion/Pin, where Pfusion and Pin are fusion power and input
power, respectively. Pfusion is the sum of the powers which alpha particles and
neutrons have and is five times of Pα. Therefore, the definition of Q is deformed
as follows:

Pin =
Pfusion

Q
=

5Pα

Q
. (1.6)

Assuming a steady-state fusion plasma, the power balance is described as fol-
lowing equation.

Pin + Pα =
Wp

τE
. (1.7)

Considering (1.2), (1.4), and (1.6), the power balance equation is deformed as
follows:

1

Q
=

1

5

Wp/τE
Pα

− 1

5

∝ Wp/τE
Pα

∝ nT/τE
n2⟨σv⟩

. (1.8)
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Here, ⟨σv⟩ can be approximated as proportional to T 2 around 10 eV [7]. There-
fore, the proportional relationship between the fusion triple product and fusion
gain factor is obtained from (1.8).

Q ∝ n2T 2

nT/τE
= nTτE. (1.9)

1.1.2 Magnetic confinement fusion

Since plasma is gas consisting of charged particles, that are ions and electrons, the
plasma can be confined by magnetic field. One major concept of magnetic con-
finement is to confine plasma with torus-shape twisted magnetic field. There are
several types of magnetic confinement fusion devices. The most progressed ones
are tokamak and stellarator-heliotron. Both tokamak and stellarator-heliotron
devices confine plasma in a torus-shape magnetic field.

Plasma is confined by twisted magnetic field which is superposition of toroidal
magnetic field Bt and poloidal magnetic field Bp. In tokamak devices, the
toroidal magnetic field Bt along with the core curve of the torus (toroidal di-
rection) and formed by toroidal coils surrounding the axis of the torus. The
poloidal magnetic field Bp is induced by the plasma current which flows along
the toroidal direction. Generally, it is assumed that the magnetic field forms
nested surfaces, which are called “flux surfaces.” The axis of the cross sections
of the nested surface is called “magnetic axis.” The distance from the axis of
the torus to the magnetic axis is called the major radius R, while the radius
of the tube is called minor radius a. The ratio of R and a is called aspect ra-
tio A ≡ R/a. On each flux surface, the number of poloidal transits per single
toroidal transit of a magnetic field line is called the rotational transform ι/2π,
and defined as follows:

ι

2π
=

R

r

Bp

Bt
(1.10)

Here, r is the minor radius of the flux surface. In tokamak studies, the safety
factor q ≡ 2π/ι is useful. The flux surface where the safety factor is a rational
number q = m/n is called “rational surface,” and it is known that the magne-
tohydrodynamic (MHD) instability with toroidal and poloidal mode numbers of
(m,n) can grows through resonance.

Tokamaks have an advantage in heating plasma by this large plasma current
of the order of MA, while tokamak plasma can be unstable by the existence of the
large plasma current. The tokamak experimental device, JT-60SA was built in
Naka city, Japan in 2020. Also, the largest tokamak device, ITER, is now being
built in Saint Paul-lez-Durance, France under the international collaboration to
prove the scientific and technological feasibility of fusion energy.
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On the other hand, magnetic field in stellarator-heliotron devices is formed
only by external coil. Large Helical Device (LHD) is the largest stellarator-
heliotron experimental device with superconducting coils and is located in Toki
city, Japan [8]. Stellarator-heliotron devices have the advantage of stable confine-
ment magnetic field compared to tokamak devices, but another difficulty exists
in constructing complex-shaped helical coils.

Research on magnetic confinement fusion plasmas continues with the aim of
achieving high-performance plasmas, such as high density n or high pressure nT ,
to obtain high fusion triple product. However, there are operational limits and
abrupt plasma terminations occur in high-performance plasma.

1.2 Abrupt plasma termination events and operational
limits

1.2.1 Disruption

There are several abrupt termination events in fusion plasma, which prevent
confining plasma stably. The most distinguished termination event in tokamaks
is disruption, which is the sudden collapse of plasma current [9]. The disruption
event consists of two phases, i.e., thermal quench and current quench. In the first
phase, thermal quench, the energy stored in the core plasma is released quickly,
typically within 1ms, and the plasma temperature decreases. Here, plasma elec-
tric resistivity is inversely proportional to the 3/2 power to plasma temperature.
Therefore the decrease of plasma temperature makes plasma resistivity increase,
which accelerates the decay of plasma current, and eventually, the plasma cur-
rent shutdown in time scale of a few tens of milliseconds. This is the current
quench, the second phase of disruption.

Disruption causes severe damage to the tokamak device. The thermal quench
caused by a disruption dumps an excessive heat load on the first wall and the
in-vessel components. The rapid decrease in plasma current also generates a
large magnetic force on the vacuum vessel. Also, runaway electrons, which are
generated in current quench phase, can cause melting when they hit on the
in-vessel components [10,11].

Disruption is classified into several types according to its causes. The typical
causes are follows:

• Vertical displacement events (VDE) [12]
Tokamak plasma with vertically elongated cross section can be unstable
against the vertical displacement, which is called VDE. When VDE occurs,
plasma shrinks as it moves vertically, the safety factor q decreases, and
finally, plasma disrupts.
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• Disruption caused by radiative loss [13]
In high-density plasma or plasma with contamination of impurities, ra-
diative loss from plasma increases, and the balance between radiative loss
and heating power is lost. This unbalance causes the shrinkage of plasma
and leads to magneto-hydrodynamic (MHD) instability. The best-known
density limit in tokamak plasma is the Greenwald limit nG, defined with
plasma current Ip as follows [14]:

nG[10
20m−3] =

Ip[MA]

πa[m]2
, (1.11)

• Low-q disruption
When surface q decreases, the rational surface where instability can easily
grows approaches to the surface and the plasma becomes easy to disrupt
by the kink instability.

• Disruptions driven by plasma pressure
When plasma pressure becomes high, MHD instabilities, such as a balloon-
ing instability and a resistivity wall mode (RWM), occurs to lead plasma
to disruption.

Here, the ratio of the plasma pressure to the magnetic pressure is often used
as indicator of plasma performance, symbolized by β:

β =
⟨p⟩

B2/2µ0
, (1.12)

where ⟨p⟩ is the mean plasma pressure, B the mean total magnetic field strength,
and µ0 is the vacuum permeability. The β against toroidal field βt = ⟨p⟩/

(
B2

t /2µ0

)
and against poloidal field βp = ⟨p⟩/

(
B2

p/2µ0

)
are called toroidal beta and

poloidal beta, respectively. Usually, the normalized beta βN is used to discuss
the limit of plasma performance in tokamaks.

βN =
βt[%]

Ip[A]/a[m]Bt[T]
. (1.13)

The denominator of the right-hand side of (1.13) is called Troyon limit [15].

1.2.2 Radiative collapse and density limit in stellarator-heliotron
plasma

No disruptions occur in stellarator-heliotron plasmas since the large plasma
current is not required to sustain plasmas. Instead, radiative collapse is the
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main cause of the termination and limits the operational density in stellarator-
heliotron plasmas. The Sudo density is the best-known empirical density limit in
stellarator-heliotron plasma, which has been formulated from the observations in
medium-sized stellarator-heliotron devices, i.e., Heliotron E, Wendelstein VII-A,
L2, and Heliotron DR [16].

nSudo
e [1020m−3] = 0.25

√
PB

a2R
. (1.14)

Here, P is the absorbed heating power (MW), B is the magnetic field strength
on the magnetic axis (T), a is the average minor radius (m), and R is the major
radius (m). The Sudo scaling suggests that the balance between heating power
and radiated power loss is a key together with robust confinement capability
such as plasma volume and magnetic field. It is thought that the radiative
collapse in LHD occurs because of drop of temperature in plasma edge region,
and light impurities such as oxygen and carbon play an essential role in this
phenomena [17]. Therefore, the limit of electron density in the plasma edge
region, considering that the density where the electron temperature is around
100 eV is important, has been proposed [18].

The density limit in stellarator-heliotron plasmas are also studied theoret-
ically [19, 20]. One theory formulates the relation between the critical density
of detachment and the minor radius where impurity radiation loss fully reaches
the heating power [21]. Radiation loss power by impurities is calculated by the
following equation.

Prad =

∫
nenimpLZ(Te)dV (1.15)

Here, ne, nimp, and V are electron density, density of target impurity ion, and
plasma volume, respectively. LZ is a coefficient specific to impurity species and is
a function of electron temperature Te, referred to the cooling rate [5]. According
to this theory, the critical density has been evaluated in W7-AS, which is a
stellarator device operated in Germany from 1988 to 2002 [22], as follows [23],

nc ∝
(
P

V

)0.40

B0.32ι0.162/3 , (1.16)

where ι2/3 is the rotational transform at r = 2a/3. It seems to be supported
that the balance between heating power and radiant power loss is an important
mechanism for the occurrence of collapse by the fact that this equation is close
to Sudo scaling (1.14).

In an early research on the density limit in LHD, electron density limit has
been indicated to be greater than Sudo limit by 40% [24]. This result suggests
that the contributions of operational parameters other than taken into account in
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the Sudo scaling and the theoretical studies, such as wall condition and impurity
concentration, may be hidden behind these expressions.

1.3 Data-driven research on plasma termination events

Prediction and avoidance of these termination events are important as well as
mitigation of the damaging effect of these to realize fusion reactor. However,
the physical mechanism of these termination events have not been clearly identi-
fied. Various phenomena in plasma, such as transports, MHD, and atomic pro-
cesses, are complicatedly involved to the occurrence of these termination events.
Therefore, it is too difficult to describe these termination events by differential
equations completely. It will also be a problem that the plasma experiment data
are too large to treat in clasical statistical method because of improvement of
diagnositcs and plasma control. In ITER, the amount of experiment data is
expected to be more than 1TB per discharge [25]. Therefore, the data-driven
approach using machine learning techniques and a huge amount of experiment
data is attracting attention, especially in the study of disruption.

Feedforward neural network (FNN) models were used to predict disruptions
in some tokamaks, as early studies of this topic [26–30]. In DIII-D, which is
operating in San Diego, the US, an FNN model was trained to predict βN value at
the moment of the occurrence of disruption [26]. The stability against disruption
was predicted by multiple FNNs in JT-60U, which stopped the operation in 2008
in Naka, Japan [30]. For mitigation of the damage caused by disruption, an
FNN predictor model was tested in ASDEX-Upgrade, which is a medium-sized
tokamak in Garching, Germany [27].

In Joint European Torus (JET), which is a tokamak device in Culham, the
UK, a real-time disruption predictor named Advanced Predictor of Disruptions
(APODIS) was developed and deployed in the JET real-time network [31, 32].
APODIS consists of multiple support vector machines (SVMs). In the JET,
some advanced studies using APODIS were conducted, e.g., the parameters to
train the SVM model were selected by a genetic algorithm [33], and the pre-
diction performance was compared changing the condition of the inner wall of
JET [34]. In recent years, disruption predictor models based on an SVM model
and a classification tree model were developed in JET with a concept called
adaptive learning, in which the machine learning model is retrained after every
false prediction [35,36].

In DIII-D, disruption predictor model was developed based on random forest
(RF) algorithm [37], which is one of ensemble learning algorithms [38]. The
model was named Disruption Prediction using Random Forests (DPRF) and
applied to the real-time prediction of disruptions [39]. One advantage of using
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the random forest to predict disruption is that the result is interpretable by
analyzing the contributions of each parameter to the prediction. It is important
to be interpretable the prediction result for developing a physically reliable, not
black-boxed, predictor in a future fusion reactor.

Here, the importance of cross-machine analysis of the predictor is well known
because the future predictor model is required to predict disruptions in unknown
devices like ITER, DEMO, or future fusion reactor. The adaptive predictors
developed in JET were applied to experiments in ASDEX-Upgrade [40]. The
performance of random forest predictor was evaluated using experiment data in
tokamaks such as Alcator C-Mod, EAST, and JET as well as DIII-D [41–43].
In EAST, which is a tokamak device in Hefei, China, the DPRF was used to
predict disruption in real-time [44].

As another approach, “disruptivity” was proposed to define the likelihood
of a disruption in JET [45] and NSTX [46]. The disruptivity here is defined
as the number of disruptions that occur in a specific parameter space divided
by the duration time that the plasma is in that state. The relationships be-
tween disruptivity and operational boundaries has been discussed statistically.
Recently, the onset of tearing instability, which is one of the major causes of
disruption, has been characterized using hazard function based on the survival
analysis method [47] in DIII-D [48].

It is recognized that appropriate selection of the input data would be quite
important to improve the prediction performance. Once the parameters that
optimize the prediction is selected, these parameters are expected to be relevant
to the physical mechanism of termination events. In other words, parameter
selection can give some insight into physical discussions and prevent the predictor
from being totally black-boxed.

1.4 Outline of this research

The main purpose of the data-driven approach is to predict abrupt termination
events with the data-driven approach by machine-learning techniques and exper-
iment data accumulated in fusion experimental devices. On the other hand, the
physical background of the termination events have been studied continuously.
The present study is approaching both improving the prediction performance
and facilitating the physical discussion of the prediction results through param-
eter selection using sparse modeling.

In this thesis, prediction and feature extraction of both radiative collapse
in LHD and high-beta disruption in JT-60U are discussed to show that the
data-driven approach can be applied to a variety of abrupt terminations phe-
nomena. The prediction of these abrupt terminations has been treated as to
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classify plasma state into two states: stable and approaching the termination.
The exhaustive search, which is one of sparse modeling techniques, has been
employed to extract feature parameters of the termination events. To pave the
way for applying the prediction to plasma control, the classification model is
extended to continuous probability, called “likelihood” of the occurrence of the
termination event.

