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ABSTRACT

Structure elucidation is the process of determining the structure of a chemical com-

pound from a sample. It is a basic but essential task in biology and chemistry research. For

organic compounds, structure elucidation is often involved with Nuclear Magnetic Reso-

nance (NMR) spectroscopy. NMR spectroscopy is a technique that observes local magnetic

fields around atomic nuclei. NMR spectroscopy machine excites the sample with a radio

frequency pulse, a nuclear magnetic resonance response is then obtained. This nuclear

magnetic resonance response, also known as a free induction delay (FID), can be converted

into a spectrum with a Fourier Transformation.

On the NMR spectrum, functional groups in a molecule appear as peaks which charac-

terizes themselves depending on their chemical environment in the molecule. Chemists can

often readout the knowledge behind the chemical shifts where the peaks of some groups

appear and assembly information together to obtain structural information of the sample

molecule. Therefore, the approximate chemical structure of the target molecule can be

confirmed from the NMR spectrum. In addition to structure elucidation by chemists, it

is also possible to match observed NMR spectrum with existing NMR spectrum in the

database. Although many previously observed NMR spectra are accumulated in public

databases, they cover only a tiny fraction of the chemical space.

To overcome the limitation of current structure elucidation methods with NMR spec-

troscopy, an automated structure elucidation method independent to database content is

desired. Recent progress in machine learning has enabled the development of de novo

molecule generators which are expected to design molecules with desired properties. Pre-

viously, our lab developed a molecule generator, ChemTS, which combines Monte Carlo

tree search (MCTS) with a recurrent neural network (RNN), and successfully showed that

ChemTS coupled with quantum chemical calculations can produce realistic molecules that

have desired properties. So far, most de novo molecule generators have only been tested



or applied on quantifiable chemical properties such as gaps between the highest occupied

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). As 1H

NMR spectra are highly characteristic of individual compounds, we consider 1H NMR

spectra as one of its molecular properties.

In this thesis, we propose NMR-TS, a machine-learning-based python library, to au-

tomatically identify a molecule from its NMR spectrum. NMR-TS discovers candidate

molecules whose NMR spectra match the target spectrum by using deep learning and den-

sity functional theory (DFT)-computed spectra.

As a proof-of-concept, we identify prototypical metabolites from their computed spec-

tra. After an average 5451 DFT runs for each spectrum, six of the nine molecules are

identified correctly, and proximal molecules are obtained in the other cases. This encour-

aging result implies that de novo molecule generation can contribute to the fully automated

identification of chemical structures.

In addition, we will discuss about another main obstacle of automatic structure elucida-

tion from NMR spectrum which is the distance metric between two NMR spectra. Theoret-

ically, measuring/predicting same molecular structure should result exactly the same NMR

spectra using different machine or predictor. However, this is not true in reality. As a so-

phisticated measurement, even a slight error could cause mis-classification between NMR

obtaining from different sources. In this thesis, we summarize the current distance metrics

and suggest potential new distance metric by training a neural network as a customized

distance metric.
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CHAPTER 1

INTRODUCTION

Our understanding about the nature expands with our observation capability. The aver-

age of human eyes can distinguish objects as small as about 0.1 mm. This remains to be

our observation limit until the invention of optical microscope in 1590. Using optical mi-

croscope, Robert Hooke and Antonie van Leeuwenhoek both independently achieved to

observe cellular structure which leads to the creation of microbiology. With continuous

improvement on optical microscope, soon our limit of observation become the wavelength

of visible light. If the size of the object we are observing is smaller than the wavelength of

visible light, it is hopeless to use visible light as an observation tool. In 1930s, Isidor Rabi

discovered the interaction between the nuclei magnetic moment and the magnetic field, and

first described the phenomena of Nuclear Magnetic Resonance (NMR) . This work is then

soon expanded by Felix Bloch and Edward Purcell in 1945 to apply on liquids and solids

[1] and both Purcell group and Bloch group developed NMR spectroscopy independently

in 1940s and 1950s. NMR spectroscopy is a spectroscopic technique to obtain structural

information of chemical compounds by observing local magnetic fields around atomic nu-

clei. As the intramolecular magnetic field around an atom would make an impact on the

resonance frequency and will reveal details of the electronic structure of a molecule and its

individual functional groups. NMR spectroscopy expands again our ability to observe and

provides detailed information about the structure, dynamics and the chemical environment

of a molecule. Being able to observe and identify this information is a critical step for our

understanding about mechanisms at an atomic or molecular level.
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1.1 Current state of structure elucidation from NMR spectrum

Structure elucidation is the process of determining the structure of a chemical compound

from a sample. It is a basic but essential task in biology and chemistry research. Under

the context of NMR spectroscopy meaning the determination of a chemical structure an

unknown NMR spectrum [2]. Currently, there are mainly two ways of structure elucidation.

The first way is if the spectrum of the observed sample fully coincides with a reference

spectrum, usually stored in an NMR database, it implies the observed sample is identical to

the reference spectrum. We can therefore retrieve the chemical structure from the reference

database.[3, 4, 5] The second way is to manually induct the structure behind the spectrum

using pieces of information obtained from the NMR spectrum. This is usually the most

complicated task.

The drawback of both current approaches are obvious. In the approach of retrieving

structural information from a database of NMR spectrum, the feasibility of such approach

is highly dependent on prior database knowledge. If the molecule structure in question is

previously unknown or simply the information is not stored in the database we are search-

ing, such approach will most certainly fail. In the second approach of manually induct the

structure from NMR spectrum, it is highly dependent on both human involvement and ex-

pertise of chemists. This demand of human effort could be an inhibitory factor for massive

or repetitive elucidations.

1.2 Automated robotic laboratory

Recently, automated robotic laboratory systems have received considerable attention for

high-throughput material design. The automated system allows machine learning algo-

rithm to require and perform chemical experiments, measure the result of each experiment,

and the algorithm will then decide what to do next. Studies have demonstrated that au-

tomated robotic laboratories can perform chemical reactivity tests under different reaction
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conditions guided by machine learning algorithm [6, 7, 8]. One of the key steps in this

automated system is the measurement step. We need this measurement step as a feedback

from actual experiment and feed the information to the algorithm. For instance, in the ex-

periment of improving yield of reaction product, this measurement should be the amount

of desired product after reaction. In fact, a bench-top NMR spectroscopy is the exact tech-

nique used to do this quantitative measurement [8]. If we can perform not only quantitative

measurement, but also qualitative measurement, it will enable the automated system for a

wider range of application such as automated discovery of retro-synthetic pathway. For

now, although the acquisition of NMR spectrum can be fully automated, the interpretation

from NMR spectrum to a chemical structure can be fully automated especially when it in-

volves chemical structure which is not in the database. An automated structure elucidation

process is the one piece of puzzle missing here.

1.3 Metabolites ”dark matter”

Also, study shows that, on a biological sample that we extracted from marine organism,

there are about 98 percents of peaks on the spectrum that does not belong to any structure

that we have in our knowledge. We can match only about 2 percents of peaks to a known

chemical structure. This circumstances is referred as ”dark matter” in [9]. The existence

of biological ”dark matter” gives us a reason to create a method that elucidate the chemical

structure from a spectrum without database knowledge. Although an automated structure

will be the remedy for every problem involved (for example, one of hardest problem for

biological extraction spectrum is the interaction between different chemical structures), it

would be one step forward towards the understanding of the metabolites dart matter.

1.4 An automated system for structure elucidation from NMR spectrum

Recent progress in machine learning has enabled the development of de novo molecule gen-

erators [10, 11, 12, 13, 14, 15, 16, 17]. de novo molecule generator is a type of algorithms
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that will automatically design a chemical structure with desired chemical properties, this is

also known as inverse molecular design [11]. Usually, molecule generator takes a desired

property(or a set of properties for multi-objective design) as input and generate a set of

chemical compound candidates which should potentially has close-to-desired property as

output. For instance, our laboratory has previously developed a molecule generator namely

ChemTS [14], which combines Monte Carlo tree search (MCTS) with a recurrent neural

network (RNN). We have successfully showed that ChemTS can be coupled with quantum

chemical calculations and produce realistic molecules that have a certain desired properties

[18]. However, to date, most de novo molecule generators have only been designed or tested

on quantifiable chemical properties such as HOMO-LUMO gaps (gaps between HOMO,

the highest occupied molecular orbital, and LUMO, the lowest unoccupied molecular or-

bital). As 1H NMR spectra are highly characteristic for each individual chemical structure,

we can consider 1H NMR spectra as one of its molecular properties. The approach that we

want to take is to ask a molecule generator to design a chemical compound that has a NMR

spectrum as close as possible to the measured experimental NMR spectrum. If the molecule

generator can generate a molecule that has ”exactly the same” NMR spectrum compare to

the measured one, we can then consider that we recovered the chemical structure behind

the measured NMR spectrum.

