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ABSTRACT

Owing to the massive numbers of data collected through the emergence of the Inter-
net and the rapid developments in computing hardware, machine learning has become
one of the indispensable components for data-driven knowledge discovery in modern so-
ciety. Based on statistical machine learning, inductive inference, in particular, has been
a spectacular success, replacing classical artificial intelligence based on deduction. This
approach has significantly improved the applicability and plasticity of intelligent systems
in domains where abundant data can be automatically accumulated, and will eventually
push science and engineering into new frontiers at a pace never seen before.

Despite its success in practical applications, in contrast to deduction, induction can
only provide probable consequences based upon enumerated evidence. When the results
of statistical inference are applied in risk-sensitive domains, it becomes crucial to esti-
mate how likely it will be for the predictions on unseen patterns to be correct given the
limited number of observations. This brings up the concept of statistical learning theory
of generalization. The central aim of the generalization is to bridge the gap between the
empirical risk and population risk—the former being a discrepancy between the predic-
tions and the observations computed using collected data, and the latter being computed
using unseen patterns—to guarantee that the learner is sufficiently confident even with
predictions on unseen patterns. Over the past few decades, this field has been extensively
developed with the aid of statistics, computer science, and information theory. Roughly
speaking, a learner is capable of predicting expected outcomes correctly in common cases
given a sufficient number of observations. That being said, is it sufficient to funnel as
many data as possible into learning algorithms to achieve reliable learning systems?

This dissertation endeavors to establish a conceptually orthogonal axis to generaliza-
tion in learning theory, i.e., a theory of excess risk transfer, to convince readers that the
design of risk functionals plays an important role in seeking reliable learning algorithms
and a better understanding of learning mechanisms. At the beginning of the 21st century,
the importance of excess risk transfer was first described in studies on consistent surrogate
losses, which scrutinizes the gap between learning criteria optimized by popular machine
learning methods and the ultimate evaluation metrics, referred to as the surrogate risk
and target risk, respectively. Previous studies on consistent surrogate losses found a
monotonic relationship between the surrogate and target risks given well-manufactured
surrogate risks. This monotonicity implies excess risk transfer—minimizing the excess of
a target risk shall be transferred to minimize the excess of a surrogate risk. As a result,
by optimizing a well-crafted surrogate risk with its optimization-friendly characteristics,
learners can escape from the intractability of a target risk often arising from its discrete
nature.

Although existing research has thus far targeted the analysis of classical learning
problems such as binary and multi-class classification, modern learning scenarios involve
more intricate structures. In this dissertation, the theory of excess risk transfer is ex-
tended beyond the classical setup from two perspectives. First, excess risk transfer is
incorporated with a variety of user-specified constraints and properties on predictions,
which is in sharp contrast to the previous theory focusing purely on the prediction ac-
curacy. Second, excess risk transfer is further utilized to draw a link between two ap-
parently irrelevant learning problems, different from the previous perspective in which a
target risk is regarded as an ultimate and a surrogate risk is merely an auxiliary tool.
This viewpoint provides us a tool for comparing the difficulty of two learning problems.
To summarize, an excess risk transfer enables us to encompass more learning problems
with diverse constraints. Consequently, the theory of excess risk transfer tells us about
structures of a broad class of learning problems and what learners can elicit from them,
which in turn helps us to design a minimally sufficient learning problem that aligns with
our desideratum. Recall that the current direction investigating excess risk transfer is
conceptually independent of generalization theory; hence, both can be integrated. The
remainder of this dissertation is organized as follows.

In Chapter 1, the history of machine learning and statistical learning theory is intro-
duced, followed by the research questions and the contributions of this dissertation.

In Chapter 2, background knowledge of supervised learning and its theory is provided.
After formulating supervised classification, the generalization theory and a classical anal-



ysis of the surrogate excess risk transfer are reviewed. In addition, several relevant no-
tions including classification-calibrated losses and proper losses are introduced along with
recent related studies.

In Chapter 3, we describe the design of a consistent surrogate objective for the train-
ing of a classifier evaluated based on complex metrics such as the F-measure and Jaccard
index—metrics that have been frequently applied in information retrieval and semantic
segmentation to deal with class imbalance. These performance metrics belong to a family
called linear-fractional metrics, which has a non-decomposable nature, and thereby ham-
pers the application of the classical design of surrogate losses. By carefully designing a
tractable surrogate bound of the target evaluation metric, we derive sufficient conditions
ensuring an excess risk transfer relationship, i.e., optimization of the surrogate bound im-
plies optimizing the target evaluation metric. A simulation study on benchmark datasets
suggests that a classifier optimizing the derived surrogate bound outperforms the plug-in
classifier, particularly when the sample size is small. This result not only demonstrates
the efficacy of the proposed surrogate objective but also the importance of surrogate
optimization over the plug-in classifier.

In Chapter 4, we focus on adversarially robust classification, in which we look for
a classifier that is insensitive to adversarial perturbations of the test patterns. This
learning problem is often formulated through minimax optimization, where the target
risk is the worst-case value of the classification risk subject to a bound on the size of
the perturbations. While significant effort has been devoted to making this optimization
tractable, it remains unclear whether the relaxations can be justified in light of the target
risk of robust classification. For this reason, an excess risk transfer analysis is applied
to inspect which surrogate risk is aligned with the robust classification risk, and it was
eventually determined that no convex surrogate losses can lead to the optimally robust
solutions under the assumption of linear models. In addition, useful insight into the
design of nonconvex surrogate losses is provided herein. These results are interesting
from two perspectives. First, introducing an adversary makes the consistency of convex
surrogate losses impossible to achieve. Second, the theory of consistent surrogate losses
is shown to be applicable not only to the prediction accuracy but also to other desirable
properties such as robustness.

In Chapter 5, we investigate the underlying connection between similarity learning
and classification. Similarity learning is a general framework applied to elicit useful
representations of data by predicting the relationship between a pair of patterns, which
includes a number of preprocessing tasks such as metric learning and contrastive learning.
Although a classifier built upon the learned representations is expected to perform well
on downstream classification, little theoretical insight in this area is known thus far.
To describe how similarity learning supports downstream classification, we reveal that a
specific formulation of similarity learning is tightly related to the classification risk. This
link indicates that minimizing the excess risk of similarity learning leads to minimizing
the excess classification risk from an excess risk transfer perspective. Consequently, we
discover that similarity learning is essentially capable of eliciting the underlying binary
decision boundary. From the viewpoint of excess risk transfer, we take one step further
by regarding two distinct learning problems, i.e., binary classification and similarity
learning, as target and surrogate problems, respectively, which opens a new possibility
of examining interconnections among learning problems and characterizing whether one
problem can be reduced to solving the other problem.

In Chapter 6, we conclude this dissertation with future prospects. A perspective of
learning theory is investigated in light of excess risk transfer, which enables us to analyze
whether a learned classifier satisfies the desired properties, and to reduce one learning
problem to the other problem.



論文要旨

現代社会ではウェブの出現や計算資源の急速な発達によって莫大なデータの収集が可能
になり，データ駆動型の知識発見において機械学習が重要な要素技術の一つとなりつつあ
る．特に統計的機械学習に基づく帰納推論は目覚ましい成功を収めており，演繹推論に基
づく旧来の人工知能に置き換わっている．データが大量にかつ自動的に蓄積されるような
応用領域では，帰納推論に基づく知識システムが従来に比べてより柔軟で応用しやすくなっ
ており，科学や工学などの水準が急速に向上している．
実用的には成功しているものの，演繹推論とは異なり帰納推論は実例を集めて結果の正

しさを蓋然的に保証することしかできない．仮に統計的推論がリスクの大きい応用領域に
て用いられる場合，有限の観測が与えられた下で未知の入力に対して予測がどの程度正し
いかを知ることは肝要である．汎化の統計的学習理論はこの課題意識に根ざしている．汎
化理論の中心的な目的は，経験リスク（有限のデータから計算された予測と観測の差）と
期待リスク（未知のデータから計算された予測と観測の差）の違いを調べることである．
過去数十年の間，当該分野は統計学，計算機科学，情報理論の各分野に支えられて大きな
発展を遂げてきた．大まかに言えば，汎化理論によって，一般的には十分量の観測さえ与
えられれば学習器は期待される出力を正しく予測することが可能であることがわかってい
る．それでは，信頼できる学習システムを構築するためには，できるだけ多くのデータを
学習アルゴリズムに対して流し込むだけで果たして十分なのであろうか．
本博士論文では，汎化理論とは趣を異にする剰余リスク転移の学習理論を構築し，信頼

性の高い学習アルゴリズムの設計や学習のメカニズムの解明においてリスク関数の設計が
重要であるという見方を示す．剰余リスク転移の重要性は，二十一世紀初頭に行われてき
た代理リスクに関する一連の研究を通して認知されはじめた．代理リスクは一般的な機械
学習手法が最適化する学習基準であり，最終的な評価指標である目的リスクと異なってい
たとしても，損失が適切に設計されていれば両者には単調な関係が存在することが明らか
にされた．この単調性によって剰余リスク転移，すなわち代理リスクの剰余量の最小化に
よって目的リスクの剰余量の最小化が実現されるという関係性を得ることができる．結果
的に，一般的に離散構造を持つが故に最適化が容易ではない目的リスクを用いる代わりに，
最適化しやすい代理リスクを用いることが正当化される．
これまでの研究が主に二値分類や多値分類といった古典的な学習問題の解析を対象とし

てきた一方で，近年の学習問題はより複雑な構造を持つことが多い．本博士論文では，次
の二つの観点から剰余リスク転移の理論を古典的な設定から拡張する．第一に，剰余リス
ク転移を予測に対するより多様な制約や性質と関連付ける．この関連付けは，従来理論が
予測の正しさにのみ着目してきた点と大きく異なる．第二に，一見異なる二つの学習問題
の間に関連性を見出すために剰余リスク転移を利用する．従来は目的リスクが最終的な対
象であり代理リスクはあくまで補助的な量とみなされてきたが，ここでは二つの学習問題
の困難性を比較するのに剰余リスク転移が利用できることを確認する．まとめると，剰余
リスク転移によってより多種多様な制約を含む多くの学習問題が扱えるようになり，さら
に学習問題の困難性に基づいて問題同士の関連性を明らかにすることができるようになる．
したがって，より広いクラスの学習問題の構造や学習問題からどのような知識を獲得でき
るかが明らかになり，我々の最終目的に対して必要最小限な学習問題を設計する指針を得
ることができる．補足すると，ここで考察している剰余リスク転移の理論は汎化理論とは



概念的に独立しており，両者を統合することが可能である．以下，本博士論文の構成の詳
細を示す．
第一章では，機械学習と統計的学習理論の歴史を振り返り，本学位論文の貢献をまとめる．
第二章では，教師付き学習の背景知識とその理論をまとめる．教師付き分類を定式化し

た後，汎化理論と代理誤差の古典的な解析方法に触れる．また，分類適合的損失や proper

lossといった関連する概念を最近の関連研究とともに紹介する．
第三章では，F値や Jaccard指標といった複雑な評価指標で分類器を評価する際に適切

な代理目的関数の設計を行う．これらの複雑な評価指標は，近年情報検索やセマンティッ
ク・セグメンテーションにおいてクラス不均衡に対処するためによく用いられているが，線
形分数型指標と呼ばれるクラスに属しており，古典的な代理損失を適用しにくい分解不可
能性という性質を持つ．ここでは目的となる評価指標の代理となる目的関数を適切に設計
することで，代理目的関数を最適化した際に評価指標が最適化されるための十分条件を導
出する．ベンチマークデータを用いた数値実験では，特にデータ数が小さい状況下におい
て，クラス事後確率に基づくプラグイン分類器と比較して設計した代理目的関数が良い性
能を発揮することが確認できた．この結果は提案手法の有用性を検証するだけでなく，プ
ラグイン分類器に対する優位性を知る上でも重要な手がかりとなる．
第四章では，敵対的攻撃に対して頑健な分類，すなわち敵対者がテスト入力に対して加

える摂動に影響されにくい分類器の学習を考える．この学習問題は，摂動の大きさに対す
る制約下での最悪の分類誤差値を目的誤差とする，ミニマックス最適化として最適化され
ることが多い．従来の研究ではこの最適化を緩和することに主眼が置かれてきたが，目的
リスクの観点から緩和問題が正当化できるかどうかは知られていない．そのため，剰余リ
スク転移解析を用いて頑健な分類誤差に対して適合している代理損失を調べ，結果として
線形モデルの仮定の下では真に頑健な解が得られる凸な代理損失が存在しないことを明ら
かにしたと同時に，非凸損失を設計するために有用な指針が得られた．この結果は，敵対
者の導入によって凸代理損失が適合的にならなくなるという事実に意外性があり，また適
合的代理損失の理論が予測の正しさ以外に予測が備えるべき性質に対しても適用可能であ
るということが明らかになった点が重要である．
第五章では，類似度学習と分類の間の関係性を議論する．類似度学習は二つのデータ間

の関係性を予測することでデータの有用な表現を得るための枠組みであり，距離学習や対
比学習といった前処理問題を包摂する．学習した表現を用いて構成した分類器によって分
類性能が向上されることが期待されているが，これまで理論的な背景はほとんど知られて
こなかった．類似度学習がどのように分類性能を向上させるかを解明するため，我々は類
似度学習の特定の定式化が分類誤差と密接に関係していることを示した．剰余リスク転移
の観点から，この関係性によって類似度予測リスクの剰余量を最小化することで分類剰余
リスクが最小化できることが説明できる．その結果，類似度学習は内部的には二値分類境
界を学習しているということがわかった．剰余リスク転移の考え方を用いると，例えば二
値分類と類似度学習のように，二つの異なる学習問題をそれぞれ目的問題と代理問題とみ
なすことができ，学習問題間の関係性を調べたり，ある問題が別の問題に帰着することが
できるかどうかを特徴づけることができるようになる可能性が秘められている．
第六章では，本学位論文の結論とこれからの課題を述べる．本論文では剰余リスク転移

の見方から学習理論の新しい展望を提示し，学習器が期待される性質を満たしているかど
うかを解析したり，学習問題を相互に帰着できるようになった．



In memory of my grandmother
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Chapter 1

Introduction

For a large class of cases—though not for all—in which we employ the word
meaning it can be explained thus: the meaning of a word is its use in the
language.

— Ludwig Wittgenstein, Philosophical Investigations

From antiquity, we human beings have been continuously seeking mechanisms
of perception, reasoning, learning, comprehension, and communication, which
seem to constitute the basis of our intelligence. Modern philosophers and scien-
tists have used a powerful tool, reductionism, in an attempt to understand intel-
ligent systems as automata [Descartes, 1985]. Correspondingly, a part of human
intelligence has been implemented on machines to imitate human behaviors, and
modern artificial intelligence has achieved astonishing successes and even a perfor-
mance superior to that of human intelligence in certain areas [Krizhevsky et al.,
2012, Silver et al., 2016] owing to the rapid development of electronic computer
systems and architectures. At the same time, computer scientists face numer-
ous obstacles that current artificial intelligence has yet to resolve [Turing, 1950]:
How intelligent can computer systems become reliable? What is the fundamental
limit on the amount of knowledge that artificial intelligence can acquire? In this
dissertation, we aim to provide a clue to these questions from the perspective of
machine learning by focusing on the gap between learning and evaluation criteria.

1.1 Machine Learning and its History

Learning is one of the foundational elements that seem to support human intel-
ligence. We repeatedly encounter many new concepts, and to make the world
perceivable by reducing an infinite number of concepts to reasonable finite num-
ber of categories, we must try to determine what is common and what is different
within such concepts. This is the origin of classification in the field of philosophy,
and this idea can even be found in Aristotle’s metaphysics [Cohen and Reeve,
2020]. Human beings are constantly exposed to a large number of observations
and attempt to classify them into a few classes by grasping their underlying law.
After the emergence of computers, researchers believed that this procedure of clas-
sification could be implemented on computers and automated. Thus, research on
artificial intelligence and pattern recognition has begun [McCarthy et al., 1955].

Research into artificial intelligence was partly initiated by psychologists, who
aimed to develop plausible models of biological neurons, including the McCulloch-
Pitts model [McCulloch and Pitts, 1943] (see Figure 1.1). These neuro-inspired
models have been conventionally called neural networks. Stimulated by neural
network research, Frank Rosenblatt introduced one of the oldest formulations of
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Figure 1.1: Illustration of the McCulloch-Pitts model. For d inputs {x1, . . . , xd}, the hidden
unit returns u =

∑d
i=1 wixi−θ, which is activated by the Heaviside step function φ(u) = 1{u>0}.

This model simplifies the activation mechanism of biological neurons. The hidden unit u is also
called the membrane potential.

pattern recognition, called the perceptron [Rosenblatt, 1957]. The perceptron
algorithm models a classifier by a linear function and exposes the model to bi-
nary labeled examples sequentially, trying to predict labels of future patterns.
The model is updated by a local correction of the coefficients when the classifier
misclassifies an input. If a given sequence of data is linearly separable, the percep-
tron is guaranteed to converge with a finite number of updates [Novikoff, 1963].
The perceptron was successful in providing a novel formulation to learn from
examples, and the framework has had a significant influence in the subsequent
research on pattern recognition [Valiant, 1984, Kearns et al., 1994, Blum et al.,
1998, Kalai and Sastry, 2009]. One of the drawbacks of the perceptron algorithm
is that it cannot handle linearly inseparable data points. Later, the perceptron
was extended to the multi-layer perceptron [Rosenblatt, 1961], which consists of a
hidden layer and a nonlinear activation function. These newly introduced compo-
nents have made artificial neural networks nonlinear and capable of learning more
complex target functions, and it has even been proven that a Turing machine can
be simulated on a multi-layer perceptron [Minsky and Papert, 1972]. However,
Minsky and Papert [1972] showed that some functions including the XOR logi-
cal function cannot be represented by a single-layer perceptron (see Figure 1.2),
which was misunderstood to be a limitation of the perceptron algorithm, despite
a nonlinear perceptron being able to learn such functions. This eventually led to
a hiatus in neural network research until the 1980s.1 Since the 1980s, however,
continuous efforts have been made by researchers in this area. Cybenko [1989],
Funahashi [1989], and Hornik et al. [1989] independently showed that a multi-layer
perceptron is a universal function approximator of every continuous function. In
addition, LeCun et al. [1989] used backpropagation [Rumelhart et al., 1986] to
successfully train convolutional neural networks (as illustrated in Figure 1.4) ap-
plied to digit recognition. A sophisticated activation function called a rectified

1Whereas Minsky and Papert’s book “Perceptrons” has a large impact on suspending neural
network research, there has been a long dispute between connectionism and classicism in psy-
chology and cognitive science: The former models semantics by units and connections among
them, leading to neural network research, and the latter does by atomic logical and syntac-
tic expressions. Fodor and Pylyshyn [1988] criticized connectionism for it presupposes that all
semantics are represented by units nonhierarchically, which disagrees to that logical reasoning
entails combinatorial semantics. Fodor and Pylyshyn supposed that connectionism is useful as
an implementation principle but not as a cognitive model. Though neural networks have been
improved dramatically, it still remains an open question whether connectionism aligns with our
cognition or not [Lake and Baroni, 2018, Geiger et al., 2019, Yanaka et al., 2020].
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Figure 1.2: XOR data points and inability of linear separation. • indicates an output value
of 0 and ▲ indicates an output value of 1. As can be seen, no linear functions can separate all
data points.

ϕ

Figure 1.3: Illustration of support vector machines. Given a set of data points that is not lin-
early separable in the original feature space (left), feature maps ϕ based on a kernel function lift
the features into a high-dimensional space (right), where the data points are linearly separable.
Importantly, the kernel trick enables us to cheaply compute the inner product in a lifted space.

linear unit (ReLU) was used to overcome the difficulty of neural network train-
ing [Fukushima and Miyake, 1982]. More variations of neural networks have been
proposed, including Hopfield networks [Hopfield, 1982], restricted Boltzmann ma-
chines [Smolensky, 1986] (illustrated in Figure 1.4), autoencoders [Hinton and
Zemel, 1994], and long short-term memory [Hochreiter and Schmidhuber, 1997].

During the 1990s, support vector machines (SVM) emerged and rapidly sur-
passed neural networks of those days in many application domains [Cortes and
Vapnik, 1995]. SVMs introduce nonlinearity to classifiers by using nonlinear ker-
nel functions as feature maps, such as the polynomial, Gaussian, and Laplacian
kernels [Shawe-Taylor et al., 2004]. Their successes can mainly be attributed to
the following two factors. The first is a kernel trick, which enables us to conduct
arithmetic operations on high-dimensional vectors implicitly without manipulat-
ing the lifted feature vectors by encapsulating all data manipulations into low-cost
inner product operations. See Figure 1.3 for an illustration. This trick largely
increases the training speed without sacrificing the representation performance.
The second is various types of kernel functions that can be applied to complex
data structures. For example, graph kernels [Vishwanathan et al., 2010] oper-
ates on graphs; string kernels [Lodhi et al., 2002], on sequences and sentences;
multi-instance kernels [Gärtner et al., 2002], on sets; tree kernels [Collins and
Duffy, 2001], on tree structures; and Fisher kernels [Jaakkola et al., 1999], on
probability distributions. For these reasons, SVMs can be applied to various data
structures in a scalable manner, and their application led to machine learning
successes during the 2000s.

During the late 2000s, connectionists, or neural network researchers, contin-
uously developed neural network architectures and their training methods. Al-
though the idea of deep learning, i.e., the stacking of multiple hidden layers in
a feedforward neural network, appeared during the 1980s [Dechter, 1986], the
training of deep neural networks has yet to be successful until the late 2000s.
Hinton et al. [2006] proposed the use of deep belief networks and showed that
pre-training based on autoencoders and supervised fine-tuning through backprop-
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Figure 1.4: Various neural networks and their components. (a) All information moves in only
one direction from the input layer to the output layer. (b) In contrast to feedforward networks,
the units form a bidirectional bipartite graph. The network is trained by minimizing an energy
function defined using the Ising model [Smolensky, 1986]. (c) A convolution layer consists of
filter parameters, which are applied to the input tensor. We slide the filter across the width and
hight of the input tensor. (d) For input x, the block returns f(x) + x, where f consists of two
weight layers with the ReLU activation in the middle. The weight layer consists of convolution
and batch normalization [Ioffe and Szegedy, 2015] layers. The operation +x is called a skip
connection, which prevents the vanishing gradient problem [He et al., 2016].

agation [Rumelhart et al., 1986] can result in a successful deep learning opera-
tion. Further, Krizhevsky et al. [2012] proposed a deep convolutional network
called AlexNet and won the first place at the computer vision competition, Ima-
geNet Large Scale Vision Recognition Challenge (ILSVRC) 2012, by a large mar-
gin [Russakovsky et al., 2013], stimulating further research into neural networks.
Many novel architectures have been proposed including generative adversarial net-
works [Goodfellow et al., 2014], variational autoencoders [Kingma and Welling,
2014], normalizing flows [Rezende and Mohamed, 2015], ResNet [He et al., 2016]
(illustrated in Figure 1.4), and Transformer [Vaswani et al., 2017], to mention a
few. This deep learning revolution has achieved significant successes in the field,
such as game AI [Silver et al., 2016], predictions of protein structures [Jumper
et al., 2021], and autonomous driving [Grigorescu et al., 2020].

As can be seen, machine learning has been developed and supported through
many aspects, including novel model architectures, optimization, theoretical un-
derstanding, training techniques, and large-scaled datasets, which when combined
constitute the current success of machine learning and deep learning.