The machine-learning techniques used in the present research are explained
in chapter 2. A support vector machine has been used as a binary classifier. In
this chapter, sparse modeling, which is a framework of data-driven science, is
also described. It exploits the inherent sparseness in all high-dimensional data
to extract the information from the data [49].

In chapter 3, prediction and feature extraction of plasma termination events
in stellarator-heliotron plasma are described. The experiment data of with ra-
diative collapse in LHD has been used here. The plasma experiment in LHD
to avoid radiative collapse using the prediction model is also explained in this
section. To understand the physical background of radiative collapse, simulation
results by the EMC3-EIRENE code are also discussed.

Prediction and feature extraction of disruption in tokamak plasmas are de-
scribed in chapter 4. Disruptions in high-beta plasma in JT-60U has been mainly
investigated in this chapter. The result of the prediction of high-beta disruption
in JT-60U is compared with the result in DIII-D in this section.

Finally, chapter 5 concludes this thesis.
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Chapter 2

Machine learning techniques

2.1 Classification by machine learning

2.1.1 Selection of machine-learning algorithm

In previous researches mentioned in section 1.3, various machine-learning algo-
rithms were employed to develop predictor models of disruptions, e.g., artificial
neural network, support vector machine (SVM), and random forest. In the
present research, a linear SVM has been employed as a binary classifier to clas-
sify plasma state into stable or not. It is mainly because classification criteria
can be expressed as a simple equation by a linear SVM. The simple expression
makes it easy to discuss the physical background of the phenomena based on the
expressions, as well as to apply the prediction to a real-time plasma control by
reducing calculation cost.

2.1.2 Linear support vector machine

SVM is one of the supervised machine learning techniques [50]. The term “su-
pervised” means that the machine learning model works with the dataset labeled
in advance. The most basic use of the SVM is a binary classifier that divides
data into two classes. Consider a dataset containing N sets of a d-dimensional
vector data xi ∈ Rd and a label yi ∈ {−1, 1} describing the class to which the
data belong. The classifier g(x) is defined by the following decision function,
where f : Rd → R:

g(x) =

{
1, if f(x) > 0,

−1, if f(x) < 0.
(2.1)

The decision boundary of the classifier g(x), defined as f(x) = 0, is a d-
dimensional hyperplane.
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In the present research, a linear SVM, whose decision function is a linear
function as following equation, has been used as a binary classifier.

f(x) = w · x+ b, (2.2)

where the coefficients w ∈ Rd and b ∈ R are called “weight” and “bias”, respec-
tively. The process to optimize the weight and the bias is called “training” the
SVM model.

Suppose that there is a pair of w and b that can correctly classify all data, in
other words, the dataset is “separable”. Under this assumption, the signs of the
value of decision function f(xi) and the label yi must be equal for each pair of
the data xi and the label yi. Therefore, there exists f(x) such that yif(xi) > 0
for all i = 1, · · · , N . Here, in general, multiple decision boundaries that can
separate the dataset correctly can exist. When training the SVM, the parameters
of the boundary hyperplane are selected to maximize the distance between the
boundary and the data points closest to the boundary. The closest data points
are called the “support vectors”, and the distances between the hyperplane and
the support vector is called the “margin”. This concept to select the boundary
is called “margin maximization.” Figure 2.1 shows a schematic diagram of an
SVM with a separable dataset.

A distance between the decision boundary f(x) = 0 and a data xi is denoted
as follows:

|w · xi + b|
||w||

. (2.3)

To classify all data correctly, yif(xi) ≥ M holds with an M > 0. Since M
is no more than all yi(w · xi + b), the maximum M is equal to the minimum
yi(w · xi + b) among all i. When yi(w · xi + b) takes the minimum value with
i = i′, the distance between the boundary and the data closest to the boundary
is described as follows:

|w · xi′ + b|
||w||

=
yi′(w · xi′ + b)

||w||
=

M

||w||
. (2.4)

Therefore, the margin optimization is formulated as

max
w,b,M

M

||w||
,

s.t. yi(w · xi + b) ≥ M (i = 1, · · · , N). (2.5)

When w and b are replaced by w/M and b/M , respectively, the objective func-
tion is expressed as 1/||w|| with redefining w/M and b/M as w and b. Since

12



maximizing 1/||w|| is equivalent to minimizing ||w||2, the optimization problem
(2.5) is denoted as the following equation.

min
w,b

||w||2,

s.t. yi(w · xi + b) ≥ 1 (i = 1, · · · , N). (2.6)

The above explanation (2.6), which is called “hard margin,” assumes that all
data can be completely divided by the boundary hyperplane. However, this is
rarely the case in practice. For a more realistic data separation, we extend this
concept to “soft-margin” optimization, where some data can inhabit the opposite
side of the boundary hyperplane. To specify the maximum amount of data that
can reside on the opposite side, a parameter called the regularization parameter
ξi ≥ 0(i = 1, · · · , N) is introduced and the constraint of (2.6) is changed as
follows:

yi(w · xi + b) ≥ 1− ξi (i = 1, · · · , N). (2.7)

When
∑N

i=1 ξi is no more than an integral number K, the maximum number of
the data across the boundary is K or less. It means that the number of miss
classifications can be reduced by keeping

∑N
i=1 ξi as small as possible. Therefore,

the optimization problem of the SVM with soft margin is denoted as follows:

min
w,b

1

2
||w||2 + C

N∑
i=1

ξi,

s.t. yi(w · xi + b) ≥ 1− ξi (i = 1, · · · , N), (2.8)

ξi ≥ 0 (i = 1, · · · , N).

The parameter C > 0 is called “regularization parameter.” The larger C means
the strict suppression of miss classifications. When C → ∞, the optimization
problem is equivalent to the optimization problem of a hard margin SVM.

2.1.3 Preprocessing

Physical phenomena frequently expressed in exponential form like power law.
However, the decision boundary that the linear SVM returns is a hyperplane, as
mentioned above. Also, in general, the normalization of the dataset is important
to improve the performance of the machine learning model and to accelerate the
training process. Therefore, in the present study, the dataset has been taken
logarithms and min-max normalized as following equation before training the
linear SVM.

x̂i =
lnxi − lnxmin

i

lnxmax
i − lnxmin

i

. (2.9)
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Figure 2.1: The schematic diagram of SVM.

Here, xi is the i-th parameter of a data x and x̂i is the i-th parameter of a
corresponding normalized data x̂. The superscript “max” and “min” mean the
maximum and minimum values of xi in the dataset, respectively.

By this preprocessing, the boundary equation is deformed into fexp(x) = 1,
using the exponential decision function fexp(x), weight w

′ = (w′
1, · · · , w′

d), and
bias b′ shown in the following equations.

f(x) =
d∑

i=1

(wx̂i) + b = ln

(
eb

′ ·
d∏

i=1

x
w′

i
i

)
, (2.10)

fexp(x) = exp (f(x)) = eb
′ ·

d∏
i=1

x
w′

i
i , (2.11)

w′
i =

wi

lnxmax
i − lnxmin

i

, (2.12)

b′ = b−
d∑

i=1

wi · lnxmin
i

lnxmax
i − lnxmin

i

. (2.13)
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Table 2.1: Confusion matrix.

True label

Positive (+1) Negative (-1)

Predicted

label

Positive (+1) True Positive (TP) False Positive (FP)

Negative (-1) False Negative (FN) True Negative (TN)

2.1.4 Metrics of classification

The classification results are divided into four categories, that is, True Positives
(TP), False Positives (FP), True Negatives (TN), and False Negatives (FN).
Here, “True” and “False” correspond to that the classification results are true
of false, “Positives” and “Negatives” correspond to the label {0, 1} that the
classifier model returns. These four categories of the result are often shown in a
table named “confusion matrix” to show the performance at a glance, which is
shown in Table 2.1.

There are several metrics to express the performance of classification. The
best simple one is the accuracy (ACC), that is the ratio of the number of correct
classifications to the total number of data,

ACC =
TP +NP

TP + FP + TN + FN
. (2.14)

The ACC is not so useful when the numbers of data with each label are uneven.
To evaluate the sensitivity of the classifier, the metric called “recall” is used,
that is the ratio of the number of data correctly classified as positive to the total
number of positive data,

Recall =
TP

TP + FN
. (2.15)

The reliability of the prediction to be positive is expressed by “precision,” that
is the the ratio of the number of data correctly classified as positive to the total
number of the data predicted as positive,

Precision =
TP

TP + FP
. (2.16)

To evaluate the performance of classification by the SVM in the present study,
F1-score [51], which is one of the metrics commonly used to evaluate machine
learning classifier, has been used. When the positive class is detected accurately
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and the negative class is not detected as positive falsely, F1-score approaches to
one. F1-score is denoted as follows:

F1-score =
2× Recall× Precision

Recall + Precision
=

TP

2TP + FN + FP
. (2.17)

This definition is interpreted as the F1-score is the harmonic mean of the recall
and precision.

2.2 Sparse modeling

2.2.1 Concept of sparse modeling

For all machine learning tasks, it is known that finding essential explanatory
variables from a large number of candidate variables is important [52]. Sparse
modeling is one of the effective frameworks of data-driven science. In the sparse
modeling, the sparseness inherent in all high-dimensional data is exploited to
extract the maximum amount of information from the data. Specifically, a com-
bination of parameters that reduces the number of parameters is searched auto-
matically to match the data well [49, 53].

2.2.2 Exhaustive search

When selecting input parameters in a classification problem, it is important to
consider combination effects among parameters as well as individual distribu-
tions of each parameter. Figure 2.2 schematically shows a example of parameter
selection in classification problem. Consider the problem of classifying two types
of four-dimensional data according to their labels, blue and orange. The distri-
butions of each parameter is shown along each axis in Fig. 2.2. Here, parameter
Nos. 1 and 3 follow the same distribution. Parameter Nos. 2 and 4 also follow
the same distribution, but a quite different distribution from that of Nos. 1
and 3, which is not well separated. When dividing these data into two groups,
division using No. 1 and No. 2 is no better than assigning all data to No. 1,
according to the black line in the left scatter plot in Fig. 2.2. This means that
the parameter No. 2 is not relevant to the classification. On the other hand,
separation using Nos. 3 and 4 is more effective than assigning all data to No.
3, even the distribution of No. 4 is as same as that of No. 2. In conclusion,
when selecting the input parameters for the classification, both their individual
distributions and combinations should be considered.

The exhaustive search (ES) is one of the sparse modeling techniques, in which
all possible combinations of parameters are compared each other by generaliza-
tion performance to obtain the optimal combination of parameters [54].
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Figure 2.2: The schematic example of the parameter selection in classification
problem.

To express each combination of parameters, indicator vector c is defined as
p-dimensional binary vector shown in the following equation.

c = (c1, · · · , cN ) ∈ {0, 1}N , (2.18)

where N is the number of parameters. Each element ci tales 0 or 1. If the i-th
parameter belongs to the combination, ci = 1. Otherwise, ci = 0. In the ES
using SVM (ES-SVM), the SVMmodel is trained and tested for all combinations.
The input vector x and the weight w is replaced by x◦c and w ◦c, respectively,
for each combination. Here, the symbol ◦ represents the Hadamard product
defined as (x ◦ c) = xici.

To obtain the optimal combination of performance, the combinations must
be compared in generalization performance, which is the performance on data
outside the training data of the machine-learning models. Therefore, the clas-
sification performance is evaluated by M -fold cross validation (CV) for each
combination, which is shown in Fig. 2.3. In M -fold CV, the finite available data
is divided into M pieces. In the present study, M is fixed to 10. The machine-
learning model is trained with M − 1 pieces of data. Subsequently, the trained
model is evaluated with the remained data. This training and testing process
is repeated M times changing the remaining piece of data. Finally, M perfor-
mances obtained by M repetition are averaged to represent the generalization
performance for the case using the combination.

Summarizing the above, the ES is the method to find out the optimal com-
bination by the following procedure: all possible combinations are expressed

17



Figure 2.3: The schematic diagram of 10-fold cross validation.

by indicator vectors, the generalization performance is evaluated by CV for
each combination, and finally, all generalization performances are compared each
other.

2.2.3 K-sparse exhaustive search

For N parameters, the number of possible combinations is

2N − 1 = NC1 + NC2 + · · ·+ NCN . (2.19)

Therefore, the number of calculations of the ES rises exponentially with the
amount of data. To overcome this combination explosion risk, the K-sparse
exhaustive search (ES-K) method has been applied [49]. This method assumes
that the optimal combination of parameters is K-sparse, i.e., a combination of
K out of N parameters is optimal.

Figure 2.4 shows the concept of the ES-K. In the ES-K, the ES method
is applied to NCK combinations for each K to obtain the optimal combination
in NCK combinations. The advantage of the ES-K is that the structure of the
combination can be easily extracted by comparing the result of ES at different
Ks as well as the reduction of the number of calculations by stopping at K
smaller than N .
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Figure 2.4: The schematic diagram of ES-K [4].
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Chapter 3

Prediction and feature
extraction of radiative collapse
in stellarator-heliotron plasmas

3.1 Feature extraction of radiative collapse

3.1.1 Density ramp-up experiment in LHD

Large Helical Device (LHD) is the largest stellarator-heliotron experimental de-
vice with superconducting coils and is located in Toki city, Japan [8]. Radiative
collapse mainly happens in high-density plasma in LHD. Therefore, data of den-
sity ramp-up experiments in hydrogen, deuterium, and helium plasmas has been
accumulated to construct the dataset. In this study, the magnetic axis position
Rax was fixed at 3.6m and magnetic field at magnetic axis in vacuum was either
1.375T or 2.75T. Fuels were supplied to plasma by gas-puff [55], and the elec-
tron cyclotron resonance heating (ECRH) and the neutral beam injection (NBI)
were used to heat plasma. The ECRH was mainly used to initiate plasmas. The
numbers of discharges with and without collapse considered in the dataset are
shown in Table 3.1.