During my PhD study, We developed a python library named NMR-TS to identify a

known or unknown molecule from its NMR spectrum by designing molecules that have as

similar as possible 1H NMR spectra compare to the input spectrum. As a proof-of-concept

work, we implemented this concept and evaluated its performance on the 1H NMR spectra

of nine molecules. All nine molecules were not included in the dataset that NMR-TS has

encountered. NMR-TS succeeded in correctly identifying six of the nine molecules from

their 1H NMR spectra, whereas proximal molecules were obtained in the other three cases.

In addition, we looked into the similarity metric between two NMR spectra. Each

molecule has a unique NMR spectrum, in a lot of the cases, for two chemical compound
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with similar chemical structures, their NMR spectra tends to be similar. However, this is not

always true. In some cases, NMR spectrum of some largely different chemical structures

could look similar to each other. Also, current NMR spectrum prediction methods, based

either on computational chemistry[19] or machine learning [20, 21, 22, 23, 24, 25, 26] are

accurate, but not accurate enough for information retrieval tasks when the amount of NMR

spectra in the database is massive. For this purpose, we tried to explore different strategy

to tackle the distance metric between two NMR spectra in order to better answer questions

like: 1) Are these NMR spectra represents the same molecule? 2) If not, how different are

they?
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CHAPTER 2

NMR SPECTROSCOPY

2.1 Physical Basics of Nuclear Magnetic Resonance

2.1.1 Spin

Spin is an intrinsic form of angular momentum carried by elementary particles, composite

particles and atomic nuclei [27]. Nuclear magnetic resonance is mainly caused by the

spin of atomic nuclei. Different atomic nuclei have different type of spin. They can be

represented by the spin quantum number I of the nucleus. There is a certain relationship

between the spin quantum number, the mass number and atomic number of the atom, which

can be roughly divided into three categories, as shown in the following table.

Type Mass Number Atomic Number Spin Quantum Number NMR
I Even Even 0 No
II Even Odd 1, 2, 3, ... Yes
III Odd Odd or Even 1/2, 3/2, 5/2, ... Yes

2.1.2 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance describe a physical phenomenon of nuclei in a strong con-

stant magnetic field being perturbed by another oscillating magnetic field. After the pertur-

bation, nuclear spin will try to restore to a direction that is aligned to the strong constant

magnetic field. This restoration process will produce an electromagnetic signal with a fre-

quency. This frequency of electromagnetic signal will decay in time until the oscillation

stops. The variation range of the oscillation frequency is near resonance to the intrinsic

frequency of the nuclei, which mainly depends on the chemical environment and the mag-

netic prop reties of the isotope involved. In the context of a molecule or a protein complex,

as each nuclei is submitted to a unique chemical environment the resonance frequency of
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each nuclei should be unique. As each nuclei has a unique frequency, the combination of

all unique frequency which is represented in form of an oscillation should also be unique

for each distinct chemical structure.

For any nuclei that could interact with the magnetic field, the nucleus must have an

intrinsic nuclear magnetic moment and angular momentum. The later condition is met

when the nuclei has a non-zero nuclear spin, which in most of the case represents that the

nuclei has an odd number protons and/or an odd number of neutrons.

1H and 13C and two types of commonly used nuclei in NMR spectroscopy.

2.2 Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance spectroscopy, commonly known as NMR spectroscopy, is a

spectroscopic technique to obtain structural information of chemical compounds by observ-

ing local magnetic fields around atomic nuclei. The substance in question will be placed

in the center in a strong and constant magnetic field using a tool called NMR probe. The

constant magnetic field is often achieved by using homogeneous permanent magnet for

low-frequency NMR spectroscopy or superconducting magnet for high-frequency NMR

spectroscopy. Once the substance is placed in the NMR probe at the designated position

inside of a NMR spectroscopy machine, as described in the previous section, the magnetic

field will make the spin of NMR active atoms inside of the sample align to the constant

magnetic field.

In the second step, we need to add a perturbation to the aligned nuclear spins by adding

a weak oscillating magnetic field. Usually this oscillating magnetic field is referred to a

radio-frequency pulse. The NMR probe contains a radio frequency coils which is used to

excite the sample by applying this radio-frequency pulse and record the responses. The

pulse emits an excitation of the nuclei sample with radio waves into nuclear magnetic

resonance in order to produce the NMR signal.

Upon excitation of the sample, a nuclear magnetic resonance response, also called a raw
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time-domain Free Induction Decay (FID), is detected by sensitive radio receivers. Each

single FID captured could have a low signal-to-noise ratio, but this can be improved by

doing multiple excitations and averaging FID records. A Fourier Transformation is then

carried out to transform time-domain FID into frequency-domain spectrum which is unique

or highly characteristic to individual compounds.

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξdx (2.1)

An example of the frequency-domain spectrum obtained after Fourier Transformation

is the following:

Figure 2.1: 1H NMR Spectrum of 2-ethyl-phenol. [28]

On the NMR spectrum, each peak represents a resonant frequency in the sample, also

known as chemical shift. The position and the number of chemical shift are key information

for the structure elucidation.

Unless explicitly noted otherwise, all chemical shift in this thesis are expressed in parts
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per million (ppm) with

δ =
vsample − vref

vref
(2.2)

where vsample is the absolute resonant frequency of a chemical shift and vref is the

absolute resonant frequency of a reference compound. In our study and very commonly in

other studies, Tetramethylsilane (TMS) is used as the reference compound.

2.3 Structure elucidation from NMR spectrum

Structure elucidation is the task to map or deduct from the NMR spectrum to a chemical

structure. Usually, for any NMR spectrum obtained, we first search the spectrum or the

position of each chemical shift in a NMR spectrum database. Depends on the outcome of

this search, the elucidation goes into two direction. If the NMR spectrum is known in the

database, which means the spectrum match closely to a known structure in the database,

scientists can directly readout the chemical structure. Otherwise, the scientist will need to

deduct the chemical structure based on the information given from the spectrum.

For different type of NMR spectroscopy, the structure elucidation procedures are not

the same. Here we show the example with a 1H NMR spectrum, which is a fairly commonly

used type of NMR spectroscopy.

To deduct the chemical structure from the NMR spectroscopy, the first step is usually

assign each peak to a particular functional group. As mentioned earlier, the chemical shift

of a nuclei depends on its chemical environment. In organic chemical compounds, nuclei of

same functional group tends to has a similar frequency despite the fact that their chemical

environment can be impacted by the rest part of the molecules. As a result, we can usually

assign a functional group to a particular peak on the NMR spectrum depends on its chemical

shift and its shape.

Once we assigned each peak to a functional group. The shape of each peak, also known
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Figure 2.2: Peak assignment
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as the J-coupling effect, would be able to show the number of Hydrogen that neighbouring

function group(s) contain(s). If we consider each peak on the spectra as a piece of Jigsaw

puzzle, then peak assignment will reveal the content printed on the piece of puzzle, and the

J-coupling effect will reveal the shape of each puzzle which directly decides how this piece

of puzzle can concatenate with the other pieces.

The most challenging job of chemists, is to solve this Jigsaw puzzle game by putting

different functional group into reasonable position and reveal the whole molecule struc-

ture.
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CHAPTER 3

DE NOVO MOLECULE GENERATORS

For many fields ranging from aerospace vehicle manufacturing to pharmaceutical, the abil-

ity to find and use a material or a chemical compound that fits to the demand could be the

decisive factor for the success of the project. For example, for many of the diseases, we

understand deeply about the mechanism that caused the disease, but we could not find the

right chemical compound that prevent the mechanism and don’t cause serious unwanted ef-

fect. This could be a ligand that bands tight enough to a protein binding site, or a inhibitor

compound that prevent β-amyloid precursor protein from accumulating inside of brain cell.