1.2 Paradigms of Machine Learning

The machine learning framework can be largely classified into three categories: su-
pervised learning, unsupervised learning, and reinforcement learning. We briefly
look at an overview of the three frameworks and then dive into the details of
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supervised learning, which is a central framework that we focus on in this disser-
tation.

1.2.1 Supervised, Unsupervised, and Reinforcement Learning

Supervised learning [Vapnik, 1998] considers a setup where a learner is exposed to
a set of an input x associated with an output y and asked to elicit the underlying
relationship between x and y.2 This is a type of inductive reasoning. An input x
is typically represented by a real-valued vector representation, which is called a
feature. This learning framework contains many problems including regression (y
is real-valued), classification (y is categorical), and structured prediction (y has
certain structures such as graphs). Some studies have been motivated by the fact
that supervised learning requires a high cost in terms of label acquisition, leading
to research on semi-supervised learning [Chapelle et al., 2006], weakly-supervised
learning [Zhou, 2018], and self-supervised learning [Jaiswal et al., 2021].3 In these
newly proposed setups, a learner cannot necessarily have direct access to the
complete form of label y. We provide more details on supervised learning in the
next subsection.

Unsupervised learning attempts to find useful structures in data from inputs
x only. Although there are several other problems, the most important problem
in unsupervised learning is density estimation, which aims at estimating the un-
derlying probability density function of the data. The following problems are a
few example problems.

• Dimensionality reduction: The transformation of data into a low-dimensional
space while retaining important characteristics of the original data [van der
Maaten et al., 2009].

• Clustering: The grouping of a set of data into several clusters according to
their similarity [Xu and Wunsch, 2005].

• Independent component analysis: Recovery of the original signals given
multiple mixed signals [Hyvärinen, 2013].

• Anomaly detection: Identification and segregation of some rare events from
the majority of data [Chandola et al., 2009].

Reinforcement learning [Sutton and Barto, 2018] is a different framework, in
which an agent can interact with the environment by taking actions and receiving
rewards accordingly. The environment is typically modeled by a Markov decision
process, and reinforcement learning aims to train an agent so that it can receive as
high a reward as possible. Whereas reinforcement learning can be solved through
dynamic programming if the dynamics of the environment are known, sophisti-
cated learning methods such as Monte Carlo simulations and temporal difference
learning are needed under typical situations in which the dynamics are unknown.
To deal with a case in which even the reward function is not known, inverse
reinforcement learning has been proposed to estimate the reward function from

2In this dissertation, a learner indicates a learning machine that elicits useful knowledge and
the underlying law from a finite number of observations. Our algorithmic procedure for exposing
a learner to observations is called training. A model is occasionally used in place of a learner in
formal contexts. In reinforcement learning, a learner is often called an agent.

3It is difficult to categorize self-supervised learning into either supervised or unsupervised
learning. Some studies have attempted to solve supervised learning problems by automatically
generating supervision without label information, whereas others have attempted to acquire
generic data representations from unsupervised data [Jaiswal et al., 2021].
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expert behaviors [Pomerleau, 1991, Ng et al., 2000]. Occasionally, bandit prob-
lems [Cesa-Bianchi and Lugosi, 2006], i.e., problems of finding an optimal strategy
for an agent with no state transition to sequentially take an action that maximizes
the expected reward, are considered to be a part of reinforcement learning.

1.2.2 Supervised Learning and Learning Models

As we reviewed, supervised learning asks a learner to elicit an underlying law
between an input x and an output y from a large number of labeled training data.
The trained learner will predict the output for the future test data. Many machine
learning algorithms such as a perceptron, SVMs, and deep learning are categorized
as supervised learning. Because a learner only has access to a finite number of
observations, supervised learning is essentially a type of inductive inference. In
contrast to deductive inference, inductive inference cannot be justified without
any assumptions.4 Hence, we commonly adopt an assumption that both training
and test data are distributed from the identical probability distribution [Vapnik,
1998]. The ability of the learner to predict outcomes of future data well is called
generalization, which is a significantly important concept in the machine learning
community.

Given a formal concept of the underlying probability distribution, we are in-
terested in learnability, namely, whether a good learner can be trained under a
specific learning setup, and what algorithm can successfully let a learner acquire
the expected predictive performance. There are mainly two streams of research
tackling this question: computational learning theory and statistical learning the-
ory.

The community of computational learning theory has actively discussed the
definition of learnability, and several definitions of learnability have been pro-
posed. One of the most foundational formulations is probably approximately cor-
rect (PAC) learning proposed in Valiant [1984]. Within the framework of PAC
learning, we are given an error tolerance ε and probability parameter δ. We then
draw n data points, where n is a polynomial in ε and δ, and ask whether we can
find a hypothesis in polynomial time that agrees to an underlying law with an
error rate of less than ε (approximately correct), with a probability of at least
1 − δ (probably). This formulation was innovative in that machine learning and
computational complexity theory are connected, and it thereby became possi-
ble to discuss the learnability of certain target functions from the perspective of
computational complexity. Although PAC learning has a limitation that labels
are generated through a deterministic target function, this has been relaxed by
several studies: Kearns et al. [1994] proposed agnostic learning, where a target
function does not necessarily belong to the space in which we seek a hypothesis.
Eventually, it was discovered that even simple target functions such as halfspaces
are not agnostically learnable within a polynomial time. Blum et al. [1998] in-
troduced the random classification noise model, where labels are allowed to be
flipped with a fixed probability after being generated by a deterministic target
function. Kearns [1988] discussed weak learnability, asking whether we can obtain
a good classifier from a weak learner that only slightly correlates to the under-
lying law. This research question led to boosting [Schapire, 1990], an algorithm
used to aggregate multiple weak learners and obtain a good classifier. More noise
models have also been proposed, including the Massart noise model [Massart and

4Historically, David Hume discussed the validity of reasoning in the modern era and formu-
lated the uniformity principle as a minimally required assumption to justify induction [Hender-
son, 2020].
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Figure 1.5: Illustration of the Glivenko-Cantelli theorem. The cumulative distribution function
(CDF) is a logistic distribution in both cases, in which the numbers of observations differ. As
the number of the observations increases, the empirical distribution function (red lines) becomes
closer to the cumulative distribution function (black lines).

Nédélec, 2006]. Overall, computational learning theory has attempted to answer
learnability, i.e., what kind of target functions can be efficiently learned from the
perspective of both computational and sample complexities.

Statistical learning theory [Vapnik, 1998] is devoted more to sharply analyzing
how many samples are needed for generalization, whereas computational learning
theory is mostly interested in learnability. In statistical learning theory, machine
learning problems are formulated by a cost function defined over a hypothesis
space, so-called the risk, which measures the discrepancy between the predictions
of a learner and actual observations. By minimizing the risk, we expect to obtain
a good hypothesis. Although we are interested in the underlying law, the risk
function is approximated with finite observations that we have access to; hence,
there is a gap between the expected value of the risk and the risk over the obser-
vations, which is called the empirical risk. The central topic of statistical learning
theory is to fill in this gap and characterize how fast the empirical risk converges
to the expected risk. The learning approach used to minimize the empirical risk is
called empirical risk minimization (ERM). When we view the difference between
the expected and empirical risks as a stochastic process, this is often referred
to as an empirical process [Billingsley, 2008]. The history of empirical processes
dates back to Glivenko [1933] and Cantelli [1933], who independently proved the
Glivenko-Cantelli theorem, or the so-called the Fundamental Theorem of Statis-
tics, stating that an empirical distribution function uniformly converges to a cu-
mulative distribution function (as illustrated in Figure 1.5). Its convergence rate
was later quantified by Dvoretzky et al. [1956]. Uniform convergence plays a key
role in learning theory to handle the dependency of an empirical minimizer on the
training data. Dudley [1967] introduced the metric entropy to characterize the
complexity of the index set of an empirical process and showed that the empirical
process can be bounded by the metric entropy (see Figure 1.6 for an illustra-
tion). The theory of empirical processes was specialized for supervised learning
in Vapnik and Chervonenkis [1971], which introduced the VC-dimension (Vapnik-
Chervonenkis-dimension) to characterize the complexity of the hypothesis space
and showed that the VC-dimension can be used to bound the generalization er-
ror, i.e., the gap between empirical and expected risks. A distribution-dependent
complexity measure called the Rademacher complexity was recently introduced
to better characterize the convergence rate [Bartlett and Mendelson, 2002]. Thus,
statistical learning theory seeks better characterizations of the generalization er-
ror from the viewpoint of a uniform convergence and its rate. Note that several
alternative approaches to the ERM have been proposed, including an adversarial
prediction [Asif et al., 2015], invariant risk minimization [Arjovsky et al., 2019],
and learning using statistical invariants [Vapnik and Izmailov, 2019]; yet, the
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Figure 1.6: Illustration of the covering number of a set Θ, which is conceptually the smallest
number of balls needed to fully cover Θ. The metric entropy is the logarithm of the covering
number [van de Geer, 2000]. These concepts characterize the “volume” of a set with the (possibly)
infinite cardinality by a finite number of representative points.

ERM has remained the most common approach in statistical machine learning.
Although both computational and statistical learning theories have thus far

been successful at formulating learning problems and understanding algorithms,
researchers have raised several issues and attempted to overcome them. Herein,
we briefly summarize two issues. The first issue is a problem of a distributional
assumption. The traditional learning theory assumes that training and test data
follow the same underlying law, as we mentioned. Although this is a key assump-
tion in justifying an inductive inference, we often encounter data that are collected
in different environments. Hence, mitigating an environmental shift is an impor-
tant problem in machine learning. This problem is called transfer learning [Pan
and Yang, 2009], which subsumes many subproblems and algorithms such as a co-
variate shift adaptation [Shimodaira, 2000], domain adaptation [Ben-David et al.,
2007, Redko et al., 2020], continual learning [Delange et al., 2021], and multi-task
learning [Caruana, 1997], to mention a few. The second issue is the sharpness
of learning theory analyses. Although the Rademacher complexity is believed to
provides a distribution-dependent generalization bound that is sharper than the
traditional VC generalization bound, complex function classes such as deep neural
networks have been observed to have prohibitively large Rademacher complexity
values, and some researchers are therefore skeptical of learning theory based on
the uniform convergence [Nagarajan and Kolter, 2019, Zhang et al., 2021]. Re-
cently, PAC-Bayes analysis [McAllester, 1999, Langford and Shawe-Taylor, 2003]
has received attention and has been applied to the generalization analysis of deep
learning [Neyshabur et al., 2017] owing to its empirical sharpness.

Throughout this dissertation, we primarily focus on the framework and for-
mulation of machine learning from the viewpoint of statistical learning theory.

1.3 Limitation of Current Learning Theory

Despite the success of learning theory in formulating supervised learning and
providing a unified view of learning algorithms, the current learning theory is not
sufficiently capable of capturing the behavior of machine learning algorithms. As
mentioned in the last section, this is partly because the current learning theory
does not fully address the problem of distribution shifts or the sharpness issue.
However, there is another factor creating a gap between the perspective of learning
theory and practice: the gap between learning criteria and the evaluation metrics.
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1.3.1 Gap between Excess Risks

Let us consider supervised binary classification as an initial step. From the per-
spective of statistical learning theory, our goal is to train a binary classifier achiev-
ing as low a misclassification error as possible for a fixed underlying probability
distribution. Mathematically, this problem is formulated as a minimization prob-
lem of the classification risk over a hypothesis space [Vapnik, 1998]. However, it is
known that the direct minimization of the classification risk is infeasible even if a
simple hypothesis space such as a linear model is adopted.5 By contrast, the cur-
rent practical machine learning algorithms bypass this computational hurdle by
introducing some approximations. Through the lens of statistical learning theory,
SVMs can be regarded as minimizing the risk defined by the hinge loss [Cortes
and Vapnik, 1995], whereas logistic regression and its boosting extension, Logit-
Boost [Friedman et al., 2000], can be regarded as minimizing the risk defined by
the logistic loss. These classification methods do not explicitly minimize the clas-
sification risk in their formulations but achieve a good performance in practice.
During the early 2000s, Lin [2004], Zhang [2004a], and Bartlett et al. [2006] have
attempted to fill in this gap between the disagreement of the objective functions
and the practical performance from a theoretical perspective. Noting that the
objective functions optimized by the popular machine learning algorithms differ
from the classification risk, let us label them surrogate risk.6 The authors then
ask the following important research question.

Research question (classification-calibration).

When we minimize the surrogate risk (learning criterion), can we obtain a
good solution in terms of the classification risk (evaluation criterion)?

Bartlett et al. [2006] answered this question systematically by providing sufficient
conditions on a surrogate loss, which justifies the use of common loss functions
such as the hinge loss and logistic loss in terms of minimization of the classi-
fication risk. The loss functions that satisfy the sufficient conditions are called
classification-calibrated.7 Technically, an excess of the classification risk, namely,
the difference between the classification risk of a learned hypothesis and the opti-
mal risk, is shown to have a monotonic relationship with an excess of the surrogate
risk if a surrogate loss is classification-calibrated. We refer to this risk bound as
an excess risk transfer bound.

As we can see in the case of classification-calibrated losses, there often exists
a gap between the learning criterion optimized through learning algorithms and

5Such results were obtained mainly in the field of computational learning theory. For example,
Kearns et al. [1994] showed that the agnostic learning of halfspaces is NP-hard, whereas Feldman
et al. [2012] showed that the agnostic learning of monomials is NP-hard (under the unique games
conjecture). Because the common setup of binary classification in statistical learning theory
is equivalent to agnostic learning [Shalev-Shwartz and Ben-David, 2014], it is intractable to
minimize the classification risk with a common hypothesis space.

6In this dissertation, we consistently use the term a loss (function) to indicate a cost function
defined over a single input-output pair, whereas a risk (functional) is used as the expected
loss function over the underlying probability distribution. A risk functional is defined over a
hypothesis space.

7In addition to classification-calibrated losses, the following terminologies indicate the same
concept: infinite-sample consistent losses [Zhang, 2004a], admissible losses [Steinwart, 2005], and
Fisher consistent losses [Lin, 2004]. Although the word “consistency” is often used for the same
purpose, it must be clearly distinguished from the concept of consistent estimators in classical
statistics.
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Learning Empirical surrogate risk Expected surrogate risk

Evaluation (Empirical target risk) Expected target risk
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Calibration analysis

Figure 1.7: Relationship between risk functionals. Generalization analysis concerns the gap
between empirical and expected risks, whereas calibration analysis concerns the gap between sur-
rogate and target risks. Overall, we are interested in whether minimizing an empirical surrogate
risk may lead to minimizing an expected target risk. We use the terminology surrogate/target
risks and learning/evaluation criteria interchangeably.

the evaluation criterion that we are ultimately interested in. Importantly, this
gap cannot be filled by the aforementioned learning theory regarding the gener-
alization error because a generalization analysis only concerns the gap between
empirical and expected risks. Unless we are aware of the gap between learning and
evaluation criteria, the trained learners will not behave as we expect. In contrast
to generalization analysis, learning theory aiming to investigate the gap between
learning and evaluation criteria is called calibration analysis in this dissertation.
The conceptually orthogonal relationship between generalization analysis and cal-
ibration analysis is illustrated in Figure 1.7.

Since the seminal studies by Lin [2004], Zhang [2004a], and Bartlett et al.
[2006], calibration analysis has gradually received attention from the community
of learning theory. Follow-up studies have provided an analysis on a variety
of machine learning problems, including multi-class classification [Zhang, 2004b,
Tewari and Bartlett, 2007, Long and Servedio, 2013, Ávila Pires and Szepesvári,
2016], multi-label classification [Gao and Zhou, 2011, Zhang et al., 2020], partial
label classification [Cid-Sueiro et al., 2014, Cabannnes et al., 2020], cost-sensitive
classification [Scott, 2011, 2012], bipartite ranking [Dembczynski et al., 2012, Gao
and Zhou, 2015], and listwise ranking [Ravikumar et al., 2011], to mention a few.
This line of work has posed the following question.

Research question (surrogate consistency).

Given a learning problem and its evaluation criterion, what is an appropriate
surrogate loss (learning criterion) leading to a good prediction performance
in terms of the evaluation criterion?

In contrast to binary classification, these learning problems are often much more
complicated,8 and the design of appropriate surrogate measures is not trivial.
Thus, calibration analysis has been an important tool for understanding the learn-
ing mechanism and designing good learning algorithms.

Although calibration analysis has been successful at drawing the connection
between surrogate and target risks, the existing research has to date mainly fo-

8For example, it is known that smoothness plays a key role in multi-class classification [Tewari
and Bartlett, 2007]. That is to say, smooth loss functions such as the (variants of binary) logistic
loss are classification-calibrated, whereas non-smooth loss functions such as the (variants of
binary) hinge loss are not. This result differs from binary classification, where both the logistic
and hinge losses are classification-calibrated [Bartlett et al., 2006].
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cused on analyzing the prediction performance, such as the accuracy of classifica-
tion. As machine learning has been applied more in real applications, it becomes
insufficient to only guarantee the prediction performance. Rather, other perspec-
tives such as security [Kurakin et al., 2016], fairness [Mehrabi et al., 2021], and
sensible confidence [Guo et al., 2017] have become increasingly crucial. These new
perspectives are indispensable for reliable machine learning and real-world deploy-
ment. In addition, we still do not know much about what knowledge a learner
acquires through training in traditional machine learning, which merely seeks a
better prediction performance. Specifically, we pose the following questions to
the community of learning theory.

• Reliability: Can we verify whether a learning algorithm can output a reliable
classifier?9

• Transferability: Can we know what a learner has essentially learned after
solving a machine learning problem?

This dissertation provides answers to these questions based on the idea of excess
risk transfer. Subsequently, we will see detailed discussions on these two questions.

1.3.2 Reliable Machine Learning Predictions

It was observed that even a predictor with a high prediction performance can
often have reliability issues. Some examples are as follows.

• Vulnerability to adversarial attacks [Kurakin et al., 2016]: Although the
recent deep neural networks have achieved an incredible prediction perfor-
mance in many learning tasks, it has been reported that we can handcraft
an imperceptible perturbation to a test input to manipulate the prediction
result arbitrarily. Such a perturbation is called an adversarial attack, which
has a large impact on the security of machine learning deployment.

• Fairness of predictions [Mehrabi et al., 2021]: In 2016, computer software
used in the US courts to assess potential recidivism risk aroused criticism
because it was claimed that the algorithm estimates the risk based on hu-
man race.10 After this incident, the fairness of decisions made by computer
software and artificial intelligence received significant attention. In modern
society, assessing and verifying whether a predictor is intrinsically biased
based on sensitive attributes such as gender and race is important.

• Out-of-distribution (OOD) generalization [Rahimian and Mehrotra, 2019,
Shen et al., 2021]: Although classical machine learning methods assume
that training and test data follow the same distribution, this assumption

9At a first glance, it may remind one of formal methods [Baier and Katoen, 2008], which
verifies behaviors of computer systems based on mathematical specifications. Although formal
methods have been actively applied to analyze machine learning models recently, the main focus
is to verify if a learned model behaves as we expected [Seshia et al., 2016]. Seshia et al. [2016]
discussed the necessity to develop a new design process called “correct-by-construction”, which
means that a machine learning model is refined interactively by repeated verification steps, yet
this remains open. Our perspective is slightly different from the above ones: We are interested
in whether a learning algorithm behaves as we expected. We believe that this meta approach
may lead to a correct-by-construction design principle.

10
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-

sentencing
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rarely holds in real-world scenarios. Toward reliable machine learning de-
ployment, the robustness to out-of-distribution data is necessary, and sev-
eral approaches such as distributionally robust optimization and invariant
learning were considered.

• Model calibration [Guo et al., 2017]: Although modern deep neural networks
are often extremely confident in their predictions owing to their flexible ar-
chitectures, overconfidence can often be an issue because humans cannot
assess how much we can rely on the predictions. Model confidence is par-
ticularly important in making critical decisions such as medical diagnosis
and political decisions. For this reason, model calibration, a procedure used
to achieve a reasonable level of confidence of a predictor, has been actively
studied.11

Because traditional learning theory was mainly designed to deal with the
generalization error in terms of the classification risk, these reliability issues
have not been sufficiently considered. Hence, we ask the following question.

Research question (reliability).

When we minimize a surrogate risk (learning criterion), can the learner suc-
cessfully achieve a specific reliability property? Can we design an appropriate
surrogate risk leading a learner to reliable predictions?

Although some existing research was devoted to designing algorithmic tricks
to achieve a reliable prediction, the effectiveness was often observed only empiri-
cally, or the theoretical guarantee was given only on some relaxed measurements.
For instance, Goodfellow et al. [2015] proposed a popular method for adversarial
training of robust models; however, this method essentially minimizes a local ap-
proximation of the classification risk when considering an adversarial attacks [Sha-
ham et al., 2018]. Within the context of a model calibration, a convenient trick
called temperature scaling has been commonly used [Guo et al., 2017], although
it is still unclear whether temperature scaling provably leads to good solutions in
terms of the evaluation criteria of the model calibration, such as the expected cal-
ibration error (ECE). We will seek a theoretically guaranteed learning procedure
based on calibration analysis and excess risk transfer. Our approach is similar to
that of Narasimhan [2018], who designed a learning algorithm that can provably
satisfy complex constraints such as fairness.12

1.3.3 Knowledge Transfer between Learning Problems

Once a learner is trained, it is used for predicting future outcomes. However,
because machine learning problems are formulated as minimization problems of
some cost functions, it is not straightforward to understand what knowledge and

11Be aware that model calibration is a completely different notion from calibrated loss func-
tions, although they share the same terminology.

12Despite the fact that our idea is similar to Narasimhan [2018], a crucial difference is that
Narasimhan [2018] focused on the plug-in classifier, i.e., a classifier based on the class-posterior
probability estimation. As we will discuss later, the plug-in classifier is often inferior to the di-
rect ERM approach because the class-posterior probability estimation imposes relatively strong
assumptions on the underlying distribution.
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information the learner is acquiring during the training. Interpretability and ex-
plainability have recently become hot topics within the machine learning commu-
nity [Carvalho et al., 2019], for which a black-box model is investigated through
local linear approximations, as an example. Although this line of research has
contributed to a certain extent to understanding local behaviors of a black-box
model, what a learner learns from the data remains unclear.13 This perspective
will have a significant impact when we want to extract knowledge from a trained
learner and apply or transfer it to other situations.

Thus, what type of formulations can provide meaningful insights into learned
knowledge? Although the extraction of knowledge from pre-trained language
models has achieved success to a certain extent and recently received attention
in the community of natural language processing [Petroni et al., 2019], learned
knowledge should not be limited to knowledge explainable by natural language.14

From a machine learning perspective, we believe that learned knowledge is useful
when it can help solve other problems. Technically, this idea can be formulated
through the idea of excess risk transfer, i.e., by noting that a learning problem is
defined based on an evaluation metric, we can treat an evaluation metric of one
problem as the learning criterion and another evaluation metric as the evaluation
criterion. We therefore pose a second research question.

Research question (knowledge transfer).

Given two learning problems, can we reduce one problem to another prob-
lem? Namely, is it possible to obtain a good predictor for one learning prob-
lem (evaluation task) once we train a learner for another learning problem
(learning task)?

Note that this perspective differs from traditional transfer learning [Pan and Yang,
2009], which aspires to deal with distribution shifts between training and test
data. Here, we want to understand the relationship between two machine learn-
ing problems with different structures, to see whether knowledge extracted from
one learning problem can help us solve another learning problem. We call this
paradigm a knowledge transfer in this dissertation.15

13Although the machine learning community is more interested in prediction and generaliza-
tion, the statistics community is more interested in how to establish a plausible mathematical
model of a target natural phenomenon. Hence, interpreting model behaviors is one of the im-
portant aspects in statistical modeling. For example, a relative weight analysis [Johnson, 2000]
and a dominance analysis [Azen and Budescu, 2003] have been proposed to investigate which
variables heavily affect the outcomes in a regression analysis. These analysis methods provide
a post-hoc interpretation in modeling behaviors for understanding the target phenomena. In
comparison with statistical modeling, which is mainly devoted to a regression analysis, ma-
chine learning problems often have richer structures. Therefore, understanding the underlying
mechanism of learning problems will help us design more useful cost functions.