Table 3.1: Numbers of discharges considered in the dataset.

Species With collapse Without collapse

H 31 10

D 39 17

He 30 23

21



To classify data by SVM, it is necessary to label data into classes before
the training. Here, each data has been labeled into either “stable” or “close-to-
collapse” according to the plasma state. In the case of discharges without radia-
tive collapse, built-up plasma discharge excluding initialization and termination
phases have been used as “stable” data. Consequently, 706 “close-to-collapse”
data and 3424 “stable” data have been considered in the dataset.

On the other hand, the data in discharges with collapse have been labeled
according to the normalized time derivatives of radiation power xrad = Ṗrad/Prad.
Here, the dots indicate the time derivative. This index is similar to the density
exponent xdensity = (Ṗrad/Prad)/( ˙̄ne/n̄e) since the temporal change of density
is slower than that of radiation power. The density exponent is a criterion
that shows a relationship between radiation power and plasma density, and it is
known that a thermal instability occurs in the plasma as xdensity becomes three
or above [17]. In the present research, the phase with xrad > 2.5 has been labeled
as “close-to-collapse” and included in the dataset. And the plasma is regarded as
“stable” against radiative collapse before xrad reaches 2. The “stable” data in the
same time duration as “close-to-collapse” phase before xrad reaches 2 have been
taken into account to construct the dataset. The typical waveform of a discharge
with radiative collapse is shown in Fig. 3.1. In Fig. 3.1, “close-to-collapse” and
“stable” regions are hatched in red and blue, respectively.

To construct a dataset for ES, experiment data in hydrogen and deuterium
plasmas have been considered first. The 15 plasma parameters listed in Table 3.2
have been considered in the dataset. Here, line averaged electron density n̄e is
usually obtained by the far-infrared (FIR) laser interferometer [56]. The range
of n̄e is 0.2× 1019 to 1.4× 1020m−3.

A brief explanation of other parameters are following: Absorbed heating
power Pabs is evaluated as the sum of the absorbed ECRH input power PECH,
absorbed tangential NBI power PNBI,tangential, and absorbed perpendicular NBI
power PNBI,perpendicular. Absorbed heating power of NBI is estimated by sim-
ple analytics based on results from FIT3D [57], and absorbed ECRH power is
estimated by “LHDGauss”, which is the ray-tracing code to calculate power de-
position of ECRH and microwave beam propagation in LHD [58]. The range
of Pabs is 0.76 to 15MW. The radiation loss Prad is measured by bolometer
diagnostics [59]. The diamagnetic beta value is calculated based on the diamag-
netic flux measurement [60]. Impurity line intensities of multiple wavelengths,
that correspond to radiation caused by carbon, oxygen, and iron ions, have been
included in the dataset. These line intensities are measured by the vacuum ul-
traviolet (VUV) spectroscopy [61]. Also, the ratio of deuterium ion to the sum
of hydrogen and deuterium ions D/(H + D) is evaluated by line intensities of

Hα and Dα. The ion saturation current I
(7L)
sat is measured by Langmuir probes
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Figure 3.1: Typical discharge with a radiative collapse in the dataset. The
red and blue regions are “close-to-collapse” region and “stable” regions, respec-
tively [1]. (a) The normalized time derivative of radiation power is shown in blue
and collapse likelihood (described in sec 3.1.3) is shown in red. (b) Line-averaged
electron density n̄e is shown in blue, and diamagnetic stored energy Wp, in red.
(c) Absorbed heating power Pabs is shown in blue,4 and radiation loss Prad, in
red. (d) Electron temperature at the plasma center Te,center is shown in blue,
and that at plasma edge Te,edge, in red. (e) Visible impurity line intensities
normalized by n̄e are shown.
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Table 3.2: Plasma parameters used in the dataset of radiative collapse [1].

Expression Description

n̄e Line averaged electron density [1019m−3]

B Magnetic field at magnetic axis in vacuum [T]

Prad/Pabs Radiation loss normalized by absorbed input power

Pabs Absorbed input power [MW]

βdia Diamagnetic beta value

∆sh Shafranov shift [m]

a99 Minor radius defined by the radius encompassing 99% of the

stored energy [m]

CIII CIII (2s2 1S− 2s2p 1P, 97.7 nm) line intensity normalized by n̄e

CIV CIV (2s 2S− 2p 2P, 154.9 nm) line intensity normalized by n̄e

OV OV (2s2 1S− 2s2p 1P, 63.0 nm) line intensity normalized by n̄e

OVI OVI (2s 2S− 2p 2P, 103.4 nm) line intensity normalized by n̄e

FeXVI FeXVI (3s 2S− 3p 2P, 33.5 nm) line intensity normalized by n̄e

I
(7L)
sat Ion saturation current on a divertor target plate [A]

D/(H + D) Ratio of deuterium ion to the sum of hydrogen ion and deuterium

ions

Te,edge Electron temperature at the LCFS in vacuum [keV]

installed on the divertor plate [62]. The edge electron temperature Te,edge is the
mean value of Te at inboard and outboard sides of last closed flux surface (LCFS)
at vacuum, measured by the Thomson scattering measurement [63]. Here, the
geometry of flux surfaces is calculated by VMEC code [64]. The data were re-
sampled at 10ms intervals to match the FIR measurements. For each parameter,
the distributions of the data labeled either “close-to-collapse” and “stable” are
shown in Fig. 3.2.

3.1.2 Result of feature extraction of radiative collapse

ES-K using SVM (ES-K-SVM) has been conducted with the dataset described in
the above section. Figure 3.3 shows the summary of the result. The best F1-score
among combinations of K parameters are shown in the left graph of Fig. 3.3 for
eachK. According to the graph, the F1-score almost saturated at around K = 5,
and it reached almost the same as that with all 15 parameters at K = 6. The
combination that gives the best F1-score among combinations of K parameters,
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Figure 3.2: The distributions of the data labeled either “close-to-collapse” and
“stable” for each parameters in the dataset. Note that vertical axes of impurity
line emissions (CIII, CIV, OV, OVI, and FeXVI) are logarithmic [2].
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Figure 3.3: The summary of ES-K-SVM result [2]. The left graph shows the
best F1-score among combinations of K parameters. The horizontal dashed
line shows the F1-score with all 15 parameters (K = 15). The right diagram
shows the combination that gives the best F1-score among combinations of K
parameters, which correspond to the left graph. The color corresponds to the
weight w′ in eq. 2.12.

which correspond to the left graph, is shown in the right diagram of Fig. 3.3.
Each column corresponds to each combination. The parameters included in
each combination are colored according to the weight w′ in the decision function
(2.12). Around K = 5, four parameters are included in common in the top
combination for each K, those are, n̄e, CIV, OV, and Te,edge.

Figure 3.4 shows the result of ES-6, which is ES-K with K = 6. The left
histogram shows the distributions of F1-score with six parameters by blue bars.
The right diagram shows the top 20 combinations in the F1-score, from left to
right. Each column corresponds to each combination. The parameters included
in each combination is shown are colored according to the weight w′ in the
decision function (2.12). As shown in the right diagram, most of the top combi-
nations includes some parameters in common with relatively high weight, that
are, n̄e, CIV, OV, and Te,edge. The combinations including these four parameters
show better F1-score than other combinations, according to the red bars in the
left diagram of Fig. 3.4. Therefore, these four parameters are relevant to the
prediction of radiative collapse as the key parameters. The boundary between
“close-to-collapse” and “stable” in the multi-dimensional space with these four
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Figure 3.4: The result of ES when K = 6. The blue and red bars in the left
diagram show the distributions of F1-score with six parameters and that with
the combinations including n̄e, CIV, OV, and Te,edge, respectively. The right
diagram shows the parameters included in th top 20 combinations in the F1-
score. The color bar corresponds to the weight w′ in eq. 2.12.

key parameters is expressed as fexp(x) = 1 using the decision function fexp(x)
defined as follows:

fexp(x) = exp (−5.89)n̄0.864
e CIV0.995OV−0.395T−1.85

e,edge . (3.1)

Note that the coefficients in (3.1) correspond to the combination that showed
the best F1-score in ES-4 and the constant normalization factor is multiplied
and the weights of parameters are converted following (2.13).

3.1.3 Collapse likelihood

The likelihood of the radiative collapse has been quantitatively evaluated to take
the continuous value from zero to one corresponding to the distance from the
boundary. This makes it easy and flexible to apply the binary classifier model
to predictor model.

The distribution of values of the decision function (3.1) for “close-to-collapse”
and “stable” data in the dataset is shown in the lower panel of Fig. 3.5. Note
that the histogram is normalized to make the sum of each label unity. Here, the
decision function value corresponds to the distance from the boundary between
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Figure 3.5: (lower) The distribution of the decision function values in the dataset.
The red and blue bars show the “close-to-collapse” and “stable” data, respec-
tively. (upper) The percentage of “close-to-collapse” data in each region of bins.
The curve in the upper figure is a fitted curve of the percentage of “close-to-
collapse” data. The expression function is also shown in the figure [2].

two labeled regions, and fexp(x) = 1 means the data x is on the boundary. The
“close-to-collapse” and “stable” data distribute mainly above and bellow one,
respectively.

In the upper panel of Fig. 3.5, the ratio of “close-to-collapse” data against
the sum of “stable” and “close-to-collapse” data in each region of bins is shown
by crosses. Note that these histograms are normalized to make sums of all
bins become unity for each label. This ratio is interpreted that the probability
that the data is approaching to collapse when the value of decision function is
given, and referred as “collapse likelihood”. Therefore, the collapse likelihood
is corresponding to the distance from the boundary and has been fitted by the
sigmoid function in the following equation, which is also shown by blue curve in
the upper panel of Fig. 3.5.

Likelihood =
1

1 + exp {−8.34 (log10 fexp(x) + 0.3082)}
. (3.2)

Note that the likelihood is a function of the decision function f(x), which is a
function of vector of selected plasma parameters x, and takes the continuous
value from zero to one.

The critical density corresponding to the value of collapse likelihood is de-
noted as following equation by substituting the decision function (3.1) into the
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collapse likelihood (3.2).

n̄e(Likelihood) ∝ CIV−1.151OV0.458T 2.146
e,edge. (3.3)

This expression of operational density limit is shown as a color contour in Fig. 3.6.
The data in the training dataset is plotted above the color contour by dots and
crosses, according to their labels, “stable” and “close-to-collapse”. Note that the
critical density mentioned above is not the achievable density limit or the power
balance limit, such as Sudo scaling, but a practical density limit to secure safe
operation of the LHD plasma.

Figure 3.6: Color contour of the likelihood of radiative collapse against line
averaged density and the term of other extracted parameters. The dashed line
corresponds to likelihood of 0.5. The “stable” and “close-to-collapse” data in
the dataset are plotted by dots and crosses, respectively.

3.1.4 Validation of collapse likelihood

The collapse likelihood has been validated with LHD experiment data other
than included in the training dataset. The target discharges in the validation is
selected as following rules.

• The shot number is between 159129 and 160770. This means shots after
the investigated shots in the same experimental campaign (the 22nd cycle).
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• The same arrangement of magnetic configuration such as the magnetic axis
position Rax of 3.6m

• No impurity pellets are injected during the discharge.

The predictor does not include the information of discharges that are used in
the validation since all discharges were performed after the discharge used for
the dataset.

In validation, each discharge has been labeled as either collapsed discharge,
stable discharge, or error discharge. As a criterion of plasma termination, the
estimated plasma stored energy W ISS04

dia has been used, denoted as the following
equation.

W ISS04
dia = Pabsτ

ISS04
E (3.4)

Here, τ ISS04E is the energy confinement time given by the ISS04 scaling law [65].
In order to calculate τ ISS04E , n̄e measured by thomson scattering measurement
has been used to avoid fringe jump in interferometer measurement.

The discharges in which Wdia fall below 30% of mean value of W ISS04
dia over

the last 100ms before the heating ends are labeled as collapsed discharges, while
other discharges have been labeled as stable discharges. The time when Wdia falls
below the threshold value has been defined to be the moment when the collapse
occurs. Considering reliability of thomson scattering measurement in low-density
regime, discharges in which mean n̄e in the 100ms before the discharge ends
is less than 0.5 × 1019m−3 have been excluded from the validation as error
discharges. Also, discharges with measurement failure have been excluded from
the validation as error discharges. Consequently, 91 collapse discharges and 444
stable discharges have been taken into account.

Figure 3.7 shows the mean temporal changes of the collapse likelihood in (a)
stable discharges and (b) collapse discharges used in the validation. According
to Fig. 3.7 (b), the likelihood grows as the plasma approaches the collapse in
average.

Table 3.3 shows the performance of prediction as the threshold likelihood is
changed. When the likelihood exceeds the threshold value, it is treated as an
alarm is raised. The results of prediction in collapse discharges are categorized
into four cases as follows:

• Success alarm is the alarm that does not correspond to any of the following
categories raised in collapse discharge.

