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Abstract

The twenty-first century has seen a rapid and widespread development of automated intelligent

systems, such as computer-assisted diagnosis, object detection, speech recognition, and automated

translation. Many of such systems are powered by statistical machine learning, a paradigm in which

various methods for learning from data have been developed. The designs of statistical machine

learning parallel inductive inference in logical reasoning: learning from observations — the training

data — and drawing conclusions about the unobserved — the testing instances.

For inductive reasoning to be helpful, some “uniformity of nature” principle is required. In

statistical machine learning, or more generally in statistics, analogues of such a uniformity principle

are embedded in one form or another, such as an assumption that the data is an independent and

identically distributed sample of a probability distribution or that one should be a rational decision-

maker. Corresponding to each of such different premises, reasonable inferential rules — the learning

methods — have been derived.

Causality is a form of such a uniformity principle, which is distinctive in humans’ course of

thinking and perception of the world. What is causality? Some philosophical theories of causation

emphasize that causality is about difference-making : without the cause, the effect would not have

happened. In particular, some view causal relations as potential routes by which the world can be

manipulated or controlled, i.e., difference-making about what potential outcome is realized by some

intervention. Others emphasize that causality is about production: causes bring about their effects.

In particular, some appeal to the concept of causal mechanisms, i.e., complex systems producing

some behaviors through invariant direct interaction of a number of parts, as is often considered in

the explanatory practices of the special sciences.

Founded by these two viewpoints of philosophical theories of causality, namely interventions and

mechanisms, the statistical frameworks of causal modeling have been developed since the end of the

20th century. Such frameworks enable natural formulations of causality-related quantities based on

probability theory, such as the average difference made by an intervention.

The pragmatic utility of acquiring the knowledge of such intervention-related quantities is rather

apparent: one can use it for making informed decisions about the actions, e.g., answering questions

such as what intervention to perform to get a favorable result. From this viewpoint, the knowledge

of detailed mechanisms is only a means to infer the consequences of our interventions. On the

other hand, our intellectual curiosity to learn about the causality of nature seems to go beyond

the pragmatic utility of knowing interventionistic quantities. Indeed, elucidating a mechanism has

been a gold standard for explanations in scientific practice, even when making interventions is not

necessarily an immediate target in such fields.

Then, a natural question arises: are there pragmatic motivations for finding out the detailed

causal mechanisms when the knowledge may not be relevant to any interventions we can implement?

This dissertation provides a partial but concrete answer: the knowledge of causal mechanisms can

facilitate learning from small data in statistical machine learning for predictive modeling. We

provide the answer by designing the methods to incorporate the knowledge encoded in statistical

causal models into the learning process.
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Learning from small data, despite the rapid progress in the methodology of machine learning,

remains a fundamental challenge in the field. When data is limited in quantity, it is essential to

incorporate appropriate prior knowledge about the nature of the data in order to learn an accurate

predictor. In this dissertation, we approach the small-data learning problem from the perspective

of exploiting known or acquired causal knowledge. The general idea is to incorporate the statistical

independence relations implied by the statistical causal models into the machine learning procedures

by developing data augmentation strategies.

The following is the chapter organization. Chapter 1 provides the conceptual background and

declares the central statement of this dissertation, and it is followed by Chapter 2, where we re-

view the structural causal framework of statistical causal modeling. Specifically, we introduce two

interrelated formulations: structural causal models (SCMs) and graphical causal models (GCMs).

The two types of models form a hierarchy: SCMs capture the quantitative knowledge of the data-

generating mechanisms expressed using deterministic functions, and GCMs retain only the coarser

qualitative knowledge of the dependency relations in the data-generating mechanisms expressed

using a graphical representation.

Following these introductory chapters, in the main Chapters 3 and 4, we develop the proposals

for exploiting the knowledge of the causal models for supervised machine learning. Concretely, in

Chapter 3, we consider the case that the graphical representation of a GCM is either estimable or

known thanks to domain experts. In Chapter 4, we consider the case that partial knowledge of

the deterministic functions of an SCM is estimable from the data of a relevant domain. When the

GCMs or SCMs characterizing the data-generating mechanisms are (partially) known, we can infer

some properties of the probability distribution of the data, namely certain statistical independence

relations. However, it is not straightforward to incorporate such knowledge into predictive model-

ing. Therefore, in these chapters, we introduce data augmentation methods that allow us to exploit

the knowledge encoded in the causal models for supervised machine learning in a manner that is

independent of the predictor’s model class which we use. The proposed methods enjoy theoretical

guarantees of excess risk bounds indicating that the proposed methods suppress overfitting by re-

ducing the apparent complexity of the predictor hypothesis class. Using real-world data conforming

to the problem setups, we also provide numerical experiments showing that the proposed method

effectively improves the prediction accuracy, especially in the small-data regime.

We dedicate Chapter 5 to presenting a theoretical result that reinforces the justification of the

method of Chapter 4, which relies on the modeling technique called invertible neural networks

(INNs). As a recently emerged function approximation model, the INNs had not been given a

theoretical guarantee of their representation power, i.e., whether the model class theoretically has

sufficient flexibility to approximate various complex functions. This was a critical concern that could

undermine the applicability of the proposed method of Chapter 4 to a broad range of applications.

The results in Chapter 5 are affirmative: the INNs used in Chapter 4 enjoy a theoretical repre-

sentation power guarantee, namely that they are universal approximators for a fairly large class of

smooth invertible maps. We use Chapter 5 to discuss this result in length because it is also an

interesting theoretical result in its own right whose scope is not limited to supplementing Chapter 4.

Finally, in Chapter 6, we summarize the overall conclusion of the dissertation and discuss further

the possibilities of future research directions. To summarize, the chapters of this dissertation jointly

provide the affirmation of the thesis that the causal knowledge captured by statistical causal models

can be helpful in tackling the small-data learning problems in statistical machine learning. The

proposed strategy for exploiting the causal knowledge is based on data augmentation, and thus

the proposed methods can be readily combined with virtually any supervised learning method for

learning a predictor.
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1

Chapter 1

Introduction

The quest for causality is inherent in humans’ cognitive behavior. If causal concepts are so important

to us, should artificial intelligence internalize them as well? In particular, is causal knowledge useful

when manipulation or explanation is not the goal, and when the goal is tomake accurate predictions?

Prompted by these questions, this dissertation presents the author’s attempts to establish concrete

causality-informed machine learning methods. In this introductory chapter, let us begin by framing

a conceptual research question in the language of the philosophy of sciences (Section 1.1). We

then continue by introducing the general idea of this dissertation (Section 1.2), phrasing the central

statement (Section 1.3), and explaining the outline of the subsequent chapters (Section 1.4).

1.1 Philosophy of Causality and Conceptual Research Ques-

tion

The twenty-first century has seen a rapid and widespread development of automated intelligent

systems, such as computer-aided diagnosis [229], object detection [170], speech recognition [306],

and automated translation [149, 128]. Many of such systems are powered by statistical machine

learning, a paradigm in which various methods for learning from data have been developed.

1.1.1 Statistical Learning and Uniformity of Nature

The designs of statistical machine learning parallel inductive inference in logical reasoning: learning

from observations — the training data — and drawing conclusions about the unobserved — the

testing instances. As the famous philosopher David Hume saw through, logical inductive reasoning

requires certain “uniformity of nature” for it to be useful (Hume [118, IV.II.32], Salmon [228],

Henderson [102]). He further argued that such a uniformity principle is not derived from within the

relations of ideas, i.e., pure a priori logic, but that our “Custom or Habit” is at the basis of such a

principle (Hume [118, V.I.35-36], Morris and Brown [189]).

In statistical machine learning, or more generally in statistics, analogues of such a uniformity

principle are embedded in the formulation in one form or another, such as an assumption that

the data is an independent and identically distributed (i.i.d.) sample from a probability distribution

(e.g., [184]) or that one should be a rational decision-maker (e.g., [22]). Of course, none of such

assumptions is a priori justified; the justification of such assumptions would have to invoke an

inductive argument (or its analogue, statistical induction), falling into a circularity. Nevertheless,

corresponding to each of such different premises, reasonable inferential rules — the learning methods

— have been derived (e.g., [22, 279]). In other words, devising different assumptions have led to the

development of a variety of learning algorithms that are conditionally reasonable given the premise.
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Difference-making

Interventionism
(counterfactual)

Counterfactuals (Lewis)
Probability-raising …

Productive

Mechanistic theory
Causal process theories
Determinism …

Difference-making aspect     vs.     Productive aspect

Causes produce their effects
via direct interactions.

Without the cause, things
would have been different.

Causal relations are potential
routes to manipulate the outcome.

Causal relations are connections via
a mechanism producing the outcome.

Figure 1.1: Philosophical theories of causality (not exhaustive).

In this dissertation, we discuss the usage of causal information for statistical machine learning

(Section 1.3). Our discussion is based on statistical causal models: the concrete methodology built on

top of probability theory that materializes the philosophical concepts of causality. Before we turn

to the concrete frameworks of statistical causal modeling, let us briefly review the philosophical

theories on the concept of causality.

1.1.2 Causality in Philosophy of Science

Causality is a form of such a uniformity principle, which is distinctive in humans’ perception of

the world (Hume [118, V.I.35-36], De Pierris and Friedman [60]). Unfortunately, the very definition

of causation has never seen a complete consensus in the philosophy of sciences, not to mention its

ontology (“does it exist?”) and its epistemology (“how can we recognize it?”). Thus, it is beyond the

capacity of the author to revisit all such competing theories here (for more comprehensive accounts,

see, e.g., Beebee et al. [17], Mumford and Anjum [190], and Kutach [154]). Instead, let us review

two key concepts: interventionism and mechanisms, the two philosophical notions that play central

roles in the contemporary statistical frameworks of causal modeling (Hitchcock [105]).

To organize the philosophical theories of causation, the dichotomy of “difference-making versus

production” is useful (Kutach [154, p.13]). Some theories of causation emphasize that causality

is about difference-making : without the cause, the effect would not have happened. Others em-

phasize that causality is about production: causes bring about their effects. Between the two, the

interventionistic theory of causation is more focused on the difference-making aspect, whereas the

mechanistic theory has more emphasis on the productive aspect of causality.1 See Figure 1.1 for an

overview.

Interventionistic theory of causation. The basic idea of counterfactual theories of causation

is that the causal claims can be explained in terms of statements about counterfactual events such

as “if event c had occurred, event e would have occurred” (Menzies and Beebee [182]). It is an

1 Other theories attending to the difference-making aspect include the probability-raising theories (e.g., [154, Chap-
ter 6]), and others attending to the productive aspect include the causal process theories and the determinism (e.g.,
[154, Chapters 3 and 5]).
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approach to characterize causality based on our intuition that causality has a difference-making

nature [154]; as Lewis [165] put it, “[human beings] think of a cause as something that makes a

difference, and the difference it makes must be a difference from what would have happened without

it.” The best-known counterfactual analysis of causation is due to Lewis [165] (Menzies and Beebee

[182]).

In particular, interventionism is a prominent version of the counterfactual theories with a focus

on the difference-making about what potential outcome is realized by an intervention,2 and it is

arguably the most prevalent in the literature of statistical causal models (Woodward [294]). The

central idea of interventionism is that causal relations are potential routes by which the world can

be manipulated or controlled. Thus, it asserts that the most relevant counterfactuals are those

that describe the altered behavior of variables under interventions that change the value of another

(Woodward [294, p.15]). In other words, interventionism (and its precursor known as manipulation-

ism) materialized the central theme that one of the main reasons we care about causation is that

causes are often means by which we can bring about effects or make them more likely (Kutach [154,

p.138]).

For example, consider a box with a button and a light bulb (Figure 1.1). If we press the button,

the bulb will glow. If we do not press the button, the bulb will not glow. In the interventionistic

view, A (e.g., a button being pressed) is a cause of B (e.g., a light) if an intervention in A (e.g.,

pressing the button) results in a difference in B (e.g., whether the bulb glows). The existence of a

connection between A and B is technically not required: in this view, it does not matter if the box

is empty and any connection between the button and the bulb is missing [154].

Mechanistic theory of causation. The mechanistic view of causality emphasizes the productive

aspect of causality [175, 154, 83]. As Glennan [86] put it, “A mechanism for a behavior is a complex

system that produces that behavior by the interaction of a number of parts, where the interactions

between parts can be characterized by direct, invariant, change-relating generalizations.” In this

view, “events are causally related when there is a mechanism that connects them” (Glennan [84]).

Let us recall the light bulb example (Figure 1.1). The mechanistic theory of causality considers

A (e.g., a button) to be a cause of B (e.g., a glowing bulb) when there is a mechanism from A

to B that produces B via direct interactions of some parts (e.g., the button switches the circuit

connecting a battery to the light bulb, the battery starts an electric current, and the electrical

energy is converted to light energy). In this view, what is inside the box (e.g., a circuit and a

battery) is important [154]. Of course, what counts as a direct interaction or a part depends on the

level of the analysis (e.g., Kutach [154, p.53]), and the parts as well as the interactions may consist

of lower-level ones (e.g., how a battery produces electric current). Thus, mechanisms usually have

black-box components which themselves are causal in nature. In this sense, the mechanistic account

of causality is not completely reductive (Craver and Tabery [54, 2.3.2]). Nevertheless, mechanisms

do characterize causal regularities in more detail than merely citing causes and effects (Kutach [154,

p.60]).

The philosophy of mechanisms emerged around the turn of the twenty-first century reflecting

a synthesis of the philosophy and the history of science [54]. What sparked its emergence was the

observation that many significant discoveries in science involved the discoveries and descriptions

of mechanisms (e.g., Machamer et al. [175], Glennan [83], and Craver and Tabery [54]) and that

elucidating a mechanism has been a gold standard for explanations in scientific practice (Glennan

[83]).

2 Interventionism is a type of counterfactual theory because, to define and understand the “difference” due to an
intervention, one needs to (at least conceptually) compare the result under intervention (the factual) with what would
have been the result had the intervention not taken place (the counterfactual).
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Black-box

Background conditions

Outcome 0No intervention (c=0)
Intervention 1 (c=1) Outcome 1
Intervention 2 (c=2) Outcome 2

Interventionistic view (difference-making aspect of causation)

Mechanistic view (productive aspect of causation)

Mechanism
Products

Events Behaviors

Conditions Phenomena

Inputs

Parts

Figure 1.2: Illustrations of the two philosophical concepts of causation: counterfactuals and mech-
anisms.

Relation of the two theories. The two theories are alike in many respects:

1. They are both understood to have the characteristic of being “invariant, change-relating gen-

eralizations” (Glennan [86] and Woodward [296]).

2. They are not required to be exceptionless or non-local : the qualities required of legitimate laws

of nature in philosophical terms [86, 296]. The relevant generalizations may be conditional on

the context, time, and/or location (Woodward [296]).3 Yet, they are expected to be relatively

stable or invariant enough to play the role of “causal laws” (Glennan [86] and Woodward

[296]).4

3. They are ontologically silent, i.e., they maintain neither that causation is part of the funda-

mental reality waiting to be discovered (in which case it is called a natural kind [154, p.58])

nor that it is merely our useful fiction for understanding the world (in which case it is called

an artificial kind [154, p.59]). The two theories can be maintained as long as there is enough

structure in fundamental reality to vindicate the reasonableness of the counterfactuals or the

mechanisms (Kutach [154, pp.60,71]).

4. They are non-reductionistic; they have not been successful in reducing their causal notions

to other fundamental concepts that are not causal. The concept of mechanism ineliminably

contains a causal element (Craver and Tabery [54, 2.3.2]).5 Interventionism uses the concept

of manipulation or intervention as a primitive of the arguments, but they are apparently

causal concepts. Counterfactual accounts commonly struggle to determine the value of the

counterfactual quantities. However, some authors such as Woodward [295, 1.7] explicitly

defend non-reductionistic standpoints.

3 Classical examples of such generalizations include Mendel’s law in biology (Woodward [296] and Glennan [86]).
4 Here, the term generalization is used in contrast to the term “law” (as in paradigmatic laws of nature) that are

commonly understood to be exceptionless and non-local in the philosophy of sciences (Woodward [296]).
5 Indeed, if a causal relation is fundamental, then by definition, there is no mechanism for it (e.g., [54, 2.5.2] and

[84]).
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Thanks to the immediate connections to statistical causal frameworks, these are among the most

prevalent philosophical stances in various fields of special sciences [126, 204, 295].

1.1.3 Statistical Frameworks of Causality

Along with the philosophical foundations (namely counterfactuals and mechanisms), the end of the

20th century saw the rapid development of statistical6 causal frameworks (Hitchcock [106]). Such

frameworks allow us to naturally formulate the causal quantities of interest, which could not be fully

characterized within the conventional statistical frameworks.

Potential outcome framework. The potential outcome framework (POF) is a statistical causal

framework pioneered by Splawa-Neyman [255] and developed by Rubin [226] and Robins [221],

among others. In the formulation of the POF, counterfactuals play a central role (Hitchcock [105,

4.10]) as it employs counterfactual random variables (also known as potential outcomes) as primitives

(Imbens and Rubin [126]).

The basic idea of the POF is to introduce certain random variables called the potential outcomes,

which represent the outcomes that we would observe in the counterfactual scenario (as well as those

of the factual scenario, which we can observe). For example, consider a treatment variable7 t (0: “no

medication”, 1: “take aspirin”) and an outcome variable Y (0: “headache persisted”, 1: “headache

cured”). If a person is given a treatment t = 1, and Y = 1 was observed, then the factual scenario

(which we actually observed) is (t = 1, Y = 1). Then, in the POF, we introduce the potential outcome

variables Yt=1 and Yt=0, which are random variables representing the outcome given t = 1 and t = 0

(in this example, corresponding to the factual and the counterfactual scenarios), respectively. These

random variables are used to model the causal quantities of interest; for instance, a causal effect

can be defined as the outcome differences under different intervention states, e.g., Yt=1 − Yt=0.

The framework is strongly tied with interventionism since the potential outcomes are usually

introduced for some treatment variable. The POF was developed in the fields where the primary

goal is to predict or estimate the results of interventions, e.g., medicine, epidemiology, econometrics,

and political science [126]. For a history of the potential outcome approach to causal inference,

please refer to Imbens and Rubin [126, Chapter 2].

In this framework, various practical conditions and methods for estimating such causal esti-

mands have been developed: weak/strong ignorability (e.g., Hernán and Robins [103, Chapter 3]),

propensity score methods (e.g., Hernán and Robins [103, Chapter 15]), instrumental variables (e.g.,

Hernán and Robins [103, Chapter 16]), regression discontinuity designs (e.g., Abadie and Cattaneo

[1, Section 7]), and difference-in-differences and synthetic controls (e.g., Abadie and Cattaneo [1,

Section 5]).

Structural causal framework. The structural causal framework (SCF) is a statistical causal

framework developed by Pearl [204] and Spirtes et al. [253], among others. This framework attends

more to the concept of mechanism (Menzies [181]; see also Woodward [295], Pearl [204], and Spirtes

et al. [253], and Glennan [84]), where deterministic functions are used to represent the causal

mechanisms (Hitchcock [105]).

The basic idea is to introduce certain deterministic functions that represent causal mechanisms,

and to use them as so-called structural equations to describe how each random variable depends

on its immediate causal predecessors. The machinery of the SCF will be elaborated in Chapter 2

because it is the main framework that the ideas of this dissertation are based on.

6 By “statistical,” in this dissertation, we indicate that the model is built on top of (measure-theoretical) probability
theory.

7 Interventions are also called exposure or treatment, depending on the context (e.g., [126, pp.4,19]).
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The framework is also tied with the interventionist view of counterfactuals by some authors,

e.g., Woodward [296] and Woodward [295] (Craver and Tabery [54, 2.3.4], Glennan [86] and Craver

[55]). The central commitment of this view is that models of mechanisms describe variables that

make a difference to the values of other variables in the model and to the phenomenon (Craver and

Tabery [54, 2.3.4]).

In this framework, various conditions and methods for estimating (partial knowledge of) the

causal mechanisms have been developed: constraint-based causal discovery (e.g., Glymour et al.

[88]), score-based causal discovery (e.g., [88, 114]), function-based causal discovery (e.g., [239, 209,

210]), among others (e.g., [187, 133, 132]). Under the SCF, after such knowledge of causal mecha-

nisms has been defined and estimated, it can be used to perform causal inference such as predicting

the results of interventions [204].

Common philosophical stances. The following are some additional detailed philosophical stances

that are shared by the two frameworks. In both frameworks, the models are introduced as poten-

tially useful devices for expressing the causality behind the data that we observe in some domains of

limited scope and not as the models that can represent all causal laws of nature having an unlimited

scope. It is sensible that different application domains have different suited concepts of causality, as

discussed by Woodward [296]. Epistemologically, they primarily support type-level causal (or gen-

eral causation [106]) claims as opposed to singular causal (or token-level causal or actual causation

[106]) claims (Woodward [294, Section 2.7], Hitchcock [106]). This focus on the type-level causality

may be considered to be in part due to the “Fundamental Problem of Causal Inference” (Holland

[109, p.947]) i.e., it is impossible to observe the counterfactual, in both cases of the POF and the

SCF. The singular causal claims are made only as secondary derivatives of the estimated causal

models ([97, 126]). This is in stark contrast to how philosophical frameworks of counterfactual

approaches to causation have been devoted to analyzing singular causation (Hitchcock [106]).

Interrelation of the two frameworks. Some authors prefer to view the POF as a convenient

notation system derived from the SCF (Pearl [202]), where the truth conditions of the counterfactuals

are delivered by the structural equations. Some others (Hitchcock [107], Woodward [295], and

Menzies and Beebee [182]) regard the SCF to be a concise way to declare the value assignments of

some basic counterfactual quantities. In this sense, the two frameworks are reciprocal to each other

(see, e.g., Menzies and Beebee [182, Section 5.2]), and they are practically selected depending on

the application field.

In some fields, one framework may be preferred to the other, partly because of the difference in

the conceptual emphasis: the POF attends more to the counterfactual theory and the SCF to the

mechanistic theory. As a result, the two frameworks tend to focus on different goals; the SCF has

a tendency to aim at building a large model incorporating all relevant variables, and it seems to

be more often employed where the primary interest is in understanding a complex mechanism (e.g.,

biology [88, Section 7], ecosystem study [262], ecological studies [77], psychiatry [171, 21], clinical

epidemiology [140, 21]). On the other hand, the POF tends to aim at imposing the minimum as-

sumptions (e.g., [178, Introduction]), [103, Technical Point 6.2] required for estimating the specific

quantity of interest (e.g., intervention effects), and it seems to be more prevalently employed where

the primary interest is in estimating the effect of interventions rather than understanding the mech-

anism (e.g., program evaluation in econometrics [1] and evidence-based decision making in medicine

and public policy [126]). Such a viewpoint is also evident in the following quote from Imbens and

Rubin [126]: “In our own work, perhaps influenced by the type of examples arising in social and

medical sciences, we have not found this [structural causal framework] approach to aid drawing of

causal inferences [. . .]” In this dissertation, we do not attempt to argue which framework better

serves which purpose. However, as we explain in Section 1.1.4, our focus is regarding the utility of



1.1. Philosophy of Causality and Conceptual Research Question 7

the knowledge of the detailed mechanisms, this dissertation is largely based on the SCF.

1.1.4 Conceptual Research Question

The pragmatic utility of knowing counterfactual (in particular, interventionistic) quantities, such as

average treatment effects, is somewhat self-explanatory: it can be used for interventional decision

making (e.g., [126, 103]). From such a viewpoint, differences in the detailed mechanisms make no

difference as long as they satisfy the abstracted conditions such as strong ignorability (e.g., [103,

Section 8.2]).

On the other hand, our intellectual curiosity seems to go even beyond the benefits of interventions;

we often want to understand the world deeper, even when such an endeavor is not necessarily tied

with interventional decision making. Much of the practice of contemporary science is driven by the

search for mechanisms, and many of the grand achievements in the history of science are discoveries

of mechanisms, particularly in special sciences [78] such as biology, neuroscience, and psychology

(Craver and Tabery [54, Section 1]). Human beings seem to have an instinctive urge to understand

how the world works.

Then, what is the pragmatic utility of finding out the details of the underlying mechanism?

If the estimation of counterfactual quantities is the sole target of such an endeavor, the approach

to abstract away from the detailed situation may be preferred by virtue of being ontologically

parsimonious (e.g., Ockham’s razor [10]). Attempts to formulate or estimate further details of

an underlying mechanism may be unnecessary or should be avoided in the interest of ontological

parsimony.

Thus, our conceptual question is the following: is there some pragmatic utility in the knowledge

of mechanisms, putting aside the estimation of counterfactual/interventionistic quantities? Mech-

anisms have been a tool prevalent in many scientific fields used to organize the findings and com-

municate the knowledge (e.g., [269, Table 7.2]), even when such mechanistic explanations are not

immediately tied with specific ideas of interventions. Then, what could be the pragmatic motivations

of discovering mechanisms?

In this dissertation, we argue that the knowledge of the mechanisms estimated in the SCF can

be pragmatically beneficial for statistical machine learning, if appropriate methods are designed to

incorporate such knowledge into the learning procedures. We show, by providing concrete methods

and examples, that an estimated structural causal model can be used to facilitate machine learning.8

Our intuitive argument is as follows. One reason why causal knowledge can be useful is that

it is the knowledge of the data-generating process, i.e., the mechanisms that resulted in the events

we observe, or in the context of statistics, the process through which the realized values of random

variables are generated. Such knowledge of the generating processes of random variables could be as

useful as the data themselves, in statistics or statistical machine learning, where statistical induction

from data is embedded as an operating principle.

More concretely, we discuss how causal knowledge can be beneficial in the problem of learning

from small data, as introduced in the next section. Importantly, causal mechanisms are believed to

be stable or invariant, as opposed to the case of merely accidental generalizations (Woodward [295,

p.15], Glennan [83], Cartwright [35]). This constitutes the conceptual reason why causality makes

an interesting candidate of the regularity of nature to presuppose, estimate, and exploit for machine

learning. A mechanism is believed to be typically stable in the absence of an intervention9 (Craver

8 Of course, the presented results are independent of the ontology of causality. The results do not inform the
philosophical dispute over the reality of causality, i.e., whether it is a natural kind or an artificial kind (such as
our psychological projection to regularly cojoined events). However, this dissertation is intended to reinforce the
pragmatic motivation to understand causal structures or the fundamentality of causality from a different viewpoint
from interventionism.

9 To put it more precisely, we only consider such stable mechanisms in this dissertation and claim that such
ephemeral mechanisms (Craver and Tabery [54, Section 2.4.6]) that appear in historical sciences, such as archaeology,
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and Tabery [54, 2.2]). For example, as Glennan [86] put it, “mechanisms [. . .] are systems consisting

of relatively stable configurations of parts that give rise to robust behaviors which can be expressed

by invariant generalizations,” [86, S348] and that “[the parts of a mechanism] must have a relatively

high degree of robustness or stability; that is, in the absence of interventions, their properties must

remain relatively stable” [86, S344]. Especially when the data is scarce, such stability (or invariance)

that makes the knowledge valid in a range of similar contexts would be useful.

1.2 Small-data Learning and Regularity of Causal Mecha-

nisms

Machine learning refers to the automated detection of meaningful patterns in data [236], and it is

arguably one of the most powerful contemporary approaches to realizing artificial intelligence. The

process of automatically extracting useful patterns from data is called learning or training. It is

especially effective in those application fields where useful patterns are so complex that a human

programmer cannot provide an explicit specification of how information should be processed to

perform an intellectual task [236].

1.2.1 Statistical Machine Learning

The central feature of machine learning is its use of data. Data are the physical representation of

information in a manner suitable for communication, interpretation, or processing by human beings

or by automatic means [276]. It is collected and stored in various formats, e.g., images, audio, and

tabular formats. In this dissertation, we presume the data are stored in the tabular format, such as

the user data in a company, the results of social surveys (e.g., [110]), or electronic health records

[304].

Statistical machine learning extracts meaningful patterns based on statistical concepts (Vapnik

[279]). A typical problem setup is called the supervised learning problem. In this setup, some paired

data {(xi, yi)}i of input xi and its corresponding output yi is given, and the task is to predict the

output value y given a previously unseen input x, i.e., one that was not contained in the training

data. One standard approach to such a task is to construct a function, which is called the predictor

or the hypothesis, that takes x as input and outputs a prediction ŷ. Analogously to the inductive

inference in logical reasoning, supervised learning is a problem of drawing conclusions about unseen

events from the previous experience (i.e., the training data). In parallel to how inductive inference

requires a uniformity principle, one needs an expedient assumption that connects the training data

and the unseen input-output pairs in order to rationalize the inference.

A prototypical approach to learning from data is the empirical risk minimization principle [279,

1.5]. The principle instructs that, in order to find a predictor with a small prediction error with

respect to the data distribution (called the risk), one should find a predictor with a small prediction

error on the training data (called the empirical risk). Its justification is based on the premise that

the training data and the unseen input-output pairs are independent and identically distributed

samples from some unknown probability distribution (the data distribution). The main rationale of

statistical learning theory is, roughly speaking, based on the (uniform) law of large numbers: if the

training data is abundant, the empirical risk will provide an accurate estimate of the expectation of

the risk, and hence the predictor learned by empirical risk minimization would yield a small risk.

history, and evolutionary biology (Glennan [85],Craver and Tabery [54, 2.4.6]) would require a different account.
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1.2.2 Small-data Problems

The amount of data it takes for the empirical risk to be a good estimate of the risk depends on

the predictors’ model class, called the hypothesis class, as well as the data distribution. When the

hypothesis class is complex and the data is limited, the (uniform) law of large numbers is rather

helpless due to the scarcity of data, and the learned predictor typically fails to produce accurate

predictions even if it has a small empirical risk. Such a phenomenon is called overfitting ([279,

p.124]). Although it is difficult to estimate the amount of data required for learning an accurate

predictor, as a general guide, the more data we have, the more complex hypothesis class may be

learned without the fear of overfitting [236, p.21], and hence one may be able to learn a complex

predictor that exploits more complex patterns, leading to improved accuracy of the predictions.

When data is limited in quantity, in general, we need an additional source of information to

complement the knowledge that can be extracted solely from the data (e.g., [236, p.21, Chapter 5]).

In the context of statistical machine learning, such additional information is referred to as prior

knowledge. For example, regularization techniques (see, e.g., Shalev-Shwartz and Ben-David [236,

Chapter 13])introduce prior knowledge that essentially restricts H to be “small,” thereby reducing

the risk of overfitting.

Learning from small data, despite the rapid progress in the methodology, remains an important

challenge in many potential application fields of machine learning, such as social sciences (e.g., [110]).

In such fields, data size is often limited due to costly data acquisition methods such as in-person

surveys (e.g., [110, pp.46,72,68,139,143,195]).

1.2.3 Regularity of Causal Mechanisms

What kind of prior knowledge could we exploit for statistical learning when we have only small

data? In this dissertation, we discuss the possibility of exploiting the knowledge of causality, or

more precisely, that of the data-generating mechanism, to tackle the small-data learning problem.

Causal knowledge is deemed particularly useful for small-data learning because causality is be-

lieved to be relatively stable or invariant [86, 296]. For example, intuitively, one can consider

incorporating the causal knowledge acquired thanks to domain experts’ experiences, believing that

the knowledge is still valid. Likewise, if we can obtain some knowledge about the mechanism of

some system and apply the knowledge to another system having similar causal mechanisms, it can

be useful for learning from small data. One can alternatively think of these as a form of knowledge

transfer, either from human to machine or from a learned machine learning model to another.

In particular, we focus on the productive aspect of causal concepts, and in particular, the mech-

anistic views, as opposed to the difference-making aspect or the counterfactual view. We focus on

the knowledge of the data-generating mechanisms and demonstrate that causal knowledge is not

only useful for counterfactual inference but also for making inferences in the factual world.

Intuitively, such usage is sensible; the knowledge of data-generating mechanisms is knowledge

about the regularity of nature, and thus it may have the potential to serve as a form of a unifor-

mity principle to be exploited in statistical learning. However, it does require the development of

specialized techniques; standard machine learning methods are not accompanied by canonical ways

to incorporate causal knowledge. In this dissertation, we establish such concrete methodologies

for combining the causal knowledge with standard machine learning methods based on a unified

approach called data augmentation.
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1.3 Central Statement and Main Idea

Causal models, estimated or known a priori, contain various kinds of information about the data-

generating process. As we introduced in Section 1.1.4, there are two major aspects of causal knowl-

edge: the difference-making aspect and the productive aspect.

The most common use case of causal models is arguably the facilitation of causal inference, espe-

cially predicting the effects of interventions and estimating the counterfactual quantities (Hitchcock

[106]). Otherwise, the qualitative information about the causality has been used by domain ex-

perts to deepen the understanding and to generate explanations. In this dissertation, we discuss

how causal models can add another layer to the machine learning methodology to leverage the

uniformity of nature.

1.3.1 Existing Attempts on Causality-informed Learning

In the existing literature, the idea of exploiting causality for machine learning (CML) has been

discussed [208, 230, 233]. A majority of existing work on CML focuses on the difference-making

aspect of causality. Such an aspect has been exploited to tackle the change-related challenges in

machine learning problems, e.g., robustness against the change in the data distribution based on the

notion of interventions [233, I.A.] and efficient adaptation to different environments by adapting few

modules reflecting the modularity of causal mechanisms [233, I.B.]. See Peters et al. [208], Schölkopf

[230], Schölkopf et al. [233], and Section 2.6 for further details.

On the other hand, many fundamental problem setups of machine learning do not necessarily

involve change-related concepts. Learning in a fixed environment (i.e., unaltered data generating

process) is one of the most standard problem setups of supervised machine learning [279, Chapter 1].

In such setups, the problem is not necessarily change-related, and one is concerned with making an

inference in the factual world as opposed to the counterfactual world. Even in such problem setups,

we can anticipate that the causal knowledge is generally useful because the productive aspect of

causal knowledge describes the factual world and not only the counterfactual world. Therefore, it

is desirable to develop the methods to enable incorporating such productive aspects of the causal

knowledge into the learning procedure.

In a nutshell, the CML literature that pursues this line of research, as a whole, attempts to

support the following statement.

Broad Theme Statement

The productive aspect of causality, or in particular, the knowledge of causal

mechanisms, can be exploited to enhance machine learning in the factual world,

i.e., for those tasks that do not necessarily involve counterfactuals.

Providing partial support to this statement is also a goal of the present dissertation. Much of

the existing CML literature only provided intuition-based arguments to bridge between the causal

knowledge and the methodologies [232, 313, 311, 91, 90, 223], while many others only considered

how to leverage highly problem-specific structures or model-specific structures [231, 211, 156] (see

Section 2.6). Thus, the idea of leveraging the productive aspect of the causal knowledge, despite

its importance, remains largely unexplored when it comes to the methods with formal justifications

and with a general scope of problems. Providing formal justifications is important as it opens

the possibility of theoretical analyses, which is often a key to improving the transparency and

understanding the behavior of the developed methodologies.
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1.3.2 This Dissertation: Scope and Main Idea

In this work, we aim to develop general and formally justifiable methods to incorporate the produc-

tive aspects of causal knowledge into machine learning. In other words, we aim to contribute partial

support to the Broad Theme Statement.

In providing the support to the Broad Theme Statement, we take a formal approach: in contrast

to the existing work, we develop our methods based on the formal mathematical representations of

causal knowledge and their implications rather than intuitive arguments. In particular, we focus

on leveraging the statistical independence relations implied by the (partial) knowledge of the causal

mechanisms estimated in the SCF (namely, the causal graphs and the reduced-form structural func-

tions) because it is a particularly well-studied type of such a formal implication [253, 204, 217, 218,

72]. We review such implications in Chapter 2.

As the machine learning task, we focus on supervised learning for learning a predictor, arguably

the most prevalent task among other possible machine-learning tasks that may potentially benefit

from incorporating the causal knowledge [236]. It is a common understanding that the incorporation

of prior knowledge (or the inductive bias) to bias the learning process is inevitable for the success

of learning algorithms [236, p.21], and also that the commitment to use a stronger prior assumption

generally makes the learning from data easier while making the learning process less flexible [236,

p.21]. Incorporating causality as a form of uniformity of nature inevitably involves a stronger prior

assumption about the data-generating process: we assume the existence of some underlying data-

generating mechanism and leverage its properties to enhance the learning methods. Therefore, in

the CML regime, we anticipate that the derived machine learning methods enjoy some enhanced

properties, such as improved sample efficiency to enable small-data learning at the cost of introducing

additional assumptions.

To summarize, the goal of the present dissertation is to provide affirmative evidence to support

the following central statement.

Central Statement

The knowledge of causal mechanisms estimated in the SCF can enhance ma-

chine learning in small-data problems. Specifically, the statistical independence

relations implied by the causal models of the SCF can be exploited through data

augmentation.

The Central Statement provides partial support of the Broad Theme Statement.

As a generic methodology to incorporate the knowledge captured by statistical causal models

into the process of machine learning, we propose to use data augmentation as an approach to exploit

the statistical independence induced by the causal models.

Designing an algorithm that uses data as an interface has two major advantages. First, the

derived methodologies will not depend on a specific machine learning model or a learning method,

and hence they will be easier to combine with a wide range of machine learning methods. Second,

the algorithms will be relatively easy to mathematically analyze based on statistical learning theory

because the complication of the analysis tends to be confined into the dependency structure due

to the data augmentation. Therefore, once the dependency structure is appropriately taken into

account, standard theoretical devices (e.g., Rademacher complexity [184]) can often be employed.

With the aid of such theories, we can obtain theoretical insights into the properties of the proposed

methods and clarify the mechanism through which they may yield favorable results.
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Table 1.1: Division of the problem and the corresponding chapters.

Known (K) Estimable (E) (Unknown)
(G) GCM Chapter 3 Chapter 3 – (Non-causal learning)
(S) SCM – (Unrealistic) Chapters 4,5 – (Non-causal learning)

1.4 Chapter Structure and Contributions

In this section, we explain the chapter structure of this dissertation. This chapter and Chapter 2

introduce the conceptual and mathematical backgrounds of this dissertation. In Chapter 6, we

summarize the overall conclusion of the dissertation and discuss further the possibilities of future

research directions. The rest of the chapters are structured based on the following division of the

problem.

1.4.1 Division of the Problem

We consider the situations in which we apply the proposed approach by dividing the situation into

the following 4 cases, divided based on whether the causal model is known (K) or estimable (E) in

relevant domains, and whether the considered causal model is a graphical causal model (G) or a

structural causal model (S).

(G-K) The graphical causal model (GCM) is known from domain knowledge.

(G-E) The GCM is estimable in relevant problem domains.

(S-K) The structural causal model (SCM) is known: we consider this case to be unrealistic and

discard this case since the detailed form of a structural model is usually not elucidated in

application domains of interest.

(S-E) The SCM is estimable in relevant problem domains.

Table 1.1 summarizes this division of the problem. We consider the above 4 cases where we

design the data augmentation method for each concrete problem setup of machine learning. We

discuss the theoretical analysis of the proposed methods based on statistical learning theory, as well

as experimental evaluations. Yet, we disregard the case (S-K) since the assumption that a structural

causal model is known is not realistic.

The problem setups and contributions of the main chapters are summarized below towards the

end of this chapter. Figure 1.3 visualizes the overall structure of this dissertation.

1.4.2 Chapter 3: When Graphical Causal Model is Known or Estimable:

Causal-graph Data Augmentation

Problem and Motivation. In this chapter, we consider the case that a GCM is either known by

domain knowledge or estimable from the data of a relevant domain and discuss how to leverage the

knowledge (Figure 1.4). A causal graph (Remark 2.1) is a compact representation used in the SCF

to describe the influence relations among random variables, e.g., which variable is a direct cause of

which effect. It is a quantity derived from random variables having an underlying causal structure

and captures an aspect of the behavior of the random variables, similarly to how a joint probability

distribution is derived from random variables and describes their behavior. In particular, the joint

distribution and the causal graph have quantitative relations: from a causal graph, one can read

out certain conditional independence relations that the joint distribution should hold.
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Theoretical support

When causal graphs are
estimable or known

When structural equations 
are estimable 

Chapter 4
Few-shot domain adaptation

by causal mechanism transfer

Chapter 3
Small-data learning by

causal-graph data augmentation

Chapter 6
Conclusion and

future research directions

Chapter 1
Introduction:

Central statement

Chapter 5
Representation power of

invertible neural networks

Chapter 2
Preliminaries:

Causality for machine learning

Figure 1.3: Organization of the chapters.

/
+

X1
X2

Y

X3

S1 S2
S3

S4

Figure 1.4: Problem setup of Chapter 3. We consider the case that a GCM is either known by
domain knowledge or estimable from the data of a relevant domain.

In those application domains where data is scarce, e.g., due to costly data acquisition methods

such as social surveys [110], it is essential to incorporate stronger prior knowledge into the learning

process in order to enhance the data-efficiency [236, p.21]. If the knowledge of the causal graph

is available, its implications to the conditional independence relations may provide effective prior

knowledge to support the learning of predictors from small data.

Causal graphs may be obtained from the domain knowledge such as accumulated research on

the subject matter [66, 227, 265] or the tacit knowledge of domain experts in some application

domains. Indeed, thanks to their semantics as the description of direct causal relations, they have

been used to communicate expert knowledge in various fields [292, 166, 103, 227, 66, 204, 117, 136].
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Figure 1.5: Problem setup of Chapter 4. We consider the case that an SCM is estimable from the
data of a relevant domain sharing the same data-generating mechanism.

For examples of causal graphs provided by domain experts, see Figure 3.4. In case such domain

knowledge is not readily available, causal discovery methods for estimating the causal graphs from

data have been studied [88, 136, 25].

Thus, we will consider a problem that roughly corresponds to the following:

Problem Sketch 1.1 (G-K and G-E). Let D = {(Xi, Yi)}ni=1 be a data set sampled independently

from some unknown causal structure, where n is small (i.e., it is a small-data regime). Let Ĝ be an

estimated causal graph. Using the data as well as Ĝ, find a good predictor h : X → Y.

The problem is more precisely stated in Problem 2.1 of Section 2.5.2, and its slightly generalized

version will be tackled in Chapter 3.

To exploit such relations, we design a data augmentation procedure that can be used to incorpo-

rate the knowledge encoded in the causal graph into statistical learning procedures (Definition 2.15).

Contributions. Our key contributions can be summarized in three points as follows.

1. We propose a method to augment data based on the prior knowledge expressed by a causal

graph, assuming that an estimated causal graph is available.

2. We theoretically justify the proposed method via an excess risk bound based on the Rademacher

complexity [15]. The bound indicates that the proposed method suppresses overfitting at the

cost of introducing additional complexity and bias into the problem.

3. We empirically show that the proposed method yields consistent performance improvements,

especially in the small-data regime, through experiments using real-world data with causal

graphs obtained from the domain knowledge.

1.4.3 Chapter 4: When Structural Causal Model is Estimable: Causal

Mechanism Transfer

Problem and Motivation. In this chapter, we consider the case that an SCM is estimable

from the data of a relevant domain and discuss how to leverage the knowledge (Figure 1.5). More

precisely, we consider a situation where we can estimate the reduced-form structural function (Reiss

and Wolak [215]) of an SCM from the data in a relevant problem domain.

Such a situation is sensible in the applications where we can believe the existence of an underlying

data-generating mechanism that is common across different domains, e.g., poverty nowcasting [36,

5, 177], economic studies in fragile countries [110], and health record analysis [304]. In such problem

domains, it is often the case that data collection is costly, and hence developing the methodology of
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Figure 1.6: Universal approximation property of function models.

learning from relatively small data is highly important. For example, in medical record analysis for

disease risk prediction, it can be reasonable to assume that there is a pathological mechanism that is

common across regions or generations. If we can estimate and exploit the knowledge of such a hidden

stable structure (in this case, the pathological mechanism), it can be useful for obtaining accurate

predictors even if the data is scarce in the target domain (e.g., minor regions or demographic groups)

by incorporating stronger prior knowledge about the data-generating process.

The problem corresponds to a domain adaptation problem, where we have only small data in a

target domain of interest and have access to relatively large data from relevant problem domains.

The central assumption in domain adaptation is the transfer assumption (TA) that specifies the

relation between the target domain of interest and the source domains, i.e., the relevant problem

domains from which the knowledge is transferred. Our assumption, namely the estimability of the

causal mechanism from source domain data, gives rise to the novel transfer assumption of a shared

causal mechanism, i.e., that the distributions are derived from SCMs whose structural equations are

identical.

Thus, we will consider a problem that roughly corresponds to the following:

Problem Sketch 1.2 (S-E). Let D = {(Xi, Yi)}ni=1 be a data set independently generated by some

unknown causal structure (called the target domain), where n is small (i.e., it is a small-data

regime). Let D′ be another data set independently generated by a unknown causal structure (called

the source domain). Assume that the target and source domains share the same causal mechanism.

Identify some appropriate assumption with which the causal mechanism can be (partially) estimated

from D′, and using D and D′, find a good predictor h : X → Y.

The problem is more precisely stated in Problem 2.2 of Section 2.5.2, and its slightly generalized

version will be tackled in Chapter 4.

Contributions. Our key contributions can be summarized in three points as follows.

1. We formulate the flexible yet intuitively accessible TA of shared generative mechanism and

develop a few-shot regression DA method (Section 4.3.2).

2. We theoretically justify the augmentation procedure by invoking the theory of generalized

U-statistics [162].

3. We experimentally demonstrate the effectiveness of the proposed algorithm (Section 4.5). The

real-world data we use is taken from the field of econometrics, for which structural equation

models have been applied in previous studies [93].

1.4.4 Chapter 5: Theoretical Analysis of the Representation Power of

Invertible Neural Networks

Problem and Motivation. In this chapter, we reinforce a theoretical justification of the method-

ology proposed in Chapter 4.
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The method proposed in Chapter 4 uses a recently emerged technology called coupling-flow-

based invertible neural networks (CF-INNs). It is a class of neural networks endowed with easy

invertibility and the tractability of the Jacobian, and it has been widely used in various machine

learning applications such as generative modeling [63, 145, 195, 143, 315], probabilistic inference

[16, 288, 173], solving inverse problems [7], and feature extraction and manipulation [145, 192, 267].

Despite the growing popularity, due to the special architecture designs to maintain the invertibil-

ity, CF-INNs lacked a theoretical understanding. In particular, it was not clear whether CF-INNs,

as function approximators (Figure 1.6), have sufficient representation power to approximate a wide

range of invertible maps.

Chapter 5 sheds light on this problem by considering the following research question:

Problem Sketch 1.3. How expressive is the set of invertible neural networks? Can they approxi-

mate diverse invertible maps?

Since the result is itself an interesting contribution to the machine learning methodology in its

own right and its scope is not limited to supporting the methodology of Chapter 4, we dedicate a

chapter to introduce the results.

Contributions. Our contributions are summarized as follows.

1. We present a theorem to show the equivalence of universal approximation properties for certain

classes of functions. The result enables the reduction of the task of proving the universality

for general diffeomorphisms to that for much simpler coordinate-wise ones.

2. We leverage the result to show that some flow architectures, in particular even affine coupling

flows that are the least expressive architectures among the ones appearing in this dissertation,

can be used to construct a CF-INN with the universality for approximating a fairly general class

of diffeomorphisms. This result can be seen as a convenient criterion to check the universality

of a CF-INN: if the flow designs can reproduce the ACFs as a special case, it is universal.

3. As a corollary, we give an affirmative answer to a previously unsolved problem, namely the

distributional universality [115, 131] of ACF-based CF-INNs.

Theoretical implications to causal mechanism transfer. The result of this chapter adds

another layer to the theoretical guarantee of causal mechanism transfer (Algorithm 3), whose fea-

sibility relies on the availability of a flexible model of invertible maps equipped with a tractable

inverse.
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Chapter 2

Preliminaries

Many questions in social and biomedical sciences are causal in nature (Imbens and Rubin [126]). In

order to formulate and answer such questions, formal methods of quantitative causal inference have

been developed since the 20th century [226, 253, 205, 204]. In this chapter, we review the formal

treatment of the statistical causal frameworks. We mainly explain the structural causal models

and their implications, which are to be exploited in the subsequent chapters. We also explain the

general motivation of causal machine learning and provide a brief literature review. Towards the

end of the chapter, we introduce the problem setup and the general approach of this dissertation.

The readers who are familiar with the structural causal framework may well skip to Section 2.4,

where we describe the properties that we exploit in this dissertation or directly go to Section 2.5,

where we describe the problem setups and the approach of this dissertation.

2.1 Introduction to Statistical Frameworks of Causal Infer-

ence

In this section, we provide an intuitive introduction to the statistical frameworks of causal inference.

Such frameworks have been developed in the previous half-century, corresponding to the demand in

various special sciences such as econometrics, epidemiology, political science, and computer science,

where an in-depth understanding of the mechanism or making interventions in a system is of major

importance [253, 204, 126, 103].

2.1.1 An Illustration

Typical statistical analysis formulates the problem of interest in terms of probability distributions,

and it is primarily concerned with the characteristics of the distributions (e.g., [289, Section 6.1]).

Random variables, on the other hand, are usually treated as mere implementations of such distribu-

tions. Even though different random variables (as measurable maps) can yield the same distribution,

they often need not be distinguished (e.g., [147, p.50]).

Causal inference frameworks [126, 253, 204] take into account what is called the data-generating

processes, the additional structures in the random variables which are (in general) not captured

by their joint distributions. By explicitly taking into account such additional structures, causal

models enable a natural formulation of the quantities of interest called causal estimands [126], such

as interventional distributions [204] or average treatment effect [127].

A simple example below demonstrates that the distinction of different random variables is im-

portant in certain situations, even if they have identical joint distributions (Figures 2.1 and 2.2).
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1 ## (a) X -> Y

2 X = normal ()

3 Y = X + a * normal ()

1 ## (b) Y -> X

2 Y = sqrt (1+a^2) * normal ()

3 X = Y / (1+a^2) + a / sqrt (1+a^2) * normal ()

1 ## (c) X <- Z -> Y

2 Z = normal ()

3 X = Z / b + sqrt(1 - 1/(b^2)) * normal ()

4 Y = b * Z + sqrt(1 + a^2 - b^2) * normal ()

5 0 5
X

4

2

0

2

4

Y

(a) X → Y

5 0 5
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4
Y

(b) Y → X
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0

2

4

Y
(c) X ← Z → Y

Figure 2.1: Three different random vectors (X,Y ) following the identical joint distribution. The
Python-like pseudocodes outline the sampling scripts for the corresponding figures. The graphs
indicate the orders in the definitions of the random variables. The function normal() samples from
the standard normal distribution, and sqrt() is the square-root function. The configuration was
(a, b) = (0.3, 1.03).

Data-generating process (Figure 2.1). We consider the construction of a random vector

(X,Y ). To begin with, let (e1, e2, e3) be random variables with distribution N (0, I). We can

define random variables X and Y by

X(·) = fX(e1(·)),
Y (·) = fY (X(·), e2(·)),

where fX and fY are measurable functions. We may also define random variables X and Y by

Y (·) = gY (e2(·)),
X(·) = gX(Y (·), e1(·)),

where gY and gX are measurable functions. Also, we may well define random variables X, Y , and

Z by

Z(·) = hZ(e3(·)),
X(·) = hX(Z(·), e1(·)),
Y (·) = hY (Z(·), e2(·)),

where hZ , hX , and hY are measurable functions.

By choosing fX , . . . , hZ carefully, we can make the joint distributions of (X,Y ) the same in all

three cases (Figure 2.1). That is, the precise implementations of the three random vectors (X,Y )

do not matter as far as we are only interested in the joint distribution. However, the detailed



2.1. Introduction to Statistical Frameworks of Causal Inference 19

1 ## (a) X -> Y

2 X = normal ()

3 X = const

4 Y = X + a * normal ()

5 X = const

1 ## (b) Y -> X

2 Y = sqrt (1+a^2) * normal ()

3 X = const

4 X = Y / (1+a^2) + a / np.sqrt (1+a^2) * normal ()

5 X = const

1 ## (c) X <- Z -> Y

2 Z = normal ()

3 X = const

4 X = Z / b + sqrt(1 - 1/(b^2)) * normal ()

5 X = const

6 Y = b * Z + sqrt(1 + a^2 - b^2) * normal ()

7 X = const
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(a) X → Y

5 0 5
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(b) Y → X
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X
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4

Y

(c) X ← Z → Y

Figure 2.2: Distributions of (X,Y ) after an intervention. Configurations are the same as Figure 2.1,
and const = 2.
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implementation gets into play as we start to consider interventions.

Data-generating process after intervention (Figure 2.2). Now, we consider an intervention

to fix X = ξ (a constant function). In the three definitions of (X(·), Y (·)) above, we alter the

definition of X(·) to a constant function. In the first case,

X(·) = ξ,

Y (·) = fY (X(·), e2(·)).

In the second case,

Y (·) = gY (e2(·)),
X(·) = ξ,

In the third case,

Z(·) = hZ(e3(·)),
X(·) = ξ,

Y (·) = hY (Z(·), e2(·)).

Sampling from these (X,Y ) can be simulated by altered Python scripts where an assignment state-

ment X = ξ is inserted after every line of the original script (Figure 2.2). The resulting joint

distributions are, in fact, different between the first case and the other two cases. While they are all

concentrated on X = ξ, only the left-hand case has a different distribution of Y . That is, the differ-

ence in the original data-generating processes can lead to different consequences when we intervene

in the data-generating process.

This example demonstrates that certain important aspects of the dependency among random

variables may not be captured by the joint distribution. Indeed, when an intervention is performed,

the details of implementation do matter; depending on how X and Y are defined, the responses

of Y to assigning a constant to X(·) may differ. Causal models, as models of data-generating

processes, have been developed to capture such detailed characteristics of the random variables that

are not reflected in the distribution [253, 204]. More precisely, causal models make a conjecture

that the random variables representing the real-world data have such a structure behind the data

distributions and leverage it to perform the causal inference.1

The structural causal framework [253, 204] formulates certain deterministic relations or the

generative mechanisms of the random variables. The formulation captures the concept of the data-

generating process we have seen in Section 2.1.1 through an example. The framework is based on the

idea that cause-effect relations may be captured by deterministic functional relations. We elaborate

on the formulation in Section 2.3 as this is the framework that this dissertation is built on.

2.1.2 Statistical Frameworks of Causal Inference

Essentially, statistical causal frameworks can be understood as extensions of standard statistical

methodology, both of which are built on top of probability theory. In many circumstances in statistics

and statistical machine learning, probability distributions are considered to be the full description

of the problem setup. However, in measure-theoretical probability, probability distributions are

secondary objects; random variables are defined to be measurable maps from a probability space to a

measurable space, and the probability distribution of a random variable is the push-forward measure

by that random variable. In this sense, even if some random variables are different as measurable

maps, they can have an identical probability distribution. In other words, in conventional problem

1 Of course, it is not always the case that such a structure exists in the random variables. Therefore, causal models
are employed when one can accept the belief that such a structure exists behind the distributions.
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setups of statistical frameworks, certain aspects of the random variables are ignored so long as they

implement the joint probability distribution of interest, although a distribution only contains some

footprints of the original random variables.

On the other hand, when it comes to making causal inferences, as opposed to performing classical

statistical inferences, the distinction between random variables (random vectors) with the same joint

probability distribution becomes crucial. In causal modeling, random variables with identical (joint)

probability distributions may have different behavior under certain systematic manipulations. The

more detailed properties than what is encoded in the probability distribution come into play. In a

contemporary probabilistic view, studies of statistical causal models are the studies of the properties

of random variables beyond their probability distributions (when they have such a structure).

We provide a detailed preliminary on the structural causal framework in Section 2.3.

2.2 General Notation

In this section, we describe the general notation system used throughout the dissertation. An

informed reader may skip this section, except the base notation and the definition of Markov pillow,

which are not necessarily commonly used outside of this dissertation.

Basic sets and operations. We use R (resp. R>0,R≥0,N,N0) to denote the set of real (resp.

positive real, non-negative real, positive integral, non-negative integral) numbers. We define [i] :=

{1, 2, . . . , i} for i ∈ N. The empty set is denoted by ∅. The cardinality of a finite set A is denoted

by |A|. We use 〈·, ·, . . . , ·〉 to denote a tuple, i.e., a finite sequence. The set difference is denoted by

“\”. We use
∐

to denote the disjoint union of sets. Let d,m ∈ N. For a vector a = (a1, . . . , ad) and

a subset S = {s1, . . . , sm} ⊂ [d] where s1 < · · · < sm, we define the subvector aS := (as1 , · · · , asm).

For simplicity, we also use as := a{s}. By obvious extension, we use this subvector notation for

finite-dimensional vector-valued functions as well as for product spaces of finitely many spaces. For

operations involving sets, we write an element b in lieu of a singleton set {b} when there is no

possibility of confusion. For example, if b ∈ A and B ⊂ A, we define B \ b := B \ {b}.

Random variables. Let X,Y, Z be random variables with a joint distribution P . We say that

X is conditionally independent of Y given Z, denoted by X ⊥⊥ Y | Z, if, for any measurable set A

in the sample space of X, there exists a version of the conditional probability P (A|Y, Z) which is a

function of Z alone. If Z is trivial, we say that X is independent of Y , and write X ⊥⊥ Y .2

Directed mixed graph. A directed mixed graph3 is a tuple G = 〈V,D,B〉 where

• V is a finite set,

• D and B are disjoint subsets of V×V, and

• B satisfies (u, v) ∈ B⇒ (v, u) ∈ B for any u, v ∈ V.

We call the elements of V vertices, those of D uni-directed edges or simply directed edges, and those

of B bi-directed edges. Each element (u, v) ∈ D is denoted by an arrow (u→ v), and each element

(u, v) ∈ B is denoted by a bi-directed arrow (u↔ v).

2 The notation is from Dawid [57] and Dawid [58].
3 The term “mixed” refers to the possible existence of bi-directed edges in addition to uni-directed ones.
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Path. A path from u to v (u, v ∈ V) in a directed mixed graph G is a finite sequence

〈v0, ε1, v1, ε2, v2, . . . , εk, vk〉 of alternating nodes and edges in G for some k ∈ N0 satisfying:

• v0 = u, vk = v,

• {vl}kl=1 ⊂ V, {εl}kl=1 ⊂ D ∪B,

• for all l ∈ [k], εl is one of (vl−1 → vl), (vl → vl−1), or (vl−1 ↔ vl), and

• v0, . . . , vk are distinct.

A path of the form u→ · · · → v is called a directed path from u to v. A path of the form u↔ · · · ↔ v

is called a bi-directed path between u and v.

Acyclic graphs. A directed mixed graph G is called cyclic if there exist u, v ∈ V such that there

exists a directed path u→ · · · → v and a uni-directed edge (v → u) ∈ D.4 A directed mixed graph

G is called acyclic if it is not cyclic.

Abbreviations. We abbreviate acyclic directed mixed graphs (Richardson [217] and Richardson

et al. [218]) as ADMGs. An ADMG is called a directed acyclic graph (DAG) if it contains no

bi-directed edges.

Topological ordering. Let G = 〈V,D,B〉 be an ADMG. A total order ≺ over V is called a

topological ordering with respect to G if u → v implies u ≺ v (Koller and Friedman [150, Defini-

tion 2.19]).5 Given a topological ordering ≺, we define � in an obvious manner.

Kinship-based nomenclature. Let G = 〈V,D,B〉 be an ADMG.

• For v ∈ V, we define its parents paG(v) ⊂ V as

paG(v) := {u ∈ V : there exists a uni-directed edge u→ v}.

• For v ∈ V, we define its district6 disG(v) ⊂ V as

disG(v) := {w ∈ V : there exists a bi-directed path v ↔ · · · ↔ w} ∪ {v}.

• For v ∈ V, we define its generalized parents, denoted by pa(v) ⊂ V, as

paG(v) :=

 ⋃
w∈dis(v)

paG(w)

 ∪ disG(v).

• For v ∈ V and a topological ordering ≺, we define G⪯v as the induced subgraph of G obtained

by restricting the vertices to v and its predecessors, i.e., pred(v,≺) := {v′ ∈ V : v′ � v}.

• For v ∈ V and a topological ordering ≺, we define the Markov pillow7 of v with respect to ≺
as

mpG(v;≺) := paG⪯v
(v) \ v.

4 The cyclicity/acyclicity of a directed mixed graph G is not affected by the existence of bi-directed edges.
5 Equivalently, ≺ is a topological ordering with respect to G if u ≺ v implies that there is no directed path from v

to u.
6 The term “district” is adopted from Richardson et al. [218]. Tian and Pearl [273] termed districts as “c-

components”.
7 The Markov pillow (as well as generalized parents) is a generalization of the concept of parents in the case

where there are bi-directed edges. Indeed, when G is a DAG (i.e., B = ∅), for any topological ordering ≺, we have
mp(v;≺) = pa(v).
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Table 2.1: Terminology of structural causal models.

Symbol Terminology
I Index set of endogenous variables
J Index set of exogenous variables

{Zv}v∈I Domains of the endogenous variables
{Eu}u∈J Domains of the exogenous variables

f Structural function (SF)8

PE Exogenous distribution
PZ Observational distribution
PZ,E Joint solution distribution
F Reduced-form structural function (RSF)

• For v ∈ V, we define the descendants of v as

descG(v) := {u ∈ V :a directed path v → · · · → u exists and

no directed pathu→ · · · → v exists}.

• For v ∈ V, we define the non-descendants of v as non-descG(v) := V \ (desc(v) ∪ v).

When G is obvious from the context, we omit G from the notation of paG ,disG , paG , mpG , descG ,

and non-descG .

2.3 Structural Causal Framework

In this section, we introduce the formal treatment of the structural causal framework, which serves

the subsequent chapters with a unified ground. The structural causal modeling framework defines

a suite of generative models, namely structural causal models (SCMs) and graphical causal models

(GCMs). An SCM captures the detailed data-generating process using deterministic functions, while

a GCM captures the more qualitative cause-effect relations in the data-generating process. Based

on both SCM and GCM, the notions of interventional distributions can be naturally defined, and

they are compatible, which is one of the initial motivations for which these models were developed

(Pearl [204]).