Traditionally in chemistry, finding and designing a chemical structure with a certain

property is mainly achieved by manually designed chemical structure from chemistry ex-

perts based on their previous experiences and chemistry insights. However, the relation-

ship between chemical structure and a certain property is usually highly complicated and

abstracted. Human knowledge and insights are often not enough to make an accurate de-

duction.

In recent years, the task of designing a chemical compound matches a desired proper-

ties is more and more studied as a black-box optimization problem. In this approach, we

imagine that all theoretically possible chemical compounds as a high dimensional space,

often referred as chemical space, the task of finding a chemical compound that has a spe-

cial property is then converted into a task of black-box optimization in a huge space. The

black-box represents the relationship between a chemical structure (a point in the chemical

space) to a property value.

Computer-aided molecular design was initially tackled by combining predefined chem-

ical fragments[29]. Ikebata et al.[30] then achieved to design molecules in a special form

of representation namely SMILES. Generating SMILES[31] form of molecules meaning
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that the molecule generation task can be converted into a linguistic or sequence generation

task. Gomez-Bombarelli et al.[32] were the first to apply variational autoencoder(VAE) to

the molecule generation task. Kusner et al.[33] then enhanced the VAE generator to em-

ploy grammatical information and created grammatical(GVAE). In 2016, Segler et al.[34]

showed that a recurrent neural network(RNN) can be trained to generate SMILES with

high validity. Yang et al. followed up on this idea and created ChemTS[14] which com-

bines RNN and Monte Carlo Tree Search (MCTS) to gradually generate SMILES form of

molecules towards a desired property(or scoring function).

In our study, we choose to use ChemTS as our generator for two reasons: 1) ChemTS

can be parallelized to make the best use of high performance computing system, 2) the

concept of combining ChemTS with quantum chemistry calculation is already proven in a

previous study[18].

3.1 ChemTS

ChemTS is an efficient Python library of de novo molecular design. ChemTS takes a

database of SMILES [31] strings and an evaluation function, which evaluates matching

level of the generated molecule to the desired property. Starting from a root node that

represents the beginning of a SMILES string, the ChemTS algorithm builds a monte carlo

search tree. On each level of the monte carlo search tree, each node represents a possible

SMILES character at this position. Similar to traditional MCTS, ChemTS consists four

steps: 1) selection, 2) expansion, 3) simulation and 4) backpropagation, details of each

steps are given in the original paper [14].

In the selection step, the algorithm traverse the search tree starting from the root un-

til reaching a leaf, each time arriving to a new node, the algorithm recursively choosing

one child node that has the maximum upper confidence bound (UCB) based score at each

branch. The path from the root to the leaf node is constituted as a series of characters, this

character sequences is then used as the prefix of the SMILES.
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Figure 3.1: Concept of ChemTS [14]

In the expansion step, all or several possible (depends on expansion strategy) candidate

characters are added as child node of a current leaf node. Upon tree expansion, the traverse

from root node to the leaf node will constitute a string which serves as the prefix input for

the RNN. Given the prefix as input, RNN can repeatedly predict the next symbol based on

prefix up to this point. This process will keep repeating until the prediction of RNN to be

a terminal symbol meaning that a complete SMILES string is generated[34]. We will then

evaluate the generated SMILES using the evaluation function. The obtained score will then

traverse backwards to the root node, and update all traversed node alongside. This final step

is called backpropagation.

The RNN of ChemTS is supposed to be trained on an input molecules database in which

molecules are represented in form of SMILES. Ideally, the molecular characteristic of the

training set should match as closely as possible of the expected candidate molecule. For

example, if we don’t expect to have any molecule with positive or negative charge, then the
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training set of the molecules shall not contain any charged molecules.

Figure 3.2: Illustration of four steps of Monte Carlo Tree Search [14]

3.2 Parallel ChemTS with virtual loss

In many cases for molecular design, the evaluation function involves in using quantum

chemistry computation such as DFT. A single DFT run could take somewhere between

minutes to days of computation time. The stand-alone version of ChemTS proceed evalu-

ation in a iterative way which is not optimal when evaluation takes significant amount of

time. Therefore, we wish to make a parallelization to accelerate the process.

Currently there are several strategy to parallel monte carlo tree search. Cazenave et

al. [35] has proposed leaf parallel and root parallel strategy for MCTS in 2007. Later,

Chaslot et al. [36] proposed another parallel strategy using virtual loss. Both approaches

are also suggested for ChemTS in [37]. In our study, we employed the virtual loss strategy

to parallelize MCTS using OpenMPI. It is worth mentioning that after the publication of

NMR-TS, a newer parallel version ChemTS is published using hashing [38]. The hashing

strategy has theoretically a better performance.

Based on our strategy with virtual loss, the UCB scoring defined as the following:

UCBi =
si

vi + wi
+ CPi

√
vp + wp

1 + vi + wi
(3.1)
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with:

si: the total score obtained by node i.

wi: the total visit number of i.

vp: the total virtual visit number of i (virtual loss).

vp: the total visit number of parent node p of i.

vi: the total virtual visit number of i.

pi: the probability of i among the children of p.

C: a constant that controls the exploration–exploitation trade-off.
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CHAPTER 4

NMR-TS

Using a similar concept of ChemTS, we designed NMR-TS, a system that can automatically

elucidate the chemical structure from an input NMR spectrum. The system takes two input:

1) an input NMR spectrum, 2) a SMILES dataset as training set of RNN. The goal is to find

out what is the chemical structure behind this spectrum.

Figure 4.1: NMR-TS

Figure 4.2 illustrate the concept and the workflow of NMR-TS. NMR-TS takes a target

NMR spectrum as input (Step 0). Step 1 is the generation step. In this step, we ask our de

novo generator to generate a molecule. In step 2, we use DFT to simulate the NMR spec-

trum of this generated molecule. Once we obtained the NMR spectrum of the generated

molecule, we compare the NMR spectrum of this generated molecule to the input NMR

spectrum. A score will be obtained about the similarity level between the input spectrum
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and the simulated spectrum (Step 3), and we will feedback the score to the monte carlo

search tree (Step 4). The generator will try to learn from its experiences and make a better

guess by generating a molecule which has more similar NMR spectrum comparing to the

input NMR spectrum. If we get lucky and obtained a molecule which generates exactly

the same spectrum as the input spectrum, it means we successfully elucidated the chemical

structure of the input spectrum.

Figure 4.2: Concept of NMR-TS
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4.1 Input data

4.1.1 Input NMR spectrum

The input NMR spectrum is assumed to be the experimental measured NMR spectrum that

we need to elucidate its chemical structure. This is also referenced as the target spectrum

in the rest of this thesis because it is this NMR spectrum that our molecule generator will

try to recreate.

4.1.2 SMILES dataset

The SMILES dataset is used to train the RNN to generate complete and valid SMILES

string. Research shows that the RNN tends to generate similar structure (SMILES string)

than its training set and it is possible to make ”focused generation” based on our prior

knowledge about the potential characteristics of the candidate molecule [34].

4.2 NMR spectrum prediction

In each iteration, NMR-TS need to simulate the NMR spectrum of generated molecule in

order to score it. In order to simulate the 1H NMR spectrum of the generated molecule,

we first convert the RNN generated SMILES into canonical SMILES. Then we convert the

canonical SMILES into a 3D structure using RDkit library with the random seed fixed to 1.

The canonization and the fixation of random seed is for the purpose of fix conformer gener-

ated. If we generated the same chemical structure but converted into a different conformer

for the reason of random seed, their NMR spectrum might be different and our algorithm

would not be able to spot the perfect match is found. After converted into 3D molecular

structure, we compute the NMR spectrum using density functional theory (DFT) [39] at

the B3LYP/3-21G* level on the optimized structure at the universal force field (UFF) level.