• Missed alarm is the case in which the likelihood does not reach the thresh-
old before the occurrence of the collapse.
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• Tardy alarm is the alarm raised less than 30ms before the collapse occurs
is considered as a tardy alarm.

• Early alarm is the alarm raised more than 500ms before the occurrence of
the collapse.

Missed and tardy alarms are both equivalent to having missed the collapse.The
alarms raised in the stable discharges are categorized as false alarms. Both early
and false alarms are thought to be interruptions of stable plasma, which are
undesirable. In this validation, more than 85% of collapse has been predicted
before occurrence successfully with the threshold value of 0.8 or less. At the
same time, false alarm has been 5–10% of the number of stable discharges.

In Table 3.4, the mean and standard deviation values of the time margin
by the collapse occurred from the alarms are raised are shown as the threshold
likelihood is changed. On average, there is a margin of 100 to 150ms to manage
to the collapse. This averaged margin time is in the same level of energy con-
finement time τE in these experiments. This predicting capability is supposed
to be relevant to control of avoidance of radiative collapse.

Missed and tardy alarms are essentially the same failure of prediction since
they overlook the collapse. When the threshold likelihood is set as 80%, there
are nine overlooked collapses in the validation, and six among them were helium
discharges. There are only eight helium discharges included in the validation and
the others are hydrogen discharge with helium and deuterium contamination. In
the rest helium discharges, the likelihood reached 80% just 30ms before the
collapse is detected that means this discharge is on the border between tardy
and success alarm. This result shows the model trained with data in hydrogen
and deuterium plasma has not been quite successful for helium discharges yet.
The improvement of the prediction considering helium discharges is described
later.
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(a) (b)

Figure 3.7: (a) The collapse likelihood against time remaining until the end
of the discharge in stable discharges. (b) The collapse likelihood against time
remaining until the collapse in collapse discharges.

Table 3.3: Result of validation with data outside of the dataset [2].

Threshold
likelihood

Success
rate[%]

Missed
rate[%]

Tardy
rate[%]

Early
rate[%]

False
rate[%]

0.1 96.7 0.0 1.1 2.2 8.3
0.2 94.5 1.1 2.2 2.2 7.9
0.3 90.1 1.1 6.6 2.2 6.3
0.4 89.0 2.2 6.6 2.2 6.1
0.5 87.9 2.2 7.7 2.2 5.9
0.6 87.9 2.2 7.7 2.2 5.4
0.7 87.9 2.2 7.7 2.2 5.2
0.8 87.9 2.2 7.7 2.2 5.0
0.9 84.6 2.2 11.0 2.2 4.3
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Table 3.4: Alarm time of prediction in validation with data outside of the
dataset [2].

Threshold
likelihood

Mean[ms] Std[ms]

0.1 142.5 147.9
0.2 131.6 142.4
0.3 123.1 139.3
0.4 118.5 138.1
0.5 115.3 137.0
0.6 110.9 135.7
0.7 107.8 135.5
0.8 101.5 127.4
0.9 89.9 98.9
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Figure 3.8: Schematic diagram of the collapse avoidance control system.

3.2 Real-time control to avoid radiative collapse in
LHD

3.2.1 Collapse avoidance control system

A control system to avoid radiative collapse in high-density experiment in LHD
has been developed based on the collapse likelihood. According to the decision
function (3.1) and the collapse likelihood (3.2), reducing plasma density and
raising edge temperature will be effective to reduce the likelihood, in other words,
to prevent the occurrence of collapse. This control corresponds to shifting the
plasma state in the direction toward the lower right in the Fig. 3.6. Therefore, gas
puff fueling and ECRH have been employed as actuators of the control system.

The schematic diagram of the control system is shown in Fig. 3.8. The
signals of plasma parameters which are selected by the feature extraction are
input to the controller, i.e., n̄e, CIV, OV, and Te. The controller calculates the
collapse likelihood based on the input signals and compares the likelihood with
the threshold value in real-time. When the likelihood exceeds the threshold, the
output alarm signal turns gas puff on and the ECRH off.

Inpurt parameters

As input signals, n̄e, CIV, OV, and Te have been used in the control system.
As in the dataset for the machine learning, n̄e is obtained by the FIR laser
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interferometer, and CIV and OV are obtained by the VUV spectroscopy.
As Te, Te,edge measured by the Thomson scattering measurement has been

used in the dataset. However, its time resolution is 30Hz, which is lower than
the requirement of the control system. Therefore, Te,edge has been replaced by
Te,ECE, which is obtained by electron cyclotron emission (ECE) measurement
with the channel that detects 146.5GHz. Figure 3.9 shows the relationship
Te,edge and Te,ece in the training dataset. The correlation coefficient of these pa-
rameters is 0.964, indicating a high linear relationship, so that it is reasonable to
substitute Te,ece for Te,edge. The Te,ECE corresponds to the electron temperature
near the center of the plasma, and only available in experiments with Bt =2.75T.
Here, changing the parameter requires recalculating the decision function and
the collapse likelihood. The SVM has been trained again with n̄e, CIV, OV,
and Te,ECE using available data in the training dataset. The decision function
and the collapse likelihood for the control system, fctrl(x) and Likelihoodctrl, are
calculated as follows:

fctrl(x) = exp (2.10)n̄−0.600
e CIV1.31OV−0.129T−1.89

e,ECE, (3.5)

Likelihoodctrl =
1

1 + exp {−14.9 (log10 fctrl(x) + 0.283)}
. (3.6)

The prediction performance of Likelihoodctrl is worse by about 5–10% than that
of Likelihood: about 80% of collapse discharges more than 30ms before the
occurrence of the collapses.

Controller

A single-board computer, Raspberry Pi 4 Model B, with quad-core CPU, 8GB
RAM, and general-purpose input/output (GPIO) interface, has been used as a
controller1. The control programs which runs on the Raspberry Pi controller
have been written in Python 3. Since Raspberry Pi does not have any analog in-
put/output interfaces, an analog-digital converter (ADC) with 24-bit resolution2

has been used to convert input analog signals into digital signals.
Voltage adjustment circuits have been employed to adjust the voltages of

input signals to the input range of ADC, between 0 and 5V. The diagram of
the voltage adjustment circuits is shown in Fig. 3.10. Op-amp #1 (OA1) is for
voltage follower circuit, while op-amp #2 (OA2) is for subtraction circuit. Here,
Vinput and Vout are the input and output signal, respectively. Vbias is the bias
voltage of 15V, which is common to the power supply to op-amps. As op-amps,
NJM4556A has been used. The parameters of components in the circuit are
described in Table 3.5. Figure 3.11 shows the photographs of the controller.

1https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
2https://www.seeedstudio.com/Raspberry-Pi-High-Precision-AD-DA-Board.html
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Figure 3.9: Relationship between Te,edge and Te,ece in the training dataset. Blue
dots and orange crosses show “stable” and “close-to-collapse” data, respectively.
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Figure 3.10: The circuit diagram of the voltage adjustment circuit.

Table 3.5: The parameters of components in the voltage adjustment circuit.

Parameters Vinput range R1 R2 R3 R4

n̄e ±10V 5 kΩ 1 kΩ 6.2 kΩ 1 kΩ

CIV, OV, and Te ±5V 5 kΩ 2 kΩ 7.4 kΩ 1 kΩ

The time interval of calculation is limited not only by the speed of the CPU
on the Raspberry Pi but also by the speed of data transition between Raspberry
Pi and ADC using Serial Peripheral Interface (SPI). In the present case, the time
interval is about 8ms, which is enough for control.

The threshold value and the parameters for calculating the likelihood can be
changed through the SSH connection using the GUI interface, which runs on a
computer connected to a local network.Figure 3.12 shows the GUI interface.
When the “Start” button in the GUI interface is clicked, the Raspberry Pi
controller becomes a trigger-wait state. Here, the trigger is sent when the plasma
discharge starts, and is used in common in the LHD system. The controller starts
to calculate the likelihood and output the alarm signal after the trigger is input.

Actuators

When the alarm signal is sent from the controller, the gas-puff control system
turns off the fueling and additional power is injected by the ECRH. The gas puff
is one of the main fueling source in LHD [55].

As ECRH, 77 GHz gyrotrons for the fundamental O-mode heating and 154
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(a) (b)

Figure 3.11: Photographs of the controller. (a) The power source (left) and the
case containing the Raspberry Pi and the voltage adjustment circuit (right). (b)
The circuit board of the voltage adjustment circuit.

Figure 3.12: The GUI interface for the control to avoid radiative collapse.
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GHz for the second-harmonic X-mode heating are available. These are controlled
by a real-time interlock system [66, 67]. Note that the time duration in which
ECRH can be turned on is limited by its technical capability and the interlock
system to avoid a blank injection.

3.2.2 Collapse avoidance experiment

The collapse avoidance with the control system has been attempted in density
ramp-up experiments in LHD. Figure 3.13 shows two typical discharges in hydro-
gen plasma, with and without collapse avoidance control. In these discharges, the
plasma has been sustained by gas-puff fueling and NBI heating. The ECRH has
been used to initiate plasma, while two 154 GHz gyrotrons have been reserved
for boost injection.

In the discharge without control, shown by the dashed blue line, radiative
collapse occurred in the early phase of the density ramp-up at around 3.6 s. In
this case, the gas puff was injected constantly until a preset time (about 4.5 s).

On the other hand, in the discharge with control, shown by the solid red line,
the radiative collapse in the early phase was avoided successfully by turning gas
puff off and boosting ECRH. In this case, the threshold of the likelihood has
been set as 0.9, which is shown by the dashed horizontal line in the top panel of
Fig. 3.13.

Figure 3.14 shows close-up of collapse in early phase (3.45–3.65 s) in discharge
without control shown in Fig. 3.13. According to Fig. 3.14, the change of the
plasma towards the collapse in the early ramp-up phase, which is shown by the
dotted line, was detected about 65ms before the change occurred, which is earlier
enough for margin of 30ms for control. In the discharge with control, the gas
puff was turned off within 10ms after the controller detected the collapse. On
the other hand, the boost ECRH was injected about 20ms later the controller
detected the collapse, while it is earlier enough than the collapse.

As shown in Fig. 3.15, the likelihood for the control system (Likelihoodctrl

in (3.6)) is compared with the likelihood calculated with Te,edge (Likelihood in
(3.2)), in the discharge with the collapse avoidance control system around the
early phase collapse. At the moment of the collapse detection in the early phase,
Likelihoodctrl lagged Likelihood by tens of ms. This difference implies that the
detection of the collapse can be made earlier by using original likelihood.

In the latter part of the discharge with control, the radiative collapse has been
avoided only by turning on/off gas puff and n̄e was developed above 1.2× 1020m−3.
In this phase, the ECRH was not available because of the technical limitation
of duration time. When the change of NBI heating power occurred at around
5.3 s and 6.3 s, the predictor detected the occurrence of the radiative collapse
and the high-density plasma was successfully sustained by the control. When
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Figure 3.13: The discharges with and without collapse avoidance control in
hydrogen plasma, shown by red and blue lines, respectively.
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Figure 3.14: Close-up of early phase (3.45–3.65 s) of discharges shown in
Fig. 3.13. The vertical dashed and dotted lines show the moment when the
predictor detected the collapse and when the plasma density in #168700 started
to increase toward the collapse, respectively.
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Figure 3.15: The likelihood in discharge with collapse avoidance control system
(#168701) from 3.3 s to 4.0 s. The likelihood used in the control system and the
original one are drawn by red-solid line and blue-dashed line, respectively.

the collapses were avoided, the recoveries of electron temperature Te,edge and
diamagnetic energy Wp were observed.

Impact of boost ECRH on collapse avoidance

Collapse avoidance with only boost ECRH has been attempted in other dis-
charges with hydrogen plasma. In these cases, the collapse in early phase has
not been avoided to date. The typical discharge in which collapse avoidance was
attempted with only boost ECRH is shown in Fig. 3.16. The deposited power
density of ECRH heating shown in panel (iv) is calculated by upgraded version
of LHDGauss code [68]. According to Fig. 3.16, ECRH power was deposited at
reff/a99 ∼ 0.1. The ECRH power was stopped at 3.6 s by the interlock without
avoiding collapse. This fact indicates that the heating core plasma is not effec-
tive to avoid radiative collapse. This agrees with the result of feature extraction
that implies the edge temperature and low-Z impurity radiation are important
in the collapse, described in section 3.1. Therefore, the collapse may be avoided
by heating the plasma edge efficiently. To resolve this problem, off-axis injection
of ECRH has been attempted.

Additional experiments to avoid radiative collapse by off-axis ECRH have
been conducted in deuterium plasma discharges. Figure 3.17 shows the results
of these experiments. In these experiments, the number of 154GHz gyrotrons
reserved for boost ECRH has increased by one to three, and thus the injected
ECRH power has increased from the previous experiments, which is shown in
Fig. 3.16. It should be also noted that the measurement position of Te,ECE was
moved outward by a few centimeters because the frequency that is detected
by the ECE measurement to obtain Te,ECE was changed from 146.5GHz to
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Figure 3.16: (i)Collapse likelihood calculated in real-time, (ii) line averaged elec-
tron density n̄e and stored energy Wp, (iii) NBI port through power , (iv) ECRH
power PECH and gas puff signal, and (v) deposited ECRH power density calcu-
lated by LHDGauss code in the typical discharge in which collapse avoidance
was attempted with only boost ECRH (#168698).
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145.5GHz by technical reason. In addition, the evacuation was improved by
divertor pump in these experiments.