2.3.1 Structural Causal Models (SCMs)

In this dissertation, we adopt the definition of SCMs from Bongers et al. [29] for its clarity of

exposition. SCMs characterize random variables by some deterministic functional equations which

they satisfy, such as the equations used to define the random vectors (X,Y ) in the examples of

Section 2.1.1.

Definition 2.1 (Structural Causal Model [297, 94, 204, 29]). A structural causal model (SCM)9 is

a tupleM := 〈I,J ,Z,E,f ,PE〉, where

1. I and J are disjoint finite sets,

2. Z =
∏
v∈I Zv, E =

∏
u∈J Eu, and each Zv and Eu is a standard measurable space,10, 11

18 To the best of the author’s knowledge, often in the literature, this object is not given a terminology. The term
structural function is not a standard one, but it is used in this dissertation for convenience.

9 SCMs are also known as functional causal models (FCMs) or structural equation models (SEMs) [204].
10 A standard measurable space is a measurable space that is isomorphic (as measurable spaces) to a Polish space

endowed with the Borel σ-algebra (Çinlar [47, Section I.2]).
11 We temporarily consider a fixed ordering over I and J when we refer to

∏
v∈I or

∏
u∈J .



24 Chapter 2. Preliminaries

3. f : Z × E → Z is a measurable map,

4. PE =
∏
u∈J PEu is a product measure, and each PEu is a probability measure on Eu.

Given an SCM, the equation

z = f(z, e) z ∈ Z, e ∈ E (2.1)

is called the structural equation (SE) ofM.

Table 2.1 summarizes the terminology used to refer to each constituent of an SCM. Conversely,

random variables that are described by a given SCM are called a solution.

Definition 2.2 (Solution of an SCM [29]). A pair (Z,E) of random variables Z : Ω →
Z,E : Ω → E, where Ω is the sample space of a probability space, is a solution of the SCM

M = 〈I,J ,Z,E,f ,PE〉 if

• PE = PE where PE is the distribution of E, and

• the SE is satisfied, i.e., Z = f(Z,E) a.s.

The joint distribution PZ,E of a solution (Z,E) is called a joint solution distribution ofM.12 For

convenience, Z is also called a solution ofM if there exists a random variable E such that (Z,E)

is a solution of M. If Z is a solution of M, we also say that Z is generated by M, and we write

Z
gen← M. Analogously, if {(Zi,Ei)}ni=1 are solutions of M defined on the same probability space,

and if {Ei}ni=1 are independent, then we write {Zi}ni=1
i.i.g.← M.13 The distribution of a solution Z

is called an observational distribution ofM.

We define the following graphical objects by extracting the dependency structure from the SF

of an SCM. They reflect the qualitative dependency structure that is intrinsic in the SF.

Definition 2.3 (Graph and Augmented Graph of an SCM [29]). Let M = 〈I,J ,Z,E,f ,PE〉 be
an SCM. The augmented graph of M is the directed mixed graph graph(M) = 〈Va,Da, ∅〉 defined
as follows:

• the vertex set is Va = I
∐
J , and

• the uni-directed edge set Da is defined by

(u→ v) ∈ Da

⇔

{
v ∈ I, and

6 ∃f̃ : ZI\u × EJ\u → Zv s.t. f̃(z, e) = fv(z, e) ∀z ∈ Z, e ∈ E.

Also, the graph of M is the directed mixed graph obsGraph(M) = 〈V,D,B〉 obtained from

graph(M) as follows:14

• the vertex set is V = I,

• the bi-directed edge set B is defined by

(u↔ v) ∈ B⇔ ∃w ∈ J s.t. (w → u), (w → v) ∈ Da, and

12 The term joint solution distribution is not common and may only be used in this dissertation for convenience.
13 Here, i.i.g. stands for “independently and identically generated.”
14 Note that, by definition, J has no parents in graph(M). As a result, the procedure to obtain obsGraph(M) from

graph(M) in Definition 2.3 is the same as the latent projection (Algorithm 1).
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• the uni-directed edge set D is defined by

(u→ v) ∈ D⇔ (u→ v) ∈ Da and (u↔ v) 6∈ B.

In this dissertation, we only consider acyclic SCMs, defined as follows. The examples in Sec-

tion 2.1.1 fall into this category.

Definition 2.4 (Acyclic SCM [29]). We say that an SCM M is acyclic (or semi-Markovian) if

and only if its graph obsGraph(M) is an ADMG.15 Moreover, a semi-Markovian SCMM is called

Markovian if obsGraph(M) is a DAG. We denote the set of semi-Markovian SCMs for I,J ,Z,E
as SSCM(I,J ,Z,E).

In some cases, we can solve the SE for z, i.e., find a measurable function F such that z = F (e).

Such functions are called reduced-form SFs. Figure 2.3 shows examples of a structural-form SE and

its corresponding reduced-form SE.

Definition 2.5 (Reduced-form SFs [215]). LetM be an SCM, f be its structural function, and PE

be its exogenous distribution. A measurable map F : E → Z is called a reduced-form structural

function (RSF)16 ofM if it satisfies

z = f(z, e) ⇒ z = F (e), z ∈ Z,PE-a.s.(e).

If an RSF exists, it is unique in the following sense.

Proposition 2.1 (Pairwise Uniqueness of RSF). LetM = 〈I,J ,Z,E,f ,PE〉 be an SCM. If F and

F ′ are both RSFs ofM, they are PE-almost surely equal on Ef := {e ∈ E : ∃z ∈ Z, z = f(z, e)}.17

That is, there exists a PE-negligible set E¬ ⊂ E such that F = F ′ on Ef \ E¬.

Proof. Let E0 and E ′
0 be the two PE -negligible sets corresponding to F and F ′, respectively. If we

let E¬ := E0 ∪ E ′
0, then PE(E¬) = 0, and for any pair (z, e) ∈ Z × (E \ E¬) satisfying z = f(z, e),

we have F (e) = z = F ′(e).

In the case of acyclic SCMs, we can show the existence of an RSF. In the proof in Appendix A.2,

the RSF is constructed by solving Equation (2.1) for z by iterative elimination of variables.

Proposition 2.2 (Existence of RSF). IfM is an acyclic SCM,M has an RSF.

When an RSF exists, the joint solution distribution and the observational distribution ofM are

obtained by transforming PE by the RSF.

Proposition 2.3. Let F be an RSF of an SCM M = 〈I,J ,Z,E,f ,PE〉. Then, for any solution

(Z,E), we have

Z = F (E) a.s.,

PZ,E(dz,de) = δF (e)(dz)PE(de),

PZ = F♯(PE) = PE ◦ F−1,

where PZ,E and PZ are the distributions of (Z,E) and Z, respectively. In particular, M has a

unique joint solution distribution and unique observational distribution.

15 Equivalently, an acyclic SCM is one for which graph(M) is acyclic.
16 Given a reduced-form SF F , the equation z = F (e)(z ∈ Z, e ∈ E) is called a reduced-form structural equation

(RSE) ofM. In contrast, we call the original equations (Equation (2.1)) the structural-form SEs.
17 The notion of the uniqueness of RSF shown here is weaker than the claim that the RSF is PE -almost surely

unique on Ef , which would mean that there exists a single PE -negligible set E¬ on which all RSFs match.
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z =

(
0 0
1 0

)
z +

(
1 0
0 a

)
e

(a) Structural-form structural equation

z =

(
1 0
−1 1

)−1(
1 0
0 a

)
e

(b) Reduced-form structural equation

Figure 2.3: Examples of structural equations.

Proof. Let E¬ be the E-negligible set corresponding to F . Since Z = f(Z,E) and E 6∈ E¬ are

almost surely satisfied, we almost surely have Z = F (E). Applying Lemma A.1, we have the

assertion. Uniqueness follows from Fact A.2.

In light of Proposition 2.2 and Proposition 2.3, we are guaranteed that acyclic SCMs have unique

joint solution distributions and unique observational distributions.

Definition 2.6. Let M be an SCM with a unique joint solution distribution. Define dist(M)

to be the joint solution distribution PZ,E of M. Also define obsDist(M) to be the observational

distribution PZ ofM.

2.3.2 Graphical Causal Models (GCMs)

Definition 2.7 (Recursive Factorization [142, 160]). A probability measure P over Z =
∏
v∈I Zv

is said to recursively factorize18 according to a DAG G if, for each v ∈ V, there exists a Markov

kernel19 Kv from Zpa(v) to Zv such that

PZ(dz) =
∏
v∈I

Kv(zpa(v),dzv).

Definition 2.8 (Probabilistic graphical models). A probabilistic graphical model (PGM) is a tuple

M = 〈I,J ,Z,E,Ga,PZ,E〉, where

• I, J , Z, and E satisfy Conditions 1 and 2 of Definition 2.1,

• Ga is a DAG with vertex set I
∐
J , and

• PZ,E is a probability measure over Z × E that recursively factorizes according to Ga.

We call I the observed index set and J the unobserved index set.20 Define graph(M) := Ga,
dist(M) := PZ,E , and obsDist(M) := PZ , where PZ = PZ,E(·,E) is the marginal distribution.

This measure-theoretic definition of the PGMs, namely the definition using factorization in terms

of Markov kernels instead of conditional densities, can also be found in Wu et al. [298]. For more

details on Markov kernels and conditional distributions, see Çinlar [47, Chapter I, Section 6] and

Çinlar [47, Chapter IV, Section 2], respectively. For a comprehensive account and historical remarks

on PGMs, see Lauritzen [160].

In the context of the structural causal framework, PGMs are often endowed with an operator to

model the interventional distributions, which we define later in Definition 2.13.

18 The terminology “recursively factorize” is adopted from Lauritzen [160]. In the literature, there are other ex-
pressions to refer to the same notion, e.g., a distribution is said to be Markov relative to a graph when the recursive
factorization property is satisfied (Pearl [204, Definition 1.2.2]).

19 See Definition A.1 in Appendix A.2.1 for the definition of Markov kernels.
20 At this point, the distinction between I and J is unnecessary. However, the notation to distinguish the two sets

can help us clarify the relations among different causal models.
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Algorithm 1 Latent projection (Verma [283])

Input: DAG Ga = 〈I
∐
J ,D〉

1: for v, v′ ∈ I such that v 6= v′

2: if (v → v′) ∈ D then
3: Add (v → v′) to D̃.

4: if there exists a path (v → · · · → v′) in Ga such that all the internal nodes in the path are
the elements of J then

5: Add (v → v′) to D̃.

6: if there exists a path (v ← · · · ← u→ · · · → v′) in Ga such that all the internal nodes in the
path are the elements of J (including u itself) then

7: Add (v ↔ v′) to B̃.

Output: ADMG G = 〈I, D̃, B̃〉

Definition 2.9 (Markovian GCMs). When a PGM is endowed with the do(·, ·) operator (Defini-

tion 2.13), we call it a Markovian graphical causal model (Markovian GCM; a.k.a. Markovian causal

graphical models).21 We denote the set of Markovian GCMs for I,J ,Z,E as MGCM(I,J ,Z,E).

The modifier “Markovian” connotes that the model explicitly includes the unobserved variables,

namely by J , Ga, and PZ,E (in a way, all variables are “observed” by this model). On the other

hand, semi-Markovian GCMs, as defined below, are the models in which only the observed variables

explicitly appear. They are essentially the equivalence classes of Markovian GCMs with respect to

an equivalence relation which “squashes” the unobserved variables by marginalization and graph

manipulation. Each Markovian model in the equivalence class may have different situations (defini-

tions and distributions) of unobserved variables, but they share certain aspects of the behavior of

the observed random variables. The equivalence relation is defined by the following operation called

the latent projection (Verma [283] and Tian [271], and Evans [74]).

Definition 2.10 (Latent projection [283, 271, 74]). LetM = 〈I,J ,Z,E,Ga,PZ,E〉 be a Markovian

GCM. Then, define

πSGCM(M) := 〈I,Z,G,PZ〉,

where G is obtained by Algorithm 1 from Ga, and PZ = obsDist(PZ,E) is the marginal distribution

over Z. By slight abuse of notation, we also write πSGCM(Ga) = G and πSGCM(PZ,E) = PZ when

M is clear from the context.

Semi-Markovian GCMs are the sets of Markovian GCMs that are projected to the same tuple.

Definition 2.11 (Semi-Markovian GCM). Let MGCM denote the set of all Markovian GCMs.

Consider the equivalence relation (projection equivalence) for MGCM defined by

M∼M′ ⇔ πSGCM(M) = πSGCM(M′).

It is easy to confirm that ∼ is indeed an equivalence relation. Then, a semi-Markovian graphical

causal model (semi-Markovian GCM) is an equivalence class of MGCM with respect to ∼.

Remark 2.1 (Specification of a semi-Markovian GCM). A semi-Markovian GCM is specified by a

tupleM = 〈I,Z,G,PZ〉, where I and Z satisfy Conditions 1 and 2 of Definition 2.1, G is an ADMG

with vertex set I, and PZ is a probability measure over Z. Indeed, if M̃ = 〈Ĩ, J̃ , Z̃, Ẽ, G̃a, P̃Z,E〉

21 The distinction between PGMs and Markovian GCMs is similar in spirit to the distinction between a metrizable
space and a metric space.
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Acyclic SCM
⟨I,J ,Z,E, f, PE⟩

Markovian GCM
⟨I,J ,Z,E,Ga, PZ,E⟩

Intervened MGCM

⟨I,J ,Z,E,Ga
do(A,a)

, Pdo(A,a)
Z,E ⟩

Semi-Markovian GCM
⟨I,Z,G, PZ ⟩

Pdo(A,a)
Z,EPdo(A,a)

ZW

Intervened SCM
⟨I,J ,Z,E, fdo(A,a), PE⟩

Pdo(A,a)
Z,E

πMGCM
(graph, PZ,E )

πSGCM
(via latent projection)

do(A,a)

πSGCM
(obsGraph, PZ )

margDoDist(A,a,W )
(if well-defined)dist

margW

margW

dist

do(A,a)
(via factorization)

Figure 2.4: Relations among SCMs and GCMs.

is a Markovian GCM,

M̃ ∈ M⇔

{
Ĩ = I, Z̃ = Z,
πSGCM(G̃a) = G, πSGCM(P̃Z,E) = PZ .

To conform to the standard notation of equivalence classes, the semi-Markovian GCM to which a

Markovian GCMM belongs is denoted by [M]. In fact, [M] = πSGCM(M). Given a semi-Markovian

GCM M = 〈I,Z,G,PZ〉, we call G the causal graph of M. We denote the set of semi-Markovian

GCMs for I,Z as SGCM(I,Z).

Remark 2.2 (Natural embedding). A Markovian GCM 〈I, ∅,Z, ∅,Ga,PZ〉 can be naturally mapped

to a semi-Markovian GCM 〈I,Z,Ga,PZ〉, since we have πSGCM(Ga) = Ga and πSGCM(PZ) = PZ

due to J = ∅. It is immediate that this map is injective (but not surjective).

Note that a single distribution PZ may be coupled with different G to form different semi-

Markovian GCMs. In other words, semi-Markovian GCMs distinguish distributions by annotating

them with the graph to preserve a certain aspect of the data-generating process.

2.3.3 Relation between SCMs and GCMs

Here, we elaborate on the relation between SCMs and GCMs, shedding light on their hierarchical

nature. While the contents of this section do not directly relate to the development of the subsequent

chapters, they are useful in clarifying the hierarchical relation between SCMs and GCMs. The reader

may well skip to Section 2.4, where we describe the properties of the GCMs and the SCMs on which

we focus in this dissertation. The relation is summarized in Figure 2.4. GCMs can be seen as a

coarsening of SCMs where the graphical dependency structure that can be used for calculating the

interventional distributions is extracted from the SFs.

Modeling Interventional Distributions. We define the notions of interventional distributions

on SCMs and GCMs.22 The operations defined here are summarized in Figure 2.4.23 The following

is a definition of perfect interventional distributions derived from an SCM, with which an SCM can

22 Sometimes in the literature, the interventional distributions are called the causal effects (Pearl [204, Defini-
tion 3.2.1]).

23 Nonstandard notation for various operators (such as doDist, doGraph,margDoDist) is devised in this section. We
believe they compactly convey the meaning and are easier to remember than the conventional notation.
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be used as a model of interventional distributions. It formalizes the intervention operation of the

example in Section 2.1.1.

Definition 2.12 (Perfect interventional distributions for SCMs). Let M = 〈I,J ,Z,E,f ,PE〉 be
an acyclic SCM. For A ⊂ I and a ∈ ZA, we define a map do(A,a) as

do(A,a) :M 7→Mdo(A,a),

whereMdo(A,a) = 〈I,J ,Z,E,fdo(A,a),PE〉 is the intervened SCM defined by

fvdo(A,a) =

{
fv(z, e) if v 6∈ A,
av if v ∈ A.

For convenience, we define24

doFunc(A,a)(M) := doFunc(A,a)(f) := fdo(A,a),

doDist(A,a)(M) := Pdo(A,a)
Z,E := dist(Mdo(A,a)).

To summarize, with these definitions,

do(A,a)(〈I,J ,Z,E,f ,PE〉) = 〈I,J ,Z,E,doFunc(A,a)(f),PE〉,
doDist(A,a)(M) = dist(do(A,a)(M)).

The marginal distribution Pdo(A,a)
Z := Pdo(A,a)

Z,E (·,E) is called the interventional distribution in-

duced byM under the perfect intervention do(A,a).

Given a Markovian GCM, one can define the following operation, with which a Markovian GCM

can be used as a model of interventional distributions.

Definition 2.13 (Perfect interventional distributions for Markovian GCMs). Let M =

〈I,J ,Z,E,Ga,PZ,E〉 be a Markovian GCM. Recall that PZ,E recursively factorizes according to

Ga (Definition 2.7), and let {Kv}v∈I
∐

J be Markov kernels (where Kv is from Zpa(v) to Zv) such

that
PZ,E(dξ) =

∏
v∈I∪J

Kv(ξpa(v),dξv).

For A ⊂ I and a ∈ ZA, we define a map do(A,a) as

do(A,a) :M 7→Mdo(A,a),= 〈I,J ,Z,E,Gado(A,a),P
do(A,a)
Z,E 〉

whereMdo(A,a) is a Markovian GCM called the intervened MGCM defined by

• the intervened graph Gado(A,a), which is identical to Ga except that we remove the edges whose

arrow heads are pointed to an element of A, and

• the intervened distribution Pdo(A,a)
Z,E defined by

Pdo(A,a)
Z,E (dξ) =

∏
v∈I∪J

({
Kv(ξpa(v),dξv), if v 6∈ A,
δav (dξv), if v ∈ A.

)
(2.2)

with ξ = (z, e), and δx(·) is the Dirac measure centered at x.

24 SinceM is assumed to be acyclic,Mdo(A,a) is also acyclic.
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For convenience, we define

doGraph(A,a)(M) := doGraph(A,a)(Ga) := Gado(A,a),

doDist(A,a)(M) := doDist(A,a)(PZ,E) := Pdo(A,a)
Z,E .

To summarize, with these definitions,

do(A,a)(〈I,J ,Z,E,Ga,PZ,E〉)
= 〈I,J ,Z,E,doGraph(A,a)(Ga),doDist(A,a)(PZ,E)〉.

The distribution Pdo(A,a)
Z := Pdo(A,a)

Z,E (·,E) is called the interventional distribution induced byM
under the perfect intervention do(A,a).25

Given a semi-Markovian GCM, one can define the following operation, with which a semi-

Markovian GCM can be used as a model of interventional distributions. However, unlike the case

of SCMs or Markovian GCMs, not all interventional distributions are well-defined; that is, the in-

terventional distributions may differ for different Markovian GCMs in the same semi-Markovian

GCM.

Definition 2.14 (Perfect interventional distributions for semi-Markovian GCMs). Let [M] be

a semi-Markovian GCM containing M. For A,W ⊂ I and a ∈ ZA, we define a map

margDoDist(A,a,W ) as

margDoDist(A,a,W ) : [M] 7→ margW (doDist(A,a)(M))

whenever it is well-defined, i.e., when the right-hand side does not depend on the choice of

M. Here, margW is an operator to marginalize a probability distribution for W . When

margDoDist(A,a,W )([M]) is well-defined, we say that the marginal perfect interventional distribu-

tion of W is identifiable in [M] under do(A,a).26

Remark 2.3 (Identifiability of causal quantities). In the earlier literature on the identifiability of

interventional distributions, various sufficient conditions for the identifiability were explored (for a

brief review, see, e.g., Shpitser and Pearl [245]), such as the backdoor criterion [205, 204]. Halpern

[96] showed that the rules of do-calculus proposed by Pearl [203] are complete for the identifica-

tion. However, this was an axiomatic approach from which an explicit algorithm was not obtained.

Later, Tian and Pearl [272] proposed the necessary and sufficient condition for identifying the joint

interventional distribution, i.e., margDoDist(A,a, I)(M). For marginal interventional distributions

as defined in Definition 2.14, i.e., margDoDist(A,a,W )(M) where W is a strict subset of I, the
condition in Tian and Pearl [272] was only a sufficient condition and not a necessary condition for

the identification. Soon after, Shpitser and Pearl [245] and Huang and Valtorta [116] concurrently

provided the algorithms to decide whether margDoDist(A,a,W )(M) is identifiable, one of which

was a modified version of an algorithm found in Tian [271]. For a detailed review of the identifiabil-

ity of interventional distributions, see Shpitser and Tian [246]. Similarly to the perfect intervention,

there are other operators used for modeling causal quantities. One such example is the conditional

interventional distribution, for which Shpitser and Pearl [244] provided a complete algorithm for

deciding the identifiability.

Remark 2.4 (Naturalness of the definitions of interventional distributions). Here, we have provided

a constructive definition of the interventional distributions, but historically these definitions have

25 Equation (2.2) is a measure-theoretical version of what is known under the names of g-formula (Robins [221]),
the manipulated distribution (Spirtes et al. [253]), or the truncated factorization (Pearl [204]).

26 In contrast, it is said that all interventional distributions are identified in a Markovian GCM because it is a map
and hence trivially “well-defined” (Pearl [204, Corollary 3.2.6]).
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been derived based on conceptual considerations such as modularity or autonomy of causality (see,

e.g., Woodward [295], Craver and Tabery [54, 2.4.3], Menzies [181]).

Remark 2.5 (Notation of the do operator). The operator do(A,a) is also denoted by placing do(A =

a) or â in the conditioning part of the usual notation of the conditional distribution (e.g., p(z|do(A =

a)) or p(z|â); Pearl [204])

Compatibility of the definitions. The following proposition, which immediately follows from

Corollary 8.3 of Bongers et al. [29], clarifies the relation between SCMs and GCMs. The relation is

that an acyclic SCM induces a Markovian GCM as well as its corresponding semi-Markovian GCM.

A proof is provided in Appendix A.2.4.

Proposition 2.4 (Acyclic SCM induces a GCM). LetM = 〈I,J ,Z,E,f ,PE〉 be an acyclic SCM.

Then,

• πMGCM(M) := 〈I,J ,Z,E,Ga,PZ,E〉 becomes a Markovian GCM where Ga = graph(M) and

PZ,E = dist(M),

• πSGCM(M) := 〈I,Z,G,PZ〉 becomes a semi-Markovian GCM where G = obsGraph(M) and

PZ = obsDist(M).

Moreover, πMGCM(M) ∈ πSGCM(M) holds.

Furthermore, the two definitions of the interventional distributions are compatible. A proof is

provided in Appendix A.2.4.

Proposition 2.5 (Compatibility of interventional distributions for Markovian models). For any

A ⊂ I and a ∈ ZA, the following diagram commutes:

SSCM(I,J ,Z,E) MGCM(I,J ,Z,E)

SSCM(I,J ,Z,E) MGCM(I,J ,Z,E)

πMGCM

do(A,a)

πMGCM

do(A,a)

In particular, ifM∈ SSCM(I,J ,Z,E) andM1 = πMGCM(M), then

doDist(A,a)(M) = doDist(A,a)(M1), A ⊂ I,a ∈ ZA.

That is, the definitions of the interventional distributions of SCMs and GCMs are compatible.

Therefore, a Markovian GCM can be considered as a coarsening of a Markovian SCM where

only the graphical information is retained and the details of the SF are forgotten.

Remark 2.6. Acyclicity is not the most general condition under which the compatibility of the SCMs

and the GCMs can be shown. There are other more general conditions that may be imposed on the

SCMs, such as the simplicity in Bongers et al. [29].

Remark 2.7 (Other causal frameworks with graphical representations). Conversely, GCMs (or their

variants that make fewer independence assumptions) do not necessarily need to be founded on

SCMs (Robins and Richardson [222]). Instead, other generative models such as the finest fully

randomized causally interpreted structured tree graph (FFRCISTG; Robins [221]) may well provide

the foundation of GCMs while introducing weaker assumptions on the data-generating process. See

also Technical Point 6.2 in Hernán and Robins [103].

Remark 2.8. If we fix I and Z and omit them from the notation, it becomes clearer that a semi-

Markovian GCM 〈G,PZ〉 is a model that annotates the distribution PZ with a graph G that is a

distilled representation of the data-generating process.
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2.4 Properties and Estimation of Structural Causal Frame-

work

Here, we describe the properties of the GCMs and the SCMs on which we focus in this dissertation.

We also briefly review the (partial) estimation of these models.

2.4.1 Statistical Independences in GCMs

In a semi-Markovian GCM M = 〈I,Z,G,PZ〉, the graph G imposes certain constraints on PZ ,

i.e., there are some known properties of PZ that are shared by all Markovian GCMs in a given

semi-Markovian GCM. One such constraint is the following equality constraint on the distribution.

Definition 2.15 (Topological ADMG factorization). Let pZ be a probability density function with

respect to a product measure on Z =
∏
v∈I Zv, and G = 〈I,D,B〉 be an ADMG. Also let ≺ be a

topological ordering over I with respect to G. Then, pZ is said to satisfy the topological ADMG

factorization property with respect to (G,≺) (Bhattacharya et al. [24]) if

pZ(z) =
∏
v∈I

pZ(zv|zmp(v;≺)) (2.3)

holds. In particular, if G is a DAG, then Equation (2.3) becomes

pZ(z) =
∏
v∈I

pZ(zv|zpa(v)). (2.4)

Proposition 2.6 (Tian and Pearl [273, Corollary 1], Bhattacharya et al. [24]). Let M =

〈I,Z,G,PZ〉 be a semi-Markovian GCM. Assume PZ has a density function pZ . Let ≺ be a topo-

logical ordering over I with respect to G. Then, pZ satisfies the topological ADMG factorization

property with respect to (G,≺).

Remark 2.9. In the special case that the ADMG is uninformative, i.e., when G is complete

and all edges are bi-directed, Equation (2.3) reduces to the ordinary chain rule of probability:

pZ(z) =
∏
v∈I pZ(zv|z{u∈I\v:u≺v}), since mp(v;≺) = {u ∈ I \ v : u ≺ v} in this case. From Equa-

tion (2.4), we can see that Definition 2.15 is a generalization of the recursive factorization property

(Definition 2.7) to ADMGs. Interestingly, however, unlike the case of Markovian GCMs that are

fully characterized by conditional independence relations (Proposition A.1), there are more con-

straints imposed on the distribution in a semi-Markovian GCM. That is, there are more constraints

shared by all Markovian GCMs in a given semi-Markovian GCM.

Remark 2.10 (Equality and Inequality Constraints in semi-Markovian GCMs). Some of such con-

straints are known as equality constraints,27 the constraints imposed by equalities between certain

functionals of the density function. Tian and Pearl [273] studied such equality constraints system-

atically and obtained an algorithm to enumerate the equality constraints given the ADMG. Indeed,

Proposition 2.6 follows from one of such equality constraints (Tian and Pearl [273, Corollary 1]).

In the case of categorical observed variables, the algorithm of Tian and Pearl [273] has been shown

to output all equality constraints (Evans [75]). Richardson et al. [218] refined the approach and

provided four characterizations of the equality constraints found in a semi-Markovian GCM, one of

which is the criterion provided by Tian and Pearl [273]. The tuples 〈I,Z,G,PZ〉 satisfying one of

the four characterizations are called nested Markov models (Richardson et al. [218]). By definition, a

27 An early example of such constraints is known as the Verma constraint (Verma and Pearl [282] and Robins [221];
also see Evans [72, 2.4.1]).
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Semi-Markovian GCM
〈I,Z,G,PZ〉

Conditional Independence in PZ
m-separation [217]
⇔ Factorization [73]

Equality Constraints on PZ
Constraint enumeration [273]
Nested Markov models [218]

Topological ADMG Factorization
(Definition 2.15; [273, 24])

Inequality Constraints on PZ [72]
Imply

Imply
Imply

Particular case

Figure 2.5: Constraints imposed on semi-Markovian GCMs.

nested Markov model 〈I,Z,G,PZ〉 imposes no more constraints on PZ than the corresponding semi-

Markovian GCM 〈I,Z,G,PZ〉, i.e., every semi-Markovian GCM can be seen as a nested Markov

model. For more details on nested Markov models, see Shpitser et al. [243] and Richardson et al.

[218]. Bhattacharya et al. [24] proposed a simple sufficient condition called the mb-shieldedness (mb

stands for “Markov blanket”) under which the topological ADMG factorization captures all the

equality constraints. The relation is summarized in Figure 2.5.

Also, quite interestingly, certain inequality constraints are known to entail semi-Markovian

GCMs (see, e.g., Evans [72] for details). Evans [74] proposed another layer of equivalence classes

based on marginalized directed acyclic graphs (mDAG), which is more granular than semi-Markovian

GCMs, and showed a limitation of the type of properties that can be retained by ADMG-based

GCMs. Forré and Mooij [80] introduced directed graphs with hyperedges (HEDGes) that generalize

mDAGs and directed mixed graphs and studied their properties, namely the relations of several

different versions of Markov properties for the corresponding probability distributions (Lauritzen

et al. [158] and Lauritzen [160]).

Remark 2.11 (Estimation of GCMs). The property in Proposition 2.6 can be used to estimate the

graph of a Markovian SCM. Also, the interpretation of a GCM as an induced object of an SCM is

important in the estimation of the causal graph.

In this dissertation, we exploit the topological ADMG factorization (Definition 2.15 and Propo-

sition 2.6) as prior knowledge about the data distribution when we have access to an estimator of G.
Intuitively, one can expect the knowledge to be useful when the data is so small that it is insufficient

for reliable statistical tests of conditional independence since the topological ADMG factorization

generalizes the recursive factorization property (Definition 2.7) which in turn is equivalent to a series

of conditional independence relations (Proposition A.1).

2.4.2 Statistical Independences in SCMs

SCMs give rise to a certain family of generative models, called independent component models.

Definition 2.16 (Independent component model; e.g., [49] and [121]). An independent component

model (ICM) is a tupleM = 〈I,J ,Z,E,F ,PE〉, where
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• I,J ,Z,E, and PE satisfy Conditions 1, 2, and 4 of Definition 2.1, and

• F : E → Z is a measurable map.

For a random variable Z taking values in Z, we say Z is generated by M (denoted by Z
gen←

M) if there exists a random variable E defined on the same probability space such that E ∼ PE

and Z = F (E) almost surely hold. Analogously, if Zi = F (Ei) and {Ei}ni=1
i.i.d.∼ PE , we write

{Zi}ni=1
i.i.g.← M. We call E the independent components of Z, and we call F the mixing map.

If an SCMM has an RSF (e.g., ifM is acyclic; Proposition 2.2), the random variables generated

byM can be considered to be generated from an ICM.

Proposition 2.7 (SCM as an ICM [137]). Let F be an RSF of M = 〈I,J ,Z,E,f ,PE〉. Then,

M′ := 〈I,J ,Z,E,F ,PE〉 is an ICM. Moreover, (Z
gen← M)⇒ (Z

gen← M′) holds.

Proof. In light of Proposition 2.3, Z
gen← M implies that Z = F (E) almost surely holds for some

random variable E ∼ PE defined on the same probability space. Thus, by definition, Z
gen← M′.

Moreover, if there are multiple SCMs sharing the same SF, and if each SCM has an RSF, then

they can be considered as ICMs sharing the same mixing map.

Proposition 2.8 (SCMs with identical SFs as ICMs with identical mixing maps). Let K ∈ N and

let
M1 = 〈I,J ,Z,E,f ,PE,1〉,

...

MK = 〈I,J ,Z,E,f ,PE,K〉

be SCMs.28 Assume that each Mk(k ∈ [K]) has an RSF Fk. Then, there exists a measurable map

F : E → Z that is an RSF simultaneously for allMk(k ∈ [K]). In particular, if we define the ICMs

based on this F as
M′

1 = 〈I,J ,Z,E,F ,PE,1〉,
...

M′
K = 〈I,J ,Z,E,F ,PE,K〉,

then we have (Z
gen← Mk)⇒ (Z

gen← M′
k) for all k ∈ [K].

Proof. For each k ∈ [K], let Ek¬ be the PE,k-negligible set corresponding to Fk. Let Ek := E \ Ek¬.
Then, for any distinct k, l ∈ [K], for any (z, e) ∈ Z × (Ek ∩ E l), we have z = f(z, e) ⇒ Fk(e) =

z = Fl(e). Thus, we can define

F (e) =

Fk(e) if e ∈ Ef ∩ Ek,
F̃ (e) if e 6∈ Ef ∩

(⋃
k∈[K] Ek

)
,

where Ef := {e ∈ E : ∃z ∈ Z, z = f(z, e)} and F̃ : E → Z is an arbitrary measurable map. Then,

for any (z, e) ∈ Z × Ek such that z = f(z, e), we have z = Fk(e) = F (e). Since PE,k(Ek) = 1

and F is measurable, by definition, F is an RSF of Mk. The last half of the assertion follows

immediately from Proposition 2.7.

As a result, under certain conditions, the RSF can be estimated by using the methods of inde-

pendent component analysis (ICA).

28 The acyclicity requirement can be relaxed to the requirement that each SCM has an RSF.
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Proposition 2.9 (Identifiability of ICM; [124, Theorem 1]). Let d,K ∈ N. Let

M1 = 〈[d], [d],Rd,Rd,F ,PE,1〉,
...

MK = 〈[d], [d],Rd,Rd,F ,PE,K〉

be ICMs. Moreover, assume the following.

• PE,1, . . . ,PE,K have density functions pE,1, . . . , pE,K .

• pE,k is sufficiently smooth (k ∈ [K]),

• F is a C2-diffeomorphism from Rd to itself,

• for any e ∈ Rd, there exist distinct values k0, . . . , k2d ∈ [K] such that

{w(e; kj)− w(e; k0)}j∈[2d]

are linearly independent, where

w(e; k) :=

(
∂ log p1E,k(e

1)

∂e1
, . . . ,

∂ log pdE,k(e
d)

∂ed
,
∂2 log p1E,k(e

1)

∂(e1)2
, . . . ,

∂2 log pdE,k(e
d)

∂(ed)2

)
.

Then, there exists an algorithm A such that given independent and identically generated data

sets {Zk
i }

nk
i=1

i.i.g.← Mk(k ∈ [K]), A
(
{Z1

i }
n1
i=1, . . . , {ZK

i }
nK
i=1

)
consistently estimates F−1 up to

component-wise invertible transformations.

Proposition 2.9 implies that it is possible (under additional assumptions) to estimate F by

employing the data from multiple ICMs sharing the same F , thereby providing a sufficient condition

under which the RSF F of an SCM is estimable. That is, if we have multiple SCMsM1, . . . ,MK

that share the same SFs (and hence the same RSFs), and if the models satisfy the additional

technical assumptions in Proposition 2.9, then the RSF F is estimable.

Remark 2.12 (Methods of independent component analysis). On the other hand, it is well-known

that correctly estimating F of an ICM M from a single sample {Zi}ni=1
i.i.g.← M is impossible in

general (Hyvärinen and Pajunen [120]).

Remark 2.13 (Estimation of SCMs). Proposition 2.9 indicates that, under certain conditions, we

can estimate F that is partial knowledge of the SF f . In general, even if we successfully estimate

F , it is not always possible to recover f from F . For example, consider{
X = 1[e1 > 0] ,

Y = X2 + e2,
and

{
X = 1[e1 > 0] ,

Y = X + e2.

Although this is an artificial example, we see that two different SFs can yield the same RSF (imagine,

e.g., e1 is the body temperature, X is the amount of fever reducer you take, e2 is the base metabolism,

and Y is the appetite). However, in some special cases, e.g., if f is linear, such a recovery may be

possible. See, e.g., Shimizu et al. [240].

In this dissertation, we exploit an estimated RSF, F , as prior knowledge about an independence

structure in the data-generating process. Intuitively, we can expect that an RSF estimated in one

environment can be applied to another when there is no active intervention taking place; even if



36 Chapter 2. Preliminaries

we cannot estimate the RSF in one environment, we may be able to take advantage of the stability

which is a salient characteristic of causality (Woodward [295, Chapter 6]).29

2.5 Problem Setup and Approach

In this section, we describe the general problem we tackle, namely the small-data learning prob-

lem. The general approach of the dissertation to the problem, namely data augmentation, is also

explained.

2.5.1 Problem: Small-data Learning

The problem we study in this dissertation is the small-data learning problem. Despite the rapid

progress in the methodology of machine learning, learning from small data remains an important

challenge in various application fields. When data is limited in quantity, it is essential to incorporate

appropriate prior knowledge about the property of the data distribution for learning an accurate

predictor.

Supervised learning problem. Let us formulate the learning problem considered in this disser-

tation. Consider random variables Z = (X,Y ) taking values in Z := X × Y, where X is called the

input space and Y the label space. Let PZ be a data distribution over Z.
Suppose an i.i.d. sample D = {Zi}ni=1

i.i.d.∼ PZ is given. The data set D is called the training

data set. Let H ⊂ YX be a set of predictors that take X as input and output label Y . The set H is

called a hypothesis class, and each element h ∈ H is called a hypothesis. Let ` : H×Z → R≥0 be a

loss function. Our goal is to find a predictor h ∈ H for which the risk, or the expected loss, defined

by R(h) := E[`(h,Z)], is small, where E is the expectation with respect to Z ∼ PZ . The process of

finding such a good h, in this context, is called learning.

Empirical risk minimization. The prototypical approach to this learning problem is empirical

risk minimization (ERM; Vapnik [278]). In ERM, one selects the hypothesis h ∈ H that minimizes

the empirical risk R̂ERM(h) := Ê[`(h,Z)], where Ê is the empirical average operator with respect

to the data set D defined by Ê(g) := 1
n

∑n
i=1 g(Zi).

Small-data learning problem. The small-data learning problem, in this context, refers to the

case where n is small. Typical machine learning methods based on ERM, roughly speaking, can

be justified by the laws of large numbers (see, e.g., Vapnik [279, 2.3.1]);30 given a large data set

(i.e., large n), we can expect R̂ERM(h) to be close to R(h) uniformly over the hypothesis class H.
Therefore if n is large, the minimizer of R̂ERM in H can be expected to have small R(h). On the

other hand, when n is small, we are often left with no ground to rely on.

Given a small data set, the learning machine may be unable to extract useful patterns for

making accurate predictions. In this case, even if we successfully train the model to make accurate

predictions within the training data set, the predictor may not perform well when it is evaluated by

R(h): a situation referred to as overfitting ([279, p.124]). Thus, when the data is small, we need

an additional source of information to complement the knowledge that can be extracted solely from

the data. In the context of statistical machine learning, such additional information is referred to as

29 Note, however, the degree to which the stability of a law can be believed may depend on the domain of interest.
See, e.g., Woodward [296].

30 While it is probably impossible to tell whether the statistical learning algorithms achieve good performance
precisely because of the laws of large numbers, it remains an important design principle for developing the methods
of statistical machine learning. In this dissertation, we also provide theoretical justifications of the proposed methods
based on the statistical learning theory (e.g., [278, 280, 236, 184]).
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prior knowledge. For example, regularization techniques (see, e.g., Shalev-Shwartz and Ben-David

[236, Chapter 13])introduce prior knowledge that essentially restricts H to be “small”, thereby

reducing the risk of overfitting.

In this dissertation, we consider how causal knowledge captured by structural causal models could

be used as prior knowledge in small-data learning problems. Intuitively, one salient characteristic

of causal knowledge is re-usability. Causal knowledge is generally believed to be invariant unless

we actively intervene in the data-generating process and that it is valid in similar systems that are

different from the system in which we acquired the knowledge (see, e.g., Glennan [86] and Woodward

[296]). Therefore, even when the data is scarce in a specific environment in which we wish to train

a machine learning model, known or acquired causal knowledge may provide a reliable source of

information.

2.5.2 Problem Taxonomy: Two Estimable Causal Model Layers

As we have seen in Section 2.3.3, SCMs and GCMs have a hierarchical relation, where the GCMs are

a coarser description of the causal relations than the SCMs. Besides the two, there is another level

of modeling in the SCF that has been discussed in the literature, namely the physical causal models

that use differential equations to represent the causal mechanisms (Mooij et al. [186]). Adding to this

hierarchy the statistical models that do not retain the causal knowledge, i.e., the models concerning

only the observational distributions, we have a hierarchy of models in the SCF: the physical models,

the SCMs, the GCMs, and the statistical models, from the finest level to the coarsest level (Peters

et al. [208, Table 1.1]).

In this hierarchy, the GCMs and the SCMs form the two shallowest levels where some information

of the models can be estimated from observational data, namely the causal graphs and the RSFs

(e.g., [88, 137, 124]) under certain conditions. Therefore, in this dissertation, we discuss two cases,

namely the case that the GCM is estimable (or known) and the case that the SCM is estimable.

Specifically, we consider how the estimated causal models can be used to aid learning in small-data

learning problems.

When GCM is known or estimable. In this dissertation, we consider exploiting the implication

of a GCM on the data distribution PZ . We consider a situation where the causal graph is either

known thanks to domain knowledge or has been estimated from data. The question is how such a

causal graph can be used for enhancing supervised learning.

Problem 2.1 (Causal-Graph-Informed Learning Problem; Tentative Version). Let M :=

〈I,Z,G,PZ〉 be a semi-Markovian GCM, and assume that PZ has a density function pZ . Then,

Proposition 2.6 implies that, for any topological ordering ≺ of I, the density function pZ satisfies

the topological ADMG factorization property (Definition 2.15) with respect to (G,≺). Now, given

{Zi}ni=1
i.i.d.∼ pZ and an ADMG Ĝ that is an estimator of G as well as a topological ordering of I

with respect to Ĝ, find a predictor ĥ ∈ H for which the risk R(ĥ) := E[`(ĥ,Z)] is small, where E
denotes the expectation with respect to Z ∼ PZ .

In Chapter 3, we tackle a slightly generalized version of Problem 2.1 by assuming that the

assertion of Proposition 2.6 is satisfied instead of assuming the existence of a GCM.

When SCM is estimable. Even if it is difficult to estimate an SCM (i.e., estimating f) from

the small data in the target problem domain, one may be able to estimate some information of an

SCM (e.g., its RSF, F ) from the data of other relevant problem domains and apply the knowledge

in the target domain, since causal knowledge is believed to be stable and invariant across a range

of different environments unless actively intervened in ([86, 296, 119]). For example, in medical
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Figure 2.6: General idea of this dissertation: exploiting the structural causal models via data
augmentation.

record analysis for disease risk prediction [304], it can be reasonable to assume that the pathological

mechanism is common across regions or generations. Such a hidden structure, ideally, may be

exploited to obtain accurate predictors for under-investigated regions or new generations, where the

data may be scarce.

In light of Proposition 2.9, if we have a large amount of data from multiple other SCMs sharing

the same SFs as the one underlying the target data distribution of our interest, it may be possible

to estimate F and somehow use its estimator as prior knowledge to facilitate the learning from few

data from the target distribution. This situation corresponds to the domain adaptation problem in

statistical machine learning [19]: learn a good predictor for a target domain of interest given data

from other domains. We can formulate the problem we consider in this dissertation as follows:

Problem 2.2 (Causal Mechanism Transfer Problem; Tentative Version). LetM0,M1, . . . ,MK be

acyclic SCMs sharing the same SFs. Given {Zk
i }

nk
i=1

i.i.g.← Mk(k ∈ {0} ∪ [K]) where n0 is small but

n1, . . . , nK are large, find a predictor ĥ ∈ H for which the risk R(ĥ) := E0[`(ĥ,Z)] is small, where

E0 denotes the expectation with respect to Z
gen← M0.

In Chapter 4, we tackle a slightly generalized version of Problem 2.2 by assuming the existence

of ICMs instead of SCMs from which they are derived.

2.5.3 Approach: Data Augmentation

The general idea of this dissertation in approaching Problems 2.1 and 2.2 is to design data augmen-

tation procedures that reflect the statistical independence relations implied by the estimated causal

models (Figure 2.6).

Data augmentation. Data augmentation is a collective term to refer to the methodologies that

synthesize data based on some original samples (e.g., Shorten and Khoshgoftaar [242]). By creating

additional data and training a learning model using it, one can effectively introduce prior knowledge

into the learning process. Typical examples can be found in the field of computer vision and natural

language processing; for example, by applying some operations on the image data which do not

change the meaning of the image, such as a small rotation or adding a small noise, the trained

model is expected to learn what are relevant patterns in the input data. Data augmentation has

the virtue of model-independence: it can be easily combined with virtually any machine learning

method because the interface is the data itself, which is a central component in modern machine

learning [242]. On the other hand, data augmentation typically introduces additional computation

costs, which can be problematic when the original data set is large. However, since we are concerned
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with the small-data learning problem, we expect that this problem will not be restrictive in the scope

of this dissertation.

Our approach. In our approach to both Problems 2.1 and 2.2, the basic idea is based on the

following observation: if there are independent random vectors, new random vectors created by

scrambling the pairings are equally likely. For example, if D = {(Xi, Yi)}i=1,2
i.i.d.∼ PX ⊗ PY , then

the new combinations D̃ = {(X1, Y2), (X2, Y1)} follow the same distribution as D. We use this and

similar ideas to design the data augmentation methods in the subsequent chapters. Since we use

D∪D̃ as the new data set instead of D̃ only, the statistical properties of the inference based on such

data is expected to be different from the ones using only the original data D. Therefore, we also

provide theoretical analyses for each of the proposed methods to understand their characteristics as

well as the statistical benefits they bring.

For Problem 2.1, we take advantage of the topological ADMG factorization structure. In the case

of DAGs, this corresponds to exploiting the conditional independence relations (Definition 2.15 and

Proposition A.1). We design a data augmentation method that reflects the factorization structure

of the data distribution.

For Problem 2.2, we first estimate the RSF, which is the only commonality among different

environments from which data sets are sampled. Then, taking advantage of the ICM structure

(Definition 2.16), we use the RSF as a feature extractor that can extract independent components

from the observed data.31 We design a data augmentation method to reflect the independence

structure of the independent component distribution.

2.6 Causal Machine Learning

In this section, we review the researches of causal machine learning (e.g., [208, 230, 233]): the

intersection of statistical causal modeling and statistical machine learning. The review is intended

to be provided in the context of the present dissertation. The readers who are familiar with this

field may well skip this section.

The literature in the interaction between the causal frameworks and machine learning can be

roughly divided into three categories, namely (i) causality for machine learning, (ii) causality by

machine learning, and (iii) causality in machine learning. The present dissertation fits into the

category of causality for machine learning in this trichotomy.

2.6.1 Causality for Machine Learning

Various attempts to integrate causal concepts into machine learning have been put forward. The

distinct usage includes: (I) as a conceptual guide of methodological designs, (II) as a tool to analyze

specific causal models that appear in specific application fields, (III) as a theoretical foundation

of invariance-guided learning, (IV) as feature selection criteria, (V) as regularization and model

selection, and (VI) as model architecture design.

(I) As a guiding principle: intuition for the relevance of information and sparsity of

distribution shifts. The seminal paper, Schölkopf et al. [232], discussed how the difference in

the types of data-generating process, namely causal (X → Y ) and anti-causal (X ← Y ) learning

problems, may explain the general difficulty of different problem setups of machine learning. The

concept of the anti-causal scenario has been used to motivate some unsupervised transfer learning

31 In this approach, identifiability plays a crucial role: the reason why we can believe that the estimated RSF is
applicable to the data distribution of interest is that, under the identifiability assumptions, we can obtain a function
that is close to the correct RSF.
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methods [313, 311, 91, 90], where the source domain data are labeled (i.e., paired samples of (X,Y ))

and the target domain data are unlabeled (i.e., samples of X without the corresponding Y ). Con-

cretely, Zhang et al. [313] and Zhang et al. [311] and Gong et al. [91, 90] justified their parametric

distribution shift assumptions or the parameter estimation procedure; their model selection criterion

is based on the distribution matching of the marginal pX between the source domain and the target

domain (which can be performed without access to labeled target domain data), and its justification

argument is that the distribution of X is likely to contain some information of p(Y |X) in the anti-

causal scenario (X ← Y ). Also, the same argument for the anti-causal scenario is used to justify

the modeling of the distribution shifts of p(X|Y ) and of p(Y ) separately (e.g., Zhang et al. [313]).

(II) As a tool to analyze specific problem instances. In some specific application fields

where the causal graph can be drawn, specialized methodologies have been developed based on the

knowledge encoded in the graph. Among the early examples is the half-sibling regression in the

exoplanet search (Schölkopf et al. [231]), where the specific causal structure of the data acquisition

was used to derive and justify the regression analysis method. Another example is the instance weight

estimation for episodic reinforcement learning, where methods to perform state simplification based

on the causal graphs have been proposed (Bottou et al. [32] and Peters et al. [208, Section 8.2]).

Pitis et al. [211] proposed a method to enhance the sample efficiency in reinforcement learning by

a procedure to exchange the realizations of the variables within the (conditionally) disconnected

components in the causal graph of the Markov decision process of specific reinforcement learning

instances.

(III) As the foundation of invariance or stability. Rojas-Carulla et al. [223] developed a

domain generalization method where the exploited conjecture is that if the conditional distribution

p(Y |XS) is invariant among multiple source distributions, it may be invariant in the target distri-

bution. In order to justify this assumption, the stability of causal mechanisms was used as a guiding

principle. Arjovsky et al. [8] proposed invariant risk minimization (IRM) for the out-of-distribution

generalization problem. The IRM approach tries to learn a feature extractor that makes the optimal

predictor invariant across domains, and its theoretical validity was argued based on SCMs. This

line of work is the most closely related to this dissertation in that we exploit the stability of causal

mechanisms as conceptual support. On the other hand, our work is relatively distinct from this line

of work in that our emphasis is on how the knowledge of stable causal mechanisms may facilitate

learning in a small-data regime, whereas this line of work targets distribution-shift problems.

(IV-i) Variable selection in a single-distribution setting. When the causal graph is known

or when it has been estimated, one of the classical ideas for leveraging the knowledge is feature

selection (e.g., Yu et al. [307]). Concretely, the graphical knowledge can be used to select the set

of variables that are informative for making predictions, namely, the Markov blanket or the Markov

boundary [274].

(IV-ii) Variable selection in a distribution-shift setting. Another line of research is con-

cerned with making predictions under distribution shift by leveraging feature selection based on

causal background knowledge or causal discovery. Magliacane et al. [176] considered the case that a

distribution shift is due to intervention in some variables, and they proposed a method to perform

domain adaptation (e.g., [19]) by identifying a set of variables that is likely to perform well regard-

less of the intervention. Rojas-Carulla et al. [223] assumed that if the conditional distribution of

the predicted variable given some subset of features is invariant across different distributions, this

conditional distribution is the same in the target distribution for which one wants to make good
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predictions. Then they leveraged it to find the set of variables for which the relation to the target

variable does not change.

(V) Regularization and model selection. Kyono and van der Schaar [155] proposed a model

selection criterion that can reflect the structure of a causal graph of a Markovian GCM. The goal

of Kyono and van der Schaar [155] is domain generalization and out-of-distribution prediction, i.e.,

making good predictions under a distribution shift without access to any samples from the target

distribution or making good predictions for the data that are outside the support of the training

data distribution. To achieve it, given a DAG as prior knowledge and assuming its validity in the

testing domain, Kyono and van der Schaar [155] proposed to first modify the graph so that the edges

coming out of the target variable are removed. Then, to score the predictor model candidates, their

method generates a data set whose predicted variables are replaced by the predictions of the model

and computes the Bayes Information Criterion (BIC) that evaluates the fitness of the modified

DAG structure to the generated data set. Another approach for using the background knowledge of

a causal graph of a Markovian GCM is the CASTLE regularization (Kyono et al. [156]). CASTLE

regularization introduces a regularization term to induce sparsity and acyclicity in the structure of

a neural network that is the predictor hypothesis class. The method imposes a reconstruction loss

using the internal layers of the predictor implemented by a neural network under a DAG constraint.

(VI) As model architecture design. Another natural approach to exploiting the prior knowl-

edge of a causal graph, when it has no bi-directed edges, is to build a Bayesian network (BN)

model according to the graphical structure (e.g., [174]) by specifying the conditional distributions

appearing in the Markov factorization (Definition 2.7). This approach has the limitation that it

inevitably restricts the modeling choice, e.g., the constructed predictor is a generative model as

opposed to a discriminative model [236, Chapter 24]. For ADMGs, in some other special cases,

canonical parametrization of the joint distributions conforming to the causal graphs has been pro-

posed. In the multivariate binary case (i.e., Zv = {0, 1} (v ∈ I)), Evans and Richardson [73] and

Evans and Richardson [76] provided a smooth parametrization of the set of distributions that satisfy

the equality constraints according to a given ADMG (Remark 2.10). Complementarily, for the case

of Zv = R (v ∈ I), Silva and Ghahramani [249] and Silva et al. [248] proposed parametrizations

of certain families of distributions satisfying the equality constraints by using probit models and

cumulative distribution networks, respectively, but they impose additional constraints induced by

their parametric structure.

This dissertation. The present dissertation adds a distinct form of interaction between statistical

causal models and statistical machine learning: using the knowledge encoded in statistical causal

models to facilitate learning from small data in prediction problems. The structural causal frame-

work was originally developed to enable causal inference, but as we have seen in Section 2.4, the

causal structures can have tangible consequences in the observational distributions. Our approach

falls into this category: we consider leveraging such additional structures captured by the models

in the structural causal framework to enhance statistical machine learning. Thanks to the nature

of data augmentation that it uses data as the interface to other components of a machine learn-

ing system, the approach tends to result in generic methods that are independent of the modeling

choices, such as the predictor hypothesis class. Due to this characteristic, our approach tends to

be conceptually orthogonal to other approaches listed in this section, i.e., the proposed methods

can be easily combined with other approaches to integrating causal concepts into machine learning

systems.
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2.6.2 Causality by Machine Learning

This category is mainly concerned with (I) aiding the estimation of various causal quantities and

(II) performing causal inference using machine learning methods. Another interesting line of work

also considered (III) automated construction of the variables in the causal models by developing

representation learning techniques.

(I-i) Estimating causal parameters. This direction of research aims to perform the tasks of

causal inference, e.g., estimating the conditional average treatment effect or estimating the structural

parameters, with the help of various function models used in machine learning, such as decision trees

and deep neural networks [236]. In order to optimize the estimation methods in this context, mod-

ifications to the algorithms have been proposed [285, 9], along with how to appropriately modify

the estimation procedure to achieve a high sample efficiency of parameter estimation when ma-

chine learning models are used to estimate nuisance parameters (double/debiased machine learning;

Chernozhukov et al. [43]).

(I-ii) Causal discovery. Various methods of causal discovery have been developed in computer

science, e.g., constraint-based methods (Glymour et al. [88]) and score-based methods (Glymour

et al. [88] and Huang et al. [114]). See Glymour et al. [88] for a review. The developments in the

field of independent component analysis have yielded a series of methodologies for causal discovery

(e.g., Shimizu et al. [239], Peters et al. [209], Peters and Schölkopf [210], and Monti et al. [185] and

Hyvärinen et al. [124]). A series of other methods have been proposed based on the restrictions of

function classes of the SFs (e.g., [113, 312, 238]; see also Wiedermann and von Eye [291, Chapter II]).

More approaches have been proposed from other perspectives such as information geometry (Janzing

et al. [132]), algorithmic complexity (Janzing and Schölkopf [133]), and finding statistical patterns

in the joint distributions (Mooij et al. [188] and Mooij et al. [187]).

(II) Optimizing interventions. Another line of work considered the problem of selecting the

optimal intervention to maximize the expected reward by formulating it as a multi-armed bandit

problem with an underlying causal structure (e.g., Lattimore et al. [157] and Lee and Bareinboim

[164]).

(III) Causal feature learning. Another interesting research direction is causal feature learning,

whose goal is to train a feature extractor that can extract the macroscopic causally-interpretable

variables from microscopic variables (Chalupka et al. [38, 39, 37]).

2.6.3 Causality in Machine Learning

The last category considers the causality-based analysis of machine learning systems seen as causal

systems. Such a viewpoint has been fruited in the methods for (I) explanation and algorithmic

recourse and (II) promoting fairness by detecting and correcting the bias. Also, (III) machine

learning systems that interact with the environment have obvious connections to the (causal) concept

of interventions.

(I) Explanation and algorithmic recourse. In the philosophy of sciences, the intimate con-

nections between causation and explanation have been discussed (e.g., Lipton [168] and Woodward

[295]), and in its simplest form, a causal model of explanation maintains that to explain some

phenomenon is to give some information about its causes. A field that is highly relevant to this

perspective is that of explainable artificial intelligence (XAI) whose goal is to improve the inter-

pretability and the accountability of artificial intelligent systems, and in particular, black-box models
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(e.g., Adadi and Berrada [2]). Concretely, counterfactual explanation methods aim at providing an

interpretation of a prediction based on hypothetical outputs of the model when a small actionable

change is applied to the input (see, e.g., Verma et al. [281]). A task related to explanation is that of

algorithmic recourse, the task of providing actionable recommendations to individuals for obtaining

a more favorable prediction (e.g., Karimi et al. [138, 139]).

(II) Fairness. Causality has been an important notion in the studies of fairness and bias of the

data or the trained predictors. Various methods for detecting, measuring, and correcting (un)fairness

have been developed (e.g., [153, 300, 44, 301, 299, 284, 46]).

(III) Policy evaluation and optimization in reinforcement learning and recommendation

systems. Bareinboim et al. [14] explored the connection between causal models with unobserved

confounders and reinforcement learning. Zhang and Bareinboim [310] proposed off-policy evaluation

methods for multi-armed bandit problems by identifying the causal structure tied with the problem

setup. Recommendation systems powered by machine learning also interact with the environment.

The primary goal of such systems is to improve their user experience by (softly) making the users

select certain items (e.g., [30, 287]) instead of predicting the user responses in a natural environment.

Based on such a view, the policy evaluation methods that take into account the difference between

the distributions with and without the recommendation system have been developed (e.g., Bonner

and Vasile [30]). These lines of work typically employ the POF to formulate the problems since

their focus is on the evaluation or optimization of interventions, and the detailed mechanisms are

not of primary interest in this context.

2.7 Conclusion

Statistical causal models consider additional structure in the random variables that are not neces-

sarily reflected in their joint distribution. In this chapter, we introduced two representative model

classes in the structural causal framework, namely the SCMs and the GCMs, which reside in two

different layers in the hierarchy of the framework. SCMs devise the concept of SFs to capture deter-

ministic relations satisfied by the random variables, and GCMs use coarser graphical representations

to capture the dependency structures among the random variables. By taking into account such

additional structures, they distinguish the random variables even if they follow the same probability

distribution. In this dissertation, we treat causal models as the tools to capture the informative

and stable structure of the data-generating processes, which can allow us to go beyond the standard

statistical machine learning methodologies whose algorithms are designed based on the concept of

joint probability distributions.

From the next chapter, let us see how concretely the knowledge of the underlying causal system,

either provided a priori by domain knowledge or estimated a posteriori from data, can be used to

aid the supervised machine learning methodology.
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Chapter 3

When Graphical Causal Model is

Known or Estimable: Causal-graph

Data Augmentation

As we have seen in Chapter 2, causal graphs (CGs) play various important roles in the structural

causal framework. One important aspect of the CGs is that they imply certain constraints that

should be satisfied by the joint distributions, such as conditional independence relations. Thus, if a

CG is known or has been previously estimated in a relevant problem domain, and if we can design

an appropriate method, such prior knowledge of the data distribution could be used to enhance

statistical machine learning as an information source to complement the data. In this chapter, we

design a data augmentation method to directly take advantage of the constraints implied by the CG

in training a prediction model.

3.1 Overview

Causal graphs (CGs; [204]) are compact representations of the knowledge of data-generating pro-

cesses. Such a CG is sometimes provided by domain experts in some problem instances, e.g., in

biology [227] or sociology [240]. Otherwise, it may also be learned from data using the statistical

causal discovery methods developed over the last decades [253, 204, 45, 239, 210, 208]. Once a

CG is obtained, it can be used to infer the conditional independence (CI) relations that the data

distribution should satisfy [204].

3.1.1 Motivation

The CI relations encoded in the CG could be strong prior knowledge for predictive tasks in machine

learning, e.g., regression or classification, especially in the small-data regime where data alone may

be insufficient to witness the CI relations [253, Section 5.2.2]. However, it is not trivial how the CI

relations should be directly incorporated into general supervised learning methods.