14Oftentimes, classicism prefers to semantic representation by a symbolic language, whereas
connectionism is based on a belief that any concept semantically corresponds to a single (neural)
unit [Fodor and Pylyshyn, 1988]. Recent research on natural language processing and knowledge
bases has been mainly focusing on how to extract natural language explanation from language
models [Petroni et al., 2019]. Although such symbolic explanation is indispensable for our
semantical understanding, we argue for the importance of knowledge extraction that enables
a learner to perform well on future tasks. Note that classicism and connectionism represent
knowledge (input) by a corresponding symbol and unit (output), respectively, whereas our idea
based on knowledge transfer is more interested in input-output relationships and how they can
be applied to the other tasks.

15Apart from transfer learning, this idea may remind one of meta learning. Here, we briefly
discuss the difference between knowledge transfer and meta learning. In meta learning, we
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Binary CPE

Bipartite ranking Binary classification

Figure 1.8: The relationship among binary classification, bipartite ranking, and binary class-
posterior probability estimation. An arrow indicates that a procedure exists to transfer a model
obtained from the source problem to the destination problem. The figure is based on the results
of Narasimhan and Agarwal [2013]. We will explicate this relationship in Section 2.5.

Originally, our idea of knowledge transfer was inspired by a seminal work con-
ducted by Narasimhan and Agarwal [2013], who studied the relationship among
three different machine learning problems, i.e., binary classification, bipartite
ranking, and binary class-posterior probability estimation (CPE). Although all
three problems deal with binary outcomes, bipartite ranking seeks a ranking model
to output higher scores for positive examples than negative examples (formulated
by the binary rank loss), and binary CPE seeks to build a probabilistic model
that approximates well a class-posterior probability (often formulated through
the squared loss). Thus, one might naturally imagine that a good binary clas-
sifier can be obtained immediately after obtaining a good CPE model. In other
words, a learner can obtain richer knowledge through binary CPE than binary
classification. Narasimhan and Agarwal [2013] investigated such a relationship
among the three learning problems and established excess risk transfer bounds,
as shown in Figure 1.8.

Why does knowledge transfer matter? This is because we should design a
learning criterion capable of eliciting knowledge that we need for the ultimate
purpose, whereas we should not design a criterion that is too difficult to handle.
This idea is illustrated through an example in Figure 1.9. Solving an excessively
difficult and general learning problem can result in an insufficient prediction per-
formance given a limited number of data and resources; hence, designing an in-
termediate learning criterion is an important task. This is reminiscent of the
so-called Vapnik’s principle [Vapnik, 2006]:

When solving a problem of interest, do not solve a more general prob-
lem as an intermediate step. Try to get the answer that you really
need but not a more general one. — Vladimir Vapnik

With this idea in mind, Vladimir Vapnik introduced a notion of transductive
inference, which is a reasoning framework used to infer outcomes for test cases
directly from training cases without eliciting a general law as is done in an induc-
tive inference. Note that whereas transductive inference has stimulated several
learning algorithms including transductive SVMs [Joachims, 2003], they mainly

consider a set of tasks, which consist of a loss function and a distribution. Oftentimes, to
incorporate reinforcement learning, a transition distribution and episode length are considered
to be a part of a task. A learner is herein expected to quickly adapt to a new task drawn from
the underlying task distribution [Finn, 2018]. This idea appears in Thrun and Pratt [1998,
p. 6]: “by identifying the ‘right’ properties, the hypothesis space can be diminished, yielding
more accurate generalization from less data.” In other words, meta learning somewhat seeks
invariant properties of tasks from the data. By contrast, knowledge transfer aims to extract
knowledge from the data, transform it, and apply to the other problem. We are rather interested
in different characteristics of tasks.
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Figure 1.9: Illustration of a hierarchical relationship among learning problems. Each node
corresponds to a learning problem defined by an evaluation criterion. Each arrow indicates the
knowledge transfer relationships. In this example, we have two goals owing to certain real-world
requirements. Under this situation, one possible strategy is to solve the problem corresponding
to a common ancestral node of the two goals (the shaded node), but not to solve an excessively
general one (such as the ancestral problem of the shaded one).

focused on eliciting useful information directly from training data for a test pre-
diction of the same learning problem. By contrast, our idea here is motivated
by transferring knowledge elicited from one learning problem to another learning
problem with as little effort as possible.

We quote an earlier remark made in Russell [1912], which has the same spirit
as Vapnik’s principle:

We shall reach the conclusion that Socrates is mortal with a greater
approach to certainty if we make our argument purely inductive than
if we go by way of “all men are mortal” and then use deduction.

— Bertrand Russel

1.4 Scope and Contributions of this Dissertation

From the discussions provided thus far, the learning of reliable and transferrable
knowledge is a fundamental goal in machine learning. In this dissertation, we show
that this can be achieved by elucidating the relationship between the learning and
evaluation criteria. Herein, we state our goal in a general form.

Scope of this dissertation (excess risk transfer).

Given an evaluation criterion, verify whether a learning criterion leads to the
optimal solution in terms of the evaluation criterion, or, design an appropriate
learning criterion leading to the optimal solution.

Mathematically, we adopt the idea of calibration analysis and excess risk transfer
to connect the excess risk of a learning criterion to the excess risk of an evaluation
criterion.

Subsequently, we explicate the contributions of this dissertation to describe
how we attempt to establish the framework of excess risk transfer and relate it to
reliable and transferrable machine learning.
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Positive True positive (↗) False negative (↘)

Negative False positive (↘) True negative (↗)

Figure 1.10: Confusion matrix. We expect the entries with a ↗ to be as high as possible and
those with a ↘ to be as low as possible.

1.4.1 Chapter 3: Design of Learning Criteria for Complex Classifica-
tion Metrics

Motivation. In classification problems, class-prior distributions are often skewed
such that some categories appear infrequently in the training data. This situa-
tion is common in scenarios such as information retrieval for query and document
classification [Manning and Schütze, 2008]. When a class-prior distribution is
heavily skewed, the classification problem is often called imbalanced [Japkowicz
and Stephen, 2002].

In classical literature, the (binary) classification performance is visualized us-
ing a confusion matrix, where each row of the matrix represents the number/ratio
of instances in the true classes, and each column represents the number/ratio of
instances in the predicted classes [Sokolova and Lapalme, 2009]. A confusion ma-
trix contains the four values, i.e., true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN), and a learner is expected to achieve as
high a TP and TN as possible while keeping the FP and FN as low as possible
(see Figure 1.10). Although the four values are often visually analyzed based
on a precision-recall (PR) curve and the receiver operating characteristic (ROC)
curve (see Figure 1.11), dealing with the multiple metrics at the same time in the
optimization is not straightforward and is not interpretable for users. For these
reasons, several aggregated metrics have been proposed and used in the literature.
For example, the following three performance metrics are commonly applied.

• The Fβ-measure [van Rijsbergen, 1974] is defined by

(1 + β2)TP

(1 + β2)TP+ β2FN+ FP

with a trade-off hyperparameter β ≥ 0, is usually set to 1. This is the har-
monic mean of the precision (= TP/(TP+FP)) and recall (= TP/(TP+FN)).
This performance metric is common in many fields facing imbalanced data
such as information retrieval [Manning and Schütze, 2008], natural language
processing [Derczynski, 2016], and medical image analysis [Milletari et al.,
2016]. The Fβ-measure is also known as the Sørensen-Dice coefficient.

• The Jaccard index [Jaccard, 1901] is defined by

TP

TP+ FN+ FP
.

The Jaccard index was originally proposed to measure the similarity between
two sets A and B using |A∩B|/|A∪B|, namely, the intersection-over-union
(IoU). For this reason, this index has been commonly used in semantic seg-
mentation in the field of computer vision community [Berman et al., 2018].
When the two sets are the set of the predicted positive and true positive
instances, the definition based on the set similarity reduces to the above.
The Jaccard index is also known as the Tanimoto distance [Tanimoto, 1958].
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Figure 1.11: The ROC curve. For a binary classifier, a curve is plotted by repeatedly changing
the classification threshold and measuring the true positive and false positive rates. The perfect
classifier achieves the top-left point (false positive rate = 0 and true positive rate = 1).

• The Tversky index [Tversky, 1977] is defined by

TP

TP+ αFN+ βFP

with trade-off parameters α, β ≥ 0. It reduces to an F1-measure with α =
β = 1

2 and a Jaccard index with α = β = 1. Owing to its high flexibility,
it has been sometimes been used in semantic segmentation [Salehi et al.,
2017].

For the aforementioned wide application domains, the machine learning com-
munity has paid more attention to these complex classification performance met-
rics. In particular, we are interested in the following general form:

a0TP+ b0TN+ c0FP+ d0FN

a1TP+ b1TN+ c1FP+ d1FN
,

with the given values a0, b0, c0, d0, a1, b1, c1, d1 ∈ R. This generalized form of
the classification performance metric is called the linear-fractional metric [Koyejo
et al., 2015, Bao and Sugiyama, 2020, Nordström et al., 2020]. Because the re-
ported value of the classification performance metrics in these domains has a
specific interpretation, achieving a better performance in terms of these given
metrics is an important task. Although recent studies have been interested in
training a classifier by maximizing the linear-fractional metrics, these approaches
are based on either heuristics [Milletari et al., 2016, Berman et al., 2018] or plug-
in classifiers relying on class-posterior probability estimators [Koyejo et al., 2014,
Narasimhan et al., 2014, Yan et al., 2018], which is usually sample-inefficient.16

Hence, the design of sample-efficient learning criteria with the consistency guar-
antee to the metrics of the classification performance remains an important open
problem.

16Suppose that the evaluation metric is the classification accuracy. Audibert and Tsybakov
[2007] then showed that the plug-in classifier cannot achieve fast rates unless a strong assumption
is imposed on the underlying probability distribution, although Audibert and Tsybakov [2007]
was originally intended to provide a scenario in which the plug-in classifier achieves faster rates
than the ERM approaches. Although it remains an open question whether the plug-in classifier
achieves the same rates as the surrogate risk minimization, we naturally speculate that the
answer is negative.
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Contribution. We focus on binary classification with an evaluation criterion in
the linear-fractional family. We propose surrogate utility functions as the learning
criterion, which smoothens the original classification performance metric. This
surrogate utility is shown to be calibrated to the given evaluation criterion, mean-
ing that our predictor approaches the optimal performance by optimizing the
proposed utility. The optimization problem of the proposed utility function is
the quasiconcave maximization, and hence it is computationally feasible. Exper-
imentally, we confirm that the proposed utility function outperforms the plug-in
classifiers, particularly when the sample size is small.

1.4.2 Chapter 4: Certification of Learning Criteria for Adversarially
Robust Classification

Motivation. Whereas deep learning has achieved significant success in building
models with a significantly high predictive performance, it has been empirically
observed that the prediction of deep neural networks can be arbitrarily manip-
ulated by perturbing test patterns with small noises that are imperceptible to
humans [Kurakin et al., 2016]. Such malicious manipulations are called adversar-
ial attacks. Adversarial attacks are not only observed with deep neural networks
but also using SVMs [Xiao et al., 2015]. Improving the robustness of machine
learning models against adversarial attacks is a significantly important issue from
the viewpoint of machine learning security. Figure 1.12 illustrates the idea of an
adversarial example and a decision boundary vulnerable to an adversarial attack.

Goodfellow et al. [2015] introduced a simple method for crafting adversarial
examples and trained a model with data augmented with adversarial examples.
This can be essentially regarded as a robust optimization problem with the mini-
max classification risk, i.e., minimizing the classification risk under the worst-case
(max) adversarial attacks, and Shaham et al. [2018] solved the robust optimiza-
tion problem directly. In addition, Wong and Kolter [2018] proposed a tractable
upper bound of the minimax objective. More recently, a learning procedure called
randomized smoothing has received attention, which outputs a stochastic classi-
fier built on top of a base neural network by injecting appropriate noise such that
the resulting classifier is robust against adversarial attacks [Cohen et al., 2019].
Although these proposals have been reported to be effective in practice, it has
yet to be determined whether the existing learning algorithms lead to the optimal
solution in terms of the evaluation criterion of adversarially robust classification,
i.e., robust (or worst-case) classification risk. This perspective should not be over-
looked because it is necessary to assess the potential security risks quantitatively
before we deploy machine learning models.

Contribution. We focus on binary classification in the presence of adversar-
ial attacks. Using the calibration analysis formulated by Steinwart [2007], we
show that no convex surrogate loss functions can lead to the optimal solution
in terms of the adversarially robust classification risk when we use the linear-
in-input models. Roughly speaking, convex surrogate losses cannot guarantee
sufficiently large prediction margins, which is essential for adversarial robustness.
This is in stark contrast to the classical result of Bartlett et al. [2006], which char-
acterizes that convex surrogate loss functions are classification-calibrated under
mild sufficient conditions. We also investigate alternative nonconvex candidates
for calibrated surrogate loss functions in adversarially robust classification. This
chapter provides a new insight in that not only a predictive performance but also
the robustness of a classifier can be incorporated into the calibration analysis.
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Figure 1.12: Illustration of vulnerable and robust binary decision boundaries against adver-
sarial attacks. The ball indicates the budget for an adversarial attack. An adversary is allowed
to perturb the input associated with the ball such that the input crosses the decision boundary
in (a).

1.4.3 Chapter 5: Reduction from Classification to Similarity Learning

Motivation. Data similarity is an important concept in machine learning. With
an appropriately defined metric, clustering can be conduced to analyze the data
structure [MacQueen, 1967]. Even if obtaining Euclidean feature embeddings
is not straightforward in domains such as graphs, sequences, and logics, sophisti-
cated similarity measures have been developed for such structured data [Ontañón,
2020], and we can construct feature representations from the similarity informa-
tion [Wang et al., 2009, Chen et al., 2009]. Semantic similarity information has
recently been popularly used in self-supervised learning based on contrastive rep-
resentation learning [Jaiswal et al., 2021].

Given that similarity information is valuable in many situations, the learning
of a good similarity has been an area of focus for the past two decades. One of the
most common approaches is distance metric learning, which models the similarity
based on a parametrized Mahalanobis distance, and makes similar inputs closer,
and vice versa. Distance metric learning is usually used for downstream clustering
and k-nearest neighbor classification [Xing et al., 2003, Weinberger and Saul, 2009,
Kulis, 2013]. Other approaches attempt to obtain a good similarity function
used for constructing feature embedding [Bellet et al., 2012]. Overall, when we
learn a similarity function, we usually have other purposes in our mind such as
downstream classification. However, the goodness of the similarity has seldom
been evaluated in terms of the performance metrics of the downstream tasks.

Contribution. We focus on binary classification as a downstream task of simi-
larity learning. By giving a simple formulation of similarity learning, we show that
solving similarity learning leads directly to solving binary classification. Specifi-
cally, we consider the formulation of similarity learning in which a pairwise model
is asked to predict whether two inputs share the underlying classes. The pairwise
classification risk is then shown to be monotonically related to the clustering er-
ror, which is equivalent to the classification risk but ignores the permutation of
the predicted class labels. If we do not care about the label flipping, similarity
learning in our formulation is sufficient to elicit a binary decision boundary. If
we need to modify the label flipping, our proposed method can fix it with an
exponentially small sample complexity. Herein, we treat the pairwise classifica-
tion risk as a learning criterion and the clustering error as an evaluation criterion
and draw a connection between two different learning problems, i.e., similarity
learning and binary classification. This relationship is reminiscent of the results
of Narasimhan and Agarwal [2013]. As a result, we elucidate that a learner can
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Figure 1.13: Two ways to investigate the problem reduction. In this figure, problem A is the
source problem and problem B is the target problem, and we are interested in whether problem
B can be solved by using the knowledge obtained when we solve problem A. In the forward
way, the source problem A is fixed first, and we seek what elicitable knowledge and the target
problem are. In the backward way, the target problem B is fixed first, and we seek what source
problem leads to the desired target property.

essentially learn a decision boundary through similarity learning.

1.4.4 Why Contributions of This Dissertation Matter

Why do we need the contributions of this dissertation based on the two perspec-
tives, reliable predictions and knowledge transfer, briefly summarized so far? Why
do we specifically focus on the linear-fractional metrics (Chapter 3) and adver-
sarial robustness (Chapter 4) to discuss the reliability? Why do we discuss only
similarity learning (Chapter 5) to establish knowledge transfer in this disserta-
tion? Before concluding the introduction, we provide additional explanations to
answer those questions.

Our ultimate motivation to conduct research on learning theory is to reveal the
relationship between two distinct learning problems as we stated in Section 1.3.3.
As a result of elucidating the problem relationships, we expect to better under-
stand the hierarchy of learning problems, which may lead to a more sophisticated
design of learning criteria (see Figure 1.9). When one wonders which learning
criterion should be used, there are two ways to approach this (see Figure 1.13 for
the concept of the forward/backward approaches). The first way is the backward
approach, where a target problem that one wants to solve or target properties that
a learner should acquire are fixed first, and we seek which learning criterion can
achieve them. The second way is the forward approach, where a source problem
or learning criterion is fixed first, and we check what property a learner can even-
tually acquire after solving the source problem. The backward approach is mainly
concerned about desired properties such as reliability, and the forward approach is
concerned about whether knowledge from the source problem can be transferred
to the target problem. This is why we focus on reliability and transferability.

Yet, why do we need to focus on the linear-fractional metrics and adversarial
robustness among many reliability properties in machine learning? Here, we argue
that the linear-fractional metrics are evaluation criteria involving the confusion
matrix in a general form and that adversarial robustness is essentially related to
the prediction margin. These two quantities, the confusion matrix and prediction
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margin, can encompass many features of classifiers, and thereby we believe that
they are “canonical” quantities to be investigated.17 Of course, there are many
other choices of how to characterize the properties of a given classifier. Nonethe-
less, the confusion matrix and prediction margin would be interpretable quantities
for users because the former is a statistically aggregated quantity and the latter
is a geometrical quantity. For these reasons, we focus on them as properties
characterizing the prediction reliability.18

Another important question is why we choose to discuss similarity learning
as a single instance of knowledge transfer among many other machine learn-
ing problems. In fact, the perspective of knowledge transfer and problem re-
duction provides a novel framework, even though we were inspired by a prior
work [Narasimhan and Agarwal, 2013], and we have infinitely many candidates
on which learning problems to work. We choose similarity learning because the
notion of similarity is fundamental in human perception—in Aristotle’s meta-
physics, humans recognize concepts in the world by utilizing similarity of five
sense information, characteristics, structures, and topology to form clusters [Na-
gao, 2019]. Whereas similarity has got a lot of attention in recent machine learn-
ing research [Jaiswal et al., 2021], it must be valuable to reveal what similarity
learning elicits not only from the practical viewpoint but also the philosophical
viewpoint. As machine learning has begun from imitation of human perception,
we hope to provide feedback to the understanding of human perception by ana-
lyzing similarity learning.

1.5 Organization

The organization of this dissertation is summarized as follows. Chapter 2 provides
background materials for the formulation of supervised learning and learning the-
ory. The basics of both generalization analysis and calibration analysis are briefly
introduced. Chapters 3 and 4 are devoted to reliable machine learning. Specifi-
cally, we consider the design of reliable learning criteria for the linear-fractional
metrics under a class imbalance in Chapter 3 and the certification of the learn-
ing criteria for adversarially robust classification in Chapter 4. Then, Chapter 5
considers the knowledge transfer; in particular, the relationship between classifi-
cation and similarity learning is discussed. Lastly, we conclude this dissertation
in Chapter 6. The organization of this dissertation is summarized in Figure 1.14.

17For example, fairness constraints can be represented by the confusion matrix [Narasimhan,
2018]. The model calibration is essentially concerned about the prediction margin [Guo et al.,
2017]. These two quantities can characterize many perspectives of a given classifier.

18Indeed, it is a notoriously hard task to disentangle one notion in a “canonical” way. Histor-
ically, Immanuel Kant tackled to define twelve categories to characterize how synthetic a priori
judgments are possible [Kant, 1781]. Each category corresponds to a condition and framework of
human thought in general, and Kant claimed that the twelve categories cannot be derived from
any more general concept. However, a number of philosophers criticized the validity of Kant’s
categories. Smith [1918] argued that the twelve categories do not match the logical framework
provided by the earlier logicians and lack consensus. Yet, Kant claimed how he formulated the
twelve categories based on the general framework of human thought based on the discussions
provided by earlier philosophers and logicians. In any cases, it is important to clarify why one
chooses a specific categorization. In our case, we believe that evaluation criteria based on the
confusion matrix and prediction margin can cover a broad range of prediction characteristics
and are user-friendly quantities hence we focus on these two quantities.
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Chapter 2

Preliminaries

Science without religion is lame, religion without science is blind.
— Albert Einstein, Science and Religion

In this chapter, the formulation of machine learning and the background
knowledge on loss functions are introduced. We mainly focus on a supervised
formulation of classification in the subsequent chapters. In addition, we provide
an overview of the calibration analysis conducted to study the relationship be-
tween surrogate and target risks.

2.1 Notation and Formulation of Supervised Classification

Let R, R≥0, N, and Z denote the real line, the non-negative real line, the set
of natural numbers, and the set of integers, respectively. For n ∈ N, let [n] be
the index set {1, . . . , n}. Let 1{A} be an indicator function that takes a value
of 1 if the predicate A holds and a value of 0 otherwise. The sign of a number
α ∈ R is denoted by sgn(α). We adopt the convention sgn(0) = −1. In addition,
sgn : R → {+1,−1} is defined by sgn(α) = sgn(α) for α 6= 0 and sgn(0) = +1.
We use bold font (such as x) to denote vectors and sans-serif font (such as X) to
denote random variables. For a vector x ∈ Rn, the i-th element is denoted by
xi, and ‖x‖p denotes the ℓp-norm p

√
|x1|p + · · ·+ |xn|p. The norm ‖ · ‖ without

a subscript denotes the ℓ2-norm. For a measure µ and a measurable function f ,
the pushforward measure of µ by f is denoted by f♯µ.1

For random variables X1, . . . ,Xn drawn from a joint distribution P, the joint
expectation is denoted by E(X1,...,Xn)∼P(X1,...,Xn)[·]. Alternatively, simpler expres-
sions such as E(X1,...,Xn)[·], EP[·], or E[·] are used if there is no ambiguity from the
context.

For a real vector space Y and a function h : T → R, dom(h) denotes
the domain of h. Let h⋆ denote the Fenchel-Legendre conjugate, defined by
h⋆(p) := supx∈dom(h) p

⊤x− h(x). In addition, h⋆⋆ denotes the Fenchel-Legendre
biconjugate, namely, the Fenchel-Legendre conjugate of h⋆. For more technical
details of convex analysis, please refer to standard textbooks such as Rockafellar
[1970].

Common notation used in this dissertation is summarized in Table 2.1.

1The pushforward measure f♯µ is a (probability) measure obtained by transferring measure
µ from the original measurable space to another space by using a measurable function f . See
standard textbooks such as Halmos [1946] for details.
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Table 2.1: Notation table.