In Fig. 3.17 (a), off-axis injection of focusing at reff/a99 ∼ 0.4 has been
attempted. The achieved electron density is lower than the previous experiments.
In this discharge, the NBI injection power has been doubled to achieve higher
density, as shown in the panel (iii) of Fig. 3.17 (a). The radiative collapse
detected as shown in the likelihood (shown in panel (i)) has not been avoided,
while the ECRH power is deposited at around reff/a99 ∼ 0.4 as designed.

In the discharge shown in Fig. 3.17 (b), off-axis injection of focusing at
reff/a99 ∼ 0.6 has been attempted. The NBI injection power has been simi-
lar to the previous discharge, as shown in the panel (iii) of Fig. 3.17 (b). At
around 3.6 s, a collapse was detected and avoided by only boost ECRH. At this
point, the ECRH power is deposited at around reff/a99 ∼ 0.6 as designed. Here,
significant recovery of Wp is observed. Afterward, another collapse occurred
at around 3.9 s, which the boost ECRH could not help. At this point, ECRH
heating power is deposited in outer region (reff/a99 ∼ 0.8) and deposited power
density is much smaller than that at around 3.6 s. It is probable that the col-
lapse could not be avoided because of the small deposited power. One possible
explanation of this is that the effectivity of ECRH is lower than designed value
because of high electron density. The cut off density of the 154GHz second-
harmonic X-mode electron cyclotron (EC) wave is about 1.5× 1020m−3, which
is larger than n̄e achieved in these experiments, but the ray of EC wave can be
bent in high-density plasma, so that the ray cannot resonance as designed.

Consequently, the collapse can be avoided by off-axis boost ECRH pointing
reff/a99 ∼ 0.6 in relatively low-density plasma. In high-density plasma, it is
difficult to avoid the collapse by only ECRH because the ray of EC wave may be
bent. It is required to control the polarization of ECRH considering the bending
of rays according to the electron density to avoid collapse in high-density plasma
by only ECRH.

Collapse avoidance in long-pulse discharge

The collapse avoidance control system has been applied to long-pulse discharge
sustained only by ECRH, which is the major subject of LHD. In this case, the
main ion was helium, not hydrogen or deuterium. In these discharges, a 154GHz
gyrotron has been reserved for boost injection, and another 154GHz gyrotron
and two 77GHz gyrotrons have been used to sustain the plasma. As a result, the
control system detected the occurrence of the radiative collapse, which is shown
by the dashed line in Fig. 3.18. However, the detection of the collapse was too
late to avoid it. This result is consistent with the validation of the collapse
likelihood, described in section 3.1.4. The cause of this overlook is not identified
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(a) #172450 (b) #172460

Figure 3.17: (i)Collapse likelihood calculated in real-time, (ii) line averaged elec-
tron density n̄e and stored energy Wp, (iii) NBI port through power, (iv) ECRH
power Pech and gas puff signal, and (v) deposited ECRH power density calcu-
lated by LHDGauss code in two discharges with off-axis ECRH injection. In (b)
#172460, ECRH antenna is pointing more outwards than in (a) #172450.
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yet, but control of fueling rate in helium plasma is generally difficult due to the
high recycling of helium. The improvement of the prediction considering helium
discharges is described later.

Figure 3.18: The long-pulse discharges with collapse avoidance control in helium
plasma. The vertical dashed line shows the moment when the predictor detected
the collapse.

3.2.3 Discussions of collapse avoidance

The behavior of collapse likelihood

The radiative collapse is likely to occur when n̄e is high according to (3.1), thus
the reduction of n̄e is one possible way to avoid radiative collapse. However, the
recovery of the likelihood was not accompanied with the decrease of n̄e according
to Fig. 3.13. This is also seen in the contour plot of the likelihood against n̄e and
other feature parameters, shown in Fig. 3.6. Figure 3.19 shows the trajectory
of the discharges with and without control in the two-dimensional plane same
as Fig. 3.6. Note that the likelihood shown in Fig. 3.6 is calculated with Te,edge
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Figure 3.19: The trajectory of the discharges with and without control on the
color contour which shows the likelihood of radiative collapse against line aver-
aged density and other extracted parameters. The solid and dotted lines show
the discharges with and without control, respectively.

and different from the likelihood used in the real-time control. In the discharge
without control, which is shown by crosses in Fig. 3.19, once plasma entered the
unstable (red) region, plasma went towards collapse. On the other hand, it is
seen that the plasma returns from the unstable (red) region to the stable (blue)
region by the control. Figure 3.20 shows that n̄e kept increasing (dn̄e/dt > 0)
even while the gas-puff fueling was turned off. During this time, recycling was
reduced but not extinguished, as shown by Hα line emission in Fig. 3.20. This
suggests that the fuel was supplied by the recycling from the vessel wall during
the plasma was getting back to the stable region.

In the latter phase of the controlled discharge, the plasma stayed in the stable
region near the boundary while the density increased. After the heating stopped
at around 7.3 s, the plasma went into the unstable region and was terminated.
This result shows that modulating gas-puff fueling is effective to keep plasma
to stay in the stable region, and suggests that the higher plasma density can be
achieved by the control system.

Particle transport analysis

Figure 3.21 shows the close-up of early phase of the discharge with collapse
avoidance control system. According to the color contour plots of profiles of Te

and ne, the plasma shrinkage was observed when the plasma approached collapse.
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Figure 3.20: The temporal changes of n̄e, Hα line emission, and the voltage
signal that controls the gas puff in the discharge with collapse avoidance control
system (#168701).

48



At the same time, humping high-ne region appeared between plasma axis and
edge region. When the plasma recovered, the shrinkage and the peak of ne

disappeared. To discuss these behaviors, particle transport has been analysed.
At a certain position represented by the minor radius r, equation of continuity

of electron is expressed as follows:

∂ne

∂t
= −∇ · Γe + se. (3.7)

Here, Γe is the particle flux crossing the magnetic surface at that position and
se is the source of electrons. The particle flux is denoted as follows:

Γe = −De
∂ne

∂r
+ neve, (3.8)

where De and ve are the diffusion coefficient and convection velocity of electrons.
Deforming (3.8), a linear relationship between (−1/ned) · (ne/dr) and Γe/ne is
expressed as follows:

Γe

ne
= De

(
− 1

ne

∂ne

∂r

)
+ ve. (3.9)

Figure 3.22 shows the temporal change of relationship between (−1/ned) ·
(ne/dr) and Γe/ne in the discharge with collapse avoidance control system at
reff = 0.6m. Here, the electron flux Γe was calculated from (3.7). Applying
Gauss’s theorem to (3.7), Γe was denoted as follows:

Γe(r) =
1

A(r)

∫ V (r)

0

(
se −

∂ne

∂t

)
dV (3.10)

Here, A(r) is the surface area of the flux surface at the radial position r.
The source term se has been evaluated with a diffusion model of neutral atoms

for 1-dimensional cylindrical plasma [69]. The model considers the balances of
particle and energy to give a distribution of neutral hydrogen atom. In this
model, the ionization rate coefficient and charge exchange rate coefficient are
assumed to be fixed to 1.0× 10−14m3/s. To calibrate the distribution, it has
been assumed that the estimated outermost neutral pressure is equal to the
neutral pressure measured in LHD.

In Fig. 3.22, the inclination and intercept of the regression line correspond
De and ve, respectively. In the shrinkage phase (between 3.4 s and 3.6 s), the
data points are in line. The result of regression in this time range shows that
De = 0.19m2/s and ve = −1.9m/s.

Figure 3.23 shows the result of the particle transport analysis in a discharge
without collapse in the early ramp-up phase. In this case, the inward convection
velocity of −1.4m/s has been observed, which is slightly smaller than that in
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Figure 3.21: Close-up of early phase of the discharge with collapse avoidance
control system (#168701). The profiles of Te and ne are shown as color contours.
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Figure 3.22: Temporal change of relationship between −1/nedne/dr and Γe/ne

in the discharge with collapse avoidance control system (#168701) from 3.4 s to
4.0 s. The dashed line is the regression line of colored data points.
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Figure 3.23: Temporal change of relationship between −1/nedne/dr and Γe/ne

in the discharge without collapse in early ramp-up phase (#168695) from 3.4 s
to 4.0 s. The dashed line is the regression line of colored data points.

the collapse discharge. On the other hand, the diffusion coefficient is about
twice larger than that in collapse discharge (De = 0.36m2/s). These result
suggests that the imbalance between inward convection velocity and diffusion at
the plasma edge region cause the shrinkage of plasma and the peak of ne, which
lead to collapse. After avoiding collapse, the inward convection was disappeared,
which seems to correspond to the recovery of the plasma from the collapse.

Density fluctuation analysis

To investigate more about the cause and recovery process of radiative collapse,
density fluctuation has been investigated using a two-dimensional phase contrast
imaging (2D-PCI) measurement [70–72]. The 2D-PCI is one of laser scattering
techniques, and CO2 laser is used for 2D-PCI in LHD.

Figure 3.24 and 3.25 show profiles of n̄e and dne/dr, density fluctuation
amplitude measured by 2D-PCI, power spectrum of fluctuation, and estimated
radial electric field Er. Er is usually measured by CXS with perpendicular NBI
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in LHD. However, in the collapse avoidance experiment, no perpendicular NBI
was used to make it easy to cause collapse. Therefore, Er was estimated from
equation of radial force balance. In typical fusion plasma with relatively low
temperature of about Ti ∼ Te ∼ 1 keV and high ne above 3× 1019m−3, Er can
be assumed as follows:

Er ∼
∇pi
Zieni

. (3.11)

It is shown that the assumed Er is in good agreement with the measured Er in
the edge region in stellarators [73], as well as tokamaks [74].

In the discharge with control shown in Fig. 3.24, the growth of density fluctu-
ations and negative phase velocities were observed around the plasma between
3.5 s and 3.7 s when the plasma approached decay. In the reference discharge
shown in Fig. 3.25, density fluctuation was observed in the same region as in the
collapse discharge, but the fluctuation did not grow in this case.

Since PCI measurement is sensitive to high-frequency fluctuation, the ob-
served fluctuation is thought to be a ion scale turbulent fluctuation, e.g., ion
temperature gradient (ITG) mode and trapped electron mode (TEM). Note that
it is difficult to identify the instability driving the fluctuation only by PCI mea-
surement alone.

In this section, it is assumed that the measured density fluctuation is driven
mainly by ITG mode. ITG mode is one of the drift wave instabilities that
destabilized by ion temperature gradient [75]. Since the ITG mode is considered
to be suppressed by radial electric field Er in stellarator-heliotron devices [76],
the relationship between the fluctuation and Er is discussed bellow.

To discuss growth of ITG mode, ion temperature gradient normalized by
density gradient ηi is usually used.

ηi =
dTi/dr

Ti

ni

dni/dr
=

d lnTi

d lnni
. (3.12)

Note that electron temperature and density have been used instead of ion tem-
perature and density in this discussion because ion temperature and density have
not been measure in the control experiments because of absence of tangential
NBIs required to use CXS measurement.

According to theoretical studies, the radial electric field shear, which is equiv-
alent to the mean E×B flow, plays an important role for the suppression of the
turbulence [77]. The E ×B shearing rate ωE×B is defined as follows:

ωE×B =
r

q

∂

∂r

(
q

r

Er

B

)
. (3.13)
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Figure 3.24: Time histories of (a) n̄e and Wp, (b) input power and gas puff,
(c) ne profile, (d) dne/dr profile, (e) density fluctuation amplitude, (f) power
spectrum of fluctuation, and (g) radial electric field Er in the discharge with
collapse avoidance control system (#168701).
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Figure 3.25: Time histories of (a) n̄e and Wp, (b) input power and gas puff,
(c) ne profile, (d) dne/dr profile, (e) density fluctuation amplitude, (f) power
spectrum of fluctuation, and (g) radial electric field Er in the discharge without
collapse in early ramp-up phase (#168695).

55



Figure 3.26: Radial profiles of (i) electron temperature Te, (ii) electron density
ne, (iii) radial electric field Er, (iv) temperature gradient parameter ηe, (v)
E × B shearing rate ωE×B, and (vi) density fluctuation amplitude when (a)
plasma approached collapse and (b) plasma recovered from collapse.

Figure 3.26 shows the radial profiles of parameters related to ITG mode.
When plasma was approaching collapse (shown in Fig. 3.26 (a)), density fluc-
tuation first appeared in the edge region (reff > 0.6m) and propagated inward
along with the region where the ηe is large. At the same time, edge ωE×B de-
creased. When plasma was recovering from collapse, edge ωE×B increased while
the change of the region with large ηe is not so large.

Figure 3.27 shows the relationships between density fluctuation and absolute
value of E×B shearing rate |ωE×B| at reff = 0.6m in (a) the discharge in which
collapse was avoided by control and (b) the stable discharge. In the collapse
discharge shown in Fig. 3.27 (a), density fluctuation grew when |ωE×B| decreased.
Then |ωE×B| increased and the fluctuation diminished, which is opposite to the
outer position. Finally, |ωE×B| returned to low value, which is similar position
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Figure 3.27: Relationships between density fluctuation and absolute value of E×
B shearing rate |ωE×B| at reff = 0.6m in (a) the discharge in which collapse was
avoided by control and (b) the stable discharge. The colors of points correspond
to the measuring times of Thomson scattering measurement.

as in the stable discharge shown in Fig. 3.27 (b).
According to prior researches in tokamak plasmas, the gradient of Er when

the instability is suppressed is larger than that measured in this discharge, and
is on the order of 103 kV/m2 [78, 79]. It is interesting that the increase and
decrease of |ωE×B| seems to be related to the growth of turbulence while the
observed |ωE×B| is not enough to suppress turbulence.