In previous research, methods that leverage the causality for feature selection have been proposed

(see, e.g., Yu et al. [307] for a review). However, most of them are based on the notion of the Markov

blanket or the Markov boundary [274]. As a result, they only take into account partial information

of all that is encoded in a CG, since a CG often entails more constraints on the data distribution

than the specifications of Markov blankets or a Markov boundary [217]. Another approach to

exploiting the prior knowledge of a CG is to build a Bayesian network (BN) model according to
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X1 X2

Y

Figure 3.1: Visualization of the basic idea of the proposed method for the trivari-
ate case X1 ← Y → X2. In this case, the CI X1⊥⊥ X2 | Y is known to hold. One
way to use this knowledge via data augmentation is to group the data according
to Y and then to shuffle X1 and X2 within each group. Our method extends
this idea to more general graphs.

the CG structure (e.g., [174]). However, constructing the predictors by employing BNs as the

framework entails a specific modeling choice, e.g., it constructs a generative model as opposed to a

discriminative model [236, Chapter 24], precluding the choice of some flexible and effective models

such as tree-based predictors [81] and neural networks [92] that may be preferred in the application

area of one’s interest.

3.1.2 Idea

In this chapter, we propose a model-agnostic method to incorporate the CI relations implied by CGs

directly into supervised learning via data augmentation. To illustrate our idea, let us consider the

following trivariate case.

Illustrative example: trivariate case (Figure 3.1). Suppose we want to predict a binary

variable Y from (X1, X2). If the random variables have the underlying CG X1 ← Y → X2, then the

CIX1⊥⊥ X2 | Y is known to hold [204]. If we know this relation, a natural idea of data augmentation

is to stratify the sample by Y and then to take all combinations of X1 and X2 within each stratum.

In this trivariate example, it is straightforward to derive such a plausible data augmentation

procedure to incorporate the CI relations since the relation X1⊥⊥ X2 | Y involves all three variables.

On the other hand, deriving such a procedure for general graphs is not straightforward as they may

encode a multitude of CI relations each of which may involve only a subset of all variables.

3.1.3 Contributions

Our contributions can be summarized as follows.

1. We propose a method to augment data based on the prior knowledge expressed as CGs,

assuming that an estimated CG is available.

2. We theoretically justify the proposed method via an excess risk bound based on the

Rademacher complexity [15]. The bound indicates that the proposed method suppresses over-

fitting at the cost of introducing additional complexity and bias into the problem.
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3. We empirically show that the proposed method yields consistent performance improvements

especially in the small-data regime, through experiments using real-world data with CGs

obtained from the domain knowledge.

3.2 Problem Setup and Main Assumption

In this section, we formally state the problem setup, the goal, and the main assumption to be

exploited in our proposed method.

Basic notation. For N,M ∈ N with N ≤ M , define [N : M ] := {N,N + 1, . . . ,M}. To simplify

the notation, we let [0] = ∅, R0 := {0}, x∅ = 0, and [N ]0 = {0}.

3.2.1 Base Problem: Supervised Learning

Throughout the chapter, we fix d ∈ N, and consider Z =
∏d
j=1 Z

j , where each Zj is a measurable

subset of Zj that is R, N, or a finite set. Let PZ be the probability distribution of a random vector

Z := (Z1, . . . , Zd) taking values in Z, and assume that it has the density pZ . One of the variables,

e.g., Zj
∗
(j∗ ∈ [d]), is the target variable which we want to predict. Let X =

∏
j∈[d]\j∗ Z

j
and

Y = Zj
∗

. Let H ⊂ YX be a hypothesis class and ` : H×
(∏d

j=1Z
j
)
→ R be a loss function.

We consider the supervised learning setting; that is, given the training data D = {Zi}ni=1 that is

an i.i.d. sample from pZ , our goal is to find a predictor ĥ ∈ H with a small risk R(ĥ) = E[`(ĥ,Z)].

3.2.2 Main Assumption

Instead of assuming the existence of an SCM behind the data distribution as we did in the tentative

version of the problem description (Problem 2.1), we tackle its slight generalization, where we simply

assume that the density satisfies the topological ADMG factorization property (Definition 2.15).

With this slight generalization, the problem setup technically no longer requires the causal

interpretation of the ADMGs. However, the causal modeling perspective can be useful in obtaining

the graphs from domain experts, i.e., one may be able to draw the graphs by considering the (non-

parametric) structural equations [204].

3.2.3 Problem Statement

Combining the above, following is the formal statement of our problem setup in this chapter.

Problem 3.1. Let G = 〈[d],D,B〉 be an ADMG and ≺ be a topological ordering over [d] with respect

to G. Assume that the probability distribution of the data PZ has a density function pZ and that pZ
satisfies the topological ADMG factorization property with respect to (G,≺), i.e.,

pZ(Z) =

d∏
j=1

pj|mp(j;≺)(Z
(j)|ZmpG(j;≺)), (3.1)

where pj|mp(j;≺) denotes the conditional density. Now, given D = {Zi}ni=1
i.i.d.∼ pZ and an ADMG

Ĝ that is an estimator of G,1 find a predictor ĥ ∈ H for which the risk R(ĥ) := E[`(ĥ,Z)] is small,

where E denotes the expectation with respect to Z ∼ PZ .

1 Without loss of generality, throughout the chapter, we assume that [d] induces a topological ordering of Ĝ, i.e., if
1 ≤ i < j ≤ d, there is no directed path from j to i in Ĝ.
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3.3 Proposed Method

In this section, we explain the proposed data augmentation method to directly incorporate the prior

knowledge of an ADMG into supervised learning.

3.3.1 Overview of the Method

The method generalizes the intuitive data augmentation method described in the trivariate DAG

example in Section 3.1, making it applicable to general ADMGs. The idea is to consider a nested

conditional resampling ; instead of trying to generate all elements of the new data vector at once, we

successively resample each variable from the conditional empirical distribution [260, 112] condition-

ing on its Markov pillow. Then, our proposed method, causal-graph data augmentation, is obtained

by considering all possible resampling paths simultaneously. We later confirm that the proposed

method indeed generalizes the previous procedure considered in the trivariate case of Figure 3.1.

3.3.2 Derivation of the Proposed Method

Recall, given Equation (3.1), we can express the risk functional as

R(h) =
∫
Z
`(h,Z)

d∏
j=1

pj|mp(j;≺)(Z
j |ZmpG(j;≺))︸ ︷︷ ︸

(*)

dZ.

Then, to formulate the nested conditional resampling procedure, we select a kernel function Kj :

Zmp(j) → R≥0 for each j ∈ [d].2 Using this kernel function in the spirit of kernel-type function

estimators [191, 290, 69], we approximate each conditional density (∗) by using the training data D
as

p̂j|mp(j)(Z
j |Zmp(j)) :=

∑n
i=1 δZj

i
(Zj)Kj(Zmp(j) −Z

mp(j)
i )∑n

k=1K
j(Zmp(j) −Z

mp(j)
k )

,

where δz denotes Dirac’s delta function centered at z (e.g., [317, Section E.4.1]), and the right-hand

side is defined to be zero when the denominator is zero. The resulting approximation to the risk

functional R(h) is

R̂aug(h) :=

∫
Z
`(h,Z)

d∏
j=1

p̂j|mp(j)(Z
j |Zmp(j))dZ. (3.2)

Here, the right-hand side can be interpreted as representing a nested conditional resampling

procedure, in which we sequentially select i1, . . . , id ∈ [n]. Indeed, since each p̂j|mp(j) places its

mass on {Zji }ni=1, the integration for Zj amounts to substituting Zj = Zjij and summing over

the choices ij ∈ [n] with appropriate weights. The weight placed on Zji by p̂j|mp(j), namely
Kj(Zmp(j)−Zmp(j)

i )∑n
k=1K

j(Zmp(j)−Zmp(j)
k )

, depends on Zmp(j), and it can be computed from (Z1
i1
, . . . , Zj−1

ij−1
) that have

already been selected at the time we select Zjij since mp(j) ⊂ [j − 1].

2 Since G is unknown in practice, we use mp(j) := mpĜ(j; [d]) designated by Ĝ instead of mpG(j;≺). Also, for

notational simplicity, we define Kj := 1 where j is such that mp(j) = ∅.
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Figure 3.2: Illustration of the proposed data augmentation procedure. Equation (3.3) can be com-
puted from the generated Zi and the weights ŵi.

3.3.3 Proposed Method: Causal-graph Data Augmentation

By recursively resolving the integrals in Equation (3.2), we reach at the instance-weighted risk

estimator :

R̂aug(h) =
∑
i∈[n]d

ŵi · `(h,Zi), (3.3)

where

ŵi =

d∏
j=1

Kj(Z
mp(j)
i1:j−1

−Z
mp(j)
ij

)∑n
k=1K

j(Z
mp(j)
i1:j−1

−Z
mp(j)
k )

, (3.4)

Zi = (Z1
i1 , . . . , Z

d
id
), Zi1:j−1

= (Z1
i1 , . . . , Z

j−1
ij−1

),

for i = (i1, . . . , id) ∈ [n]d and i1:j−1 = (i1, . . . , ij−1), and the right-hand side of Equation (3.4) is

defined to be zero when the denominator is zero.3

Equation (3.3) can be computed by the following data-augmentation procedure (Figure 3.2).

First, D training data points are selected with replacement (specified by i = (i1, . . . , id) ∈ [n]D).

Then, Zi is constructed by copying the j-th element Zjij from Zij (j ∈ [d]). Equation (3.3) can

be computed by performing this procedure for all combinations of the indices i ∈ [n]D. In the

proposed data augmentation method, which we call causal-graph data augmentation, we consider

Daug := {Zi}i∈[n]d to be a weighted training data whose weights are Waug := {ŵi}i∈[n]d , and we

perform supervised learning using Daug andWaug, where any standard method that can incorporate

instance weights may be employed. As a practical device, to account for the possibility that Ĝ is

only an inaccurate approximation of G, we propose to use a convex combination of the empirical

risk estimator R̂emp(h) := 1
n

∑n
i=1 `(h,Zi) and the augmented empirical risk estimator R̂aug(h),

that is to use

ĥ ∈ arg min
h∈H

{(1− λ)R̂emp(h) + λR̂aug(h) + Ω(h)}

as the predictor, where λ ∈ [0, 1] is a hyper-parameter and Ω is a regularization term for h ∈ H.
In the experiments in Section 3.5, we used a fixed parameter λ = .5 and observed that it performs

reasonably well for all data sets.

Relation to the trivariate case (Section 3.1). The causal-graph data augmentation generalizes

the idea described in the trivariate example X1 ← Y → X2 in Section 3.1. In fact, in the trivariate

example of Figure 3.1, Waug places equal weights on the augmented data, essentially yielding the

same augmented data set as that in Figure 3.1.

3 Here, we use the convention Z
mp(1)
i1:0

:= 0 to be consistent with the notation.
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3.3.4 Implementation Details

To reduce the computation cost of calculating the weights Waug, we exploit the recursive structure

in Equation (3.4) that can be represented by a probability tree [34], where we sequentially select

the values i1, . . . , id ∈ [n] (Figure 3.3). To see this, recursively define

ŵi1:0 = 1, ŵi1:j = ŵij |i1:j−1
· ŵi1:j−1 (j ∈ [d], i1:j−1 ∈ [n]j−1),

where

ŵij |i1:j−1
:=

Kj(Z
mp(j)
i1:j−1

−Z
mp(j)
ij

)∑n
k=1K

j(Z
mp(j)
i1:j−1

−Z
mp(j)
k )

,

and the right-hand side is defined to be zero when the denominator is zero. Then, we have ŵi = ŵi1:d .

With this recursive structure in mind, we construct the probability tree as follows: we index

the root node by 0 and the nodes at depth j ∈ [d] by i1:j in a standard manner, assign the weight

ŵij |i1:j−1
to each edge (i1:j−1, i1:j), and assign to each node i1:j the product of the weights of the

edges on the path from the root to i1:j . Then, by recursively computing the weights of the nodes on

this weighted tree, we can obtain Waug (Figure 3.3). Algorithm 2 summarizes the overall procedure

of the proposed method.

To reduce the computation cost, we specify a threshold θ ∈ (0, 1), and we prune the branches

once the node weight becomes lower than θ along the course of the recursive computation. Since

the edge weights satisfy
∑n
ij=1 ŵij |i1:j−1

∈ {0, 1} and ŵij |i1:j−1
≥ 0 for each i1:j−1, the node weight

ŵi1:j is monotonically decreasing in j. Therefore, the above pruning procedure only discards the

nodes for which ŵi < θ. The worst-case computational complexity of Algorithm 2 is O
(
nd
)
(see

Appendix B.4), and it is important in future work to explore how to effectively reduce the compu-

tation complexity. Apart from the pruning procedure, one may well consider employing heuristic

top candidate search methods such as beam search [26] or stochastic optimization methods such as

stochastic gradient descent [92, Section 5.9] to reduce the computation time by taking advantage of

the probability-tree structure.

If all variables are categorical, i.e., Mj :=
∣∣∣Zj∣∣∣ < ∞, and if we employ Kj(x − y) := 1[x = y],

the worst-case computational complexity can be reduced by a careful implementation since R̂aug(h)

essentially becomes a sum of
∏d
j=1Mj terms. Indeed, in this case, the conditional empirical density

is

p̂j|mp(j)(Z
j |Zmp(j)) =

Mj∑
r=1

1
[
Zj = r

] m̂j(r,Z
mp(j))∑Mj

r′=1 m̂j(r′,Zmp(j))
,

where the right-hand side is defined to be zero if the denominator is zero, and m̂j(r,Z
mp(j)) :=∣∣∣{i : Zji = r,Z

mp(j)
i = Zmp(j)}

∣∣∣ (see Appendix B.2 for a derivation). Thus, after calculating

m̂j(r,Z
mp(j)) (j ∈ [d], r ∈ [Mj ],Z

mp(j) ∈
∏
k∈mp(j)) in O (n) computation, we can obtain the

augmented data and the weights in O
(∏d

j=1Mj

)
computation.

3.4 Theoretical Analysis

In this section, we provide a theoretical justification of the proposed method in the form of an

excess risk bound, under the assumption that the CG is perfectly estimated. The goal here is

to elucidate how the proposed data augmentation procedure facilitates statistical learning from a

theoretical perspective. We focus on the case that Zj = R for all j ∈ [d]. Select some K̃j and

h = (h1, . . . ,hd) ∈ Rd>0, and define Kj(u) := 1
| detHj |K̃

j(H−1
j u), where Hj := diag(hmp(j)) is a
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Figure 3.3: Probability tree to compute the weights of the augmented instances. At each depth j,
the index ij is selected and the weight is updated as ŵi1:j = ŵij |i1:j−1

· ŵi1:j−1
.

Algorithm 2 Proposed method: Causal-Graph Data Augmentation

Input: Training data D, ADMG Ĝ, coefficient λ ∈ [0, 1], regularization functional Ω, pruning
threshold θ ∈ [0, 1), hypothesis class H, kernel functions {Kj}dj=1, loss function `.

1: function FillProbTree(D, Ĝ, θ, {Kj}dj=1) . see Figure 3.3
2: for j ∈ [d] . j is the variable index
3: for i1:j−1 ∈ [n]j−1 . current node (depth j)
4: for ij ∈ [n] . next node (depth j + 1)
5: ŵi1:j−1 ← ŵi1:j−1 1

[
ŵi1:j−1 ≥ θ

]
. pruning

6: ŵi1:j ← ŵij |i1:j−1
· ŵi1:j−1

7: return Waug := {ŵi}i∈[n]d

8: Let Waug = FillProbTree(D, Ĝ, θ, {Kj}dj=1).

9: Let R̂aug(h) :=
∑
i∈[n]d ŵi · `(h,Zi).

10: Let R̃λ(h) := (1− λ)R̂emp(h) + λR̂aug(h) + Ω(h).

Output: Trained predictor ĥ ∈ arg min
h∈H

R̃λ(h).

diagonal matrix with elements hmp(j).

For function classes, we quantify their complexities using the Rademacher complexity.

Definition 3.1 (Rademacher complexity). Let q denote a probability distribution on some measur-

able space X . For a function class F ⊂ RX , define

Radm,q(F) := EqEσ

[
sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

σif(Xi)

∣∣∣∣∣
]
,

where {σi}mi=1 are independent uniform {±1}-valued random variables, and {Xi}mi=1
i.i.d.∼ q.

To state our result, let us define the set of marginalized functions and that of the shifted kernel
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functions as

LjH :=
{
`h,j(z

1, . . . , zj−1, ·) : h ∈ H, (z1, . . . , zj−1) ∈ Z [1:j−1]
}
,`h,j :


z1

...

zj

 7→ ∫
Z[j+1:d]

`(h, z)

 d∏
k=j+1

pk|mp(k)(z
k|zmp(k))

 dz[j+1:d]

 ,

KjH :=
{
Kj(zmp(j) − (·)) : zmp(j) ∈ Zmp(j)

}
.

The following theorem provides a theoretical justification of the proposed method.

Theorem 3.1 (Excess risk bound). Let ĥ ∈ arg min
h∈H

{R̂aug(h)} as well as h∗ ∈ arg min
h∈H

{R(h)},

assuming both exist. Assume Ĝ = G and also assume that Zj ⊂ R is compact. Let pmp(j) and

pj,mp(j) denote the marginal density of Zmp(j) and the joint density of (Z(j),Zmp(j)), respectively,

and assume pmp(j) and pj,mp(j)(z
j , ·) (zj ∈ Zj) have extensions to the entire R|mp(j)| belonging to

Σ(β, L), where Σ(β, L) denotes the Hölder class of functions, β > 1, and L > 0. Define

Rh :=

d∑
j=1

(
max

j′∈mp(j)
hj

′
)β

, RK :=
d∑
j=1

|detHj |Radn,p(KjH),

RH,K :=

d∑
j=1

|detHj |Radn,p
(
LjH ⊗K

j
H

)
.

Under additional assumptions on the boundedness and smoothness of the kernels and the underlying

densities (see Theorem B.1 in Appendix B.3.2), there exist C1, Cp, C2, C3, C4 > 0 depending on the

boundedness and the smoothness of p, `, {K̃j}dj=1, and h, such that for any δ ∈ (0, 1), we have with

probability at least 1− δ,

R(ĥ)−R(h∗) ≤ C1Rh + Cp︸ ︷︷ ︸
Kernel Bias

+ C2RK︸ ︷︷ ︸
Kernel Complexity

+ C3RH,K︸ ︷︷ ︸
Hypothesis Complexity

+C4

√
log(4d/δ)

2n︸ ︷︷ ︸
Uncertainty

.

A proof is provided in Appendix B.3.2. Note that the existence of a smooth extension is satisfied

by, e.g., a truncated version of a smooth density on R|mp(j)|.

Implications. Theorem 3.1 implies that the proposed method contributes to statistical learning

by reducing the apparent complexity of the hypothesis class at the cost of introducing the additional

complexity and bias arising from the kernel approximations. In the interest of space, we provide a

formal assessment of this complexity reduction effect in Proposition B.2 in Appendix B.3.3 under

some additional Lipschitz-continuity assumptions. In the derivation of Proposition B.2 indicating

the complexity reduction effect, the fact that LjH consists of univariate functions is critical. In Sec-

tion 3.5, we empirically confirm that the complexity reduction effect is worth the newly introduced

bias and complexity due to the kernel approximation in practice.

Scope of the analysis. The present theoretical guarantee only covers the case of Ĝ = G, i.e., the
case where the topological ADMG factorization property holds with respect to Ĝ. The robustness

of the proposed method to the assumption is an important area of research in future work.
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3.5 Experimental Evaluation

In this section, we report the results of the real-world data experiments to demonstrate the effective-

ness of the proposed method in improving the prediction accuracy. We also show the results of the

synthetic-data experiments to investigate the robustness of the proposed method to the estimation

error of the CG.

3.5.1 Real-world Data Experiment

Here, we describe the setup of the experiment using the real-world data and report the results. The

goal of this experiment is to confirm that the proposed method contributes to the performance of the

trained predictor, especially in the small-data regime. To investigate the performance improvement,

we make a comparison between the two cases: training with and without the proposed device,

using the same hypothesis class and the same training algorithm. To analyze the performance

improvement in relation to the sample size, we vary the fraction of the data used for training the

predictor and compare the performances of the proposed method and that of the baseline without

a device. For further details omitted here for the space limitation, please refer to Appendix B.1.

Data sets. We employ 6 data sets for the experiment, namely Sachs [227], GSS [240], Boston

Housing [98], Auto MPG [212], White Wine [52], and Red Wine [52]. Table 3.1 summarizes these

data sets. The Sachs data and the GSS data are accompanied by the ADMGs obtained from domain

experts (Figure 3.4(b) and Figure 3.4(a), respectively), and hence we use them in the experiment.

For the other data sets, we first perform DirectLiNGAM [240] on the entire data set to obtain the

estimated CGs, simulating a situation that we have background knowledge from domain experts.

Since DirectLiNGAM produces DAGs, the CGs used in this experiment are DAGs except for the case

of GSS data set which is accompanied by an ADMG produced by domain experts (Figure 3.4(b)).

Predictor model class. We employ the gradient boosted regression trees (GBRTs; [81, 41])

as the predictor model class. The hypothesis class consists of the convex combinations of binary

regression trees with at most M leaves:

HM,K :=

{
K∑
k=1

αkw
hk(·)
k : α ∈ ∆K , Tk ∈ [M ], wk ∈ RTk , hk ∈ TTk

}
,

where M,K ∈ N, TT represents the set of binary tree structures mapping X to [T ], and ∆K is the

(K−1)-dimensional probability simplex. The loss function is the squared error `(h,Z) = (Y −h(X))2

where Y = Zj
∗
and X = Z [d]\j∗ , and the regularization function is Ω(h) =

∑K
k=1

ρ
2 ‖wk‖

2
(ρ > 0).

We fix M = 64 and search the number of boosting rounds K in {10, 50, 250, 1250} and the `2-

regularization coefficient ρ in {1, 10, 100, 1000}. The hyper-parameters are selected by the grid-

search based on 3-fold weighted cross-validation. Note that, for the proposed method, we perform

cross-validation on the union of the original training data and the augmented data with the weights

adjusted by λ, namely D
∐
Daug with weights (1− λ)Worig

∐
λWaug where Worig = ( 1n , . . . ,

1
n ).

Configurations of the proposed method. We select h = (h1, . . . ,hd) ∈ Rd>0 and use the

product kernel Kj(x − y) :=
∏
j′∈mp(j)

1
hj′K

j
j′

(
xj′−yj′

hj′

)
for the proposed method. For each j′ ∈

mp(j), if the variable is continuous (i.e., Zj
′

= R), we use the Gaussian kernel Kj
j′(x − y) :=

(2π)−1/2 exp
(
− (x−y)2

2

)
. Otherwise, i.e., if the variable is discrete, we use the identity kernelKj

j′(x−
y) := 1[x = y] and hj

′
= 1. For the Gaussian kernels, we select the kernel bandwidth hj

′
based on
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Table 3.1: Summary of Data Sets (Name: name of the data set, #Var : number of variables in the
data set, #Obs: number of observations, Graph: CG used for the proposed method, Consensus:
consensus network (Figure 3.4(b)), Domain: domain knowledge of the status attainment model
(Figure 3.4(a)), LiNGAM : CG is estimated by performing DirectLiNGAM on the entire data set).

Name #Var #Obs Graph

Sachs 11 853 Consensus
GSS 6 1380 Domain
Boston Housing 14 506 LiNGAM
Auto MPG 7 392 LiNGAM
White Wine 12 4898 LiNGAM
Red Wine 12 1599 LiNGAM
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p38

PIP3

PLCg

Akt

Erk

PKA

Father's Education

Father's Occupation

Son's Education

Number of Siblings

Son's Occupation

Son's Income

(a) Reference graph for Sachs data. (b) Reference graph for GSS data.

Figure 3.4: Reference CGs for the data sets used in our experiments. (a) Consensus graph (Sachs
et al. [227]). (b) Domain-knowledge graph based on the status attainment model (Duncan et al.
[66]).

Silverman’s rule-of-thumb [250, pp.45–47]. In the experiment, we fix λ = .5 throughout all runs and

find that it yields reasonable performances in all data sets.

Compared methods. We compare the performances of the proposed method and the naive

baseline method without a device:

ĥ ∈ arg min
h∈H

{R̂emp(h) + Ω(h)}.

In Section 3.5.1 where we report the results, the two methods are referred to as Proposed and

Baseline, respectively.

Evaluation procedure. The prediction accuracy is measured by the mean squared error (MSE).

For each data set, we randomly subsample a fraction of the data as the training set and use the rest

as the testing set. The fraction of the training set is varied in {.1, .15, . . . , .85}. For each training

set fraction, random train-test splits are performed 20 times. Subsequently, for each split, Proposed

and Baseline are trained on the training set, and then evaluated on the testing set. We report the

average performances as well as the standard errors over the 20 runs for each training set fraction.
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Figure 3.5: Illustration of the experimental results. In all figures, the horizontal axis is the varied
size of the training data before augmentation, and the vertical axis is the performance metric (MSE;
the lower the better). The markers and the lines indicate the average over the 20 independent runs,
and the shades are drawn for the width of the standard errors both above and below the lines. The
proposed method shows a consistent improvement over the naive baseline based on the empirical
risk minimization with the same hypothesis class, particularly in the small-data regime.

Results. Figure 3.5 shows the experimental result. We observe a consistent performance improve-

ment in most of the data sets. For the data sets for which the domain knowledge CG is provided

(i.e., Sachs and GSS ), we can see clear relative improvement of 3–7% on average, especially in the

small-data regime where the training set fraction is approximately 10–40%. In the other data sets

without the background knowledge, relatively little improvement is observed except in the small-data

regions of Red Wine and White Wine, where up to 4% relative improvement on average is observed.

The lack of relative improvement in the majority of these cases emphasizes the importance of having

accurate domain knowledge in the proposed approach, and it motivates the development of effective

causal discovery methods. In the White Wine data, the proposed method coincides with the base-

line in the larger-data region as the augmentation did not effectively take place due to the adaptive

bandwidth that is narrowed according to the sample size. For supplementary figures visualizing the

average relative improvements, see Appendix B.1.5.

3.5.2 Synthetic-data Experiment

Here, we report the experimental results to evaluate the robustness of the proposed method to the

misspecification of the CG. We used synthetic data for which the ground-truth CG is known, and we

apply edge alterations. We used three artificial data generation models: sprinkler, asia, and sachs

(see Table 3.2). Each model consisted of a ground-truth CG and a set of conditional probability

tables (CPDs) specifying the generative model, both of which were fixed throughout the experiments

for all models. As the predictor model class, we used the GBRTs [81, 41]. See Appendix B.2 for

further details. For each run of the experiment, a total of 100 data points were independently and

identically generated. We used 30 data points from this set for training, while we used the remaining

70 for testing. After each data generation, we fit the predictor with or without the proposed method
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Table 3.2: Summary of Synthetic Data Sets (Name: name of the data set, #Var : number of variables
in the data set, #Edge: number of edges.

Name #Var #Edge

sprinkler 4 4
asia 8 8
sachs 11 17
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Figure 3.6: Illustration of the results of the synthetic-data experiments: (i) the baseline without
using the proposed method, (ii) the proposed method applied with the correct CG, (iii) the proposed
method applied with a wrong CG where an edge is removed among those not connected to the
target variable, and (iv) the proposed method applied with a wrong CG where an edge is removed
among those connected to the target variable. The error bars indicate the two-sigma intervals, i.e.,
[µ̂− 2σ̂, µ̂+ 2σ̂] where µ̂ is the mean and σ̂ is the standard error.

and measured the prediction accuracy. Concretely, we evaluated the following four cases: (i) the

predictor is trained without employing the proposed method, (ii) the proposed method is employed

with the correct underlying CG, (iii) the proposed method is applied using an altered CG where

one edge is removed among those not attached to the prediction target variable, (iv) the proposed

method is applied using an altered CG where one edge is removed among those attached to the

prediction target variable.

For cases (iii) and (iv), since multiple candidates for the removal exist, we measured the per-

formance for each possible edge removal and calculated the average performance. We repeated the

experiment 100 times for each data generation model and reported the summarized results.

Figure 3.6 shows the results. In the cases (iii) and (iv), i.e., where an edge was removed,

performance degradation was generally observed compared to the ideal case that the proposed

method is applied with the correct ground-truth CG. In all three synthetic data sets, the degree of

degradation was more prominent when the removed edge was directly connected to the predicted

variable than when it was not connected to the predicted variable. For instance, in the sprinkler

data, 9% excess error was observed in case (iii) relatively to case (ii), whereas 41% excess relative

error was observed in case (iv). Another observation is that the effect of edge removal is milder

in larger graphs: the error of case (iv) relative to case (ii) was approximately 41%, 4%, and 0%,

respectively, in the sprinkler, asia, and sachs data sets. This may be attributed to the redundancy
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of information, i.e., in larger graphs, even if one edge is wrongly removed, the other edges may

typically retain a majority of the dependency structure.

3.6 Related Work and Discussion

In this section, we explain the context of the content of the chapter in relation to existing work.

3.6.1 GCMs and Predictive Modeling

Variable selection in a single-distribution setting. The background knowledge encoded in

a CG can be used for variable selection by identifying a Markov boundary of the target variable.

Here, mb(j) ⊂ [d] is called a Markov blanket of j if Zj is conditionally independent of all the other

variables given Zmb(j). If, moreover, mb(j) is minimal, i.e., if none of its proper subsets are Markov

blankets, it is called a Markov boundary (MB). Under certain assumptions, the MB of a target

variable is known to be the minimal set of variables with optimal predictive performance [274]. For

a recent comprehensive review on MB estimation, see Yu et al. [307]. The present work is orthogonal

to this line of work. In fact, the CGs can encode more information than a specification of the Markov

boundary of the predicted variable; for example, consider the CG X1 ← Y → X2 where Y is the

target variable and (X1, X2) are the predictors. In this case, the Markov boundary of Y is (X1, X2),

and hence the variable selection does not reduce the number of the predictors. On the other hand,

the proposed method still leverages the factorization structure of the data distribution entailing the

CG. In practice, the two approaches can be combined straightforwardly. In our experiments, we do

not perform variable selection using the data regarding the possibility that the obtained CGs are

inaccurate.

Variable selection in distribution-shift setting. Another line of research is concerned with

making predictions under distribution shift and leverage feature selection based on causal back-

ground knowledge or causal discovery. Magliacane et al. [176] considered the case that a distribution

shift is due to intervention in some variables, and they proposed a method to perform domain adap-

tation by identifying a set of variables that is likely to perform well regardless of the intervention.

Rojas-Carulla et al. [223] assume that if the conditional distribution of the predicted variable given

some subset of features is invariant across different distributions, then this conditional distribution

is the same in the target distribution for which one wants to make good predictions, and leveraged

it to find the set of variables for which the relation to the target variable does not change. The

present work is complementary to this line of work since our goal is to make good predictions in a

single fixed distribution.

Regularization and model selection. Kyono and van der Schaar [155] proposed a model se-

lection criterion that can reflect the structure of a CG. The goal of Kyono and van der Schaar [155]

is domain generalization and out-of-distribution prediction, i.e., making good predictions under a

distribution shift without access to any samples from the target distribution or making good pre-

dictions for the data that is outside the support of the training data distribution. To achieve it,

given a DAG as prior knowledge, Kyono and van der Schaar [155] first modify it so that the edges

coming out of the target variable are removed. Then, to score the predictor model candidates, it

generates a data set whose predicted variables are replaced by the predictions of the model and

computes the Bayes Information Criterion (BIC) that evaluates the fitness of the modified DAG

structure to the generated data set. Another approach for using the background knowledge of a

CG is the CASTLE regularization [156]. CASTLE regularization regularizes a neural network while

performing the CG discovery as an auxiliary task. The method imposes a reconstruction loss using
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the internal layers of the predictor implemented by neural networks under a DAG constraint. The

present work is orthogonal to these researches and can be straightforwardly combined in practice.

Also note that our method has a theoretical justification while Kyono and van der Schaar [155]

provided no theoretical justifications.

Inference under specific CGs. Under some specific problem settings with known specific under-

lying CGs, methods to take advantage of the prior knowledge have been developed. For example,

in the instance weight estimation for episodic reinforcement learning, methods to perform state

simplification based on the CGs have been proposed [32, 208, Section 8.2]. Schölkopf et al. [231]

considered removing systematic errors using half-sibling regression inspired by the CG of the obser-

vation mechanism found in the exoplanet search. Pitis et al. [211] proposed a method to enhance

the sample efficiency in reinforcement learning (RL) by a procedure to exchange the realizations of

the variables within the (conditionally) disconnected components in the CG of the Markov decision

process of specific RL instances. This line of work and the present work are complementary in that

our approach is widely applicable to general ADMGs whereas these analyses have the potential to

exploit the characteristics of the specific problem setups.

Causal bootstrapping. Recently, Little and Badawy [169] proposed causal bootstrapping, a

weighted bootstrap-type algorithm that is relevant to our method. While, methodologically, both

the present work and Little and Badawy [169] can be seen to be based on kernel-type function

estimators [260, 112, 69] and CGs [204], the two works are complementary in that the problem

setups differ. Causal bootstrapping of Little and Badawy [169] aims at mitigating the performance

degradation due to a distribution shift arising from an intervention, and it uses kernel-type func-

tion estimators to simulate sampling from an interventional distribution. On the other hand, we

investigate the performance improvement yielded from using the background knowledge of a CG in

a scenario without a distribution shift.

Constructing probabilistic graphical models. Evans and Richardson [73] provided a smooth

parametrization of the set of distributions that are Markov with respect to an ADMG G in the binary

case: Zj = {0, 1} (j ∈ [d]). Complementarily, for the case of Zj = R (j ∈ [d]), Silva et al. [248]

proposed the construction of flexible probability models that are Markov with respect to a given

ADMG. Similarly, in the case that the ADMG has no bi-directed edges, constructing a Bayesian

network by specifying the conditional distributions appearing in the Markov factorization (Equa-

tion (3.1)) is one natural way to exploit this prior knowledge [174]. This approach has the limitation

that it inevitably restricts the modeling choice, e.g., the constructed predictor is a generative model

as opposed to a discriminative model [236, Chapter 24], whereas our approach has the virtue of

being model-agnostic.

3.6.2 Causal Discovery and Transfer Learning

Our method provides a channel through which an estimated CG can be used for enhancing the

predictive modeling. In this sense, the proposed method can serve as a transfer learning method

under a transfer assumption of common CG, i.e., an assumption that one is given many samples

from another distribution sharing the same CG with the distribution for which we want to make the

predictions. Under such an assumption, one may first estimate the ADMG using causal discovery

methods to estimate the Markov equivalence class of ADMGs expressed as a partial ancestral graph

(PAG) [309], e.g., the fast causal inference (FCI) algorithm [254, 309], enumerate the ADMGs in the

equivalence class (e.g., by the Pag2admg algorithm; [261]), select a plausible candidate ADMG that

is concordant with the domain knowledge, and apply the proposed method. Such an assumption of
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a common causal mechanism has been exploited in recent work of causal discovery [302, 82, 185]

and transfer learning [206, 176, 267], and it is based on a common belief that a causal mechanism

remains invariant unless explicitly intervened in (Hünermund and Bareinboim [119]).

3.6.3 GCMs and Efficient Estimation

Our method could also be seen as a method to perform sample-efficient inference given a CG. In the

existing work, the knowledge of a CG has been used for deriving efficient estimators for identifiable

causal estimands [204] such as the interventional distributions [135, 134] or the average causal effect

[24]. For instance, Jung et al. [135] and Jung et al. [134] derived expressions of efficient estimators of

the identifiable interventional distributions given an ADMG and a PAG, respectively, by leveraging

the knowledge of the CG in the double/debiased machine learning [43] framework. Another line of

research provided graphical criteria for selecting the efficient adjustment sets, the set of covariates to

be adjusted for producing a valid estimator of a causal effect with the minimal asymptotic variance

[101, 225, 293, 251]. Our goal differs from the goals of these lines of research; we are interested

in improving the sample efficiency of training the predictor whereas they aimed to improve the

sample efficiency of causal inference. Nevertheless, it is an interesting direction of future research to

elucidate whether the proposed method is optimally efficient in estimating the risk functional given

the CG.

3.6.4 Cyclic CGs

In this chapter, we focused on the case that the CG has no cycles. In the case of acyclic SCMs (i.e.,

those whose CGs are ADMGs; Definition 2.4), the topological ADMG factorization (Problem 3.1)

is known to hold without additional assumptions. In contrast, in the case of cyclic SCMs (i.e.,

those that are not acyclic), an analogous property (the recursive factorization property in [80,

Definition 3.6.1(4)]) holds only under certain sufficient conditions on the SCMs ([80, Section 3.6]).

See Forré and Mooij [80, Section 3.6] for details.

3.6.5 Users’ Burden of Inputting CGs

To apply the proposed method, one has to specify the estimated CG. If the user can collaborate

with domain experts to draw a CG based on its semantics, i.e., that the arrows indicate direct

influence relations (e.g., [265]), they can apply the proposed method easily. In such a case, the

ecosystem to facilitate drawing and communicating CGs may potentially reduce the user’s burden,

e.g., web-based software such as DAGitty [268].

On the other hand, in the application domains where the CG is not readily available, the user

may resort to the statistical causal discovery methods to estimate the CG from data [253, 88, 114,

239, 209, 210, 187, 133, 132, 25]. The user may apply causal discovery methods to the data in

relevant domains that share the CG and use the graph with the proposed method as explained in

Section 3.6.2. For example, ideally, the CG representing a pathological mechanism may potentially

be estimated from the data of some demographic group and applied in the data of another group.

When partial knowledge of some (direct/indirect) causal relations is available, one can incorporate

it into the estimation procedure [31, 261].

In principle, when multiple candidate CGs are available, since the goal is to obtain an accurate

predictor, one may well treat the CG estimator in Algorithm 2 as a hyper-parameter and use cross-

validation to choose one from the candidates. One can optionally assign a weight coefficient λ ∈ [0, 1]

to control the impact of the augmented data on the learning process, as explained in Section 3.3.3.
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3.7 Conclusion

In this chapter, we proposed a general method for exploiting the causal graphical prior knowl-

edge in predictive modeling. We theoretically provided an excess risk bound indicating that the

proposed method has a complexity reduction effect that mitigates overfitting while it introduces

additional complexity and bias arising from the kernel approximations. Through the experiments

using real-world data, we demonstrated that the proposed method consistently improves the predic-

tive performance especially in the small-data regime, which implies that the complexity reduction

effect is worth the newly introduced bias and complexity in practice. Important areas in future

work include incorporating the other equality constraints than the topological ADMG factorization

that are imposed by an ADMG, and handling more relaxed assumptions such as those expressed as

PAGs. In Chapter 6, we discuss further possibilities of future research directions.
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Chapter 4

When Structural Causal Model is

Estimable: Causal Mechanism

Transfer

In the previous chapter, we considered the case that a causal graph is estimable or known thanks

to domain knowledge, and discussed how to exploit the graphical knowledge in training a predictor

in supervised machine learning. In this chapter, we turn to the case that a structural causal model

(or more precisely, its reduced-form structural function, RSF) is estimable from the data of relevant

domains, and discuss how the estimated (partial) knowledge of the causal system can be exploited

in training a predictor.

The problem setup corresponds to a domain adaptation problem, a scenario where we have access

to auxiliary data from different but relevant domains (the source domains) in addition to a sample

from the target distribution for which we want to eventually find a good predictor. A key question in

domain adaptation is “what is the transfer assumption to specify the relation between the auxiliary

data distributions and the target distribution?” Our assumption, namely the estimability of the RSF

from source domain data, gives rise to the novel transfer assumption of a shared causal mechanism,

i.e., that the distributions are derived from structural causal models whose structural equations are

identical.

4.1 Overview

Learning from a limited amount of data is a long-standing yet actively studied problem of machine

learning. Domain adaptation (DA) [19] tackles this problem by leveraging auxiliary data sampled

from related but different domains. In particular, we consider few-shot supervised DA for regression

problems, where only a few labeled target domain data and many labeled source domain data are

available.

4.1.1 Motivation

A key component of DA methods is the transfer assumption (TA) to relate the source and the target

distributions. Many of the previously explored TAs have relied on certain direct distributional

similarities, e.g., identical conditionals [241] or small distributional discrepancies [20]. However,

these TAs may preclude the possibility of adaptation from apparently very different distributions.

Many others assume parametric forms of the distribution shift [313] or the distribution family
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Figure 4.1: Nonparametric generative model of non-
linear independent component analysis. Our meta-
distributional transfer assumption is built on the
model, where there exists an invertible function F rep-
resenting the mechanism to generate the labeled data
(X,Y ) from the independent components (ICs), S,
sampled from q. As a result, each pair (F , q) defines a
joint distribution p.

[259] which can highly limit the considered set of distributions. (we further review related work

in Section 4.6.1). To alleviate the intrinsic limitation of previous TAs due to relying on apparent

distribution similarities or parametric assumptions, we focus on a meta-distributional scenario where

there exists a common generative mechanism behind the data distributions (Figures 4.1 and 4.2).

Such a common mechanism may be more conceivable in applications involving structured table data

such as medical records [304]. For example, in medical record analysis for disease risk prediction, it

can be reasonable to assume that there is a pathological mechanism that is common across regions or

generations, but the data distributions may vary due to the difference in cultures or lifestyles. Such

a hidden structure (pathological mechanism, in this case), once estimated, may provide portable

knowledge to enable DA, allowing one to obtain accurate predictors for under-investigated regions

or new generations.

4.1.2 Idea

Concretely, our assumption relies on the generative model of nonlinear independent component

analysis (nonlinear ICA; Figure 4.1), where the observed labeled data are generated by first sampling

latent independent components (ICs) S and later transforming them by a nonlinear invertible mixing

function denoted by F [124]. Under this generative model, our TA is that F representing the

mechanism is identical across domains (Figure 4.2). This TA allows us to formally relate the

domain distributions and develop a novel DA method without assuming their apparent similarities

or making parametric assumptions.

Example: Structural equation models A salient example of generative models expressed as

Equation (4.1) is structural equation models (SEMs; [204, 208]), which are used to describe the

data-generating mechanism involving the causality of random variables [204]. More precisely, the

generative model of Equation (4.1) corresponds to the reduced form [215] of a Markovian SEM

[204], i.e., a form where the structural equations to determine Z from (Z, S) are solved so that Z is

expressed as a function of S. Such a conversion is always possible because a Markovian SEM induces

an acyclic causal graph [204], and hence the structural equations can be solved by elimination of

variables. This interpretation of reduced-form SEMs as Equation (4.1) has been exploited in methods

of causal discovery, e.g., in the linear non-Gaussian additive-noise models and their successors [137,

239, 185]. In the case of SEMs, the key assumption of this paper translates into the invariance of

the causal mechanisms (expressed by the structural equations) across domains, which enables an

intuitive assessment of the assumption based on prior knowledge. For instance, if all domains have

the same causal mechanism and are in the same intervention state (including an intervention-free
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Figure 4.2: Our assumption of common generative mechanism. By capturing the common data
generation mechanism, we enable domain adaptation among seemingly very different distributions
without relying on parametric assumptions.

case), the modeling choice is deemed plausible. Note that we do not estimate the original structural

equations in the proposed method (Section 4.3.2) but we only require estimating the reduced form,

which is an easier problem compared to causal discovery.

4.1.3 Contributions

Our key contributions can be summarized in three points as follows.

1. We formulate the flexible yet intuitively accessible TA of shared generative mechanism and

develop a few-shot regression DA method (Section 4.3.2). The idea is as follows. First, from

the source domain data, we estimate the mixing function F by nonlinear ICA [124] because F

is the only assumed relation of the domains. Then, to transfer the knowledge, we perform data

augmentation using the estimated F on the target domain data using the independence of the

IC distributions. In the end, the augmented data is used to fit a target predictor (Figure 4.3).

2. We theoretically justify the augmentation procedure by invoking the theory of generalized

U-statistics [162]. The theory shows that the proposed data augmentation procedure yields

the uniformly minimum variance unbiased risk estimator in an ideal case. We also provide an

excess risk bound [184] to cover a more realistic case (Section 4.4).

3. We experimentally demonstrate the effectiveness of the proposed algorithm (Section 4.5). The

real-world data we use is taken from the field of econometrics, for which structural equation

models have been applied in previous studies [93].

A salient example of the generative model we consider is the structural equations of causal

modeling (Section 4.2). In this context, our method can be seen as the first attempt to fully

leverage the structural causal models for DA (Section 4.6.2).

4.2 Problem Setup and Main Assumption

In this section, we describe the problem setup and the notation. To summarize, our problem

setup is homogeneous, multi-source, and few-shot supervised domain adapting regression. That is,

respectively, all data distributions are defined on the same data space, there are multiple source
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domains, and a limited number of labeled data is available from the target distribution (and we

do not assume the availability of unlabeled data). In this chapter, we use the terms domain and

distribution interchangeably.

Basic notation. Throughout the chapter, we fix d(∈ N) > 1 and suppose that the input space X
is a measurable subset of Rd−1 and the label space Y is a measurable subset of R. As a result, the

overall data space Z := X × Y is a measurable subset of Rd. We generally denote a labeled data

point by Z = (X,Y ). We denote by Q the set of independent distributions on Rd with absolutely

continuous marginals. For a distribution p, we denote its induced expectation operator by Ep.
Table C.1 in Appendix C provides a summary of notation.

4.2.1 Base Problem: Few-shot Domain Adapting Regression

Let pTar be a distribution (the target distribution) over Z, and let H ⊂ {h : Rd−1 → R} be a

hypothesis class. Let ` : H× Rd → [0, Bℓ] be a loss function where Bℓ > 0 is a constant. Our goal

is to find a predictor h ∈ H which performs well for pTar, i.e., the target risk R(h) := EpTar`(h,Z)

is small. We denote h∗ ∈ argmin
h∈H

R(h). To this goal, we are given an i.i.d. sample DTar := {Zi}nTar
i=1

i.i.d.∼ pTar. In a fully supervised setting where nTar is large, a standard procedure is to select h

by empirical risk minimization (ERM), i.e., ĥ ∈ argmin
h∈H

R̂(h), where R̂(h) := 1
nTar

∑nTar

i=1 `(h,Zi).

However, when nTar is not sufficiently large, R̂(h) may not accurately estimate R(h), resulting in a

high generalization error of ĥ.

4.2.2 Main Assumption

To compensate for the scarcity of data from the target distribution, let us assume that we have data

from K distinct source distributions {pk}Kk=1 over Z, that is, we have independent i.i.d. samples

Dk := {ZSrc
k,i }

nk
i=1

i.i.d.∼ pk(k ∈ [K], nk ∈ N) whose relations to pTar are described shortly. We assume

nTar, nk ≥ d for simplicity.

In this chapter, the key transfer assumption is that all domains follow nonlinear ICA models

with identical mixing functions (Figure 4.2). To be precise, we assume that there exists a set of

IC distributions qTar, qk ∈ Q(k ∈ [K]) , and a smooth invertible function F : Rd → Rd (the

transformation or mixing) such that ZSrc
k,i ∼ pk is generated by first sampling SSrc

k,i ∼ qk and later

transforming it by

ZSrc
k,i = F (SSrc

k,i ), (4.1)

and similarly Zi = F (Si), Si ∼ qTar for pTar. The above assumption allows us to formally relate

pk and pTar. It also allows us to estimate F when sufficient identification conditions required by

the theory of nonlinear ICA are met. Due to space limitation, we provide a brief review of the

nonlinear ICA method used in this paper and the known theoretical conditions in Appendix C.1.

Having multiple source domains is assumed here for the identifiability of F : it comes from the

currently known identification condition of nonlinear ICA [124]. Note that complex changes in q are

allowed, and hence the assumption of invariant F can accommodate intricate shifts in the apparent

distribution p. We discuss this further in Section 4.6.3 by taking a simple example.

4.2.3 Problem Statement

Instead of assuming the existence of SCMs as we did in the tentative version of the problem de-

scription (Problem 2.2), we tackle its slight generalization where the data are generated by ICMs

(Definition 2.16).
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Problem 4.1. Let K ∈ N and let

M1 = 〈[d], [d],Rd,Rd,F ,PE,1〉,
...

MK = 〈[d], [d],Rd,Rd,F ,PE,K〉,
MTar = 〈[d], [d],Rd,Rd,F ,PE,Tar〉

be ICMs. Let the source domain data sets Dk := {ZSrc
k,i }

nk
i=1

i.i.g.← Mk(k ∈ [K]) and the target

domain training data set DTar := {Zi}nTar
i=1

i.i.g.← MTar be given, where {nk}k∈[K] are large and nTar
is small. Assume that M1, . . . ,MK satisfy some identifiability condition (such as the conditions

of Proposition 2.9) so that there exists an algorithm ICA, and ICA(D1, . . . ,DK) is a consistent

estimator of F . Find a predictor ĥ ∈ H for which the risk R(ĥ) := ETar[`(ĥ,Z)] is small, where

ETar denotes the expectation with respect to Z
gen← MTar.

4.3 Proposed Method

In this section, we detail the proposed method, causal mechanism transfer (Algorithm 3).

4.3.1 Overview of the Method

The method proceeds in three steps: estimation, inflation, and synthesis, which are visually sum-

marized in Figure 4.3. Each step is elaborated upon in Section 4.3.2.

The estimation step estimates the common transformation F from the source domain data by

applying nonlinear ICA, namely via generalized contrastive learning (GCL; [124]), since it is the sole

connection that we posed as the transfer assumption. Then, the estimated F−1 and F are used in

the inflation step and the synthesis step, respectively, to perform data augmentation. The inflation

step applies the estimated F−1 to estimate the ICs from the target domain data, and it generates

many fictional candidate ICs using the knowledge that sets of independent IC vectors are equally

likely even if we scramble the combinations. Finally, the synthesis step applies the estimated F

to all of the generated candidate ICs to obtain the augmented data for the target domain. The

generated pseudo training data is used for training the predictor.

4.3.2 Proposed Method: Causal Mechanism Transfer

Step 1: Estimate F using the source domain data. First, we estimate the common generative

mechanism F , which is the sole connection between the source domains and the target domain. The

estimation can be realized by performing nonlinear ICA using the source domain data, namely via

generalized contrastive learning (GCL; [124]). GCL uses auxiliary information for training a certain

binary classification function, rF̂ ,ψ, equipped with a parametrized feature extractor F̂ : Rd → Rd

and a set of functions ψ = {ψj}dj=1, where each ψj is a function from R × U to R, and U is some

measurable space of the auxiliary labels. The auxiliary information we use in our problem setup

is the domain indices, and hence U = [K]. The classification function to be trained in GCL is

rF̂ ,ψ(z, u) :=
∑d
j=1 ψj(F̂

−1(z)j , u) consisting of (F̂ , ψ), and the classification task of GCL is to

classify (ZSrc
k , k) as positive and (ZSrc

k , k′)(k′ 6= k) as negative when ZSrc
k ∈ Dk. This yields the

following domain-contrastive learning criterion to estimate F :

argmin
F̂∈F,ψj∈Ψ(j∈[d])

K∑
k=1

1

nk

nk∑
i=1

(
φ
(
rF̂ ,ψ(Z

Src
k,i , k)

)
+ Ek′ ̸=kφ

(
−rF̂ ,ψ(Z

Src
k,i , k

′)
))

,
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where F and Ψ are sets of parametrized functions, Ek′ ̸=k denotes the expectation with respect to

k′ ∼ Unif([K] \ k) (“Unif” denotes the uniform distribution), and φ is the logistic loss φ(m) :=

log(1 + exp(−m)). The trained feature extractor F̂ is used as an estimator of F . In experiments,

F is implemented by invertible neural networks [145], Ψ by multi-layer perceptron [99], and Ek′ ̸=k
is replaced by a random sampling renewed for every mini-batch.

Step 2: Extract and inflate the target ICs using F̂ . Second, the method uses the estimated

F̂ to perform data augmentation of the target domain data based on the knowledge transferred

from the source domains. The second step extracts and inflates the target domain ICs using the

estimated F̂ . We first extract the ICs of the target domain data by applying the inverse of F̂ as

ŝi = F̂−1(Zi).

After the extraction, we inflate the set of IC values by taking all dimension-wise combinations of

the estimated IC:

s̄i = (ŝ
(1)
i1
, . . . , ŝ

(d)
id

), i = (i1, . . . , id) ∈ [nTar]
d,

to obtain new plausible IC values s̄i. The intuitive motivation of this procedure stems from the

independence of the IC distributions. Theoretical justifications are provided in Section 4.4.

Step 3: Synthesize target data from the inflated ICs. The third step estimates the target

risk R by the empirical distribution of the augmented data:

Ř(h) := 1

ndTar

∑
i∈[nTar]d

`(h, F̂ (s̄i)), (4.2)

and performs empirical risk minimization. In experiments, we used a regularization term Ω(·) to

control the complexity of H and select

ȟ ∈ argmin
h∈H

{
Ř(h) + Ω(h)

}
. (4.3)

The generated hypothesis ȟ is then used to make predictions in the target domain. In our experi-

ments, we used Ω(h) = λ‖h‖2, where λ > 0 and the norm is that of the reproducing kernel Hilbert

space (RKHS) which we take the subset H from. Note that we may well subsample only a subset

of combinations in Equation (4.2) to mitigate the computation costs similarly to Clémençon et al.

[48] and Papa et al. [197]. In practice, one may well use a weighted average of the risk estimator Ř
and the empirical risk R̂ for training to mitigate the effect of the estimation error in F̂ . That is,

one may well replace Ř by (1− ρ)R̂+ ρŘ where ρ ∈ [0, 1] in Equation (4.3). In our experiment, we

solely used Ř (i.e., ρ = 1).

4.3.3 Implementation Details Based on Invertible Neural Networks

In Steps 2–3 of the proposed method (Section 4.3.2), we require access to F̂−1 and F̂ of the estimator

of F , respectively. To ensure the existence of an inverse map as well as its tractability, we implement

the function class F by invertible neural networks (INNs; [145]). As a recently emerged modeling

technique, INNs did not have a theoretical guarantee on their representation power. In particular,

whether they possess the universal approximation property for a wide range of invertible functions

had not been elucidated. We dedicate Chapter 5 to introducing the theoretical results obtained
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Algorithm 3 Proposed method: Causal Mechanism Transfer

Input: Source domain data sets {Dk}k∈[K], target domain data set DTar, nonlinear ICA algorithm
ICA, and a learning algorithm AH to fit the hypothesis class H of predictors.

1: F̂ ← ICA(D1, . . . ,DK) . Step 1. Estimate the shared transfor-
mation.

2: ŝi ← F̂−1(Zi), (i = 1, . . . , nTar) . Step 2. Extract and
3: {s̄i}i∈[nTar]d ← AllCombinations({ŝi}nTar

i=1 ) . shuffle target ICs

4: z̄i ← F̂ (s̄i) . Step 3. Synthesize target data
5: ȟ← AH({z̄i}i) . and fit the predictor

Output: ȟ: the predictor in the target domain.

(a) Labeled target
data

(b) Find IC (c) Shuffle
(d) Pseudo target
data

Figure 4.3: Schematic illustration of proposed few-shot domain adaptation method after estimating
the common mechanism F . With the estimated F̂ , the method augments the small target domain
sample in a few steps to enhance statistical efficiency: (a) The algorithm is given labeled target
domain data. (b) From labeled target domain data, extract the ICs. (c) By shuffling the values,
synthesize likely values of IC. (d) From the synthesized IC, generate pseudo target data. The
generated data is used to fit a predictor for the target domain.

in this dissertation, which provides an additional layer of theoretical justification to the method

proposed in this chapter.

4.4 Theoretical Analysis

In this section, we state two theorems to investigate the statistical properties of the method pro-

posed in Section 4.3.2 and provide plausibility beyond the intuition that we take advantage of the

independence of the IC distributions.

4.4.1 Complete-estimation Case: Minimum Variance Property

First, we consider the case that F has been estimated perfectly. While this is an idealistic case, the

analysis provides us with the intuition that the proposed method helps the learner in terms of the

variance of the risk estimator.

Theorem 4.1 (Minimum variance property of Ř). Assume that F̂ = F . Then, for each h ∈ H,
the proposed risk estimator Ř(h) is the uniformly minimum variance unbiased estimator of R(h),
i.e., for any unbiased estimator R̃(h) of R(h),

∀q ∈ Q, Var(Ř(h)) ≤ Var(R̃(h))

as well as EpTarŘ(h) = R(h) holds.

The proof of Theorem 4.1 is immediate once we rewrite R(h) as a d-variate regular statistical
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Figure 4.4: Illustration of the proposed data augmentation procedure.

functional and Ř(h) as its corresponding generalized U-statistic [162]. Details can be found in

Appendix C.5.

Implications. Theorem 4.1 implies that the proposed risk estimator can have superior statistical

efficiency in terms of the variance over the ordinary empirical risk.

4.4.2 Incomplete-estimation Case: Excess Risk Bound

In real situations, one has to estimate F . The following theorem characterizes the statistical gain

and loss arising from the estimation error F − F̂ . The intuition is that the increased number of data

points suppresses the possibility of overfitting because the hypothesis has to fit the majority of the

inflated data, but the estimator F̂ has to be accurate so that fitting the inflated data is meaningful

(Figure 4.5). Theorem 4.2 quantifies this consideration:

Theorem 4.2 (Excess risk bound). Let ȟ be a minimizer of Equation (4.2). Under appropriate

assumptions (see Theorem C.1 in Appendix C.4), for arbitrary δ, δ′ ∈ (0, 1), we have with probability

at least 1− (δ + δ′),

R(ȟ)−R(h∗) ≤ C
d∑
j=1

∥∥∥Fj − F̂j

∥∥∥
W 1,1︸ ︷︷ ︸

Approximation error

+4dR(H) + 2dBℓ

√
log 2/δ

2n︸ ︷︷ ︸
Estimation error

+ κ1(δ
′, n) + dBℓBqκ2(F − F̂ )︸ ︷︷ ︸

Higher order terms

.

Here, ‖·‖W 1,1 is the (1, 1)-Sobolev norm, and we define the effective Rademacher complexity R(H)
by

R(H) := 1

n
EŜEσ

[
sup
h∈H

∣∣∣∣∣
n∑
i=1

σiES′
2,...,S

′
d
[˜̀(ŝi, S

′
2, . . . , S

′
d)]

∣∣∣∣∣
]
, (4.4)

where {σi}ni=1 are independent sign variables, EŜ is the expectation with respect to {ŝi}nTar
i=1 , the

dummy variables S′
2, . . . , S

′
d are i.i.d. copies of ŝ1, and ˜̀ is defined by using the degree-d symmetric

group Sd as

˜̀(s1, . . . , sd) :=
1

d!

∑
π∈Sd

`(h, F̂ (s
(1)
π(1), . . . , s

(d)
π(d))),

and κ1(δ
′, n) and κ2(F − F̂ ) are higher order terms. The constants Bq and Bℓ depend only on q
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Figure 4.5: Fitting the data inflated by the proposed method. If the inflated data appear at the
appropriate locations, the increment of the data has the effect of apparent complexity reduction since
one can fit a complex predictor with less fear of overfitting. On the other hand, if the estimation of
F̂ is poor, the fitting may be biased.

and `, respectively, while C depends only on F , q, `, and d.

Details of the statement and the proof can be found in Appendix C.4. The Sobolev norm [3]

emerges from the evaluation of the difference between the estimated IC distribution and the ground-

truth IC distribution. Note that the theorem is agnostic to how F̂ is obtained, hence it applies to

more general problem setup as long as F can be estimated.

Implications. In Theorem 4.2, the utility of the proposed method appears in the effective com-

plexity measure. The complexity is defined by a set of functions that are marginalized over all but

one argument, resulting in mitigated dependence on the input dimensionality from exponential to

linear (Remark C.3 in Appendix C.4).

4.4.3 Representation Power of Invertible Neural Networks

The feasibility of the proposed method (Algorithm 3) relies on the availability of a invertible model

that is sufficiently flexible to approximate F . Our proposal is to employ invertible neural networks

(INNs) such as Glow architecture (Kingma and Dhariwal [145]). INNs have the virtue of having

invertibility by design, and they provide explicit formula for calculating the inverse map. However,

as a recently emerged modeling technique, no theoretical results had been known (prior to this

project) to guarantee that INNs had sufficient flexibility to approximate complex invertible maps.

This was a critical concern that could have determined whether the proposed method could be

confidently applied to a broad range of application domains.

In this project, we have shown that certain classes of INNs, which includes Glow, have the

universal approximation property for a rather large class of smooth invertible maps. This is a result

that provides an additional layer of theoretical justification to the work of this chapter. We elaborate

on this theoretical analysis in Chapter 5 because the scope of the results is not limited to providing

a theoretical justification to the work of this chapter, and because the theoretical result is (intricate

and) interesting by itself.

4.5 Experimental Evaluation

In this section, we provide the results of proof-of-concept experiments to demonstrate the effec-

tiveness of the proposed approach. Note that the primary purpose of the experiments is to confirm

whether the proposed method can properly perform DA in real-world data, and it is not to determine

which DA method and TA are the most suited for the specific dataset.
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4.5.1 Design of the Experiment

Dataset. We used the gasoline consumption data [93, p.284, Example 9.5], which is a panel data

of gasoline usage in 18 of the OECD countries over 19 years. We considered each country as a

domain, and we disregarded the time-series structure and considered the data as i.i.d. samples for

each country in this proof-of-concept experiment. The dataset contains four variables, all of which

were log-transformed: the motor gasoline consumption per car (the predicted variable), per-capita

income, the motor gasoline price, and the stock of cars per capita (the predictor variables) [12].

For further details of the data, see Appendix C.2. We used the dataset because there are very few

public datasets for domain adapting regression tasks [50] especially for multi-source DA, and also

because the dataset has been used in econometric analyses involving SEMs [11], conforming to our

approach.

Compared methods. We compared the following DA methods, all of which can be applied to

regression problems. Unless explicitly specified, the predictor class H is chosen to be kernel ridge

regression (KRR; see, e.g., [234]) with the same hyperparameter candidates as the proposed method

(Section 4.5.2). Further details are described in Appendix C.2.5.

• Naive baselines (SrcOnly, TarOnly, and S&TV ): SrcOnly (resp. TarOnly) trains a predictor

on the source domain data (resp. target training data) without any device. SrcOnly can

be effective if the source domains and the target domain have highly similar distributions.