Symbol Description

R Real line
R≥0 Non-negative real line
N Set of natural numbers
Z Set of integers

[n] {1, 2, . . . , n} for n ∈ N
sgn(α) 2 · 1{α>0} − 1 for α ∈ R
sgn(α) 2 · 1{α≥0} − 1 for α ∈ R

‖ · ‖p ℓp-norm
‖ · ‖ ℓ2-norm

X Feature space
Y Outcome space

T Prediction score space
(e.g., T = R in binary classification)

G ⊆ YX Hypothesis space

F ⊆ T X Score function space
(e.g., F ⊆ RX in binary classification)

Fall ⊆ T X Set of all measurable score functions
ℓ : Y × Y → R≥0 Target loss function
ϕ : T × Y → R≥0 Surrogate loss function

Rℓ(g) Target risk function (or ℓ-risk) for g ∈ G
Rϕ(f) Surrogate risk function (or ϕ-risk) for f ∈ F
R̂ϕ(f) Empirical ϕ-risk function
R∗
ϕ Bayes (ϕ-)risk

2.1.1 Supervised Learning

Let X ⊆ Rd be a feature space and Y be an outcome space. The outcome
space is typically Y = {+1,−1} for binary classification and Y = [C] for C-way
classification, where C is an integer larger than 2. In the case of classification, an
outcome is usually referred to as a label. In supervised learning, it is commonly
assumed that a labeled example (x, y) ∈ X × Y is independently and identically
drawn from an unknown joint probability distribution. Let P(X,Y) denote the
density function of this joint distribution. The X -marginal distribution is denoted
by PX, and P is occasionally used if there is no confusion. One of the primary
goals of supervised learning is to predict the best outcome for a given input
feature vector from a finite number of examples drawn from P(X,Y). Formally,
we are given a finite number of labeled examples S := {(xi, yi)}i∈[n]. To construct
a prediction rule, we prepare a search space of the prediction rules, called a
hypothesis space, G ⊆ YX .2 Then, the best model g∗ across a specified hypothesis
space G is sought by minimizing the following quantity

Rℓ(g) := E
(X,Y)∼P(X,Y)

[ℓ(g(X),Y)],

2The set of functions from X to Y is denoted by either X → Y or YX .
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and g∗ is defined as3

g∗ ∈ argmin
g∈YX :measurable

Rℓ(g).

Here, ℓ : Y ×Y → R≥0 is a loss function, which measures the “closeness” between
the prediction g(X) and the outcome Y. Loss functions are often simply called
losses. The functional Rℓ is called the expected ℓ-risk function, defining the good-
ness of a model. When it is clear from the context, we often simply refer to it as
an ℓ-risk function. The expected risk is often referred to as population risk or the-
oretical risk in some studies [Mohammadi and van de Geer, 2005, Jin et al., 2018].
Note that a loss function ℓ essentially defines the desirable predictions, that is, an
evaluation criterion of a supervised learning task is essentially defined by ℓ. For
this reason, we occasionally call this a target loss function to distinguish it from
surrogate loss functions that we introduce later. Similarly, we also occasionally
call it a target risk function to clearly emphasize the difference.

Although the expected ℓ-risk function requires access to an infinite sample to
be computed, the empirical ℓ-risk function introduced below may serve as a good
approximation.

R̂ℓ(g) :=
1

n

∑
i∈[n]

ℓ(g(xi), yi).

In Section 2.2, we show that empirical risk serves as a good approximator of the
expected risk in a certain sense.

The popular target loss functions are listed below.

• Binary 0-1 loss (binary classification): ℓ(g(x), y) = 1{yg(x)≤0}.

• Binary cost-sensitive loss (binary classification):
ℓ(g(x), y) = α+11{g(x) ̸=+1} + α−11{g(x) ̸=−1}, where α±1 > 0 are misclassifi-
cation costs.

• Multi-class 0-1 loss (multi-class classification): ℓ(g(x), y) = 1{g(x) ̸=y}.

• Normalized Hamming loss (structured prediction):
ℓ(g(x),y) = 1

T

∑T
t=1 1{gt(x) ̸=yt}, for tuples of T binary outputs gt and yt.

Each loss function corresponds to some target supervised learning task. For ex-
ample, the 0-1 loss penalizes predictions by a cost of 1 when prediction g(x) does
not match a given label y. Note, however, that target losses are often unprefer-
able in terms of optimization—the 0-1 loss has a discrete nature. To mitigate such
optimization issues, surrogate loss functions are commonly introduced, which is
discussed in Section 2.1.2.

Although the above definition is not confined to classification, this dissertation
focuses on classification. That is, |Y| < ∞ is assumed subsequently throughout
the dissertation.

2.1.2 Surrogate Loss Functions

In the supervised learning formulation, we aimed at minimizing the expected ℓ-
risk Rℓ(g) in a hypothesis space G. Because the outcome space Y is often discrete
(such as {+1,−1} in binary classification), the hypothesis space is usually replaced
with a function space with a continuous output space T X , where T is a complete

3Assume that the minimizer g∗ exists.
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metric space called a prediction score space. A score t ∈ T usually has a one-to-
one relationship with a prediction in Y. This mapping (from a prediction to a
score) is called a link function [McCullagh and Nelder, 1989, Finocchiaro et al.,
2019]. For example, in the binary classification case, a score space is usually taken
as T = R, and a score function space F ⊆ T X is introduced. When clear from
the context, we also call F a hypothesis space. Then, a score f(x) is transformed
into a prediction sgn(f(x)) ∈ {+1,−1}. In this case, sgn(·) is the inverse link
function. A prediction score is often referred to as a margin [Mohri et al., 2018],
a report [Frongillo and Kash, 2015], or simply a score [Mohri et al., 2018].4

As a score function space, the following candidates are commonly used in
binary classification.

• Linear-in-input models:
F :=

{
x 7→ w⊤x

∣∣ w ∈ Rd
}
.

• Linear-in-parameter models:
F :=

{
x 7→ w⊤φ(x)

∣∣ w ∈ Rb
}
, where φ : X → Rb are fixed basis func-

tions.

• Kernel models:
F :=

{
x 7→

∑
i∈[n]wik(x,xi)

∣∣∣ w ∈ Rn
}

, where k : X ×X → R≥0 is a fixed
kernel function.

• Perceptron models:
F :=

{
x 7→

∑
j∈[b]w2,jφ(w

⊤
1,jx+ b1) + b2

}
, where φ : R→ R is an activa-

tion function, b is the number of hidden units, w1,1, . . . ,w1,b ∈ Rd,w2 ∈ Rb
are weight parameters, and b1, b2 ∈ R are bias parameters.

Although a hypothesis space typically becomes more flexible in approximating a
desirable target function as the number of parameters increases, there is a trade-
off relationship between the flexibility and generalization performance, which will
be discussed in Section 2.2.

In many cases, the optimization of the target risk is not straightforward owing
to the undesirable nature of the target loss ℓ. For example, when the target loss
is the binary 0-1 loss ℓ(f(x), y) = 1{yf(x)≤0}, minimizing the binary 0-1 risk is
NP-hard even if the hypothesis space F is a linear-in-input model [Kearns et al.,
1994]. Intuitively, its reason can be understood by the discrete nature of the
binary 0-1 loss—the gradient descent [Boyd and Vandenberghe, 2004], one of the
most commonly-used optimizers, may suffer from this loss function because the
gradient of the binary 0-1 risk in f vanishes almost everywhere. Owing to this
discrete nature, the target loss is replaced with a surrogate loss function in many
situations [Zhang, 2004a, Bartlett et al., 2006].

A surrogate loss function ϕ : T × Y → R≥0 measures the “closeness” of a
prediction score t ∈ T and an outcome y ∈ Y , whereas a target loss function
ℓ : Y × Y → R≥0 measures the “closeness” of a prediction f(x) ∈ Y and an
outcome y ∈ Y . Unlike a target loss, a surrogate loss is usually chosen from the
optimization perspective [Zhang, 2004a, Bartlett et al., 2006]. Common choices
of surrogate losses in binary classification are shown below.

• Squared loss: ϕ(t, y) = 1
4(1− ty)

2.

4Please be careful to distinguish a prediction score from a proper scoring rule [Buja et al.,
2005]. Some proper scoring rules (proper losses) are simply called scores, such as the Brier
score [Brier, 1950].
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• Logistic loss: ϕ(t, y) = ln(1 + e−ty).

• Hinge loss: ϕ(t, y) = max{0, 1− ty}.

• Exponential loss: ϕ(t, y) = e−ty.

• Ramp loss: ϕ(t, y) = 1
2 max{2,min{0, 1− ty}}.

• Sigmoid loss: ϕ(t, y) = 1
1+ety .

Several surrogate losses correspond to popular machine learning algorithms. For
example, the hinge loss corresponds to the support vector machine [Cortes and
Vapnik, 1995], whereas the exponential loss corresponds to AdaBoost [Freund and
Schapire, 1997]. Notably, many surrogate losses (such as the squared, logistic,
hinge, and exponential losses) are convex in the first argument t (score), and thus
optimization with such losses has a significant merit over the 0-1 loss. From the
perspective of surrogate losses, our objective function is called a surrogate risk,
or the (expected) ϕ-risk, given by

Rϕ(f) := E
(X,Y)∼P(X,Y)

[ϕ(f(X),Y)].

The corresponding empirical ϕ-risk is given by

R̂ϕ(f) :=
1

n

∑
i∈[n]

ϕ(f(xi), yi).

Although surrogate losses have many nice properties, they are different from
the original target loss in its functional form. Hence, the surrogate risk min-
imization does not necessarily lead to the target risk minimization [Lin, 2004,
Zhang, 2004a, Bartlett et al., 2006]. This gap is one of the central focuses in this
dissertation, and will be discussed in detail in Section 2.3.

2.2 Generalization Analysis

In Section 2.1, two qualitatively different risk functionals, expected and empirical
risks, were introduced to formulate supervised learning. In this section, we discuss
learning theory to bridge the gap between the expected and empirical risks.

2.2.1 Generalization Error Bounds

Assume that a (surrogate) loss function ϕ : T × Y → R≥0 is fixed. The corre-
sponding expected and empirical ϕ-risks are given as

Rϕ(f) = E[ϕ(f(X),Y)] and R̂ϕ(f) =
1

n

∑
i∈[n]

ϕ(f(xi), yi),

given a sample S = {(xi, yi)}i∈[n]. Because our ultimate goal in supervised learn-
ing is to derive a prediction rule aligning with the underlying law governed by
the (unknown) distribution P, the desideratum is the expected risk Rϕ. Owing
to the lack of the full information of P, we need to resort to using a finite sample
approximation based on the empirical risk R̂ϕ. Hence, there exists a gap between
the two quantities, i.e., for a fixed function f ∈ F ,

Rϕ(f)− R̂ϕ(f),
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which is called a generalization gap [Keskar et al., 2017]. The generalization gap
measures how accurate the empirical risk can approximate the expected risk at
a single point. The community of statistical learning theory has developed many
different theories to evaluate the generalization gap by introducing finer complex-
ity measures of a function class F [Dudley, 1967, Vapnik and Chervonenkis, 1971,
Bartlett and Mendelson, 2002]. For example, Bartlett and Mendelson [2002] intro-
duced the Rademacher complexity, one of the complexity measures of a function
class.

Definition 2.1 (Rademacher complexity). Let the variables σ ∈ {±1}n be i.i.d.
according to P(σi = +1) = P(σi = −1) = 1

2 .
5 In addition, let H ⊆ RX be

a function class. Then, the Rademacher complexity of H with respect to a set
{ z1, . . . , zn } distributed i.i.d. from P is defined as

Rn(H) := E
z1,...,zn∼P

E
σ

sup
h∈H

1

n

∑
i∈[n]

σih(zi)

 .
Intuitively, the Rademacher complexity of H can be understood as measuring

the maximum correlation between a function h ∈ H and “all possible binary
labels” σ. The larger this correlation, the more complex and flexible the function
class H is. Based on the Rademacher complexity, the following generalization gap
bound can be established.

Theorem 2.2 (Shalev-Shwartz and Ben-David [2014]). Let F ⊆ RX be a function
class and ϕ : R × Y → R≥0 be a loss function such that ϕ(f(x), y) ≤ Bϕ for all
x ∈ X , y ∈ Y, and f ∈ F . Then, for any fixed f ∈ F , with probability at least
1− δ over the repeated sampling of S ∼ P,

Rϕ(f)− R̂ϕ(f) ≤ 2Rn(ϕ ◦ F) +Bϕ

√
2 ln 2

δ

n
,

where Rn(ϕ ◦ F) denotes the Rademacher complexity of the composed function
class { (x, y) 7→ ϕ(f(x), y) | f ∈ F }. Furthermore, assume that ϕ(t, y) is Lips-
chitz continuous in t ∈ R when y is fixed, and let Lϕ denote the largest Lipschitz
norm of ϕ. As a result of the contraction lemma [Ledoux and Talagrand, 1991],
the following inequality holds for any fixed f ∈ F with a probability of at least
1− δ.

Rϕ(f)− R̂ϕ(f) ≤ 2LϕRn(F) +Bϕ

√
2 ln 2

δ

n
.

The generalization error bound consists of two terms: the Rademacher com-

plexity of F and the sample complexity term Bϕ

√
2 ln(2/δ)

n . The sample com-
plexity term obviously vanishes at the infinite sample limit n → ∞. The behav-
ior of the complexity term Rn(F) depends on the flexibility of the hypothesis
space F is. For example, the Rademacher complexity of the linear-in-input mod-
els F =

{
x 7→ w⊤x

∣∣ ‖w‖2 ≤ Bw

}
is estimated as follows [Shalev-Shwartz and

Ben-David, 2014].

R(F) = O

(
Bw√
n

)
.

5Such random variables are called Rademacher variables.

28



By contrast, the Rademacher complexity of M -layer neural networks F , having
the parameter matrices of each layer m with a bounded Frobenius norm Bm, is
estimated as follows:

R(F) = O

(√
M + 1 + ln(d) ·

∏
m∈[M ]Bm√

n

)
.

The detailed conditions needed for deriving the above order are described in
Golowich et al. [2018]. Importantly, (i) the Rademacher complexity decreases
as the sample size n increases, as does the sample complexity. However, (ii)
excessively flexible models (such as a function class with a large parameter norm,
or a neural network with many layers) may slow down the speed of the shrinkage.
That is, a function class trades off its Rademacher complexity for the model
flexibility.

Overall, by ignoring constant dependencies, the generalization analysis claims
that Rϕ(f)− R̂ϕ(f) = Op

(
1√
n

)
. In other words, the generalization gap vanishes

at the infinite sample limit in probability.
Note that other complexity measures such as the Vapnik-Chervonenkis (VC)

dimension [Vapnik and Chervonenkis, 1971] and Dudley’s entropy integral [Dud-
ley, 1967] have been also popularly used, although the qualitative observations on
generalization gaps remain the same, i.e., the sample complexity term vanishes
at the infinite sample limit, and there is a trade-off between the flexibility of a
function space and its complexity.

2.2.2 Estimation Error and Approximation Error

The generalization gap estimates how close the empirical risk is to the expected
risk for a fixed function f . In this analysis, we cannot discuss the quality of
the minimizer of the empirical risk because it depends on the training sample.
From an algorithmic perspective, we are interested in the quality of the minimizer
f̂ := argminf∈F R̂ϕ(f), which is called the empirical risk minimizer. In light of
our goal, it is desirable for the expected risk of f̂ to approach the best possible
expected risk. This is measured by the excess (ϕ-)risk :

Rϕ(f̂)−R∗
ϕ,

where R∗
ϕ := inff∈Fall

Rϕ(f) is the Bayes (ϕ-)risk and Fall is the set of all mea-
surable functions. A classifier that attains the Bayes ϕ-risk is called the Bayes
(ϕ-)classifier. When we simply state the Bayes classifier, it subsequently refers to
the Bayes classifier with respect to the target loss function subsequently.

However, the excess risk does not involve the capacity of the function class F .
By taking account of F , the excess risk is decomposed as follows.

Rϕ(f̂)−R∗
ϕ = Rϕ(f̂)−Rϕ(f †)︸ ︷︷ ︸

estimation error

+ Rϕ(f
†)−R∗

ϕ︸ ︷︷ ︸
approximation error

,

where f † := argminf∈F Rϕ(f) is the expected risk minimizer. This decomposition
consists of an estimation error, namely, how close the empirical risk minimizer is
to the best possible function in F , and an approximation error, namely, how close
the Bayes classifier to F . The estimation error can be bounded by using the
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generalization gap as follows.

Rϕ(f̂)−Rϕ(f †) = {Rϕ(f̂)− R̂ϕ(f̂)}+ {R̂ϕ(f̂)− R̂ϕ(f †)}+ {R̂ϕ(f †)−Rϕ(f †)}

≤ {Rϕ(f̂)− R̂ϕ(f̂)}+ 0 + {R̂ϕ(f †)−Rϕ(f †)}

≤ 2 sup
f∈F
|Rϕ(f)− R̂ϕ(f)|,

where the first inequality is due to R̂ϕ(f̂) ≤ R̂ϕ(f) for any f ∈ F (the definition
of the empirical risk minimizer). The gap |Rϕ(f)− R̂ϕ(f)| can be bounded by ap-
plying Theorem 2.2 twice (i.e., on Rϕ(f)− R̂ϕ(f) and R̂ϕ(f)−Rϕ(f)). Therefore,
the estimation error can be controlled by the generalization gap. By contrast, the
approximation error remains difficult to theoretically analyze. In practice, the
structural risk minimization (SRM) was proposed to nicely control the trade-off
between the prediction performance and model capacity [Mohri et al., 2018]. The
cross-validation is one of the widely used procedures for SRM.

2.3 Calibration Analysis

In Section 2.2, we studied the relationship between the expected and empirical
risks for a fixed loss function ϕ, and showed that the empirical risk approaches
the expected risk with a sufficiently large number of observations. Herein, we
stress that our supervised learning formulation aims at minimizing an expected
target risk, whereas a surrogate risk is introduced in light of the optimization
perspective in Section 2.1.2. This section is devoted to introducing the basic
important aspects required to fill in the gap between surrogate and target risks.
We mainly focus on the expected surrogate and target risks; hence, the discussions
in this section are free from an analysis of the sample complexity. Hence, the gap
analysis between surrogate and empirical risks constitutes an axis conceptually
orthogonal to the generalization analysis.

2.3.1 Target and Surrogate Risks

First, we review the important concepts in this section. For an output space Y
and a prediction score space T , ψ : T → Y denotes the inverse link function
mapping a prediction score to an outcome. Let ℓ : Y × Y → R≥0 be a target loss
representing a user demand, and ϕ : T ×Y → R≥0 be a surrogate loss introduced
by the user. Assuming a hypothesis space F ⊆ T X , the target risk (ℓ-risk) and
surrogate risk (ϕ-risk) are correspondingly introduced:

• Target risk (ℓ-risk): Rℓ(f) := E ℓ(ψ ◦ f(X),Y).

• Surrogate risk (ϕ-risk): Rϕ(f) := Eϕ(f(X),Y).

Note that with the aid of a fixed inverse link ψ, the target risk Rℓ(f) is defined
over the score function space F(⊆ T X ) instead of the hypothesis space (⊆ YX ),
unlike that in Section 2.1. When the link function ψ is clear from the context, we
will often adopt this definition of the target risk. The best possible risk value is
called Bayes risk. Formally, the Bayes ϕ-risk is defined as

R∗
ϕ := inf

f∈Fall

Rϕ(f),

where Fall is the set of all measurable functions over X → T . The Bayes ℓ-risk
R∗
ℓ is defined in the same way:

R∗
ℓ := inf

f∈Fall

Rℓ(f).
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An excess risk refers to the difference between a risk and its best possible value.
The excess ℓ-risk and excess ϕ-risk are Rℓ(f)−R∗

ℓ and Rϕ(f)−R∗
ϕ, respectively.

Ideally, the surrogate loss has a property such that Rϕ(fi)→ R∗
ϕ =⇒ Rℓ(fi)→

R∗
ℓ as i → ∞, for a given sequence of prediction functions {fi}i ⊆ F . This

property can be considered a minimal necessary condition for the surrogate risk
minimization. We formally call this property ℓ-consistency.

Definition 2.3 (ℓ-consistent loss [Steinwart, 2007]). Let ℓ : Y × Y → R≥0 be a
target loss function and ϕ : T × Y → R≥0 be a surrogate loss function. We say
that ϕ is ℓ-consistent if for any probability distribution P over X ×Y and sequence
of functions {fi}i ⊆ F ,

Rϕ(fi)−R∗
ϕ → 0 =⇒ Rℓ(fi)−R∗

ℓ → 0,

as i→∞.

Subsequently, we proceed with technical details revealing the necessary con-
ditions on ϕ.

2.3.2 Pointwise Perspective of Risk Functionals

Directly analyzing the (full) risks Rℓ and Rϕ is not straightforward because they
are functionals, requiring a variational calculus to achieve an optimization of
these quantities. Instead, Steinwart [2007] introduced a pointwise analysis to
ease these technical difficulties. In this subsection, we take a look at the pointwise
forms of risk functionals first. For simplicity, we focus on binary classification:
Y = {+1,−1} and T = R.

For a loss function ϕ, the conditional ϕ-risk Cϕ : F × [0, 1] × X → R≥0 is
defined as follows:6

Cϕ(f, η,x) := ηϕ(f(x),+1) + (1− η)ϕ(−f(x),−1).

The above is considered pointwise because Cϕ recovers the full risk with η =
P(Y = +1 | X = x):

Rϕ(f) =

∫
P(Y = +1 | X = x)ϕ(f(x),+1)

+ P(Y = −1 | X = x)ϕ(−f(x),−1)dP(X = x)

=

∫
Cϕ(f,P(Y = +1 | X),X)dP(X).

In the same way, the conditional Bayes ϕ-risk C∗
ϕ(η,x) is defined as follows:

C∗
ϕ(η,x) := inf

f∈F
Cϕ(f, η,x).

The conditional Bayes risk can be regarded as a pointwise form of the Bayes risk
at each point x ∈ X with P(Y = +1 | x) = η. Unlike the ϕ-risk, the Bayes
ϕ-risk is not immediately representable by the conditional Bayes ϕ-risk because
an expectation and an infimum are not commutable and R∗

ϕ ≥
∫
C∗
ϕ(P(Y = +1 |

X),X)dP(X) in general. To make them commutable, Steinwart [2007] introduced
a condition called P-minimizability.

6The conditional ϕ-risk is also called the pointwise ϕ-risk or inner ϕ-risk [Reid and
Williamson, 2010].
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Definition 2.4 (Minimizable loss function [Steinwart, 2007]). Let ϕ : T × Y →
R≥0 be a loss function and P be a distribution over X × Y. We state that ϕ is
P-minimizable if for all ε > 0 there exists fε ∈ F such that for all x ∈ X , we have

Cϕ(fε,P(Y = +1 | x),x) < C∗
ϕ(P(Y = +1 | x),x) + ε.

Steinwart [2007, Lemma 2.5] showed that a P-minimizable loss function ϕ has
a nice formula R∗

ϕ =
∫
C∗
ϕ(P(Y = +1 | x),x)dP(x). Under this condition with

R∗
ϕ <∞, the excess ϕ-risk can be expressed in a pointwise manner as well:

Rϕ(f)−R∗
ϕ =

∫
Cϕ(f,P(Y = +1 | X),X)− C∗

ϕ(P(Y = +1 | X),X)dP(X).

Hence, in the subsequent analysis on excess risks, we can split our analysis into

• an analysis of the conditional form of the excess risks, and

• an analysis of the minimizability of the loss function.