We used gauge-invariant atomic orbital(GIAO) method to compute the magnetic shield-

ing tensors. All chemical shifts are standardized to the reference molecule of TMS. DFT

21



calculations are performed using Gaussian 16 package [40]

4.3 Wasserstein distance based evaluation function

Wasserstein distance [41], also known as the Kantorovich-Rubinstein metric or the earth

mover’s distance [42], is a function that describes distance between two distributions. A

visual description for Wasserstein distance is to consider two distribution as two pile of

sand, if the amount of work equals to the sum of total distance moved for all grains of sand,

then the Wasserstein distance is the minimum amount of work to reshape one pile into the

other pile’s shape.

Wp(µ, v) := (infγ∈Γ(µ,v)

∫
MxM

d(x, y)pdγ(x, y))
1/p (4.1)

For the purpose of adapting our evaluation function to MCTS, we added a penalty term.

This penalty term takes the number of hydrogen and carbon atoms in the target molecules

to constrain the size of molecules generated by NMR-TS. If the number of Hydrogen or

Carbon in the generated molecule is different from the target molecule, the overall score

will be penalised. This usage of information from the test molecule can be justified as most

of exercise of structure elucidation from NMR spectrum will provide molecular formula

(such as C2H2) and the essential part of the question is to obtain the structural formula.

We defined the evaluation function, namely Wasserstein Score (WS), Score(Mg,Mt)

between generated molecule Mg and target molecule Mt:

Score(Mg,Mt) = 1− (WD(Mg,Mt)) + αPenalty(Mg,Mt)) (4.2)

where
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Penalty(Mg,Mt) = |C(Mg)− C(Mt)|+ |H(Mg)−H(Mt)| (4.3)

with WD(Mg,Mt): the Wasserstein distance between spectrum Mg and spectrum

Mg: the generated molecule

Mt: the target molecule

C(M): number of carbon in molecule M

H(M): number of hydrogen in molecule M
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Figure 4.3: Wasserstein distance based evaluation function

Wasserstein Score is ranging from 0 to 1 where 1 represents two NMR spectra match

perfectly and 0 means completely different. Closer a Wasserstein Score is to 1, more similar

the two spectra and two molecules are to each other.

4.4 Trie enhancement of ChemTS

In this study, we remark several interesting characteristics about the NMR-TS: 1) Structure

elucidation task from NMR spectrum has a large database as reference, 2) the computation

of NMR spectrum for each generated molecule takes significant amount of time, 3) MCTS
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gains knowledge with the expansion of the tree, with more knowledge about the chemical

space, MCTS will have a better chance to make good choice.

All these characteristic about NMR-TS lead us to an intuitive plan of optimization: do

not start the MCTS from an empty tree, instead, preload the search tree with data knowl-

edge.

In computer science, such prefix tree data structure is usually called trie [43].

For trie enhancement in NMR-TS, we execute the following steps:

• Step 1: compute all Wasserstein Score between target spectrum and each single

NMR spectrum in the database. This function has a time complexity ofO(nS) where

n is the number of spectrum-molecule pair in the NMR spectrum database, S is the

time needed to computer Wasserstein Score between two NMR spectra. This process

is needed for every unique target spectrum even the database is unchanged as the

pair-wise score will be different for each target spectrum.

• Step 2: all pair-wise score for specific target spectrum will be sorted by decreasing

order. Database molecules which have a top k Wasserstein Score will be selected for

next step, k is the number of molecules we use for trie enhancement. We name k as

trie size in the rest of the thesis.

• Step 3: we pre-build the Monte Carlo search tree with canonical SMILES represen-

tation of molecule structures selected in step 2 and insert them into the tree. Once a

SMILES is inserted, we update the UCB score along the path with the Wasserstein

score previously obtained.

A detailed algorithm of trie enhancement in ChemTS is described as pseudo-code in

Appendix A.
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Figure 4.4: Illustration of Trie Enhancement of ChemTS
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4.5 Database

To show the validity of our concept, we implemented NMR-TS and performed experiments

to test the concept. For the database that we used in the experiment, we selected a SMILES

database consisting of molecules with relatively small molecular weights. PubChemQC

[44] is a free and open online database which contains over 3.5 million molecules. As

PubChemQC also provides molecular properties computed by ab-initio calculation, we can

therefore filter molecule structure based on properties such as the molecular weights. We

selected molecules under 500 molecular weight, which is a suitable size for our study.

We downloaded molecules in the form of SMILES strings with PCCDB-IDs from 1 to

138,895. We ran a selection on these 138,895 molecules to pick out the pure organic

molecules that consisted of only C, H, N, and O. After selection, 10,548 molecules re-

mained. Eight molecules were removed owing to the failure of the 1H NMR spectrum

computation. Charged molecules were also excluded. To verify that molecules not in-

cluded in the database could be identified using NMR-TS, we removed the test molecules,

which are described in the next section, from the database. Finally, 9866 molecules were

used as the SMILES database. The database contained the following SMILES characters:

O, c, 1, (,), C, =, N, #, n, 2, o, 3, and 4.

4.6 Testset

As a testset of molecules, we selected 9 molecules with similar size (under 500 molecular

weight) to the PubChemQC database, all these 9 molecules are not included in our training

set. Sometime database can have conformational isomers stored as different molecules,

in this study we have explicitly checked the conformational isomers are not included. We

performed NMR-TS calculation on the NMR spectrum of each individual molecules. A list

of all 9 test set molecules are shown in figure 4.6.
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Figure 4.5: Nine test molecules with their chemical structural formulas and SMILES rep-
resentations.
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4.7 Computational environment

The computations in this work were carried out on the RAIDEN supercomputer (RIKEN

Center for AIP). For each test molecule, we execute the parallel version of NMR-TS on

20 CPUs for 100 hours. For each run, an average of 5451 molecules were generated by

NMR-TS.

4.8 Baseline

To test the concept of NMR-TS, we set our baseline as the most matching molecule in

the training set (database). To compute the baseline for every test molecule, we iteratively

compute its Wasserstein Score against every molecule in the database and note the structure

which obtained the highest score. We call the database molecule that obtained the highest

score as baseline molecule and the highest score as baseline score. Baseline molecule and

baseline score are different for different test molecule.

4.9 Results

We performed experiences of NMR-TS on all 9 test molecules. For 6 out of 9 test molecules,

NMR-TS has found exactly the same molecular structure than the test molecule. For 3

molecules that NMR-TS did not find exactly the same molecule, in 2 out of 3 cases NMR-

TS has found better molecule candidate comparing to baseline molecule. A detailed list of

test molecules, baseline molecule and best NMR-TS candidate is shown in figure 4.6.

We have three major observation from this results. First of all, we can see several

cases (I. III. IV. VI.) where NMR-TS successfully identified the molecule structure while

baseline molecules is suggesting a relatively different structure. Secondly, For case VII.,

NMR-TS have obtained equally good candidate as the database have suggested. After

a review of candidate generated by NMR-TS for case VII., we discovered that NMR-TS

have generated a lot of different structure with a benzene ring and a C4H9NH tail. Although
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Figure 4.6: Test molecules, baseline molecules, and best candidate molecules generated by
NMR-TS.
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NMR-TS generated several different shape of C4H9NH tail, it could not find the exact

match as the test molecule. We suspect that the correct tail substructure was not presented

in the training set and therefore RNN was not able to predict similar structure. Lastly, we

also noticed that for case II., although NMR-TS obtained a better Wasserstein Score, the

structure is actually more different from the target molecule which means NMR-TS entred

a local minimum during search.

The evolution of Wasserstein Score in time under different size of trie enhancement

for all 9 test molecules are shown in figure 4.7. The bold black dotted line represents the

baseline Wasserstein Score for that molecule. Other lines represents the Wasserstein Score

of the best candidate molecule obtained up to a certain hours of computation. Different

colours of lines represent different size of trie enhancement. When trie size is 0 (blue line),

it means no trie enhancement is used.

Figure 4.7: NMR-TS search results for target spectra of test molecules I–IX showing the
best Wasserstein score (WS) as the function of time with different trie sizes.
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What we can see from figure 4.7 is that for several test cases, multiple trie size run have

succeed to identify the correct molecule structure. In general, a larger trie size lead to a

faster finding of the correct molecule.