The characteristics in the plasma with collapse avoidance control discussed in
the present section are summarized in Table 3.6. Further investigation focusing
on impurity transport and MHD instabilities is required to explain how these
features contribute to the onset of the radiative collapse.
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Table 3.6: Characteristics of radiative collapse discussed in the present section.
De and ve are in the ramp-up phase.

Collapse discharge

(#168701)

Stable discharge

(#168695)

Characteristics
Approaching

collapse (3.5 s)

Recovering

from collapse (3.6 s)

ñe and ωE×B

are at 3.6 s

De[m
2/s] 0.19 - 0.36

ve[m/s] -1.9 - -1.4

ñe[a.u.] 1.09 0.699 0.310

ωE×B[10
3/s] 7.90 27.3 -8.78
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3.3 Improvement of prediction of radiative collapse

It was shown that the radiative collapse prediction based on experiment data
in hydrogen and deuterium plasma has not been quite successful for helium
discharges yet in the sections above. Therefore, to improvement of the predicting
model, the dataset to train the machine learning model was improved with data
in helium plasma experiments.

In general, helium plasma can have higher electron density than hydrogen and
deuterium plasma. When the FIR laser interferometer operates at a high electron
density, a measurement miss so-called “fringe jump” is likely to happen at the
moment of fast change of density. To avoid fringe jumps, line averaged electron
density n̄e was obtained by the Thomson scattering measurement instead of FIR
laser interferometer. Other changes of parameters considered in the dataset from
Table 3.2 are as follows:

• HeI line intensity has been added.

• I
(7L)
sat has been removed.

• D/(H+D) has been removed.

• Effective mass Meff and effective ion charge Zeff have been added.

First, a new dataset has been constructed including experiment data in hy-
drogen, deuterium, and helium plasmas, shown in Table 3.1. The result of ES
with this new dataset is shown in Fig. 3.28. According to Fig. 3.28, the F1-score
is not so much improved from the result shown in Fig. 3.3, and the F1-scores that
exceed the F1-score for using all parameters are seen for K > 8, which is more
than the result with the conventional dataset. Consequently, the prediction has
not been much improved by just adding data in helium plasma to the dataset.

Second, three datasets have been constructed considering only hydrogen,
deuterium, and helium plasma data. The result of ES with this new dataset is
shown in Fig. 3.29, Fig. 3.30, and Fig. 3.31, respectively. According to these
results, the F1-scores are improved with less numbers of parameters by using
dataset including only data for a particular ion. However, the combinations of
feature parameters extracted by ES are different from each other, as shown in
Table 3.7. This suggests that the predictor model constructed with data for a
particular ion is not applicable for prediction in plasma with other ions.

Using the same method as described in section 3.1.3, the collapse likelihoods
have been quantified with each combination of feature parameters shown in Ta-
ble 3.7. The ion species used to estimate likelihood is expressed as a subscript,
e.g., LikelihoodH means likelihood for hydrogen plasma. To construct the likeli-
hood which is applicable for collapses in plasma with any ions, these likelihoods

59



Figure 3.28: The result summary of ES with dataset considering hydrogen, deu-
terium, and helium plasmas. The left graph shows the best F1-score among
combinations of K parameters. The horizontal dashed line shows the F1-score
with all 16 parameters (K = 16). The right diagram shows the combination that
gives the best F1-score among combinations of K parameters, which correspond
to the left graph. The color bar corresponds to the weight w′ in eq. 2.12.

Table 3.7: Feature parameters extracted from data for each ion.

Species Feature parameters

H Pabs, OVI, Te,edge

D B, CIV, Te,edge

He B, βdia, OVI
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Figure 3.29: The result summary of ES with dataset with only hydrogen plasma.
The left graph shows the best F1-score among combinations of K parameters.
The horizontal dashed line shows the F1-score with all 16 parameters (K = 16).
The right diagram shows the combination that gives the best F1-score among
combinations of K parameters, which correspond to the left graph. The color
bar corresponds to the weight w′ in eq. 2.12.

have been integrated by taking the average weighted by the abundance ratio of
each ion. The weighted-mean likelihood LikleihoodWM is denoted as follows:

LikelihoodWM =
H

H +D +He
× LikelihoodH (Pabs,OVI, Te,edge) (3.14)

=
D

H +D +He
× LikelihoodD (B,CIV, Te,edge)

=
He

H +D +He
× LikelihoodHe (B, β,OVI) .

Here, the ratio of H, D, and He ions are calculated by line intensities of Hα, Dα,
and HeI.

The weighted-mean likelihood has been validated by the same method as
section 3.1.4. The discharges in deuterium and helium plasma have been added
to the target discharges in the validation. In total, 108 collapse discharges and
785 stable discharges have been considered in the validation.

Figure 3.32 shows the results of verification fixing threshold value to 0.8.
According to this figure, the weighted-mean likelihood has shown the better
performance than other likelihood. In Fig. 3.33, these likelihoods are compared
with the conventional one in helium discharge with collapse, which was missed
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Figure 3.30: The result summary of ES with dataset with only deuterium plasma.
The left graph shows the best F1-score among combinations of K parameters.
The horizontal dashed line shows the F1-score with all 16 parameters (K = 16).
The right diagram shows the combination that gives the best F1-score among
combinations of K parameters, which correspond to the left graph. The color
bar corresponds to the weight w′ in eq. 2.12.

in verification with the conventional likelihood. The weighted-mean likelihood
LikleihoodWM and the convectional one Likleihood are shown in the the bottom
panel by solid and dashed lines, respectively. The increase of LikleihoodWM is
earlier than that of Likleihood and it can be said that the prediction of collapse
in helium discharge is improved by using weighted-mean method.
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Figure 3.31: The result summary of ES with dataset with only helium plasma.
The left graph shows the best F1-score among combinations of K parameters.
The horizontal dashed line shows the F1-score with all 16 parameters (K = 16).
The right diagram shows the combination that gives the best F1-score among
combinations of K parameters, which correspond to the left graph. The color
bar corresponds to the weight w′ in eq. 2.12.

Figure 3.32: Verification results for LikelihoodH, LikelihoodD, LikelihoodHe, and
LikelihoodWM fixing threshold value to 0.8.
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Figure 3.33: The waveforms of likelihood in helium discharge (#159149).
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Figure 3.34: Cooling rate of carbon (C), oxygen (O), and iron (Fe) against
electron temperature (based on [5]).

3.4 Discussion of physical background of radiative
collapse

According to the decision function (3.1), light impurities, especially carbon, seem
to be important. This result agrees with previous theoretical research [19]. The
light impurities are main radiators at the plasma edge region, and Te,edge has
been selected by ES. Especially in LHD, carbon is major radiator since the
plasma facing material of divertor plates is isotropic graphite [80]. It should be
noted that most of the Te,edge values used in the dataset are distributed around
100 eV, while the radiation rate of carbon has the first peak around 10 eV in
equilibrium state, as shown in Fig. 3.34 [5].

The behaviors of plasma and carbon impurities outside the LCFS have been
evaluated by the EMC3-EIRENE [81–83] code. EMC3-EIRENE solves a steady-
state distribution of the plasma and impurity using fluid equations along mag-
netic field lines and with cross-field diffusion, and determines a distribution of
the neutral particles by the Monte-Carlo scheme. The calculations were con-
ducted eight time slices in the discharge with a radiative collapse in LHD, which
is shown in Fig. 3.35. The magnetic configuration of this discharge is as follows:
the magnetic axis position was Rax =3.6m and the magnetic field at the mag-
netic axis in vacuum was 1.375T. Around 4.6 s, a radiative collapse occurred
and the plasma went to termination. The dotted lines in the figure correspond to
the time slices when the plasma behavior is calculated by the EMC3-EIRENE.
The calculation time window has been selected to cover the time range when
the collapse likelihood grew from zero to one. In these simulations, the diffusion
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coefficient of carbon DC and the carbon sputtering yield were fixed so that the
distribution of C6+ ion becomes close to that was measured by charge exchange
spectroscopy [84] at 4.31 s. Note that the impurity source is at the divertor
plates. The absorbed power of NBI heating is estimated by TASK3D, which is
an integrated transport simulation code [85], for each time slice. It has been
confirmed that the total radiation power calculated at each time slice (shown by
crosses) agrees with those measured by a bolometer, shown in the bottom panel
of Fig. 3.35.

Figure 3.35: The waveform of reference discharge with radiative collapse for
EMC3-EIRENE simulation. The crossed in the bottom panel shows the total
radiation power calculated at each time slice.

Since the CIV line emission has been selected as the feature parameter by ES,
the behavior of C3+ ion, which corresponds to the CIV line emission, has been
mainly investigated. Figure 3.36 shows the calculated distributions of C3+ ion
near the outer X-point at the horizontally elongated cross-section with double
null points on the equatorial plane for each time slice. The regions where C3+ ions
are accumulated expand as time goes. Then two peaks appear above and below
the midplane, and finally, these two separated peaks marge on the midplane.

Figure 3.37 shows the distributions of electron density, electron temperature,
cooling rate of C3+ ion (LC3+), C3+ ion density, nC3+ , and radiation power by
C3+ (PC3+), at the beginning (4.31 s) and the end (4.51 s) of the change of the
likelihood. Here, LC3+ has been calculated based on atomic data in OPEN-
ADAS [86], and PC3+ is used as an alternative of CIV line emission in this
discussion. As the plasma is getting close to the collapse, electron density ne
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Figure 3.36: The calculated distributions of nC3+ near the outer X-point of LHD
at each time points shown by dotted lines in Fig. 3.35.

and temperature Te increased and decreased respectively. The distributions of
nC3+ and PC3+ at 4.51 s are similar to each other, while those at 4.31 s are quite
different.

There are two major difference between the relationships of nC3+ and PC3+

at 4.31 s and 4.51 s. The first one is that PC3+ at 4.31 s and 4.51 s are different
in the region with similar nC3+ of about 4× 1016m−3. According to (1.15), the
radiation power is defined not only by the impurity ion density nimp but also
electron density ne and cooling rate LZ , which is a function of Te [19]. Therefore
PC3+ increases while nC3+ stays similar in time because of the change of ne and
Te in this region. In the region where PC3+ increases, ne increases to around
4× 1019m−3 and Te decreases to around 10 eV or less, according to Fig. 3.37.
This results is consistent with the temperature at the maximum cooling rate
of carbon. This temperature range lies below the region subject to the present
estimation of the likelihood and the previous researches of density limit [18].
Note that the decrease in Te is not equal to the increase in LC3+ , as shown in
Fig. 3.37 (c) and (h). Therefore, the increase in ne in this region seems to play
an important role in the occurrence of radiative collapse.

The second one is that there are two peaks in distributions of nC3+ and
PC3+ at 4.51 s. This indicates the increased concentration of C3+ ions can cause
high radiation. To understand the cause of the peaking of C3+ ion, the profiles
of nC3+ and ionization rate from C2+ to C3+, which is the main source of the
C3+ ion, along the flux tube which goes through the peak of nC3+ in z > 0m
at 4.51 s have been investigated. The 3D view of the flux tube along which
these profiles have been investigated is shown in Fig. 3.38, and the temporal
changes of these profiles are shown in Fig. 3.39. The flow of C3+ ion has the
negative direction along the flux tube, which means the flow direction is against
the direction of toroidal magnetic field. The zero points of horizontal axes in
Fig. 3.39 corresponds to the peak in horizontally elongated cross-section shown
in Fig. 3.36. The density at the peak increased with time, while the ionization
rate has a peak upstream of the peak of the density. The peak of ionization
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Figure 3.37: Simulation results near the outer X-point of LHD of (a, f) electron
density, (b, g) electron temperature, (c, h) C3+ cooling rate, (d, i) C3+ ion
density, and (e, j) radiation power by C3+ ion at (a, b, c, d, e) 4.31 s and (f, g,
h, i, j) 4.51 s.

rate has the largest value at 4.485 s, which corresponds to the largest change
of nC3+ occurred between 4.46 s and 4.485 s. This similarity indicates that the
distribution of C3+ ion is defined by the change of upstream transport of C3+

ion. Here, the ionization rate from C2+ to C3+ depends on nC2+ as well as ne and
Te. Therefore, more investigation of 3D impurity transport considering atomic
model in stochastic layer is necessary to understand the role of carbon impurity
leading to radiative collapse.

Validity of simulation results

To validate the reliability of the simulation results, synthetic reproduction of the
measured values of feature parameters (n̄e, CIV, OV, and Te,edge) from the calcu-
lation results of EMC3-EIRENE has been attempted. Using these reconstructed
values, the collapse likelihood has been estimated based on the simulation results
to compare with the likelihood calculated based on the measured value.

For n̄e and Te,edge, the lines of sight of FIR measurement and Thomson
scattering measurement have been reproduced as shown in Fig. 3.40. Te,edge

is defined as an mean value of Te at inboard and outboard sides of LCFS at
vacuum, shown as crosses in Fig. 3.40（b）, which is as same as the definition
used in construction of the dataset.

In the simulation, the abundance of oxygen impurities is negligibly small.
Therefore contribution of OVI line emission to the likelihood is neglected in
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Figure 3.38: 3D model of the flux tube along which the profiles of nC3+ and
ionization rate from C2+ to C3+ have been investigated. The black solid line
represents the range of the flux tube shown in Fig. 3.39. The red cross shows
the peak of nC3+ in the horizontally elongated cross-section, which corresponds
to the zero points of horizontal axes in Fig. 3.39. The inner wall structure of the
horizontally elongated cross-section is drawn with red line.