The S&TV baseline trains on both source and target domain data, but the LOOCV score is

computed only from the target domain data.

• TrAdaBoost : Two-stage TrAdaBoost.R2; a boosting method tailored for few-shot regression

transfer proposed in Pardoe and Stone [200]. It is an iterative method with early-stopping

[200], for which we use the leave-one-out cross-validation score on the target domain data as

the criterion. As suggested in Pardoe and Stone [200], we set the maximum number of outer

loop iterations at 30. The base predictor is the decision tree regressor with the maximum

depth 6 [99]. Note that although TrAdaBoost does not have a clarified transfer assumption,

we compared the performance for reference.

• IW : Importance-weighted KRR using RuLSIF [305]. The method directly estimates a relative

joint density ratio function pTar(x,y)
αpTar(x,y)+(1−α)pSrc(x,y)

for α ∈ [0, 1), where pSrc is a hypothetical

source distribution created by pooling all source domain data. Following Yamada et al. [305],

we experimented on α ∈ {0, 0.5, 0.95}. The results are similar across these values, and we

reported the results of 0.5 which performed the best among the three. The regularization

coefficient λ′ was selected from λ′ ∈ 2{−10,...,10} using importance-weighted cross-validation

[263].

• GDM : Generalized discrepancy minimization [51]. This method performs instance-weighted

training on the source domain data with the weights that minimize the generalized discrepancy

(via quadratic programming). We selected the hyper-parameters λr from 2{−10,...,10} as sug-

gested in Cortes et al. [51]. The selection criterion is the performance of the trained predictor

on the target training labels as the method trains on the source domain data and the target

unlabeled data.

• Copula: The non-parametric regular-vine copula method [172]. This method presumes to use

a specific joint density estimator called regular-vine (R-vine) copulas. Adaptation is realized

in two steps: the first step estimates which components of the constructed R-vine model are

different by performing two-sample tests based on maximum mean discrepancy [172], and the
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second step re-estimates the components in which a change is detected using only the target

domain data.

• LOO (reference score): The leave-one-out cross-validated error estimate was also calculated for

reference. It is the average prediction error for a single held-out test point when the predictor

is trained on the rest of the target domain data.

Evaluation procedure. The prediction accuracy was measured by the mean squared error

(MSE). For each train-test split, we randomly selected one-third (6 points) of the target domain

dataset as the training set and use the rest as the test set. All experiments were repeated 10 times

with different train-test splits of target domain data.

4.5.2 Details of the Experiment

Estimation of F (Step 1). We modeled F (i.e., the class of F̂ ) by an 8-layer Glow neural network

(Appendix C.2.2). We modeled Ψ (i.e., the class of {ψj}dj=1) by a 1-hidden-layer neural network

with a varied number of hidden units, K output units, and the rectified linear unit activation [161].

We used its k-th output (k ∈ [K]) as the value for ψj(·, k). For training, we used the Adam optimizer

[144] with fixed parameters (β1, β2, ε) = (0.9, 0.999, 10−8), fixed initial learning rate 10−3, and the

maximum number of epochs 300. The other fixed hyperparameters of F̂ and its training process

are described in Appendix C.2.

Augmentation of target data (Step 3). For each evaluation step, we took all combinations

(with replacement) of the estimated ICs to synthesize target domain data. After we synthesized the

data, we filtered them by applying a novelty detection technique with respect to the union of source

domain data. Namely, we used the one-class support vector machine [235] with the fixed parameter

ν = 0.1 and radial basis function (RBF; see, e.g., [234]) kernel k(x, y) = exp(−‖x − y‖2/γ) with

γ = d. This is because the estimated transform F̂ is not expected to be trained well outside the

union of the supports of the source distributions. After performing the filtration, we combined the

original target training data with the augmented data to ensure the original data points to be always

included.

Predictor hypothesis class H. As the predictor model, we used the KRR with RBF kernel.

The bandwidth γ was chosen by the median heuristic similarly to Yamada et al. [305] for simplicity.

Note that the choice of the predictor model is for the sake of comparison with the other methods

tailored for KRR [51], and that an arbitrary predictor hypothesis class and learning algorithm can

be easily combined with the proposed approach.

Hyperparameter selection. We performed grid-search for hyperparameter selection. The num-

ber of hidden units for ψ was chosen from {10, 20} and the coefficient of weight-decay from 10{−2,−1}.

The `2 regularization coefficient λ of KRR was chosen from λ ∈ 2{−10,...,10} following Cortes et al.

[51]. To perform hyperparameter selection as well as early-stopping, we recorded the leave-one-out

cross-validation (LOOCV) mean-squared error on the target training data every 20 epochs and

selected its minimizer. The leave-one-out score was computed using the well-known closed-form

formula instead of training the predictor for each split (e.g., [219]). Note that we only used the

original target domain data as the held-out set and not the synthesized data. In practice, if the

target domain data is extremely few, one may well use percentile-cv [193] to mitigate overfitting of

hyperparameter selection.
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Computation environment. All experiments were conducted on an Intel Xeon(R) 2.60 GHz

CPU with 132 GB memory. They were implemented in Python using the PyTorch library [201] or

the R language [214].

4.5.3 Experimental Results

In Table 4.1, we report the MSE scores normalized by that of LOO to facilitate the comparison,

similarly to Cortes and Mohri [50]. In many of the target domain choices, the naive baselines

(SrcOnly and S&TV ) suffered from negative transfer, i.e., higher average MSEs than TarOnly (in

12 out of 18 domains). On the other hand, the proposed method performed better than TarOnly

or was more resistant to negative transfer than the other compared methods. The performances of

GDM, Copula, and IW were often inferior even compared to the baseline performance of S&TV.

For GDM and IW, this can be attributed to the fact that these methods presume the availability

of abundant (unlabeled) target domain data, which was unavailable in the current problem setup.

For Copula, the performance inferior to the naive baselines was possibly due to the restriction of

the predictor model to its accompanied probability model [172]. TrAdaBoost worked reasonably

well for many but not all domains. For some domains, it suffered from negative transfer similarly

to others, possibly because of the very small number of training data points. Note that the transfer

assumption of TrAdaBoost has not been stated [200], and it is not clear when the method is reliable.

The domains on which the baselines perform better than the proposed method can be explained

by the following two cases: (i) easier domains allow naive baselines to perform well and (ii) some

domains may have deviated F . Case (i) implies that estimating F is unnecessary, and hence the

proposed method can be suboptimal (more likely for JPN, NLD, NOR, and SWE in Table 4.1,

where SrcOnly or S&TV improved upon TrgOnly). On the other hand, case (ii) implies that an

approximation error was induced as in Theorem 4.2 (more likely for IRL and ITA in Table 4.1). In

this case, others also perform poorly, implying the difficulty of the problem instance. In either case,

in practice, one may well perform cross-validation to fall back into the baselines.

4.5.4 Synthetic-data Experiment

Here, we experimentally evaluate the robustness of the proposed method to the misspecification of

the invertibility assumption of the mixing function F . The invertibility assumption is exploited in

this paper in two ways: (i) as part of the identifiability condition of F [124] and (ii) as a structure

that allows us to take advantage of the statistical independence in Si. To do so, we use synthetic data

for which the ground-truth mixing function is known, and we tweak the data-generating process.

Data generation. The synthetic data sets are generated as follows. First, we fix r ∈ [d], and we

randomly generate an invertible neural network F̃ and a rank-r matrix B ∈ Rd×d. Then, we define

F = 1
a F̃ ◦ B, where a > 0 is a scaling parameter to standardize the scale of the generated data.

After randomly generating F , we used it to generate both the source domain data and the target

domain data by applying F to the ICs. See Appendix C.3 for the details of the sampling procedure.

When r = d, i.e., B is a regular matrix, the mixing map F = 1
a F̃ ◦B is invertible. On the other

hand, when r 6= d, i.e., B is a singular matrix, F is no longer invertible, and hence the invertibility

assumption of the data generating process is violated. By varying r ∈ [d], we control the level of

ill-conditioning : r = d means that there is no violation of the invertibility assumption, and a smaller

r makes the estimation of the original ICs more difficult.

Evaluation. We varied r in [d] and conducted 30 independent runs of the experiment for each

r. We also performed a sampling in the spirit of incomplete U-statsitics [197, 220, 48] instead of
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Table 4.1: Results of the real-world data experiments for different choices of the target domain. The
evaluation score was MSE normalized by that of LOO (the lower the better). All experiments were
repeated 10 times with different train-test splits of target domain data, and the average performance
is reported with the standard errors in the brackets. The target column indicates abbreviated coun-
try names. Bold-face indicates the best score (Prop: proposed method, TrAda: TrAdaBoost, the
numbers in the brackets of IW indicate the value of α). The proposed method often improved upon
the baseline TarOnly or was relatively more resistant to negative transfer, with notable improve-
ments in DEU, GBR, and USA.

Target (LOO) TarOnly Prop SrcOnly S&TV TrAda GDM Copula IW(.5)
AUT 1 5.88

(1.60)
5.39
(1.86)

9.67
(0.57)

9.84
(0.62)

5.78
(2.15)

31.56
(1.39)

27.33
(0.77)

34.06
(0.67)

BEL 1 10.70
(7.50)

7.94
(2.19)

8.19
(0.68)

9.48
(0.91)

8.10
(1.88)

89.10
(4.12)

119.86
(2.64)

105.68
(3.13)

CAN 1 5.16
(1.36)

3.84
(0.98)

157.74
(8.83)

156.65
(10.69)

51.94
(30.06)

516.90
(4.45)

406.91
(1.59)

571.33
(1.60)

DNK 1 3.26
(0.61)

3.23
(0.63)

30.79
(0.93)

28.12
(1.67)

25.60
(13.11)

16.84
(0.85)

14.46
(0.79)

21.83
(0.93)

FRA 1 2.79
(1.10)

1.92
(0.66)

4.67
(0.41)

3.05
(0.11)

52.65
(25.83)

91.69
(1.34)

156.29
(1.96)

113.5
(1.15)

DEU 1 16.99
(8.04)

6.71
(1.23)

229.65
(9.13)

210.59
(14.99)

341.03
(157.80)

739.29
(11.81)

929.03
(4.85)

807.88
(4.14)

GRC 1 3.80
(2.21)

3.55
(1.79)

5.30
(0.90)

5.75
(0.68)

11.78
(2.36)

26.90
(1.89)

23.05
(0.53)

39.56
(1.70)

IRL 1 3.05
(0.34)

4.35
(1.25)

135.57
(5.64)

12.34
(0.58)

23.40
(17.50)

3.84
(0.22)

26.60
(0.59)

5.79
(0.12)

ITA 1 13.00
(4.15)

14.05
(4.81)

35.29
(1.83)

39.27
(2.52)

87.34
(24.05)

226.95
(11.14)

343.10
(10.04)

237.15
(6.46)

JPN 1 10.55
(4.67)

12.32
(4.95)

8.10
(1.05)

8.38
(1.07)

18.81
(4.59)

95.58
(7.89)

71.02
(5.08)

129.3
(10.47)

NLD 1 3.75
(0.80)

3.87
(0.79)

0.99
(0.06)

0.99
(0.05)

9.45
(1.43)

28.35
(1.62)

29.53
(1.58)

33.38
(1.63)

NOR 1 2.70
(0.51)

2.82
(0.73)

1.86
(0.29)

1.63
(0.11)

24.25
(12.50)

23.36
(0.88)

31.37
(1.17)

27.09
(0.76)

ESP 1 5.18
(1.05)

6.09
(1.53)

5.17
(1.14)

4.29
(0.72)

14.85
(4.20)

33.16
(6.99)

152.59
(6.19)

56.54
(2.16)

SWE 1 6.44
(2.66)

5.47
(2.63)

2.48
(0.23)

2.02
(0.21)

2.18
(0.25)

15.53
(2.59)

2706.85
(17.91)

113.55
(1.72)

CHE 1 3.51
(0.46)

2.90
(0.37)

43.59
(1.77)

7.48
(0.49)

38.32
(9.03)

8.43
(0.24)

29.71
(0.53)

9.33
(0.22)

TUR 1 1.65
(0.47)

1.06
(0.15)

1.22
(0.18)

0.91
(0.09)

2.19
(0.34)

64.26
(5.71)

142.84
(2.04)

139.29
(2.41)

GBR 1 5.95
(1.86)

2.66
(0.57)

15.92
(1.02)

10.05
(1.47)

7.57
(5.10)

50.04
(1.75)

68.70
(1.25)

69.19
(0.87)

USA 1 4.98
(1.96)

1.60
(0.42)

21.53
(3.30)

12.28
(2.52)

2.06
(0.47)

308.69
(5.20)

244.90
(1.82)

393.45
(1.68)

#Best - 2 10 2 4 0 0 0 0

generating the augmented data for all possible ndTar combinations. For the predictor model class, we

employed the gradient boosted regression trees [81, 41]. For the proposed method, after estimating

F , we generated an augmented data set by sampling naug points, and we trained a predictor using

the augmented data set in addition to the original target-domain data DTar. We then measured

the MSE, denoted by MSEprop, on the target-domain testing data set Dtest. As the baseline of

comparison, we also measured the performance, denoted by MSEbase, of a predictor trained only on

the original target-domain data DTar, and we reported the relative MSE, i.e., relMSE :=
MSEprop

MSEbase
.

Results. Figure 4.6 illustrates the experiment results with d = 20, K = 42, nk = 512, and

nTar = 30. In Appendix C.3.4, we additionally report the results for nTar ∈ {10, 20}, in both of

which cases the results were similar.

Figure 4.6(a) reports relMSE in relation to the rank deficiency d− r. The rank deficiency d− r
was varied in {0, . . . , d − 1} while the size of the data augmentation was fixed at naug = n2Tar.

Figure 4.6(b) visualizes the ratio of cases in which relMSE < 1. In these figures, we can observe

that the proposed method has some robustness to the violation of the invertibility assumption, and

that it maintains a performance improvement (i.e., relMSE < 1) as the rank deficiency d−r increases
up to 15. When the rank deficiency is above 15, we observe a higher ratio of degraded performance.
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(a) relMSE in relation to rank
deficiency d− r.

(b) Ratio of improved cases
(relMSE < 1) in relation to rank
deficiency d− r.

(c) relMSE in relation to aug-
mentation size naug.

Figure 4.6: Results of the synthetic-data experiments (nTar = 30). (a) The plotted points represent
independent runs of the experiment. The dotted curve indicates the mean, and the horizontal line
is drawn at relMSE = 1. That is, if a point is below this line, it indicates that the proposed method
yielded a smaller error than the baseline. (b) The dotted horizontal line is at 0.5. That is, if a point
is above this line, it indicates that a majority of cases had a performance improvement due to the
proposed method. For (a) and (b), we fixed the augmented data size at naug = n2Tar. For (c), we
fixed the rank deficiency at d− r = 0.

These results imply that the proposed method may be reliable to some extent unless the violation

of the invertibility is severe, i.e., the considered problem is such that the estimation of the mixing

map is highly ill-conditioned.

Figure 4.6(c) shows relMSE in relation to the augmentation size of the proposed method. For

each independent run of the experiment, after estimating F , we sampled the augmented data sets of

varying sizes naug, and for each augmented data set, we trained a predictor and evaluated its relMSE.

The augmentation size was varied in naug ∈ {(1 − α)nTar + αn2
Tar}α∈{0, 14 ,

2
4 ,

3
4 ,1}

, i.e, from nTar to

n2Tar, while the rank deficiency was fixed at d − r = 0. We can observe that sampling naug = nTar
points already yields a similar performance improvement as naug = n2Tar. This conforms with the

claims of the existing work on incomplete U-statistics [220, 197, 48] that sampling O (nTar) terms

with a uniform distribution is an effective strategy for learning with an incomplete U-statistic.

4.6 Related Work and Discussion

In this section, we review some existing TAs for DA to clarify the relative position of this chapter.

We also clarify the relation to the literature of causality-related transfer learning.

4.6.1 Existing Transfer Assumptions

Here, we review some of the existing work and TAs. See Table 4.2 for a summary.

(i) Parametric assumptions. Some TAs assume parametric distribution families, e.g., Gaussian

mixture model in covariate shift [259]. Some others assume parametric distribution shift, i.e., para-

metric representations of the target distribution given the source distributions. Examples include

location-scale transform of class conditionals [313, 91], linearly dependent class conditionals [311],

and low-dimensional representation of the class conditionals after kernel embedding [257]. In some

applications, e.g., remote sensing, some parametric assumptions have proven useful [313].

(ii) Invariant conditionals and marginals. Some methods assume invariance of certain con-

ditionals or marginals [213], e.g., p(Y |X) in the covariate shift scenario [241], p(Y |T (X)) for an
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Table 4.2: Comparison of TAs for DA (Parametric: parametric distribution family or distribu-
tion shift, Invariant dist.: invariant distribution components such as conditionals, marginals, or
copulas. Disc./IPM : small discrepancy or integral probability metric, Param-transfer : existence
of transferable parameter, Mechanism: invariant mechanism). AD: adaptation among Apparently
Different distributions is accommodated. NP: Non-Parametrically flexible. The numbers indicate
the paragraphs of Section 4.6.1.

TA AD NP Suited application example

(i) Parametric ✓ - Remote sensing
(ii) Invariant dist. - ✓ Brain computer interface
(iii) Disc./IPM - ✓ Computer vision
(iv) Param-transfer ✓ ✓ Computer vision
(Ours) Mechanism ✓ ✓ Medical records

appropriate feature transformation T in transfer component analysis [196], p(Y |T (X)) for a feature

selector T [223, 176], p(X|Y ) in the target shift (TarS) scenario [313, 194], and few components

of regular-vine copulas and marginals in Lopez-paz et al. [172]. For example, the covariate shift

scenario has been shown to fit well to brain computer interface data [263].

(iii) Small discrepancy or integral probability metric. Another line of work relies on cer-

tain distributional similarities, e.g., integral probability metric [53] or hypothesis-class dependent

discrepancies [20, 27, 19, 152, 314, 51]. These methods assume the existence of the ideal joint hy-

pothesis [19], corresponding to a relaxation of the covariate shift assumption. These TA are suited

for unsupervised or semi-supervised DA in computer vision applications [53].

(iv) Transferable parameter. Some others consider parameter transfer [151], where the TA

is the existence of a parameterized feature extractor that performs well in the target domain for

linear-in-parameter hypotheses and its learnability from the source domain data. For example, such

a TA has been known to be useful in natural language processing or image recognition [163, 151].

4.6.2 Causality for Transfer Learning

Our method can be seen as the first attempt to fully leverage structural causal models for DA.

Most of the causality-inspired DA methods express their assumptions in the level of graphical causal

models (GCMs), which only has much coarser information than structural causal models (SCMs)

[208, Table 1.1] exploited in this paper. Compared to previous work, our method takes one step

further to assume and exploit the invariance of SCMs. Specifically, many studies assume the GCM

X ← Y (the anticausal scenario) following the seminal meta-analysis of Schölkopf et al. [232] and use

it to motivate their parametric distribution shift assumptions or the parameter estimation procedure

[313, 311, 91, 90]. Although such assumptions on the GCM have the virtue of being more robust

to misspecification, they tend to require parametric assumptions to obtain theoretical justifications.

On the other hand, our assumption enjoys a theoretical guarantee without relying on parametric

assumptions.

One notable work in the existing literature is Magliacane et al. [176] that considered the do-

main adaptation among different intervention states, a problem setup that complements ours that

considers an intervention-free (or identical intervention across domains) case. To model interven-

tion states, Magliacane et al. [176] also formulated the problem setup using SCMs, similarly to the

present paper. Therefore, we clarify a few key differences between Magliacane et al. [176] and our
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work here. In terms of the methodology, Magliacane et al. [176] takes a variable selection approach

to select a set of predictor variables with an invariant conditional distribution across different in-

tervention states. On the other hand, our method estimates the SEMs (in the reduced form) and

applies a data augmentation procedure to transfer the knowledge. To the best of our knowledge, the

present paper is the first to propose a way to directly use the estimated SEMs for domain adapta-

tion, and the fine-grained use of the estimated SEMs enables us to derive an excess risk bound. In

terms of the plausible applications, their problem setup may be more suitable for application fields

with interventional experiments such as genomics, whereas ours may be more suited for fields where

observational studies are more common such as health record analysis [304] or economics [253]. In

Appendix C.6, we provide a more detailed comparison.

4.6.3 Plausibility of the Assumptions

Checking the validity of the assumption. As is often the case in DA, the scarcity of data

disables data-driven testing of the TAs, and we need domain knowledge to judge the validity. For

our TA, the intuitive interpretation as invariance of causal models (Section 4.2) can be used.

Invariant causal mechanisms. The invariance of causal mechanisms has been exploited in recent

work of causal discovery such as Xu et al. [302] and Monti et al. [185], or under the name of the

multi-environment setting in Ghassami et al. [82]. Moreover, the SEMs are normally assumed to

remain invariant unless explicitly intervened in [119]. However, the invariance assumption presumes

that the intervention states do not vary across domains (allowing for the intervention-free case),

which can be limiting for some applications where different interventions are likely to be present,

e.g., different treatment policies being put in place in different hospitals. Nevertheless, the present

work can already be of practical interest if it is combined with the effort to find suitable data or

situations. For instance, one may find medical records in group hospitals where the same treatment

criteria is put in place or local surveys in the same district enforcing identical regulations. In future

work, relaxing the requirement to facilitate the data-gathering process is an important area. For

such future extensions, the present theoretical analyses can also serve as a landmark to establish

what can be guaranteed in the basic case without mechanism alterations.

Fully observed variables. As the first algorithm in the approach to fully exploit SCMs for DA,

we also consider the case where all variables are observable. Although it is often assumed in a causal

inference problem that there are some unobserved confounding variables, we leave further extension

to such a case for future work.

Required number of source domains. A potential drawback of the proposed method is that it

requires a number of source domains in order to satisfy the identification condition of the nonlinear

ICA, namely GCL in this paper (Appendix C.1). The requirement solely arises from the identifi-

cation condition of the ICA method and therefore has the possibility to be made less stringent by

the future development of nonlinear ICA methods. Moreover, if one can accept other identification

conditions, one-sample ICA methods (e.g., linear ICA) can also be used in the proposed approach

in a straightforward manner, and our theoretical analyses still hold regardless of the method chosen.

Flexibility of the model. The relation between X and Y can drastically change while F is

invariant. For example, even in a simple additive noise model (X,Y ) = F (S1, S2) = (S1, S1 + S2),

the conditional p(Y |X) can shift drastically if the distribution of the independent noise S2 changes

in a complex manner, e.g., becoming multimodal from unimodal.
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4.7 Conclusion

In this chapter, we proposed a novel few-shot supervised DA method for regression problems based

on the assumption of shared generative mechanism. Through theoretical and experimental analysis,

we demonstrated the effectiveness of the proposed approach. By considering the latent common

structure behind the domain distributions, the proposed method successfully induces positive trans-

fer even when a naive usage of the source domain data can suffer from negative transfer. Our future

work includes making an experimental comparison with extensively more datasets and methods

as well as an extension to the case where the underlying mechanism are not exactly identical but

similar. In Chapter 6, we discuss further possibilities of future research directions.
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Chapter 5

Theoretical Analysis of the

Representation Power of Invertible

Neural Networks

In this chapter, we elaborate on a theoretical justification of the method introduced in Chapter 4.

The method introduced in Chapter 4 relies on invertible neural networks (INNs), which have re-

cently emerged from the field of generative modeling. However, as a recently emerged modeling

technique, no theoretical results had been known (prior to this project) to guarantee that INNs

had sufficient flexibility to approximate complex invertible maps. This was a critical concern which

could determine whether the proposed method could be applied in a broad range of application do-

mains. To address this point, this chapter presents the theoretical results we obtained to guarantee

the representation power of INNs. The theoretical guarantees are based on the notion of universal

approximation property (or universality), which roughly states that, any target function of interest

can be approximated to any precision by a model class on any (bounded) input region of interest.

5.1 Overview

Invertible neural networks based on coupling flows (CF-INNs) are neural network architectures with

invertibility by design [198, 148]. Endowed with the analytic-form invertibility and the tractability

of the Jacobian, CF-INNs have demonstrated their usefulness in various machine learning tasks such

as generative modeling [63, 145, 195, 143, 315], probabilistic inference [16, 288, 173], solving inverse

problems [7], and feature extraction and manipulation [145, 192, 130, 267].

5.1.1 Motivation

The attractive properties of CF-INNs come at the cost of potential restrictions on the set of functions

that they can approximate because they rely on carefully designed network layers. To circumvent

the potential drawback, a variety of layer designs have been proposed to construct CF-INNs with

high representation power, e.g., the affine coupling flow [62, 63, 145, 199, 146], the neural autore-

gressive flow [115, 59, 108], and the polynomial flow [131], each demonstrating enhanced empirical

performance.

Despite the diversity of layer designs [198, 148], the theoretical understanding of the represen-

tation power of CF-INNs has been limited. Indeed, the most basic property as a function approx-

imator, namely the universal approximation property (or universality for short) [56, 111], has not



80 Chapter 5. Theoretical Analysis of the Representation Power of Invertible Neural Networks

been elucidated for CF-INNs. The universality can be crucial when CF-INNs are used to learn an

invertible transformation (e.g., feature extraction [192] or independent component analysis [267])

because, informally speaking, lack of universality implies that there exists an invertible transforma-

tion, even among well-behaved ones, that CF-INN can never approximate, and it would render the

model class unreliable for the task of function approximation.

5.1.2 Idea

To elucidate the universality of CF-INNs, we first prove a theorem to show the equivalence of the

universality for certain diffeomorphism classes, which allows us to reduce the approximation of a

general diffeomorphism to that of a much simpler one. By leveraging this problem reduction, we

show that CF-INNs based on affine coupling flows (ACFs; see Section 5.2), one of the least expressive

flow designs, are in fact universal approximators for a general class of diffeomorphisms. The result

can be interpreted as a convenient (sufficient) condition to check the universality of a CF-INN: if

the flow design can represent ACFs as special cases, then it is universal.

The difficulty in proving the universality of CF-INNs lies in two complications, and following are

the approach to overcoming them in this chapter.

(i) Only function composition can be used to make complex approximators (e.g.,

linear combination is not allowed). We overcome this complication by essentially decomposing

a general diffeomorphism into much simpler ones, by using a structural theorem of differential

geometry that elucidates the structure of a certain diffeomorphism group. Our equivalence theorem

provides an interface to implicitly take advantage of this technique.

(ii) The flow layers tend to be inflexible due to the parametric restrictions. As an

extreme example, ACFs can only apply a uniform transformation along the transformed dimension,

i.e., the parameter of the transformation cannot depend on the variable which undergoes the trans-

formation. For ACFs, the reduction of the problem allows us to find an approximator with a clear

outlook by approximating a step function.

5.1.3 Contributions

Our contributions are summarized as follows.

1. We present a theorem to show the equivalence of universal approximation properties for certain

classes of functions. The result enables the reduction of the task of proving the universality

for general diffeomorphisms to that for much simpler coordinate-wise ones.

2. We leverage the result to show that some flow architectures, in particular even ACFs, can be

used to construct a CF-INN with the universality for approximating a fairly general class of

diffeomorphisms. This result can be seen as a convenient criterion to check the universality of

a CF-INN: if the flow designs can reproduce ACF as a special case, it is universal.

3. As a corollary, we give an affirmative answer to a previously unsolved problem, namely the

distributional universality [115, 131] of ACF-based CF-INNs.

Our result is an interesting application of a deep theorem in differential geometry to investigate the

representation power of a neural network architecture.
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→→→→

(a) CF layer

→→→→

(b) ACF layer

Figure 5.1: Illustration of coupling-based flow layers. CF layers are invertible by design; one can
easily find the input vector given the output vector. Indeed, the first k elements x≤k are the same
as those of the output vector. Using this, one can recompute θ(x≤k). The last elements x>k can be
found by using the invertibility of τ(·, θ(x≤k)) which is assumed to be invertible given the parameter
θ(x≤k). ACFs are examples of CFs using simple affine transformations as τ .

Theoretical implications to causal mechanism transfer. The result of this chapter adds

another layer to the theoretical guarantee of causal mechanism transfer (Algorithm 3), whose fea-

sibility relies on the availability of a flexible model of invertible maps equipped with a tractable

inverse.

5.2 Problem Setup

In this section, we prepare the formulation of the models and the notion of approximation called

universality. The definitions will be used for stating the main results in Section 5.3.

5.2.1 Definitions of Models

In this section, we describe the models analyzed in this study, the notion of universality, and the

goal of this chapter. Throughout the chapter, we fix d ∈ N and assume d ≥ 2. For a vector

x ∈ Rd and k ∈ [d − 1], we define x≤k as the vector (x1, . . . , xk)
⊤ ∈ Rk and x>k the vector

(xk+1, . . . , xd)
⊤ ∈ Rd−k.

The following are the important building blocks of CF-INNs. Figure 5.1 illustrates the definitions

of CFs and ACFs.

Coupling flows. We define a coupling flow (CF; [198]) hk,τ,θ by hk,τ,θ(x≤k,x>k) =

(x≤k, τ(x>k, θ(x≤k)), where k ∈ [d − 1], θ : Rk → Rl and τ : Rd−k × Rl → Rd−k are maps,

and τ(·, θ(y)) is an invertible map for any y ∈ Rk.

Affine coupling flows. One of the most standard types of CFs is affine coupling flows (ACFs;

[63, 145, 146, 199]). We define an affine coupling flow Ψk,s,t : Rd → Rd by

Ψk,s,t(x≤k,x>k) = (x≤k,x>k � exp(s(x≤k)) + t(x≤k)),

where k ∈ [d − 1], � is the Hadamard product, exp is applied in an element-wise manner, and

s, t : Rk → Rd−k are maps typically parametrized by neural networks.
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Single-coordinate affine coupling flows. Let H be a set of functions from Rd−1 to R. We

define H-single-coordinate affine coupling flows by H-ACF := {Ψd−1,s,t : s, t ∈ H}, which is a

subclass of ACFs. It is the least expressive flow design appearing in this dissertation, but we show

in Section 5.3.2 that it can form a CF-INN with universality. We specify the requirements on H
later.

Invertible linear flows. We define the set of all affine transforms by Aff := {x 7→ Ax+ b : A ∈
GL, b ∈ Rd}, where GL denotes the set of all regular matrices on Rd.

We consider the invertible neural network architectures constructed by composing flow layers:

Definition 5.1 (CF-INNs). Let G be a set consisting of invertible maps. We define the set of

invertible neural networks based on G as

INNG := {W1 ◦ g1 ◦ · · · ◦Wn ◦ gn : n ∈ N, gi ∈ G,Wi ∈ Aff} .

When G can represent the addition of a constant vector, we can obtain the same set of maps by

replacing Aff with GL, which has been adopted by previous studies such as Kingma and Dhariwal

[145]. Moreover, it is possible to use only the symmetric group Sd that is the permutations of

variables, instead of Aff, when G contains H-ACF. For details, see Appendix D.8.

5.2.2 Notions of Universality

Here, we clarify the notion of universality in this chapter. First, we prepare some notation. Let

p ∈ [1,∞) and m,n ∈ N. For a measurable map f : Rm → Rn and a subset K ⊂ Rm, we define

‖f‖p,K :=

(∫
K

‖f(x)‖p dx
)1/p

,

where ‖·‖ is the Euclidean norm of Rn. We also define ‖f‖sup,K := supx∈K ‖f(x)‖.

Definition 5.2 (Lp-/sup-universality). Let M be a model which is a set of measurable maps from

Rm to Rn. Let p ∈ [1,∞), and let F be a set of measurable maps f : Uf → Rn, where Uf is a

measurable subset of Rm which may depend on f . We say thatM is an Lp-universal approximator or

has the Lp-universal approximation property for F if for any f ∈ F , any ε > 0, and any compact

subset K ⊂ Uf , there exists g ∈ M such that ‖f − g‖p,K < ε. We define the sup-universality

analogously by replacing ‖·‖p,K with ‖·‖sup,K .

We also define the notion of distributional universality. Distributional universality has been

used as a notion of theoretical guarantee in the literature of normalizing flows, i.e., probability

distribution models constructed using invertible neural networks [148].

Definition 5.3 (Distributional universality). LetM be a model which is a set of measurable maps

from Rm to Rn. We say that a model M is a distributional universal approximator or has the

distributional universal approximation property if, for any absolutely continuous1 probability mea-

sure µ on Rm and any probability measure ν on Rn, there exists a sequence {gi}∞i=1 ⊂M such that

(gi)∗µ converges to ν in distribution as i→∞, where (gi)∗µ := µ ◦ g−1
i .

If a model M has the distributional universal approximation property, then it implies that M
approximately transforms a known distribution, for example, the uniform distribution on [0, 1]m,

into any probability measure µ on Rn, not only absolutely continuous but singular one. There

1 In this dissertation, we say a measure on the Euclidean space is absolutely continuous when it is absolutely
continuous with respect to the Lebesgue measure.
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exists another convention that defines the distributional universality as a representation power for

only absolutely continuous probability measures. However, since absolutely continuous probability

measures are dense in the set of all the probability measures, that convention is equivalent to ours.

We include a proof for this fact in Lemma D.3 in Appendix D.1.

The different notions of universality are interrelated. Most importantly, the Lp-universality for a

certain function class implies the distributional universality (see Lemma 5.1). Moreover, if a model

M is a sup-universal approximator for F , it is also an Lp-universal approximator for F for any

p ∈ [1,∞).

5.2.3 Goal

Our goal is to elucidate the representation power of the CF-INNs for some flow architectures G by

proving the Lp-universality or sup-universality of INNG for a fairly large class of diffeomorphisms,

i.e., smooth invertible functions. To prove universality, we need to construct a model g ∈ INNG that

attains the approximation error ε for given f and K.

5.3 Main Results

In this section, we present the main results on the universality of CF-INNs. The first theorem

provides a general proof technique to simplify the problem of approximating diffeomorphisms, and

the second theorem builds on the first to show that the CF-INNs based on the affine coupling are

Lp-universal approximators.

5.3.1 General Result: Universality of Invertible Models

Our first main theorem allows us to lift a universality result for a restricted set of diffeomorphisms

to the universality for a fairly general class of diffeomorphisms by showing a certain equivalence

of universalities. By using the result to reduce the approximation problem, we can essentially cir-

cumvent the major complication in proving the universality of CF-INNs, namely that only function

composition can be leveraged to make complex approximators (e.g., a linear combination is not

allowed).

First, we define the following classes of invertible functions. Our main theorem later reveals an

equivalence of Lp-universality/sup-universality for these classes.

Definition 5.4 (C2-diffeomorphisms: D2). We define D2 as the set of all C2-diffeomorphisms

f : Uf → Im(f) ⊂ Rd , where Uf ⊂ Rd is an open set C2-diffeomorphic to Rd, which may depend

on f .

Definition 5.5 (Triangular transformations: T ∞). We define T ∞ as the set of all C∞-increasing

triangular maps from Rd to Rd. Here, a map τ = (τ1, . . . , τd) : Rd → Rd is increasing triangular if

each τk(x) depends only on x≤k and is strictly increasing with respect to xk.

Definition 5.6 (Single-coordinate transformations: Src ). We define Src as the set of all compactly-

supported Cr-diffeomorphisms that alter only the last coordinate, i.e., those τ satisfying τ(x) =

(x1, . . . , xd−1, τd(x)). In this article, only r = 0, 2,∞ appear, and we mainly focus on S∞c (⊂ T ∞).

Here, a bijection τ : Rd → Rd is compactly supported if τ = Id outside some compact set.

Among the above classes of invertible functions, D2 is our main approximation target, and it is

a fairly large class: it contains any C2-diffeomorphism defined on the entire Rd, an open convex set,

or more generally a star-shaped open set. The class T ∞ relates to the distributional universality as
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Table 5.1: CF-INN architectures analyzed in this chapter (Model : the considered CF-INN architec-
ture. Flow type: the flow layer architecture. This: the universal approximation property that this
chapter has shown. Prev.: previously claimed universal approximation property (Dist.: distribu-
tional universality). ) Our proof techniques are easy to apply to analyze the universality of various
CF-INN architectures.

Model Flow type This Prev.

INNH-ACF Affine coupling [63, 145, 146, 199] Lp -
INNDSF Deep sigmoidal flow [115] sup Dist. [115]
INNSoS Sum-of-squares polynomial flow [131] sup Dist. [131]

we will see in Lemma 5.1. The class S∞c is a much simpler class of diffeomorphisms that we use as

a stepladder for showing the universality for D2.

Now we are ready to state the first main theorem. It reveals an equivalence among the univer-

salities for D2, T ∞, and S∞c , under mild regularity conditions. We can use the theorem to lift up

the universality for S∞c to that for D2.

Theorem 5.1 (Equivalence of Universality). Let p ∈ [1,∞) and let G be a set of invertible functions.

(A) If all elements of G are piecewise C1-diffeomorphisms, then the Lp-universal approximation

properties of INNG for D2, T ∞ and S∞c are all equivalent.

(B) If all elements of G are locally bounded, then the sup-universal approximation properties of

INNG for D2, T ∞ and S∞c are all equivalent.

The proof is provided in Appendix D.2. For the definitions of the piecewise C1-diffeomorphisms

and the locally bounded maps, see Appendix D.5. The regularity conditions in (A) and (B) as-

sure that function composition within G is compatible with approximations (see Appendix D.6 for

details), and they are usually satisfied, e.g., continuous maps are locally bounded.

If one of the two universality properties in Theorem 5.1 is satisfied, the model is also a distribu-

tional universal approximator. Let p ∈ [1,∞), and we have the following.

Lemma 5.1. An Lp-universal approximator for T ∞ is a distributional universal approximator.

Since sup-universality implies Lp-universality, Lemma 5.1 can be combined with both cases of

(A) and (B) in Theorem 5.1. The proof is based on the existence of a triangular map connecting two

absolutely continuous distributions [28]. See Appendix D.1 for details. Note that the previous studies

[131, 115] have discussed the distributional universality of some flow architectures essentially via

showing the sup-universality for T ∞. Lemma 5.1 clarifies that the weaker notion of Lp-universality

is sufficient for the distributional universality, which can also apply to the case (A) in Theorem 5.1.

Application to previously proposed CF-INN architectures. Theorem 5.1 can upgrade a

previously known sup-universality for T ∞ of a CF-INN architecture to that for D2. As examples,

deep sigmoidal flows (DSF; a version of neural autoregressive flows [115]) and sum-of-squares poly-

nomial flows (SoS; [131]) can both yield CF-INNs with the sup-universal approximation property

for D2. We provide the proof in Appendix D.7. See Table 5.1 for a summary of the results. See

Section 5.5.1 for a comparison with previous theoretical analyses on normalizing flows.

5.3.2 Application to Specific Architectures

Our second main theorem reveals the Lp-universality of INNH-ACF for S0c (hence for S∞c ), which

can be combined with Theorem 5.1 to show its Lp-universality for D2. We define C∞
c (Rd−1) as the

set of all compactly-supported C∞ maps from Rd−1 to R.
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Theorem 5.2 (Lp-universality of INNH-ACF). Let p ∈ [1,∞). Assume H is a sup-universal ap-

proximator for C∞
c (Rd−1) and that it consists of piecewise C1-functions. Then, INNH-ACF is an

Lp-universal approximator for S0c .

We provide a proof in Appendix D.4. For the definition of piecewise C1-functions, see Ap-

pendix D.5. Theorem 5.2 can be combined with Theorem 5.1 to show that INNH-ACF is an Lp-

universal approximator for D2. Examples of H satisfying the condition of Theorem 5.2 include

multi-layer perceptron models with the rectifier linear unit (ReLU) activation [161] and a linear-in-

parameter model with smooth universal kernels [183]. The result can be interpreted as a convenient

criterion to check the universality of a CF-INN: if the flow architecture G contains ACFs (or even just

H-ACF with sufficiently expressive H) as special cases, then INNG is an Lp-universal approximator

for D2.

By combining Theorem 5.1, Theorem 5.2, and Lemma 5.1, we can affirmatively answer a previ-

ously unsolved problem [198, p.14]: the distributional universality of CF-INN based on ACFs.

Theorem 5.3 (Distributional universality of INNH-ACF). Under the conditions of Theorem 5.2,

INNH-ACF is a distributional universal approximator.

Implications of Theorem 5.2 and Theorem 5.3. Theorem 5.2 implies that, if G contains

H-ACF as special cases, then INNG is an Lp-universal approximator for D2. In light of Theorem 5.3,

it is also a distributional universal approximator, hence we can confirm the theoretical plausibility

for using it for normalizing flows. Such examples of G include the nonlinear squared flow [316],

Flow++ [108], the neural autoregressive flow [115], and the sum-of-squares polynomial flow [131].

The result may not immediately apply to the typical Glow [145] models for image data that use the

1x1 invertible convolution layers and convolutional neuralnetworks for the coupling layers. However,

the Glow architecture for non-image data [7, 267] can be interpreted as INNG with ACF layers, hence

it is both an Lp-universal approximator for D2 and a distributional universal approximator.

5.4 Proof Outline

In this section, we outline the proof ideas of our main theorems to provide an intuition for the

constructed approximator and derive reusable insight for future theoretical analyses.

5.4.1 Proof Outline for Theorem 5.1

Here, we outline the equivalence proof of Theorem 5.1. For details, see Appendix D.2. Since we

have S∞c ⊂ T ∞ ⊂ D2, it is sufficient to prove that the universal approximation properties for S∞

implies that for D2. Note that the proofs do not change for Lp-universality and sup-universality.

Therefore, we focus on describing the reduction from D2 to S∞c . Since the approximation of S2c
can be reduced to that of S∞c by a standard mollification argument (see Appendix D.2.2), we show

a reduction from D2 to S2c :

Theorem 5.4. For any element f ∈ D2 and compact subset K ⊂ Uf , there exist n ∈ N,
W1, . . . ,Wn ∈ Aff, and τ1, . . . , τn ∈ S2c such that f(x) =W1 ◦ τ1 ◦ · · · ◦Wn ◦ τn(x) for all x ∈ K.

Behind the scenes, Theorem 5.4 reduces D2 to S2c in four steps:

D2 ⇝ Diff2
c ⇝ Flow endpoints⇝ nearly-Id⇝ S2c

Here, A⇝ B (A is reduced to B) indicates that the universality for A follows from that for B, and

Id denotes the identity map. We explain each reduction step in the below.
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Figure 5.2: A nearly-Id transformation f can be decomposed into coordinate-wise ones (f1 and
f2: realized by S2c and permutations). The arrows indicate the transportation of the positions.
A general nonlinear f can be analogously decomposed by Proposition 5.3 when f satisfies certain
conditions.

From D2 to Diff2
c . We consider a special subset Diff2

c ⊂ D2, which is the group of compactly-

supported C2-diffeomorphisms on Rd whose group operation is functional composition. Here, a

bijection f : Rd → Rd is compactly supported if f = Id outside some compact set. Proposition 5.1

below reduces the problem of the universality for D2 to that for Diff2
c .

Proposition 5.1. For any f ∈ D2 and any compact subset K ⊂ Uf , there exist h ∈ Diff2
c , W ∈ Aff,

such that for all x ∈ K, f(x) =W ◦ h(x).

From Diff2
c to flow endpoints. In order to construct an approximation for the elements of D2,

we devise its subset that we call the flow endpoints. A flow endpoint is an element of Diff2
c which can

be represented as φ(1) using an “additive” continuous map φ : [0, 1]→ Diff2
c with φ(0) = Id. Here,

“additivity” means φ(s) ◦ φ(t) = φ(s+ t) for any s, t ∈ [0, 1] with s+ t ∈ [0, 1]. This additivity will

be later used to decompose a flow endpoint into a composition of some mildly-behaved fragments

of the flow map. Note that we equip Diff2
c with the Whitney topology [95, Proposition 1.7.(9)] to

define the continuity of the map φ. The importance of the flow endpoints lies in the following lemma

that we prove in Appendix D.3:

Lemma 5.2. Any element in Diff2
c can be represented as a finite composition of flow endpoints.

Lemma 5.2 is essentially due to Fact 5.1, which is the following structure theorem in differential

geometry attributed to Herman, Thurston [270], Epstein [71], and Mather [179, 180]:

Fact 5.1. The group Diff2
c is simple, i.e., any normal subgroup H ⊂ Diff2

c is either {Id} or Diff2
c .

From flow endpoints to nearly-Id. The flow endpoints in Diff2
c can be decomposed into ”nearly-

Id” elements in Diff2
c by leveraging its additivity property, as in the following proposition. Let ‖·‖op

denote the operator norm.

Proposition 5.2. For any f ∈ Diff2
c , there exist finite elements g1, . . . , gr ∈ Diff2

c such that f =

g1 ◦ · · · ◦ gr and supx∈Rd ‖Dgi(x)− I‖op < 1, where Dgi is the Jacobian of gi.

Proposition 5.2 leverages the continuity of the flows with respect to the Whitney topology of

Diff2
c : φ(1/n) uniformly converges to the identity map both in its values and its Jacobian when

n→∞. Thus, any flow endpoint φ(1) can be represented by an n-time composition of φ(1/n) each

of which is close to identity (nearly-Id) when n is sufficiently large.

From nearly-Id to S2c . The nearly-Id elements, g ∈ Diff2
c in Proposition 5.2, can be decomposed

into elements of S2c and permutation matrices:
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f ACF (Step 1)

ψ∗
n (Step 2) ψ∗

n (Step 2)

(x, y) 7→ (x, vn(y)) (Step 3)

∃g1, g2, g3 ∈ INNACF :

g1 ' ψ∗
n, g2 ' (x, vn(y)), g3 ' (ψ∗

n)
−1

=⇒ f ' g3 ◦ g2 ◦ g1 (Steps 4, 5)

Figure 5.3: Illustration of the proof technique for the Lp-universal approximation property of
INNACF for S0c . The symbol ' indicates approximation to arbitrary precision.

Proposition 5.3. For any g ∈ Diff2
c with supx∈Rd ‖Dg(x)− I‖op < 1, there exist d elements

τ1, . . . , τd ∈ S2c and permutation matrices σ1, . . . , σd such that

g = σ1 ◦ τ1 ◦ · · · ◦ σd ◦ τd.

The machinery of this decomposition is illustrated in Figure 5.2.

5.4.2 Proof Outline for Theorem 5.2

Here, we give the proof outline of Theorem 5.2. For details, see Appendix D.4. The main difficulty

in constructing the approximator is the restricted functional form of ACFs. However, the problem

reduction by Theorem 5.1 allows us to construct an approximator by approximating a step function.

For illustration, we only describe the case for d = 2 and K ⊂ [0, 1]2. For complete proof of

Theorem 5.2, see Appendix D.4. Let f(x, y) = (x, u(x, y)) be the target function, where u(·, y)
is a continuous function that is strictly increasing for each y (i.e., f ∈ S0c ). For the compact set

K ⊂ [0, 1]2 ⊂ R2, we find g ∈ INNH-ACF arbitrarily approximating f on K as follows (Figure 5.3).

Step 1. Align the image into the square: First, without loss of generality, we may assume that

the image f([0, 1]2) is again [0, 1]2. Indeed, we can align the image so that u(x, 1) = 1 and

u(x, 0) = 0 for all x ∈ [0, 1] by using only an ACF Ψ1,s,t with continuous s and t, which can

be approximated by H-ACF.

Step 2. Slice the squares and stagger the pieces: We consider an imaginary ACF ψ∗
n := Ψ1,1,tn

defined using a discontinuous step function tn :=
∑n
k=0 k1[k/n,(k+1)/n). The map ψ∗

n splits

[0, 1]2 into pieces and staggers them so that a coordinate-wise independent transformation

(e.g., vn in Step 3), which is uniform along the x-axis, can affect each piece separately.

Step 3. Express f by a coordinate-wise independent transformation: We construct a con-

tinuous increasing function vn : R → R such that for y ∈ [k, k + 1), vn(y) = u(k/n, y) + k

(k = 0, . . . , n − 1). A direct computation shows that f̃n := (ψ∗
n)

−1 ◦ (·, vn(·)) ◦ ψ∗
n arbitrarily

approximates f on [0, 1]2 if we increase n. We take a sufficiently large n.
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Step 4. Approximate the coordinate-wise independent transformation vn: We find an el-

ement of INNH-ACF sufficiently approximating (·, vn(·)) on [0, 1] × [0, n]. This is realized

based on a lemma that we can construct an approximator for any element of S0c of the form

(x, y) 7→ (x, v(y)) on any compact set in R2.

Step 5. Approximate ψ∗
n and combine the approximated constituents to approximate f̃n:

We can also approximate ψ∗
n and its inverse by ACFs based on the universality of H. Finally,

composing the approximated constituents gives an approximation of f on [0, 1]2 with arbitrary

precision (see Appendix D.6).

5.5 Related Work and Discussion

In this section, we relate the contribution of this dissertation to the literature on the representation

power of invertible neural networks.

5.5.1 Normalizing Flows

The distributional universality of normalizing flows constructed using CF-INNs has been addressed

in previous studies such as [131, 115]. Previously proposed architectures with distributional univer-

sality include the neural autoregressive flows [115] and the sum-of-squares polynomial flows [131].

Our findings elucidate the much stronger universalities of these architectures, namely the sup-

universality for D2, which enhances the reliability of these models in the tasks where function

approximation rather than distribution approximation is crucial, e.g., feature extraction [192, 267].

5.5.2 Other Invertible Neural Network Architectures

One-dimensional case. In the one-dimensional case (d = 1), strict monotonicity is a necessary

and sufficient condition for a function to be invertible. In this case, there have been a few invertible

neural network architectures with sup-universality for the set of all homeomorphisms on R, e.g.,
monotonic networks [247] and rational quadratic splines [68]. These models complement CF-INNs

in that they provide an invertible neural network only in the one-dimensional case, whereas the

latter can be defined only in the multi-dimensional case.

Relation to examples of functions that cannot be approximated by NODEs. Neural

ordinary differential equations (NODEs) [40, 67] can be considered as another design of invertible

flow layers different from CFs. Zhang et al. [308] formulated its Theorem 1 to show that NODEs

are not universal approximators by presenting a function that a NODE cannot approximate. The

existence of this counterexample does not contradict our result because our approximation target

D2 is different from the function class considered in Zhang et al. [308]: the class in Zhang et al. [308]

can contain discontinuous maps whereas the elements of D2 are smooth and invertible. Also, in

Proposition 5.1, we cap an affine transformation (realizable by INNG) on top of the target function

to reduce the approximation of D2 to that of Diff2
c . Such an affine transformation may enhance

the approximation capacity by allowing a certain set of transformations, e.g., coordinate-wise sign

flipping.

5.5.3 The Strength of the Representation Power of INNH-ACF

In this study, we showed the Lp-universal approximation property of INNH-ACF. While the Lp-

universality is likely to suffice for developing probabilistic risk bounds for machine learning tasks
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[167, 264] and for showing distributional universality, whether INNH-ACF is a sup-universal approx-

imator for D2 remains an open question. Our conjecture is negative due to the following theoretical

observation. The sup-universality requires a precise approximation uniformly everywhere while the

Lp-universality can allow an approximation error on negligible regions. As described in Section 5.4.2,

we used a smooth approximation of step functions to show the Lp-universality of INNH-ACF. In-

tuitively, approximating the step functions and composing them can accumulate errors around the

discontinuity points, so that it can retain the Lp-universality but it can affect the sup-universality.

Since the step functions are devised to bypass the uniformity of the transformation by ACFs, we

conjecture that the difficulty is intrinsic and a sup-universality is unlikely to hold for INNH-ACF.

5.6 Conclusion

In this study, we elucidated the representation power of CF-INNs by proving their Lp-universality or

sup-universality for D2. Along the course, we invoked a structure theorem from differential geometry

to establish an equivalence of the universalities for D2, S∞c , and T ∞, which itself is of theoretical

interest. Our result advances the theoretical understanding of CF-INNs by formally showing that

most of the CF-INN architectures already yield Lp-universal approximators and that the different

flow layer designs purely contribute to the efficiency of approximation, not much to the capacity of

the model class. Comparing the approximation efficiency of different layer designs is an important

area in future work. Also, the approximation efficiency for a better-behaved subset of D2 (e.g.,

bi-Lipschitz ones) remains as an open question for future research. In Chapter 6, we discuss further

possibilities of future research directions.
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Chapter 6

Conclusion and Future Prospects

In this chapter, we revisit the central statement of this dissertation and discuss the contributions

of the previous chapters to this theme. Moreover, we also discuss important subjects and problems

for future research that lie beyond this dissertation.

6.1 Conclusion

In this dissertation, we considered whether causal knowledge could be useful for predictive modeling.

Intuitively, the benefit of causal models lies in the portability and invariance; causality is interesting

for human beings because causal knowledge is believed to be valid even outside of the environment

in which the knowledge was acquired. Therefore, learned causal knowledge can be potentially used

as prior knowledge to enhance statistical machine learning, especially in small-data environments,

because it captures some aspect (i.e., the data-generating process) of the data distribution that

would otherwise be inferred from data. The concrete idea of this dissertation was to develop data

augmentation methods to incorporate the statistical independence relations embedded in the struc-

tural causal models (SCMs; Section 2.3). This approach has the virtue of being model-independent:

it can be combined with virtually any standard supervised machine learning method.

We presented a unified design principle for data augmentation to reflect the independence re-

lations; the strategy was to mix the values of the sample points in an element-wise manner to

synthesize hypothetical data. In Chapters 3 and 4, we have seen how this idea could be instantiated

in two situations where the causal model is either partially known or estimable. The two cases

correspond to different levels in the hierarchy of the structural causal framework: SCM is at the

most granular level for which partial information could be estimated from data, and the graphical

causal models (GCM; Section 2.3) is its coarse version. Chapter 5, while forming an interesting the-

oretical contribution on its own, supported the methodology employed in Chapter 4 by providing a

theoretical guarantee.

Jointly, the three chapters provided evidence of the Central Statement; the knowledge of causal

mechanisms estimated by GCMs/SCMs can enhance machine learning in small-data problems. In

particular, we have developed the concrete methods to exploit the statistical independence relations

implied by the causal models via data augmentation.

6.2 Future Prospects

Beyond the scope of this dissertation, there are various possible directions for future studies. In this

section, we list some important research subjects that lie ahead.
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6.2.1 Reducing Computational Complexity

The general methodological idea of this dissertation was based on data augmentation. However,

as the approach from data augmentation inevitably increases the number of data points used for

learning, the computational complexity of the proposed learning algorithms tends to become higher.

Especially, if n is the training sample size and d is the dimensionality of the data, the computational

complexities of causal-graph data augmentation (CDA; Algorithm 2) and causal mechanism transfer

(CMT; Algorithm 3) can be of the order of nd, which quickly increases with d. Therefore, to extend

the applicability of the proposed method to higher dimensional data, the following problem should

be addressed.

Problem 6.1. Reduce the computational complexity of CDA and CMT to O
(
nd
)
without losing

much of their performance.

6.2.2 Relaxing Model Assumptions

When the causal graph is not identifiable or if it is only partially known from the domain knowledge,

we may only acquire an equivalence class of acyclic directed mixed graphs (ADMGs; Section 2.2)

called Partial Ancestral Graphs (PAGs; Peters et al. [208, Table 9.1]). Thus, extending the approach

of CDA to PAGs would make the idea more widely applicable.

Problem 6.2. Generalize the approach of CDA to PAGs in place of ADMGs.

The proposed framework of CMT considered the case of Markovian SCMs (Definition 2.4), i.e.,

those where all variables are assumed to be observable. When some variables are unobserved, we

need to handle semi-Markovian SCMs (Definition 2.4). In order to extend the applicability of CMT,

it is desirable to develop its generalization to such cases.

Problem 6.3. Extend the applicability of CMT to semi-Markovian SCMs.

The proposed framework of CMT cannot handle categorical variables because the identifiability

of nonlinear independent component analysis (NLICA; e.g., Proposition 2.9) based on generalized

contrastive learning (GCL; [124]) presumes that the data is real-valued. In building practical appli-

cations of CMT, categorical variables are as interesting as continuous variables. Thus, it would be

important to consider extensions of CMT to categorical variables.

Problem 6.4. Extend the approach of CMT to the case where there are also categorical variables

in the data.

6.2.3 Evaluating and Mitigating Model Misspecification

The use of prior knowledge in machine learning is a two-sided sword; it can facilitate learning by

narrowing our attention down to specific subsets of the problem, but it may introduce a misspeci-

fication error. In the case of the causality-informed machine learning framework presented in this

dissertation, the source of model misspecification lies in the following three layers of assumptions:

the existence of an SCM, estimability of the causal models, and sufficient representation power of

the implementation (Table 6.1). Among the three, the issue of sufficiency of the representation

power has been addressed in this dissertation (Chapter 5).

Existence of an SCM. To further enhance the reliability of the proposed approaches, it is

desirable to develop theories and algorithms for evaluating and mitigating the model misspecification

error. Specifically, it would be interesting to see whether the proposed algorithms are justifiable

even without the existence of the SCMs behind the data distributions. If the proposed methods,
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Table 6.1: Three levels of model misspecification in causality-informed machine learning.

Type of assumption CDA CMT
Existence of causal mechanism Problem 6.5 Problem 6.5
Estimability of causal mechanism Problem 6.2 Problem 6.4, 6.7
Representation Power of Implementation Satisfied Chapter 5

CDA (Chapter 3) and CMT (Chapter 4), are valid even without the existence of such SCMs behind

the data, it may be sensible to apply the scheme to non-conventional data types such as images for

which structural equations have not been considered.

Problem 6.5. What is expected, in general, if we apply causality-informed machine learning meth-

ods when SCMs do not exist behind the data? Are CDA and CMT justifiable even in these cases?

In this dissertation, we introduced the definition of the solutions of an SCM that requires the

random variables to almost surely satisfy the structural equations (SEs). It may be fruitful to

consider an alternative requirement that the SEs should be satisfied with high probability, which can

allow the model to accommodate even more general situations.

Problem 6.6. Is it possible to develop a relaxed version of the theory of SCMs where the solutions

are required to satisfy the SEs only with high probability instead of almost surely? What are the

implications of such theories to the methodologies developed in this dissertation?

Estimability of causal models. In the case of CDA, the answer to Problem 6.2 could be a

solution to the case that the causal graph is not fully estimable or not fully known. In the case

of CMT, the invariance of the SEs played a crucial role in the estimability. In more practical

applications, the invariance assumption could be violated, e.g., the assumption that all domains have

the same intervention state may be violated when different hospitals employ different intervention

policies. Thus, in the case that the data may have been generated from similar yet non-identical SEs,

containing the error or adapting to the violation of the invariance assumption would be important

to build practical applications of the proposed approach. Specifically, for example, Greene [93,

p.284 Example 9.5] discussed the case of group-wise heteroscedasticity and employed different offset

parameters for different countries. Considering whether a similar approach can be devised in CMT

to accommodate the difference in the SEs, but with a more flexible model of the dissimilarities

among the domains than just offsets, would be interesting.

Problem 6.7. In the problem setup of CMT, relax the assumption that the SEs are identical across

different domains. Design a method to adapt to the violation of this assumption when the change in

the SE is (partially) known, e.g., what parts of the SEs are invariant and what are prone to change.

For example, can we generalize the assumption that the different domains have the same SEs except

for a difference in the offsets and take advantage of it in CMT? In general, what type of similarity

of the SEs can be exploited in this approach, and under what conditions? Can we automatically

learn the similarity and differences in the SEs using the data from different domains and exploit the

similarity in the mechanism by extending the idea of CMT?

6.2.4 Exploiting Other Aspects of SCMs

In this dissertation, we considered exploiting the causal models for machine learning via the sta-

tistical (conditional) independence relations that they imply. In general, causal models contain

more statistical and causal information than only conditional independence (Peters et al. [208, Sec-

tion 9.5]).



94 Chapter 6. Conclusion and Future Prospects

Problem 6.8. In general, SCMs imply more statistical and causal information than only conditional

independence. How can we exploit the knowledge in predictive modeling?

In this case, it is also favorable to develop a generic strategy for designing data augmentation

procedures that can reflect various statistical properties beyond statistical independence. Notably,

statistical independence is expressed as a certain equality constraint of the density functions. Thus,

the proposed approach of this dissertation could be more generalized if incorporating such general

statistical assertions expressed as sets of equations among statistical functionals, i.e., functionals of

the distributions.

Problem 6.9. Develop a data augmentation strategy for more general statistical properties than

(conditional) independence. Is it possible to design a meta-algorithm that produces a plausible data

augmentation strategy given a set of equations among some statistical functionals as inputs?

In the case that the SEs are parametrically specified, e.g., in the case of linear SEMs, the specific

functions of the SEs may contain much richer information than the statistical independence.

Problem 6.10. Exploit the specific functions of an estimated parametric SEM (e.g., linear SEMs) to

further improve the sample efficiency of supervised learning. Is it possible to theoretically characterize

the optimal predictor in such a case?

6.2.5 Characterizing the Limitation of Causality-informed Learning

Throughout this dissertation, we investigated how causal assumptions on the data-generating pro-

cesses could be exploited to train a predictor. With such additional assumptions, the problems

are more specific and hence easier than the corresponding problems without the additional assump-

tions. While this is qualitatively obvious, to understand the relative difficulty more completely, it

is important to quantitatively characterize the difficulty of the problems in terms of minimax risk

lower-bounds [275]. Therefore, the following problem is important in future work.

Problem 6.11. Provide a minimax lower bound on the generalization error for Problems 3.1 and

4.1.

6.2.6 Application to Other Statistical Inference Tasks

The proposed data augmentation procedures are independent of the supervised learning setting, and

they could be useful in other statistical tasks such as hypothesis testing or uncertainty estimation.

However, if we apply the methods developed for independent random samples, we may suffer from

the potential bias introduced by the data augmentation procedures. Therefore, it is important

to investigate how the successive inference steps should be modified to avoid or mitigate such

unintended effects when the goal is different from learning good predictors.