In Section 2.3.3, the analysis of the conditional excess risks is discussed. The
latter analysis of the minimizability of the loss function is notoriously difficult.
When F is a set of all measurable functions Fall, Steinwart [2007, Theorem 3.2]
showed that a loss ϕ is P-minimizable if and only if C∗

ϕ(P(Y = +1 | x),x) <∞ for
all x ∈ X . However, for a general function space F , further discussion remains
open and several researchers have been trying to pursue such analyses [Long and
Servedio, 2013, Zhang and Agarwal, 2020].

2.3.3 Calibration Function

According to the discussion provided thus far, we are interested in the conditions
that imply ℓ-consistency Rϕ(fi)

i→∞→ R∗
ϕ =⇒ Rℓ(fi)

i→∞→ R∗
ℓ . As discussed in

Section 2.3.2, the conditional excess risks are useful in an analysis, provided that
the regularity conditions hold for the given loss functions. Here, we specifically
focus on an analysis of the surrogate consistency by utilizing the conditional excess
risks.

First, we define a pointwise notion of ℓ-consistency.

Definition 2.5 (ℓ-calibrated loss [Steinwart, 2007]). Let ℓ : Y × Y → R≥0 be a
target loss function and ϕ : T × Y → R≥0 be a surrogate loss function. We state
that ϕ is ℓ-calibrated if for any ε > 0, η ∈ [0, 1], and x ∈ X , there exists δ > 0
such that for all f ∈ F ,

Cϕ(f, η,x)− C∗
ϕ(η,x) < δ =⇒ Cℓ(f, η,x)− C∗

ℓ (η,x) < ε.

In light of Definition 2.3, it can be intuitively understood that ℓ-calibration
is a pointwise counterpart of ℓ-consistency. If ϕ and ℓ are P-minimizable loss
functions, their excess risks can be expressed by the corresponding conditional
excess risks, and thus an ℓ-calibrated loss immediately entails ℓ-consistency. The
formal statement is found in Steinwart [2007, Theorem 2.8]. In addition, Steinwart
[2007, Theorem 3.3] ensures that ℓ-calibration is not only sufficient but necessary
for ℓ-consistency. For this reason, ℓ-calibration is an important property used to
study the ℓ-consistency.

To check ℓ-calibration, the following tool is useful.
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Definition 2.6 (ℓ-calibration function [Steinwart, 2007]). The ℓ-calibration func-
tion of a loss function ϕ δ̄ : R≥0 × [0, 1]×X → R≥0 is defined as

δ̄(ε, η,x) := inf
f∈F

{
Cϕ(f, η,x)− C∗

ϕ(η,x)
∣∣ Cℓ(f, η,x)− C∗

ℓ (η,x) ≥ ε
}
.

Calibration functions are defined as constrained optimization problems. Be-
cause this optimization is reduced to finite-dimensional optimization in many
cases, as described later, calibration functions are useful by alleviating the diffi-
culty of the variational calculus. An ℓ-calibration function is defined as the largest
δ in Definition 2.5. By definition, an ℓ-calibration function is tightly connected
to ℓ-consistency through the following statement.

Proposition 2.7 (Steinwart [2007]). A surrogate loss ϕ is ℓ-calibrated if and only
if its ℓ-calibration function δ̄ satisfies δ̄(ε, η,x) > 0 for all ε > 0, η ∈ [0, 1], and
x ∈ X .

In this way, ℓ-calibration provides a “qualitative” statement for ℓ-consistency,
namely, the convergence of the excess ℓ-risk. Can we further elucidate a “quanti-
tative” statement for ℓ-consistency, namely, the convergence rate of excess risk?
For this purpose, a stronger notion than ℓ-calibration is necessary.

Definition 2.8 (Uniform ℓ-calibrated loss [Steinwart, 2007]). Let ℓ : Y×Y → R≥0

be a target loss function and ϕ : T × Y → R≥0 be a surrogate loss function. We
state that ϕ is uniformly ℓ-calibrated if for any ε > 0, there exists δ > 0 such that
for all η ∈ [0, 1], f ∈ F , and x ∈ X ,

Cϕ(f, η,x)− C∗
ϕ(η,x) < δ =⇒ Cℓ(f, η,x)− C∗

ℓ (η,x) < ε.

The corresponding uniform ℓ-calibration function δ : R≥0 → R≥0 is defined as

δ(ε) := inf
η∈[0,1]

inf
x∈X

inf
f∈F

{
Cϕ(f, η,x)− C∗

ϕ(η,x)
∣∣ Cℓ(f, η,x)− Cℓ(η,x) ≥ ε } .

Remark that uniform and vanilla ℓ-calibrations differ in their positions of the
quantifiers. Correspondingly, the calibration functions are different in how the
infimum is taken. Obviously, ϕ is uniformly ℓ-calibrated if and only if δ(ε) > 0
for all ε > 0. Steinwart [2007, Theorem 2.13] provides a connection of the excess
ϕ-risk and the excess ℓ-risk, i.e., the so called excess risk bound.

Proposition 2.9 (Steinwart [2007]). Let δ : R≥0 → R≥0 be the uniform ℓ-
calibration function of a loss function ϕ. Let δ̌ : R≥0 → R≥0 be δ̌(ε) = δ(ε)
for ε > 0 and δ̌(0) = 0. Suppose that ℓ and ϕ are P-minimizable and R∗

ℓ , R
∗
ϕ <∞.

Then, for all f ∈ F ,

δ̌⋆⋆ (Rℓ(f)−R∗
ℓ ) ≤ Rϕ(f)−R∗

ϕ,

where δ̌⋆⋆ denotes the Fenchel-Legendre biconjugate of δ̌. In addition, δ̌⋆⋆ is in-
vertible if and only if ϕ is uniformly ℓ-calibrated.

Hence, a uniformly ℓ-calibrated ϕ entails a bound

Rℓ(f)−R∗
ℓ ≤

(
δ̌⋆⋆
)−1 (

Rϕ(f)−R∗
ϕ

)
,

providing a quantitative relationship between the surrogate and target excess
risks. We occasionally refer to an excess risk bound as an excess risk transform.

Note that in this section we specialized the definition of conditional risks and
calibration functions by Steinwart [2007] into the binary case Y = {+1,−1},
although they are originally not restricted to binary classification. We confine
ourselves to the binary case for simplicity of the exposition.
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2.4 Classification-calibrated Loss and Proper Loss

In Section 2.3, calibration analysis was introduced to investigate the relation-
ship between the target and surrogate excess risks. In this section, two types of
surrogate loss functions are reviewed, classification-calibrated losses and proper
losses, which elicit some underlying laws with respect to the distribution. Again,
to avoid unnecessary technical complications, we focus on binary classification
Y = {+1,−1}.

2.4.1 Classification-calibrated Loss

In binary classification, the most popularly used target loss function is arguably
the binary 0-1 loss ℓ(ŷ, y) = 1{ŷ ̸=y}, for ŷ = sgn(f(x)) (Section 2.1.1). The
corresponding binary 0-1 risk is often called the classification risk. However, un-
der the agnostic learning setting, which is a common setup in machine learning,
where the Bayes risk is strictly larger than zero, minimization of the 0-1 loss
is NP-hard unless RP = NP even if the hypothesis space F is linear-in-input
models [Kearns et al., 1994].7 For this reason, many machine learning algorithms
bring in surrogate loss functions. Common examples of surrogate loss functions
are listed in Section 2.1.2. One of the important questions to be asked is whether
the surrogate risk minimization implies the minimization of the classification risk.
Classification-calibrated loss functions are the minimal class of surrogate loss func-
tions that imply the classification risk minimization [Bartlett et al., 2006].

The notion of classification-calibrated losses was developed in several stud-
ies [Lin, 2004, Bartlett et al., 2006]. Whereas a seminal study [Bartlett et al.,
2006] introduced classification-calibrated losses in a constructive manner, we de-
rive classification-calibrated losses by subsequently invoking calibration analysis.
In this section, we focus on margin-based loss functions as surrogate loss func-
tions, namely, a loss function ϕ(t, y) that can be written in the form ϕ̄(ty) for
some ϕ̄ : R → R≥0. We consistently use a symbol ϕ : R → R≥0 to denote a
margin-based loss function with a slight abuse of notation. Indeed, all surrogate
loss functions introduced in Section 2.1.2 are margin-based; for example, the hinge
loss can be written as ϕ(m) = max{0, 1−m}, where m = ty. When we focus on
margin-based losses, conditional risks and the related notion can be simplified as
follows. For a margin-based loss ϕ we have the following:

• Conditional ϕ-risk: Cϕ(m, η) := ηϕ(m) + (1− η)ϕ(−m).

• Conditional Bayes ϕ-risk: C∗
ϕ(η) := infm∈RCϕ(m, η).

• Uniform ℓ-calibration function:
δ(ε) := infη∈[0,1] infm∈R

{
Cϕ(m, η)− C∗

ϕ(η)
∣∣∣ Cℓ(m, η)− C∗

ℓ (η) ≥ ε
}

.

For the binary 0-1 loss ℓ, the Bayes classifier is f∗(x) = P(Y = +1 | x)− 1
2 . The

conditional ℓ-risk is

Cℓ(f, η,x) = η1{sgn(f(x))=−1} + (1− η)1{sgn(f(x))=+1}.

Then, the conditional Bayes ℓ-risk is C∗
ℓ (η,x) = min{η, 1−η}, and the conditional

7The randomized polynomial (RP) time is the complexity class of problems for which a
probabilistic Turing machine that provides correct answers within the polynomial time with a
certain probability [Arora and Barak, 2009].

34



excess ℓ-risk is

Cℓ(f, η,x)− C∗
ℓ (η,x) =


0 if 2η − 1 > 0 and sgn(f(x)) = +1

2η − 1 if 2η − 1 > 0 and sgn(f(x)) = −1
1− 2η if 2η − 1 ≤ 0 and sgn(f(x)) = +1

0 if 2η − 1 ≤ 0 and sgn(f(x)) = −1
= |2η − 1| · 1{(2η−1)f(x)≤0}.

Hence, the uniform ℓ-calibration function is

δ(ε) = inf
η∈[0,1]

inf
f∈Fall

inf
x∈X

{
Cϕ(f, η,x)− C∗

ϕ(η,x)
∣∣ |2η − 1| · 1{(2η−1)f(x)≤0} ≥ ε

}
= inf

η∈[0,1]
inf
m∈R

{
Cϕ(m, η)− C∗

ϕ(η)
∣∣ |2η − 1| · 1{(2η−1)m≤0} ≥ ε

}
.

If ε > |2η − 1|, δ(ε) = ∞ > 0 for all ε. By contrast, if ε ≤ |2η − 1|, |2η − 1| ·
1{(2η−1)m≤0} holds if and only if (2η − 1)m ≤ 0. Hence,

δ(ε) =

{
infη∈[0,1] infm∈R:(2η−1)m≤0Cϕ(m, η)− C∗

ϕ(η) if η ≤ 1−ε
2 or 1+ε

2 ≤ η,
∞ otherwise.

Recall that the uniform ℓ-consistency is equivalent to δ(ε) > 0 for all ε > 0. This
is equivalent to

inf
m∈R:(2η−1)m≤0

Cϕ(m, η)︸ ︷︷ ︸
:=C−

ϕ (η)

−C∗
ϕ(η) > 0 for η 6= 1

2
.

The newly introduced quantity C−
ϕ (η) can be interpreted as a conditional “sub-

optimal” risk because the condition (2η − 1)m ≤ 0 means the prediction m is
inconsistent with the (conditional) Bayes classifier η − 1

2 in a pointwise manner.
Using C−

ϕ (η), the uniform ℓ-calibration function can be simplified as follows:

δ(ε) = C−
ϕ

(
1 + ε

2

)
− C∗

ϕ

(
1 + ε

2

)
,

because of the symmetry of the conditional risk Cϕ(m, η) in η = 1
2 : Cϕ(m, η) =

Cϕ(−m, 1 − η). Based on the above discussion, Bartlett et al. [2006] introduced
classification-calibrated loss functions.

Definition 2.10 (Classification-calibrated loss). We say that ϕ is classification-
calibrated if for all η 6= 1

2 ,

C−
ϕ (η) > C∗

ϕ(η).

In our discussion, classification-calibrated losses naturally emerge from the
uniform calibration function, whereas Bartlett et al. [2006] introduced the condi-
tion C−

ϕ (η) > C∗
ϕ(η) in a top-down approach. Bartlett et al. [2006] summarized

the implications as follows.

Theorem 2.11 (Bartlett et al. [2006]). For a non-negative margin-based loss
function ϕ, any measurable function f : X → R, and the probability distribution
P over X × Y,

δ̌⋆⋆ (Rℓ(f)−R∗
ℓ ) ≤ Rϕ(f)−R∗

ϕ.

In addition, the following are equivalent.
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Table 2.2: The conditional Bayes ϕ-risks and ℓ-calibration functions for some margin-based
surrogate losses ϕ (excerpted from Steinwart [2007]).

Loss function ϕ(m) C∗
ϕ(η) δ̌⋆⋆(ε)

Hinge max{0, 1−m} |2η − 1| ε

Truncated squared (max{0, 1−m})2 (2η − 1)2 ε2

Squared (1−m)2 (2η − 1)2 ε2

Exponential exp(−m) 1− 2
√
η(1− η) 1−

√
1− ε2

Sigmoid 1
1+exp(m) |2η − 1| ε

1. ϕ is classification-calibrated.

2. For any sequence {εi} ⊆ [0, 1], δ̌⋆⋆(εi)→ 0 if and only if εi → 0.

3. For every sequence of measurable functions fi : X → R, Rϕ(fi) → R∗
ϕ

implies Rℓ(fi)→ R∗
ℓ .

Hence, classification-calibrated losses imply ℓ-consistency and the excess risk
bounds can be obtained given C−

ϕ and C∗
ϕ. The explicit forms of δ̌⋆⋆ for some

examples are shown in Table 2.2. As an example of a surrogate loss that is not
classification-calibrated, the perceptron loss ϕ(m) = max{0,−m} is known [Rosen-
blatt, 1957].

Importantly, our discussion in this section is limited to binary classification.
In other supervised learning tasks, a parallel notion of calibrated losses has been
commonly introduced. Nevertheless, calibration does not necessarily imply con-
sistency, unlike binary classification. This can be seen in multi-class classifica-
tion [Zhang, 2004b, Tewari and Bartlett, 2007] and bipartite ranking [Gao and
Zhou, 2015]. Hence, we have to be aware of the difference between calibration
and consistency.

2.4.2 Proper Loss

Apart from classification-calibrated losses, there is another well-known family of
loss functions called proper losses. Proper losses, also known as proper scoring
rules, were firstly introduced for class-posterior probability estimation (CPE) of
binary outcomes P(Y = +1 | x) [Buja et al., 2005].8 (Binary) CPE is a problem of
estimating P(Y = +1 | x) given a binary samples S = {(xi, yi)}i∈[n] ⊆ X ×Y . As
an insightful fact, a binary classifier can be constructed given a class probability
estimate η, based on η − 1

2 . The aim of this subsection is to demonstrate the
connection in that solving binary CPE leads to solving binary classification.

To measure the quality of binary class probability estimates, a loss function
ℓ : [0, 1]×Y → R≥0 is introduced, i.e., ℓ(η̂, y) for η̂ ∈ [0, 1], where y is a true class

8Proper scoring rules have their roots in statistics. Brier [1950] sparked debate on what is
probability in meteorology. Since then, this question has received attention in the statistics
community. Winkler and Murphy [1968] coined the term “proper scoring rules” for assessing the
goodness. Savage [1971] discussed how to define and elicit personal probabilities in terms of the
scoring rules and drew an interesting connection between the goodness and convex functions.
Proper scoring rules are not limited to binary outcomes as in our discussions, and we can see
some scoring rules defined in terms of the quantiles, intervals, and distributions [Gneiting and
Raftery, 2007].
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and η̂ is a class probability estimate. The conditional ℓ-risk is defined as

Cℓ(η̂, η) := E
Y∼Bernoulli(η)

[ℓ(η̂,Y)]

= ηℓ(η̂, 1) + (1− η)ℓ(η̂,−1).

The conditional Bayes ℓ-risk is denoted by C∗
ℓ (η) := inf η̂∈[0,1]Cℓ(η̂, η). Proper

losses are then defined.

Definition 2.12 (Proper loss [Buja et al., 2005]). A loss function ℓ : [0, 1]×Y →
R≥0 is said to be proper if Cℓ(η̂, η) is minimized at η̂ = η for all η ∈ [0, 1]. If the
minimizer is unique, ℓ is said to be strictly proper.

This definition guarantees that proper losses meet the minimal requirements
for the CPE. Proper losses have two nice forms of alternative representations. One
is given by Savage [1971], which has a deep connection to the Bregman divergence.

Proposition 2.13 (Savage [1971], Buja et al. [2005], Gneiting and Raftery [2007],
Reid and Williamson [2009]). The conditional Bayes risk C∗

ℓ : [0, 1] → R for a
proper loss ℓ is concave. Conversely, given a concave function Λ : [0, 1]→ R, there
exists a proper loss ℓ satisfying Λ(η) = C∗

ℓ (η) for all η ∈ [0, 1], and its conditional
risk satisfies

Cℓ(η̂, η) = C∗
ϕ(η)− (η̂ − η)∇C∗

ϕ(η̂).

Hence, the conditional risk of a proper loss is represented as a Bregman diver-
gence generated from (−C∗

ℓ ). The next representation is given by Shuford et al.
[1966], in which partial proper losses ℓ(η̂,+1) and ℓ(η̂,−1) are bound into a single
weight function.

Proposition 2.14 (Shuford et al. [1966], Buja et al. [2005], Reid and Williamson
[2009]). Suppose that ℓ(η̂, y) is differentiable in η̂. Then, ℓ is proper if and only
if for all η̂ ∈ (0, 1),

−
∇η̂ℓ(η̂,+1)

1− η̂
= −
∇η̂ℓ(η̂,−1)

η̂
= w(η̂)

for some weight function w : (0, 1)→ R≥0 such that
∫ 1−ε
ε w(q)dq <∞.

In practice, it is common to model a class probability estimator by transform-
ing the outputs of a real-valued prediction function f : X → R into [0, 1] using a
link function ψ : [0, 1]→ R. Given a proper loss ℓ and an invertible link ψ, a loss
function over real-valued predictions is defined by ℓψ(t, y) := ℓ(ψ−1(t), y), which
is called a composite proper loss [Reid and Williamson, 2010]. Computationally,
it is useful if the composite proper loss ℓψ(t, y) is convex in t ∈ R. Buja et al.
[2005] showed that a canonical link ψ = −∇C∗

ϕ satisfies the convexity.
Now, we are ready to review the connection between binary CPE and binary

classification. Let ℓ01 denote the binary 0-1 loss to distinguish from a proper loss
ℓ:

ℓ01(η̂, y) :=
1

2
1{y=+1}1{η̂> 1

2
} +

1

2
1{y=−1}1{η̂≤ 1

2
}.

The following theorem provides an upper bound of the conditional excess 0-1 risk
by the conditional excess risk of a proper loss.

37



Table 2.3: Examples of proper losses. HS(η) denotes the binary Shannon entropy HS(η) :=
−η ln η − (1− η) ln(1− η).

Loss function ℓ(η̂,+1) ℓ(η̂,−1) Canonical link ψ(η̂) C∗
ϕ(η)

Squared (1− η̂)2 η̂2 2η̂ − 1 4η(1− η)
Log − ln η̂ − ln(1− η̂) ln η̂

1−η̂ HS(η)

Exponential
√

1−η̂
η̂

√
η̂

1−η̂
2η̂−1√
η̂(1−η̂)

2
√
η(1− η)

Theorem 2.15 (Reid and Williamson [2009]). Assume that a proper loss ℓ :
[0, 1]×Y → R≥0 satisfies C∗

ℓ

(
1
2 − c

)
= C∗

ℓ

(
c− 1

2

)
for c ∈ [0, 1]. Let ψ : [0, 1]→ R

be an invertible link function. Let δ(ε) := C∗
ℓ

(
1
2

)
− C∗

ℓ

(
1
2 + ε

)
. Then,

δ
(
Cℓ01(ψ

−1(m), η)− C∗
ℓ01(η)

)
≤ Cℓ

(
ψ−1(m), η

)
− C∗

ℓ (η)

for any m ∈ R.

Note that δ is convex and increasing because of the concavity of C∗
ℓ for a

proper loss ℓ. Hence, the (full) excess risk bound

Rℓ01
(
ψ−1 ◦ f

)
−R∗

ℓ01 ≤ δ
−1
(
R∗
ℓ

(
ψ−1 ◦ f

)
−R∗

ℓ

)
is obtained based on Jensen’s inequality, indicating that minimizing the excess
ℓ-risk implies minimizing the excess 0-1 risk.

Proper losses and composite proper losses for multi-class classification have
been discussed in Williamson et al. [2016].

2.5 Excess Risk Transform between Learning Tasks

Thus far, we have reviewed the framework of calibration analysis and the con-
nection between the excess target and surrogate risks. As examples of loss
functions, classification-calibrated losses and proper losses have been reviewed.
Classification-calibrated losses are used purely as a “proxy” for the targeted 0-1
loss, whereas proper losses serve as a proxy but were originally designed for CPE,
connecting CPE to classification. That is, surrogate losses are not necessarily
merely a proxy for the true target but often represent a different learning task,
eventually enabling us to connect the learning task to the true target task. In this
section, we will see such a connection between two learning tasks through the lens
of surrogate losses. We will review Narasimhan and Agarwal [2013], elucidating
the relationship among binary classification, bipartite ranking, and binary CPE.

2.5.1 Binary Classification, Bipartite Ranking, and Binary CPE

First, each problem under consideration is summarized. For each problem, let
P be the underlying probability distribution over X × Y , where Y = {+1,−1},
namely, all problems are binary. Assume that sample S := {(xi, yi)}i∈[n]

i.i.d.∼ P is
given.

Binary classification. The goal is to learn a hypothesis g : X → {+1,−1}.
The target loss is the 0-1 loss ℓ01(g(x), y) = 1{g(x) ̸=y}, and the associated 0-1 risk
is denoted by R01(g) := E [ℓ01(g(X),Y)].
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Bipartite ranking [Menon and Williamson, 2016]. The goal is to learn a
ranking model f : X → R that outputs a higher prediction score for positive data
and a lower prediction score for negative data. The target loss is the rank loss

ℓrank(f(x), f(x
′), y, y′) := 1{(y−y′)(f(x)−f(x)′)<0} +

1

2
1{f(x)=f(x′)},

and the associated rank risk is

Rrank(f) := E
(X,Y),(X′,Y′)∼P

[
ℓrank(f(X), f(X

′),Y,Y′) | Y 6= Y′] .
The optimal ranking function is any function that is strictly monotonically in-
creasing with respect to P(Y = +1 | x). The rank risk is equivalent to one
minus the area under the receiver operating characteristic (ROC) curve (AUC)
and hence bipartite ranking is the same problem as AUC optimization.

Binary CPE [Buja et al., 2005]. The goal is to learn a CPE model η̂ : X →
[0, 1]. Despite that many proper losses can be used as a target loss, herein we
focus on the squared loss

ℓCPE(η̂(x), y) :=

(
η̂(x)− y + 1

2

)2

,

and the associated risk is RCPE(η̂) := E [ℓCPE(η̂(X),Y)]. The optimal CPE model
is clearly P(Y = +1 | x).