We created table 4.1 to summarize the target molecule found and the average of best

Wasserstein Score obtained for different size of trie enhancement.

Target Molecule Found Average of best WSs
NMR-TS (Trie size = 0) 1 / 9 0.564
NMR-TS (Trie size = 1) 4 / 9 0.778

NMR-TS (Trie size = 100) 4 / 9 0.850
NMR-TS (Trie size = 1000) 4 / 9 0.837
NMR-TS (Trie size = 9800) 5 / 9 0.892
Database search (baseline) 0 / 9 0.740

Table 4.1: Correct answer rate and average Wasserstein score (WS) for each trie size.

On figure 4.8, we show average Wasserstein Score in time for all 9 test molecules. For

all the trie sizes, the growth of the Wasserstein Score is mostly saturated within 40 hours.

We can see that in general, largest trie size lead to highest average Wasserstein Score at the

100 hours time point. Larger the trie size is, higher average Wasserstein score reached. In

addition, larger trie size will reach a certain average Wasserstein Score in shorter amount

of time.
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Figure 4.8: Evolution of the average Wasserstein score (WS) of the best candidates for the
nine test molecules over time with different trie sizes.
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On figure 4.9, we show the evolution of total number of the NMR-TS found candidates

better than baseline for all 9 test molecules. For each trie size, the total number of candi-

dates monotonically increased over time. NMR-TS generated more candidates with better

scores than the baseline as the trie size increased. By comparing of the results for trie sizes

of 0 and 1 in both figure 4.8 and 4.9, we see that a trie size of 0 was superior to a trie size

of 1 from the viewpoint of generating more candidates with better scores than the baseline.

In contrast, a trie size of 1 was superior to a trie size of 0 from the viewpoint of generating

higher-scored candidates. A reasonable explanation for this phenomenon is that while the

trie highlights the most promising branch in the search tree, the presence of the trie also

restricts the exploration of other branches and thus reduces the overall diversity.

Figure 4.9: Evolution of the total number of candidates with scores better than the database
baseline for all test molecules over time.
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Figure 4.10: Comparison of the best candidate scores from the database search and NMR-
TS. Trie size = 9800.

On figure 4.10, each point represents a test case. The horizontal axis is the baseline

score and the vertical axis is the best NMR-TS candidate score under trie size 9800. If the

NMR-TS obtains better result than the baseline, it should result a point above the diagonal

dotted line on the figure. As we can see, on the vertical axis, several points reached score

of 1.0 (I. III. IV. V. and VI.) indicates that NMR-TS succeeded in identifying the exact

molecular structure. Although NMR-TS did not reach the baseline score for VII and VIII,

these cases mainly fall on the extreme right side of the horizontal axis, which indicates

that a good candidate already existed in the database. On the contrary, in cases where

the baseline candidates poorly matched the target molecules (middle to left side of the

horizontal axis), NMR-TS surpassed the baseline score.

Overall, we believe the prove-of-concept work returned cheering results in molecule
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identification task from NMR spectrum. In most of the cases, NMR-TS can either identify

correct chemical structure out the NMR spectrum or suggest better candidate than database

search. The failure cases are mainly related to either 1) local minimums created by the fact

that different chemical structures can have similar NMR spectrum (we will further discuss

this point in Chapter 5) or 2) the capability of generating various novel structures by de

novo molecule generation model.
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CHAPTER 5

METRIC BETWEEN NMR SPECTRA

In the previous chapters, we introduced about how NMR-TS can automatically identify

molecular structure from a NMR spectrum. However, under the concept of NMR-TS, each

NMR simulation suppose to generate a very accurate prediction about the actual experi-

mental NMR spectrum of any molecular structure. This is hard to achieve with current

NMR prediction methods. If no prediction method can predict an extensively accurate

NMR spectrum for a molecule structure, the task of matching the experimental NMR spec-

trum to one of the predicted NMR spectrum becomes an information retrieval task. In

this chapter, we will briefly review the current NMR spectrum prediction methods, metrics

being used to compare NMR spectrum similarity and propose a potential solution to the

metric issue of similarity measurement between NMR spectra.

5.1 NMR spectrum prediction

As one of the important physical properties of a molecule, an accurate prediction of NMR

spectrum for chemical compounds is an essential building block for automated elucida-

tion[45, 46, 47, 48, 49, 50, 51]. Traditionally, NMR spectrum can be computed using

advanced first-principal calculations[50, 52, 53]. However, these methods have two major

drawbacks: 1) they often requires human involvement to select hyper-parameters before

computation, 2) the computational resources required are high which makes it almost im-

possible to apply on large scale systems. To overcome these limits, Bremser et al. [54] and

Schaller et al. [55] has independently proposed empirical-data-based approaches based on

reference molecule-spectra databases.

In the recent years, machine learning has shown great success in predicting outcome of

a complicated system. The idea is to feed a machine learning algorithm with a representa-
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tion of the chemical structure and its corresponding NMR spectrum. Earlier era of machine

learning often represents each NMR active atom as a high-dimensional vector filled with

hand-crafted features[20, 56, 57, 58, 59, 60]. Recently, with the rise of graph neural net-

works (GNN), studies started to represent the chemical structure as a graph where each

atom represents a node and each edge represents a bond [61, 62, 63, 64]. As one study

future, studies also merged message passing mechanism into GNN which results Message

Passing Neural Network (MPNN) [23] solution or Graph Convolutional Neural Network

(GCNN) [24]. Chemical shift prediction using a kernel machine based on DFT simulated

data is also reported [25].

In most of the case, both first principal calculation and machine learning methods will

produce a chemical shift value for every single NMR-active atom. However, the J-coupling

effect is often not handled.

In figure 5.1, we show an example of Butyric Acid NMR spectrum, from experimental

measurement, first principal calculation and GCNN.

As we can see, the original experimental NMR spectrum has rich details of J-coupling

effect and slight noise. The ENSO simulated NMR spectrum calculated very accurately the

chemical shift of each NMR-active atom. However, the J-coupling details are lost. In the

GCNN predicted NMR spectrum, each peak is represented as a straight line as the results

produce only chemical shift.
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Figure 5.1: Comparison of (A) experimental 1H NMR spectrum obtained from SDBSWeb
database, (B) ENSO simulated 1H NMR spectrum and (C) GCNN simulated 1H NMR
spectrum for Butyric Acid
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5.2 The tiny error between predicted and experimental NMR spectra

Although the accuracy of NMR prediction has increased significantly over the time. Most

of recent studies still report an average error around 0.2 ppm for hydrogen chemical shift

[24]. However, usually during database search, the tolerance of error between experimen-

tal spectra are set to 0.02 ppm by default. As one can easily imagine, if we enlarge the

tolerance of error from 0.02 ppm to 0.2 ppm, the number of candidate structure that can

potentially fit into the tolerance range will increase drastically.

In figure 5.2, we tried to search a random 1H NMR peak, 5.387 ppm for glucose, in

The Humain Metabolom Database (HMDB). We tested both tolerance of 0.02 ppm, which

is the default value of many similar database, and 0.226 ppm, which is the average error in

ppm reported in recent chemical shift predictor using GCNN [24]. As a result, the database

returned 63 candidate structures with 0.02 ppm tolerance and 265 candidate structures with

0.226 ppm tolerance. In addition, the top ranked candidates are different as well.

It is worth noting that, here, we are interested in finding the impact of tolerance on

the number of candidates matched from database search. However, if multiple peaks are

input to the search, most of the search engine will result candidates that match any peak

amount input peaks. If the logic is set to find a structure matching all input peaks, which

would be the case of structure elucidation task from monomer NMR spectrum, the number

of candidates should be less than shown. However, the effect of tolerance on the number

of candidates should be evident and should hold in both cases.

If multiple chemical compounds matches a NMR spectrum within the tolerance range,

a question will raise naturally: which one is the ”correct” structure behind the spectrum?
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Figure 5.2: 1H NMR search result of peak 5.387 from HMDB. In (A), the tolerance of 1H
NMR is 0.02 ppm. In (B), the tolerance of 1H NMR is 0.226 ppm

41



5.3 Similar NMR spectra could come from different molecules

In the current NMR-TS concept, the Monte Carlo search tree optimizes the Wasserstein

distance based score. The underlying assumption of this search is that, more similar two

NMR spectra visually are, more similar the chemical compounds behind them are. How-

ever, this is not always true. It could happen that significantly different chemical structures

could accidentally produce similar spectrum as different functional groups overlap on some

area of the NMR spectrum.