Problem 6.12. Devise correction methods and theories for important statistical tasks such as hy-

pothesis testing and uncertainty estimation to enable or justify the use of the data augmented by

CDA and CMT in these tasks.

Application of the proposed methods to unsupervised learning [236], such as representation

learning [92], missing value imputation [277], and anomaly detection [4], can also be interesting.

Unlike supervised learning investigated in this dissertation, unsupervised learning often uses different

evaluation criteria. Therefore, an interesting question is how these tasks can benefit from CDA and

CMT.
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Problem 6.13. Elucidate the utility of causal knowledge for unsupervised learning. From theoretical

and practical perspectives, evaluate how CDA and CMT can be used to enhance the methods for

unsupervised learning tasks such as representation learning, missing value imputation, and anomaly

detection.

6.2.7 More Detailed Levels of the Data-Generating Processes

The present dissertation proposed a framework for exploiting SCMs and GCMs in predictive mod-

eling. In the hierarchical structure of the SCM framework (Peters et al. [208, Table 1.1]), SCMs

and GCMs are the current deepest levels where some information of the model (namely RSEs and

CGs) is estimable. On the other hand, more detailed models of the data-generating process, such

as ordinary-differential-equation-based foundations of the SCMs (Mooij et al. [186]) have also been

explored. Considering the possibility of estimating and exploiting such models is an important di-

rection in the future development of causality-informed machine learning since the more detailed

models of the data-generating processes may provide richer prior knowledge that can be used for

training a predictor.

Problem 6.14. Develop methods to estimate and exploit more detailed models of the data-generating

process than SCMs and GCMs.

6.2.8 Exploiting the Potential Outcome Framework

In many instances of econometrics [6, 1], political science [126], medicine [103], and epidemiology

[103], the potential outcome framework [226, 126, 103] is often applied. It would also be interesting

to develop methods that can directly exploit the causal knowledge expressed and estimated in the

potential outcome framework (e.g., average treatment effect) in predictive modeling.

Problem 6.15. Devise a method to exploit the causal knowledge captured by the potential outcome

framework in predictive modeling.

6.2.9 Extension to Continual Learning

Continual learning refers to the problem of learning from an infinite stream of data, with the goal

of gradually extending acquired knowledge and using it for future learning [42, 61]. There are

two main challenges in continual learning: (i) using previously acquired knowledge for performing

well in newer tasks and (ii) avoiding the performance degradation on a previously learned task or

domain after learning new tasks, a destructive phenomenon known as catastrophic forgetting [42].

One salient characteristic of the causal knowledge is its stability and portability; causal knowledge

is believed to be valid in systems other than the one in which it was acquired (although the extent

to which the stability is believed to hold may depend on the domain of interest; Woodward [296]

and Woodward [295]). Thus, conceptually, learning causal knowledge may potentially provide a

plausible approach to the first challenge: learning relevant knowledge from previously seen tasks

and applying the knowledge to newer tasks.

Problem 6.16. Develop continual learning methods that capture and leverage the causal knowledge

of the data-generating processes.
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Appendix A

Appendices for Chapter 2

A.1 Example of Figure 2.1

Here, we remark how the example of Figure 2.1 is obtained. Let 0 denote the zero-vector and I the

unit matrix (of appropriate dimensions).

First case: Figure 2.1(a). This is the base case to which the distributions of the other two

cases were matched by carefully choosing the parameters. Consider the following equation and its

solution for (x, y): {
x = e1

y = x+ ae2
⇒

(
x

y

)
=

(
1 0

1 a

)
︸ ︷︷ ︸

A

(
e1
e2

)
,

Then, if (e1, e2)
⊤ ∼ N (0, I), we have (x, y)⊤ ∼ N

(
0, AA⊤) where

AA⊤ =

(
1 1

1 1 + a2

)
.

Second case: Figure 2.1(b). Consider the following equation and its solution for (x, y):{
x = by + ce1

y = de2
⇒

(
x

y

)
=

(
c bd

0 d

)
︸ ︷︷ ︸

B

(
e1
e2

)

Then, if (e1, e2)
⊤ ∼ N (0, I), we have (x, y)⊤ ∼ N

(
0, BB⊤) where

BB⊤ =

(
c2 + b2d2 bd2

bd2 d2

)
.

Thus, in order to match the distribution of (X,Y )⊤ to the first case,

b = (1 + a2)−1, c = a/(1 + a2)1/2, d = (1 + a2)1/2

is sufficient.
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Third case: Figure 2.1(c). Consider the following equation and its solution for (x, y, z):
x = αz + γe1

y = βz + δe2

z = e3

⇒

xy
z

 =

γ 0 α

0 δ β

0 0 1


︸ ︷︷ ︸

C

e1e2
e3



Then, if (e1, e2, e3)
⊤ ∼ N (0, I), we have (x, y, z)⊤ ∼ N

(
0, CC⊤) where

CC⊤ =

α2 + γ2 αβ α

αβ β2 + δ2 β

α β 1

 .

Thus, in order to match the distribution of (X,Y )⊤ to the first case,

α = β−1, 1 < β2 < 1 + a2, γ = (1− 1/β2)1/2, δ = (1 + a2 − β2)1/2

is sufficient.

With the choice of a = .3 and β = 1.03, Figure 2.1 was generated.

A.2 Supplementary on Causal Models and Proofs

In this section, we provide the supplementary results, the facts, and the proofs relevant to the main

text.

A.2.1 Preparation from Probability Theory

Definition A.1 (Markov kernels). Let (D,D) and (E, E) be measurable spaces. A Markov kernel1

from (D,D) to (E, E) is a positive function K : D × E → R such that

• K(x, ·) is a probability measure for all x ∈ D, and

• K(·, B) is a measurable function for all B ∈ E.

For simplicity, when D = ∅, we refer to probability measures on (E, E) as Markov kernels.

For a shorthand notation, we write π(dx, dy) = µ(dx)K(x, dy) to denote the equation

π(A×B) =

∫
A

µ(dx)K(x,B), A ∈ D, B ∈ E ,

where µ is a measure on (D,D), K is a Markov kernel from (D,D)to(E, E), and π is a measure on

the product space (D × E,D ⊗ E). We use the following facts regarding Markov kernels.

Fact A.1 (Integration Theorem [47, Theorem I.6.11]). Let µ be a measure on (D,D), and K be a

Markov kernel from (D,D) to (E, E). Then,

π(dx,dy) = µ(dx)K(x,dy)

defines a unique measure π on the product space (D × E,D ⊗ E).

1 Markov kernels are also known as transition probability kernels (Çinlar [47]).
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Fact A.2 (Disintegration Theorem [47, Theorem IV.2.18]). Let π be a probability measure on the

product space (D × E,D ⊗ E). Suppose that (E, E) is standard. Then, there exist a probability

measure µ on (D,D) and a Markov kernel K from (D,D) to (E, E) such that

π(dx, dy) = µ(dx)K(x, dy).

The following is an easy lemma used in the main text.

Lemma A.1 (Almost-surely deterministic relation). Let (Ω,U ,P) be a probability space, and (D,D)
and (E, E) be measurable spaces. Let X : Ω → D and Y : Ω → E be random variables whose joint

distribution is PX,Y , and let the marginal distribution of X be PX . Assume that (X,Y ) almost

surely satisfies Y = f(X) for a measurable map f : D → E. Then, for all A ∈ D and B ∈ E,

PX,Y (dx,dy) = PX(dx)δf(x)(dy),

PY = f♯(PX) = PX ◦ f−1.

Proof. We have PX,Y (A × B) = P(X ∈ A, Y ∈ B) = P(X ∈ A, Y ∈ B, Y = f(X)) =

P(X ∈ A, f(X) ∈ B, Y = f(X)) = P(X ∈ A, f(X) ∈ B), and
∫
A
δf(x)(B)PX(dx) =∫

1[x ∈ A]1[f(x) ∈ B]PX(dx) = PX({x : x ∈ A, f(x) ∈ B}) = P(X ∈ A, f(X) ∈ B). Thus,

the first equality holds. On the other hand, for any B ∈ E , we have PY (B) = P(Y −1(B)) =

P(Y −1(B)∩{Y = f(X)}) = P((f(X))−1(B)∩{Y = f(X)}) = P(X−1(f−1(B))) = PX(f−1(B)).

For the rest of this section, we consider the following setup. Let (D,D), (E, E), (F,F) be mea-

surable spaces. Let X,Y, Z be random variables taking values in the measurable spaces D,E, F ,

respectively, defined on the same probability space. Let PX , PX,Z , PX,Y , and PX,Y,Z be the distri-

butions of X, (X,Z), (X,Y ), and (X,Y, Z), respectively.

Fact A.3 (Conditional Independence and Markov Kernels [224, Definition 1.4.1, Theorem 3.5.3]).

Let K be a Markov kernel from (D,D) to (E, E) satisfying PX,Y (dx, dy) = K(x, dy)PX(dx). Then,

Y ⊥⊥ Z | X ⇒ P(X,Y,Z)(dx, dy, dz) = K(x, dy)PX,Z(dx,dz).

Fact A.4 (Conditional Independence and Markov Kernels [224, Definition 1.4.1, Theorem 3.5.5]).

Let K be a Markov kernel from (D,D) to (E,F). Then,

PX,Y,Z(dx, dy, dz) = K(x, dy)PX,Z(dx, dz) ⇒ Y ⊥⊥ Z | X.

A.2.2 GCMs

With the aim of making the definition of d-separation more intuitively accessible, we adopt the

terminology of self-activeness and activation, which is not part of the standard terminology ([204,

Definition 1.2.3, Section 11.1.2]).

Definition A.2 (d-separation [204, Definition 1.2.3, Section 11.1.2], [29]). Let G = 〈I,D,B〉 be a

directed mixed graph. Let {a}, {b}, S ⊂ I be distinct subsets.

• a and b are d-separated given S if and only if no path between a and b is active given S.2

2 “d” connotes “directional” in “d-separated”.
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• A path between a and b is active given S if and only if either (i) the path is self-active and S

does not deactivate it, or (ii) the path is self-inactive and S activates it.

• A path between a and b is self-active if and only if it contains no colliders.3 Otherwise, it is

said to be self-inactive.

• A self-active path is deactivated by S if and only if the path traverses S.

• A self-inactive path is activated by S if and only if each collider is either contained in S or

has a descendant in S, and no non-collider is contained in S.

For disjoint subsets A,B, S ⊂ I, we say A and B are d-separated given S if and only if all pairs

(a, b) ∈ A×B are d-separated given S, and we write

A⊥⊥GB | C.

Definition A.3 (Directed Global Markov Property [29, Definition A.6]). Let G = 〈I,D,B〉 be a

directed mixed graph and PZ be a probability distribution on Z =
∏
v∈I Zv, where each Zv is a

standard measurable space. We say that PZ satisfies the directed global Markov property relative

to G if for all subsets A,B,C ⊂ I we have

A⊥⊥GB | C ⇒ ZA ⊥⊥ ZB | ZC in PZ .

Definition A.4 (Directed Local Markov Property [160, p.50]). Let G = 〈I,D,B〉 be a directed

mixed graph and PZ be a probability distribution on Z =
∏
v∈I Zv, where each Zv is a standard

measurable space. We say that PZ satisfies the directed local Markov property relative to G if for

any v ∈ I we have

Zv ⊥⊥ Znon-desc(v) | Zpa(v) in PZ ,

We use the following equivalence to translate the results in Bongers et al. [29] to our context.

Proposition A.1 (Equivalence of Markov properties [160, Theorem 3.27], [224, Theorem 6.4.4]).

Let G = 〈V,E〉 be a DAG, and P be a probability distribution over X =
∏
v∈V Xv where each Xv is

a standard measurable space. Then, the following are equivalent:

(DF) P admits a recursive factorization according to G,

(DG) P satisfies the directed global Markov property relative to G,

(DL) P satisfies the directed local Markov property relative to G.

Proof. By Lauritzen et al. [158, Proposition 4], it is known that (DG) is equivalent to (DL). Thus,

it suffices to show that (DL) and (DF) are equivalent. We use mathematical induction on the

number of vertices |V | of G. If |V | = 1, both (DL) and (DF) are trivially true, and hence they

are equivalent. Assume that (DL) and (DF) are equivalent when |V | = n, and let us now consider

the case |V | = n + 1. Let v be a terminal vertex of G. For simplicity of notation, let us denote

w := V \ v.
We first show (DL) ⇒ (DF) for n + 1. (DL) implies Xv ⊥⊥ Xw | Xpa(v), and hence Fact A.3

implies

P (dxw,dxv) = K ′(xpa(v),dxv)Pw(dxw),

where K ′ is a Markov kernel from Xpa(v) to Xv that satisfies Pv∪pa(v)(dxpa(v),dxv) =

K ′(xpa(v),dxv)Ppa(v)(dxpa(v)), which is guaranteed to exist by the disintegration theorem (Fact A.2)

3 A node vi in a path ⟨. . . , ei−1, vi, ei, . . .⟩ is called a collider if ei−1 and ei have arrowheads at vi, i.e., (ei−1, ei) ∈
{(→,←), (→,↔), (↔,←), (↔,↔)}.
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and the fact that Xv is a standard measurable space, and Pw, Pv∪pa(v), Ppa(v) are the marginal dis-

tributions. Now, since (DL) holds for the pair (P,G) and v is a terminal node, Pw also obeys (DL)

with respect to the subgraph Gw. Thus, by |w| = n and the inductive assumption, Pw satisfies

(DF) with respect to Gw. Therefore, we have (DL) ⇒ (DF) for n+ 1.

Next, we show (DF) ⇒ (DL) for n+ 1. If (DF) holds for the pair (P,G), then Pw also satisfies

(DF) with respect to the subgraph Gw. Thus, by |w| = n and the inductive assumption, Pw satisfies

(DL) with respect to Gw. Now, (DF) also implies

P (dxw,dxv) = Kv(xpa(v),dxv)

(∏
w∈w

Kw(xpa(w),dxw)

)
(A.1)

for some Markov kernel Kv from Xpa(v) to Xv. By marginalizing out dxv from both sides (using the

fact that v is a terminal node), we obtain

Pw(dxw) =
∏
w∈w

Kw(xpa(w),dxw).

Thus, Fact A.4 applied to Equation (A.1) implies Xv ⊥⊥ Xw | Xpa(v). Therefore, we have (DF) ⇒
(DL) for n+ 1.

Remark A.1. Proposition A.1 is a straightforward generalization of Theorem 3.27 in Lauritzen

[160] that showed the same assertion under the assumption that P has a density with respect to

some product measure, to accommodate the measure-theoretical definition of probabilistic graphical

models as in Rønn-Nielsen and Hansen [224] and Wu et al. [298].

A.2.3 SCMs

To prove Proposition 2.2, we use the fact that an equivalent structurally minimal SCM exists. The

notions of equivalence and structural minimality are defined as follows.

Definition A.5 (Structural minimality; Bongers et al. [29]). An SCM M = 〈I,J ,Z,E,f ,PE〉 is
structurally minimal if and only if, for all v ∈ I, there exists a measurable map f̃ (v) : Zpa(v) ×
Epa(v) → Zv such that fv(z, e) = f̃ (v)(zpa(v), epa(v)) for all z ∈ Z, e ∈ E, where pa(·) is defined by

graph(M).

Definition A.6 (Equivalent SCMs; Bongers et al. [29]). Two SCMs M = 〈I,J ,Z,E,f ,PE〉 and
M̃ = 〈I,J ,Z,E, f̃ ,PE〉 are equivalent if and only if, for each v ∈ I,

zv = fv(z, e)⇔ zv = f̃v(z, e), ∀z ∈ Z,PE-a.s.(e)

holds,4 and we writeM' M̃.

We use the following Fact A.5 to prove Proposition 2.2.

Fact A.5 (Structurally minimal representation [29, Proposition 2.11]). For an SCM M =

〈I,J ,Z,E,f ,PE〉, there exists an equivalent SCM M̃ = 〈I,J ,Z,E, f̃ ,PE〉 that is structurally

minimal.

Lemma A.2 (Minimal SEs). LetM = 〈I,J ,Z,E,f ,PE〉 be an SCM. Then, there exist measurable

maps f̃ (v) : Zpa(v) × Epa(v) → Zv (v ∈ I) such that, for each v ∈ I,

zv = fv(z, e) ⇔ zv = f̃ (v)(zpa(v), epa(v)), ∀z ∈ Z,PE-a.s.(e)

4 Note that requiring the equivalence z = f(z, e) ⇔ z = f̃(z, e) for each v ∈ I is stronger than requiring the
whole set of equations to be equivalent, i.e., z = f(z, e)⇔ z = f̃(z, e).
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holds where pa(·) is defined by graph(M). In particular, any random variables (Z,E) satisfying

Zv = fv(Z,E) (a.s.) satisfies Zv = f̃ (v)(Zpa(v),Epa(v)) (a.s.).

Proof. Take the structurally minimal SCM M̃ = 〈I,J ,Z,E, f̃ ,PE〉 that is equivalent to M =

〈I,J ,Z,E,f ,PE〉 (Fact A.5). Then, for each v ∈ I, there exists a measurable map f̃ (v) : Zpa(v) ×
Epa(v) → Zv such that f̃v(z, e) = f̃ (v)(zpa(v), epa(v)) for all z ∈ Z, e ∈ E (Definition A.5). With

such {f̃ (v)}v∈I , for each v ∈ I, for all z ∈ Z and PE -almost every e,

zv = fv(z, e) ⇔ zv = f̃v(z, e) ⇔ zv = f̃ (v)(zpa(v), epa(v)). (A.2)

Let Ω¬ be a P-negligible set such that Zv(ω) = fv(Z(ω),E(ω)) (ω ∈ Ω \ Ω¬), and E¬ be

a PE -negligible set such that Equation (A.2) holds for any e ∈ E \ E¬ and any z ∈ Z.

Then Ω¬ ∪ E−1(E¬) is a P-negligible set, and for any ω ∈ Ω \ (Ω¬ ∪ E−1(E¬)), we have

Zv(ω) = f̃ (v)(Zpa(v)(ω),Epa(v)(ω)) (v ∈ I). That is, (Z,E) almost surely satisfies Zv =

f̃ (v)(Zpa(v),Epa(v)) (v ∈ I).

Proof of Proposition 2.2. As a result of Lemma A.2, there exist measurable maps {f̃ (v)}v∈I such

that for all z ∈ Z and PE -almost every e,

z = f(z, e) ⇔ zv = f̃ (v)(zpa(v), epa(v)) (v ∈ I).

Since graph(M) is a DAG and the elements of J have no parents, we can find a topological ordering

≺ such that all elements of J precede the elements of I, i.e., u1 ≺ · · · ≺ u|J | ≺ v1 ≺ · · · v|I|, where
{ul}|J |

l=1 and {vl}|I|l=1 are distinct elements of J and I, respectively. Now, we solve the equations

zv = f̃ (v)(zpa(v), epa(v)) (v ∈ I) (A.3)

for z by one-by-one eliminating v1, . . . , v|I| from the right-hand side. Since pa(v1) contains no

elements of I, we can eliminate zv1 from the right-hand side of Equation (A.3) by imputing

f̃ (v1)(zpa(v1), epa(u1)) into each occurrence of zv1 in f̃ (v2), . . . , f̃ (v|I|). By similarly eliminating the

endogenous variables from v2 to v|I| in an iterative manner, we obtain F satisfying

Equation (A.3) ⇒ z = F (e).

Since F is constructed by a finite composition of measurable maps, it is measurable. Therefore, for

all z ∈ Z and PE -almost every e, we have z = f(z, e) ⇒ z = F (e), and hence F is an RSF of

M.

A.2.4 Compatibility of SCMs and GCMs

Proof of Proposition 2.4. The proof here invokes Bongers et al. [29, Corollary 8.3, Proposition 3.4]

that showed the (DG) property (Definition A.3, Bongers et al. [29, Definition A.6]) of obsDist(·) with
respect to obsGraph(·) for acyclic models. To do so, we construct an SCMM′ := 〈I

∐
J ,J ′,Z ×

E,E ′,f ′,PE〉 where (J ′,E ′) is a copy of (J ,E), and f ′ : (Z × E) × E ′ → Z × E is defined by

f ′((z, e), e′) = (f(z, e), e′). It is easy to confirm thatM′ is acyclic. The following diagram shows

the proof outline.

M = 〈I,J ,Z,E,f ,PE〉 M′ = 〈I
∐
J ,J ′,Z × E,E ′,f ′,PE〉

M1 = 〈I,J ,Z,E,Ga,PZ,E〉
obsDist,obsGraph

dist,graph

Duplicate
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We first show that obsDist(M′) = dist(M) and obsGraph(M′) = graph(M) hold. First, the SE

ofM′ is

z = f(z, e), e = e′.

Thus, if (Z,E) is a solution of M, then ((Z,E),E′) with E′(·) = E(·) is a solution of M′.

Therefore, we have obsDist(M′) = PZ,E = dist(M). Next, in fact, graph(M′) is obtained from

graph(M) by adding J ′ as new nodes and adding directed edges from v′ ∈ J ′ to its corresponding

v ∈ J . This can be confirmed by Definition 2.3; if v ∈ I, then f ′v = fv, and hence the same set of

edges are drawn among I and J , and on the other hand, if v ∈ J , then f ′v is the projection map

to e′
v′

where v′ ∈ J ′ is the element corresponding v, and hence the edge (v′ → v) is drawn and

(u→ v) is not drawn for the other u 6= v′. Thus, all nodes in J ′ are root nodes in graph(M′), and

the rules in Definition 2.3 construct obsGraph(M′) by removing J ′ from graph(M′) (i.e., taking

the induced subgraph for the nodes in I
∐
J ). Therefore, we have obsGraph(M′) = graph(M).

Now, since M′ is acyclic, Bongers et al. [29, Corollary 8.3, Proposition 3.4] asserts that

obsDist(M′) satisfies the directed global Markov property (Definition A.3, Bongers et al. [29, Defini-

tion A.6]) with respect to obsGraph(M′). This, in turn, is equivalent to the recursive factorization

of obsDist(M′) according to obsGraph(M′) (Proposition A.1). Therefore, we have that dist(M) =

obsDist(M′) =: PZ,E recursively factorizes according to graph(M) = obsGraph(M′) =: Ga. Thus,

M1 is a Markovian GCM.

By definition, PZ is the marginal distribution of PZ,E . Since there is no directed edge pointing to

J in Ga by definition, the construction of G from Ga in Definition 2.3 follows the steps of Algorithm 1.

Therefore, we have G = πSGCM(Ga), and as a result, by definition, we haveM2 = πSGCM(M1).

Proof of Proposition 2.5. The proof is by induction on |I|. If |I| = 1, then do(A,a)(M) =

do(A,a)(M1) immediately follows from the definitions. Now suppose that the assertion of the

proposition holds for |I| = n. Under this inductive hypothesis, we show that the assertion holds in

the case of |I| = n+ 1.

The following diagram summarizes the proof outline.

SSCM

(I \ v,J ,ZI\v,E)
MGCM

(I \ v,J ,ZI\v,E)

M\v M\v
1

SSCM

(I,J ,Z,E)
M\v

do M\v
1,do

M M1

Mdo M1,do

SSCM

(I,J ,Z,E)
MGCM

(I,J ,Z,E)

do(A,a)

do(A\v,aA\v)

πMGCM

do(A\v,aA\v)

πMGCM

πMGCM

do(A,a)

πMGCM

remove\v

add
M1
v,A,a

addM
v,A,a

remove\v

∈∈

∈

∈ ∈

(A.4)
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FixM = 〈I,J ,Z,E,f ,PE〉 ∈ SSCM(I,J ,Z,E). Let v ∈ I be a terminal node in Ga (since Ga

is a DAG, there always exists a terminal node, and since J has no parents, there is one in I). Also

letM1 = πMGCM(M).

First, because |I \ v| = n, by the inductive hypothesis, the following diagram commutes.

SSCM(I \ v,J ,ZI\v,E) MGCM(I \ v,J ,ZI\v,E)

SSCM(I \ v,J ,ZI\v,E) MGCM(I \ v,J ,ZI\v,E)πMGCM

πMGCM

do(A\v,aA\v) do(A\v,aA\v)

That is,

πMGCM ◦ do(A \ v,aA\v) = do(A \ v,aA\v) ◦ πMGCM.

Next, we define two operators, remove\v and addMv,A,a, as follows. We first define remove\v as

an operator that removes v from the index set, the space of endogenous variables, and the SF, i.e.,

remove\v : 〈I,J ,Z,E,f ,PE〉︸ ︷︷ ︸
M

7→ 〈I \ v,J ,ZI\v,E, (f̃ (v
′))v′ ̸=v,PE〉︸ ︷︷ ︸

M\v

,

where f̃ (v) : Zpa(v) × Epa(v) → Zv (v ∈ I) are measurable maps obtained by applying Lemma A.2

to M, and we considered (f̃ (v
′))v′ ̸=v as a measurable map from ZI\v × E to ZI\v in the natural

way. On the other hand, we define addMv,A,a as an operator that adds v to the index set and Zv to

the space of endogenous variables, and also concatenates either f̃ (v) (if v 6∈ A) or av (otherwise) to

the SF, i.e., if v 6∈ A, we have

addMv,A,a : 〈I \ v,J ,ZI\v,E, (f̃ (v
′))v′ ̸=v,PE〉︸ ︷︷ ︸

M\v

7→ 〈I,J ,Z,E, (f̃ (v
′))v′∈I ,PE〉︸ ︷︷ ︸

≃ M

,

and otherwise av is concatenated to the SF. Then, since v is a terminal node, the following diagram

commutes (with a slight abuse of terminology):

M M\v

Mdo M\v
do

do(A,a)

addM
v,A,a

do(A\v,aA\v)

remove\v

in the sense that

do(A,a)(M) ' addMv,A,a ◦ do(A \ v,aA\v) ◦ remove\v(M).

Similarly, we define remove\v and addM1

v,A,a for GCMs as follows. remove\v is defined as an

operator that removes v from the index set, the space of endogenous variables, and the graph, and

marginalizes out v in the distribution, i.e.,

remove\v : 〈I,J ,Z,E,Ga,PZ,E〉︸ ︷︷ ︸
M1

7→ 〈I \ v,J ,ZI\v,E,GaI\v,marg\v(PZ,E)〉︸ ︷︷ ︸
M\v

1

,

where marg\v is an operator to marginalize out v. On the other hand, we define addM1

v,A,a as an

operator that adds v to the index set, the space of endogenous variables, and adds to v the graph

either with the edges pointing to v in Ga (if v 6∈ A) or without the edges (otherwise), and integrates
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(in the sense of Fact A.1) either the Markov kernel Kv(zpa(v),dzv) of M1 corresponding to v (if

v 6∈ A) or the Dirac measure δav (dzv) (otherwise), i.e., if v 6∈ A, we have

addM1

v,A,a : 〈I \ v,J ,ZI\v,E,GaI\v,marg\v(PZ,E)〉︸ ︷︷ ︸
M\v

1

7→ 〈I,J ,Z,E,Ga,PZ,E〉︸ ︷︷ ︸
M1

,

and otherwise δav (dzv) is integrated with the distribution. Then, since v is a terminal node, the

following diagram commutes (again, with a slight abuse of terminology):

M1 M\v
1

M1,do M\v
1,do

do(A,a)

remove\v

do(A\v,aA\v)

add
M1
v,A,a

in the sense that

do(A,a)(M1) = addM1

v,A,a ◦ do(A \ v,a
A\v) ◦ remove\v(M1).

The following diagram also commutes

M M\v

M1 M\v
1

πMGCM
πMGCM

remove\v

remove\v

in the sense that

πMGCM ◦ remove\v(M) = remove\v ◦ πMGCM(M),

because of the following consideration. First, we have dist(M\v
1 ) := dist(M\v) = marg\v(dist(M))

by considering that an RSF of M\v can be obtained by ignoring v in an RSF of M since v is a

terminal node. Second, we have that graph(M\v
1 ) = graph(M\v) is obtained by removing v from

graph(M) = graph(M1) since v is a terminal node.

Also, the following diagram commutes

Mdo M\v
do

M1,do M\v
1,do

πMGCM πMGCM

addM
v,A,a

add
M1
v,A,a

in the sense that

πMGCM ◦ addMv,A,a(M
\v
do) = addM1

v,A,a ◦ πMGCM(M\v
do),

because of the following. As for the graphs, since addMv,A,a only adds the SF corresponding to v, the

difference of graph(Mdo) from graph(M\v
do) is that v is added as a node and the edges are either

added from pa(v) to v (if v 6∈ A) or not added (otherwise). This relation matches the definition of

addM1

v,A,a. As for the distribution, first notice that any solution of Mdo = addMv,A,a(M
\v
do) satisfies,

depending on whether v ∈ A,

Zv = f̃ (v)(Zpa(v),Epa(v)) a.s., or Zv = av a.s., (A.5)
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and also

ZI\v = F\v(E) a.s., (A.6)

where F\v is an RSF ofM\v
do, since v is a terminal node. Therefore, letting

k(zpa(v), epa(v)) :=

{
f̃ (v)(zpa(v), epa(v)) if v 6∈ A,
av otherwise,

we obtain
dist(M1,do) = dist(Mdo) = δk(zpa(v),epa(v))(dz

v)marg\v(dist(Mdo))

= δk(zpa(v),epa(v))(dz
v)dist(M\v

do).

where the third equality follows from Equation (A.5) and Lemma A.1, and the fourth equality

follows from Equation (A.6). On the other hand, recall that addM1

v,A,a integrates the Markov kernel

corresponding to v inM1. The Markov kernel integrated by addM1

v,A,a is either δf̃(v)(zpa(v),epa(v)) or

δav , depending on whether v ∈ A, because of the following: since dist(M1) = dist(M) and any

solution (Z,E) of M almost surely satisfies Zv = f̃ (v)(Zpa(v),Epa(v)) (Lemma A.2), we have, in

light of Lemma A.1,

dist(M1) = dist(M) = δf̃(v)(zpa(v),epa(v))(dz
v)marg\v(dist(M))

= δf̃(v)(zpa(v),epa(v))(dz
v)marg\v(dist(M1)).

Therefore, dist(addM1

v,A,a(M
\v
1,do)) = dist ◦ addMv,A,a(M

\v
do).

Finally, by chasing the diagram (A.4), we can see

(πMGCM ◦ do(A,a))(M)

= (πMGCM ◦ (addMv,A,a ◦ do(A \ v,aA\v) ◦ remove\v))(M)

= ((addM1

v,A,a ◦ πMGCM) ◦ do(A \ v,aA\v) ◦ remove\v)(M)

= (addM1

v,A,a ◦ (do(A \ v,a
A\v) ◦ πMGCM) ◦ remove\v)(M)

= (addM1

v,A,a ◦ do(A \ v,a
A\v) ◦ (remove\v ◦ πMGCM))(M)

= (do(A,a) ◦ πMGCM)(M).
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Appendix B

Appendices for Chapter 3

Table B.1 summarizes the abbreviations and the symbols used in the chapter. For notation simplic-

ity, when Zj is a finite set, we identify it with Z/mZ where m is the cardinality of Zj , to justify

the subtractions inside the kernel functions.

B.1 Real-world Data Experiment Details

Here, we describe the implementation details of the experiment using the real-world data. The

experiment was implemented using the hydra package of Python [303]. All experiments were carried

out on a 2.60 GHz Intel® Xeon® CPUs with 132 GB memory.

Our experiment code can be found at https://github.com/takeshi-teshima/incorporating-cau

sal-graphical-prior-knowledge-into-predictive-modeling-via-simple-data-augmentation.

B.1.1 Data Set Details

The following are the data acquisition procedures, the sample sizes, the variable definitions, and the pre-

processing procedures used in our experiment. In all the data sets, after preprocessing as described below,

we independently normalized each variable as a final preprocessing step.

Sachs data [227]. This data set consists of continuous measurements from the flow cytometry of proteins

and phospholipids in human immune system cells. The consensus graph is provided in Sachs et al. [227]

based on the conventionally accepted cellular signaling networks (Figure 3.4(a)). Among the eight data sets

corresponding to different intervention conditions [227], we use the one that is observational, i.e., without

any interventions. The data set contains 853 observations of 11 variables, namely Raf, Mek, Plcg, PIP2,

PIP3, Erk, Akt, PKA, PKC, P38, and Jnk. Among these, for demonstration purposes, we considered PKA

as the target attribute. As preprocessing, we log-transformed Raf, Mek, and PKA.

GSS data [240]. This data set is concerning the status attainment theory in sociology. This data set is

originally part of the General Social Survey (GSS)1, and we used a subset of the data that was previously

used in the causal discovery literature [240]. The reference graph is based on domain knowledge of the status

attainment model ([66]; Figure 3.4(b)). The acquired data set consists of 1380 observations of 6 variables,

namely x1: father’s occupation level, x2: son’s income, x3: father’s education, x4: son’s occupation, x5:

son’s education, and x6: the number of siblings. We consider x4 as the target variable.

Boston Housing data [98]. This data set is concerning the house prices in Boston, and the objective

is to predict the prices of the house from its attributes. We acquired the data from https://github.com/a

dityatiwari13/Boston Dataset. The acquired data set consists of 506 observations of 13 variables, namely

1 https://gss.norc.org/

https://github.com/takeshi-teshima/incorporating-causal-graphical-prior-knowledge-into-predictive-modeling-via-simple-data-augmentation
https://github.com/takeshi-teshima/incorporating-causal-graphical-prior-knowledge-into-predictive-modeling-via-simple-data-augmentation
https://github.com/adityatiwari13/Boston_Dataset
https://github.com/adityatiwari13/Boston_Dataset
https://gss.norc.org/
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Table B.1: List of abbreviations and symbols used in the chapter.

Abbreviation / Symbol Meaning

CG/GCM Causal Graph / Graphical Causal Model
ADMG Acyclic Directed Mixed Graph
DAG/PAG Directed Acyclic Graph / Partial Ancestral Graph
MSE Mean Squared Error

R,R≥0,R>0,Z,N0,N Set of all reals, nonnegative reals, positive reals,
integers, nonnegative integers, and positive integers.

1[A] Indicator function, i.e., 1 if A holds true and 0 otherwise.
X ⊥⊥ Y | Z X and Y are conditionally independent given Z.∐

Disjoint union of sets.
diag((x1, . . . , xd)) Diagonal matrix with diagonal elements (x1, . . . , xd) (d ∈ N).
∥·∥ , ∥·∥∞, ∥·∥op, det Euclidean norm of a vector, the supremum norm of a function,

the operator norm and the determinant of a matrix.
⌊·⌋ ⌊a⌋ := max{z ∈ Z : z ≤ a} for a ∈ R.
δz Dirac’s delta function centered at z (e.g., [317, Section E.4.1]).
∆K (K − 1)-dimensional probability simplex [33, Example 2.5].
[N :M ], [N ] [N :M ] := {N,N + 1, . . . ,M} and [N ] := [1 : N ]

where N,M ∈ N and N ≤M .
xS xS := (xs1 , . . . , xs|S| ) where x = (x1, . . . , xn) is an n-dimensional

vector and S = {s1, . . . , s|S|} ⊂ [n] with s1 < · · · < s|S|.
[0] = ∅,R0 := {0} Conventions used in the chapter.

x∅ = 0, [N ]0 := {0}

d ∈ N Overall data dimensionality (with X and Y combined).

Z =
∏d

j=1 Zj Overall data space (without distinguishing X and Y ).

X =
∏

j∈[d]\j∗ Z
j

Input variable space and target variable space.

Y = Zj∗

p Joint probability density of Z := (Z1, . . . , Zd) taking values in Z.
Radm,q Rademacher complexity of a function class.
H ⊂ YX Hypothesis set.

ℓ : H×
(∏d

j=1 Z
j
)
→ R Loss function.

R(h) = E[ℓ(h,Z)] Risk functional for h ∈ H.

D = {Zi}ni=1 Independently and identically distributed sample from p.

G = ([d], D̂, B̂) Underlying ADMG for which p satisfies the topological ADMG

Ĝ = ([d],
ˆ̂
D,

ˆ̂
B) factorization and its estimator.

dis(·), pa(·),mp(j) District, parents, and Markov pillow of vertex j ∈ [d].

pj|mp(j), pj,mp(j), pmp(j) Conditional density of Z(j) given Zmp(j),

the joint density of (Z(j),Zmp(j)),

and the marginal density of Zmp(j).

Kj : Zmp(j) → R Kernel function (we define Kj := 1 if mp(j) = ∅).
Zi Zi = (Z1

i1
, . . . , Zd

id
) for i = (i1, . . . , id) ∈ [n]d.

Daug := {Zi}i∈[n]d Augmented data set.

Waug := {ŵi}i∈[n]d Instance weights on the augmented data set.

R̂emp, R̂aug Empirical risk and the proposed risk estimator.
Ω(h) Regularization term for h ∈ H.
λ ∈ [0, 1] Convex combination coefficient used in

(1− λ)R̂emp(h) + λR̂aug(h) + Ω(h).

Kj
j′ Component of the product kernel Kj for j′ ∈ mp(j).

θ Pruning threshold of the small weights in Algorithm 2.
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CRIM, ZN, INDUS, CHAS, NOX, RM, AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT, and MEDV. The

objective is to predict the value of prices of the house, i.e., MEDV, using the given features.

Auto MPG data [212]. This data set concerns the city-cycle fuel consumption in miles per gallon

(MPG). We acquired the data from https://archive.ics.uci.edu/ml/datasets/Auto+MPG. The acquired

data set consists of 398 observations of 9 variables, namely mpg, cylinders, displacement, horsepower, weight,

acceleration, model year, origin, and car name. Among these, we discard origin and car name, and we

consider mpg as the predicted variable.

White Wine data [52]. This data set is concerning the prediction of wine quality from its physicochem-

ical attributes. We acquired the data from https://archive.ics.uci.edu/ml/datasets/wine+quality.

The acquired data set consists of 4898 observations of 12 variables, namely fixed acidity, volatile acidity,

citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol,

and quality. Among the variables, we consider the quality variable as the target.

Red Wine data [52]. This data set is concerning the prediction of wine quality from its physicochemical

attributes. We acquired the data from https://archive.ics.uci.edu/ml/datasets/wine+quality. The

acquired data set consists of 1599 observations of 12 variables, namely fixed acidity, volatile acidity, citric

acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol, and

quality. Among these, we consider the quality variable as the target.

B.1.2 Predictor Model Details

For the implementation of the predictor model, we employed the xgboost library of Python [41]. See Chen

and Guestrin [41] for the optimization method and the other details.

B.1.3 Proposed Method Implementation Details

For continuous variables, we compute the kernel bandwidths as follows. We first specify the bandwidth

temperature γ > 0 as a hyper-parameter. Then we calculate the rule-of-thumb bandwidth hthumb
j for each

j ∈ [d] using the training data {Zj
i }

n
i=1. Finally, we set hj = γ · hthumb

j . In the experiment, we fix γ = 10−3

throughout all runs.

For the rule-of-thumb kernel bandwidth, we employed Silverman’s rule-of-thumb [250, pp.45–47,

Equations (3.28) and (3.30) therein] implemented in the statsmodels package of Python [207], namely,

hthumb =
(
4
3

)1/5
An−1/5 where A = min{σ̂, IQR/1.349}, σ̂ is the square root of the unbiased estimator of

the variance, and IQR is the interquantile range.

For the pruning threshold, we use θ = 10−3 · n−1.

B.1.4 Causal Discovery Method Configuration

We perform DirectLiNGAM [240] on the data sets to simulate a situation where we have access to domain

knowledge. As the independence measure used in the DirectLiNGAM framework, we employ the pairwise

likelihood ratio score [125] that is based on a nonparametric approximation to the mutual information.

B.1.5 Supplementary Figures

Figure B.1 shows the average improvement achieved by the proposed method relative to the baseline without

a device. The improvement in the small-data regime is consistently observed except in a few cases in the

Auto MPG and the Boston Housing data. In the Boston Housing data set, the performance loss may be

due to the failure of the CG estimation since the performance loss is magnified as the training set size is

increased. In the Auto MPG data, the performance degradation for the smallest training set fraction may

be due to the additional complexity and bias introduced by the kernel approximation.

https://archive.ics.uci.edu/ml/datasets/Auto+MPG
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
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Figure B.1: Average relative improvement in percentage. In all figures, the horizontal axis is the
varied sizes of the original training data before augmentation. The vertical axis is the relative MSE
improvement in percentage, i.e.,

MSEprop−MSEbase

MSEbase
×100 % where MSEbase and MSEprop are the MSE

of the baseline and that of the proposed method, respectively (the lower the better). The markers
and the lines indicate the average over the 20 independent runs, and the shades are drawn for the
width of the standard errors both above and below the lines. In most of the cases, the proposed
method shows a consistently improved performance compared to the baseline based on the empirical
risk minimization with the same hypothesis class, particularly in the small-data regime.

B.2 Synthetic-data Experiment Details

Here, we explain the implementation details of the synthetic-data experiment in Section 3.5.2. All experi-

ments were carried out on a 2.60 GHz Intel® Xeon® CPUs with 132 GB memory.

Data sets. We use three sets of CGs and conditional probability tables (CPDs) for generating the

synthetic data sets, namely sprinkler, asia, and sachs. The ground-truth CGs are shown in Figure B.2.

The data generation was implemented by using the bnlearn package of Python [266].

sprinkler data [266]. This data set consists of 4 variables, among which we considered the Rain variable

as the target variable to be predicted. The CPD for generating the data was the one implemented in the

bnlearn package [266].

asia data [159]. This data set consists of 8 variables, among which we considered the smoke variable

as the target variable to be predicted. The CPD for generating the data was acquired from https://erdo

gant.github.io/datasets/asia.zip.

sachs data [227]. This data set consists of 11 variables, among which we considered the PKA variable

as the target variable to be predicted. The CPD for generating the data was acquired from https://erdo

gant.github.io/datasets/sachs.zip.

Predictor model class. For the predictor model class, we employed the GBRTs [81, 41] using the

same configuration as the main experiment (Section 3.5) with the following hyper-parameter candidates: the

number of leaves was fixed as M = 64, the number of boosting rounds K was searched in {10, 50, 250, 1250},
and the ℓ2-regularization coefficient ρ in {10−1, 10−2, 10−3}.

https://erdogant.github.io/datasets/asia.zip
https://erdogant.github.io/datasets/asia.zip
https://erdogant.github.io/datasets/sachs.zip
https://erdogant.github.io/datasets/sachs.zip
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Figure B.2: Ground-truth CGs of the synthetic data sets used in our synthetic-data experiment:
(a) sprinkler data, (b) asia data, and (c) sachs data.

Implementation of the proposed method. Because the synthetic data sets are fully categorical,

i.e., Mj :=
∣∣∣Zj
∣∣∣ <∞, we implemented the proposed method in this experiment using the device described

in Section 3.3.4. The efficient implementation is derived by the following calculation:

p̂j|mp(j)(Z
j |Zmp(j)) =

∑n
i=1 1

[
Zj = Zj

i

]
1

[
Zmp(j) = Z

mp(j)
i

]
∑n

k=1 1

[
Zmp(j) = Z

mp(j)
k

]
=

∑Mj

r=1

∑
i:Z

j
i =r 1

[
Zj = Zj

i

]
1

[
Zmp(j) = Z

mp(j)
i

]
∑n

k=1 1

[
Zmp(j) = Z

mp(j)
k

]
=

∑Mj

r=1 1
[
Zj = r

] ∣∣∣{i : Zj
i = r,Zmp(j) = Z

mp(j)
i }

∣∣∣∣∣∣{k : Zmp(j) = Z
mp(j)
k }

∣∣∣
=

Mj∑
r=1

1

[
Zj = r

] m̂j(r,Z
mp(j))∑Mj

r′=1 m̂j(r′,Zmp(j))
,

where m̂j(r,Z
mp(j)) :=

∣∣∣{i : Zj
i = r,Z

mp(j)
i = Zmp(j)}

∣∣∣.
B.3 Details and Proof of the Theoretical Analysis

B.3.1 Notation and Problem Setup

Basic notation. Let R denote the set of real numbers, N that of positive integers, R>0 that of positive real

numbers, Z that of integers, and N0 that of non-negative integers. For (x1, . . . , xk) ∈ Rk, diag((x1, . . . , xk))

denotes the diagonal matrix whose diagonal elements are (x1, . . . , xk). For a vector, ‖·‖ denotes its Euclidean
norm. For a matrix, det denotes its determinant, and ‖·‖op its operator norm. For a function, ‖·‖∞ denotes

its supremum norm over a suitable set of inputs when the domain is clear from the context. For a finite set,

|·| denotes its cardinality.

Utility notation. For n ∈ N, define [n] := {1, 2, . . . , n}. For n,m ∈ N with n ≤ m, define [n : m] :=

{n, n + 1, . . . ,m}. For an n-dimensional vector x = (x1, . . . , xn) and S ⊂ [n], we let xS = (xs1,...,s|S|)

denote its sub-vector with indices in S = {s1, . . . , s|S|} with s1 < · · · < s|S|. Similarly, for j ∈ [n], we let

xj := x{j}. For S ⊂ [n], we also define ZS :=
∏

k∈S Zk. To simplify the notation, we use the convention

of R0 := {0}, x∅ = 0, and [n]j−1 = {0}.
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Distribution and sample. Let d ∈ N. In this theoretical analysis, we assume that Zj is a measurable

subset of R (j ∈ [d]). We consider a probability distribution over Z :=
∏d

j=1 Z
j , and let p denote its density

function (assuming it exists). We are given D = {Zi}ni=1, an independently and identically distributed

sample from p. Let E denote the expectation with respect to p. Additionally, we are given an ADMG

G = ([d], D̂, B̂). Let mp(j) ⊂ [d] denote the Markov pillow of j ∈ [d]. Throughout this section, we assume p

satisfies the topological ADMG factorization relation according to G [24]:

p(z) =

d∏
j=1

pj|mp(j)(z
j |zmp(j))

(
=

d∏
j=1

pj,mp(j)(z
j ,zmp(j))

pmp(j)(zmp(j))

)
.

Learning problem. Let H denote a hypothesis class, and let ℓ : H× Rd → R>0 be a loss function. To

simplify the notation, we define ℓh := ℓ(h, ·) and LH := {ℓh : f ∈ H}. For each h ∈ H, we define the risk

functional R(h) := E[ℓh(Z)]. The learning problem is to find a hypothesis ĥ ∈ H for which R is small, given

the training data D and the graph G.

Proposed method. For each j ∈ [d], we fix a kernel function Kj : R|mp(j)| → R. For notation simplicity,

we define Kj := 1 for j such that mp(j) = ∅. We also fix h = (h1, . . . ,hd) ∈ Rd
>0. Then, we define

Hj := diag(hmp(j)), Kj
H(u) :=

1

| detHj |
Kj(H−1

j u).

For i = (i1, . . . , id) and zmp(j) ∈ R|mp(j)|, define

ŵj
i (z

mp(j)) :=
Kj

H(zmp(j) −Z
mp(j)
i )∑n

i=1 K
j
H(zmp(j) −Z

mp(j)
i )

1

[
n∑

i=1

Kj
H(zmp(j) −Z

mp(j)
i ) 6= 0

]

where i = (i1, . . . , id), z
mp(j) ∈ R|mp(j)|. Then, we recursively define

ŵi1:0 = 1, ŵi1:j = ŵij |i1:j−1
· ŵi1:j−1 (j ∈ [d], i1:j−1 ∈ [n]j−1),

where

ŵij |i1:j−1
:= ŵj

ij

(
Z

mp(j)
i1:j−1

)
, Zi1:j−1 =

(
Z1

i1 , . . . , Z
j−1
ij−1

)
.

Here, we use the convention Z
mp(1)
i1:0

:= 0 to be consistent with the notation. Using this notation, for h ∈ H,
define the augmented empirical risk estimator

R̂aug(h) :=
∑

i∈[n]d

ŵiℓh(Zi).

Target of the theoretical analysis. We aim to provide a stochastic upper bound on R(ĥ)−R(h∗),

where

ĥ ∈ arg min
h∈H

{R̂aug(h)}, and h∗ ∈ arg min
h∈H

{R(h)},

assuming both exist.

Notation for stating the results. To state the main theorem, we use the following notation. For

each j ∈ [d] and h ∈ H, define

ℓh,j :


z1

...

zj

 7→ ∫
Z[j+1:d]

ℓh(z)

 d∏
k=j+1

pk|mp(k)(z
k|zmp(k))

dzj+1 · · · dzd.
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Also define

Lj
H :=

{
ℓh,j(z

1, . . . , zj−1, ·) : h ∈ H, (z1, . . . ,zj−1) ∈ Z [1:j−1]
}
,

Kj
H :=

{
Kj

H(zmp(j) − (·)) : zmp(j) ∈ Zmp(j)
}
.

For simplicity, throughout the theoretical analysis, we assume that all quantities appearing in the proof

satisfy sufficient measurability conditions.

B.3.2 Main Theorem

Here, we detail the assumptions, the statement, and a proof of Theorem 3.1.

Preliminaries. We use the following convenient multi-index notation (see, e.g., [258]).

Definition B.1 (Multi-index notation). For d ∈ N, we call a d-tuple α = (α1, . . . , αd) ∈ Nd
0 multi-index.

For a multi-index α, let |α| :=
∑d

j=1 αj and α! :=
∏d

j=1 αj !, and xα = xα1
1 · · ·x

αd
d for x = (x1, . . . , xd) ∈ Rd.

Also, let ∂α denote the partial differential operator defined by

∂α=
∂|α|

∂xα1
1 · · · ∂x

αd
d

.

Definition B.2 (Convolution). Let d ∈ N and Ω ⊂ Rd be a measurable subset. For continuous bounded

functions f, g : Ω→ R, we define a function (f ∗
[Ω]

g) : Ω→ R by

f ∗
[Ω]

g(x) :=

∫
Ω

f(x− y)g(y)dy.

When Ω = Rd, we drop Ω from the notation and denote f ∗ g.

We define the following class of functions.

Definition B.3 (Hölder class; [258, 275]). Let d ∈ N, β > 1, L > 0, and let Ω ⊂ Rd be an open subset. The

(β, L)-Hölder class Σ(β, L,Ω) is defined as the set of k = bβc-times continuously differentiable functions

f : Ω→ R satisfying

|∂αf(x)− ∂αf(x′)| ≤ L
∥∥x− x′∥∥β−k

for x, x′ ∈ Ω and |α| = k,

where α = (α1, . . . , αd) ∈ Nd
0 is a multi-index, and bac = max{z ∈ Z : z ≤ a} for a ∈ R. When Ω = Rd, we

also drop Rd from the notation and denote Σ(β, L) when the dimension is clear from the context.

Remark B.1. In the 1-dimensional case, a related analysis based on the notion of the Hölder class is presented

in Section 1.2.3 of Tsybakov [275].

For function classes, we quantify their complexities using the Rademacher complexity.

Definition B.4 (Rademacher complexity). Let q denote a probability distribution on some measurable space

X . For a function class F ⊂ RX , define

Radm,q(F) := EqEσ

[
sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

σif(Xi)

∣∣∣∣∣
]

where m ∈ N, {σi}mi=1 are independent uniform {±1}-valued random variables, and {Xi}mi=1
i.i.d.∼ q.

Assumptions. For simplicity, throughout this theoretical analysis, we assume that all quantities appear-

ing in the proof satisfy sufficient measurability conditions.

Assumption B.1 (Boundedness assumptions). We assume that the following hold:

• The loss function is bounded, i.e., Bℓ := suph∈H supZ∈Rd |ℓ(h,Z)| <∞.
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• K := {Kj}dj=1 are uniformly bounded from above, i.e., BK := max{
∥∥Kj

∥∥
∞ : j ∈ [d]} <∞.

• For each j ∈ [d], Zj ⊂ R is a compact subset. Let Bj :=
∫
Zj dz

j <∞.

• For all j ∈ [d], pmp(j) is bounded away from zero over Zmp(j). Define ϵmp(j) :=

infzmp(j)∈Zmp(j) pmp(j)(z
mp(j)).

• For each j ∈ [d], Kj is continuous and strictly positive.

We define

ϕKj ,Hj
:= sup

zmp(j)∈Zmp(j),

zmp(j)′∈R|mp(j)|\Zmp(j)

∣∣∣Kj
H(zmp(j) − zmp(j)′)

∣∣∣
= sup

zmp(j)∈H
−1
j

Zmp(j),

zmp(j)′∈H−1
j (R|mp(j)|\Zmp(j))

∣∣∣Kj(zmp(j) − zmp(j)′)
∣∣∣ | detHj |−1

and assume ϕKj ,Hj
<∞.

Remark B.2. Since Zmp(j) is compact and Kj is continuous, if we define

ϵKj (Hj) := |detHj |
(

inf
x,x′∈Zmp(j)

Kj
H(x− x′)

)
= inf

x,x′∈H−1
j Zmp(j)

Kj(x− x′),

this quantity is strictly positive under Assumption B.1.

From here, we fix β > 1 and L > 0.

Assumption B.2 (Smoothness assumptions). We assume that the following hold for all j ∈ [d]:

• pmp(j) has an extension p̌mp(j) ∈ Σ(β, L) such that

Ǐmp(j) :=

∫
R|mp(j)|\Zmp(j)

|p̌mp(j)(z
mp(j))|dzmp(j) <∞.

• For all zj ∈ Zj, pj,mp(j)(z
j , ·) has an extension p̌j,mp(j)(z

j , ·) ∈ Σ(β, L) such that Ǐj,mp(j) :=∫
Zj

(∫
R|mp(j)|\Zmp(j) |p̌j,mp(j)(z

j ,zmp(j))|dzmp(j)
)
dzj <∞.

• Kj is of order k = bβc, i.e.,∫
R|mp(j)|

Kj(u)du = 1,

∫
R|mp(j)|

Kj(u)uαdu = 0 (1 ≤ |α| ≤ k),

where α ∈ N|mp(j)|
0 is a multi-index, and Kj satisfies

∫
R|mp(j)| |Kj(u)| · ‖u‖β du <∞.

Remark B.3 (Existence of the smooth extensions). The smooth extensions in Assumption B.2 exist, for

example, if we consider a smooth density function p̌mp(j) on R|mp(j)| and regard its restriction to Zmp(j)

with appropriate scaling as pmp(j).

Statement. We prove the following theorem. Theorem 3.1 is obtained by changing δ to δ
2d

in the following

theorem, substituting ‖Hj‖op = maxj′∈mp(j) h
j′ , and defining the appropriate constants.

Theorem B.1 (Excess risk bound). Assume that Assumptions B.1 and B.2 hold. Let n ∈ N. For j ∈ [d],

define

CH := Bℓ

d∑
j=1

1

ϵmp(j)

(
Bj +

BK

ϵKj (Hj)

)
Φ(β, L,Kj) ‖Hj‖βop ,

Cp := Bℓ

d∑
j=1

ϕKj ,Hj

ϵmp(j)

(
Ǐj,mp(j) +

BK

ϵKj (Hj)
Ǐmp(j)

)
,

CK := max
j∈[d]

{
1

ϵKj (Hj)
,

BK

(ϵKj (Hj))2

}
, RH,K :=

d∑
j=1

|detHj |Radn,p

(
Lj

H ⊗K
j
H

)
,

RK :=

d∑
j=1

|detHj |Radn,p(Kj
H).
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Then, for any δ ∈ (0, 1), we have with probability at least 1− 2dδ,

R(ĥ)−R(h∗) ≤ 2(CH + Cp) + 4CK(RH,K +BℓRK) + 2DBℓBKCK

√
log(2/δ)

2n
.

Proof. Our proof derives ideas from the literature on local empirical processes and kernel-type estimators,

namely Einmahl and Mason [69, 70] and Dony et al. [64]. Two elementary calculations are essential in

the proof. The first one handles a difference between two products: let N ∈ N, (a1, . . . , aN ) ∈ RN , and

(b1, . . . , bN ) ∈ RN , then, (
N∏

j=1

ai

)
−

(
N∏

j=1

bi

)
=

N∑
j=1

a1 · · · aj−1(aj − bj)bj+1 · · · bN . (B.1)

The second one bounds a difference between two ratios from above: for A,B,C,D ∈ R with B,D 6= 0,∣∣∣∣AB − C

D

∣∣∣∣ = ∣∣∣∣AB − C

B
+

C

B
− C

D

∣∣∣∣ ≤ ∣∣∣∣ 1B
∣∣∣∣ · |A− C|+

∣∣∣∣ C

BD

∣∣∣∣ · |B −D|. (B.2)

Proof of Theorem B.1. First, note

R(ĥ)−R(h∗) = R(ĥ)− R̂aug(ĥ) + R̂aug(ĥ)−R(h∗)

≤ R(ĥ)− R̂aug(ĥ) + R̂aug(h
∗)−R(h∗) ≤ 2 sup

h∈H
|R(h)− R̂aug(h)|︸ ︷︷ ︸

(*)

.

For ease of notation, define p̂j(z
j |zmp(j)) =

∑n
i=1 δZj

i
(zj)ŵj

i (z
mp(j)) and temporarily denote pk := pk|mp(k).

With this notation,

R̂aug(h) =

∫
Z
ℓh(z)

d∏
j=1

p̂j(z
j |zmp(j))dz.

Then, applying the argument of Equation (B.1), we have

(*) = sup
h∈H

∣∣∣∣∣∣
∫
Z

ℓh(z)
d∏

j=1

pj(z
j |zmp(j)

)dz −
∫
Z

ℓh(z)
d∏

j=1

p̂j(z
j |zmp(j)

)dz

∣∣∣∣∣∣
= sup

h∈H

∣∣∣∣∣∣
∫
Z

ℓh(z)
d∑

j=1

 d∏
k=j+1

pk(z
k|zmp(k)

)

 (pj(z
j |zmp(j)

) − p̂j(z
j |zmp(j)

))

j−1∏
k=1

p̂k(z
k|zmp(k)

)

 dz

∣∣∣∣∣∣
≤

d∑
j=1

sup
h∈H

∣∣∣∣∣∣
∫
Z

ℓh(z)

 d∏
k=j+1

pk(z
k|zmp(k)

)

 (pj(z
j |zmp(j)

) − p̂j(z
j |zmp(j)

))

j−1∏
k=1

p̂k(z
k|zmp(k)

)

 dz

∣∣∣∣∣∣︸ ︷︷ ︸
(*j)

.

Now, for h ∈ H and j ∈ [d], we define ℓ
i1:j−1

h,j : zj 7→ ℓh,j(Zi1:j−1 ,z
j). Then, for each j ∈ [D], applying

Lemma B.5, we obtain

(*j)

= sup
h∈H

∣∣∣∣∣∣∣
n∑

i1=1

· · ·
n∑

ij−1=1

∫
Zj

ℓ
i1:j−1
h,j

(z
j
)pj(z

j |Zmp(j)
i1:j−1

)dz
j −

n∑
ij=1

ℓ
i1:j−1
h,j

(Z
j
ij

)ŵij |i1:j−1

 ŵij−1|i1:j−2
· · · ŵ1

i1

∣∣∣∣∣∣∣
≤ 1 ·

 sup
h∈H

max
i1:j−1∈[n]j−1

∣∣∣∣∣∣∣
∫
Zj

ℓ
i1:j−1
h,j

(z
j
)pj(z

j |Zmp(j)
i1:j−1

)dz
j −

n∑
ij=1

ℓ
i1:j−1
h,j

(Z
j
ij

)ŵ
j
ij

(Z
mp(j)
i1:j−1

)

∣∣∣∣∣∣∣


≤ max
i1:j−1∈[n]j−1

sup
h∈H

sup

zmp(j)∈Zmp(j)

∣∣∣∣∣∣∣
∫
Zj

ℓ
i1:j−1
h,j

(z
j
)pj(z

j |zmp(j)
)dz

j −
n∑

ij=1

ℓ
i1:j−1
h,j

(Z
j
ij

)ŵ
j
ij

(z
mp(j)

)

∣∣∣∣∣∣∣
≤ sup

ℓ′
h,j

∈Lj
H

sup

zmp(j)∈Zmp(j)

∣∣∣∣∣∣∣
∫
Zj

ℓ
′
h,j(z

j
)pj(z

j |zmp(j)
)dz

j −
n∑

ij=1

ℓ
′
h,j(Z

j
ij

)ŵ
j
ij

(z
mp(j)

)

∣∣∣∣∣∣∣︸ ︷︷ ︸
(**)

,
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where we used that
{
Z

mp(j)
i1:j−1

}
i1:j−1∈[n]j−1

⊂ Zmp(j) that follows from
{
Z

mp(j)
i

}n

i=1
⊂ Zmp(j). Define

rj(f, zmp(j)) :=

∫
Zj

f(zj)pj,mp(j)(z
j ,zmp(j))dzj ,

r̂j(f, zmp(j)) :=
1

n

n∑
i=1

f(Zj
i )K

j
H(zmp(j) −Z

mp(j)
i ),

gj(zmp(j)) := pmp(j)(z
mp(j)),

ĝj(zmp(j)) :=
1

n

n∑
i=1

Kj
H(zmp(j) −Z

mp(j)
i ).

Then, for each ℓ′h,j ∈ Lj
H and zmp(j) ∈ Zmp(j),

(**) =

∣∣∣∣∣rj(ℓ′h,j ,zmp(j))

gj(zmp(j))
−

r̂j(ℓ′h,j ,z
mp(j))

ĝj(zmp(j))

∣∣∣∣∣
≤

∣∣∣∣∣rj(ℓ′h,j ,zmp(j))

gj(zmp(j))
−

Er̂j(ℓ′h,j ,zmp(j))

Eĝj(zmp(j))

∣∣∣∣∣︸ ︷︷ ︸
ρ1

+

∣∣∣∣∣Er̂j(ℓ′h,j ,zmp(j))

Eĝj(zmp(j))
−

r̂j(ℓ′h,j ,z
mp(j))

ĝj(zmp(j))

∣∣∣∣∣︸ ︷︷ ︸
ρ2

.