2.5.2 Reduction to Binary CPE

Once a CPE model η̂ is learned, it is ready to be used for binary classification
and bipartite ranking. Indeed, η̂− 1

2 serves as a binary classifier because we know
that the Bayes classifier is of the form P(Y = +1 | x) − 1

2 , and η̂ directly serves
as a ranking function. These reductions are justified through the following excess
risk bounds [Narasimhan and Agarwal, 2013]:

(classification → CPE) R01

(
sgn

(
η̂ − 1

2

))
−R∗

01 ≤
√
RCPE(η̂)−R∗

CPE,

(ranking → CPE) Rrank(η̂)−R∗
rank ≤

1

π(1− π)

√
RCPE(η̂)−R∗

CPE,

where π := P(Y = +1). Note that the excess risk bound (classification → CPE)
can be obtained as a corollary of Theorem 2.15 because ℓCPE is proper (and
equivalent to the squared loss).

2.5.3 Reduction from Binary Classification to Bipartite Ranking

Recall that the Bayes classifier is sgn
(
P(Y = +1 | x)− 1

2

)
, whereas the optimal

ranking function is any strictly increasing transform of P(Y = +1 | x). One may
imagine that a good binary classifier is obtained once a good ranking function
is learned by thresholding the ranking function at a certain point. This idea is
formalized below.

Given a distribution P over X × Y and a ranking function f : X → R, we
define the optimal classification transform Thresh by

Thresh(f) := argmin
θ∈Fthresh

R01(θ ◦ f),
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where

Fthresh :=
{
θ ∈ {±1}R

∣∣∣ θ(u) = sgn(u− t), sgn(u− t) for some t ∈ [−∞,∞]
}
.

Then, the excess risk reduction is established.

Proposition 2.16 (Narasimhan and Agarwal [2013]). Given any ranking function
f : X → R, assume that the pushforward f♯PX is either discrete, continuous, or
mixed with at most finitely many point masses. Then,

R01 (Thresh ◦ f)−R∗
01 ≤

√
π(1− π)

{
Rrank(f)−R∗

rank

}
,

where π := P(Y = +1).

This reduction (classification→ ranking) requires access to the underlying dis-
tribution P when we obtain Thresh, unlike the reductions {classification, ranking}
→ CPE. Hence, the reduction from classification to ranking is said to be weak
compared with a strong reduction such as the reductions {classification, ranking}
→ CPE. In practice, it is still possible to construct Thresh by splitting S into a
training sample and validation sample for bipartite ranking and determining the
threshold, respectively.

2.5.4 Reduction from Binary CPE to Bipartite Ranking

Recall that the optimal ranking function is any strictly increasing transform of
P(Y = +1 | x), which is the target CPE model. If we can find an inverse trans-
form from a ranking function to a CPE model, then the reduction from bipartite
ranking to binary CPE is possible.

Given a distribution P over X × Y and a ranking function f : X → [a, b],
define the optimal CPE transform Cal by

Cal(f) := argmin
θ∈Fcal

RCPE(θ ◦ f),

where

Fcal :=
{
θ ∈ [0, 1]R

∣∣∣ θ is monotonically increasing
}
.

The excess risk reduction is then established.

Proposition 2.17 (Narasimhan and Agarwal [2013]). Given any ranking function
f : X → [a, b], assume that the pushforward f♯PX is either discrete, continuous,
or mixed with at most finitely many point masses without any masses at a and
b. We further assume that ηf : [a, b] → [0, 1] is square-integrable with respect to
the density of the continuous part of f♯PX, where ηf (t) := P(Y = +1 | f(x) = t).
Then,

RCPE (Cal ◦ f)−R∗
CPE ≤

√
8π(1− π)

{
Rrank(f)−R∗

rank

}
,

where π := P(Y = +1).

Remark that this reduction is also weak and hence requires access to P when
we learn Cal. Again, it is possible to prepare a validation sample to learn Cal. In
practice, isotonic regression [Kalai and Sastry, 2009] can be used for learning Cal.
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Table 2.4: Relationship between binary problems.

Target Surrogate Reduction

classification → classification-calibrated loss strong
classification → proper loss strong

classification → CPE strong
classification → ranking weak
ranking → classification N/A
ranking → CPE strong
CPE → classification N/A
CPE → ranking weak

ranking → strongly proper loss strong

linear-fractional metric → strongly proper loss weak

2.5.5 Relationship between Binary Problems

In Sections 2.5.2 to 2.5.4, several examples show that a target learning task can
be reduced to a different learning task through an excess risk bound; for instance,
binary classification can be solved by using a good bipartite ranking function.
Under this learning task reduction, we call a problem reduced from a target
task a surrogate learning task. The reduction relationships are summarized in
Table 2.4. We can also include excess risk bounds of classification-calibrated losses
and proper losses (Section 2.4) into this table because all target and surrogate
learning tasks are defined only through loss functions. Importantly, every learning
task has a one-to-one relationship with a loss function.

In the existing literature, Agarwal [2014] introduced a loss function class called
strongly proper losses, which is smaller than that of proper losses and convenient
from the perspective of a proof. They also showed an excess risk bound for bi-
partite ranking. Kotlowski and Dembczyński [2016] dealt with a linear-fractional
metric, i.e., target loss functions different from the 0-1 loss, which will be dis-
cussed in Chapter 3, and demonstrated that a good classifier in terms of a linear-
fractional metric can be obtained by optimizing a strongly proper loss. These
results can also be included in Table 2.4.

2.6 Summary

In this chapter, the basic formulation of supervised learning was introduced from
the viewpoints of loss and risk functions (Section 2.1), and two conceptually or-
thogonal approaches of learning theory were stated, i.e., generalization analysis
(Section 2.2) and calibration analysis (Section 2.3). Whereas the former studies
the relationship between empirical and expected risks, the latter focuses on the
gap between surrogate and target risks. In the end, generalization and calibration
analyses are to be combined—we are ultimately interested in the convergence of
an empirical surrogate risk to the expected target risk, which can be analyzed by
investigating the gap between the empirical and expected surrogate risks (gener-
alization analysis), as well as the gap between the expected surrogate and target
risks (calibration analysis). To illustrate the calibration analysis, we showed sur-
rogates from two different perspectives: surrogate loss functions designed for a
specific target problem (Section 2.4) and connections between different learning
tasks (Section 2.5). Although these two perspectives may look distinct at a glance,
we stress that there is no need to distinguish them because a learning task is tied
to a loss function and can be treated as a surrogate. Finally, in Table 2.4, we sum-
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marized that many learning problems can be reduced to/from each other through
an excess risk transfer.
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Chapter 3

Calibrated Surrogate Losses for
Linear-fractional Metrics

To handle class-imbalanced cases such as information retrieval and image seg-
mentation, complex classification performance metrics such as the Fβ-measure
and Jaccard index are often used. These performance metrics are not decompos-
able, that is, they cannot be expressed in a per-example manner, which hinders a
straightforward application of the M-estimation widely used in supervised learn-
ing. In this chapter, we consider linear-fractional metrics, which are a family of
classification performance metrics that encompasses many standard metrics such
as the Fβ-measure and Jaccard index, and propose methods for directly maximiz-
ing the performances under such metrics. A clue tackling their direct optimization
is a calibrated surrogate utility, which is a tractable lower bound of the true utility
function representing a given metric. We characterize sufficient conditions that
make the surrogate maximization coincide with the maximization of the true util-
ity. Simulation results on benchmark datasets validate the effectiveness of our
calibrated surrogate maximization, particularly if the sample sizes are extremely
small.

3.1 Introduction

Binary classification, one of the main focuses in machine learning, is a problem
of predicting the binary responses for the input covariates. Classifiers are usually
evaluated based on the classification accuracy, which is the expected proportion
of correct predictions. Because the accuracy cannot evaluate the classifiers appro-
priately under a class imbalance [Menon et al., 2013] or in the presence of label
noises [Menon et al., 2015], alternative performance metrics have been employed
such as the Fβ-measure [van Rijsbergen, 1974, Joachims, 2005, Nan et al., 2012,
Koyejo et al., 2014], Jaccard index [Koyejo et al., 2014, Berman et al., 2018],
and balanced error rate (BER) [Brodersen et al., 2010, Menon et al., 2013, 2015,
Charoenphakdee et al., 2019]. Once a performance metric is given, it is a nat-
ural strategy to optimize the performance of classifiers directly under the given
performance metric. However, alternative performance metrics generally have
difficulties in terms of direct optimization, because they are non-decomposable,
for which a per-example loss decomposition is unavailable. In other words, the
M-estimation procedure [van de Geer, 2000] cannot be applied, which makes it
difficult to optimize the non-decomposable metrics.

One of the earliest studies tackling the non-traditional metrics [Koyejo et al.,
2014] generalized the performance metrics into the linear-fractional metrics, which
are the linear-fractional form of entries in a confusion matrix, and encompasses the
BER, Fβ-measure, Jaccard index, Gower-Legendre index [Gower and Legendre,
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Z-estimation
V̂ϕ(f) = 0

Estimation equation
Vϕ(f) = 0

Surrogate maximization
argmaxf Uϕ(f)

Utility maximization
argmaxf U(f)

consistent

=

calibrated

Figure 3.1: Overview of this chapter. Intuitively, we can obtain the utility maximizer by
solving V̂ϕ(f) = 0.

1986, Natarajan et al., 2016], and weighted accuracy [Koyejo et al., 2014]. In
addition, Koyejo et al. [2014] formulated the optimization problem in two ways.
One is a plug-in rule [Koyejo et al., 2014, Narasimhan et al., 2014, Yan et al.,
2018] to estimate the class-posterior probability and its optimal threshold, and the
other is an iterative weighted empirical risk minimization approach [Koyejo et al.,
2014, Parambath et al., 2014] to find a better cost through which the minimizer
of the cost-sensitive risk [Scott, 2012] achieves higher utilities. Although they
provide statistically consistent estimators, the former suffers from a high sample
complexity owing to the class-posterior probability estimation, whereas the latter
is computationally demanding because of iterative classifier training.

Without sacrificing the statistical consistency, our goal is to seek computation-
ally more efficient procedures to directly optimize the linear-fractional metrics.
Specifically, we provide a novel calibrated surrogate utility, which is a tractable
lower bound of the true utility representing the metric of interest. The surrogate
maximization is formulated as a combination of concave and quasiconcave pro-
grams, which can be efficiently optimized. We then derive sufficient conditions
of the surrogate calibration, under which the surrogate maximization implies the
maximization of the true utility. In addition, we show the consistency of the em-
pirical estimation procedure based on the theory of a Z-estimation [van der Vaart,
2000]. An overview of our proposed method is illustrated in Figure 3.1.

3.1.1 Contributions of this Chapter

The contributions of this chapter are summarized below.1

1. Surrogate calibration (Section 3.4): We propose a tractable lower bound
of the linear-fractional metrics with calibration conditions, guaranteeing
that the surrogate maximization implies the maximization of the true util-
ity. This approach is model-agnostic, differing from many previous ap-
proaches [Koyejo et al., 2014, Narasimhan et al., 2014, 2015, Yan et al.,
2018], in the sense that our classifier is not restricted to any specific plug-in
forms.

2. Efficient gradient-based optimization (Sections 3.3.2 and 3.3.3): The sur-
rogate utility has affinity with gradient-based optimization owing to its
non-vanishing gradient and unbiased estimator of the gradient direction.
Although the linear-fractional objective does not admit concavity in gen-
eral, our proposed algorithm is a two-step approach combining concave and
quasiconcave programs and hence is computationally efficient.

1In this chapter, we refer to the convergence of a surrogate optimizer to the target metric
optimizer as surrogate calibration, whereas the convergence of the empirical optimizer to the
theoretical optimizer is called consistency, to distinguish two notion clearly.
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3. Consistency analysis (Section 3.5): The estimator obtained through the
surrogate maximization with a finite sample is shown to be consistent with
the maximizer of the expected utility.

3.2 Preliminaries

Throughout this chapter, we focus on binary classification. Let X ⊆ Rd be a
feature space and Y = {±1} be the label space. We assume that a sample
S := {(xi, yi)}ni=1 ⊆ X × Y independently follows the joint distribution P with
a density p. We often split S into two independent samples S0 = {(xi, yi)}mi=1

and S1 = {(xi, yi)}ni=m+1. Usually, m = bn2 c. A classifier is given as a function
f : X → R, where sgn(f(·)) determines the predictions. Here, we adopt the
convention sgn(0) = −1. Let F ⊆ RX be a hypothesis space of classifiers. In
addition, let π := p(Y = +1) and η(x) := p(Y = +1 | X = x) be the class-
prior/-posterior probabilities of Y = +1, respectively. The 0-1 loss is denoted by
ℓ(m) := 1{m≤0}, whereas ϕ : R → R≥0 denotes a margin-based surrogate loss.
For a set A ⊆ F , A∁ denotes the complement of A, namely, A∁ := F \ A.

The following four quantities are focal targets in binary classification: the true
positives (TP), false negatives (FN), false positives (FP), and true negatives (TN).

Definition 3.1 (Confusion matrix). Given a classifier f ∈ F and a distribution
P, its confusion matrix is defined as C(f,P) := [TP,FN;FP,TN], where

TP(f,P) := P(Y = +1, sgn(f(X)) = +1),

FN(f,P) := P(Y = +1, sgn(f(X)) = −1),
FP(f,P) := P(Y = −1, sgn(f(X)) = +1),

TN(f,P) := P(Y = −1, sgn(f(X)) = −1).

Here, FN and TP, and TN and FP, can be transformed into the other, i.e.,
FN(f,P) = π − TP(f,P) and TN(f,P) = (1 − π) − FP(f,P). These can be
expressed with ℓ and η, such as TP(f,P) = E[ℓ(−f(X))η(X)]. The goal of binary
classification is to obtain a classifier that “maximizes” TP and TN, while keeping
FP and FN as “low” as possible. Classifiers are evaluated based on performance
metrics that have a trade off with those four quantities. Performance metrics
need to be chosen based on user preference on the confusion matrix [Sokolova and
Lapalme, 2009, Menon et al., 2015]. In this chapter, we focus on the following
family of utilities representing the linear-fractional metrics.

Definition 3.2 (Linear-fractional metrics). A linear-fractional metrics U : F →
[0, 1] is defined as2

U(f) :=
E[W0(f(X), η(X))]

E[W1(f(X), η(X))]
, (3.1)

where W0,W1 : R× [0, 1]→ R are class-conditional score functions given as

Wk(ξ, q) := ak,+1ℓ(−ξ)q + ak,−1ℓ(−ξ)(1− q) + bk,

2As mentioned by Dembczyński et al. [2017], there is a dichotomy in the definition of the
performance metrics, i.e., the population utility (PU) and expected test utility (ETU). The
PU is a functional transform of the expected confusion matrix, whereas the ETU evaluates the
utility over a fixed-size test set. Here, the PU is adopted for the definition of the linear-fractional
utilities because we are partly interested in statistical consistency, namely, the behavior of the
empirical utility optimizer for sufficiently large n. See Dembczyński et al. [2017] for the precise
definitions of the PU and ETU and further discussions.
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Table 3.1: Examples of the linear-fractional performance metrics. β > 0 is a trade-off param-
eter for the Fβ-measure, whereas α ≥ 0 is for the Gower-Legendre index.

Metric
Fβ-measure

[van Rijsbergen, 1974]
Jaccard index
[Jaccard, 1901]

Gower-Legendre index
[Gower and Legendre, 1986]

Definition (1+β2)TP

(1+β2)TP+β2FN+FP
TP

TP+FN+FP
TP+TN

TP+α(FP+FN)+TN

(a0,+1, a0,−1) (1 + β2, 0) (1, 0) (1,−1)

b0 0 0 1− π

(a1,+1, a1,−1) (1, 1) (0, 1) (1− α, α− 1)

b1 β2π π 1 + (α− 1)π

and a0,+1 > 0, a0,−1 ≤ 0, b0 ∈ R, a1,+1 ≥ 0, a1,−1 ≥ 0, b1 ∈ R are constants such
that 0 ≤ U(f) ≤ 1 for any f .

The class-conditional score functions correspond to a linear-transformation of
TP and FP: E[Wk(f(X), η(X))] = ak,+1TP(f,P) + ak,−1FP(f,P) + bk. Examples
of U are shown in Table 3.1. Given a utility function U , our goal is to obtain a
classifier f † that maximizes U .

f † = argmax
f∈F

U(f). (3.2)

3.2.1 Traditional Supervised Classification

Here, we briefly review a traditional procedure for supervised classification [Vap-
nik, 1998]. Our aim is to obtain a classifier with high accuracy, which corresponds
to minimizing the classification risk R(f) := E[ℓ(Yf(X))]. Because optimizing the
0-1 loss ℓ is a computationally infeasible problem [Ben-David et al., 2003, Feld-
man et al., 2012], it is a common practice to instead minimize a surrogate risk
Rϕ(f) := E[ϕ(Yf(X))], where ϕ : R → R≥0 is a margin-based surrogate loss. If
ϕ is a classification-calibrated loss [Bartlett et al., 2006], it is known that mini-
mizing Rϕ corresponds to minimizing R. Eventually, what we actually minimize
is the empirical (surrogate) risk R̂ϕ(f) := 1

n

∑n
i=1 ϕ(yif(xi)). The empirical risk

R̂ϕ(f) is an unbiased estimator of the true risk Rϕ(f) for a fixed f ∈ F , and the
uniform law of large numbers guarantees that R̂ϕ(f) converges to Rϕ(f) for any
f ∈ F in probability [Vapnik, 1998, van de Geer, 2000, Mohri et al., 2018]. This
strategy to minimize R̂ϕ is called empirical risk minimization (ERM).

Traditional ERM is devoted to maximizing the accuracy, which is not nec-
essarily suitable when another metric is used for evaluation. Our aim is to give
an alternative procedure to maximize U directly as in Equation (3.2). In the
next section, we introduce a tractable counterpart of the true utility U because
U contains the 0-1 loss ℓ and is intractable, similar to Rϕ above.

3.3 Surrogate Utility and Optimization

The true utility in Equation (3.1) consists of the 0-1 loss ℓ, which is difficult to
optimize. In this section, we introduce a surrogate utility to make the optimization
problem in Equation (3.2) easier.
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3.3.1 Lower Bounding True Utility

Assume that we are given a surrogate loss ϕ : R → R≥0. We hope that the
surrogate utility should be a lower bound of the true utility U , and that TP/FP
should become larger/smaller as a result of the optimization, respectively. We
realize these ideas by constructing surrogate class-conditional score functionsW0,ϕ

and W1,ϕ as follows:

W0,ϕ(ξ, q) := a0,+1(1− ϕ(ξ))q + a0,−1ϕ(−ξ)(1− q) + b0,

W1,ϕ(ξ, q) := a1,+1(1 + ϕ(ξ))q + a1,−1ϕ(−ξ)(1− q) + b1.
(3.3)

When clear from the context, we often abbreviate E[Wk,ϕ(f(X), η(X))] as E[Wk,ϕ].
Given the surrogate class-conditional scores, we define the surrogate utility as
follows:

Uϕ(f) :=
EX [W0,ϕ(f(X), η(X))]

EX [W1,ϕ(f(X), η(X))]
=

E[W0,ϕ]

E[W1,ϕ]
. (3.4)

To construct Uϕ, the 0-1 losses appearing in the true utility U are replaced with
the surrogate loss ϕ. The surrogate class-conditional scores in Equation (3.3) are
designed such that the surrogate utility in Equation (3.4) bounds U from below.

Lemma 3.3. For all f and a surrogate loss ϕ : R→ R≥0 such that ϕ(m) ≥ ℓ(m)
for all m ∈ R, Uϕ(f) ≤ U(f).

Proof. Fix ξ ∈ R and q ∈ [0, 1]. Because ℓ(−ξ) = 1−ℓ(ξ), a0,+1ℓ(−ξ) = a0,+1(1−
ℓ(ξ)) ≥ a0,+1(1−ϕ(ξ)) (∵ a0,+1 ≥ 0). Together with a0,−1ℓ(−ξ) ≥ a0,−1ϕ(−ξ) (∵
a0,−1 ≤ 0), we confirm W0(ξ, q) ≥W0,ϕ(ξ, q). It can be confirmed that W1(ξ, q) ≤
W1,ϕ(ξ, q) as well. Hence, U(f) ≥ Uϕ(f) is easy to see.

Owing to this property, maximizing Uϕ is at least maximizing a lower bound
of U . We will discuss the goodness of this lower bound in Section 3.4; however,
we can immediately see Uϕ(f)(≤ U(f)) ≤ 1 for any f . In the rest of this chapter,
we assume that Uϕ is Fréchet differentiable.

3.3.2 Tractability of Surrogate Utility

The surrogate utility Uϕ comes to have a non-vanishing gradient by using a smooth
ϕ, and is guaranteed to be a lower bound of U . In this subsection, we discuss how
it can be efficiently maximized.

Let us consider an empirical estimator of Uϕ:

Ûϕ(f) =
1
m

∑m
i=1 W̃0,ϕ(f(xi), yi)

1
n−m

∑n
i=m+1 W̃1,ϕ(f(xi), yi)

, (3.5)

where

W̃0,ϕ(ξ, y) :=

{
a0,+1(1− ϕ(ξ)) + b0 if y = +1,

a0,−1ϕ(−ξ) + b0 if y = −1,

W̃1,ϕ(ξ, y) :=

{
a1,+1(1 + ϕ(ξ)) + b1 if y = +1,

a1,−1ϕ(−ξ) + b1 if y = −1.

A global maximizer of Ûϕ could be efficiently obtained if Ûϕ was concave. However,
this is difficult to achieve in our case regardless of the choice of ϕ owing to its
fractional form. Nonetheless, we may formulate our optimization problem as a
quasiconcave program under a certain condition. First, we introduce the notion
of quasiconcavity.
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Definition 3.4 (Quasiconcavity [Boyd and Vandenberghe, 2004]). A function
h : A → R is said to be quasiconcave if the super-level set {x ∈ A | h(x) ≥ α} is
a convex set for ∀α ∈ R.

A quasiconcave function is a generalization of a concave function and has the
unimodality despite not necessarily being concave, which ensures the uniqueness
of the solution. We then show that the surrogate utility Ûϕ is quasiconcave in a
subset of the domain. Let

Ûn
ϕ (f) :=

1

m

m∑
i=1

W̃0,ϕ(f(xi), yi)

be the numerator of Ûϕ.

Lemma 3.5. Let F̄ :=
{
f ∈ F

∣∣∣ Ûn
ϕ (f) ≥ 0

}
. If ϕ is convex, Ûϕ in Equa-

tion (3.5) is quasiconcave over F̄ and Ûn
ϕ is concave over F .

Proof. Define an α-super-level set of Ûϕ restricted in F̄ as

Aα :=
{
f ∈ F̄

∣∣∣ Ûϕ(f) ≥ α } .
It is sufficient to show that Aα is a convex set for any α ≥ 0 owing to f ∈ F̄ .

Fix any α ≥ 0. Then,

Ûϕ(f) ≥ α⇐⇒
1
m

∑m
i=1 W̃0,ϕ(f(xi), yi)

1
n−m

∑n
j=m+1 W̃1,ϕ(f(xj), yj)

≥ α

⇐⇒ 1

m

m∑
i=1

W̃0,ϕ(f(xi), yi)− α
1

n−m

n∑
j=m+1

W̃1,ϕ(f(xj), yj)︸ ︷︷ ︸
(∗)

≥ 0.

Here, 1
m

∑m
i=1 W̃0,ϕ(f(xi), yi) is concave in f because it is a non-negative sum

of concave functions. Note that W̃0,ϕ(f(xi), yi) is concave in f for any (xi, yi)

owing to the definition of W̃0,ϕ in Equation (3.3) and the assumption ϕ is convex.
Similarly, 1

n−m
∑n

j=m+1 W̃1,ϕ(f(xj), yj) is convex as well. Thus, (∗) is concave in
f , which means that Aα is a convex set because any super-level set of a concave
function is convex.

Hence, we confirm that Aα is convex for any α ≥ 0.