Figure 5.3: 1H NMR Shift Table
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To measure the distance between two NMR spectra, several studies has been conducted

previously. Studies such as cross-correlation[65, 66] or spectra-intersection [67] were the

firsts applying a pairwise comparison between spectrum vectors. These concepts require

significant amount of computational resources and therefore not suitable to apply on large

quantity of data such as the scenario of a database. Another approach using a gradual

division of binning is also proposed and demonstrated good classification accuracy[68].

To measure the distance between two NMR spectra, several studies has been conducted

previously. Studies such as cross-correlation[65, 66] or spectra-intersection [67] were the

firsts applying a pairwise comparison between spectrum vectors. These concepts require

significant amount of computational resources and therefore not suitable to apply on large

quantity of data such as the scenario of a database. Another approach using a gradual

division of binning is also proposed and demonstrated good classification accuracy[68].

The integral of chemical shift peaks are binned into a successively smaller area and the

integral value of each bin are compared. Theoretically, two exactly same NMR spectra

should have same integral value on each single bin. This method doesn’t rely on peak

tables and is computationally more efficient. In [69], a tree-based similarity measurement

is also proposed. This method builds a tree based on the proximity between peaks and then

compare the similarity between two trees built from two input NMR spectra. It does not

rely on peak-picking or any pre-treatment of the data.

5.4 Metric learning on NMR spectrum similarity measurement

For most of the distance metrics used for NMR spectra comparison are rule or formula

based. Usually, the chemical structure implication of the chemical shift and the implication

of different sources (NMR instruments or NMR predictors). As a result, the information

retrieval process of matching an NMR spectrum to a spectrum stored in the database is not

always successful, especially when the query spectrum comes from a different source than

the database stored one. A possible way out for both of the above addressed issues is to
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create a customized metric that measures the similarity with consideration of the chemical

structure implication of each peak and/or the source of the NMR spectrum.

Metric learning is a sub-area of supervised machine leaning, it is closely related to

classification and regression, but the goal is to measure a similarity distance between two

inputs. Notably, it aims to learn distance metric from the data provided [70]. With adequate

amount of data feed into the algorithm, we can obtain a unique model that can predict

similarity distance based on the data learned.

Among various metric learning concept proposed, one of them drew our attention,

which is the Siamese Neural Network (also called Twins Neural Network). Siamese Neu-

ral Network is a type of artificial neural network that uses the same weight for different

classes of input and convert input vectors into more comparable output vectors. This type

of neural network can achieve classification tasks such as information retrieval. In many

traditional classification methods, we use various model to compute a class label prediction

from input vector. However, in Siamese Neural Network, we project different input vectors

into an output space and try to put data points from the same class as close as possible in

the output space while maximizing the inter-class distance. This later part of task is often

achieved by introducing Triplet Loss as training loss function.

L = max(d(a, p)− d(a, n) +margin, 0) (5.1)

In the triplet loss function, the loss L is depending on the distance between anchor data

and the positive data d(a, p), the distance between anchor data and the negative data d(a, n)

and a margin which is a hyper-parameter defines the minimum amount of dissimilarity

there should be for different classes.

Many application using such Siamese-Triplet Loss combination has been proven suc-

cessful [71] in few-shot learning tasks such as person re-identification [72]. In this section,
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we try to apply similar techniques on NMR spectrum classification.

Figure 5.4: Concept of applying metric learning on NMR spectra classification

As shown on Fig 5.4, under this concept, we consider the task of matching one NMR

spectrum to the closest one in a NMR spectra database as a re-identification task (or infor-

mation retrieval task). Each molecule structure is a single class, different sources of NMR

spectrum (predictors or experiments) are like different photos of the same molecule. Our

task, is to train a neural network model that can projects input vectors into an output space,

where it minimize the intra-class distance and maximize the inter-class distance.

5.5 Input Representation Form

In our study, we tried two different representation from of the input NMR spectrum. The

first input representation we used is called the ”intensity representation” where we feed the

original NMR spectrum as a one-dimensional intensity image. The second input represen-

tation is called the ”bin representation”, where we are inspired by the previously proposed

bin-representation distance metric. In this section, we will introduce in detail about both

representation form.

5.5.1 Intensity representation

For intensity representation, we take NMR spectrum as a one-dimensional intensity image

(where we only have one intensity instead of three different colors). As the original NMR
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spectrum is a continuous curve and our neural network can only take discrete inputs, we

need to separate the continuous curve into a fixed amount of bins and take the average

intensity value of each bin. This number of bins is similar to the concept of resolution

for classical image processing. In our study, we defined the resolution to 1024 for the

convenience of matching a previous study[69].

Figure 5.5: Example of intensity representation form of NMR spectrum, the horizontal axis
represents the index of input intensity

5.5.2 Bin representation

The bin representation is inspired from a previous NMR spectrum similarity metric [68]. In

this study, L.Bodis et al. used a successive binning way to measure the similarity between

two NMR spectra. At each iteration, both NMR spectra will be split into a number of bins,

this number of bins increase by one for each new iteration. After binning, the integral of

each bin is calculated and compared with the bin at the same position on the other NMR

spectrum, the minimum value of these two bins are conserved and used to compute the

final similarity distance. In the final calculation of the similarity distance, the algorithm

will take into consideration of every bins generated in all iteration. However, later iteration

will have a higher impact on the overall score as their bins’ range are smaller and therefore
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represents a closer match.

More formally, we denote V as the input vector to the neural network

V = B1 ⊕ ...⊕Bn (5.2)

where

Bk = Ik1 ⊕ ...⊕ Ikk

with Iki represents the integral of ith bin under the splitting of k bins. n is a hyper-

parameter that we have set to 50 to make the total number of bins to 1250 which is similar

to Intensity Representation.

Figure 5.6: An illustration of bin representation, only include first 55 bins starting from the
left

We illustrate the concept in figure 5.6. On this figure, each different color represent a

different series of Bi. On the left side, the first Bi is B1 where the integral of the whole

NMR spectrum is calculated. Next to the right, the B2 split the NMR spectra into two area
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and the first area contains about 63% of the total integral and the second area contain about

37% of the total integral. The sum of each Bi are all equal to 1.

Figure 5.7: An example of full bin representation, all Bi are marked in a different color

5.6 Triplet mining strategy and margin

Under the concept of triplet loss, we need to pull the distance between anchor data point

and the positive data point as close as possible and push the distance between anchor data

point as far as possible from negative data point. To make this work, we have to first select

three element to build a triplet: 1) an anchor data, 2) a positive data and 3) a negative data.

A critical process during training is how to select this training triplet. This selection process

is called triplet mining. In this section, we will discuss about some common triplet mining

strategy and explain our approach.

5.6.1 Easy, hard and semi-hard triplets

For any possible triplet that we from a training dataset, depends on the relative distances

between its three components and the margin we set as hyper-parameters, a triplet can be

categorized into three different categories:

• Easy triplet: triplet with a loss of 0, this usually means that d(a, n) − d(a, p) >

margin
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• Semi-hard triplet: triplet where d(a, p) < d(a, n) < d(a, p)+n, this usually means

the negative point is not closer to the anchor, but is not far enough depending on the

margin.

• Hard triplet: triplet where d(a, n) < d(a, p), meaning that negative point is closer

to anchor than the positive point

In our case, most of the NMR spectra are significantly different with other NMR spectra

if they are not coming from the same class (same chemical structure). If we randomly select

a triplet and use all triplets generated, most of these triplets will be easy triplets which

won’t create any loss. This will become a significant waste of computational resources

during training as null gradient is not useful for learning. Therefore, what we choose to do

is to use only semi-hard and hard triplets.