By applying the argument of Equation (B.2), we can bound each ratio difference term as

ρ1 ≤

∣∣∣∣∣ 1

gj(zmp(j))

∣∣∣∣∣ · |rj(ℓ′h,j, z
mp(j)

) − Er̂j(ℓ′h,j, z
mp(j)

)| +

∣∣∣∣∣∣
Er̂j(zmp(j))

gj(zmp(j))Eĝj(zmp(j))

∣∣∣∣∣∣ · |gj(zmp(j)
) − Eĝj(zmp(j)

)|

ρ2 ≤

∣∣∣∣∣ 1

Eĝj(zmp(j))

∣∣∣∣∣ · |Er̂j(ℓ′h,j, z
mp(j)

) − r̂
j
(ℓ

′
h,j, z

mp(j)
)| +

∣∣∣∣∣∣
r̂j(zmp(j))

Eĝj(zmp(j))ĝj(zmp(j))

∣∣∣∣∣∣ · |Eĝj(zmp(j)
) − ĝ

j
(z

mp(j)
)|.

Applying Lemma B.1 to the coefficients, Lemma B.2 to the deterministic difference terms bounding ρ1,

Lemma B.3 to the stochastic difference terms bounding ρ2 along with the union bound, for any δ ∈ (0, 1),

we have with probability at least 1− 2Dδ,

R(ĥ)−R(h∗)

≤ 2

d∑
j=1

(
1

ϵmp(j)

(
BℓBjΦ(β, L,K

j) ‖Hj‖βop +BℓϕKj ,Hj
Ǐj,mp(j)

)
+

1

ϵmp(j)

· BℓBK

ϵKj (Hj)

(
Φ(β, L,Kj) ‖Hj‖βop + ϕKj ,Hj

Ǐmp(j)

)
+
|detHj |
ϵKj (Hj)

(
2Radn,p

(
Lj

H ⊗K
j
H

)
+

BℓBK

|detHj |

√
log(2/δ)

2n

)

+
|detHj |
ϵKj (Hj)

· BℓBK

ϵKj (Hj)

(
2Radn,p(Kj

H) +
BK

|detHj |

√
log(2/δ)

2n

))
.

By reorganizing the terms, we obtain the assertion.

Lemmas. Here, we prove the lemmas used in the proof of Theorem B.1.

Lemma B.1 (Bounded coefficients). Assume Assumption B.1 holds. Let j ∈ [d]. Then,

sup
zmp(j)∈Zmp(j)

∣∣∣∣ 1

gj(zmp(j))

∣∣∣∣ ≤ 1

ϵmp(j)

, sup
ℓ′
h,j

∈Lj
H

sup
zmp(j)∈Zmp(j)

∣∣∣∣∣Er̂
j(ℓ′h,j ,z

mp(j))

Eĝj(zmp(j))

∣∣∣∣∣ ≤ BℓBK

ϵKj (Hj)
,

sup
zmp(j)∈Zmp(j)

∣∣∣∣ 1

Eĝj(zmp(j))

∣∣∣∣ ≤ |detHj |
ϵKj (Hj)

, sup
ℓ′
h,j

∈Lj
H

sup
zmp(j)∈Zmp(j)

∣∣∣∣∣ r̂
j(ℓ′h,j ,z

mp(j))

ĝj(zmp(j))

∣∣∣∣∣ ≤ BℓBK

ϵKj (Hj)
.



B.3. Details and Proof of the Theoretical Analysis 117

Proof. By Assumption B.1, we have

sup
zmp(j)∈Zmp(j)

∣∣∣∣ 1

gj(zmp(j))

∣∣∣∣ = 1

infzmp(j)∈Zmp(j) pmp(j)(zmp(j))
≤ 1

ϵmp(j)

.

Also,

sup
zmp(j)∈Zmp(j)

∣∣∣∣ 1

Eĝj(zmp(j))

∣∣∣∣
≤ 1

infzmp(j)∈Zmp(j) |Eĝj(zmp(j))|

=
1

infzmp(j)∈Zmp(j)

∣∣∫
Zmp(j) K

j
H(zmp(j) − zmp(j)′)gj(zmp(j)′)dzmp(j)′

∣∣
=

1

infzmp(j)∈Zmp(j)

∫
Zmp(j) K

j
H(zmp(j) − zmp(j)′)gj(zmp(j)′)dzmp(j)′

≤ 1

| detHj |−1ϵKj (Hj)
∫
Zmp(j) gj(zmp(j)′)dzmp(j)′

=
|detHj |
ϵKj (Hj)

,

where we used the positivity of the integrand. Now,

sup
ℓ′
h,j

∈Lj
H

sup
zmp(j)∈Zmp(j)

∣∣∣∣∣Er̂j(ℓ′h,j ,zmp(j))

Eĝj(zmp(j))

∣∣∣∣∣
= sup

ℓ′
h,j

∈Lj
H

sup
zmp(j)∈Zmp(j)

∣∣∣∣∣ |detHj |Er̂j(ℓ′h,j ,zmp(j))

|detHj |Eĝj(zmp(j))

∣∣∣∣∣
≤

sup
ℓ′
h,j

∈Lj
H
supzmp(j)∈Zmp(j)

∥∥ℓ′h,j∥∥∞ · ∥∥(|detHj |Kj
H

)∥∥
∞

infzmp(j)∈Zmp(j) |detHj | |Eĝj(zmp(j))|
≤ BℓBK

ϵKj (Hj)
.

Similarly, we have infzmp(j)∈Zmp(j) |detHj | ·
∣∣∣ĝj(zmp(j))

∣∣∣ ≥ ϵKj (Hj). Therefore,

sup
ℓ′
h,j

∈Lj
H

sup
zmp(j)∈Zmp(j)

∣∣∣∣∣ r̂j(ℓ′h,j ,zmp(j))

ĝj(zmp(j))

∣∣∣∣∣
= sup

ℓ′
h,j

∈Lj
H

sup
zmp(j)∈Zmp(j)

∣∣∣∣∣ |detHj | r̂j(ℓ′h,j ,zmp(j))

|detHj | ĝj(zmp(j))

∣∣∣∣∣
≤

sup
ℓ′
h,j

∈Lj
H
supzmp(j)∈Zmp(j) |detHj | ·

∣∣∣r̂j(ℓ′h,j ,zmp(j))
∣∣∣

infzmp(j)∈Zmp(j) |detHj | · |ĝj(zmp(j))|
≤ BℓBK

ϵKj (Hj)
.

Lemma B.2 (Deterministic terms). Assume that Assumptions B.1 and B.2 hold. Let j ∈ [d]. Then,

sup

ℓ′
h,j

∈Lj
H

sup

zmp(j)∈Zmp(j)
|rj(ℓ′h,j, z

mp(j)
) − Er̂j(ℓ′h,j, z

mp(j)
)| ≤ BℓBjΦ(β, L,K

j
)
∥∥∥Hj

∥∥∥β
op

+ BℓϕKj,Hj
Ǐj,mp(j),

sup

zmp(j)∈Zmp(j)
|gj(zmp(j)

) − Eĝj(zmp(j)
)| ≤ Φ(β, L,K

j
)
∥∥∥Hj

∥∥∥β
op

+ ϕ
Kj,Hj

Ǐmp(j).
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Proof. By applying Lemma B.4 under Assumption B.2,

sup
zmp(j)∈Zmp(j)

|gj(zmp(j))− Eĝj(zmp(j))|

= sup
zmp(j)∈Zmp(j)

∣∣∣∣pmp(j)(z
mp(j))−

∫
Zmp(j)

Kj
H(zmp(j) − zmp(j)′)pmp(j)(z

mp(j)′)dzmp(j)′
∣∣∣∣

= sup
zmp(j)∈Zmp(j)

∣∣∣∣p̌mp(j)(z
mp(j))−

∫
Zmp(j)

Kj
H(zmp(j) − zmp(j)′)p̌mp(j)(z

mp(j)′)dzmp(j)′
∣∣∣∣

≤ sup
zmp(j)∈Zmp(j)

∣∣∣p̌mp(j)(z
mp(j))−

(
Kj

H ∗ p̌mp(j)

)
(zmp(j))

∣∣∣
+ sup

zmp(j)∈Zmp(j)

∣∣∣∣∣
∫
R|mp(j)|\Zmp(j)

Kj
H(zmp(j) − zmp(j)′)p̌mp(j)(z

mp(j)′)dzmp(j)′
∣∣∣∣∣

≤ Φ(β, L,Kj) ∥Hj∥βop + ϕKj ,Hj
Ǐmp(j).

Similarly, for each ℓ′h,j ∈ Lj
H and zmp(j) ∈ Zmp(j),

|rj(ℓ′h,j , z
mp(j)

) − Er̂j(ℓ′h,j , z
mp(j)

)|

=

∣∣∣∣∫
Zj

ℓ
′
h,j(z

j
)pj,mp(j)(z

j
, z

mp(j)
)dz

j

−
∫
Zj

ℓ
′
h,j(z

j
)

(∫
Zmp(j)

K
j
H(z

mp(j) − zmp(j)′
)pj,mp(j)(z

j
, z

mp(j)′
)dz

mp(j)′
)

dz
j

∣∣∣∣
=

∣∣∣∣∫
Zj

ℓ
′
h,j(z

j
)p̌j,mp(j)(z

j
, z

mp(j)
)dz

j

−
∫
Zj

ℓ
′
h,j(z

j
)

(∫
Zmp(j)

K
j
H(z

mp(j) − zmp(j)′
)p̌j,mp(j)(z

j
, z

mp(j)′
)dz

mp(j)′
)

dz
j

∣∣∣∣
≤
∣∣∣∣∫

Zj
ℓ
′
h,j(z

j
)
(
p̌j,mp(j)(z

j
, z

mp(j)
) − (K

j
H ∗ p̌j,mp(j)(z

j
, ·))(zmp(j)

)
)
dz

j

∣∣∣∣
+

∣∣∣∣∣
∫
Zj

ℓ
′
h,j(z

j
)

(∫
R|mp(j)|\Zmp(j)

K
j
H(z

mp(j) − zmp(j)′
)p̌j,mp(j)(z

j
, z

mp(j)′
)dz

mp(j)′
)

dz
j

∣∣∣∣∣
≤ Bℓ

∫
Zj

∣∣∣p̌j,mp(j)(z
j
, z

mp(j)
) − (K

j
H ∗ p̌j,mp(j)(z

j
, ·))(zmp(j)

)
∣∣∣ dzj

+ BℓϕKj,Hj
Ǐj,mp(j)

≤ BℓBj sup
zj∈Zj

∣∣∣p̌j,mp(j)(z
j
, z

mp(j)
) − (K

j
H ∗ p̌j,mp(j)(z

j
, ·))(zmp(j)

)
∣∣∣+ BℓϕKj,Hj

Ǐj,mp(j)

≤ BℓBj sup
zj∈Zj

sup
zmp(j)∈Zmp(j)

∣∣∣p̌j,mp(j)(z
j
, z

mp(j)
) − (K

j
H ∗ p̌j,mp(j)(z

j
, ·))(zmp(j)

)
∣∣∣

+ BℓϕKj,Hj
Ǐj,mp(j).

Applying Lemma B.4 under Assumption B.2, for each zj ∈ Zj , we obtain

sup
zmp(j)∈Zmp(j)

∣∣∣p̌j,mp(j)(z
j ,zmp(j))− (Kj

H ∗ p̌j,mp(j)(z
j , ·))(zmp(j))

∣∣∣ ≤ Φ(β, L,Kj) ∥Hj∥βop .

Therefore, we have the assertion.

Lemma B.3 (Probabilistic terms). Assume that Assumption B.1 holds. Let j ∈ [d]. For any δ ∈ (0, 1),

with probability at least 1− δ, we have

sup
ℓ′
h,j

∈Lj
H

sup
zmp(j)∈Zmp(j)

|Er̂j(ℓ′h,j ,zmp(j))− r̂j(ℓ′h,j ,z
mp(j))|

≤ 2Radn,p

(
Lj

H ⊗K
j
H

)
+

BℓBK

|detHj |

√
log(2/δ)

2n
.

Similarly, for any δ ∈ (0, 1), with probability at least 1− δ, we have

sup
zmp(j)∈Zmp(j)

|Eĝj(zmp(j))− ĝj(zmp(j))| ≤ 2Radn,p(Kj
H) +

BK

|detHj |

√
log(2/δ)

2n
.
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Proof. Note

sup
ℓ′
h,j

∈Lj
H

sup
zmp(j)∈Zmp(j)

|Er̂j(ℓ′h,j ,zmp(j))− r̂j(ℓ′h,j ,z
mp(j))|

= sup
ℓ′
h,j

∈Lj
H

sup
k∈Kj

H

∣∣∣∣∣ 1n
n∑

i=1

ℓ′h,j(Z
j
i )k(Z

mp(j)
i )− E

[
1

n

n∑
i=1

ℓ′h,j(Z
j
i )k(Z

mp(j)
i )

]∣∣∣∣∣
and

sup
zmp(j)∈Zmp(j)

|Eĝj(zmp(j))− ĝj(zmp(j))| = sup
k∈Kj

H

∣∣∣∣∣ 1n
n∑

i=1

k(Z
mp(j)
i )− E

[
1

n

n∑
i=1

k(Z
mp(j)
i )

]∣∣∣∣∣ .
Now, applying Fact B.3 to these expressions, we obtain the assertions of the lemma.

Facts. Here, we state some facts used in the proof of Theorem B.1. The following is Taylor’s formula

with the integral form of the remainder, stated using the multi-index notation.

Fact B.1 (Taylor’s theorem; [317], Section 8.4.4). Let Ω ⊂ Rn be an open subset. Let n ∈ N, and let

f : Ω → R be k-times continuously differentiable. Then, for any x, u ∈ Ω such that x + tu ∈ Ω for all

t ∈ [0, 1], the following equality holds:

f(x+ u)− f(x) =
∑

1≤|α|<k

∂αf(x)

α!
uα +

∑
|α|=k

|α|
α!

uα

∫ 1

0

(1− t)|α|−1∂αf(x+ tu)dt.

The following elementary inequality is easily proved by using the strict convexity and the strict mono-

tonicity of the logarithm function.

Fact B.2 (Weighted AM-GM inequality). Let n ∈ N, x1, . . . , xn ≥ 0, and w1, . . . , wn ≥ 0. Define w :=

w1 + · · ·+ wn and assume w > 0. Then,

w1x1 + · · ·+ wnxn

w
≥ (xw1

1 · · ·x
wn
n )

1
w .

The following standard Rademacher complexity bound is essentially due to McDiarmid’s inequality,

which is applied twice with the union bound [184, Theorem 3.3].

Fact B.3 (Rademacher complexity bound; Theorem 3.3 in [184]). Let B > 0 and m ∈ N. Let G be a family

of functions mapping from Z to [0, B], and let z be a Z-valued random variable. Then, for any δ > 0, with

probability at least 1 − δ over the draw of an independent and identically distributed sample {zi}mi=1
i.i.d.∼ z,

the following holds:

sup
g∈G

∣∣∣∣∣ 1m
m∑
i=1

g(zi)− E[g(z)]

∣∣∣∣∣ ≤ 2Radm,p(G) +B

√
log(2/δ)

2m
.

Basic Lemmas. Here, we prove the basic lemmas used in the proof of Theorem B.1.

Lemma B.4 (Convolution error bound for Hölder class). Let d ∈ N, β > 1, and L > 0. Assume that the

kernel function K : Rd → R is of order k = bβc and satisfies∫
Rd

|K(u)| · ‖u‖βdu <∞.

Let H = diag(h1, . . . , hd) with h1, . . . , hd > 0, and define KH(u) := 1
| detH|K(H−1u). Then, for any

f ∈ Σ(β, L), the following holds:

sup
x∈Rd

|f(x)− (KH ∗ f) (x)| ≤ Φ(β, L,K) ‖H‖βop ,
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where Φ(β, L,K) is defined as

Φ(β, L,K) := L

(∫ 1

0

(1− t)k−1tβ−kdt

) ∑
|α|=k

‖α‖k

α!kk−1

∫
Rd

|K(u)| · ‖u‖βdu

and α ∈ Nd
0 runs over multi-indices.

Proof. First, we fix x ∈ Rd. We apply the change of variables formula and obtain

|f(x)− (KH ∗ f)(x)| =
∣∣∣∣f(x)− ∫

Rd

K(u)f(x−Hu)du

∣∣∣∣ . (*)

We apply Fact B.1 to obtain

(*) =

∣∣∣∣f(x)− ∫
Rd

K(u)

(
f(x) +

∑
1≤|α|<k

∂αf(x)

α!
(−Hu)α

+
∑
|α|=k

|α|
α!

(−Hu)α
∫ 1

0

(1− t)|α|−1∂αf(x+ t(−Hu))dt

)
du

∣∣∣∣
=

∣∣∣∣∣∣
∫
Rd

K(u)

∑
|α|=k

|α|
α!

(−Hu)α
∫ 1

0

(1− t)|α|−1∂αf(x− tHu)dt

du

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
Rd

K(u)

∑
|α|=k

|α|
α!

(−Hu)α
∫ 1

0

(1− t)|α|−1(∂αf(x− tHu)− ∂αf(x))dt

du

∣∣∣∣∣∣
≤
∫
Rd

|K(u)|

∑
|α|=k

|α|
α!
|Hu|α

∫ 1

0

(1− t)|α|−1|∂αf(x− tHu)− ∂αf(x)|dt

du, (**)

where α = (α1, . . . , αd) is a multi-index and |Hu|α := |h1u1|α1 · · · |hdud|αd . Now, by the Hölder-condition
of ∂αf , we have |∂αf(x− tHu)− ∂αf(x)| ≤ L ‖tHu‖β−k. Also, by applying Fact B.2, we have

|Hu|α = |h1u1|α1 · · · |hdud|αd ≤

 1

|α|

d∑
j=1

αj |hjuj |

|α|

≤
(

1

|α|
∥α∥ · ∥hu∥

)|α|
=
∥α∥k

kk
∥hu∥k .

By applying these inequalities and imputing |α| = k, we obtain

(**) ≤
∫
Rd

|K(u)|

∑
|α|=k

‖α‖k

α!kk−1
‖Hu‖k

∫ 1

0

(1− t)k−1L ‖tHu‖β−k dt

du

= L

(∫ 1

0

(1− t)k−1tβ−kdt

) ∑
|α|=k

‖α‖k

α!kk−1

∫
Rd

|K(u)| · ‖Hu‖β du.

Finally, applying ‖Hu‖ ≤ ‖H‖op ‖u‖, we have the assertion.

Lemma B.5 (Bounded weights). For all j ∈ [d],

n∑
i1=1

· · ·
n∑

ij=1

ŵij |i1:j−1
· · · ŵ1

i1 ∈ {0, 1}.

Proof. By direct computation, we have for any zmp(j) ∈ Zmp(j),

n∑
i=1

ŵj
i (z

mp(j)) =


∑n

i=1
1
n

if mp(j) = ∅,∑n
i=1 0 if Kj

H(zmp(j) −Z
mp(j)
i ) = 0, ∀i,∑n

i=1

K
j
H

(zmp(j)−Z
mp(j)
i )∑n

i=1 K
j
H

(zmp(j)−Z
mp(j)
i )

otherwise,

∈ {0, 1}.
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For j = 1, since mp(1) = ∅, we can directly show the assertion as

n∑
i1=1

ŵ1
i1 =

n∑
i1=1

1

n
= 1.

For j ≥ 2,

n∑
i1=1

· · ·
n∑

ij=1

ŵij |i1:j−1
· · · ŵ1

i1 =

n∑
i1=1

· · ·
n∑

ij−1=1

ŵij−1|i1:j−2
· · · ŵ1

i1

 n∑
ij=1

ŵij |i1:j−1


∈

0,

 n∑
i1=1

· · ·
n∑

ij−1=1

ŵij−1|i1:j−2
· · · ŵ1

i1

 .

By recursively applying the above argument for a finite number of times, we obtain the assertion for all

j ∈ [d].

B.3.3 Comparison of Complexity Measures

Here, we formally demonstrate the complexity reduction effect explained in Section 3.4. More concretely, as

an example in which the effect can be demonstrated, we take the example represented by Assumption B.3

where the Lipschitz continuity of the functions are assumed and compare the upper bounds on the complexity

terms appearing in the generalization error bound of the usual empirical risk minimization (ERM) and those

in Theorem 3.1 (namely RH,K and RK).

The complexity reduction effect in this example is demonstrated by the different dependencies of the

upper bounds on the sample size, both derived based on the metric-entropy method; the one corresponding

to ERM yields a bound of order O(n−1/(2+D)) whereas the one for the proposed method yields O(n−1/3).

Although the comparison between the two upper bounds only provides circumstantial evidence, we believe

that the reduced exponent demonstrates the complexity reduction effect as they are derived based on the

same proof technique.

First, recall that the proposed method enjoys Theorem B.1 which states, for any δ ∈ (0, 1), we have with

probability at least 1− 2dδ,

R(ĥ)−R(h∗) ≤ 2(CH + Cp) + 4CK(RH,K +BℓRK)︸ ︷︷ ︸
Complexity terms

+2DBℓBKCK

√
log(2/δ)

2n
.

On the other hand, the usual empirical risk minimization algorithm enjoys the following theoretical

guarantee. Recall R̂emp(h) :=
1
n

∑n
i=1 ℓ(h,Zi).

Proposition B.1. For any δ ∈ (0, 1), with probability at least 1− δ, we have that the solution to the usual

empirical risk minimization

f̂emp ∈ arg min
h∈H

{R̂emp(h)}

satisfies

R(f̂emp)−R(h∗) ≤ 4Radn,p(LH)︸ ︷︷ ︸
Complexity term

+2Bℓ

√
log(2/δ)

2n
.

Proof. The assertion is immediate from Fact B.3 and the following inequality:

R(f̂emp)−R(h∗) = R(f̂emp)− R̂emp(f̂emp) + R̂emp(f̂emp)−R(h∗)

≤ R(f̂emp)− R̂emp(f̂emp) + R̂emp(h
∗)−R(h∗)

≤ 2 sup
h∈H
|R(h)− R̂emp(h)|.
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From here, we compare the dependency of the complexity terms Radn,p(LH) and RH,K + BℓRK on n.

In addition to Assumptions B.1 and B.2, assume the following:

Assumption B.3 (Complexity assumptions). We assume the following:

• The functions in LH are L1-Lipschitz continuous.

• The functions Kj are LK,j-Lipschitz continuous.

• The functions pk|mp(k)(z
k|·) are Lp,k-Lipschitz continuous for all zk.

For simplicity, we also assume H = diag((h, . . . , h)).

Under this assumption, we have the following:

Proposition B.2 (Comparison of the complexity measures). Given Assumptions B.1, B.2, and B.3, we

have the following:

Radn,p(LH) ≤ O
(
n− 1

d+2

)
, RH,K +BℓRK ≤ O

(
n−1/3

)
.

Implications. Proposition B.2 shows that the complexity terms appearing in Theorem B.1 has a better

dependency on the sample size compared to those in Proposition B.1, demonstrating the complexity reduc-

tion effect in this example. Note here that we do not claim that the proposed method yields a rate-optimal

predictor, but instead, we provide Theorem 3.1 and this supplementary analysis to obtain insights regarding

how the proposed method may facilitate the learning.

Proof of Proposition B.2. By the Lipschitz continuity of the functions in LH and the boundedness of Z, we
can apply Fact B.6 to obtain

logN(t,∥·∥∞)(LH) ≤ C

(
L1

t

)d

for a constant C > 0. By applying Fact B.4, and minimizing the right-hand side for t, we have the first

assertion.

On the other hand, by Lemma B.6,

logN(t,∥·∥∞)(Lj
H ⊗K

j
H) ≤ logN(t1,∥·∥∞)(Lj

H) + logN(t2,∥·∥∞)(Kj
H),

where t1, t2 are such that BKt1 +Bℓt2 = t. Now, applying Lemma B.8,

logN(t1,∥·∥∞)(Lj
H) ≤ log sup

z∈Zj−1

N(t1,1,∥·∥∞)(Fz) + logN(t1,2,∥·∥)(B
j−1(RZ))

By combining Lemma B.7 and Lemma B.9, and applying Fact B.5, we have

log sup
z∈Zj−1

N(t1,1,∥·∥∞)(Fz) ≤ C
L2

t1,1
,

logN(t1,2,∥·∥)(B
j−1(RZ)) ≤ (j − 1) log

(
1 +

2RZ

t1,2

)
,

where t1,1, t1,2 are such that t1 = t1,1 + L2t1,2, and L2 = L1 +Bℓ

∑
k Lp,k.

On the other hand, by Lemma B.10, we have

logN(t2,∥·∥∞)(Kj
H) ≤ |mp(j)| log

(
1 +

2LK,H,jRZ

t2

)
.

where LK,H,j = h−|mp(j)|−1LK,j . Therefore, we have

logN(t,∥·∥∞)(L
j
H ⊗K

j
H) ≤ C

L2

t1,1
+ (j − 1) log

(
1 +

2RZ
t1,2

)
+ |mp(j)| log

(
1 +

2LK,H,jRZ

t2

)
.



B.3. Details and Proof of the Theoretical Analysis 123

By applying Fact B.4, letting

t1,1 =
t

3BK
, t1,2 =

t

3BKL2
, t2 =

t

3Bℓ
,

and minimizing the upper bound for t, we have

|detHj |Radn,p

(
Lj

H ⊗K
j
H

)
≤ O

(
n−1/3

)
.

Therefore, we have

RH,K =

d∑
j=1

|detHj |Radn,p

(
Lj

H ⊗K
j
H

)
≤ O

(
n−1/3

)
,

RK =

d∑
j=1

|detHj |Radn,p(Kj
H) ≤ O

(
n−1/2

)
,

and obtain the second assertion.

Lemmas and Facts

Lemma B.6 (Metric entropy of products). Let F ,G be two classes of bounded measurable functions satis-

fying ‖f‖∞ ≤MF (f ∈ F) and ‖g‖∞ ≤MG(g ∈ G). Then, we have for any t1, t2 > 0,

logN(t,∥·∥∞)(F ⊗ G) ≤ logN(t1,∥·∥∞)(F) + logN(t2,∥·∥∞)(G)

where t = MGt1 +MF t2.

Proof. Let {fi}i ({gj}j) be the t1- (resp. t2-)covering of F (resp. G). Then, for any f ∈ F and g ∈ G, we
have for some i, j that

‖f ⊗ g − fi ⊗ gj‖∞ ≤ ‖f ⊗ g − fi ⊗ g‖∞ + ‖fi ⊗ g − fi ⊗ gj‖∞
≤ ‖f − fi‖∞MG +MF‖g − gj‖∞
≤MGt1 +MF t2.

This implies the assertion.

Lemma B.7 (Lipschitz continuity of marginalized function class). Assume that pk|mp(k)(z
k|·) is Lp,k-

Lipschitz continuous for all zk. Then, the elements of L̄j
H are Lipschitz continuous with the constant

L1 +Bℓ

∑
k Lp,k.

Proof. Since the functions in LH are L1-Lipschitz continuous, the elements of L̄j
H are also Lipschitz contin-

uous:
|ℓh,j(x)− ℓh,j(y)|

=

∣∣∣∣∫ ℓh((x, z))
∏
k

pk|mp(k)(z
k|(x, z)mp(k))dz −

∫
ℓh((y, z))

∏
k

pk|mp(k)(z
k|(y, z)mp(k))dz

∣∣∣∣
≤
∫
|ℓh((x, z))− ℓh((y, z))|

∏
k

pk|mp(k)(z
k|(y, z))dz

+
∑

k≥j+1

∫
|ℓh((x, z))|pj+1|mp(j+1)(z

j+1|(x, z))

· · · (pk|mp(k)(z
k|(x, z))− pk|mp(k)(z

|(y, z))) · · · pD|mp(D)(z
D|(y, z))dz

≤ L1∥x− y∥ · 1 +Bℓ

∑
k

1 · Lp,k∥x− y∥ · 1

≤ (L1 +Bℓ

∑
k

Lp,k)∥x− y∥.

Lemma B.8 (Lipschitz continuity of curried function class). Let j ∈ [2 : d] and RZ = supz∈Z ‖z‖. Also let

Bj−1(R) denote the radius-R ball in the (j − 1)-dimensional Euclidean space, and define Fz := {ℓh,j(z, ·) :
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ℓh,j ∈ L̄j
H} for z ∈ Zj−1. Assume L̄j

H consist of L2-Lipschitz continuous functions. Then, we have

logN(t,∥·∥∞)(Lj
H) ≤ log sup

z∈Zj−1

N(u,∥·∥∞)(Fz) + logN(v,∥·∥)(Bj−1(RZ))

where t, u, v > 0 are such that t = u+ L2v.

Proof. Let {zµ}µ ⊂ Zj−1 be a v-covering of Zj−1. For each zµ, consider the set Fµ = {ℓh,j(zµ, ·) :

ℓh,j ∈ L̄j
H}. Let {ℓµ,kh,j }k ⊂ Fµ be a u-covering of Fµ. Then, for any ℓh,j ∈ L̄j

H and z ∈ Zj−1, there

exists zµ such that ‖zµ − z‖ ≤ v. Moreover, since we have ℓh,j(zµ, ·) ∈ Fµ, there exists ℓµ,k
h,j such that

‖ℓh,j(zµ, ·)− ℓµ,kh,j (zµ, ·)‖∞ ≤ u. For such a pair (zµ, ℓ
µ,k
h,j ), we have

‖ℓh,j(z, ·)− ℓµ,kh,j (zµ, ·)‖∞
≤ ‖ℓh,j(z, ·)− ℓh,j(zµ, ·)‖∞ + ‖ℓh,j(zµ, ·)− ℓµ,k

h,j (zµ, ·)‖∞ ≤ L2v + u

Therefore, the set
⋃

µ{zµ}µ × {ℓ
µ,k
h,j }k induces a (L2v + u)-covering of Lj

H. Noting that the cardinality of⋃
µ{zµ}µ is bounded by N(v,∥·∥)(Bj−1(RZ)) and that of {ℓµ,kh,j }k by supz∈Zj−1 N(u,∥·∥∞)(Fz), we have the

assertion.

Lemma B.9 (Metric entropy of functions curried by a specific input). Assume that the elements of L̄j
H are

L2-Lipschitz continuous. Then, there exists a constant C > 0 such that for sufficiently small u > 0,

sup
z∈Zj−1

N(u,∥·∥∞)(Fz) ≤ C
L2

u
.

Proof. Since the elements of L̄j
H are L2-Lipschitz continuous, so are the elements of Fz with Lipschitz

constant L2. Indeed, for any x, y ∈ Zj and z ∈ Zj−1, we have

|ℓh,j(z, x)− ℓh,j(z, y)| ≤ L2

∥∥∥∥∥
(
z

x

)
−

(
z

y

)∥∥∥∥∥ = L2‖x− y‖.

Therefore, by applying Lemma B.6, we have the assertion.

Lemma B.10 (Shifted kernel complexity). Assume that Kj : R|mp(j)| → R is LK,j-Lipschitz continuous.

Let LK,H,j = 1
| detHj |

LK,j

∥∥H−1
j

∥∥
op
. Then, we have the following:

logN(t2,∥·∥∞)(Kj
H) ≤ |mp(j)| log

(
1 +

2LK,H,jRZ

t2

)
.

Proof. Recalling Kj
H(u) = 1

| detHj |
Kj(H−1

j u), for any Kj
H(z1 − ·),Kj

H(z2 − ·) ∈ Kj
H, we have

‖Kj
H(z1 − ·)−Kj

H(z2 − ·)‖∞ ≤
1

| detHj |
LK,j‖H−1

j (z1 − z2)‖

≤ 1

| detHj |
LK,j

∥∥H−1
j

∥∥
op
‖z1 − z2‖

Therefore, we have

logN(t2,∥·∥∞)(Kj
H) ≤ logN(t2/LK,H,j ,∥·∥)(Z

mp(j)).

Applying Fact B.5, we obtain the assertion.

Fact B.4 (One-step discretization bound). Let F be a class of measurable functions. There exist constants

c and B such that for any t ∈ (0, B], the following relation between the Rademacher complexity and the

metric entropy holds:

Radm,q(F) ≤ t+ c

√
logN(t,∥·∥∞)(F)

m
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Fact B.5 (Euclidean ball metric entropy bound; [286], Example 5.8, p.126). Let R > 0 and d ∈ N. Let

B(R) denote the radius-R ball in the d-dimensional Euclidean space. Then, we have the following metric

entropy bound:

logN(δ,∥·∥)(B(R)) ≤ d log

(
1 +

2R

δ

)
.

Fact B.6 (Lipschitz functions metric entropy bound; [286], Example 5.10, p.129). Let L,R > 0 and d ∈ N.
Let Lip(R,L) denote the set of L-Lipschitz functions on [0, R]d. Then, we have the following metric entropy

bound for sufficiently small δ > 0:

logN(δ,∥·∥∞)(Lip(R,L)) ≤ C

(
LR

δ

)d

,

where C > 0 is a constant.

B.4 Computational Complexity of Algorithm 2

Here, we remark why the worst-case computational complexity of Algorithm 2 is O
(
nd
)
. The main compu-

tation cost of Algorithm 2 comes from the computation of the weights ŵij |i1:j−1
. There are nj−1 nodes at

depth j (Figure 3.3), each with n weighted edges connected to depth j+1. The set of weights corresponding

to each node, {ŵij |i1:j−1
}ij∈[n], is computed by constructing a matrix of shape n× nj−1 each of whose ele-

ment is the kernel value for two vectors of dimensionality |mp(j)|(≤ j − 1). In the case of Gaussian kernels,

each kernel value requires O (j − 1) operations to compute. Subsequently, the kernel matrix is normalized

by the column sum, which requires O (n) summations and nj divisions. The same computation takes place

for each of the i1:j−1 ∈ [n]j−1 nodes at depth j, therefore, the edge weights between depth j and depth j+1

can be computed by O
(
nj
)
operations. The edge weights are multiplied to obtain the node weights, which

requires O
(
nd
)
multiplications since the number of multiplications that take place is equal to the number

of edges in Figure 3.3. Overall, Algorithm 2 requires O
(
nd
)
operations for the edge weight computation

and O
(
nd
)
for the node weight computation, amounting to O

(
nd
)
operations in total, in the worst case

that no edge is pruned by the threshold θ.
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Appendix C

Appendices for Chapter 4

Table C.1 summarizes the abbreviations and the symbols used in the paper.

Table C.1: List of abbreviations and symbols used in the chapter.

Abbreviation / Symbol Meaning

DA Domain adaptation
TA Transfer assumption
SEM Structural equation model
GCM Graphical causal model
SCM Structural causal model
IC Independent component
ICA Independent component analysis
GCL Generalized contrastive learning
i.i.d. Independent and identically distributed

[N ] {1, 2, . . . , N} where N ∈ N
∥·∥Wk,p The (k, p)-Sobolev norm

X The predictor random vector (Rd−1-valued)
Y The predicted random variable (R-valued)
Z = (X,Y ) The joint random variable (Rd-valued)
S The independent component vector (Rd-valued)

X ⊂ Rd−1 The space of X
Y ⊂ R The space of Y
Z ⊂ Rd The space of Z = (X,Y )
H ⊂ {h : Rd−1 → R} Predictor hypothesis class
ℓ : H×Z → [0, Bℓ] Loss function
R(h) Target domain risk EpTarℓ(h,Z)
h∗ ∈ H Minimizer of target domain risk

Q The set of independent distributions
F Ground truth mixing function
pTar The target joint distribution
pk The joint distribution of source domain k
qTar ∈ Q The target independent component (IC) distribution
qk ∈ Q The IC distribution of source domain k

d The dimension of Z
K The number of source domains
nTar The size of the target labeled sample
nk The size of the labeled sample from source domain k

DTar = {Zi}nTar
i=1 Target labeled data set

Dk = {ZSrc
k,i }

nk
i=1 Source labeled data set of source domain k

R̂(h) The ordinary empirical risk estimator
Ř(h) The proposed risk estimator (Equation (4.2))

F̂ The estimator of F
{ψ}dj=1 The penultimate layer functions composed with F during GCL
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C.1 Nonlinear ICA

Here, we use the same notation as the main text. The recently developed nonlinear ICA provides

an algorithm to estimate the mixing function F . For the case of nonlinear F , the impossibility of

identification (i.e., consistent estimation) of F in the one-sample i.i.d. case had been established

more than two decades ago [120]. However, recently, various conditions have been proposed under

which F can be identified with the help of auxiliary information [123, 122, 124, 141].

The identification condition that is directly relevant to this chapter is that of the generalized

contrastive learning (GCL) proposed in Hyvärinen et al. [124]. Hyvärinen et al. [124] assumes that

an auxiliary variable ui from some measurable set U is obtained for each data point as {(zi, ui)}ni=1

and that the ICs S = (S(1), . . . , S(d)) are conditionally independent given u:

q(s|u) =
d∏
j=1

q(j)(s(j)|u).

Under such conditions, GCL estimates F by training a classification function

rF̂ ,ψ(z, u) =

d∑
j=1

ψj(F̂
−1(z)j , u) (C.1)

parametrized by F̂ and {ψj}dj=1 with the logistic loss for classifying

(z, u) vs. (z, ũ),

where ũ ∈ U \ {u}. The key condition for the identification of F is the following.

Assumption C.1 (Assumption of variability; [124, Theorem 1]). For any z, there exist 2d + 1

distinct points in U , denoted by {uj}2dj=0, such that the set of (2d)-dimensional vectors {w(z|uj) −
w(z|u0)}2dj=1 are linearly independent, where

w(z|u) :=
(
∂ log q(1)(z1|u)

∂z1
, . . . ,

∂ log q(d)(zd|u)
∂zd

,
∂2 log q(1)(z1|u)

∂z21
, . . . ,

∂2 log q(d)(zd|u)
∂z2d

)
.

Under Assumption C.1 and some regularity conditions, Theorem 1 of Hyvärinen et al. [124]

states that the transformation F̂ in Equation (C.1) trained by GCL is a consistent estimator of F

upto additional dimension-wise invertible transformations. Note that the assumption is intrinsically

difficult to confirm based on data due to the unsupervised nature of the problem setting. In this

chapter, we use the source domain index as the auxiliary variable and employ GCL for domain

adaptation. The present version of Assumption C.1 requires that we have at least 2d + 1 distinct

source domains. Although this condition can be restrictive in high-dimensional data, we conjecture

that there is a possibility for this assumption to be made less stringent in the future because

the identification condition is only known to be a sufficient condition, not a necessary condition.

However, pursuing a refinement of the identification condition is out of the scope of this chapter.

Among the various methods for nonlinear ICA, we chose to use GCL [124] because it can operate

under a nonparametric assumption on the IC distributions whereas other nonlinear ICA methods

[123, 122, 141] may require parametric assumptions.
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C.2 Details of Real-world Data Experiment

Here, we describe more implementation details of the experiment. Our experiment code can be

found at https://github.com/takeshi-teshima/few-shot-domain-adaptation-by-causal-me

chanism-transfer.

C.2.1 Dataset Details

Gasoline consumption data. The data was downloaded from http://bcs.wiley.com/he-bcs

/Books?action=resource&bcsId=4338&itemId=1118672321&resourceId=13452.

C.2.2 Model Details: Invertible Neural Networks

Here, we describe the details of the Glow architecture [145] used in our experiments. Glow consists

of three types of layers that are invertible by design, namely affine coupling layers, 1×1 convolution

layers, and activation normalization (actnorm) layers. In our implementation, we use actnorm as

the first layer, and each of the subsequent layers consists of a 1× 1 convolution layer followed by an

affine coupling layer.

Affine coupling layers. The coefficients s and t for affine coupling layers in the notation of

Kingma and Dhariwal [145] are parametrized by two one-hidden-layer neural networks whose number

of hidden units is the same and the first layer parameter is shared. The activation functions of the

first layer, the second layer of s, and the second layer of t are the rectified linear unit (ReLU)

activation [161], the hyperbolic tangent function, and the linear activation function, respectively.

A standard practice of affine coupling layers is to compose the coefficient s with an exponential

function x 7→ exp(x) so as to simplify the computation of the log-determinant of the Jacobian [145].

In our implementation, since we do not require the computation of the log-determinant, we omit

this device and instead compose x 7→ (x+ 1). The addition of 1 shifts the parameter space so that

(s, t) = (0, 0) corresponds to the the identity map, where 0 denotes the constant zero function. The

split of the affine coupling layers is fixed at (bd2c, d− b
d
2c).

1× 1 convolution layers. We initialize the parameters of the neural networks by N (0, 1
m ) where

m is the number of parameters of each layer and N is the normal distribution.

C.2.3 Model Details: Penultimate Layer Networks

We initialize the parameter for each layer of ψj by Unif(−
√

1
m ,
√

1
m ), where m is the number of

input features and Unif is the uniform distribution.

C.2.4 Training Details

During the training of GCL, we fix the batch size at 32.

C.2.5 Compared Methods Details

Here, we detail the methods compared through the experiment. Note that the present chapter

focuses on regression problems as our approach is based on ICA, and hence the methods for classi-

fication domain adaptation are not comparable.

TrAdaBoost. As suggested in Pardoe and Stone [200], we use the linear loss function and set the

maximum number of internal boosting iterations at 30.

https://github.com/takeshi-teshima/few-shot-domain-adaptation-by-causal-mechanism-transfer
https://github.com/takeshi-teshima/few-shot-domain-adaptation-by-causal-mechanism-transfer
http://bcs.wiley.com/he-bcs/Books?action=resource&bcsId=4338&itemId=1118672321&resourceId=13452
http://bcs.wiley.com/he-bcs/Books?action=resource&bcsId=4338&itemId=1118672321&resourceId=13452
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GDM. We fix the number of sampling required for approximating the maximization in the gen-

eralization discrepancy at 200. This method presumes using hypothesis classes in a reproducing

kernel Hilbert space (RKHS).

Copula. For this model, the probabilistic model of non-parametric R-vine copula of depth 1 is used

following Lopez-paz et al. [172]. Kernel density estimators with RBF kernel are used for estimating

the marginal distributions and the copulas. The bandwidths of the RBF kernels are determined

using the rule-of-thumb implemented as “normal-reference” in the np package of R language [100].

The predictions are made by numerically aggregating the estimated conditional distribution over

the interval [mini Yi − 2σ,maxi Yi + 2σ] where σ denotes the square root of the unbiased variance

of {Yi}nsrc
i=1 . The aggregation is performed by discretizing the interval into a grid of 300 points. The

level of the two-sample test is fixed at 0.05 for all combination of the two-sample tests following

the experiment code of Lopez-paz et al. [172]. This method is a single-source domain adaptation

method and we pool all source domain data for adaptation.

C.3 Details of Synthetic-data Experiment

Here, we describe the details of the synthetic-data experiment reported in Section 4.5.4.

C.3.1 Data-generating Process

To randomly generate a mixing map, we first generate an invertible neural network F̃ , a matrix B,

and a scaling parameter a > 0, and we define F = 1
a F̃ ◦B.

The architecture of F̃ is a composition of 2 blocks of invertible layers of the form

x 7→ R(Coupling(x) + tglobal)

where R ∈ Rd×d is a regular matrix and tglobal ∈ Rd. For simplicity, let us denote L := bd2c. Here,

Coupling is a general incompressible-flow network (GIN; [252]) layer defined as

Coupling(x) = (x1 � exp(0.2(tanh(s(x2)− s̄(x2)))) + 0.1t(x2), x2),

where x1 denotes the first d− L elements of x and x2 the last L elements, � denotes the element-

wise product, the map (s, t) : RL → R2(d−L) is modeled by a multi-layer perceptron (MLP; [99]),

s̄(x2) :=
1

d−L
∑d−L
j=1 s

(j)(1, . . . , 1)⊤, and exp, tanh are applied in an element-wise manner.

Each block in F̃ is initialized as follows: tglobal is initialized as a zero vector, the map (s, t)

is modeled by a one-hidden-layer feed-forward neural network [99] with 128 hidden units whose

weights are randomly initialized using the Xavier initialization [87], and R ∈ SO(d) is sampled from

the Haar measure [256].

Given r ∈ [d], we obtain B as B = r−1V U⊤ by generating two matrices U, V ∈ Rd×r. We

generate U and V by sampling each element independently from the uniform distribution over

[−
√
3,
√
3]. After the generation, we confirmed that the rank of B is indeed r, i.e., that it is not

smaller than r.

The ICs SSrc
k,i (k ∈ [K], i ∈ [nk]) and Si (i ∈ [nTar + ntest]) are generated by the following

procedure:

1. A scaling coefficient matrix L = (L1 · · ·LKLTar) ∈ Rd×(K+1) is generated by sampling each

element independently from Unif([0, 1]).

2. For each k ∈ [K], a matrix Ak = (Ak,1 · · ·Ak,nk
) ∈ Rd×nk is generated by sampling each

element independently from Lap(0, 1/
√
2), where Lap(µ, λ) is the Laplace distribution with
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the location parameter µ ∈ R and the scale parameter λ > 0. For the target domain, ATar =

(ATar,1 · · ·ATar,nTar+ntest
) ∈ Rd×(nTar+ntest) is generated in the same manner.

3. The ICs are generated by SSrc
k,i = Ak,i � Lk and Si = ATar,i � LTar.

After generating the ICs, in order to approximately standardize the scales of the generated data

sets, we define a to be the empirical standard deviation of {(F̃ (B(SSrc
k,i )))j}j∈[d],k∈[K],i∈[nk], and we

define F = 1
a F̃ ◦B.

Finally, the data sets Dk = {ZSrc
k,i }

nk
i=1 (k ∈ [K]), DTar = {Zi}nTar

i=1 , and Dtest = {ZnTar+i}
ntest
i=1

are generated by ZSrc
k,i = F (SSrc

k,i ) and Zi = F (Si).

C.3.2 Proposed Method Configuration

For F̂ , we use the same architecture and initialization procedures as that of F̃ . Note that B and the

scaling a are not included in the model F̂ . For training, we used the Adam optimizer [144] with fixed

parameters (β1, β2, ε) = (0.9, 0.999, 10−8), fixed initial learning rate 10−4, and the maximum number

of epochs 128. To sample the IC candidates, we randomly sampled the indices for each dimension

from an independent uniform distribution over [nTar]. We trained a one-class support vector machine

(OCSVM; [235]) on the union of the source-domain data for the same reason as Section 4.5.2. The

configuration of the OCSVM was the same as Section 4.5.2. The trained OCSVM was applied to

the pseudo-data generated by applying F̂ to the IC candidates. Since the generated data after the

filtering may not add up to naug points, we randomly sampled up to 3naug points and selected up

to the first naug points that remained after the filtering by the OCSVM. For training the predictor,

we always concatenated the original target-domain data set DTar with the pseudo-data generated

by the proposed method.

C.3.3 Evaluation

We set nk = ntest = 512 (k ∈ [K]). For the predictor model class, we employed the GBRTs [81,

41] using the same configuration as the experiment reported in Section 3.5 with the follow-

ing hyper-parameter candidates: the number of leaves was fixed as 64, the number of boosting

rounds was searched in {500, 1000, 2000}, and the `2-regularization coefficient was searched in

{10−1, 10−2, 10−3}. To select the hyperparameters of the predictor hypothesis class, we performed

the grid-search based on 3-fold cross-validation on the union of the original training data and the

augmented data. For the implementation of the predictor model, we employed the xgboost library

of Python [41]. See Chen and Guestrin [41] for the optimization method and the other details.

C.3.4 Supplementary Figures

In Figure C.1, we report the results of the same experiment as Section 4.5.4 with nTar = 10 and

nTar = 20. As observed in Section 4.5.4, we can observe the robustness of the proposed method to the

ill-conditioning of the IC estimation problem as well as the tendency that a O (nTar) augmentation

yields similar performance improvements to an augmentation of O
(
n2Tar

)
points.

C.4 Details and Proofs of Theorem 4.2

Here, we detail the assumptions, the statement, and the proof of Theorem 4.2.
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Figure C.1: Additional results of the synthetic data experiments. For (a), (b), (d), and (e), we fixed
naug = n2Tar. For (c) and (f), we fixed d− r = 0.

C.4.1 Notation

To make the proof self-contained, we first recall some general and problem-specific notation. In the

notation here, we omit the domain identifiers from the distributions and the sample size, such as

Tar or Src, because only the target domain data or their distributions appear in the proofs. The

theorem holds regardless of how F̂ is estimated as long as F̂ is independent of the target domain

data. In the proof, we extend the maximal discrepancy bound of U-statistics previously proved for

the case of degree-2 in Rejchel [216], to allow higher degrees.

General mathematical notation. We denote the set of natural numbers (resp. real numbers)

by N (resp. R). For any N ∈ N, we define [N ] := {1, 2, . . . , N}. We use
(
a
b

)
to denote the number

of b-combinations of a elements. For a finite set A, the notation
∑
a∈A

denotes the operator to take

an average over A, i.e.,
∑
a∈A

h = 1
|A|
∑
a∈A h(a). For a d-dimensional function h, we denote its j-th

dimension (j ∈ [d]) by suffixing hj . For a vector s, we denote its j-th element by s(j). We denote

the Jacobian determinant of a differentiable function ψ at a by Jψ(a) := det dψ(a)
da . We denote the

identity matrix by I regardless of the size of the matrices when there is no ambiguity. For finite

dimensional vectors, we denote the 2-norm by ‖·‖ℓ2 and the 1-norm by ‖·‖ℓ1 . For square matrices, we

denote the operator-2 norm by ‖·‖op and the operator-1 norm by ‖·‖op(1). We useW k,p to denote the

Sobolev space (on Rd) of order k and define its associated norm by ‖h‖Wk,p :=
(∑

|α|≤k
∥∥h(α)∥∥p

Lp

)1/p
where α is a multi-index and h(α) denotes the partial derivative ∂|α|h

∂s
α1
1 ···∂sαd

d

[3, Paragraph 3.1]. We let

Sd be the degree-d symmetric group, Gdj := {τ : [d]→ [j] | τ is surjective} be the set of j grouping

of indices in [d], and Inj := {ρ : [j] → [n] | ρ is injective} be the set of all size-j combinations

(without replacement) of indices in [n].
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Distributions and expectations. We denote by Q the set of all factorized distributions on

Rd with absolutely continuous marginals. For a measure P , we denote its j-product measure by

P j := P ⊗ · · · ⊗ P (repeated j times). We assume that all measures appearing in this proof are

absolutely continuous with respect to the Lebesgue measure. The push-forward of a distribution p

by a function h is denoted by h♯(p). The expectation of a function h with respect to measure P is

denoted by Ph (if it exists) by abuse of notation. We also abuse the notation to use ψ(s, P, . . . , P )

as the shorthand for P d−1ψ(s, S′
2, . . . , S

′
d) where {S′

j}dj=2
i.i.d.∼ P .

C.4.2 Problem Setup

We denote the target domain distribution by p. We fix a hypothesis class H(⊂ {h : Rd−1 → R}),
and our goal is to find a h ∈ H such that the risk functional

R(h) :=
∫
p(z)`(h, z)dx

is small, where ` : H× Rd → R≥0 is a loss function. We denote by h∗ a minimizer of R (assuming

it exists). To this end, we are given the training data D := {Zi}ni=1
i.i.d.∼ p. Throughout, we assume

n ≥ d. To complement the smallness of n, we assume the existence of a generative mechanism.

Concretely, we assume that there exists a diffeomorphism F : Rd → Rd such that q := (F−1)♯(p)

satisfies q ∈ Q. With this transform, the original risk functional is also expressed as

R(h) =
∫
q(s)`(h,F (s))ds.

As an estimator of F , we are given another diffeomorphism F̂ : Rd → Rd such that F̂ ' F . With this

F̂ , the proposed method converts the dataset D by Si := F̂ (Zi). We can regard Ď := {Si}ni=1
i.i.d.∼

q̌, where q̌ := (F̂−1 ◦ F )♯(q). We use Q (resp. Q̌) to denote the probability measure corresponding

to the density q (resp. q̌). This conversion results in the relation:

q̌(s) = q(F−1 ◦ F̂ (s))
∣∣∣(JF−1 ◦ F̂ )(s)

∣∣∣ .
As a candidate hypothesis h ∈ H, the proposed method selects a minimizer ȟ ∈ H of the proposed

risk estimator Ř defined as

Ř(h) := 1

nd

∑
(i1,...,id)∈[n]d

`(h, F̂ (ŝ
(1)
i1
, . . . , ŝ

(d)
id

)). (C.2)

In the proof, we evaluate its concentration around the expectation ¯̌R(h) := EĎŘ(h). We use EĎ
to denote the expectation with respect to Ď. Let ¯̌h denote a hypothesis which minimizes ¯̌R(h)
(assuming it exists).

In what follows, for notational simplicity, we define the d-variate symmetric function ˜̀ as

˜̀(s1, . . . , sd) =
∑
π∈Sd

`(h, F̂ (s
(1)
π(1), . . . , s

(d)
π(d))),

where
∑

π∈Sd

indicates an averaging operation over all permutations (without replacement) of [d]. We

use Ên to denote the sample average operator with respect to D or Ď, depending on the context.
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C.4.3 Assumptions

Assumption C.2 (The underlying density function is bounded and Lipschitz continuous). Assume

Bq := sup
s∈Rd

q(s) <∞, Lq := sup
s1 ̸=s2

|q(s1)− q(s2)|
‖s1 − s2‖

<∞.

Assumption C.3 (F−1 is Lipschitz continuous and Hölder continuous). We assume F−1 ∈ C1,1

where C1,1 is the (1, 1)-Hölder space [3, Paragraph 1.29] and

LF−1 := sup
z1 ̸=z2

‖F−1(z1)− F−1(z2)‖
‖z1 − z2‖

<∞.

Assumption C.4 (Bounded derivatives of F and F−1). Assume that

B∞
∂F := sup

s∈Rd

∥∥∥∥dFds (s)
∥∥∥∥
∞
<∞, B∞

∂F−1 := sup
z∈Rd

∥∥∥∥dF−1

dz
(z)

∥∥∥∥
∞
<∞.

where ‖·‖∞ denotes the maximum absolute value of the elements of a matrix.

Assumption C.5 (Loss function is bounded and uniformly Lipschitz continuous in Z). The con-

sidered loss function takes values in a bounded interval:

` : H×Z → [0, Bℓ],

where 0 < Bℓ <∞. Also assume

LℓH := sup
h∈H

sup
z1 ̸=z2

|`(h, z1)− `(h, z2)|
‖z1 − z2‖

<∞.

Assumption C.6 (Estimated feature extractor). Assume F̂ is independent of D and that Fj−F̂j ∈
W 1,m for all (j,m) ∈ [d]× [d].

Although F̂ and f are assumed to be diffeomorphisms in the classical sense (implying that

they are strongly differentiable), we introduce the Sobolev space because we want to measure their

difference and their difference of derivatives in terms of integration.

Assumption C.7 (Entropic condition: Euclidean class [237]). The function class Φ := {˜̀ : h ∈ H}
is Euclidean for the envelope F and constants A and V [237], i.e., if µ is a measure for which

µF 2 <∞, then

Pack(t,distµ,Φ) ≤ At−V , 0 < t ≤ 1,

where Pack(t,distµ,Φ) denotes the packing number of Φ with respect to the radius t and the pseu-

dometric distµ defined by

distµ(φ1, φ2) :=
[
µ|φ1 − φ2|2/µF 2

]1/2
for φ1, φ2 ∈ Φ. Without loss of generality, we take the envelope F such that F (·) ≤ Bℓ.
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Assumption C.8. The hypothesis class H is expressive enough so that the model approximation

error does not expand due to F̂ , i.e.,

inf
h∈H

¯̌R(h) ≤ inf
h∈H
R(h)

The following complexity measure of H, which is a version of Rademacher complexity for our

problem setting, is used to state the theorem.

Definition C.1 (Effective Rademacher complexity). Define

R(H) := 1

n
EĎEσ

[
sup
h∈H

∣∣∣∣∣
n∑
i=1

σiES′
2,...,S

′
d
[˜̀(Si, S

′
2, . . . , S

′
d)]

∣∣∣∣∣
]

where {σi}ni=1 are independent uniform sign variables and S′
2, . . . , S

′
d

i.i.d.∼ Q̌ are independent of all

other random variables.

We provide the definition of the ordinary Rademacher complexity in Section C.4.8 and make a

comparison of the two complexity measures in terms of how they depend on the input dimensionality.

C.4.4 Theorem Statement

Our goal is to prove the following theorem. This is a detailed version of the theorem appearing in

Chapter 4.

Theorem C.1 (Excess risk bound). Assume Assumptions C.2, C.3, C.4, C.5, C.6, C.7, and C.8.

Then for arbitrary δ, δ′ ∈ (0, 1), we have with probability at least 1− (δ + δ′),

R(ȟ)−R(h∗)

≤ C
d∑
j=1

∥∥∥Fj − F̂j

∥∥∥
W 1,1︸ ︷︷ ︸

Approximation error

+4dR(H) + 2dBℓ

√
log 2/δ

2n︸ ︷︷ ︸
Estimation error

+κ1(δ
′, n) + dBℓBqκ2(F − F̂ )︸ ︷︷ ︸

Higher order terms

.

where

C := BqLℓH + dBℓ(LqLF−1 +BqdC
′
1),

C ′
1 := (d+ 1)3/2

(
B∞
∂F

(
d∑
k=1

∥∥F−1
k

∥∥
C1,1

)
+B∞

∂F−1

)
,

κ1(δ
′, n) = O(n−1)/δ′ +O(n−1),

κ2(F − F̂ ) =

d∑
m=2

(
d

m

)
C ′
m

d∑
j=1

∥∥∥Fj − F̂j

∥∥∥m
W 1,m

.

and C ′
m(m = 1, . . . , d) are constants determined in Lemma C.11.

Proof of Theorem C.1. By adding and subtracting terms, we have

R(ȟ)−R(h∗) = (R− ¯̌R)(ȟ)︸ ︷︷ ︸
(A) Approximation error

+ ¯̌R(ȟ)− ¯̌R(¯̌h)︸ ︷︷ ︸
(B) Pseudo estimation error

+ ¯̌R(¯̌h)−R(h∗).︸ ︷︷ ︸
(C) Additional model misspecification error
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Applying Lemma C.1 to (A), Lemma C.2 to (B), and Assumption C.8 to (C), we obtain the assertion.

As it can be seen from the proof above, Theorem C.1 is proved in two parts, each corresponding

to the two lemmas below. The first lemma evaluates the approximation error which reflects the fact

that we are approximating F by F̂ .

Lemma C.1 (Approximation error bound). Given Assumptions C.2, C.3, C.4, C.5, and C.6. we

have

(R− ¯̌R)(ȟ) ≤C
d∑
j=1

∥∥∥Fj − F̂j

∥∥∥
W 1,1

+ dBℓBqκ2(F − F̂ )

where C and κ2(F − F̂ ) are

C := BqLℓH + dBℓ(LqLF−1 +BqdC
′
1),

κ2(F − F̂ ) :=

d∑
m=2

(
d

m

)
C ′
m

d∑
j=1

∥∥∥Fj − F̂j

∥∥∥m
W 1,m

.

and C ′
m(m = 1, . . . , d) are constants determined in Lemma C.11.

The second lemma evaluates the pseudo estimation error which reflects the fact that we rely on

a finite sample to approximate the underlying distribution.

Lemma C.2 (Pseudo estimation error bound). Assume that Assumptions C.2 and C.7 hold. Let

the Rademacher complexity be defined as Definition C.1. Then for any δ, δ′ ∈ (0, 1), we have with

probability at least 1− (δ + δ′) that

¯̌R(ȟ)− ¯̌R(¯̌h) ≤ 4dwdR(H) + 2dBℓwd

√
log 2/δ

2n
+ 2wd(d− 1)

d∑
j=2

Cj

δ′
n−j/2 + 4Bℓ

d−1∑
j=1

wj︸ ︷︷ ︸
O(n−1)

where {wj}dj=1 are universal constants determined in Lemma C.3, and {Cj}dj=2 are constants de-

termined in Lemma C.6. Note that wj = O(n−(d−j)) and wd =
n(n−1)···(n−d+1)

nd < 1.

In what follows, we first present some basic facts in Section C.4.5 and provide the proofs for

the lemmas. We provide the proof of Lemma C.1 in Section C.4.7, and that of Lemma C.2 in

Section C.4.6.

C.4.5 V-statistic and U-statistic

The theoretical analysis is performed by interpreting the proposed risk estimator Equation (C.2) as

a V-statistic (explained shortly). The proofs will be based on applying the following facts in order:

1. V-statistic can be represented as a weighted average of U-statistics with degrees from 1 to d,

and only the degree-d) term is the leading term.

2. The degree-d term is again decomposed into a degree-1 U-statistic and a set of degenerate

U-statistics.

3. The degree-1 U-statistic is an i.i.d. sum admitting a Rademacher complexity bound.

4. The degenerate terms concentrate around zero following an exponential inequality under ap-

propriate entropy conditions.
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To consolidate the strategy given above, we describe what are V- and U-statistics, and how they

relate to each other. These estimators emerge when we allow re-using the same data point repeatedly

from a single sample to estimate a function which takes multiple data points.

V-statistic. For a given regular statistical functional of degree d [162]:

Q̌d ˜̀ :=

∫
˜̀(s1, · · · , sd)q̌(s1) · · · q̌(sd)ds1 · · · dsd, (C.3)

its associated von-Mises statistic (V-statistic) is the following quantity [162]:

V dn
˜̀ :=

1

nd

n∑
i1=1

· · ·
n∑

id=1

˜̀(Si1 , . . . , Sid).

Note that Equation (C.3) does not coincide with the expectation of V dn
˜̀ in general, i.e., the V-

statistic is generally not an unbiased estimator. However, it is known to be a consistent estimator

of Equation (C.3) [162].

U-statistic. Similarly, for a j-variate function h(x1, . . . , xj) that is symmetric and integrable, its

corresponding U-statistic [162] of degree j is

U jnh :=
∑
ρ∈In

j

h(sρ(1), . . . , sρ(j)).