From Lemma 3.5, we observe the following two important facts: First, within
the range of f 6∈ F̄ , our objective Ûϕ is generally neither concave nor quasicon-
cave, but its numerator Ûn

ϕ is concave. Second, Ûϕ is quasiconcave over F̄ . These
observations motivate us to employ Algorithm 3.1, which first increases the nu-
merator Ûn

ϕ only to make it positive, and then maximizes the fractional form Ûϕ.
Because the former is a concave program and the latter is a quasiconcave pro-
gram within F̄ , the entire optimization can be conducted in a computationally
efficient manner. For quasiconcave optimization, a normalized gradient ascent
(NGA) [Hazan et al., 2015] is applied, which is guaranteed to find a global solu-
tion to the quasiconcave objectives. The behavior of Algorithm 3.1 is illustrated
in Figure 3.2.
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Algorithm 3.1: Hybrid Optimization Algorithm
Input : ϕ convex loss, θ initial classifier parameter

1 while Ûn
ϕ (fθ) ≤ 0 do

2 gn ←− ∇θÛ
n
ϕ (fθ)

3 θ ←− gradient_based_update(θ,gn)

4 end
5 while stopping criterion is not satisfied do
6 g←− ∇θÛϕ(fθ), ĝ = g/‖g‖
7 θ ←− gradient_based_update(θ, ĝ)

8 end
Output: maximizer fθ

Ûϕ

Ûn
ϕ

F̄

F̄∁ F̄∁

1

2

3

Figure 3.2: Illustration of our hybrid optimization approach in Algorithm 3.1. 1○ maximize
the numerator Ûn

ϕ (concave), 2○ once Ûn
ϕ(f) ≥ 0, optimize the fraction Ûϕ, 3○ maximize the

fraction Ûϕ (quasiconcave only in F̄).

3.3.3 Gradient Direction Estimator

The empirical estimator Ûϕ in Equation (3.5) is generally biased owing to its
fractional form. Nevertheless, its gradient ∇f Ûϕ is unbiased to the expected
gradient ∇fUϕ up to a positive scalar multiple. Hence, we may safely use ∇f Ûϕ
as the update direction in the NGA.

We state this idea formally below. Under the interchangeability of the expec-
tation and derivative, the gradient of the expected utility Uϕ is expressed as

∇fUϕ(f) =
1

(E[W1,ϕ])2︸ ︷︷ ︸
positive scalar

E[W1,ϕ]E[∇W0,ϕ]− E[W0,ϕ]E[∇W1,ϕ]︸ ︷︷ ︸
gradient direction (:= Vϕ(f))

= cVϕ(f), where c = (E[W1,ϕ])
−2 > 0,

from which we can see that its gradient direction is parallel to Vϕ. In addition,
Vϕ can be unbiasedly estimated.

Lemma 3.6. Denote W̃0,ϕ(f(xi), yi) = W̃0,ϕ(zi) for simplicity. Define

V̂ϕ(f) :=
1

m(n−m)

m∑
i=1

n∑
j=m+1

{
W̃1,ϕ(zj)∇fW̃0,ϕ(zi)− W̃0,ϕ(zi)∇fW̃1,ϕ(zj)

}
.

(3.6)
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Algorithm 3.2: Normalized Gradient Ascent
Input : θ initial classifier parameter, γ learning rate

1 while stopping criterion is not satisfied do
2 g←− V̂ϕ(fθ), ĝ = g/‖g‖
3 θ ←− θ + γĝ

4 end
Output: learned classifier parameter θ

t
0

1

O

0-1

log2(1 + e−t)

log2(1 + e−τ t)

Figure 3.3: An example of τ -discrepant loss with τ > 0: ϕ(m) = log2(1+ e−m) for m ≤ 0 and
ϕ(m) = log2(1 + e−τm) for m > 0.

We then have Vϕ(f) = ES [V̂ϕ(f)], where the expectation is taken over the sample
S.

Lemma 3.6 can be confirmed through simple algebra, noting that two sam-
ples S0 and S1 are independent and identically drawn from P. Because solving
∇Ûϕ(f) = 0 is identical to solving V̂ϕ(f) = 0, gradient updates using ∇Ûϕ are
aligned to the maximization of Uϕ. Hence, optimization procedures that only
require gradients such as a gradient ascent and quasi-Newton methods [Boyd and
Vandenberghe, 2004], e.g., the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm [Fletcher, 2013], can be applied to maximize Uϕ. Note that Algorithm 3.2
can be regarded as an extension of the traditional gradient ascent using V̂ϕ. We
plug either Algorithm 3.2 or BFGS using the normalized gradient into the second
half of Algorithm 3.1.

3.4 Calibration Analysis: Bridging Surrogate Utility and True
Utility

In Section 3.3, we formulated the tractable surrogate utility. Given the surrogate
utility Uϕ, a natural question arises in the same way as the classification calibra-
tion in binary classification [Zhang, 2004a, Bartlett et al., 2006]: Does maximizing
the surrogate utility Uϕ imply maximizing the true utility U? In this section, to
connect the maximization of Uϕ and the maximization of U , we study sufficient
conditions on the surrogate loss ϕ.

First, we define the notion of U -calibration.

Definition 3.7 (U -calibration). The surrogate utility Uϕ is said to be U -calibrated
if for any sequence of measurable functions {fk}k∈N and any distribution P, it
holds that Uϕ(fk) → U∗

ϕ =⇒ U(fk) → U † when k → ∞, where U∗
ϕ := supf Uϕ(f)

and U † := supf U(f) are the suprema taken over all measurable functions.

This definition is motivated by the calibration used in other learning problems
such as binary classification [Bartlett et al., 2006, Theorem 3], multi-class clas-
sification [Zhang, 2004b, Theorem 3], structured prediction [Osokin et al., 2017,
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Theorem 2], and AUC optimization [Gao and Zhou, 2015, Definition 1]. If a sur-
rogate utility is U -calibrated, we can safely optimize the surrogate utility instead
of the true utility U . Note that U -calibration is a concept used to reduce the sur-
rogate maximization to the maximization of U within all measurable functions.
The approximation error of Uϕ is not the target of our analysis, as in Bartlett
et al. [2006].

Next, we give a property of loss functions that is needed to guarantee U -
calibration.

Definition 3.8 (τ -discrepant loss). For a fixed τ > 0, a convex margin-based loss
function ϕ : R → R≥0 is said to be τ -discrepant if ϕ satisfies limm↘0 ϕ

′(m) ≥
τ limm↗0 ϕ

′(m).

Intuitively, τ -discrepancy means that the gradient of ϕ around the origin is
steeper in the negative domain than in the positive domain (see Figure 3.3). The
value τ controls the steepness of the TP/FP surrogates appearing in the surrogate
utility Uϕ. Note that ϕ(ξ) and ϕ(−ξ) appearing in Equations (3.3) and (3.4)
correspond to TP and FP, respectively, based on their constructions.

Below, we first provide an overview of the calibration analysis of the linear-
fractional metrics. Specific linear-fractional metrics, i.e., the Fβ-measure and
Jaccard index, are then analyzed.

3.4.1 Overview of Calibration Analysis

Unlike the calibration analysis reviewed in Section 2.3, the analysis of the linear-
fractional metrics are not straightforward. The main obstacle arises from Equa-
tion (3.1) involving a fractional form of expectations, whereas a traditional cali-
bration analysis deals with the risk functional form R(f) = E[ℓ(Yf(X))]. Hence,
this subsection reviews the basic idea for overcoming this hardness, and more
details can be found in Section 3.8.

First, the Bayes-optimal set of classifiers is defined.

Definition 3.9 (Bayes-optimal set). Given a linear-fractional metric U , the
Bayes-optimal set B ⊆ RX is a set of functions that achieve the supremum of
U , that is, B :=

{
f
∣∣ U(f) = U † = supf ′ U(f ′)

}
, where the supremum is taken

over all measurable functions.

Classifiers in B are Bayes classifiers. Note that they are not necessarily unique.
In this chapter, we assume that B 6= ∅, namely, maximizers of U exist.

Assumption 3.10. For the target utility U , the associated Bayes-optimal set B
is not empty.

The Bayes-optimal set B is characterized as follows.

Proposition 3.11. Given a linear-fractional metric U in Equation (3.1), the
Bayes-optimal set B for U is

B = { f | f(x){(∆a0 −∆a1U(f))η(x)− (a1,−1U(f)− a0,−1)} > 0 ∀x ∈ X } ,

where ∆a0 := a0,+1 − a0,−1 and ∆a1 := a1,+1 − a1,−1.

Proof. The maximization problem of U over all measurable functions can be re-
stated as follows:

max
λ∈Λ

Ū(λ) where Ū(λ) :=
E[a0,+1λ(X)η(X) + a0,−1λ(X)(1− η(X)) + b0]

E[a1,+1λ(X)η(X) + a1,−1λ(X)(1− η(X)) + b1]
,
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where Λ := { x 7→ ℓ(−f(x)) | f : measurable }. First, the Fréchet derivative of Ū
evaluated at x is obtained as follows.

[∇λŪ(λ)]x =
(∆a0η(x) + a0,−1)E[W1]− (∆a1η(x) + a1,−1)E[W0]

E[W1]2
p(x)

=
p(x)

E[W1]

{(
∆a0 −∆a1

E[W0]

E[W1]

)
η(x)−

(
a1,−1

E[W0]

E[W1]
− a0,−1

)}
=

p(x)

E[W1]

{
(∆a0 −∆a1Ū(λ))η(x)− (a1,−1Ū(λ)− a0,−1)

}
.

Let f † be a function that maximizes U , and λ† := ℓ(−f †). Such f † can be chosen
under Assumption 3.10. Then, λ† maximizes Ū , which satisfies [Koyejo et al.,
2014, lemma 12]∫

X
[∇λŪ(λ†)]xλ

†(x)dx ≥
∫
X
[∇λŪ(λ†)]xλ(x)dx ∀λ ∈ Λ.

Thus, the necessary condition for local optimality is

sgn(λ†(x)) = sgn([∇λŪ(λ†)]x)

for all x ∈ X .3 Since sgn(λ†(x)) = sgn(ℓ(−f †(x))) = sgn(f †(x)), the above
condition is sgn(f †(x)) = sgn([∇λŪ(λ†)]x) for all x ∈ X , which is equivalent to
the condition f †(x){(∆a0 − ∆a1U(f †))η(x) − (a1,−1U(f †) − a0,−1)} > 0 for all
x ∈ X . This concludes the proof. Note that p(x)/E[W1] is a positive value, and
Ū(λ†) = U(f †).

Next, we state a proposition proving the surrogate calibration of a surrogate
utility. This proposition follows the latter half of Gao and Zhou [2015, Theorem
2].

Proposition 3.12. Fix a true utility U and a surrogate utility Uϕ, and let B be
the Bayes-optimal set corresponding to the utility U . In addition, assume that

sup
f ̸∈B

Uϕ(f) < sup
f
Uϕ(f). (3.7)

The surrogate utility Uϕ is then U -calibrated.

Proof. Recall that U∗
ϕ := supf Uϕ(f), and let

δ := U∗
ϕ − sup

f ̸∈B
Uϕ(f) > 0,

and {fk}k∈N be any sequence of measurable functions such that Uϕ(fk)
k→∞−→ U∗

ϕ.
Then, for any ε > 0, there exists k0 ∈ N such that U∗

ϕ − Uϕ(fk) < ε for k ≥ k0.
Here, we set ε = δ

2 : U
∗
ϕ − Uϕ(fk) <

δ
2 for k ≥ k0. If we assume that fk 6∈ B,

U∗
ϕ − Uϕ(fk) = U∗

ϕ − sup
f ′ ̸∈B

Uϕ(f
′)︸ ︷︷ ︸

=δ

+ sup
f ′ ̸∈B

Uϕ(f
′)− Uϕ(fk)︸ ︷︷ ︸
≥0

≥ δ,

which contradicts U∗
ϕ − Uϕ(fk) <

δ
2 . Thus, it holds that fk ∈ B for k ≥ k0, that

is, U(fk) = U †, which indicates U -calibration.
3This can be confirmed in a similar manner as the proof in Yan et al. [2018, Theorem 3.1].
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Thus, we follow the strategy below to prove the U -calibration.

1. Characterize the Bayes-optimality condition based on Proposition 3.11.

2. Assume the converse of Equation (3.7), namely, the existence of f∗ 6∈ B
satisfying the stationary condition Uϕ(f∗) = supf Uϕ(f).

3. Show that the Bayes-optimality condition and the stationary condition can-
not be satisfied simultaneously (proof by contradiction).

Throughout the proofs, we assume the following regularity condition.

Assumption 3.13. For the true utility U and the underlying distribution P, the
critical set

C† :=
{
x ∈ X

∣∣∣ (∆a0 −∆a1U(f †))η(x)− (a1,−1U(f †)− a0,−1) = 0, f † ∈ B
}

is a p-null set, namely, p(C†) = 0.

This holds for any η-continuous distribution [Yan et al., 2018, Assumption 2].

3.4.2 Calibration Analysis of Fβ-measure

The Fβ-measure has been widely used, particularly in the field of information
retrieval where relevant items are rare [Manning and Schütze, 2008]. Because it
is defined as the weighted harmonic mean of the precision and recall (see Ta-
ble 3.1), its optimization is generally difficult. Although many previous studies
have tried to directly optimize this in the context of a class-posterior probability
estimation [Nan et al., 2012, Koyejo et al., 2014, Yan et al., 2018] or iterative cost-
sensitive learning [Koyejo et al., 2014, Parambath et al., 2014], we show that a
calibrated surrogate utility exists that can also be used in the direct optimization.

For the Fβ-measure (1+β2)TP
(1+β2)TP+β2FN+FP

= (1+β2)TP
TP+FP+β2π

, define the true utility

UFβ and the surrogate utility UFβ

ϕ as

UFβ (f) =
E
[
(1 + β2)ℓ(−f(X))η(X)

]
E [ℓ(−f(X))η(X) + ℓ(−f(X))(1− η(X)) + β2π]

,

U
Fβ

ϕ (f) =
E
[
(1 + β2)(1− ϕ(f(X)))η(X)

]
E [(1 + ϕ(f(X)))η(X) + ϕ(−f(X))(1− η(X)) + β2π]

.

For UFβ

ϕ , we have the following Fβ-calibration guarantee. Denote (U
Fβ

ϕ )∗ :=

supf U
Fβ

ϕ (f).

Theorem 3.14 (Fβ-calibration). Assuming that a surrogate loss ϕ : R→ R≥0 is
convex, non-increasing, and differentiable almost everywhere, and that (UFβ

ϕ )∗ ≥
(1+β2)τ
β2−τ and ϕ is τ -discrepant for a certain constant τ ∈ (0, β2), UFβ

ϕ is then
Fβ-calibrated.

An example of the τ -discrepant surrogate loss is shown in Figure 3.3. Here, τ
is a discrepancy hyperparameter. From the fact that (U

Fβ

ϕ )∗ ≤ 1, τ ranges over

(0, β2

2+β2 ]. We may determine τ through cross-validation, or fix it at τ = β2

2+β2 by

assuming (U
Fβ

ϕ )∗ ≈ 1. The proof of Theorem 3.14 is provided in Section 3.8.
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Remark 3.1. Under the assumption of Theorem 3.14, (U
Fβ

ϕ )∗ ≥ (1+β2)τ
β2−τ is as-

sumed. Herein, we briefly demonstrate that the optimal surrogate utility (U
Fβ

ϕ )∗

is non-negative, ensuring that we can choose τ ∈ (0, β2). In the case of the Fβ-
measure,

W0,ϕ(ξ, q) = (1 + β2)(1− ϕ(ξ))q,
W1,ϕ(ξ, q) = (1 + ϕ(ξ))q + ϕ(−ξ)(1− q) + β2π,

Uϕ(f) =
E[W0,ϕ(f(X), η(X))]

E[W1,ϕ(f(X), η(X))]
,

and letting f∗ and f̌ be the suprema of Uϕ and E[W0(f(X), η(X))] in f within all
measurable functions, respectively, then,

(U
Fβ

ϕ )∗ = U
Fβ

ϕ (f∗) ≥ UFβ

ϕ (f̌) =
supf ′ E[W0,ϕ(f

′(X), η(X))]

E[W1,ϕ(f̌(X), η(X))]

(a)
=

E[H0,ϕ(η(X))]

E[W1,ϕ(f̌(X), η(X))]

=
(1 + β2)π

E[W1,ϕ(f̌(X), η(X))]

≥ 0,

where H0,ϕ(q) := supξ∈RW0,ϕ(ξ, q). The equality (a) holds by assuming some reg-
ularity conditions such as the P-minimizability (Section 2.3). Hence, we confirm
(U

Fβ

ϕ )∗ ≥ 0.

3.4.3 Calibration Analysis of Jaccard Index

The Jaccard index, also referred to as the intersection over union (IoU), is a
metric of similarity between two sets: For two sets A and B, it is defined as
|A∩B|
|A∪B| ∈ [0, 1] [Jaccard, 1901]. The Jaccard index between the sets of examples
predicted as positives and labeled as positives becomes TP

TP+FN+FP , as shown in
Table 3.1. This measure is not only used for measuring the performance of binary
classification [Koyejo et al., 2014, Narasimhan et al., 2015], but also for semantic
segmentation [Everingham et al., 2010, Csurka et al., 2013, Ahmed et al., 2015,
Berman et al., 2018].

For the Jaccard index TP
TP+FN+FP = TP

FP+π , define the true utility U Jac and the
surrogate utility UJac

ϕ as

U Jac(f) =
E[ℓ(−f(X))η(X)]

E[ℓ(−f(X))(1− η(X)) + π]
,

UJac
ϕ (f) =

E[(1− ϕ(f(X)))η(X)]
E[ϕ(−f(X))(1− η(X)) + π]

.

Denote (U Jac
ϕ )∗ := supf U

Jac
ϕ (f). As for U Jac

ϕ , we have the following Jaccard-
calibration.

Theorem 3.15 (Jaccard-calibration). Assume that a surrogate loss ϕ : R→ R≥0

convex, non-increasing, and differentiable almost everywhere, and that (U Jac
ϕ )∗ ≥

τ and ϕ is τ -discrepant for a certain constant τ ∈ (0, 1). Then, UJac
ϕ is Jaccard-

calibrated.
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Theorem 3.15 also relies on the τ -discrepancy as in Theorem 3.14. Thus, the
loss shown in Figure 3.3 can also be used in the Jaccard case with a certain range
of τ . In the same manner as the Fβ-measure, a hyperparameter τ ranges over
(0, 1), which we may either determine through cross-validation or fix to a certain
value.

As is the case for the Fβ-measure, (UJac
ϕ )∗ ≥ 0 can be guaranteed, and τ ∈

(0, 1) such that τ ≤ (U Jac
ϕ )∗ can be chosen. The proof of Theorem 3.15 is provided

in Section 3.8.

3.5 Consistency Analysis: Bridging Finite Sample and Asymp-
totics

In this section, we analyze the statistical properties of the estimator V̂ϕ in Equa-
tion (3.6). To simplify our analysis, the linear-in-input model fθ(x) = θ⊤x is con-
sidered throughout this section, where θ ∈ Θ is a classifier parameter and Θ ⊆ Rd
is a compact parameter space. The maximization procedure introduced above can
be naturally seen as Z-estimation [van der Vaart, 2000], which is an estimation
procedure used to solve an estimation equation. In our case, the maximization of
Uϕ is reduced to a Z-estimation problem to solve the system V̂ϕ(f) = 0. The first
lemma shows that the derivative estimator V̂ϕ admits a uniform convergence. For
its proof, please refer to Section 3.8.3.

Lemma 3.16 (Uniform convergence). For simplicity, assume that m = n/2. For
k = 0, 1, let ck := supξ∈R,y∈Y |Wk,ϕ(ξ, y)| < +∞. Assume that Wk(·, y) for y ∈ Y
are ρk-Lipschitz continuous for some 0 < ρk < ∞, and that ‖x‖ < cX (∀x ∈ X )
and ‖θ‖ < cΘ (∀θ ∈ Θ) for some 0 < cX , cΘ <∞. Then,

sup
θ∈Θ

∥∥∥V̂ϕ(fθ)− Vϕ(fθ)∥∥∥ = Op(n
− 1

2 ), (3.8)

where Op denotes the order in probability.

The proof of Lemma 3.16 is provided in Section 3.8.3. The Lipschitz continuity
and smoothness assumptions in Lemma 3.16 can be satisfied if the surrogate loss
ϕ satisfies a certain Lipschitzness and smoothness. Note that Lemma 3.16 still
holds for τ -discrepant surrogates because we allow surrogates to have different
smoothness parameters for both positive and negative domains. In addition,
Lemma 3.16 is the basis for showing the consistency. Let θ∗ := argmaxθ∈Θ Uϕ(fθ)

and θ̂n = argmaxθ∈Θ Ûϕ(fθ). Under the identifiability described below, fθ∗ and
f
θ̂n

are the roots of Vϕ and V̂ϕ, respectively. We can then show the consistency
of θ̂n.

Theorem 3.17 (Consistency). Assume that θ∗ is identifiable, that is,

inf { ‖ Vϕ(fθ)‖|‖θ − θ∗‖ ≥ ε } > ‖Vϕ(fθ∗)‖ = 0

for all ε > 0, and that Equation (3.8) holds for V̂ϕ. Then, θ̂n
p→ θ∗.

Given a uniform convergence (Lemma 3.16) and an identifiability assumption,
Theorem 3.17 is an immediate result of van der Vaart [2000, Theorem 5.9]. Note
that the identifiability assumes that Vϕ has a unique zero fθ∗ , which is also usual
in an M-estimation, i.e., the global optimizer is identifiable. In addition, be-
cause Algorithm 3.1 is a combination of concave and quasiconcave programs, the
identifiability is reasonably assumed.
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Table 3.2: Comparison of related work.

Method Consistency Avoids to estimate η Efficient optimization

ours 3 3 3

(i) 7 3 3

(ii) 3 7 3

(iii) 3 3 7

3.6 Related Work

In this section, we summarize the existing lines of research conducted on the
optimization of the generalized performance metrics, elucidating the advantages
of our approach.

(i) Surrogate optimization: One of the earliest attempts to optimize non-
decomposable performance metrics dates back to Joachims [2005], in which a
structured SVM was formulated as a surrogate objective. However, Dembczyński
et al. [2013] showed that this surrogate is inconsistent, which means that the
surrogate maximization does not necessarily imply the maximization of the true
metric. In addition, Kar et al. [2014] demonstrated a sublinear regret for the
structural surrogate developed by Joachims [2005] in an online setting. Later,
Yu and Blaschko [2015], Eban et al. [2017], Berman et al. [2018], and Zhao et al.
[2019] attempted different surrogates, although their calibration has yet to be
studied.4 As a concurrent approach, Fathony and Kolter [2020] provided a sur-
rogate objective for generalized performance metrics based on the framework of
adversarial prediction [Asif et al., 2015, Fathony et al., 2018] and studied its con-
sistency. Their definition of a performance metric is based on the expected test
utility (ETU) [Dembczyński et al., 2017]. We believe that the population utility
is more appropriate than the ETU for a consistent analysis.5 There have been sev-
eral recent works dealing with scenarios where not only the performance metrics
are complex but also they are constrained. Whereas the constrained optimization
problems are more intricate to be handled by surrogate optimization, Kumar et al.
[2021] proposed a clever approach to make them unconstrained by the implicit
function theorem. Nevertheless, surrogate consistency has yet to be known for
this approach.