5.6.2 Online and Offline mining

The distance between anchor, positive and negative points is dynamically changing with

the update of weights in the neural network. In the last section, we mentioned that we

only use semi-hard or hard triplets for training. But with the training process going on, the

definition of one triplet being easy, semi-hard or hard is constantly updating as well. This

property force us to recreate triplets after an epoch and therefore an efficient triplet creating

strategy is desired.

• Offline mining: In offline mining strategy, we compute all the distance for all pos-

sible triplets before each epoch. Concretely, we produce an enumeration of all com-

bination of (ia, ip, in) and compute all the distance pairs for each combination. This

strategy is extremely computationally heavy especially if we have a large data set for

training. In addition, most of the triplets generated are not valid because the anchor

data has to belong to the same class as the positive data and the negative data should

belong to a different class.
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• Online mining: The online mining strategy on the other hand, don’t require to com-

pute all possible triplet combination. Instead, we select every component of the triplet

”on the fly”: 1) first we select a random class as anchor class and select a random

input from this class as anchor 2) select a different input from the anchor class as

positive, 3) select a random input from a different class as negative. This mining

strategy will only generate valid triplets and is therefore more efficient.

In our experiments, we selected online mining strategy to save computational resources.

5.6.3 Margin

In all of our experiments, we set our margin to 0.2 which is an empirically good fit from

several attempts.

5.7 Dataset

To test and compare our concept of apply siamese neural network + triplet loss for NMR

spectrum classification, we need a NMR spectrum dataset that has multiple molecule struc-

tures and has multiple sources generated NMR spectra for the same molecule structure.

Particularly related to triplet loss, we need at least three NMR spectra per molecule struc-

ture: one as anchor data, one as positive data and one as test data. In [73], researchers

shared a dataset that contains 1000 different molecule structures and there are five differ-

ent sources of NMR spectrum for each molecule structure. The five different sources are:

experimental NMR spectrum from Maybridge catalogue and NMR spectra of the same

molecule structure from four different NMR spectrum predictors [20, 22, 57, 74]. As the

authors keep the data anonymous to a particular predictor, we name all five sources of data

respectively as experimental, predictor1, predictor2, predictor3 and predictor4.

In the original dataset, all intensity values are given in a resolution of 1024 and all in-

tensities are ranging from 0 to 10,000,000. We have normalized all intensity value between

0 and 1 to fit as neural network input.
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We choose to use experimental spectrum and predictor 2 to 4 as training data, and we

use predictor1 data as test data from classification tests.

5.8 Neural network model and training

We implemented siamese neural network for different input representation using Keras and

Tensorflow. The network mainly consists of two part: 1) a multi-layer Convolutional Neu-

ral Network (CNN) part that extract graphical features from the input vector, 2) a fully con-

nected neural network which projects input vector onto a customized output L2 restricted

space.

A detailed description of siamese neural network structure that we used in this study is

described in Appendix B.

5.9 Baseline and metrics

To make our study comparable to [73], we used Mean Reciprocal Rank (MRR) as the

metric that evaluation the goodness of each similarity metric.

The MRR is defined as:

MRR =
1

n

n∑
i=1

1

ranki
(5.3)

where n is the index of queries and ranki is the rank of the correct matching index for

query i.

MRR is a metric that favorites a match on very high rank (e.g. rank 1 or rank 2). A

relatively low rank (e.g. rank 100 or rank 400) has numerically little impact on MRR.

Concretely, the MRR don’t care much about ”how wrong a classification goes”, whether it

is rank 50 or rank 400 makes little difference. That is why we also introduce Average Rank

(AR) as another metric to evaluate the classification performance:
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AR =

∑n
i=1 ranki
n

(5.4)

where n is the index of queries and ranki is the rank of the correct matching index for

query i.

For baseline methods, we were able to re-implement the bin similarity method and

obtain adequately good performance. So we choose this method as our baseline method to

compare with.

It worth noting that, we have also tested tree similarity method [69] as a potential base-

line method. Particularly in the tree similarity metric, a set of hyper-parameters need to

be defined. Although we tried the default setting of hyper-parameters and made several

different attempts, we were not able to reproduce a comparably good MRR performance

as claimed in the original paper. That’s why we did not include this method as baseline

reference.

5.10 Results

We have trained our neural network on experimental, predictor2, predictor3 and predictor4

data for 1000 different molecules. To evaluate, we inference the NMR spectrum from

predictor1 to the embedding space and measure its distance against all training points in

the embedding space. We rank all classes for every testing data point by the proximity

order. The ranki of data i is the rank of the correct class appeared in this proximity order.

With ranks of all 1000 test data, we can then compute MRR and AR for all similarity

distance model.

In figure 5.8 to figure 5.11, we show examples of hardest triplet before training and

after 12 hours of training for both Intensity Representation and Bin Representation.
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Figure 5.8: Examples of hardest triplets before training for intensity representation

Figure 5.9: Examples of hardest triplets for intensity representation after 12 hours of train-
ing
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Figure 5.10: Examples of hardest triplets before training for bin representation

Figure 5.11: Examples of hardest triplets for bin representation after 12 hours of training
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As we notice from the above figures, for both Intensity Representation and Bin Rep-

resentation, the hardest triplets are comparably more ”difficult” after 12 hours of training.

This proves that the gradient decent process converged and the training has significantly

helped the neural network put different classes in different positions of the L2 embedding

space. Only very confusion cases (i.e. visually close cases) can produce a semi-hard or

hard triplet. In fact, for most of the hard triplets, it is even difficult for human beings to

discriminate between positive and negative data because either the negative spectrum is

too similar to the anchor spectrum or the positive spectrum is too dissimilar to the anchor

spectrum.

We show the result of MRR and AR in Fig 5.10. In terms of input representation we

tested, the Intensity Representation and the Bin Representation are formally defined in the

previous section. What we have noticed is that the data points that they succeed to classify

are not overlapping a lot. In another word, the data points that Intensity Representation

are doing great are not necessarily correctly classified for Bin Representation even that Bin

Presentation has higher score depends on our metrics. This drives us to test a mixed version

of Intensity Representation and Bin Representation, namely Intensity + Bin Presentation,

which is a concatenation of both individual representation vectors. We compare all three

input representation results against our baseline reference method: bin similarity method.
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Figure 5.12: Comparison of MRR and AR for different metric measurement methods. For
MRR, higher score is better. For AR, lower score is better.

In terms of MRR, the baseline method obtained the best performance. Among different

neural networks, the Bin Representation obtained the best performance which is close to

the baseline.

In terms of AR, both Bin Representations and Intensity + Bin Representations obtained

an average AR around 5.3 which is significantly better than the baseline. It suggests that

neural network has a better robustness to classify difficult data points.

Overall, we believe that the successive bin splitting pre-processing is a significant boost

to the classification task. With the rest of the neural network remains similar, changing

the input vector from Intensity Representation to Bin Representation has significantly im-

proved the performance on both MRR and AR.
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5.11 Discussion

In this study, we 1) addressed the necessity of a data-driven distance metric between NMR

spectra of different sources, 2) proposed a concept using metric learning which could be

a potential solution to the issue and 3) implemented a prove-of-concept of metric learning

method onto NMR spectrum classification tasks.

Although classification between NMR spectrum having the same molecule structure but

different sources is an important task, other metric related issue should also be considered

to solve using metric learning type of approach. An example of metric issue that we could

not explore during this thesis is that: can we predict a molecule similarity distance based

on inputs of their NMR spectra?

With our prove-of-concept study, we were able to create a customized metric that can

correctly classify known molecule’s NMR spectrum from unknown source. The perfor-

mance prove-of-concept implementation is at least comparably good as the best baseline

that we can find. However, we believe that there are still rooms for the performance to

growth:

• Training data: In facenet, the smallest training set used contains about 2.6 million

image. Increasing training set from 2.6 million image to 260 million image improves

the overall classification accuracy from 76.3% to 86.2%. In our training set, there

are only 1000 molecules used which represents 1000 class, with 4 ”images” per

class which is relatively small for training. Using a larger set of training data might

increase the performance.

• Multi-modal data: To increase the training set of data, the major obstacle is that the

data of experimental NMR spectrum - molecule structure data has a limited quantity.