Figure 3.39: The temporal changes of profiles of nC3+ and ionization rate from
C2+ to C3+ along the flux tube which goes through the peak of nC3+ at 4.51 s
in the simulation.
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(a) ne and line of sight of FIR
measurement.

(b) Te and line of sight of Thomson scattering measure-
ment.

Figure 3.40: Line of sight (LoS) of (a) FIR measurement and (b) Thomson
scattering measurement reproduced on EMC3-EIRENE result at 4.51 s. The X
points in (b) correspond to the position of the LCFS in vacuum on the LoS.

this validation. Besides, CIV line emission measurement has been estimated by
reproducing the viewing area of VUV spectroscopy measurement. The detail of
the viewing area of VUV spectroscopy system is described in [87]. Figure 3.41
shows the reproduced viewing area as the region between black solid lines. As
estimation of CIV measurement, CIV line emission in the viewing area has been
summed up.

Figure 3.42 shows the comparison between measured value in the experi-
ment and EMC3-EIRENE results. As shown in panels (c) and (d) in Fig. 3.42,
estimated n̄e and Te,edge approximately match to the measured values. It is
reasonable that the estimated and measured n̄e values are similar since the ne

profile at each time slice is given as a input parameter to the simulation code.
On the other hand, the increase of the estimated CIV line intensity by time is
smaller than that of the measured value, as shown in panel (e) in Fig. 3.42. Here,
the estimated CIV line intensity has been normalized to make it match with the
measured value at the first time slice (4.31 s).

The collapse likelihood and the decision function value are shown in Fig. 3.42 (a)
and (b), respectively. According to these graphs, the estimated values are also
increasing during the time when the actual values are increasing. However, the
amount of the rise in the reproduced likelihood and the decision function are
smaller than these of the actual values. At the final time slice (4.51 s), the like-
lihood reached only 0.64. It seems that the cause of the lower likelihood than
the actual one is the fact that the estimated increase in CIV line emission is less
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Figure 3.41: Reproduced viewing area (between black solid lines) and CIV line
emission on the plane including optical axes of the VUV spectrometer.
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than the measured value.
One possible reason why the increase in the measured CIV line emission

is greater than the reproduced one is the existence of a non-linear event while
plasma approaches the collapse. Figure 3.43 shows raw and resampled signals of
CIII, CIV, OV, and OVI line emissions. The resampled signals are usually used in
the present study and shown in Fig. 3.42 as “EGdata.” At around 4.5 s, impurity
line emission signals increased temporally, which is different from the reproduced
CIV line emission shown in Fig. 3.42 (e). While the reason for this transient
change has not been specified yet, there seemed to be some non-linear event,
such as a change of diffusion coefficient by turbulence, which the EMC3-EIRENE
cannot simulate. This hypothesis is supported by the observation described in
section 3.2.3.
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Figure 3.42: Comparison between real (measured) value (blue lines) and EMC3-
EIRENE results (red crosses) of (a) collapse likelihood, (b) value of decision
function, (c) n̄e, (d) Te,edge, and (e) CIV. The black line in (a) represents Wp.
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Figure 3.43: Temporal changes of (a) collapse likelihood, (b) line averaged elec-
tron density n̄e and stored energy Wp, (c) CIII line emission, (d) CIV line emis-
sion, (e) OV line emission, and (f) OVI line emission. Blue and red lines in
panels (c)–(f) represents raw and resampled signals, respectively.

74



Chapter 4

Prediction and feature
extraction of high-beta
disruption in tokamak plasmas

4.1 Disruption prediction in JT-60U

4.1.1 High-beta experiment in JT-60U

Disruptions in high-beta plasma in JT-60U has been mainly investigated in the
present research. It is known that high-beta disruption has less obvious precur-
sors than other types of disruptions such as density-limit disruptions and vertical
displacement event (VDE) disruptions [88]. The difficulty of detection of precur-
sors is catenated with difficulties in predicting disruption and identifying beta
limit.

To construct the dataset to train a machine-learning model, the experiments
in which suppression of the resistive wall mode (RWM) has been attempted by
driving toroidal rotation of plasma with neutral beam injection (NBI) have been
considered. Here, the RWM is one of magnetohydrodynamic (MHD) instabilities
which grows with a growth time corresponding to the skin time of the resistive
wall. Normalized beta βN (1.13) is limited by ideal kink-ballooning instability,
which is a MHD instability with a low toroidal mode number n. This limit of
operational beta is called “no-wall” beta limit βno-wall

N . In ideal MHD case, the
kink-ballooning instability is stabilized by eddy current in a conducting wall with
perfect conductivity. The operational beta limit with the ideal-conducting wall is
called “ideal-wall” limit βideal-wall

N . In the realistic devices which have conducting
wall with a finite resistivity, the eddy current in the wall will be disappear and
the stabilizing effect is lost. The finite resistivity of the conducting wall induces
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another instability, that is, the RWM. It is shown that the RWM is suppressed
by plasma rotation in DIII-D [89].

In this study, 36 plasma discharges were identified as “disruptive” discharge
with the criterion that plasma currents shut down with their decay times shorter
than 40ms. Here, only current quenches during the flattop phase with an Ip
of 0.9MA have been taken into account. The occurrence of current quench is
defined as the time at which plasma current falls below 95% of the flattop current.
The decay time is defined as the time divided by 0.6 from the occurrence of
current quench to the time plasma current falls below 40% of flattop current [90].
By this criterion, 5% of available discharges in which plasma current shut down
have been employed in the dataset. The discharges taken into the dataset are
75% of available discharges in which plasma current shut down. On the other
hand, 61 plasma discharges in which the plasma current is controlled to be
stationary at 0.9MA, are defined as “non-disruptive” discharges.

In the present experiments, no-wall limit and ideal-wall limits are given as
βno-wall
N ∼ 3li and βideal-wall

N ∼ 4li by stability analysis using MARG2D [91–93].
Here, li is the internal inductance defined as follows:

li =
⟨B2

p⟩
B2

p(a)
, (4.1)

where Bp is the poloidal magnetic field, a is the minor radius, and the angular
brackets signify taking a volume average. Since the li depends on the profile
of Bp, li corresponds to the profile of plasma current profile. Figure 4.1 shows
normalized beta βN plotted against the internal inductance li for discharges in
the dataset. According to Fig. 4.1 the data are disruptive discharges mainly
distribute above dashed line, which corresponds to the no-wall beta limit.

The 14 plasma parameters listed in Table 4.1 have been considered in the
dataset. For some of these parameters, such as βN and q95 are obtained by
equilibrium calculation, and the |Bn=1

r | value is the amplitude of n = 1 mode
on magnetic fluctuation Br. It is the Fourier-decomposed magnetic fluctuation
signal Br, which was detected by toroidally distributed saddle loops [92].

In JT-60U, it is shown that the rotation at the q = 2 surface can suppress
the RWM [94]. Therefore, four radial profile parameters at around the q = 2
rational surface consist of Vt, Ti, ρq=2/a, and s, where q is the safety factor, are
taken into account. For these parameters, the volume-averaged minor radius ρ
is used as a radial index and is calculated as follows:

ρ =

√
V (Ψ)

2π2R
. (4.2)

Here, V (Ψ) is plasma volume surrounded by magnetic surface Ψ and R is the
major radius. Ion temperature Ti at the q = 2 rational surface is around 2 keV
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Figure 4.1: Normalized beta βN against the internal inductance li in the an-
alyzed dataset. Orange and blue dots show data points from disruptive and
non-disruptive discharges, respectively. The dashed and solid lines show no-wall
beta limit and ideal-wall beta limit, respectively.
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Table 4.1: Plasma parameters used in the machine learning model [3]

Range of training data

Name of parameters Expression Min. Max.

Plasma current [MA] Ip 0.70 1.01

Normalized beta βN 0.58 3.29

Plasma internal inductance li 0.80 1.26

Safety factor at 95% of poloidal

flux

q95 3.07 4.33

Plasma triangularity δ 0.28 0.46

Plasma elongation κ 1.30 1.49

Magnetic perturbation ampli-

tude (n = 1) [mT]

|Bn=1
r | 0.00 1.44

Ratio of electron density to the

Greenwald density limit

fGW = n̄e/nGW 0.31 1.66

Ratio of radiated power to total

input power

frad = Prad/Pinput 0 0.47

Speed of toroidal plasma

rotation[×105m/s] ∗
|Vt| 0.00 0.60

Direction of toroidal plasma

rotation∗ ∗∗
exp (Vt/|Vt|) 1/e e

Ion temperature[keV] ∗ Ti 0.59 3.21

Radial location of q = 2 rational

surface normalized by the minor

radius of plasma surface a

ρq=2/a 0.46 0.80

Magnetic shear∗ s 0.56 2.10

∗ For those parameters, values on rational surface where safety factor equal
two, which is obtained by equilibrium calculation assuming q = 1 at plasma
center, are used.
∗∗ For taking logarithms of this parameter in training process, exponential of
the value has been taken.
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and is distributed from 0.59 keV to 3.21 keV. In order to take logarithms of the
velocity of toroidal rotation Vt, Vt has been separated into two parameters, that
is, the speed of rotation |Vt| and the direction of rotation Vt/|Vt|. Note that
the profile of q is obtained by equilibrium calculation assuming q = 1 at plasma
center in this process.

Although there are some data with a high (over 1) fGW value or high (over
1mT) |Bn=1

r | value, those data will be ignored in the training of machine learning
models and these discharges will be judged as extraordinary discharges in the
evaluation.

4.1.2 Feature extraction of disruption in JT-60U

Evaluation of predictive performance

In the ES to extract feature parameters of disruption prediction in JT-60U, the
combinations of parameters have been compared each other in not F1-score but
prediction performance. A disruption predictor is required to predict disruptions
faster and more accurately and not to issue an alarm accidentally if it is not
disruption. For measuring the prediction performance, the prediction success
rate (PSR) and the false alarm rate (FAR) have been used in this chapter,
defined as follows:

Prediction Success Rate (PSR)

=
Number of shots correctly judged as disruptive

Total number of disruptive shots
, (4.3)

False Alarm Rate (FAR)

=
Number of shots incorrectly judged as disruptive

Total number of non-disruptive shots
. (4.4)

PSR is the ratio of the number of shots correctly judged as disruptive by the
specific time of interest to the total number of disruptive shots. On the other
hand, FAR is the ratio of the number of shots incorrectly judged as disruptive
by the specific time of interest to the total number of non-disruptive shots.
These measures were used in previous studies to predict high-β disruptions using
artificial neural networks [26,30].

When the predictor shows the ideal performance, PSR = 100% and FAR =
0%. Therefore, the distance from the ideal performance is defined as follows:

Distance ≡
√
(100− PSR)2 + FAR2. (4.5)
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Figure 4.2: The summary of ES-K-SVM. The left graph shows the minimum
distance from the ideal performance among combinations of K parameters. The
right diagram shows the combination that gives the minimum distance from the
ideal performance among combinations of K parameters, which correspond to
the left graph. The color bar corresponds to the weight w′ in eq. 2.12.

Result of feature extraction of disruption in JT-60U

Figure 4.2 shows the summary of the result of ES-K using SVM (ES-K-SVM).
Here, the prediction performances have been compared at 30ms before the refer-
ence time. The left graph of Fig. 4.2 shows the minimum distance from the ideal
performance among combinations of K parameters. According to the graph,
the distance from the ideal performance almost saturated at around K = 4,
and it becomes worse using 11 or more parameters. The right diagram shows
the combination that gives the minimum distance from the ideal performance
among combinations of K parameters, which correspond to the left graph. Each
column corresponds to each combination and the colored parameters mean to
be included in the combination. The color bar corresponds to the weight w′ in
(2.12).

Figure 4.3 (a) is referred to as a two-dimensional (2D) density of state (2D-
DoS) diagram, which is a 2D histogram with PSR as the vertical axis and FAR
as the horizontal axis. The left top corner corresponds to the ideal performance
(PSR = 100% and FAR = 0%). The color of each square corresponds to the
number of combinations within the square. Figure 4.3 (b) shows the parameters
included in the top 20 combinations in Fig. 4.3 (a) and is referred to as a weight
diagram. The color bar corresponds to the weight w′ in (2.12).

According to Fig. 4.3, a combination of four parameters, that is, βN, κ,
Ti, and s, is dominant in the in the top 10 combinations. This means these
parameters are the key parameters to predict disruption and it is implied that
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Figure 4.3: (a) 2D-DoS diagram and (b) corresponding weight diagram of ES-6-
SVM at 30ms before disruption occurs [3].

these parameters could characterize the condition of disruption. Using those
four parameters, the equation of decision boundary between disruptive and non-
disruptive classes is obtained as fexp(x) = 1, where fexp is as follows:

fexp = exp (−19.1) β6.32
N κ39.6T−2.48

i s−2.43. (4.6)

4.1.3 Disruption likelihood

Using these four extracted parameters, the characteristics of high-beta disruption
in JT-60U has been discussed in terms of disruption likelihood. This likelihood is
different from the “disruptivity”, which was discussed in previous studies about
the operational limit against disruptions [45,46].