The V- and U-statistics are generalizations of the sample mean (which is the U- and V-statistics of

degree 1). The important difference from the sample mean in higher degrees is that the summands

may not be independent. To deal with the dependence, the following standard decompositions have

been developed [162].

Lemma C.3 (Decomposition of a V-statistic [162]). A V-statistic can be expressed as a sum of

U-statistics of degrees from 1 to d [162, Section 4.2, Theorem 1]:

V dn
˜̀=

d∑
j=1

wjU
j
n
˜̀(j)

where the weights wj and j-variate functions ˜̀(j) are

wj :=
1

nd
∣∣Gdj ∣∣ (nj

)
, ˜̀(j)(s1, . . . , sj) :=

∑
τ∈Gd

j

˜̀(sτ(1), . . . , sτ(d)).

Proof. See [162, Section 4.2, Theorem 1 (p.183)].

Remark C.1. The weights {wj}dj=1 satisfy
∑
j wj = 1 [162, Section 4.2, Theorem 1 (p.183)]. We

can also find the order of wj with respect to n as:

wd =
1

nd
∣∣Gdj ∣∣︸︷︷︸
d!

(
n

d

)
=
n(n− 1) · · · (n− d+ 1)

nd
= O(1),

wj = O(n−(d−j)), ˜̀(d) = ˜̀.
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Lemma C.4 (Hoeffding decomposition of a U-statistic [237, p.449]). A U-statistic with a symmetric

kernel ψ can be decomposed as a sum of U-statistics of degrees from 1 to d as

Udnψ − EĎU
d
nψ =

d∑
j=1

U jnψj = Ênψ1 +
d∑
j=1

U jnψj (C.4)

where {ψj}dj=1 are j-variate, symmetric and degenerate functions. Note that EĎU
d
nψ = Q̌dψ. Here,

a j-variate symmetric function ψj is said degenerate when

∀s2, . . . , sj , ψj(Q̌, s2, . . . , sj) = 0.

Specifically, ψ1 is

ψ1(s) = ψ(s, Q̌, . . . , Q̌) + · · ·+ ψ(Q̌, . . . , Q̌, s)− dQ̌dψ
= d · (ψ(s, Q̌, . . . , Q̌)− Q̌dψ) (by symmetry).

(C.5)

For further details, see [237, p.449]. Note that in [237, p.449], Equation (C.4) is written using

Q̌dψ in place of EĎU
d
nψ. This is because

EĎU
d
nψ = UdnEĎψ = UdnQ̌

dψ = Q̌dψ

holds by linearity and symmetry.

Remark C.2 (Connecting the lemmas to Section C.4.6). It can be easily checked by definition that

the proposed risk estimator Equation (C.2) takes the form of a V-statistic: Ř(h) = V dn
˜̀ for each

h ∈ H. Let us denote ˜̀∗(s) := ˜̀(s, Q̌, . . . , Q̌). Then EĎ
˜̀∗ = Q̌d ˜̀ holds by definition. Substituting

these into Equation (C.5), we have that Equation (C.4) applied to ψ = ˜̀ is equivalent to

Udn
˜̀− EĎU

d
n
˜̀= d · (Ên ˜̀∗ − EĎ

˜̀∗) +

d∑
j=2

U jn
˜̀
j .

where {˜̀j}dj=2 are symmetric degenerate functions. In Section C.4.6, we first decompose Ř(h) into
a sum of U-statistics. After such conversion, we take a closer look at the leading term, Ên ˜̀∗.

C.4.6 Proof of Pseudo Estimation Error Bound

(Proof of Lemma C.2). First, we have

¯̌R(ȟ)− ¯̌R(¯̌h) = ¯̌R(ȟ)− Ř(ȟ) + Ř(ȟ)− ¯̌R(¯̌h)

≤ ¯̌R(ȟ)− Ř(ȟ) + Ř(¯̌h)− ¯̌R(¯̌h) ≤ 2 sup
h∈H

∣∣∣Ř(h)− ¯̌R(h)
∣∣∣ .
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Now the right-most expression can be decomposed as

sup
h∈H
|Ř(h)− ¯̌R(h)| = sup

h∈H
|V dn ˜̀− EĎV

d
n
˜̀|

≤ wd sup
h∈H

∣∣∣Udn ˜̀− EĎU
d
n
˜̀
∣∣∣+ d−1∑

j=1

wj sup
h∈H

∣∣∣U jn ˜̀(j) − EĎU
j
n
˜̀(j)
∣∣∣ (∵ Lemma C.3)

≤ wd sup
h∈H
|Udn ˜̀− EĎU

d
n
˜̀|+ 2Bℓ

d−1∑
j=1

wj

≤ wd

sup
h∈H
|Ên ˜̀1|+

d∑
j=2

sup
h∈H
|U jn ˜̀j |

+ 2Bℓ

d−1∑
j=1

wj (∵ Lemma C.4)

= wd

sup
h∈H
|Ênd(˜̀∗ − EĎ

˜̀∗)|︸ ︷︷ ︸
Addressed in Lemma C.5

+

d∑
j=2

sup
h∈H
|U jn ˜̀j |︸ ︷︷ ︸

Addressed in Lemma C.6

+ 2Bℓ

d−1∑
j=1

wj .

where ˜̀
j are symmetric degenerate functions and ˜̀∗ is defined as in Remark C.2. Applying

Lemma C.5 to the first term and Lemma C.6 to the second term with the union bound, we ob-

tain the assertion.

In the last part of the proof we used the following lemmas. Because the leading term is an i.i.d.

sum, the following Rademacher complexity bound can be proved.

Lemma C.5 (U-process bound: the leading term). Assume Assumption C.2 holds. Then, we have

with probability at least 1− δ,

sup
h∈H
|Ên(˜̀∗ − EĎ

˜̀∗)| ≤ 2R(H) +Bℓ

√
log(2/δ)

2n
,

where R is defined in Definition C.1.

Proof. Applying the standard one-sided Rademacher complexity bound based on McDiarmid’s in-

equality [184, Theorem 3.3] twice with the union bound, we obtain the lemma.

The other terms than the leading term are degenerate U-statistics, hence the following holds

under appropriate entropy assumptions.

Lemma C.6 (U-process bound: degenerate terms [237, Corollary 7]). Assume Assumption C.7.

Then for each j = 2, . . . , d, there exist constants Cj such that for any δ ∈ (0, 1), we have with

probability at least 1− δ′/(d− 1),

sup
h∈H
|U jn ˜̀j | ≤

(d− 1)

δ′
Cjn

−j/2

where Cj depends only on A, V , and Bℓ.

Proof. The proof follows a similar path as that of [237, Corollary 7], but we provide more explicit

expressions to inspect the order with respect to n. Let Φ
(j)

H,F̂
:= {˜̀j : h ∈ H}. Then Φ

(j)

H,F̂
is Eu-

clidean for an envelope Fj satisfying Q̌
jF 2

j <∞ by Lemma 6 in Sherman [237] and Assumption C.7.

In addition, Φ
(j)

H,F̂
is a set of functions degenerate with respect to Q̌. Without loss of generality,
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we can take Fj such that Fj ≤ Bℓ. Similarly to the proof of [237, Corollary 4], we can apply [237,

Main Corollary] with p = 1 in their notation to obtain

EĎ sup
h∈H
|nj/2U jn ˜̀j | ≤ ΓA1/2m(Q̌jF 2

j )
(ϵ+α)/2 ≤ ΓA1/2m(Bℓ)

ϵ+α︸ ︷︷ ︸
=: Cj

where Γ is a universal constant [237, Main Corollary], ε ∈ (0, 1) and m are chosen to satisfy

1− V/2m > 1− ε, and α = 1− V/2m. By applying Markov inequality, we have for arbitrary u > 0,

PĎ

(
sup
h∈H
|nj/2U jn ˜̀j | > u

)
≤ Cj

u
,

where PĎ(E) denotes the probability of the event E with respect to Ď. Equating the right hand

side with δ′/(d− 1) and solving for u, we obtain the result.

C.4.7 Proof of Approximation Error Bound

(Proof of Lemma C.1). Due to Lemma C.3, we have

sup
h∈H

(
R(h)− ¯̌R(h)

)
= sup
h∈H

(
R(h)− EĎV

d
n
˜̀
)

= sup
h∈H

 d∑
j=1

wj(R(h)− EĎU
j
n
˜̀(j))


≤ wd sup

h∈H

(
R(h)− EĎU

d
n
˜̀(d)
)
+ 2Bℓ

d−1∑
j=1

wj︸︷︷︸
O(n−(d−j))

≤ wd sup
h∈H

(
R(h)− EĎU

d
n
˜̀(d)
)
+ 2BℓO(n−1)

By applying Lemmas C.7 (with j = d), we obtain

sup
h∈H

(
R(h)− EĎU

d
n
˜̀(d)
)
≤ sup
h∈H

∥∥∥`(F (h, ·))− `(h, F̂ (·))
∥∥∥
L1(q)

+ dBℓ ‖q − q̌‖L1 .

The right-hand side can be further bounded by applying Lemmas C.9 and C.8 by

BqLℓH

d∑
j=1

∥∥∥Fj − F̂j

∥∥∥
W1,1

+ dBℓ

(
(LqLF−1 +BqdC

′
1)

d∑
j=1

∥∥∥Fj − F̂j

∥∥∥
W1,1

+Bqκ2(F − F̂ )

)

≤ (BqLℓH + dBℓ(LqLF−1 +BqdC
′
1))

d∑
j=1

∥∥∥Fj − F̂j

∥∥∥
W1,1

+ dBℓBqκ2(F − F̂ )

and hence the assertion of the lemma.

The above proof combined three approximation bounds, which are shown in the following lem-

mas. The following lemma reduces the difference in the expectation of U-statistic into the differences

in the loss function and the density function. Although we apply the following Lemma C.7 only

with j = d, we prove its general form for j ∈ [d].

Lemma C.7 (Approximation bound for U-statistic of degree-j). Fix j ∈ [d]. Assume Assump-

tion C.2. Then we have for any h ∈ H,

R(h)− EĎU
j
n
˜̀(j) ≤

∥∥∥`(h,F (·))− `(h, F̂ (·))
∥∥∥
L1(q)

+ jBℓ ‖q − q̌‖L1
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Proof. Let us define a d-variate function `† and a j-variate function `†(j) (similarly to ˜̀ and ˜̀(j),

respectively) by

`†(s1, . . . , sd) :=
∑
π∈Sd

`(h,F (s
(1)
π(1), . . . , s

(d)
π(d))),

`†(j)(s1, . . . , sj) :=
∑
τ∈Gd

j

`†(sτ(1), . . . , sτ(d)).

Then, recalling Q ∈ Q, we can show R(h) = Qn(U jn`
†(j)) because

Qn(U jn`
†(j)) = Qn(

∑
ρ∈In

j

`†(j)(Sρ(1), . . . , Sρ(j)))

= Qn(
∑
ρ∈In

j

∑
τ∈Gd

j

`†(Sρ◦τ(1), . . . , Sρ◦τ(d)))

= Qn(
∑
ρ∈In

j

∑
τ∈Gd

j

∑
π∈Sd

`(h,F (S
(1)
ρ◦τ◦π(1), . . . , S

(d)
ρ◦τ◦π(d))))

=
∑
ρ∈In

j

∑
τ∈Gd

j

∑
π∈Sd

Qn`(h,F (S
(1)
ρ◦τ◦π(1), . . . , S

(d)
ρ◦τ◦π(d)))

=
∑
ρ∈In

j

∑
τ∈Gd

j

∑
π∈Sd

Q[`(h,F (S(1), . . . , S(d)))] (∵ Q ∈ Q)

=
∑
ρ∈In

j

∑
τ∈Gd

j

∑
π∈Sd

R(h) = R(h).

Combining this expression with Lemma C.3,

R(h)− EĎU
j
n
˜̀(j) = Qn(U jn`

†(j))− Q̌n(U jn ˜̀(j))
= Qn(U jn`

†(j) − U jn ˜̀(j))︸ ︷︷ ︸
A

+(Qn − Q̌n)(U jn ˜̀(j))︸ ︷︷ ︸
B

Now, A can be bounded from above as

A = Qn(Uj
nℓ

†(j) − Uj
nℓ̃

(j))

=
∑
ρ∈In

j

∑
τ∈Gd

j

∑
π∈Sd

Qn(ℓ(h,F (S
(1)
ρ◦τ◦π(1)

, . . . , S
(d)
ρ◦τ◦π(d)

))− ℓ(h, F̂ (S
(1)
ρ◦τ◦π(1)

, . . . , S
(d)
ρ◦τ◦π(d)

)))

=
∑
ρ∈In

j

∑
τ∈Gd

j

∑
π∈Sd

Q(ℓ(h,F (S(1), . . . , S(d)))− ℓ(h, F̂ (S(1), . . . , S(d)))) (∵ Q ∈ Q)

≤
∥∥∥ℓ(h,F (·))− ℓ(h, F̂ (·))

∥∥∥
L1(q)
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Then recalling Assumption C.2, we can bound B from above as

B = (Qn − Q̌n)(U jn ˜̀(j)) = (Qn − Q̌n)

∑
ρ∈In

j

˜̀(j)(Sρ(1), . . . , Sρ(j))


=
∑
ρ∈In

j

(Qn − Q̌n)
(
˜̀(j)(Sρ(1), . . . , Sρ(j))

)
= (Qj − Q̌j)(˜̀(j)(S1, . . . , Sj)) (∵ symmetry)

≤ Bℓ
∫ ∣∣∣∣∣

j∏
i=1

q(si)−
j∏
i=1

q̌(si)

∣∣∣∣∣ds1 · · · dsj
= Bℓ

∫ ∣∣∣∣∣
j∑
i=1

q(s1) · · · q(si−1) · (q(si)− q̌(si)) · q̌(si+1) · · · q̌(sj)

∣∣∣∣∣ds1 · · · dsj
≤ Bℓ

j∑
i=1

∫
q(s1) · · · q(si−1) · |q(si)− q̌(si)| · q̌(si+1) · · · q̌(sj)ds1 · · · dsj

= Bℓ

j∑
i=1

∫
|q(si)− q̌(si)|dsi = Bℓ · j ‖q − q̌‖L1 ,

which proves the assertion.

Now the following lemmas bound each approximation terms in terms of the difference between

F and F̂ .

Lemma C.8 (Loss difference evaluation). Assume Assumption C.5. Then we have for any h ∈ H,

∥∥∥`(h,F (·))− `(h, F̂ (·))
∥∥∥
L1(q)

≤ BqLℓH
d∑
j=1

∥∥∥Fj − F̂j

∥∥∥
W 1,1

Proof. ∥∥∥`(h,F (·))− `(h, F̂ (·))
∥∥∥
L1(q)

=

∫
|`(h,F (s))− `(h, F̂ (s))|q(s)ds

≤ Bq
∫
LℓH

∥∥∥F (s)− F̂ (s)
∥∥∥
ℓ2
ds

≤ BqLℓH
∫ ∥∥∥F (s)− F̂ (s)

∥∥∥
ℓ1
ds ≤ BqLℓH

d∑
j=1

∥∥∥Fj − F̂j

∥∥∥
W 1,1

.

Lemma C.9 (Density difference evaluation). Assume Assumptions C.2, C.3, and C.4. Then we

have

‖q − q̌‖L1 ≤ (LqLF−1 +BqdC
′
1)

d∑
j=1

∥∥∥Fj − F̂j

∥∥∥
W 1,1

+Bqκ2(F − F̂ )

where C ′
1 and κ2(F − F̂ ) are defined as in Lemma C.11.
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Proof. Since q̌(s) = q(F−1 ◦ F̂ (s))
∣∣∣(JF−1 ◦ F̂ )(s)

∣∣∣, we have

‖q − q̌‖L1 =

∫ ∣∣∣q(s)− q(F−1 ◦ F̂ (s))
∣∣∣(JF−1 ◦ F̂ )(s)

∣∣∣∣∣∣ds
≤
∫
|q(s)− q(F−1 ◦ F̂ (s))|ds+

∫
q(F−1 ◦ F̂ (s))

∣∣∣1− ∣∣∣(JF−1 ◦ F̂ )(s)
∣∣∣∣∣∣ ds

≤
∫
|q(s)− q(F−1 ◦ F̂ (s))|ds︸ ︷︷ ︸

(A)

+Bq

∫ ∣∣∣1− (JF−1 ◦ F̂ )(s)
∣∣∣ds︸ ︷︷ ︸

(B)

where the last line follows from the triangle inequality. Applying Lemma C.10 to (A) and

Lemma C.11 to (B) yields the assertion.

Lemma C.10. Assume Assumptions C.2 and C.3. Then,

∫
|q(s)− q(F−1 ◦ F̂ (s))|ds ≤ LqLF−1

d∑
j=1

∥∥∥Fj − F̂j

∥∥∥
W 1,1

Proof. We have∫
|q(s)− q(F−1 ◦ F̂ (s))|ds =

∫
|q(F−1 ◦ F (s))− q(F−1 ◦ F̂ (s))|ds

≤ LqLF−1

∫ ∥∥∥F (s)− F̂ (s)
∥∥∥
ℓ2
ds ≤ LqLF−1

∫ ∥∥∥F (s)− F̂ (s)
∥∥∥
ℓ1
ds

≤ LqLF−1

d∑
j=1

∥∥∥Fj − F̂j

∥∥∥
W 1,1

Lemma C.11 (Jacobian difference evaluation). Assume Assumptions C.2 and C.4. Then,

∫ ∣∣∣1− (JF−1 ◦ F̂ )(s)
∣∣∣ds ≤ dC ′

1

d∑
j=1

∥∥∥Fj − F̂j

∥∥∥
W 1,1

+ κ2(F − F̂ ),

where

C ′
m := (d+ 1)

7
2m−2

(
(B∞

∂F )
m

(
d∑
k=1

∥∥F−1
k

∥∥
C1,1

)m
+ (B∞

∂F−1)m

)
,

κ2(F − F̂ ) :=

d∑
m=2

(
d

m

)
C ′
m

d∑
j=1

∥∥∥Fj − F̂j

∥∥∥m
W 1,m

.

Proof. Applying Lemma C.12 with A := (JF−1 ◦ F )(s) = I, we obtain∫ ∣∣∣1− (JF−1 ◦ F̂ )(s)
∣∣∣ ds = ∫ ∣∣∣(JF−1 ◦ F )(s)− (JF−1 ◦ F̂ )(s)

∣∣∣ds
≤
∫ d∑

m=1

(
d

m

)∥∥∥∥∥dF−1 ◦ F
ds

(s)− dF−1 ◦ F̂
ds

(s)

∥∥∥∥∥
m

op

ds.
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Now, each term in the integrand can be bounded from above as∥∥∥∥∥dF−1 ◦ F
ds

(s)−
dF−1 ◦ F̂

ds
(s)

∥∥∥∥∥
op

=

∥∥∥∥∥
(
dF−1

dz
(F (s))

)(
dF

ds
(s)

)
−
(
dF−1

dz
(F̂ (s))

)(
dF̂

ds
(s)

)∥∥∥∥∥
op

≤
∥∥∥∥(dF−1

dz
(F (s))−

dF−1

dz
(F̂ (s))

)(
dF

ds
(s)

)∥∥∥∥
op

+

∥∥∥∥∥
(
dF−1

dz
(F̂ (s))

)(
dF

ds
(s)−

dF̂

ds
(s)

)∥∥∥∥∥
op

≤
∥∥∥∥dF−1

dz
(F (s))−

dF−1

dz
(F̂ (s))

∥∥∥∥
op

∥∥∥∥dFds (s)

∥∥∥∥
op

+

∥∥∥∥dF−1

dz
(F̂ (s))

∥∥∥∥
op

∥∥∥∥∥dFds (s)−
dF̂

ds
(s)

∥∥∥∥∥
op

(∵ submultiplicativity [89, Section 2.3.2])

≤
∥∥∥∥dF−1

dz
(F (s))−

dF−1

dz
(F̂ (s))

∥∥∥∥
op

(
d ·
∥∥∥∥dFds (s)

∥∥∥∥
∞

)
+

(
d ·
∥∥∥∥dF−1

dz
(F̂ (s))

∥∥∥∥
∞

)∥∥∥∥∥dFds (s)−
dF̂

ds
(s)

∥∥∥∥∥
op

(∵ ∥·∥op ≤ d ∥·∥∞ [89, Section 2.3.2])

≤
∥∥∥∥dF−1

dz
(F (s))−

dF−1

dz
(F̂ (s))

∥∥∥∥
op

· (dB∞
∂F ) +

(
dB∞

∂F−1

)
·

∥∥∥∥∥dFds (s)−
dF̂

ds
(s)

∥∥∥∥∥
op

≤ dB∞
∂F

√
d

∥∥∥∥dF−1

dz
(F (s))−

dF−1

dz
(F̂ (s))

∥∥∥∥
op(1)

+ dB∞
∂F−1

√
d

∥∥∥∥∥dFds − dF̂

ds

∥∥∥∥∥
op(1)

(∵ ∥·∥op ≤
√
d ∥·∥op(1) [89, Section 2.3.1])

= d
3
2B∞

∂F max
k∈[d]

d∑
j=1

∣∣∣∣∣∂F
−1
j

∂zk
(F (s))−

∂F−1
j

∂zk
(F̂ (s))

∣∣∣∣∣+ d
3
2B∞

∂F−1 max
k∈[d]

d∑
j=1

∣∣∣∣∣∂Fj

∂sk
(s)−

∂F̂j

∂sk
(s)

∣∣∣∣∣
≤ d

3
2B∞

∂F max
k∈[d]

d∑
j=1

∥∥∥F−1
j

∥∥∥
C1,1

∥∥∥F (s)− F̂ (s)
∥∥∥
ℓ2

+ d
3
2B∞

∂F−1

d∑
k=1

d∑
j=1

∣∣∣∣∣∂Fj

∂sk
(s)−

∂F̂j

∂sk
(s)

∣∣∣∣∣
≤ d

3
2B∞

∂F

 d∑
j=1

∥∥∥F−1
j

∥∥∥
C1,1

∥∥∥F (s)− F̂ (s)
∥∥∥
ℓ1

+ d
3
2B∞

∂F−1

d∑
k=1

d∑
j=1

∣∣∣∣∣∂Fj

∂sk
(s)−

∂F̂j

∂sk
(s)

∣∣∣∣∣
(∵ ∥·∥ℓ2 ≤ ∥·∥ℓ1 [89, Section 2.2.2]).

When powered to m, this yields∥∥∥∥∥dF−1 ◦ F
ds

(s)− dF−1 ◦ F̂
ds

(s)

∥∥∥∥∥
m

op

≤ (d2 + d)m−1

[ d∑
j=1

(
d3/2B∞

∂F

(
d∑
k=1

∥∥F−1
k

∥∥
C1,1

)
|Fj(s)− F̂j(s)|

)m

+

d∑
k=1

d∑
j=1

(
d3/2B∞

∂F−1

∣∣∣∣∣∂Fj∂sk
(s)− ∂F̂j

∂sk
(s)

∣∣∣∣∣
)m]

where we used (
∑L
i=1 ai)

m ≤ Lm−1(
∑L
i=1 a

m
i ) for ai ≥ 0, which follows from Hölder inequality.
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Hence,

∫ ∥∥∥∥∥dF−1 ◦ F
ds

(s)− dF−1 ◦ F̂
ds

(s)

∥∥∥∥∥
m

op

ds

≤ d 5
2m−1(d+ 1)m−1

[(
B∞
∂F

d∑
k=1

∥∥F−1
k

∥∥
C1,1

)m d∑
j=1

∫
|Fj(s)− F̂j(s)|mds

+ (B∞
∂F−1)m

d∑
j=1

(
d∑
k=1

∫ ∣∣∣∣∣∂Fj∂sk
(s)− ∂F̂j

∂sk
(s)

∣∣∣∣∣
m

ds

)]

≤ (d+ 1)
7
2m−2

(
(B∞

∂F )
m

(
d∑
k=1

∥∥F−1
k

∥∥
C1,1

)m d∑
j=1

∥∥∥Fj − F̂j

∥∥∥m
W 1,m

+ (B∞
∂F−1)m

d∑
j=1

∥∥∥Fj − F̂j

∥∥∥m
W 1,m

)

≤ C ′
m

d∑
j=1

∥∥∥Fj − F̂j

∥∥∥m
W 1,m

.

Therefore, ∫ ∣∣∣1− (JF−1 ◦ F̂ )(s)
∣∣∣ds

≤
d∑

m=1

(
d

m

)∫ ∥∥∥∥∥dF−1 ◦ F
ds

(s)− dF−1 ◦ F̂
ds

(s)

∥∥∥∥∥
m

op

ds

≤ dC ′
1

d∑
j=1

∥∥∥Fj − F̂j

∥∥∥
W 1,1

+

d∑
m=2

(
d

m

)
C ′
m

d∑
j=1

∥∥∥Fj − F̂j

∥∥∥m
W 1,m︸ ︷︷ ︸

κ2(F − F̂ )

Lemma C.11 used the following lemma to bound the difference in Jacobian determinants.

Lemma C.12 (Determinant perturbation bound [129, Corollary 2.11]). Let A and E be d × d

complex matrices. Then,

|det(A)− det(A+ E)| ≤
d∑

m=1

(
d

m

)
‖A‖d−mop ‖E‖mop .

C.4.8 Comparison of Rademacher Complexities

The following consideration demonstrates how the effective complexity measure R in Theorem C.1

resulting from the proposed method may enjoy a relaxed dependence on the input dimensionality

compared to the ordinary empirical risk minimization. To do so, we first recall the definition of the

ordinary Rademacher complexity and a standard performance guarantee derived based on it.

Definition C.2 (Ordinary Rademacher complexity). The ordinary empirical risk minimization

finds the candidate hypothesis by

ĥ ∈ argmin
h∈H

R̂(h),
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where

R̂(h) := 1

n

n∑
i=1

`(h,Zi) =
1

n

n∑
i=1

`(h, F̂ (S
(1)
i , . . . , S

(d)
i ))

and the corresponding ordinary Rademacher complexity Rord(H) is

Rord(H) :=
1

n
EĎEσ

[
sup
h∈H

∣∣∣∣∣
n∑
i=1

σi`(S
(1)
i , . . . , S

(d)
i )

∣∣∣∣∣
]

where {σi}ni=1 are independent uniform sign variables and we denoted

`(s(1), . . . , s(d)) = `(h, F̂ (s(1), . . . , s
(d)
i ))

by abuse of notation. This yields the standard Rademacher complexity based bound. Applying

Lemma C.5 and using the same proof technique, we have that with probability at least 1− δ,

R(ĥ)−R(h∗) ≤ 2 sup
h∈H
|R(h)− R̂(h)| ≤ 4Rord(H) + 2Bℓ

√
log(2/δ)

2n
.

Therefore, we the corresponding complexity terms are Rord(H) and dR(H). In Remark C.3, we
make a comparison of these two complexity measures by taking an example. To recall, the effective
Rademacher complexity can be written as, in terms of the notation in this section,

R(H) =
1

n
EĎEσ

[
sup
h∈H

∣∣∣∣∣
n∑

i=1

σiES′
2,...,S

′
d
ℓ̃(Si, S

′
2, . . . , S

′
d)

∣∣∣∣∣
]

=
1

n
EĎEσ

[
sup
h∈H

∣∣∣∣∣
n∑

i=1

σiES′
1,...,S

′
d

1

d

(
ℓ(S

(1)
i , S

′(2)
2 , . . . , S

′(d)
d ) + · · ·+ ℓ(S

′(1)
1 , S

′(2)
2 , . . . , S

(d)
i )

)∣∣∣∣∣
]

Remark C.3 (Comparison of Radmacher complexities). As an example, consider H, the set of L-

Lipschitz functions (with respect to infinity norm) on the unit cube [0, 1]m. It is well-known that

there exists a constant C > 0 such that the following holds [286, Example 5.10, p.129] for sufficiently

small t > 0:

logN (t,H, ‖·‖∞) � (C/t)m. (C.6)

Here, a(t) � b(t) indicates that there exist k1, k2 > 0 such that, for sufficiently small t, it holds

that k1b(t) ≤ a(t) ≤ k2b(t). On the other hand, the well-known discretization argument implies

that there exist constants c and B such that for any t ∈ (0, B], the following relation between the

Rademacher complexity and the metric entropy holds:

Rord(H) ≤ t+ c

√
logN (t,H, ‖·‖∞)

n
. (C.7)

Substituting Equation (C.6) into Equation (C.7), we can find that, for large enough n, the right

hand side is minimized at t = (c · C m
2 · m2 )

2
2+m · n−

1
2+m . This yields

Rord(H) ≤ C̃ · n−
1

2+m (C.8)

with a new constant C̃ =
(
c · C m

2 · m2
) 2

2+m + c · C m
2

(
c · C m

2 · m2
)− m

2+m . Therefore, by substituting

m = d in Equation (C.8), the metric-entropy based bound on the ordinary Rademacher complexity
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exhibits exponential dependence on the input dimension as

Rord(H) ≤ O
(
n−

1
2+d

)
,

which is a manifestation of the curse of dimensionality. On the other hand, by following a simi-

lar calculation, we can see that the effective Rademacher complexity R(H) avoids an exponential

dependence on the input dimension d. By substituting m = 1 in Equation (C.8), we can see

dR(H) ≤ Rord(H1) + · · ·+Rord(Hd) ≤ O
(
n−

1
3

)
,

where Hj := {ES′
1,...,S

′
d
h(S′

1
(1)
, . . . , S′

j−1
(j−1)

, (·)(j), S′
j+1

(j+1)
, . . . , S′

d
(d)

) : h ∈ H}. This is because

the Lipschitz constant of functions in Hj is at most L (i.e., the Lipschitz constant does not increase
by the marginalization procedure) because for any h ∈ Hj ,

|h(x) − h(y)|

= |ES′
1,...,S′

d
[h(S

′(1)
1 , . . . , S

′(j−1)
j−1 , x, S

′(j+1)
j+1 , . . . , S

′(d)
d ) − h(S

′(1)
1 , . . . , S

′(j−1)
j−1 , y, S

′(j+1)
j+1 , . . . , S

′(d)
d )]|

≤ ES′
1,...,S′

d
|h(S′(1)

1 , . . . , S
′(j−1)
j−1 , x, S

′(j+1)
j+1 , . . . , S

′(d)
d ) − h(S

′(1)
1 , . . . , S

′(j−1)
j−1 , y, S

′(j+1)
j+1 , . . . , S

′(d)
d )|

≤ ES′
1,...,S′

d
L · ∥(S′(1)

1 , . . . , S
′(j−1)
j−1 , x, S

′(j+1)
j+1 , . . . , S

′(d)
d ) − (S

′(1)
1 , . . . , S

′(j−1)
j−1 , y, S

′(j+1)
j+1 , . . . , S

′(d)
d )∥

= ES′
1,...,S′

d
L · ∥(0, . . . , 0, x− y, 0, . . . , 0)∥

= L · |x− y|.

C.4.9 Remark on Higher-order Sobolev Norms

Here, we comment on how the term κ2(F − F̂ ) is treated as a higher order term of F − F̂ .

Remark C.4 (Higher order Sobolev norms). Let us assume that supp(q)∪ supp(q̌) is contained in a

compact set S̃ for all F̂ considered. Note that for m ∈ [d],

∫
S̃
|h(s)|mds ≤ (VS̃)

m
m−d

(∫
S̃
|h(s)|dds

)m/d
by Hölder ’s inequality, where we defined VS̃ :=

∫
S̃ 1ds, hence we have ‖·‖Lm(S̃) ≤ (VS̃)

1
m−d ‖·‖Ld(S̃).

By applying the relation to each term in the definition of ‖·‖W 1,m , we obtain

‖f‖mW 1,m ≤ (VS̃)
m

m−d ‖f‖mW 1,d

Thus we obtain

κ2(F − F̂ ) =

d∑
m=2

(
d

m

)
C ′
m

d∑
j=1

∥∥∥Fj − F̂j

∥∥∥m
W 1,m

≤
d∑

m=2

(
d

m

)
(VS̃)

m
m−dC ′

m

d∑
j=1

∥∥∥Fj − F̂j

∥∥∥m
W 1,d

≤ O

 d∑
j=1

∥∥∥Fj − F̂j

∥∥∥2
W 1,d

 (F̂ → F ).

By also replacing
∑d
j=1

∥∥∥Fj − F̂j

∥∥∥
W 1,1

with
∑d
j=1

∥∥∥Fj − F̂j

∥∥∥
W 1,d

in Theorem C.1, we can see more

clearly that κ2(F − F̂ ) is a higher order term of
∑d
j=1

∥∥∥Fj − F̂j

∥∥∥
W 1,d

.
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C.5 Details and Proofs of Theorem 4.1

Here, we provide the proof of Theorem 4.1. We reuse the notation and terminology from Section C.4.

We prove the uniformly minimum variance property of the proposed risk estimator under the ideal

situation of F̂ = F .

Theorem C.2 (Known causal mechanism case). Assume F̂ = F . Then, for all h ∈ H, we have

that Ř(h) is the uniformly minimum variance unbiased estimator of R(h). As a special case, it

has a smaller variance than the ordinary empirical risk estimator: ∀q ∈ Q,∀h ∈ H,Var(Ř(h)) ≤
Var(R̂(h)).

Proof. The proof is a result of the following two facts. When q̌ ∈ Q, the estimator Ř(h) becomes

the generalized U-statistic of the statistical functional Equation (C.3). Furthermore, when F̂ = F ,

Equation (C.3) coincides withR(h) because the approximation error is zero. Since we assume F̂ = F

we have q̌ = q ∈ Q and hence both of the statements above hold. Therefore, by Lemma C.13, the

first assertion of the theorem follows. The last assertion of the theorem follows as a special case as

R̂(h) is an unbiased estimator of R(h) for q ∈ Q.
From here, we confirm the above statements by calculation. We first show that Ř(h) is the

generalized U-statistic. To see this, observe that the statistical functional Equation (C.3) allows the

following expression given q̌ ∈ Q:∫
˜̀(s1, . . . , sd)q̌(s1) · · · q̌(sd)ds1 · · · dsd

=

∫ ∑
π∈Sd

`(h, F̂ (s
(1)
π(1), . . . , s

(d)
π(d)))q̌(s1) · · · q̌(sd)ds1 · · · dsd

=

∫ ∑
π∈Sd

`(h, F̂ (s
(1)
π(1), . . . , s

(d)
π(d)))

∏
j

q̌(j)(s
(j)
1 ) · · ·

∏
j

q̌(j)(s
(j)
d )ds1 · · · dsd

=

∫ ∑
π∈Sd

`(h, F̂ (s
(1)
1 , . . . , s

(d)
1 ))

∏
j

q̌(j)(s1)ds1

=

∫
`(h, F̂ (s(1), . . . , s(d)))q̌1(s

(1)) · · · q̌d(s(d))ds(1) · · · ds(d).

This is a regular statistical functional of degrees (1, . . . , 1), where the kernel is `(h, F̂ (·, . . . , ·)). On

the other hand, we have

Ř(h) = 1

nd

∑
(i1,...,id)∈[n]d

˜̀(Si1 , . . . , Sid) =
1

nd

∑
(i1,...,id)∈[n]d

`(h, F̂ (S
(1)
i1
, . . . , S

(d)
id

))

because the summations run through all combinations with replacement. This combined with the

fact that {S(d)
i }i,d are jointly independent when q̌ ∈ Q yields that Ř(h) is the generalized U-statistic

for Equation (C.3).



C.6. Further Comparison with Related Work 149

Now we show that Equation (C.3) coincides R(h). Given F̂ = F , we have

R(h) =
∫
q(s)`(h,F (s))ds

=

∫
q(s)`(h, F̂ (s))ds (By F = F̂ .)

=

∫
q1(s

(1)) · · · qd(s(d))`(h, F̂ (s(1), . . . , s(d)))ds(1) · · · ds(d) (by q ∈ Q)

=

∫
q̌1(s

(1)) · · · q̌d(s(d))`(h, F̂ (s(1), . . . , s(d)))ds(1) · · · ds(d) (by q = q̌)

=

∫
˜̀(s1, . . . , sd)q̌(s1) · · · q̌(sd)ds1 · · · dsd. (∵ symmetry)

The following well-known lemma states that a generalized U-statistic is a uniformly minimum

variance unbiased estimator.

Lemma C.13 (Uniformly minimum variance property of a generalized U-statistic). Let θ : Q → R
be a regular statistical functional with kernel ψ : Rk1 × · · · × RkL → R [48], i.e.,

θ(q) =

∫
ψ((x

(1)
1 , . . . , x

(1)
k1

), . . . , (x
(L)
1 , . . . , x

(L)
kL

))

k1∏
j=1

q1(x
(1)
j )x.

(1)
j · · ·

kL∏
j=1

qL(x
(L)
j )x.

(L)
j .

Given samples {x(l)i }
nl
i=1

i.i.d.∼ ql(nl ≥ kl and l = 1, . . . , L), let GU
(k1,...,kL)
(n1,...,nL)ψ be the corresponding

generalized U-statistic

GU
(k1,...,kL)
(n1,...,nL)ψ :=

1∏
l

(
nl

kl

) ∑ψ

((
x
(1)

i
(1)
1

, . . . , x
(1)

i
(1)
k1

)
, . . . ,

(
x
(L)

i
(L)
1

, . . . , x
(L)

i
(L)
kL

))
.

where
∑

is a summation over all possible combinations (without replacement) of the indices. Then,

GU
(k1,...,kL)
(n1,...,nL)ψ is the uniformly minimum variance unbiased estimator of θ on Q.

Proof. The assertion can be proved in a parallel manner as the proof of [162, Section 1.1, Lemma B]

Remark C.5 (Relation to the UMVUE property of R̂(h)). The result in Theorem C.2 is not contra-

dictory to the fact that the sample average R̂(h) is a U-statistic of degree-1 and hence the minimum

variance among all unbiased estimator of R(h) on P, where P is a set of distributions containing all

absolutely continuous distributions [162]. Specifically, Ř(h) is not generally an unbiased estimator

of R(h) on P \Q, even if F̂ = F . While Ř(h) satisfies the d-sample symmetry condition, the same

does not hold for R̂(h). By restricting the attention to Q, the estimator Ř(h) achieves a smaller

variance than R̂(h).

C.6 Further Comparison with Related Work

Here, we provide an additional detailed comparison with the related work to complement Section 4.6

of the main text.

C.6.1 Comparison with Magliacane et al. [176]

Magliacane et al. [176] considered domain adaptation among different interventional states by us-

ing SCMs. Their problem setting and ours do not strictly include each other (the two settings
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are somewhat complementary), and their assumption may be more suitable for application fields

with interventional experiments such as genomics, while ours may be more suited for fields with

observational data such as health record analysis [304] or economics [253]. At the methodological

level, Magliacane et al. [176] takes a variable selection approach to find a subset so that the con-

ditional distribution is invariant, whereas this chapter takes a data augmentation approach via the

estimation of the SEMs (in the reduced form).

The essential assumptions of Magliacane et al. [176] are the existence of a separating set (with

small “incomplete information bias”) and the identifiability of such a set (yielded from Proposition 1,

Assumption 1, and Assumption 2 (iii) in Magliacane et al. [176]). A particularly plausible application

conforming to the assumptions is, for example (but not limited to), genomics experiments. Part

of the reason is that Assumption 2 (ii) and (iii) of Magliacane et al. [176] are likely to hold for

well-targeted experiments. The following is a detailed comparison.

(1) Modeling assumption and problem setup. The two problem settings do not strictly

include one another, and they are of complementing relations where ours corresponds to the

intervention-free case and Magliacane et al. [176] corresponds to the intervention case. If we try to

express the problem setting of Magliacane et al. [176] within our formulation, we would be expressing

the interventions as alterations to the SEMs. We assume that such alterations do not occur in our

setting since our focus is on observational data; therefore, the problem formulation of Magliacane

et al. [176] is not a subset of ours. On the other hand, if we try to express our problem setting within

the formulation of Magliacane et al. [176], our problem setup would only have C1 as the context

variable, and C1 would be a parent of all observed variables, e.g., C1 switches the distribution of

S by switching different quantile functions to perform inverse transform. This potentially allows

the existence of the effect C1 → Y and diverges from Assumption 2 (iii) in Magliacane et al. [176].

Also, even if such an edge does not exist, it is acceptable that there are no separating sets (in the

extreme case) if Y is a parent of all Xi’s. In this case, conditioning on any of Xi’s would result in

making C1 and Y dependent. From this consideration, our problem setting is not a subset of that

of Magliacane et al. [176], either.

(2) Plausible applications. The problem setup of Magliacane et al. [176] is suitable especially

for applications in which various experiments are conducted such as genomics [176], whereas our

problem setting may be more suitable for some fields with observational data such as health record

analysis [304] or economics [253].

(3) Methodology. Our proposed method actually estimates the SEMs (though in the reduced-

form) and exploits the estimated SEMs in the domain adaptation algorithm. In fact, directly using

the estimated SEMs as a tool to realize domain adaptation can be seen as the first attempt to fully

leverage the structural causal models in the DA algorithm. On the other hand, Magliacane et al.

[176] approaches the problem of domain adaptation via variable selection to find a subset so that

the conditional distribution is invariant.

C.6.2 Comparison with Gong et al. [90]

In the present paper, we assumed an invariance of structural equations between domains. Here,

we clarify the difference from a related but different assumption considered by Causal Generative

Domain Adaptation Network (CG-DAN; [90]).

(1) Problem setup. Gong et al. [90] presumes the anticausal scenario (i.e., Y is the cause of

X) and that X given Y follows a structural equation model, whereas this chapter considers more



C.6. Further Comparison with Related Work 151

general SEMs of X and Y .

(2) Theoretical justification. The approach of Gong et al. [90] does not have a theoretical

guarantee in terms of the identifiability of F , i.e., there has been no known theoretical condition

under which the learned generator is applicable across different domains. On the other hand, our

method enjoys a strong theoretical justification of nonlinear ICA including the identifiability of F

under known theoretical conditions.

(3) Methodology. The method of Gong et al. [90] estimates the GCM of X given Y using source

domain data and uses it to design a generator neural network. On the other hand, we more directly

exploit the estimated reduced-form SEM in the method.

C.6.3 Comparison with Arjovsky et al. [8]

Arjovsky et al. [8] proposed invariant risk minimization (IRM) for the out-of-distribution (OOD)

generalization problem. The IRM approach tries to learn a feature extractor that makes the optimal

predictor invariant across domains, and its theoretical validity is argued based on SCMs. Here, we

compare it with the present work in terms of the problem setup, theoretical justification, and the

methodology.

(1) Basic assumption and problem setup. The OOD generalization problem tackled in Ar-

jovsky et al. [8] assumes no access to the target domain data. In this respect, the problem is different

and intrinsically more difficult than the one considered in this paper, where a small labeled sample

from the target domain is assumed to be available. In order to solve the OOD generalization prob-

lem, in a nutshell, Arjovsky et al. [8] essentially assumes the existence of a feature extractor that

elicits an invariant predictor, i.e., one that makes the optimal predictors of the different domains

to be identical after the feature transformation. This can be seen as a variant of the representation

learning approach for domain adaptation where we assume there exists T such that p(Y |T (X)) is

invariant across domains. Indeed, for example, when the loss function is the cross-entropy, the con-

dition corresponds to the invariance of P (Y |T (X)) across domains [8]. More technically, in addition,

[8, Definition 7(ii)] requires the condition E1[Y |Pa(Y )] = E2[Y |Pa(Y )], which can be violated when

the latent factors corresponding to Y have different distributions across domains. On the other

hand, our assumption can be seen as the existence of a feature extractor that can simultaneously

estimate the independent components in all domains, which does not necessarily imply the existence

of a common feature transformer that induces a unique optimal predictor.

(2) Theoretical justification. Arjovsky et al. [8] formulated a condition under which the IRM

principle leads to an appropriate predictor for OOD generalization, but only under a certain lin-

earity assumption which is essentially a relaxation of linear SEMs. Furthermore, in the theoretical

guarantee, the feature extractor is restricted to be linear. In addition, Arjovsky et al. [8] only

provides the population-level analysis that the solution of the IRM objective formulated using the

underlying distributions enjoys OOD generalization, and it does not discuss the condition under

which the ideal feature extractor can be properly estimated by the empirical IRM. The requirement

for the strong assumption of linearity likely stems from the intrinsic difficulty of the OOD problem

in Arjovsky et al. [8], namely, its formulation does not assume specific types of interventions. On

the other hand, our method enjoys a stronger theoretical guarantee of an excess risk bound without

such parametric assumptions on the models or the data-generating process, by focusing on the case

that the causal mechanisms are indifferent across the domains.
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(3) Methodology. The methodology of IRM estimates a single predictor that generalizes well to

all domains by finding a feature extractor that makes the predictor optimal in all domains. The

approach shares the same spirit as the representation learning approaches to domain adaptation,

which try to find a feature extractor that induces invariant conditional distributions, such as transfer

component analysis [196]. On the other hand, our method estimates the SEMs (in the reduced-form)

and exploits it to make the training on the few target domain data more efficient through data

augmentation.
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Appendix D

Appendices for Chapter 5

Table D.1 summarizes the abbreviations and the symbols used in the chapter. Figure D.1 depicts

the relations among the notions of universalities appearing in Chapter 5 and how they are connected

by the sections in this Appendix.

Table D.1: List of abbreviations and symbols used in the chapter.

Abbreviation/Notation Meaning

CF-INN Invertible neural networks based on coupling flows
IAF Inverse autoregressive flow
DSF Deep sigmoidal flow
SoS Sum-of-squares polynomial flow
MLP Multi-layer perceptron

CF, hk,τ,θ Coupling flow
ACF, Ψk,s,t Affine coupling flow
H Set of functions from Rd−1 to R
H-ACF,Ψd−1,s,t H-single-coordinate ACFs (s, t ∈ H)
Aff Set of invertible affine transformations
GL Set of invertible linear transformations

G Generic notation for a set of invertible functions
INNG Set of invertible neural networks based on G
D2 C2-diffeomorphisms with C2-diffeomorphic domains
T ∞ C∞-increasing triangular maps
Src Cr-single-coordinate transformations

Diff2
c Group of compactly-supported

C2-diffeomorphisms (on Rd)

‖·‖ Euclidean norm
‖·‖op Operator norm

‖·‖p,K Lp-norm (p ∈ [1,∞)) on a subset K ⊂ Rd
‖·‖sup,K Supremum norm on a subset K ⊂ Rd
1A(·) Indicator (characteristic) function of A

D.1 Proof of Lemma 5.1: From Lp-universality to Distribu-

tional Universality

Here, we prove Lemma D.1, which corresponds to Lemma 5.1 in the main text.
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Lp-univ.
for D2

Lp-univ.
for Diff2

c

Lp-univ.
for S∞

c

Lp-univ.
for T ∞

Distributional
universality

sup-univ.
for T ∞

sup-univ.
for S∞

c

sup-univ.
for Diff2

c

sup-univ.
for D2

Functional

universality

S.C.

Section D.2.1

+ D.6

S.C.

S.C.

Sections D.2.2,D.3

+ D.6

S.C.

Section D.1

S.C.Sections D.2.2,D.3

+ D.6

S.C.

S.C.

S.C.

Section D.2.1

+ D.6

INNDSF,
INNSoS

INNH-ACF

Section D.7

Section D.4

Figure D.1: Informal diagram of the relations among propositions and lemmas connecting them.
Here, p ∈ [1,∞). S.C. stands for “special case” and indicates that the notion of universality implies
the other as a special case. DSF stands for deep sigmoidal flow, and SoS stands for sum-of-squares
polynomial flow.
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First, note that the larger p, the stronger the notion of Lp-universality: if a model M is an

Lp-universal approximator for F , it is also an Lq-universal approximator for F for all 1 ≤ q ≤ p. In
particular, we use this fact with q = 1 in the following proof.

Lemma D.1 (Lemma 5.1 in the main text). Let p ∈ [1,∞). Suppose M is an Lp-universal

approximator for T ∞. ThenM is a distributional universal approximator.

Proof. We denote by BL1 the set of bounded Lipschitz functions f : Rd → R satisfying ‖f‖sup,Rd +

Lf ≤ 1, where Lf denotes the Lipschitz constant of f . Let µ, ν be absolutely continuous probability

measures, and take any ε > 0. By Theorem 11.3.3 in [65], it suffices to show that there exists g ∈M
such that

β(g∗µ, ν) := sup
f∈BL1

∣∣∣∣∫
Rd

f dg∗µ− f dν
∣∣∣∣ < ε.

Let p, q ∈ L1(Rd) be the density functions of µ and ν respectively. Let φ ∈ L1(Rd) be a positive

C∞-function such that
∫
Rd φ(x)dx = 1 (for example, Gaussian distribution), and for t > 0, put

φt(x) := t−dφ(x/t). We define µt := φt ∗ pdx and νt := φt ∗ qdx. Since both ‖φt ∗ p − p‖1,Rd

and ‖φt ∗ q − q‖1,Rd converge to 0 as t → 0, there exists t0 > 0 such that for any continuous map

G : Rd → Rd,∣∣∣∣∫
Rd

f dG∗µt0 − f dG∗µ

∣∣∣∣ < ‖f‖sup,Rd ε

5
,

∣∣∣∣∫
Rd

f dνt0 − f dν
∣∣∣∣ < ‖f‖sup,Rd ε

5
.

By using Lemma D.2 below, there exists T ∈ T ∞ such that T∗µt0 = νt0 . Let K ⊂ Rd be a compact

subset such that

1− µt0(K) <
ε

5
.

By the assumption, there exists g ∈M such that∫
K

|T (x)− g(x)|dx < ε

5 supx∈K |φt0 ∗ p(x)|
.

Thus for any f ∈ BL1, we have∣∣∣∣∫
Rd

f dg∗µ− f dν
∣∣∣∣

≤
∣∣∣∣∫

Rd

f dg∗µt0 − f dg∗µ
∣∣∣∣+ ∣∣∣∣∫

Rd

f dνt0 − f dν
∣∣∣∣

+

∣∣∣∣∣
∫
Rd\K

f ◦ T dµt0

∣∣∣∣∣+
∣∣∣∣∣
∫
Rd\K

f ◦ g dµt0

∣∣∣∣∣+
∫
K

|f(T (x))− f(g(x))| dµt0(x)

<
‖f‖sup,Rd ε

5
+
‖f‖sup,Rd

5
+
‖f‖sup,Rd ε

5
+
‖f‖sup,Rd ε

5
+
Lfε

5

≤ ε,

where Lf is the Lipschitz constant of f . Here we used ‖f‖sup,Rd + Lf ≤ 1. Therefore, we have

β(g∗µ, ν) < ε.

The following lemma is essentially due to [120].

Lemma D.2. Let µ be a probability measure on Rd with a C∞ density function p. Let U := {x ∈
Rd : p(x) > 0}. Then there exists a diffeomorphism T : U → (0, 1)d such that its Jacobian is

upper triangular matrix with positive diagonal, and T∗µ = U(0, 1)d. Here, U(0, 1)d is the uniform

distribution on [0, 1]d.
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Proof. Let qi(x1, . . . , xi) :=
∫
Rd−i p(x1, . . . , xi+1, . . . , xd) dxi+1 . . . dxd. Then we define T : U →

(0, 1)d by

T (x1, . . . , xd) :=

(∫ xi

−∞

qi(x1, . . . , xi−1, y)

qi−1(x1, . . . , xi−1)
dy

)
i

.

Then we see that T is a diffeomorphism and its Jacobian is upper triangular with positive diagonal

elements. Moreover, by a direct computation, we have T∗dµ = U(0, 1).

We include a proof for the statement that that any probability measure on Rm is arbitrarily

approximated by an absolutely continuous probability measure in the weak convergence topology:

Lemma D.3. Let µ be an arbitrary probability measure of Rm. Then there exists a sequence {µn}∞n=1

of absolutely continuous probability measures such that µn weakly converges to µ.

Proof. Let φ be a positive bounded C∞ function such that
∫
Rm φ(x)dx = 1. For t > 0, put

φt(x) := t−mφ(x/t). We define

wt(x) =

∫
Rm

φt(x− y)dµ(y).

We prove the absolutely continuous measure wtdx weakly converges to µ as t→ 0. In fact, for any

bounded continuous function f , we have∣∣∣∣∫
Rm

fwtdx−
∫
fdµ

∣∣∣∣ = ∣∣∣∣∫ ∫
Rm

(f(y + tx)− f(y))φ(x)dxdµ(y)
∣∣∣∣

≤
∫ ∫

Rm

|f(y + tx)− f(y)|φ(x)dxdµ(y).

Since f is bounded and φ is absolutely integrable, by the dominated convergence theorem, as t→ 0,

we have ∫
Rm

fwtdx→
∫
fdµ,

namely, wtdx weakly converges to µ.

D.2 Proof of Theorem 5.1: Equivalence of Universality

Properties

In this section, we provide the proof details of Theorem 5.1 in the main text. Section D.2.1 explains

the reduction from D2 to Diff2
c , and Section D.2.2 explains the reduction from Diff2

c to S∞c and

permutations of variables.

Here, we formally repost the proof of Theorem 5.1 which has been essentially completed in

Section 5.4.1.

Proof of Theorem 5.1. Since we have S∞c ⊂ T ∞ ⊂ D2, it is sufficient to prove that the universal

approximation properties for S∞ imply those for D2. Therefore, we focus on describing the reduction

from D2 to S∞c . First, by combining Lemma D.9 with the Lp-universality (in the case A) or the

sup-universality (in the case B) of INNG for S∞c , we obtain the Lp-universal (resp. sup-universal)

approximation property for S2c . Now, in light of Lemma D.4 and Theorem D.1, we obtain the

assertion of Theorem 5.4 in the main text, i.e., for any f ∈ D2 and compact subset K ⊂ Uf , there

exist W1, . . . ,Wr ∈ Aff and τ1, . . . , τr ∈ S2c and b ∈ Rd such that f(x) = W1 ◦ τ1 ◦ · · · ◦Wr ◦ τr(x)
for all x ∈ K. Given this decomposition, we combine the Lp-universality (in the case A) or the

sup-universality (in the case B) of INNG for S2c with Proposition D.3 to obtain the assertion of

Theorem 5.1.
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D.2.1 From D2 to Diff2
c

In this section, we describe how the approximation of D2 is reduced to that of Diff2
c when we are

only concerned with its approximation on a compact set.

Lemma D.4. Let f : U → Rd be an element of D2, and let K ⊂ U be a compact set. Then, there

exists h ∈ Diff2
c and an affine transform W ∈ Aff such that

W ◦ h|K = f |K .

Proof of Lemma D.4. We denote the injections of U and f(U) into Rd by ι1 : U ↪→ Rd and

ι2 : f(U) ↪→ Rd, respectively. Since U is C2-diffeomorphic to Rd and f is C2-diffeomorphic, f(U)

is also C2-diffeomorphic to Rd. By applying Theorem 3.3 in [23] to ι1 ◦ f−1|f(U) : f(U) → Rd and

the injection ι2, we can obtain diffeomorphisms F1 : f(U) → Rd and F2 : f(U) → Rd such that

F1|f(K) = f−1|f(K) and F2|f(K) = Idf(K), where Idf(K) denotes the identity map on f(K). Let

F := F2 ◦ F−1
1 : Rd → Rd. By definition, we have F |K = f |K .

Take a sufficiently large open ball B centered at 0 such that K ⊂ B. Let W ∈ Aff such that

W (x) = DF−1(0)(x−F (0)). Then by Lemma D.5 below, we conclude that there exists a compactly

supported diffeomorphism h : Rd → Rd such that W ◦ h|K = F |K = f |K .

Lemma D.5. Let Br ⊂ Rd be an open ball of radius r with origin 0, and let f : Br → f(Br) ⊂ Rd

be a C2-diffeomorphism onto its image such that f(0) = 0 and Df(0) = I. Let ε ∈ (0, r/2). Then

there exists h ∈ Diff2
c such that f(x) = h(x) for any x ∈ Br−ε.

Proof. Put δ := ε/(2r − ε), and define Iδ := (−1− δ, 1 + δ). We define F : Br−ε/2 × Iδ → Rd by

F (x, t) :=

{
f(tx)
t if t 6= 0,

x if t = 0.

Let U := F (Br−ε/2) and let F † : U × Iδ → Br−ε/2 such that F †(F (x, t)) = x for any (x, t) ∈ U .

Fix a compactly supported function on Rd× Iδ such that for (x, t) ∈ F
(
Br−ε× [−1, 1]

)
, φ(x, t) = 1,

and for (x, t) /∈ U φ = 0. Then we define H : Rd × Iδ → Rd by

H(x, t) := φ(x, t)
∂F

∂t
(F †(x, t), t).

Since f is C2 diffeomorphism, there exists L > 0 such that for any t ∈ Iδ, ‖H(x, t) − H(y, t)‖ <
L‖x− y‖ with x, y ∈ Rd. Thus the differential equation

dz

dt
= H(z, t), z(0) = x

has a unique solution φx(t). Then h(x) := φx(1) is the desired extension.

Here, we remark that Lemma D.5 is a modified version of Lemma D.1 in Bernard et al. [23], with

a correction to make it explicit that the extended diffeomorphism is compactly supported. Their

Lemma D.1 does not explicitly state that it is compactly supported, but by Theorem 1.4 in Section 8

of Hirsch [104], it can be shown that the diffeomorphism is actually compactly supported.

D.2.2 From Diff2
c to S∞c and Permutations

The goal of this section is to show Theorem D.1, which reduces the approximation problem of Diff2
c

to that of S2c , and Lemma D.9, which reduces from S2c to S∞c .
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Theorem D.1. Let f ∈ Diff2
c . Then there exist τ1, . . . , τn ∈ S2c ∩ Diff2

c , and permutations of

variables σ1, . . . , σn ∈ Sd, such that

f = τ1 ◦ σ1 ◦ · · · ◦ τn ◦ σn.

Proof. Combining Corollary D.1, Lemma D.6, and Lemma D.7, we have the assertion.

We defer the statement and proof of Corollary D.1, which describes the key properties of Diff2
c , to

Section D.3. In the remainder of this section, we describe Lemma D.6, Lemma D.7, and Lemma D.9.

First, Lemma D.6 claims that the nearly-Id elements necessarily satisfy the condition of Lemma D.7

below.

Lemma D.6. Let A = (ai,j)i,j=1,...,d be a matrix. If ‖A− Id‖op < 1, then for k = 1, . . . , d, the k-th

trailing principal submatrix Ak := (ai+k−1,j+k−1)i,j=1,...,d−(k−1) of A is invertible. Here Id is a unit

matrix of degree d.

Proof. Let v ∈ Rd−k+1 with ‖v‖ = 1, and put w := (0, . . . , 0, v) ∈ Rd. Then we have 1 > ‖(A −
Id)w‖2 ≥ ‖(Ak − Ik)v‖2. Thus ‖Ak − Ik‖ < 1. Since

∑∞
r=0(Ik − Ak)r absolutely converges, and it

is identical to the inverse of Ak, we have that Ak is invertible.

We apply the following lemma together with Lemma D.6 to decompose nearly-Id elements into

S2c and permutations. For a ∈ N, we denote the set of a-by-a real-valued matrices by M(a,R).

Lemma D.7. Let r be a positive integer and f : Rd → Rd a compactly supported Cr-diffeomorphism.

We write f = (f1, . . . , fd) with fi : Rd → R. For k ∈ [d], let ∆f
k(x) ∈M(d− (k − 1),R) be the k-th

trailing principal submatrix of Jacobian matrix of f , whose (i, j) component is given by
(
∂fi+k−1

∂xj+k−1
(x)
)

(i, j = 1, · · · , d− (k − 1)). We assume

det∆f
k(x) 6= 0 for any k ∈ [d] and x ∈ Rd.

Then there exist compactly supported Cr-diffeomorphisms F1, . . . , Fd : Rd → Rd in the forms of

Fi(x) := (x1, . . . , xi−1, hi(x), xi+1, . . . , xd)

for some hi : Rd → R such that the identity holds:

f = F1 ◦ · · · ◦ Fd.

Proof. The proof is based on induction. Suppose that f is in the form of f(x) =

(f1(x), . . . , fm(x), xm+1, . . . , xd). By means of induction with respect to m, we prove that there

exist compactly supported Cr-diffeomorphisms F1, . . . , Fm : Rd → Rd in the forms of Fi(x) :=

(x1, . . . , xi−1, hi(x), xi+1, . . . , xd) for some hi : Rd → R such that f = F1 ◦ · · · ◦ Fm.

In the case of m = 1, the above is clear. Assume that the statement is true in the case of any

k < m. Define

F (x1, . . . , xd) := (x1, . . . , xm−1, fm(x), xm+1, . . . , xd),

f̃ := f ◦ F−1.

Note that F is a compactly supported Cr-diffeomorphism from Rd to Rd. In fact, compactly

supportedness and surjectivity of F comes from the compactly supportedness of f . Moreover, since

we have detDFx = ∂fm
∂xm

(x) 6= 0 for any x ∈ Rd by the assumption on f , F is injective and is a Cr-

diffeomorphism from Rd to Rd by inverse function theorem. Therefore, f̃ is also a Cr-diffeomorphism
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from Rd to Rd. We show that f̃ is of the form f̃(x) = (g1(x), · · · , gm−1(x), xm, · · · , xd) for some

Cr-functions gi : Rd → R (i = 1, · · · ,m − 1) satisfying det∆f̃
k(x) 6= 0 for any x ∈ Rd and k ∈ [d].

From Lemma D.8, there exist gi, h ∈ Cr(Rd) (i = 1, · · · ,m) such that

f−1(x) = (g1(x), · · · , gm(x), xm+1, · · · , xd)
F−1(x) = (x1, · · · , xm−1, h(x), xm+1, · · · , xd).

Then we have

f̃−1(x) = F ◦ f−1(x) = (g1(x), · · · , gm−1(x), fm(f−1(x)), xm+1, · · · , xd)
= (g1(x), · · · , gm−1(x), xm, · · · , xd).