Although most of the NMR predictor works in a time-efficient way, several sources

of NMR spectrum might not be easily accessible such as DFT computed NMR spec-

trum. This inconsistency of input data for individual molecule structure enters the
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category of multi-modal learning. Related method could be considered in the future.

• Transformer encoder: Recently, the multi-head attention mechanism became a hot

topic in Neutral Language Processing (NLP) applications. One of the advantages

of Transformer is its ability to learn the long range interaction between words. For

NMR spectrum, if we see every single NMR spectrum as a set of peaks, the concept

of spectrum and peaks are similar to the concept of sentences and words. So instead

of using CNN layers to extract features from NMR spectrum, we might try to use

Transformer encoder to do the task and learn more about interactions between peaks.
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CHAPTER 6

CONCLUSION AND OUTLOOK

6.1 Summary

In this thesis, we designed NMR-TS as a system that can automatically elucidate chem-

ical structure from NMR spectrum. The system use a combination of de novo molecule

generator and quantum chemical calculations. Depends on our testset of molecules, under

the context of identifying a chemical structure unknown to the database, NMR-TS could

identify better candidate comparing to the database in most of the cases and at least as good

candidates as database in all cases. NMR-TS successfully identified 6 out of 9 molecules

without any prior knowledge to neither the NMR spectrum measured nor to the chemical

structure.

As a molecule generator, ChemTS is proven to be a useful and popular generator for

de novo molecule design. In this thesis, we suggested a enhancement for ChemTS that

can integrate of prior database knowledge into the search. In the case of NMR-TS, we

demonstrated that such enhancement can 1) reduce the search iteration towards a certain

level of score, 2) increase the peak performance of the Monte Carlo tree search, which in

the context of NMR-TS, is the success rate of identify the molecular structure from NMR

spectrum. The trie enhancement can be applied not only on NMR-TS, but also on other

tasks using ChemTS and a time consuming scoring system.

NMR-TS automatically explore the metric space of a target spectrum. The metric we

use is built on Wasserstein distance based score. NMR-TS does not use any domain specific

knowledge related to 1H NMR spectrum, which suggests it would be possible to apply

similar method to other spectroscopy techniques such mass spectroscopy, 13C NMR, IR

and UV-vis spectra with adequate metric designed.
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A higher level aim for NMR-TS is to set a prove-of-concept study for using de novo

molecule generator for tasks other than a numeric property goal. This study has showcased

an example of optimization towards a qualitative target.

In addition, during the course of NMR-TS, we found that most of the de novo molecule

generator are aiming to find ”good” molecules. As the chemical space is extramly large.

We theoretically has a lot of ”good” molecule candidates. However, in the application

of molecule identification, we have only one (in case of SMILES, a handful as different

SMILES can represent same chemical structure) ”correct” answer to find. This creates new

challenges for molecule generation studies: 1) finding a ”correct” answer in the tremendous

chemical space requires an much higher level of smoothness for the model projected chem-

ical space, 2) finding one single answer out of a chemical space requires the optimization

algorithm to have good balance between global and local optimization. We believe NMR-

TS demonstrated the necessity of a de novo molecule generator that can find one single

specific molecule structure.

We have also explained the importance of an accurate metric between NMR spec-

tra generated by different sources. We proposed a potential solution for this issue using

siamese neural network and triplet loss. Our prove-of-concept work showed comparably

good results as our baseline method with a small training set. We believe there are room

of improvement in terms of performance with larger training set and/or more sophisticated

neural network structure.
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6.2 Future work

There are several limitations and room for improvements regarding the current version

of NMR-TS. First of all, SMILES as a representation form of chemical structure can not

represent several chemical features in 3D such as axial chirality. In our study, the potential

chirality space and conformer space of the chemical structure is not discussed. To tackle

these spatial feature of chemical compounds, the de novo generator must be able to design

these features. Recently, de novo molecule generators supporting 3D structures are started

to emerge[75].

Another limitation about NMR-TS is that it is set to the context of mono-molecule

situation. Under multiple molecule presents in the sample of NMR spectrum, which often

is the case in reality, chemical shifts of several different molecules will overlap on the same

spectrum. It is important to find out the corresponding relationship about which chemical

shift belongs to which chemical structure. There is study about peak separation for this

purpose that could be a potential boost[76].

There are various potential that the concept of NMR-TS could make use of. For exam-

ple, as an automated elucidation method for any molecule, it could be used as a qualitative

measurement in automated robotic synthesis system. Future work should focus on mainly

three directions: 1) extracting and identifying individual molecules from a multi-molecule

spectrum, 2) creating a customized metric or better prediction method for NMR spectrum

to close the gap between experimental spectrum and simulated spectrum, 3) integrate spec-

trum specific knowledge into the generation process to reduce the search space and improve

time efficiency.

For distance metric between NMR spectra, future work could develop into several di-

rections. In our prove-of-concept study, the training data has a limited size, training the

model with more high quality training data could brought a potential boost. Also, we only

used convolutional layers to extract features from NMR spectrum, future work could focus
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on learning more complicated interaction between peaks as features. As another form of a

metric learning, translation models between different NMR spectrum predictors could be

desired to better match one prediction to the other.
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gkvist, and H. Chen, “A de novo molecular generation method using latent vector
based generative adversarial network,” Journal of Cheminformatics, vol. 11, no. 1,
pp. 1–13, 2019.

[16] F. Grisoni, M. Moret, R. Lingwood, and G. Schneider, “Bidirectional molecule gen-
eration with recurrent neural networks,” Journal of chemical information and mod-
eling, vol. 60, no. 3, pp. 1175–1183, 2020.

[17] Q. Yuan, A. Santana-Bonilla, M. A. Zwijnenburg, and K. E. Jelfs, “Molecular gener-
ation targeting desired electronic properties via deep generative models,” Nanoscale,
vol. 12, no. 12, pp. 6744–6758, 2020.

[18] M. Sumita, X. Yang, S. Ishihara, R. Tamura, and K. Tsuda, “Hunting for organic
molecules with artificial intelligence: Molecules optimized for desired excitation en-
ergies,” ACS central science, vol. 4, no. 9, pp. 1126–1133, 2018.
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APPENDIX A

PSEUDO-CODE FOR TRIE ENHANCEMENT

1 if trieSize > 0 then

/* Read NMR Database */

2 NMRList, SMILESList← readTrieDatabase();

3 for i← 0 to len(NMRList)− 1 do

4 WSList[i]← getWassersteinScore(NMRList[i], targetNMR);

/* Note: NMRList and targetNMR contains element

information of each peak(atom), the atom number

penalty can therefore be computed */

end

/* Sort and select top-N data points depends on

trieSize */

5 Data← rowStack(SMILESList,WSList,NMRList);

6 sortedData← sort(data, key = WSList);

7 SMILESList← sortedData[: trieSize, 0];

end
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/* Create Trie */
1 for i← 0 to len(SMILESList)− 1 do
2 j ← 0;
3 state← [′&′];
4 currentNode← rootNode;
5 nodesList← SMILESToNodes(smiles[i]);

/* Map database SMILES into prefix search tree */
6 k ← 0;
7 while k < len(nodesList) do
8 state[k]← nodesList[k];
9 if nodesList[k] currentNode.childNodes then

10 newNode← createNewChildNode(position =
nodesList[k], parentNode = currentNode);

11 currentNode← newNode;
else

12 for child currentNode.childNodes do
13 if child.position == nodesList[k] then
14 currentNode← child;
15 break;

end
end

end
16 k ← k + 1;

/* Update traversed nodes with the Wasserstein
Score */

17 currentWS ← getWassersteinScore(NMRList[k], targetNMR);
18 while currentNode! = None do
19 currentNode.Update(currentWS);
20 currentNode← currentNode.parentNode;

end
end

end
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APPENDIX B

SIAMESE NEURAL NETWORK STRUCTURE

B.1 Neural network structure for Intensity Representation input

Figure B.1: Detailed siamese neural network structure Intensity Representation input
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B.2 Neural network structure for Bin Representation input

Figure B.2: Detailed siamese neural network structure for Bin Representation input
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B.3 Neural network structure for Intensity + Bin Representation input

Figure B.3: Detailed siamese neural network structure for Intensity + Bin Representation
input
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