The calculation procedure of disruption likelihood is as same as that of col-
lapse likelihood, described in section 3.1.3. Figure 4.4, the distribution of values
of the decision function (4.6) in the dataset is shown in the bottom panel. Here,
the value of the decision function corresponds to the distance from the decision
boundary between the disruptive and non-disruptive regions. In the upper panel
of Fig. 4.4, the percentage of disruptive data in each region of bars is shown with
its fitted curve by a sigmoid function. The approximate function is expressed as
follows:

yfit =
1

1 + exp {−4.02 (log10 fexp(x) + 0.1319)}
. (4.7)
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Figure 4.4: (lower) The distribution of values of the decision function shown
in (4.6) when each data in the dataset is input and (upper) the percentage of
disruptive data in each region of bars. The curve in the upper figure is a fitted
curve of the percentage of disruptive data. The function being expressed is also
shown in the figure [3].

This likelihood is the expansion of the binary classifier to the predictor model
with continuous value expression. The identified expression of likelihood quan-
tifies the proximity to disruption, in other words, the risk of disruption. The
likelihood expressed by measurable parameters is prerequisite for development
of the control system to avoid disruption by means of multiple actuators [95].

In Fig. 4.5, the likelihood is expressed as a color contour on the plane of
βN and the term of other extracted parameters, that is, κ, Ti, and s along with
(2.2). The likelihood shows that the higher ion temperature and magnetic shear
can extend the βN region with low disruption likelihood. Although this seems
to go against the knowledge that the high elongation raises βN, it should be
pointed out that this trend means that lower elongation could bring a safer high
βN discharge but not that lower elongation leads to higher βN.

Figure 4.6 shows the typical discharge with disruption in JT-60U and the
disruption likelihood approaches unity before the occurrence of disruption. The
data points correspond to the points calculated for the dataset.

82



Figure 4.5: The contour plot of the likelihood of disruption against βN and the
terms of other extracted parameters. The red crosses and blue dots show data
points from disruptive and non-disruptive discharges, respectively. Note the e
in the label of vertical axis is Napier’s constant [3].
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Figure 4.6: Typical discharge with disruption in the JT-60U plasma experiment
targeted in this research. The black crosses in the top panel shows the disruption
likelihood, which is estimated within 200ms before the current quench [3].
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4.2 Comparison of extracted features of disruptions
in JT-60U and DIII-D

4.2.1 Feature extraction of disruption in DIII-D

High-beta disruptions in DIII-D

In the present research, the features of high-beta disruptions have been compared
between JT-60U and DIII-D. The purpose of cross-machine comparison of feature
extraction is to examine whether the extracted feature from a device is device-
specific or universal.

DIII-D is a tokamak device in San Diego, US, which is smaller than JT-60U.
The major and minor radii for DIII-D are 1.67m and 0.67m, respectively, while
they are 3.4m and 1.1m, respectively, for JT-60U [96,97].

From DIII-D database, high-beta disruptions, in which maximum βN is larger
than three times li, has been selected to construct a dataset. For all shots, the
data were sampled every 25ms, starting from 100ms after the discharge starts.
In disruptive shots, additional sampling with interval of 2ms for the 100ms
before the disruption. The parameters used in the dataset have followed the
case of JT-60U (shown in Table 4.1), while ρq=2/a and s were omitted because
of missing data.

Result of feature extraction

In the ES using DIII-D dataset, the combinations of parameters have been com-
pared in F1-score. Figure 4.7 shows the summary of the result of ES-K-SVM
using DIII-D dataset. According to the graph, the F1-score exceeds that with
all parameters and almost saturated at K = 5. Around K = 5, some parameters
are included in common in the top combination for each K, that is, βN, q95, |Vt|,
and Ti.

Figure 4.8 shows the result of ES-6, which is ES-K with K = 6. The blue
bars in the left diagram show the distributions of F1-score using five parame-
ters. Among most of the top combinations of ES-6 results, βN, q95, |Vt|, and
Ti are included in common. In addition, the red bars in the left diagram show
the combinations including these four parameters and these combination shows
the better F1-score than other combinations. Therefore, these four parameters
are relevant to the prediction of radiative collapse as the key parameters. The
equation of decision boundary between disruptive and non-disruptive classes is
obtained as fexp(x) = 1 with these four parameters, where fexp is as follows:

fexp = exp (−3.47) β−1.40
N q−3.01

95 T 1.53
i |Vt|−0.862. (4.8)
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Figure 4.7: The result summary of ES. The left graph shows the best F1-scores
for each K. The right diagram shows the parameters included in the each combi-
nations correspond to the left diagram. The color bar corresponds to the weight
w′ in eq. 2.12.

In the previous study in DIII-D, the disruption prediction using random
forests (DPRF) was developed and it showed a F1-score of 0.87 with a validation
dataset [39]. In this study, normalized perturbed radial field of non-rotating
modes, safety factor at the 95% flux surface, and Greenwald density fraction
were selected as the most contributing parameters. Although the training dataset
used to develop DPRF was broader than that in the present study, the extracted
feature is totally different and the F1-score achieved in the present study is
better than that of DPRF. This result suggests that it is possible to predict
disruptions more accurately by using feature parameters particular to the causes
of disruptions.

4.2.2 Comparison of extracted features between JT-60U and
DIII-D

Comparing the result of ES and decision functions shown in (4.6) and (4.8),
there are two major difference between extracted features of high-β disruptions
in JT-60U and DIII-D.

The first one is the sign of the weight of βN and Ti. In JT-60U case, the
decision function (4.6) can be interpreted as the higher βN and the lower Ti

lead to disruption. On the other hand, the signs of weights of βN and Ti in the
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Figure 4.8: The result of ES when K = 6. The blue and red bars in the left
diagram show the distributions of F1-score with five parameters and that with
the combinations including βN, q95, |Vt|, and Ti, respectively. The right diagram
shows the parameters included in th top 20 combinations in the F1-score. The
color bar corresponds to the weight w′ in eq. 2.12.
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(a) Disruption from high-βN (b) Disruption with early βN decay

Figure 4.9: Waveforms of disruptions in DIII-D.

decision function of DIII-D case (4.8) are opposite to those in (4.6). Especially,
the negative weight of βN seems not reasonable with physical knowledge.

One possible reason why this difference occurred is that there may be more
than one cause of disruptions in the DIII-D dataset. Figure 4.9 shows two
disruptive discharges in DIII-D included in the dataset. Figure 4.9（a） shows
a disruption from high-β state, which is mainly considered in JT-60U case. On
the other hand, in the disruption shown in Fig. 4.9（b）, a decay of βN (thermal
collapse) and increase of |Bn=1

r | occurred in advance of collapse of Ip. It is
necessary to consider whether these disruptions have the same cause or not to
explain the difference between JT-60U and DIII-D results.

The second big difference is that the rotation velocity |Vt| is not included in
feature parameters in JT-60U case while |Vt| has been extracted as one of key
parameters in DIII-D case.

Since the dataset used in JT-60U case consists of high-β experiments in which
suppression of RWM has been attempted by plasma rotation, it was expected
that |Vt| is extracted as a key parameter. In these experiments in JT-60U, those
local values at the q = 2 rational surface have been used since the mode structure
of precursor oscillation is localized at the q = 2 rational surface. This mode is
the energetic particle driven wall mode (EWM), which is thought to be one cause
of RWM and lead to disruption in these experiments [92]. Here, the position of
the q = 2 rational surface is provisionally evaluated by the equilibrium analysis
assuming q(ρ = 0) = 1 while direct measurement of the poloidal magnetic field
by the motional Stark effect (MSE) shows that q(ρ = 0) is larger than unity,
as shown in Fig. 4.10. Therefore, the real location of the q = 2 surface would
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be located inside this provisional estimate. However, it is pointed out that the
profiles of Vt and Ti are peaked and s increases monotonically with the minor
radius and local values used in the present analysis change gradually in space.
Since the ambiguity of the location of q = 2 surface and accompanied errors of
local values are systematically in the same direction, even the present analysis
would not lead to qualitative misunderstanding. In DIII-D case, q profile by MSE
measurement has been used to find out q = 2 position. For further discussions,
precise identification of the location of the q = 2 surface is required.
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Figure 4.10: Profile of safety factor q obtained by (blue) equilibrium calculation
assuming q = 1 at plasma center and (orange) direct measurement of the poloidal
magnetic field by the motional Stark effect.
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Chapter 5

Conclusion

To realize a fusion reactor, it is necessary to avoid the occurrence of abrupt
termination events such as radiative collapses in stellarator-heliotron plasmas
and disruptions in tokamak plasmas. Since the mechanism of the collapses has
not been completely elucidated yet, data-driven predictions of the occurrence of
collapses have been studied based on experiment data using machine learning
techniques.

In the present study, prediction and feature extraction of radiative collapses
in LHD and high-beta disruptions in JT-60U are discussed to show that the data-
driven approach can be applied to a variety of abrupt terminations phenomena.
The prediction has been treated as a classification problem that divides data
into two classes, that is, stable or approaching the termination. To improve the
prediction performance and facilitate the physical discussion of the prediction
results, exhaustive search (ES) , which is one of the sparse modeling techniques,
has been employed. Moreover, the likelihood of abrupt terminations has been
quantitatively evaluated using the feature parameters, which makes it easy and
flexible to apply the binary classifier model to prediction and control.

In chapter 2, machine learning techniques that are used in the present study
are explained. A linear support vector machine has been trained with logarith-
mic data to express the boundary between two classes as a exponential-formed
equation. While the number of combinations that are compared in ES expo-
nentially increases when the number of parameters increase, a extension of ES
named “ES-K” has been employed to avoid this combination explosion risk.

Chapter 3 describes prediction and feature extraction study of radiative col-
lapses in high-density experiments in LHD. A predictor model has been de-
veloped based on feature parameters extracted by ES, that are, n̄e, CIV, OV,
and Te,edge, and the collapse likelihood has been quantitatively evaluated using
these feature parameters. The predictor which calculates the likelihood in real
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time has been used to avoid radiative collapse in LHD experiments. Changes in
plasma leading to collapse have been discussed and it has been suggested that the
growth of the fluctuation (or turbulence) in the edge region plays an important
role in the mechanism of the occurrence of the radiative collapse. It has been
also discussed that the behaviors of plasma and carbon impurities in the edge
region when the plasma approaching the collapse using EMC3-EIRENE code.
The existence of a non-linear phenomenon, which the EMC3-EIRENE cannot
simulate, when plasma approaches collapse has been suggested by comparing the
simulation results and the experimental results.

In chapter 4, prediction and feature extraction of disruptions in high-beta
experiments in JT-60U has been described. By ES, feature parameters of high-
beta disruption in JT-60U has been extracted and the disruption likelihood has
been quantified. The extracted features have been compared withe those of high-
beta disruptions in DIII-D tokamak. Because of the ambiguity of the location of
q = 2 surface, precise identification of q profile is required to discuss the physical
linkage between the occurrence of disruptions and the local parameters such as
|Vt| in detail.

This thesis has shown that the data-driven approach is useful to predict a
variety of abrupt termination phenomena, such as radiative collapses and dis-
ruptions, for avoidance and mitigation. It has been also shown that the sparse
expressions extracted from data is helpful to discuss physical mechanisms of
these abrupt termination phenomena. More investigation using data-driven ap-
proaches, especially feature extraction techniques, will reveal the common physi-
cal background which underlies the abrupt termination events. For this purpose,
comparison of extracted features over various fusion devices will be important.
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Appendix A

Extrapolability of radiative
collapse prediction

High extrapolability is one of the desired properties of the collapse predictor.
To evaluate the extrapolability of the collapse predictor developed in chapter 3,
the ES-SVM has been conducted again with the low density data, in which line-
averaged electron density limited to ne < 6.0× 1019m−3. Here, the limited-data
is equivalent to 80% of the dataset described in section 3.1.

As a result of ES-SVM, four parameters have been selected as feature param-
eters, that is, n̄e, Prad/Pabs, ∆sh, and Te,edge, which is different from the result
described in section 3.1. Table A.1 shows the performance of SVMs trained with
low-density data consisting of two combinations of parameters, evaluated with
low-density(ne < 6.0× 1019m−3) and high-density (ne > 6.0× 1019m−3) data,
respectively. The first combination is the combination which is extracted by ES-
SVM with low-density data, that is, n̄e, Prad/Pabs, ∆sh, and Te,edge. The second
one is the parameters selected based on the whole dataset, that is, n̄e, Prad/Pabs,
∆sh, and Te,edge, described in section 3.1.

Trained with the first combination, the SVM shows 0.967 accuracy and 0.844

Table A.1: Results of classification by SVM trained with ne < 6.0× 1019m−3

data.

Parameters Data range F1-score Accuracy

n̄e, Prad/Pabs, ∆sh, and Te,edge ne < 6.0× 1019m−3 0.844 0.967

ne > 6.0× 1019m−3 0.824 0.811

n̄e, CIV, OV, and Te,edge ne < 6.0× 1019m−3 0.802 0.963

ne > 6.0× 1019m−3 0.860 0.858
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F1-score against the low-density data. Against the high-density data, both ac-
curacy and F1-score becomes worse. This fact implies the feature parameters
extracted based on low-density data have low extrapolability.

Note that the decision boundary using the second combination does not
match with (3.1). Nevertheless, the SVM trained with the second combination
shows a higher F1-score against the high-density data than that against the low-
density data. The accuracy against the high-density data is worse than against
the low-density data, while it is better than that of SVM trained with the first
combination. This result suggests that this combination is reflecting the feature
of radiative collapse in not only low-density but also high-density plasma.

In consequence, the extrapolability of the ES-SVM technique is not so high,
therefore it is desirable to extract features from wide range of data.
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