Therefore, from Lemma D.8, f̃ is of the following form

f̃(x) = f ◦ F−1(x) = (f1 ◦ F−1(x), · · · , fm−1 ◦ F−1(x), xm, · · · , xd).

Moreover, by the form of F−1 and f , we have Df̃(x) = Df(F−1(x)) ◦DF−1(x) and

Df =

(
A

I

)
, D(F−1) =

Im−1
∂h
∂x1

· · · ∂h
∂xd

Id−m


for some A ∈ M(m,R) with all the trailing principal minors nonzero. Therefore, we obtain

det∆f
k(x) 6= 0 for any x ∈ Rd and k ∈ [d]. Here, by the assumption of the induction, there

exist compactly supported Cr-diffeomorphisms Fi : Rd → Rd and hi ∈ Cr(Rd) (i = 1, · · · ,m − 1)

such that

f̃ = F1 ◦ · · · ◦ Fm−1, Fi(x) = (x1, · · ·xi−1, hi(x), xi+1, · · · , xd).

Thus f = f̃ ◦ F has a desired form.

Lemma D.8. Let r be a positive integer and f : Rd → Rd Cr-diffeomorphism of the form

f(x) := (f1(x), · · · , fm(x), xm+1, · · · , xd),

where fi : Rd → R belongs to Cr(Rd) (i = 1, · · · ,m). Then the inverse map f−1 becomes of the form

f−1(x) = (g1(x), · · · , gm(x), xm+1, · · ·xd),

where gi : Rd → R belongs to Cr(Rd) for i = 1, · · · ,m.

Proof. We write f−1(x) = (h1(x), · · · , hd(x)), where hi ∈ Cr(Rd) (i = 1, · · · , d). Then by the

definition of the inverse map, the identity

(x1, · · · , xd) = f ◦ f−1(x) = (f1(h1(x)), · · · , fm(hm(x)), hm+1(x), · · · , hd(x))

holds for any x ∈ Rd, which implies that we obtain hi(x) = xi (i = m + 1, · · · , d). This completes

the proof of the lemma.

The following Lemma D.9 is used in the main text in reducing the approximation problem from

S2c to S∞c . We say that f : Rd → R is a locally Lp-function if
∫
K
|f(x)|pdx < ∞ holds for any

compact set K ⊂ Rd.
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Definition D.1 (Last-increasing). We say that a map f : Rd → R is last-increasing if, for any

(a1, . . . , ad−1) ∈ Rd−1, the function f(a1, . . . , ad−1, x) is strictly increasing with respect to x.

Lemma D.9. Let τ : Rd → R be a last-increasing locally Lp-function. Then for any compact subset

K ⊂ Rd and any ε > 0, there exists a last-increasing C∞-function τ̃ : Rd → R satisfying

‖τ − τ̃‖p,K < ε.

Moreover, if τ is continuous, there exists a last-increasing C∞-function τ̃ such that

‖τ − τ̃‖sup,K < ε.

Proof. Let φ : Rd → R be a compactly supported non-negative C∞-function with
∫
|φ(x)|dx = 1

such that for any (a1, . . . , ad−1) ∈ Rd−1, the function φ(a1, . . . , ad−1, x) of x is even and decreasing

on {x > 0 : φ(a1, . . . , ad−1, x) > 0}. For t > 0, we define φt(x) := t−dφ(x/t). Then we see that

τt := φt ∗ τ is a C∞-function. We take any a ∈ Rd−1. We verify that τt(a, xd) is strictly increasing

with respect to xd. Take any xd, x
′
d ∈ R satisfying xd > x′d. Since τ is strictly increasing, we have

τt(a, xd)− τt(a, x′d) =
∫
Rd

φt(x)(τ((a, xd)− x)− τ((a, x′d)− x))dx > 0.

Thus for any (a1, . . . , ad−1) ∈ Rd−1, the C∞-function τt(a1, . . . , ad−1, x) is strictly increasing for

with respect to x.

Next, take any compact subset K ⊂ Rd. We show ‖τt − τ‖p,K → 0 as t → 0. We prove τt
converges τ as t → 0. Take R > 0 satisfying K ⊂ B(R) := {x ∈ Rd : |x| ≤ R}. We assume

0 < t < 1. Then we have φt ∗ τ = φt ∗ (1B(R+1)τ). Since we have 1B(R+1)τ ∈ Lp(Rd), we obtain

‖φt ∗ τ − τ‖p,K = ‖φt ∗ (1B(R+1)τ)− 1B(R+1)τ‖p,K
≤ ‖φt ∗ (1B(R+1)τ)− 1B(R+1)τ‖p,Rd → 0 (t→ 0).

Here, we used a property of mollifier φt (see Theorem 8.14 in [79] for example).

Next, we consider the sup-approximation when τ is continuous. By direct computation, we have

sup
y∈K
|τt(y)− τ(y)| ≤ sup

y∈K

∫
Rd

|φ(x)| · |τ(y − tx)− τ(y)|dx

≤ C sup
(x,y)∈supp(ϕ)×K

|τ(y − tx)− τ(y)| → 0 (t→ 0).

Here C := supx∈Rd |φ(x)|. Thus in both cases above, By taking sufficiently small t, we obtain the

desired C∞-function τ̃ = τt.

D.3 Properties of Diffeomorphisms on Rd: From Diff2
c to

Nearly-Id

This section explains the reduction of the universality for Diff2
c to Nearly-Id elements. The reduction

involves a structure theorem from the field of differential geometry. The results of this section are

used as a building block for the proofs in Section D.2.2.

Definition D.2 (Compactly supported diffeomorphism). The diffeomorphism f on Rd is compactly

supported if there exists a compact subset K ⊂ Rd such that for any x /∈ K, f(x) = x. We denote

by Diff2
c the space of compactly supported C2-diffeomorpshisms.
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The set Diff2
c constitutes a group whose group operation is the function composition. Moreover,

Diff2
c is a topological group with respect to the Whitney topology [95, Proposition 1.7.(9)]. Then

there is a crucial structure theorem of Diff2
c attributed to Herman, Thurston [270], Epstein [71], and

Mather [179, 180]:

Fact D.1. The group Diff2
c is simple, i.e., any normal subgroup H ⊂ Diff2

c is either {Id} or Diff2
c .

The assertion is proven in Mather [180] for the connected component containing Id, instead

of the entire set of compactly-supported C2-diffeomorphisms when the domain space is a general

manifold instead of Rd. In the special case of Rd, the connected component containing Id is shown

to be Diff2
c itself [95, Example 1.15], hence Fact D.1 follows. For details, see [95, Corollary 3.5 and

Example 1.15].

As a side note, the assertion of Theorem D.1 is proved to hold generally for Cr-diffeomorphisms

only except for r = d + 1 [95]. Nevertheless, this exception does not cause any problem in our

proof, because we apply it with r = 2 and d ≥ 2. The limitation only means that the structure

of C2-diffeomorphisms is better understood than that of Cd+1-diffeomorphisms. Also note that

this exception does not affect the approximation capability for Cd+1-diffeomorphisms either as they

are contained in C2 where we perform our theoretical analyses. For the details of mathematical

ingredients, see [13].

Here, we provide a precise definition of the flow endpoints introduced in Section 5.4.1.

Definition D.3 (Flow endpoints). A flow endpoint is an element of Diff2
c which can be represented

as φ(1), where φ : [0, 1] → Diff2
c is a continuous map such that φ(0) = Id and that φ is additive,

namely, φ(s) ◦ φ(t) = φ(s+ t) for any s, t ∈ [0, 1] with s+ t ∈ [0, 1].

We use Fact D.1 to prove that a compactly supported diffeomorphism can be represented as a

composition of flow endpoints in Diff2
c . The following lemma is a restatement of Lemma 5.2 in the

main text.

Lemma D.10. Let S ⊂ Diff2
c be the set of all flow endpoints. Then, Diff2

c coincides with the set of

finite compositions of elements in S defined by

H := {g1 ◦ · · · ◦ gn : n ≥ 1, g1, . . . , gn ∈ S}.

Proof. In view of Fact D.1, it is enough to show that H forms a subgroup, that it is normal, and

that it is non-trivial.

First, we prove theH consists a subgroup of Diff2
c . By definition, for any g, h ∈ H, it is immediate

to show that g ◦ h ∈ H. We prove that H is closed under inversion. For this, it suffices to show

that S is closed under inversion. Let g = φ(1) ∈ S. Consider the map ϕ : [0, 1] → Diff2
c defined

by ϕ(t) := (φ(t))−1. Since Diff2
c is a topological group [95, Proposition 1.7.(9)], ϕ is continuous.

Moreover, it is immediate to show that ϕ is additive in the sense of Definition D.3, and that

ϕ(0) = Id. Thus, g−1 = ϕ(1) is an element of S.

Next, we prove H is normal. It suffice to show that S is closed under conjugation since the

conjugation g 7→ hgh−1 is a group homomorphism on Diff2
c . Let g = φ(1) ∈ S, where φ : [0, 1] →

Diff2
c is a continuous map associated to g. Then, we define a Φ : Rd×[0, 1]→ Rd by Φ(x, t) = φ(t)(x).

We call Φ a flow associated with g. We take arbitrary h ∈ Diff2
c . Then, the function Φ′ : Rd × [0, 1]

defined by Φ′(·, s) := h−1 ◦Φ(·, s) ◦ h is a flow associated with h−1gh, which means h−1gh ∈ S, i.e.,
S is closed under conjugation.

Finally, we show H is nontrivial. It suffices to show that S includes a non-identity element. Let

ψ : R → O(d) be a nontrivial homomorphism of Lie groups, where O(d) is a orthogonal group of

degree d. Such ψ exists, for example, let ψ(t) := exp(tA) for some nonzero skew-symmetric matrix

A, namely, A⊤ = −A. Let u : [0,∞) → R be a compactly supported C∞ function such that its
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support does not include 0. Then, We define Φ : Rd × [0, 1]→ Rd by Φ(x, t) := ψ(u(|x|)t)x. Then,

Φ is the flow associated with Φ(·, 1) ∈ S, that is a non-identity element.

Definition D.4 (Nearly-Id elements). Let f ∈ Diff2
c . We say f is nearly-Id if, for any x ∈ Rd, the

Jacobian Df of f at x satisfies

‖Df(x)− I‖op < 1,

where I is the unit matrix.

Corollary D.1. For any f ∈ Diff2
c , there exist finite elements g1, . . . , gr ∈ Diff2

c such that f =

gr ◦ · · · ◦ g1 and gi is nearly-Id for any i ∈ [r].

Proof. Let S be the subset of Diff2
c as defined above. Therefore, by Lemma D.10, there exist

h1, . . . , hm ∈ S such that f = hm ◦ · · · ◦ h1. For i ∈ [m], let φi be a flow associated with hi.

Since [0, 1] 3 t 7→ Φi(·, t) ∈ Diff2
c is continuous with respect to Whitney topology and Φi(·, 0) is the

identity function, we can take a sufficiently large n such that h̃i := Φi(·, 1/n) is nearly-Id. By the

additive property of Φi, we have

f = hm ◦ · · · ◦ h1 = h̃m ◦ · · · ◦ h̃m︸ ︷︷ ︸
n times

◦ · · · ◦ h̃1 ◦ · · · ◦ h̃1︸ ︷︷ ︸
n times

,

which completes the proof of the corollary.

D.4 Proof of Theorem 5.2: Lp-universality of INNH-ACF

In this section, we provide the proof details of Theorem 5.2 in the main text. The correspondence

between this section and Section 5.4.2 in the main text is as follows: Steps 1, 2, 3 correspond to

Section D.4.1, Step 4 corresponds to Section D.4.2, and Step 5 is justified by Proposition D.3 in

Section D.6.

D.4.1 Approximation of General Elements of S0
c

In this section, we prove the following lemma to construct an approximator for an arbitrary element

of S0c (hence for S∞c ) within INNH-ACF. It is based on Lemma D.12 proved in Section D.4.2, which

corresponds to a special case.

Here, we rephrase Theorem 5.2 as in the following:

Lemma D.11 (Lp-universality of INNH-ACF for compactly supported S∞c ). Let p ∈ [1,∞). Assume

H is a sup-universal approximator for C∞
c (Rd−1) and that it consists of piecewise C1-functions. Let

f ∈ S0c , ε > 0, and K ⊂ Rd be a compact subset. Then, there exists g ∈ INNH-ACF such that

‖f − g‖p,K < ε.

Proof. Since we can take a > 0, b ∈ R satisfying aK+ b ⊂ [0, 1]d, it is enough to prove the assertion

for the case K = [0, 1]d.

Next, we show that we can assume that for any (x, y) ∈ Rd, u(x, 0) = 0 and u(x, 1) = 1

for any x ∈ Rd−1. Since u(x, ·) is a diffeomorphism, we have u(x, 0) 6= u(x, 1) for any x ∈ R.
By the continuity of f , either of u(x, 0) > u(x, 1) for all x ∈ [0, 1]d−1 or u(x, 0) < u(x, 1) for

all x ∈ [0, 1]d−1 holds. Without loss of generality, we assume the latter case holds (if the former
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one holds, we just switch u(x, 0) and u(x, 1)). We define s(x) = − log(u(x, 1) − u(x, 0)) and

t(x) = −u(x, 0)(u(x, 1)− u(x, 0))−1. By a direct computation, we have

Ψd−1,s,t ◦ f(x, y) =
(
x,
u(x, y)− u(x, 0)
u(x, 1)− u(x, 0)

)
=: (x, u0(x, y)).

In particular, Ψs,t ◦ f(x, 0) = (x, 0) and Ψs,t ◦ s(x, 1) = (x, 1) hold. , and the map y 7→ u0(x, y)

is a diffeomorphism for each x. Thus if we prove the existence of an approximator for Ψs,t ◦ f , by
Proposition D.3, we can arbitrarily approximate f itself.

For k := (k1, . . . , kd−1) ∈ Zd−1 and n ∈ N, we define (k)n :=
∑d
i=1 kin

i−1 ∈ {0, . . . , nd − 1},
that is, k is the n-adic expansion of (k)n. For any n ∈ N, define the following discontinuous ACF:

ψn : [0, 1]
d → [0, 1]d−1 × [0, nd] by

ψn(x, y) :=

x, y +

n−1∑
k1,··· ,kd−1=0

(k)n1∆n
k+1

(x)

 ,

where k := (k1, . . . , kd) and k+1 := (k1+1, . . . , kd+1). We take an increasing function vn : R→ R
that is smooth outside finite points such that

vn(z) :=

u
(
k1
n , · · · ,

kd−1

n , z − (k)n

)
+ (k)n if z ∈ [(k)n, (k)n + 1)

z if z /∈ [0, nd).

We consider maps hn on [0, 1]d−1 × [0, nd] and fn : [0, 1]d → [0, 1]d defined by

hn(x, z) := (x, vn(z)),

fn := ψ−1
n ◦ hn ◦ ψn.

Then we have the following claim.

Claim. For all k1, · · · , kd−1 = 0, · · · , n− 1, we have

fn(x, y) =

(
x, u

(
k1
n
, . . . ,

kd−1

n
, y

))
on
∏d−1
i=1 [

ki
n ,

ki+1
n )× [0, 1).

In fact, we have

fn(x, y) = ψ−1
n ◦ hn ◦ ψn(x, y)

= ψ−1
n ◦ hn(x, y + (k)n)

= ψ−1
n (x, vn(y + (k)n))

= ψ−1
n

(
x, u

(
k1
n
, . . . ,

kd−1

n
, y

)
+ (k)n

)
=

(
x, u

(
k1
n
, . . . ,

kd−1

n
, y

))
.

Therefore, the claim above has been proved. Hence we see that ‖f − fn‖sup,K → 0 as n → ∞.

By Lemma D.12 below and the universal approximation property of H, for any compact subset

K and ε > 0, there exist g1, g2, g3 ∈ INNH-ACF such that
∥∥g1 − ψ−1

n

∥∥
p,K

< ε, ‖g2 − hn‖p,K < ε,

and ‖g3 − ψn‖p,K < ε. Thus by Proposition D.3, for any compact K and ε > 0, there exists

g ∈ INNH-ACF such that ‖g − f‖p,K < ε.
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D.4.2 Special Case: Approximation of Coordinate-wise Independent

Transformation

In this section, we show the lemma claiming that special cases of single-coordinate transforma-

tions, namely coordinate-wise independent transformations, can be approximated by the elements

of INNH-ACF given sufficient representational power of H.

Lemma D.12. Let p ∈ [1,∞). Assume H is a sup-universal approximator for C∞
c (Rd−1) and

that it consists of piecewise C1-functions. Let u : R → R be a continuous increasing function. Let

f : Rd → Rd; (x, y) 7→ (x, u(y)) where x ∈ Rd−1 and y ∈ R. For any compact subset K ⊂ Rd and

ε > 0, there exists g ∈ INNH-ACF such that ‖f − g‖p,K < ε.

Proof. We may assume without loss of generality, in light of Lemma D.9, that u is a C∞-

diffeomorphism on R and that the inequality u′(y) > 0 holds for any y ∈ R. Furthermore, we

may assume that u is compactly supported (i.e., u(y) = y outside a compact subset of R) without
loss of generality because we can take a compactly supported diffeomorphism ũ and a, b ∈ R (a 6= 0)

such that aũ + b = u on any compact set containing K by Lemma D.4, and the scaling a and the

offset b can be realized by the elements of INNH-ACF.

Fix δ ∈ (0, 1). We define the following functions:

ψ0(x, y) : = (x≤d−2, u
′(y)xd−1, y)

= (x≤d−2, exp(log u
′(y))xd−1, y),

ψ1(x, y) : =
(
x≤d−2, xd−1 + δ−1(u(y)− y), y

)
,

ψ2(x, y) : = (x≤d−2, xd−1, y + δxd−1),

ψ3(x, y) : =
(
x≤d−2, xd−1 − δ−1(y − u−1(y)), y

)
,

where we denote x = (x1, . . . , xd−1) ∈ Rd−1. First, we show

‖f − ψ3 ◦ ψ2 ◦ ψ1 ◦ ψ0‖sup,K → 0 (δ → 0).

By a direct computation, we have

ψ3 ◦ ψ2 ◦ ψ1(x, y)

= ψ3 ◦ ψ2(x≤d−2, xd−1 + δ−1(u(y)− y), y)
= ψ3(x≤d−2, xd−1 + δ−1(u(y)− y), y + δ(xd−1 + δ−1(u(y)− y)))
= ψ3(x≤d−2, xd−1 + δ−1(u(y)− y), δxd−1 + u(y))

= (x≤d−2, xd−1 − δ−1(δxd−1 + u(y)− u−1(δxd−1 + u(y))), δxd−1 + u(y))

= (x≤d−2, δ
−1u−1(δxd−2 + u(y))− δ−1y, u(y) + δxd−1),

where x = (x1, . . . , xd−1) ∈ Rd−1. Since u ∈ C∞([−r, r]) where r = max(x,y)∈K |y|, by applying

Taylor’s theorem, there exists a function R(x, y; δ) and a constant C = C([−r, r], u) > 0 such that

u−1(u(y) + δx) = y + u′(y)−1δx+R(x, y; δ)(δx)2 and sup
δ∈(0,1)

|R(x, y; δ)| ≤ C

for all (x, y) ∈ K. Therefore, we have

ψ3 ◦ ψ2 ◦ ψ1 ◦ ψ0(x, y) = (x, u(y)) + δ(R(x, u′(y)xd−1; δ)x≤d−1, u
′(y)xd−1).

For any compact subset K, the last term uniformly converges to 0 as δ → 0 on K.
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Assume δ is taken to be small enough. Now, we approximate ψ3 ◦ · · · ◦ ψ0 by the elements of

INNH-ACF. Since u is a compactly-supported C∞-diffeomorphism on R, the functions (x≤d−2, y) 7→
log u′(y), (x≤d−2, y) 7→ u(y) − y, and (x≤d−2, y) 7→ y − u−1(y), each appearing in ψ0, ψ1, ψ3,

respectively, belong to C∞
c (Rd−1). On the other hand, ψ2 can be realized by GL ⊂ Aff. Therefore,

combining the above with the fact that H is a sup-universal approximator for C∞
c (Rd−1), we have

that for any compact subset K ′ ⊂ Rd and any ε > 0, there exist φ0, . . . , φ3 ∈ INNH-ACF such that

‖ψi − φi‖sup,K′ < ε. In particular, we can find φ0, . . . , φ3 ∈ INNH-ACF such that ‖ψi − φi‖p,K′ < ε.

Now, recall that H consists of piecewise C1-functions as well as ψi (i = 0, . . . , 3). Moreover,

ψ0, ψ1, ψ3 are compactly supported while ψ2 ∈ GL, hence they are Lipschitz continuous outside a

bounded open subset. Therefore, by Proposition D.3, we have the assertion of the lemma.

D.5 Locally Bounded Maps and Piecewise Diffeomorphisms

In this section, we provide the notions of locally bounded maps and piecewise C1-maps. These

notions are used to state the regularity conditions on the CF layers in Theorem 5.1 and to prove

the results in Section D.6.

D.5.1 Definition of Locally Bounded Maps

Here, we provide the definition of locally bounded maps. It is a very mild condition that is satisfied

in most cases of practical interest, e.g., by continuous maps.

Definition D.5 (Locally bounded maps). Let f be a map from Rm to Rn. We say f is locally

bounded if for each point x ∈ Rm, there exists a neighborhood U of x such that f is bounded on U .

As a special case, continuous maps are locally bounded; take an open ball U centered at x and

take a compact set containing U to see that f is bounded on U .

D.5.2 Definition and Properties of Piecewise C1-maps

In this section, we give the definition of piecewise C1-maps and their properties. Examples of

piecewise C1-diffeomorphisms appearing in the chapter include H-ACF with H being MLPs with

ReLU activation.

Definition D.6 (piecewise C1-maps). Let f : Rm → Rn be a measurable map. We say f is a

piecewise C1-map if there exists a mutually disjoint family of (at most countable) open subsets

{Vi}i∈I such that

• vol(Rd \ Uf ) = 0,

• for any i ∈ I, there exists an open subset Wi containing the closure Vi of Vi, and C1-map

f̃i :Wi → Rd such that f̃i|Vi = f |Vi , and

• for any compact subset K, #{i ∈ I : Vi ∩K 6= ∅} <∞.

where we denote Uf :=
⊔
i∈I Vi, and #(·) denotes the cardinality of a set.

We remark that piecewise C1-maps are essentially locally bounded in the sense that for any com-

pact setK ⊂ Rd, ess.supK‖f‖ = ‖f‖sup,K∩Uf
<∞. Then we define a piecewise C1-diffeomorphisms:

Definition D.7 (piecewise C1-diffeomorphisms). Let f : Rd → Rd be a piecewise C1-map. We say

f is a piecewise C1-diffeomorphism if
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1. the image of nullset via f is also a nullset,

2. f |Uf
is injective, and for i ∈ I, f̃i is a C1-diffeomorphism from Wi onto f̃i(Wi),

3. vol
(
Rd \ f(Uf )

)
= 0, and

4. for any compact subset K, #{i ∈ I : f(Vi) ∩K 6= ∅} <∞.

We summarize the basic properties of piecewise C1-diffeomorphisms in the proposition below:

Proposition D.1. Let f and g be piecewise C1-diffeomorphisms. Then, we have the following.

1. There exists a piecewise C1-diffeomorphism f† such that f(f†(x)) = x for x ∈ Uf† and

f†(f(y)) = y for y ∈ Uf .

2. For any h ∈ L1, we have
∫
h(x)dx =

∫
h(f(x))|Df(x)|dx, where |Df(x)| is the absolute value

of the determinat of the Jacobian matrix of f at x.

3. For any compact subset K, f−1(K) ∩ Uf is a bounded subset.

4. For any nullset F , then f−1(F ) is also a nullset.

5. For any measurable set E and any compact set K, f−1(E ∩K) has a finite volume.

6. The composition f ◦ g is also a piecewise C1-diffeomorphism.

Proof. Proof of 1 : Fix a ∈ Rd. For x ∈ Rd \ f(Uf ), define f†(x) = a, and for x ∈ f(Vi), define
f†(x) := f |−1

Vi
(x). Then, f† is a piecewise C1-map with respect to the family of pairwise disjoint

open subsets {f(Vi)}i∈I , and satisfies the conditions for piecewise C1-diffeomphism.

Proof of 2 : It follows by the following computation:∫
h(x)dx =

∫
f(Uf )

h(x)dx

=
∑
i∈I

∫
f(Vi)

h(x)dx

=
∑
i∈I

∫
Vi

h(f(x))|Df(x)|dx =

∫
h(f(x))|Df(x)|dx.

Proof of 3 It suffices to show that f−1(K) ∩ Uf is covered by finitely many compact subsets. In

fact, we remark that only finitely many Vi’s intersect with f−1(K). If not, infinitely many f(Vi)

intersects f(f−1(K)) ⊂ K, which contradicts the definition of piecewise C1-diffeomorphisms. Let

I0 ⊂ I be a finite subset composed of i ∈ I such that Vi intersecting with f−1(K). For i ∈ I0,

we define a compact subset Fi := f̃−1
i (f̃i(Vi) ∩K). Then we see that f−1(K) ∩ Uf is contained in

∪i∈I0Fi.
Proof of 4 : It suffices to show that for any compact subset K, the volume of f−1(F ) ∩ K is

zero. By applying 2 to the case h = 1F , we see that∫
f−1(F )

|Df(x)|dx = 0.

For n > 0, let En := f−1(F ) ∩K ∩ {x ∈ Rd : |Df(x)| ≥ 1/n}. Then we have

vol(En)

n
≤
∫
En

|Df(x)|dx ≤
∫
f−1(F )

|Df(x)|dx = 0,

thus vol(K ∩ f−1(F )) = limn→∞ vol(En) = 0
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Proof of 5 : By applying 2 to the case h = 1E∩K , we see that∫
f−1(E∩K)

|Df(x)|dx = vol(E ∩K).

Let F be a closure of f−1(K) ∩ Uf . By 3, F is a compact subset. Let I0 := {i ∈ I : F ∩ Vi 6= ∅}
be a finite subset. Then we have

C := inf
f−1(K)∩Uf

|Df |

≥ inf
i∈I0

inf
F∩Vi

|Df̃i| > 0.

Thus, ∫
f−1(E∩K)∩Uf

|Df(x)|dx ≥ Cvol(f−1(E ∩K)),

where the last equality follows from vol(f−1(E ∩K) \Uf ) = 0. Thus we have vol(f−1(E ∩K)) <∞
Proof of 6 : We denote by {Vi}i∈I , {V ′

j }j∈J the disjoint open families associated with f and

g, respectively. At first, we prove f ◦ g is a piecewise C1-map. Let Vij := g−1(Vi ∩ g(V ′
j )) ∩ Ug

and define Uf◦g := {Vij}(i,j)∈I×J . Let Uf◦g := ∪i,jVij = g−1(Uf ∩ g(Ug)) ∩ Ug. By 4, the volume

of Rd \ Uf◦g is zero. On each Vij , f̃i ◦ g̃j is an extension of f ◦ g|Vij
. For any compact subset K,

#{(i, j) ∈ I × J : K ∩ Vij 6= ∅} < ∞. In fact, suppose the number is infinite. Then g(Uf ∩ K)

intersects with an infinite number of open subsets in the form of g(Uf ∩K) ∩ Vi ∩ g(V ′
j ). On the

other hand g(Uf ∩K) is a bounded subset, thus by definition, the number of (i, j) ∈ I×J satisfying

g(Uf ∩K) ∩ Vi ∩ g(V ′
j ) 6= ∅ is finite. It is a contradiction. Therefore, g ◦ f is a piecewise C1-map.

Next, we prove f ◦ g is a piecewise C1-diffeomorphism. The first and second condition follows

by definition. For the third condition, since Rd \ f ◦ g(Uf◦g) =
(
Rd \ f(Uf )

)
∪
(
Rd \ f

(
g(Ug)

)
⊂

Rd \ f(g(Ug) ∩ Uf ), it suffices to show that the volue of Rd \ f(g(Ug) ∩ Uf ) is zero. In fact, by the

injectivity of f on Uf , we have f(g(Ug) ∩ Uf ) = f(Uf ) \ f(Uf \ g(Ug)). Thus Rd \ f(g(Ug) ∩ Uf ) =
(Rd \ f(Uf )) ∪ f(Uf \ g(Ug)). By definition of C1-diffeomorphism, we conclude Rd \ f(g(Ug) ∩ Uf )
is a nullset. For the fourth condition, let K be a compact subset. Assume the {(i, j) ∈ I × J :

f ◦ g(Vij) ∩ K 6= ∅} = ∞. Since f is a piecewise C1-diffeomorphism, there exist infinitely many

elements in j ∈ J such that f ◦ g(V ′
j )∩ f(Uf )∩K 6= ∅. On the other hand, f−1(K ∩ f(Uf ))∩Uf is

bounded, and its closure intersects with only finitely many g(V ′
j )’s, thus K ∩ f(Uf ) intersects with

only finitely many f ◦ g(V ′
j ), which is a contradiction.

For a measurable map f : Rm → Rn and any R > 0, we define a measurable set

L(R; f) := {x ∈ Rm : ‖f(x)− f(y)‖ > R‖x− y‖ for some y ∈ Uf}.

Then we have the following proposition:

Proposition D.2. Let f : Rm → Rn be a piecewise C1-map. Assume f is linearly increasing,

namely, there exists a, b > 0 such that ‖f(x)‖ < a‖x‖ + b for any x ∈ Rm. Then for any compact

subset K ′, vol(L(R; f) ∩K ′)→ 0 as R→∞.

Proof. Let B be an open ball containing K ′ of radius r. Fix an arbitrary ε > 0. We note that the

linearly increasing condition implies the locally boundedness of f . Let C := supB ‖f‖. For δ > 0,

we define

Vδ := {x ∈ B : dist (x, ∂Uf ∪ ∂B)) < δ},
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where dist(x, S) := infy∈S{‖x− y‖}. Set δ to be vol(Vδ) < ε. We claim that

L := sup
(x,y)∈K′×Rm\B

‖f(x)− f(y)‖
‖x− y‖

is finite. In fact, let r′ := infx∈K′,y /∈B ‖x− y‖. Then for x ∈ K ′ and y /∈ B, we have

‖f(x)− f(y)‖
‖x− y‖

≤ ‖f(x)‖+ ‖f(y)‖
‖x− y‖

≤ a‖x‖+ a‖y‖+ 2b

‖x− y‖

≤ a‖x‖+ a(‖x− y‖+ ‖x‖) + 2b

‖x− y‖

≤ a+ 2a‖x‖+ 2b

‖x− y‖

< a+
2ar + 2b

r′
.

Thus, L is finite. Since B intersects with finitely many Vi’s, f |B\Vδ/2
is a Lipschitz function. Put

Lδ > 0 as the Lipschitz constant of f |B\Vδ/2
. Then for any R > max(L,Lδ, 4C/δ), we see that

L(R; f) ∩ K ′ is contained in Vδ. Actually, we should prove that x 6∈ L(R; f) when x ∈ K ′ \ Vδ.
Take arbitrary y ∈ Rm. When y 6∈ B, since x ∈ K ′, we have ∥f(x)−f(y)∥

∥x−y∥ ≤ L by the definition of L.

When y ∈ B \ Vδ/2, since x ∈ K ′ \ Vδ ⊂ B \ Vδ/2, we have ∥f(x)−f(y)∥
∥x−y∥ ≤ Lδ by the definition of Lδ.

When y ∈ Vδ/2, we have ‖x− y‖ ≥ δ
2 because x 6∈ Vδ. Thus,

‖f(x)− f(y)‖
‖x− y‖

≤ ‖f(x)‖+ ‖f(y)‖
δ/2

≤ C + C

δ/2
≤ 4C

δ
.

Combining these three cases, we conclude that x 6∈ L(R; f). Thus we have vol(L(R; f) ∩K ′) < ε,

namely, we conclude vol(L(R; f) ∩K ′)→ 0 as R→∞.

Remark D.1. The linearly increasing condition is important to prove our main theorem. Our approx-

imation targets are compactly supported diffeomorphisms, affine transformations, and the discon-

tinuous ACFs appeared in Section 5.4.2 or Section D.4.1, all of which satisfy the linearly increasing

condition.

D.6 Compatibility of Approximation and Composition

In this section, we prove the following proposition. It enables the component-wise approximation,

i.e., given a transformation that is represented by a composition of some transformations, we can

approximate it by approximating each constituent and composing them. The justification of this

procedure is not trivial and requires a fine mathematical argument. The results here build on the

terminologies and the propositions for piecewise C1-diffeomorphisms presented in Section D.5.

Proposition D.3. Let M be a set of piecewise C1-diffeomorphisms (resp. locally bounded maps)

from Rd to Rd, and F1, . . . , Fr be linearly increasing piecewise C1-diffeomorphisms (resp. continuous

maps) from Rd to Rd (r ≥ 2). Assume for any ε > 0 and compact set K ⊂ Rd, there exists

G̃1, . . . , G̃r ∈ M such that for i ∈ [r],
∥∥Fi − G̃i∥∥p,K < ε (resp.

∥∥Fi − G̃i∥∥sup,K < ε). Then for any

ε > 0 and compact set K ⊂ Rd, there exists G1, . . . , Gr ∈M, such that

‖Fr ◦ · · · ◦ F1 −Gr ◦ · · · ◦G1‖p,K < ε
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(
resp. ‖Fr ◦ · · · ◦ F1 −Gr ◦ · · · ◦G1‖sup,K < ε )

Proof. We prove by induction. In the case of r = 2, it follows by Lemma D.13 (for Lp-norm)

or Lemma D.14 (for sup-norm) below in the case of M1 = M2 = M. In the general case, let

F̃2 := Fr ◦ · · ·F2. Then by the induction hypothesis, for any compact set K and ε > 0, there exists

G̃2 = Gr ◦ · · · ◦G2 for some Gi ∈M such that
∥∥F̃2 − G̃2

∥∥
?,K

< ε, where ? = p or sup. By applying

Lemma D.13 or Lemma D.14 with M1 =M and M2 =M◦ · · · ◦ M (the set of compositions of

r − 1 elements ofM) below, we conclude the proof.

Lemma D.13. Let M1 and M2 be sets of piecewise C1-diffeomorphisms from Rd to Rd. Let

F1, F2 : Rd → Rd be linearly increasing piecewise C1-diffeomorphisms. Assume for any ε > 0 and

compact set K ⊂ Rd, for i = 1, 2, there exists G̃i ∈ Mi such that
∥∥∥Fi − G̃i∥∥∥

p,K
< ε. Then for any

ε > 0 and compact set K ⊂ Rd, for i = 1, 2, there exists Gi ∈Mi, such that

‖F2 ◦ F1 −G2 ◦G1‖p,K < ε.

Proof. Fix arbitrary ε > 0 and compact set K ⊂ Rd. Put K ′ := F1(K ∩ UF1
). Then, since

F1(K ∩UF1
) is bounded (see the remark under Definition D.6), K ′ is compact. We claim that there

exists R > 0 such that

vol(F−1
1 (L(R;F2) ∩K ′))1/p <

ε

3ess.sup
K′

‖F2‖
,

which can be confirmed as follows. Take an increasing sequence Rn > 0 (n ≥ 1) satisfy-

ing limn→∞Rn = ∞. Let Bn := L(Rn; f) ∩ K ′ and An := F−1
1 (Bn). Then, from Propo-

sition D.2, we have vol(Bn) → 0, which implies vol(
⋂∞
n=1Bn) = 0. By Proposition D.1 (4),

we have vol(
⋂∞
n=1An) = vol(F−1

1 (
⋂∞
n=1Bn)) = 0. By Proposition D.1 (5), we have vol(A1) =

vol(F−1
1 (B1)) < ∞. Recall that if a decreasing sequence {Sn}∞n=1 of measurable sets satis-

fies vol(S1) < ∞ and vol(
⋂∞
n=1 Sn) = 0, then limn→∞ vol(Sn) = 0. Therefore, we obtain

limn→∞ vol(An) = 0 and we have the assertion of the claim.

Take G1 ∈M1 such that

‖F1 −G1‖p,K <
ε

3R
.

Let S := F−1
1 (L(R;F2) ∩K ′), and define K ′′ := (G†

1)
−1(K) ∩ UG†

1
. Then, the compactness of

K ′′ follows from Proposition D.1 (3). Next, we take G2 ∈M2 such that

‖F2 −G2‖p,K′′ <
ε

3 ess.sup
(G†

1)
−1(K)

|det(DG†
1)|

where G†
1 is a piecewise C1-diffeomorphism defined by Proposition D.1 (1). Then we have

‖F2 ◦ F1 −G2 ◦G1‖p,K
≤ ‖F2 ◦ F1 − F2 ◦G1‖p,K + ‖F2 ◦G1 −G2 ◦G1‖p,K
≤ ‖(F2 ◦ F1 − F2 ◦G1)1S‖p,K +

∥∥(F2 ◦ F1 − F2 ◦G1)1K\S
∥∥
p,K

+ ess.sup
(G†

1)
−1(K)

|det(DG†
1)|‖F2 −G2‖p,K′′

< ε.
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Lemma D.14 (compatibility of composition). Let M1 and M2 be sets of locally bounded maps

from Rd to Rd. Let F1, F2 : Rd → Rd be continuous maps. Assume for any ε > 0 and compact set

K ⊂ Rd, for i = 1, 2, there exists G̃i ∈ Mi such that
∥∥∥Fi − G̃i∥∥∥

sup,K
< ε. Then for any ε > 0 and

compact set K ⊂ Rd, for i = 1, 2, there exists Gi ∈Mi, such that

‖F2 ◦ F1 −G2 ◦G1‖sup,K < ε.

Proof. Take any positive number ε > 0 and compact set K ⊂ Rd. Put r := maxk∈K |F1(k)| and
K ′ := {x ∈ Rd : |x| ≤ r + 1}. Let G2 ∈M2 satisfying

sup
x∈K′

|F2(x)−G2(x)| ≤
ε

2
.

Since any continuous map is uniformly continuous on a compact set, we can take a positive number

δ > 0 such that for any x, y ∈ K ′ with |x− y| < δ,

|F2(x)− F2(y)| <
ε

2
.

From the assumption, we can take G1 ∈M1 satisfying

sup
x∈K
|F1(x)−G1(x)| ≤ min{1, δ}.

Then, it is clear that F1(K) ⊂ K ′ by the definition of K ′. Moreover, we have G1(K) ⊂ K ′. In fact,

we have

|G1(k)| ≤ sup
x∈K
|F1(x)−G1(x)|+ |F2(k)| ≤ 1 + r (k ∈ K).

Then for any x ∈ K, we have

|F2 ◦ F1(x)−G2 ◦G1(x)| ≤ |F2(F1(x))− F2(G1(x))|+ |F2(G1(x))−G2(G1(x))|
< ε.

D.7 Examples of Flow Architectures Covered in Chapter 5

Here, we provide the proofs for the universal approximation properties of certain CF-INNs.

D.7.1 Neural Autoregressive Flows (NAFs)

In this section, we prove that neural autoregressive flows [115] yield sup-universal approximators for

S1c (hence for S∞c ). The proof is not merely an application of a known result in Huang et al. [115]

but it requires additional non-trivial consideration to enable the adoption of Lemma 3 in Huang

et al. [115] as it is applicable only for those smooth maps that match certain boundary conditions.

Definition D.8. A deep sigmoidal flow (DSF; a special case of neural autoregressive flows) [115,

Equation (8)] is a flow layer g = (g1, . . . , gd) : Rd → Rd of the following form:

gk(x) := σ−1

 n∑
j=1

wk,j(x≤k−1) · σ
(
xk − bk,j(x≤k−1)

τj(x≤k−1)

) ,
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where σ is the sigmoid function, n ∈ N, wj , bj , τj : Rk−1 → R (j ∈ [n]) are neural networks such

that bj(·) ∈ (r0, r1), τj(·) ∈ (0, r2), wj(·) > 0, and
∑n
j=1 wj(·) = 1 (r0, r1 ∈ R, r2 > 0). We define

DSF to be the set of all possible DSFs.

Proposition D.4. The elements of DSF are locally bounded, and INNDSF is a sup-universal ap-

proximator for S1c .

Proof. The elements of DSF are continuous, hence locally bounded. Let s = (s1, · · · , sd) ∈ S1c .
Take any compact set K ⊂ Rd and ε > 0. Since K is compact, there exist r0, r1 ∈ R such that

K ⊂ [r0, r1]
d. Put r′0 = r0 − 1, r′1 = r1 + 1. We take a C1-function b : (r′0, r

′
1)→ R satisfying

1. b|[r0,r1] = 0,

2. b|(r′0,r0) and b|(r1,r′1) are strictly increasing,

3. limx→r′0+0 b(x) = −∞ and limx→r′1−0 b(x) =∞,

4. limx→r′0+0
d(σ◦b)
dx (x) and limx→r′1−0

d(σ◦b)
dx (x) exist in R,

where σ is the sigmoid function. For each k ∈ [d], we define a C1-function s̃k : [r
′
0, r

′
1]
k−1× (r′0, r

′
1)×

[r′0, r
′
1]
d−k → R, which is strictly increasing with respect to xk, by

s̃k(x) := sk(x) + b(xk) (x = (x1, · · · , xd)).

Moreover, we define a map S : [r′0, r
′
1]
d → [0, 1]d by

Sk|[r′0,r′1]k−1×(r′0,r
′
1)×[r′0,r

′
1]

d−k = σ ◦ s̃k,

Sk(x1, · · · , xk−1, r
′
0, xk+1, · · · , xd) = 0,

Sk(x1, · · · , xk−1, r
′
1, xk+1, · · · , xd) = 1,

where we write S = (S1, · · · , Sd). Then, by Lemma D.15, S satisfies the assumptions of Lemma 3

in [115]. Since S([r0, r1]
d) ⊂ (0, 1)d is compact, there exists a positive number δ > 0 such that

S([r0, r1]
d) +B(δ) := {S(x) + v : x ∈ [r0, r1]

d, v ∈ B(δ)} ⊂ [δ, 1− δ]d,

where B(δ) := {x ∈ Rd : |x| ≤ δ}. Let L > 0 be a Lipschitz constant of σ−1 : (0, 1)d → Rd on

[δ, 1− δ]d. By Lemma 3 in [115], there exists g ∈ INNDSF such that

‖S − σ ◦ g‖sup,[r′0,r′1]d < min
{
δ,
ε

L

}
.

As a result, σ ◦ g([r0, r1]d) ⊂ S([r0, r1]d) +B(δ) ⊂ [δ, 1− δ]d. Then we obtain

‖s− g‖sup,K ≤ ‖s− g‖sup,[r0,r1]d = ‖σ−1 ◦ σ ◦ s− σ−1 ◦ σ ◦ g‖sup,[r0,r1]d
≤ L‖S − σ ◦ g‖sup,[r0,r1]d
< ε.

Lemma D.15. We denote by T 1 the set of all C1-increasing triangular maps from Rd to Rd. For

s = (s1, · · · , sd) ∈ T 1, we define a map S : [r′0, r
′
1]
d → [0, 1]d as in the proof of Proposition D.4.

Then S is a C1-map.
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Proof. It is enough to show that Sd : [r
′
0, r

′
1]
d → [0, 1] is a C1-function. We prove that for any i ∈ [d],

the i-th partial derivative of Sd exists and that it is continuous on [r′0, r
′
1]
d. First, for i ∈ [d− 1], we

consider the i-th partial derivative.

Claim 1.

∂Sd
∂xi

(x) =

{
dσ
dx (si(x) + b(xd))

∂sd
∂xi

(x) (x ∈ [r′0, r
′
1]
d−1 × (r′0, r

′
1))

0 (xd = r′0, r
′
1)

In fact, for x ∈ [r′0, r
′
1]
d−1 × (r′0, r

′
1), we have

∂Sd
∂xi

(x) =
∂(σ ◦ s̃d)
∂xi

(x) =
dσ

dx
(sd(x) + b(xd))

(
∂sd
∂xi

(x) + 0

)
.

For x = (x≤d−1, r
′
0), we have

∂Sd
∂xi

(x) = lim
h→0

Sd(x≤i−1, xi + h, xi+1, · · · , xd−1, r
′
0)− Sd(x≤d−1, r

′
0)

h

= lim
h→0

0− 0

h
= 0

Here, note that by the definition of Sd, the notation

Sd(x≤i−1, xi + h, xi+1, · · · , xd−1, r
′
0)

makes sense even if xi = r′0 or xi = r′1. We can verify the case x = (x≤d−1, r
′
1) similarly.

Next, we show that ∂Sd

∂xi
is continuous. We take any x≤d−1 ∈ [r′0, r

′
1]
d−1. Since we have

limx→r′0
b(x) = −∞, limx→r′1

b(x), limx→±∞
dσ
dx (x) = 0, and | ∂sd∂xI

(x)| < ∞ (x ∈ [r′0, r
′
1]
d), we

obtain

lim
x→(xd−1,r′0)

dσ

dx
(si(x) + b(xd))

∂sd
∂xi

(x) = 0,

lim
x→(xd−1,r′1)

dσ

dx
(si(x) + b(xd))

∂sd
∂xi

(x) = 0.

Therefore, the partial derivative ∂Sd

∂xi
(x) is continuous on [r′0, r

′
1]
d for i ∈ [d− 1].

Next, we consider the d-th derivative of Sd.

Claim 2.

∂Sd
∂xd

(x) =


dσ
dx (sd(x) + b(xd))

(
∂sd
∂xd

(x) + db
dx (xd)

)
(x ∈ [r′0, r

′
1]
d−1 × (r′0, r

′
1))

esd(x≤d−1,r
′
0) limx→r′0+0

d(σ◦b)
dx (x) (xd = r′0)

e−sd(x≤d−1,r
′
1) limx→r′1−0

d(σ◦b)
dx (x) (xd = r′1)

We verify Claim 2. Since it is clear for the case x ∈ [r′0, r
′
1]
d−1 × (r′0, r

′
1) by the definition of Sk, we

consider the case xd = r′0, r
′
1.

Subclaim. For x′≤d−1 ∈ [r′0, r
′
1]
d−1,

lim
x→(x′

≤d−1
,r′0)

σ(sd(x) + b(xd))

σ(b(xd))
= esd(x

′
≤d−1,r

′
0)

lim
x→(x′

≤d−1
,r′1)

σ(sd(x) + b(xd))− 1

σ(b(xd))− 1
= e−sd(x

′
≤d−1,r

′
1)
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We verify this subclaim. From limx→r′0
b(x) = −∞, we have

σ(sd(x) + b(xd))

σ(b(xd))
=

1 + e−b(xd)

1 + e−sd(x)−b(xd)
=

eb(xd) + 1

eb(xd) + e−sd(x)

→ 1

e−sd(x
′
≤d−1

,r′0)
= esd(x

′
≤d−1,r

′
0) (x→ (x′≤d−1, r

′
0))

Similarly, from limx→r′1
b(x) =∞, we have

σ(sd(x) + b(xd))− 1

σ(b(xd))− 1
= e−sd(x)

1 + e−b(xd)

1 + e−sd(x)−b(xd)

→ e−sd(x≤d−1,r
′
1) (x→ (x′≤d−1, r

′
1)).

Therefore, our subclaim has been proved. By using L’Hôpital’s rule, we have

lim
h→+0

σ(b(r′0 + h))

h
= lim

x→r′0

d(σ ◦ b)
dx

(x), lim
x→r′1

σ(b(r′1 + h))− 1

h
= lim

x→r′1

d(σ ◦ b)
dx

(x).

Then, from Subclaim, we obtain

∂Sd

∂xd
(x≤d−1, r

′
0) = lim

h→+0

σ(sd(x≤d−1, r
′
0 + h) + b(r′0 + h))− 0

h

= lim
h→+0

σ(sd(x≤d−1, r
′
0 + h) + b(r′0 + h))

σ(b(r0 + h))
· σ(b(r

′
0 + h))

h

= esd(x≤d−1,r
′
0) lim

x→r′0+0

d(σ ◦ b)
dx

(x),

∂Sd

∂xd
(x≤d−1, r

′
1) = lim

h→−0

σ(sd(x≤d−1, r
′
1 + h) + b(r′1 + h))− 1

h

= lim
h→−0

σ(sd(x≤d−1, r
′
1 + h) + b(r′1 + h))− 1

σ(b(r′1 + h))− 1
· σ(b(r

′
1 + h))− 1

h

= esd(x≤d−1,r
′
1) lim

x→r′1

d(σ ◦ b)
dx

(x).

Therefore, Claim 2 was proved.

Finally, we verify ∂Sd

∂xd
(x) is continuous on [r′0, r

′
1]
d. Fix x′≤d−1 ∈ [r′0, r

′
1]
d−1. Since we have

limx→(x′
≤d−1

,r′0)
dσ
dx (σd(x) + b(xd))

∂sd
∂xd

(x) = 0, from Claim 2, it is enough to show the following:

Claim 3.

lim
x→(x′

≤d−1
,r′0)

dσ

dx
(sd(x) + b(xd))

db

dx
(xd) = esd(x≤d−1,r

′
0) lim
x→r′0+0

d(σ ◦ b)
dx

(x),

lim
x→(x′

≤d−1
,r′1)

dσ

dx
(sd(x) + b(xd))

db

dx
(xd) = e−sd(x≤d−1,r

′
1) lim
x→r′1−0

d(σ ◦ b)
dx

(x).

We verify Claim 3. We have

dσ

dx
(sd(x) + b(xd))

db

dx
(xd) =

dσ
dx (sd(x) + b(xd))

dσ
dx (b(xd))

dσ

dx
(b(xd))

db

dx
(xd)

=
dσ
dx (sd(x) + b(xd))

dσ
dx (b(xd))

d(σ ◦ b)
dx

(xd).
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Since we have dσ
dx (x) = σ(x)(1− σ(x)), from Subclaim above, Claim 3 follows from

dσ
dx (sd(x) + b(xd))

dσ
dx (b(xd))

=
σ(sd(x) + b(xd))

σ(b(xd))
· 1− σ(sd(x) + b(xd))

1− σ(b(xd))

→

{
esd(x

′
≤d−1,r

′
0) (x→ (x′≤d−1, r

′
0))

e−sd(x
′
≤d−1,r

′
1) (x→ (x′≤d−1, r

′
1))

.

Therefore, we proved the continuity of ∂Sd

∂xd
(x).

D.7.2 Sum-of-squares Polynomial Flows (SoS flows)

In this section, we prove that sum-of-squares polynomial flows [131] yield CF-INNs with the sup-

universal approximation property for S1c (hence for S∞c ). Even though Jaini et al. [131] claimed

the distributional universality of the SoS flows by providing a proof sketch based on the univariate

Stone-Weierstrass approximation theorem, we regard the sketch to be invalid or at least incomplete

as it does not discuss the smoothness of the coefficients, i.e., whether the polynomial coefficients can

be realized by continuous functions. Here, we provide complete proof that takes an alternative route

to prove the sup-universality of the SoS flows via the multivariate Stone-Weierstrass approximation

theorem.

Definition D.9. A sum-of-squares polynomial flow (SoS flow) [131, Equation (9)] is a flow layer

g = (g1, . . . , gd) : Rd → Rd of the following form:

gk(x) := B2r+1(xk;Ck(x≤k−1)),

B2r+1(z; (c,a)) := c+

∫ z

0

B∑
b=1

(
r∑
l=0

al,bu
l

)2

du,

where Ck : Rk−1 → RB(r+1)+1 is a neural network, r ∈ N ∪ {0}, and B ∈ N. We define SoS to be

the set of all possible SoS flows.

Proposition D.5. The elements of SoS are locally bounded, and INNSoS is a sup-universal approx-

imator for S1c .

Proof. The elements of SoS are continuous, hence locally bounded. The sup-universality follows from

the Stone-Weierstrass approximation theorem as in the below. Let s = (s1, . . . , sd) ∈ S1c , a compact

subset K ⊂ Rd, and ε > 0 be given. Then, there exists R > 0 such that K ⊂ [−R,R]d. Since sd(x)
is strictly increasing with respect to xd and s is C

1, we have η(x) := ∂sd
∂xd

(x) > 0 and η is continuous.

Therefore, we can apply the Stone-Weierstrass approximation theorem [79, Corollary 4.50] to
√
η(x):

for any δ > 0, there exists a polynomial π(x1, . . . , xd) such that
∥∥√η − π∥∥

sup,[−R,R]d
< δ. Then, by

rearranging the terms, there exist r ∈ N and polynomials ξl(x1, . . . , xd−1) such that π(x1, . . . , xd) =∑r
l=0 ξl(x1, . . . , xd−1)x

l
d. Now, define

g̃d(x) := sd(x≤d−1, 0) +

∫ xd

0

(π(x≤d−1, u))
2du

= sd(x≤d−1, 0) +

∫ xd

0

(
r∑
l=0

ξl(x1, . . . , xd−1)u
l

)2

du
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and g̃(x) := (x1, . . . , xd−1, g̃d(x)). Then,

‖s− g̃‖sup,K = sup
x∈K

|sd(x)− g̃d(x)|

= sup
x∈K

∣∣∣∣sd(x≤d−1, 0) +

∫ xd

0

η(x≤d−1, u)du− g̃d(x)
∣∣∣∣

= sup
x∈K

∣∣∣∣∫ xd

0

(
√
η(x≤d−1, u)

2

− π(x≤d−1, u)
2)du

∣∣∣∣
≤ R · sup

x∈[−R,R]d

∣∣∣√η(x)2 − π(x)2∣∣∣
= R · sup

x∈[−R,R]d
|
√
η(x) + π(x)| · |

√
η(x)− π(x)|

≤ R

(
sup

x∈[−R,R]d
2
√
η(x) + δ

)
δ,

where we used

sup
x∈[−R,R]d

|
√
η(x) + π(x)| ≤ sup

x∈[−R,R]d
|2
√
η(x)|+ |

√
η(x)− π(x)|

≤ sup
x∈[−R,R]d

2
√
η(x) + δ.

It is straightforward to show that there exists g ∈ SoS such that ‖g̃ − g‖sup,K < ϵ
2 by approximating

each of sd(x≤d−1) and ξl on K using neural networks. Finally, taking δ to be small enough so that

‖s− g̃‖sup,K < ϵ
2 holds, the assertion is proved.

D.8 Using Permutation Matrices Instead of Aff in the Defi-

nition of INNG

In terms of representation power, there is no essential difference between using the permutation

group and using the general linear group in Definition 5.1. In fact, one can express the elementary

operation matrices (hence the regular matrices) by combining affine coupling flows, permutations.

From this result, we can see that employing Aff in Definition 5.1 instead of the permutation

matrices is not an essential requirement for the universal approximation properties to hold. For this

reason, we believe that the empirically reported difference in the performances of Glow [145] and

RealNVP [63] is mainly in the efficiency of approximation rather than the capability of approxima-

tion.

Lemma D.16. We have

INNH-ACF = {W1 ◦ g1 ◦ · · · ◦Wn ◦ gn : gi ∈ H-ACF,Wi ∈ Sd}, (D.1)

where Sd is the permutation group of degree d.

Proof. Since any translation operator (i.e., addition of a constant vector) can be easily represented

by the elements of H-ACF and permutations, it is enough to show that any element of GL(n,R) can
be realized by a finite composition of elements of H-ACF and Sd. To show that, it is sufficient to

consider only the elementary matrices. Row switching comes from Sd. Moreover, element-wise sign

flipping can be described by a composition of finite elements of H-ACF. To see this, first observe
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that (
−1 0

0 1

)
=

(
1 0

1 1

)(
0 1

1 0

)(
1 0

−1 1

)(
0 1

1 0

)(
1 0

1 1

)(
0 1

1 0

)

holds. Now, any lower triangular matrix with positive diagonals can be described by a composition

of finite elements of H-ACF. Therefore, any diagonal matrix whose components are ±1 can be

described by a composition of elements in H-ACF and Sd. Therefore, any affine transform is an

element of the right hand side of Equation (D.1).

D.9 Other Related Work

In this section, we elaborate on the relation of the present chapter and the existing literature.

Approach to make universal approximators by augmenting the dimensionality. Zhang

et al. [308] showed that invertible residual networks (i-ResNets) [18] and neural ordinary differential

equations (NODEs) [40, 67] can be turned into universal approximators of homeomorphisms by

increasing the dimensionality and padding zeros. Given that, one may wonder if we can apply a

similar technique to augment CF-INN to have the universality, which can bypass the proof techniques

developed in this study. However, there is a problem that the approach can undermine the exact

invertibility of the model: unless the model is ideally trained so that it always outputs zeros in

the zero-padded dimensions, the model can no longer represent an invertible map operating on

the original dimensionality. On the other hand, we showed the universality properties of certain

CF-INNs without introducing the complication arising from the dimensionality augmentation.
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[48] S. Clémençon, I. Colin, and A. Bellet. Scaling-up empirical risk minimization: optimization

of incomplete U-statistics. Journal of Machine Learning Research, 17(76):1–36, 2016.

[49] P. Comon. Independent component analysis, a new concept? Signal Processing. Higher Order

Statistics, 36(3):287–314, 1994.

[50] C. Cortes and M. Mohri. Domain adaptation and sample bias correction theory and algorithm

for regression. Theoretical Computer Science. Algorithmic Learning Theory, 519:103–126,

2014.

[51] C. Cortes, M. Mohri, and A. M. Medina. Adaptation based on generalized discrepancy.

Journal of Machine Learning Research, 20(1):1–30, 2019.

[52] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Modeling wine preferences by

data mining from physicochemical properties. Decision support systems, 47(4):547–553, 2009.

[53] N. Courty, R. Flamary, A. Habrard, and A. Rakotomamonjy. Joint distribution optimal

transportation for domain adaptation. In Advances in Neural Information Processing Systems

30, 3730–3739. Curran Associates, Inc., 2017.

[54] C. Craver and J. Tabery. Mechanisms in science. In The Stanford Encyclopedia of Philosophy.

Metaphysics Research Lab, Stanford University, summer 2019 edition, 2019.

[55] C. F. Craver. Explaining the Brain: Mechanisms and the Mosaic Unity of Neuroscience.

Oxford University Press, Clarendon Press, 2007.



180 Bibliography

[56] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Con-

trol, Signals, and Systems, 2:303–314, 1989.

[57] A. P. Dawid. Conditional independence in statistical theory. Journal of the Royal Statistical

Society: Series B (Methodological), 41(1):1–31, 1979.

[58] A. P. Dawid. Conditional independence for statistical operations. The Annals of Statistics,

8(3):598–617, 1980.

[59] N. De Cao, W. Aziz, and I. Titov. Block neural autoregressive flow. In Proceedings of the

35th Uncertainty in Artificial Intelligence Conference, 1263–1273. PMLR, 2020.

[60] G. De Pierris and M. Friedman. Kant and Hume on causality. In The Stanford Encyclopedia

of Philosophy. Metaphysics Research Lab, Stanford University, winter 2018 edition, 2018.

[61] M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, and

T. Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. IEEE

Transactions on Pattern Analysis and Machine Intelligence:1–1, 2021.

[62] L. Dinh, D. Krueger, and Y. Bengio. NICE: Non-linear independent components estimation.

arXiv:1410.8516 [cs.LG], 2014.

[63] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real NVP. In 5th Inter-

national Conference on Learning Representations, Conference Track Proceedings. OpenRe-

view.net, 2017.

[64] J. Dony, U. Einmahl, and D. M. Mason. Uniform in bandwidth consistency of local polynomial

regression function estimators. Austrian Journal of Statistics, 35(2&3):105–120, 2006.

[65] R. M. Dudley. Real Analysis and Probability. Cambridge Studies in Advanced Mathematics.

Cambridge University Press, second edition, 2002.

[66] O. D. Duncan, D. L. Featherman, and B. Duncan. Socioeconomic Background and Achieve-

ment. Socioeconomic Background and Achievement. Seminar Press, 1972.

[67] E. Dupont, A. Doucet, and Y. W. Teh. Augmented neural ODEs. In Advances in Neural

Information Processing Systems 32, 3140–3150. Curran Associates, Inc., 2019.

[68] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios. Neural spline flows. In Advances

in Neural Information Processing Systems 32, 7511–7522. Curran Associates, Inc., 2019.

[69] U. Einmahl and D. M. Mason. An empirical process approach to the uniform consistency of

kernel-type function estimators. Journal of Theoretical Probability, 13(1):1–37, 2000.

[70] U. Einmahl and D. M. Mason. Uniform in bandwidth consistency of kernel-type function

estimators. Annals of Statistics, 33(3):1380–1403, 2005.

[71] D. B. A. Epstein. The simplicity of certain groups of homeomorphisms. Compositio Mathe-

matica, 22(2):165–173, 1970.

[72] R. Evans. Markov properties for mixed graphical models. In Handbook of Graphical Models.

Chapman & Hall/CRC, 2019.

[73] R. Evans and T. Richardson. Markovian acyclic directed mixed graphs for discrete data. The

Annals of Statistics, 42(4):1452–1482, 2014.

[74] R. J. Evans. Graphs for margins of Bayesian networks. Scandinavian Journal of Statistics,

43(3):625–648, 2016.

[75] R. J. Evans. Margins of discrete Bayesian networks. The Annals of Statistics, 46(6A):2623–

2656, 2018.

[76] R. J. Evans and T. S. Richardson. Smooth, identifiable supermodels of discrete DAG models

with latent variables. Bernoulli, 25(2):848–876, 2019.



Bibliography 181

[77] Y. Fan, J. Chen, G. Shirkey, R. John, S. R. Wu, H. Park, and C. Shao. Applications of

structural equation modeling (SEM) in ecological studies: an updated review. Ecological

Processes, 5:Article 19, 2016.

[78] J. A. Fodor. Special sciences (or: the disunity of science as a working hypothesis). Synthese,

28(2):97–115, 1974.

[79] G. B. Folland. Real Analysis: Modern Techniques and Their Applications, number 125 in Pure

and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts Book. Wiley,

second edition, 1999.
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