As a final remark, one may be reminded of the multi-label F-measure cali-
brated surrogate loss proposed in Zhang et al. [2020]. We stress that optimizing
the F-measure has more difficulty in binary classification than multi-label learn-
ing if we follow the metric definition based on the population utility (PU) [Dem-

4In particular, Yu and Blaschko [2015] proposed the Lovász hinge loss as a convex surrogate
loss for submodular loss functions, to which the Jaccard index belongs. However, Finocchiaro
et al. [2019] showed that the Lovász hinge loss is not calibrated unless the original target loss
function is modular, where the Lovász hinge loss reduces to the weighted Hamming loss. Since
surrogate losses proposed in Eban et al. [2017], Berman et al. [2018], and Zhao et al. [2019] are
more complicated, their calibration results have yet to be known. We remark that the Lovász
hinge loss relies on the ETU framework [Dembczyński et al., 2017], namely, the loss function
takes a set of binary predictions and target labels as inputs.

5Under the metric definition based on the ETU, a classifier takes the form of X k → Yk,
where k is the fixed size of the test set. In other words, the binary classification problem is
transformed into a structured prediction problem. Because we are interested in a pure binary
classifier in the form of X → Y, our analysis is based on the PU metric definition. The proof
of our calibration analysis initially invokes the stationary condition of the optimal classifier (see
Section 3.4.1), which is similar to the proof technique used in adversarial prediction [Fathony
et al., 2018].
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bczyński et al., 2017]. The multi-label F-measure has similar nature to the ETU
definition of the binary F-measure and is relatively easy to handle in surrogate
optimization since the problem is transformed into structured prediction. In any
cases, our constructions and proofs of calibrated surrogates in the PU framework
is notable.

(ii) Plug-in rule: Instead of a surrogate optimization, in Dembczyński et al.
[2013], the authors mentioned that a plug-in rule is consistent, where η and a
threshold parameter are estimated independently. We can estimate η by mini-
mizing strictly proper losses [Reid and Williamson, 2009]. The plug-in rule has
been investigated under many different settings [Nan et al., 2012, Dembczyński
et al., 2013, Koyejo et al., 2014, Narasimhan et al., 2014, Busa-Fekete et al., 2015,
Yan et al., 2018]. Liu et al. [2018] proposed an online algorithm to estimate η
and the threshold on-the-fly to optimize the F-measure. However, as one of the
weaknesses of the plug-in rule, it requires an accurate estimate of η, which is
less sample-efficient than the usual classification with convex surrogates [Audib-
ert and Tsybakov, 2007].6 Moreover, estimation of class-posterior probability η is
known to be biased when the class distribution is imbalanced [King and Zeng,
2001, Menon et al., 2012, Bao and Sugiyama, 2021], which makes the choice of
the threshold parameter very sensitive.

(iii) Cost-sensitive risk minimization: By contrast, Parambath et al. [2014]
is a pioneering study focusing on the pseudo-linearity of the metrics, which re-
duces their maximization to an alternative optimization with respect to a clas-
sifier and its sublevel. This can be formulated as an iterative cost-sensitive risk
minimization [Koyejo et al., 2014, Narasimhan et al., 2015, 2016, Sanyal et al.,
2018]. Bascol et al. [2019] derived a tighter upper bound on the F-measure and
eventually obtains a scheme to reduce the number of candidates of the cost pa-
rameter. Although these methods achieve consistency, they need to train classi-
fiers numerous times, which may lead to high computational costs, particularly
for complex hypothesis spaces. Many recent studies on constrained performance
metric optimization have extended the cost-sensitive approach to handle metric
constraints such as fairness constraints. Narasimhan [2018], Tavker et al. [2020]
formulated the constrained problem as an optimization problem over the confu-
sion matrix. At each update, the cost is updated by optimizing the performance
metric, and the confusion matrix is updated by the Frank-Wolfe algorithm [Jaggi,
2013]. Narasimhan et al. [2019] got rid of the oracle access to the cost-sensitive
risk minimizers assumed in Narasimhan [2018], instead by formulating as a three-
player game.

Remark 3.2. Although our proposed methods can be considered to belong to the
family (i), one of the crucial differences is the fact that we have calibration guar-
antee. We do not need to estimate the class-posterior probability as in (ii), or train
classifiers many times as in (iii). This comparison is summarized in Table 3.2.
Some recent works have not been able to be categorized as such. For example,
Jiang et al. [2020] considered black-box optimization of the performance metrics.
They proposed an approach to iteratively estimate the gradient of the black-box
metric, update the confusion matrix, and project the confusion matrix onto the
parameter space.

6Audibert and Tsybakov [2007] showed that plug-in classifiers achieve fast rates of the excess
classification risk only when a strong density assumption is imposed on the underlying distribu-
tion. Without this relatively strong assumption, plug-in classifiers cannot achieve as fast rates
as the ERM minimizers. Even though we do not know whether plug-in classifiers converge as
fast as the surrogate utility maximizers in the case of the linear-fractional metrics, we speculate
that the latter behaves well.
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3.7 Experiments

In this section, we investigate the empirical performances of the surrogate opti-
mizations (Algorithm 3.1 using NGA and normalized BFGS). Datasets that we
use throughout this section are obtained from the UCI Machine Learning Repos-
itory [Lichman, 2013] and the LIBSVM [Chang and Lin, 2011]. For those having
independent training data, validation data, and test data, all such data are merged
into a single dataset. We randomly split the original dataset at a ratio of 8 to 2,
and the former data are used for training and the latter are used for an evaluation.
Each feature value is scaled between zero and one.

Subsequently, we describe the implementation details of the proposed and
baseline methods.

Proposed Methods. The linear-in-input model fθ(x) = θ⊤x was used for the
hypothesis space F . As the initializer of θ, the ERM minimizer trained using
an SVM was applied. For both NGA and BFGS, gradient updates were iterated
300 times. NGA and normalized BFGS are referred to below as U-GD and U-
BFGS below, respectively. The surrogate loss shown in Figure 3.3 was used, i.e.,
ϕ(m) = log2(1 + e−m) when m ≤ 0 and ϕ(m) = log2(1 + e−τm) for m > 0, where
τ was set to 0.33 in the F1-measure case and 0.75 in the Jaccard index case.7 The
training set was divided into a ratio of 4 to 1 and the latter dataset was used for
validation. We used a common learning rate in Algorithm 3.1, which was chosen
from

{
101, 10−1, 10−3, 10−5

}
through cross-validation.

Baseline 1 (ERM). The first baseline is a usual empirical risk minimization,
which optimizes not the metric of interest but the accuracy. The hinge loss and
ℓ2-regularization are employed with the regularization parameter 10−2.

Baseline 2 (W-ERM). A weighted empirical risk minimization, or cost-sensitive
empirical risk minimization, is often used to optimize the non-linear performance
metrics [Koyejo et al., 2014, Narasimhan et al., 2014, Parambath et al., 2014].
Herein, we apply a simple approach: A cost parameter is found from a given
cost parameter space, which provides the maximum validation performance of
a classifier trained through the cost-sensitive empirical risk minimization [Scott,
2012]. The training dataset is split into a ratio of 4 to 1 at random, and the latter
dataset is saved for a validation of a regularization parameter. The former dataset
is further split into ratio of 9 to 1 at random, where the former 90% is used for
training the base classifier, and the latter 10% is used for the validation. As the
base cost-sensitive learner, we use the hinge loss minimizer with ℓ2-regularization
(a regularization parameter is chosen from

{
10−1, 10−3, 10−5

}
through cross-

validation). The cost parameter is chosen from the range [10−3, 1− 10−3] evenly
split into 20 ranges, that is,

{
10−3 + 1−2·10−3

20 i
∣∣∣ i = 1, . . . , 20

}
.

Baseline 3 (Plug-in). A plug-in estimator is one of the other common methods
used to optimize the non-linear performance metrics [Koyejo et al., 2014, Yan
et al., 2018], which is a two-step method, i.e., the class posterior probability
η̂(x) = P(Y = +1|X = x) is first estimated, and the optimal threshold δ̂ is then
determined. The classifier is constructed as x 7→ sgn(η̂(x) − δ̂). The training

7The discrepancy parameter τ should be chosen within (0, 1
3
) and (0, 1) for the F1-measure

and Jaccard index, respectively. Here, we fix them to the slightly smaller values than the upper
limits of their ranges.
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Figure 3.4: Convergence comparison of the F1-measure (vertical axes). Standard errors of 50
trials are shown as shaded areas.
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Figure 3.5: Convergence comparison of the Jaccard index (vertical axes). Standard errors of
50 trials are shown as shaded areas.

dataset is split into a ratio of 4 to 1 at random, and the latter dataset is saved
for validation of a regularization parameter. The former dataset is further split
into a ratio of 9 to 1 at random, and the resulting datasets are independently
used for the first and second steps. To estimate P(Y = +1|x) (the first step),
the logistic regression is used [Reid and Williamson, 2009], with ℓ2-regularization
(a regularization parameter is chosen from

{
10−1, 10−3, 10−5

}
through cross-

validation). To determine δ̂, we pick a threshold with the highest validation
metric from

{
10−3 + 1−2·10−3

20 i
∣∣∣ i = 1, . . . , 20

}
.

3.7.1 Convergence Comparison

We compare the convergence behaviors of U-GD and U-BFGS. During this exper-
iment, we ran them 300 iterations from randomly initialized parameters drawn
from N (0d, Id). The results in terms of the F1-measure and Jaccard index are
shown in Figures 3.4 and 3.5, respectively. The vertical axes show test metric
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Figure 3.6: The relationship between the test F1-measure (vertical axes) and sample size
(horizontal axes). Standard errors of 50 trials are shown as shaded areas.
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Figure 3.7: The relationship between the test Jaccard (vertical axes) and sample size (hori-
zontal axes). Standard errors of 50 trials are shown as shaded areas.

values, where the higher the values the better. Note that both the F1-measure
and Jaccard index ranges from zero to one. The horizontal axes show the number
of iterations.

Overall, U-BFGS shows a faster convergence than U-GD in terms of the num-
ber of iterations, which constitutes a trade-off in that the former converges within
fewer steps, whereas the latter can update the solution faster during each step. In
almost all cases, U-BFGS converges within 30 iterations, except for german.numer
and mushrooms in the Jaccard case. Moreover, it usually achieves a higher per-
formance than U-GD. U-GD convergences require at approximately 100 iterations
at a minimum (mushrooms and phishing in F1 case), and occasionally does not
converge even within 300 iterations, such with as heart and ionosphere for the F1

and Jaccard cases.
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Table 3.3: Results of the F1-measure: 50 trials were conducted for each pairing of a method and
dataset. Standard errors (multiplied by 104) are shown in the parentheses. Bold font indicates
outperforming methods, which were chosen through a one-sided t-test with a significant level of
5%.

(F1-measure) Proposed Baselines

Dataset U-GD U-BFGS ERM W-ERM Plug-in

adult 0.617 (101) 0.660 (11) 0.639 (51) 0.676 (18) 0.681 (9)
australian 0.843 (41) 0.844 (45) 0.820 (123) 0.814 (116) 0.827 (51)
breast-cancer 0.963 (31) 0.960 (32) 0.950 (37) 0.948 (44) 0.953 (40)
cod-rna 0.802 (231) 0.594 (4) 0.927 (7) 0.927 (6) 0.930 (2)
diabetes 0.834 (32) 0.828 (31) 0.817 (50) 0.821 (40) 0.820 (42)
german.numer 0.561 (102) 0.580 (74) 0.492 (188) 0.560 (107) 0.589 (73)
heart 0.796 (101) 0.802 (99) 0.792 (80) 0.764 (151) 0.764 (137)
ionosphere 0.908 (49) 0.901 (43) 0.883 (104) 0.842 (217) 0.897 (54)
mushrooms 1.000 (1) 0.997 (7) 1.000 (1) 1.000 (2) 0.999 (4)
phishing 0.937 (29) 0.943 (7) 0.944 (8) 0.940 (12) 0.944 (8)
phoneme 0.648 (27) 0.559 (22) 0.530 (201) 0.616 (135) 0.633 (35)
skin_nonskin 0.870 (3) 0.856 (4) 0.854 (7) 0.877 (8) 0.838 (5)
sonar 0.735 (95) 0.740 (91) 0.706 (121) 0.655 (189) 0.721 (113)
spambase 0.876 (27) 0.756 (61) 0.887 (42) 0.881 (58) 0.903 (18)
splice 0.785 (49) 0.799 (46) 0.785 (55) 0.771 (67) 0.801 (45)
w8a 0.297 (80) 0.284 (96) 0.735 (35) 0.742 (29) 0.745 (26)

Table 3.4: Results of the Jaccard index: 50 trials were conducted for each pairing of a method
and dataset. Standard errors (multiplied by 104) are shown in the parentheses. Bold font
indicates outperforming methods, which were chosen through a one-sided t-test with a significant
level of 5%.

(Jaccard index) Proposed Baselines

Dataset U-GD U-BFGS ERM W-ERM Plug-in

adult 0.499 (44) 0.498 (11) 0.471 (51) 0.510 (20) 0.516 (10)
australian 0.735 (63) 0.733 (59) 0.702 (144) 0.693 (143) 0.707 (76)
breast-cancer 0.921 (54) 0.918 (55) 0.905 (66) 0.903 (78) 0.913 (69)
cod-rna 0.854 (3) 0.785 (8) 0.864 (11) 0.865 (9) 0.869 (3)
diabetes 0.714 (44) 0.702 (50) 0.692 (70) 0.698 (56) 0.695 (60)
german.numer 0.433 (64) 0.429 (69) 0.335 (153) 0.391 (98) 0.418 (71)
heart 0.665 (135) 0.675 (135) 0.664 (102) 0.629 (178) 0.626 (163)
ionosphere 0.826 (76) 0.829 (65) 0.796 (134) 0.749 (245) 0.815 (87)
mushrooms 0.999 (2) 0.995 (4) 1.000 (1) 0.999 (4) 0.997 (7)
phishing 0.883 (43) 0.893 (11) 0.894 (14) 0.888 (22) 0.894 (15)
phoneme 0.435 (51) 0.436 (24) 0.371 (160) 0.450 (104) 0.461 (34)
skin_nonskin 0.744 (5) 0.751 (5) 0.746 (10) 0.780 (13) 0.722 (7)
sonar 0.600 (125) 0.600 (111) 0.552 (147) 0.495 (202) 0.572 (134)
spambase 0.827 (22) 0.708 (22) 0.798 (67) 0.790 (86) 0.824 (31)
splice 0.670 (60) 0.672 (56) 0.646 (71) 0.629 (84) 0.672 (57)
w8a 0.496 (151) 0.452 (28) 0.580 (44) 0.590 (35) 0.595 (33)

3.7.2 Performance Comparison with Benchmark Data

We compared the proposed methods with the baselines. The results of the F1-
measure and Jaccard index are summarized in Tables 3.3 and 3.4, respectively.
For each dataset, we first picked the method with the highest test performance
as an outperforming method within that dataset, and then conducted a one-sided
t-test with a significant level of 5%. They are also regarded as outperforming
methods if the performance differences are insignificant as a result of hypothesis
tests. Outperforming methods are indicated in bold.

As general tendencies, we observed that U-BFGS and Plug-in work well for
both the F1-measure and Jaccard index. As for the F1-measure, their perfor-
mances are competitive, whereas U-BFGS is better as for the Jaccard index. In
practice, both U-BFGS and Plug-in are worth applying.

For the other methods, ERM does not work good as we expected because it
does not optimize the metrics of interests, i.e., the F1-measure and Jaccard index,
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at all. In addition, W-ERM does not work as well as Plug-in even though both of
them are known to be consistent with the linear-fractional utilities. We may need
to apply a finer split of the threshold search space, or try a binary-search-type
algorithm provided by a recent study [Yan et al., 2018]. U-GD does not work as
well as U-BFGS contrary to our expectation. We may need more iterations to
make U-GD converge, as we can see in Figures 3.4 and 3.5.

3.7.3 Sample Complexity

To confirm our hypothesis that Plug-in requires large sample sizes for a probability
estimation, we empirically studied the relationship between the sample size and
performance. We randomly subsampled each original dataset to reduce the sample
sizes to {20, 40, . . . , 400}, and trained all methods on the reduced samples. Herein,
Figures 3.6 and 3.7 show the sample complexity results. Although learning is
unstable for small samples (e.g., heart and w8a), we can observe clear differences
in certain cases, such as cod-rna, diabetes, german.numer, ionosphere, sonar, and
splice in terms of the F1-measure; and australian, cod-rna, diabetes, ionosphere,
phishing, sonar, and spambase in terms of the Jaccard index, where either U-
GD or U-BFGS works better than Plug-in even if sample sizes are quite small
at approximately 20 to 40. In addition, Plug-in seldom works significantly better
than the gradient-based methods in sample sizes ranging from approximately 100
to 400 as investigated in this section. This is contrary to the behavior shown in
Tables 3.3 and 3.4, where the full-size datasets are used to train the classifiers.
Hence, we claim that the gradient-based methods are good options when the
sample sizes are extremely small.

3.8 Proofs

3.8.1 Proof of Theorem 3.14

We simply let U denote the Fβ-measure and Uϕ denote the surrogate utility such
as

Uϕ(f) =

∫
X {(1 + β2)(1− ϕ(f(x)))η(x)}p(x)dx∫

X {(1 + ϕ(f(x)))η(x) + ϕ(−f(x))(1− η(x)) + β2π}p(x)dx
.

Define

W0,ϕ(ξ, q) := (1 + β2)(1− ϕ(ξ))q,
W1,ϕ(ξ, q) := (1 + ϕ(ξ))q + ϕ(−ξ)(1− q) + β2π.

Then, Uϕ(f) = E[W0,ϕ]/E[W1,ϕ]. From Proposition 3.11, the Bayes-optimal set
B for the Fβ-measure is

B :=
{
f
∣∣ f(x)((1 + β2)η(x)− U(f)) > 0 ∀x ∈ X

}
.

By Proposition 3.12, it is sufficient to show Equation (3.7). We prove this by
contradiction. Assume that

sup
f ̸∈B

Uϕ(f) = sup
f
Uϕ(f).

This implies that there exists an optimal function f∗ 6∈ B that achieves Uϕ(f∗) =
supf Uϕ(f) = U∗

ϕ, that is, Uϕ(f∗) = U∗
ϕ and f∗(x̄)((1 + β2)η(x̄)− U(f∗)) ≤ 0 for

some x̄ ∈ X .
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Let us describe the stationary condition of f∗. We introduce a function δf :

δf (x) :=

{
1 if x = x̄,

0 if x 6= x̄.

Let G(γ) := Uϕ(f
∗ + γδf ). Because Gâteaux derivative of Uϕ at f∗ must be zero

in any direction, we claim that G′(0) = 0, where G′(0) corresponds to Gâteaux
derivative of Uϕ at f∗ in the direction of δf . Here, G′(0) is computed as

G′(0) =
p(x̄)

E[W1,ϕ(f∗(X), η(X))]

{
− (1 + β2)ϕ′(f∗(x̄))η(x̄)− ϕ′(f∗(x̄))U∗

ϕη(x̄)

+ϕ′(−f∗(x̄))U∗
ϕ(1− η(x̄))

}
.

Thus, the stationary condition G′(0) = 0 is equivalent to{
(1 + β2)ϕ′(f∗(x̄)) + (ϕ′(f∗(x̄)) + ϕ′(−f∗(x̄)))U∗

ϕ

}︸ ︷︷ ︸
̸=0 (∵ ϕ′ < 0 and U∗

ϕ ≥ 0)

η(x̄) = ϕ′(−f∗(x̄))U∗
ϕ,

which is equivalent to

η(x̄) =
ϕ′(−f∗(x̄))U∗

ϕ

(1 + β2)ϕ′(f∗(x̄)) + (ϕ′(f∗(x̄)) + ϕ′(−f∗(x̄)))U∗
ϕ

. (3.9)

From now on, we divide the cases to consider the Bayes-optimality condition
f∗ 6∈ B, namely, f∗(x̄)((1 + β2)η(x̄)− U(f∗)) ≤ 0. By Assumption 3.13, the case
(1 + β2)η(x̄)− U(f∗) = 0 is excluded.

1) If f∗(x̄) > 0 and η(x̄) < 1
1+β2U(f∗), we show η(x̄) ≥ U(f∗)

1+β2 , leading to the

contradiction. In addition, we write the difference η(x̄)− U(f∗)
1+β2 = Dn

Dd
, where

Dn = (1 + β2)ϕ′(−f∗(x̄))U∗
ϕ − (1 + β2)ϕ′(f∗(x̄))U(f∗)

− (ϕ′(f∗(x̄)) + ϕ′(−f∗(x̄))U∗
ϕU(f∗),

Dd = (1 + β2)
{
(1 + β2)ϕ′(f∗(x̄)) + (ϕ′(f∗(x̄)) + ϕ′(−f∗(x̄)))U∗

ϕ

}
.

The denominator Dd is always negative because of ϕ′ < 0. The numerator
Dn can be simplified as

Dn

U(f∗){(1 + β2) + U∗
ϕ}

=
U∗
ϕ

(1 + β2) + U∗
ϕ︸ ︷︷ ︸

≥τ/β2

(1 + β2)− U(f∗)

U(f∗)︸ ︷︷ ︸
≥β2

ϕ′(−f∗(x̄))− ϕ′(f∗(x̄))

≤ τϕ′(−f∗(x̄))− ϕ′(f∗(x̄))
≤ 0,

where the first inequality holds because
U∗
ϕ

(1+β2)+U∗
ϕ
≥ τ

β2 when (1+β2)τ
β2−τ ≤

U∗
ϕ ≤ 1 (see Figure 3.8) and (1+β2)−U(f∗)

U(f∗) ≥ β2 when 0 ≤ U(f∗) ≤ 1 (see
Figure 3.9). Note that ϕ′(−f∗(x̄)) < 0. The second inequality holds because
of the assumption that limm↘0 ϕ

′(m) ≥ τ limm↗0 ϕ
′(m) and ϕ is convex,

which implies τϕ′(−m)− ϕ′(m) ≤ 0 for every m > 0.

Thus, η(x̄) ≥ U(f∗)
1+β2 holds (contradiction).
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2) If f∗(x̄) ≤ 0 and η(x̄) > 1
1+β2U(f∗), in addition the previous case, we begin

from a stationary condition (3.9). If ϕ′(−f∗(x̄)) < 0,

η(x̄) =
ϕ′(−f∗(x̄))U∗

ϕ

(1 + β2)ϕ′(f∗(x̄)) + (ϕ′(f∗(x̄)) + ϕ′(−f∗(x̄)))U∗
ϕ

=
U∗
ϕ

(1 + β2) ϕ′(f∗(x̄))
ϕ′(−f∗(x̄)) +

(
ϕ′(f∗(x̄))
ϕ′(−f∗(x̄)) + 1

)
U∗
ϕ

≤ 1

1 + β2
U∗
ϕ

1 + U∗
ϕ

≤ 1

1 + β2
U(f∗)

< η(x̄), (contradiction)

where the first inequality holds because ϕ′(−m)
ϕ′(m) ≥ 1 for every m ≥ 0 and

f∗(x̄) ≤ 0, and the second inequality holds because Uϕ(f) ≤ U(f) (∀f)

implies
U∗
ϕ

1+U∗
ϕ
≤ U(f∗) when (1+β2)τ

β2−τ ≤ U
∗
ϕ ≤ 1 (see Figure 3.10).

If ϕ′(−f∗(x̄)) = 0, it is easy to see the contradiction.

Combining the above cases, it follows that

sup
f ̸∈B

Uϕ(f) < sup
f
Uϕ(f).

3.8.2 Proof of Theorem 3.15

We simply let U denote the Jaccard index and Uϕ denote the surrogate utility
such that

Uϕ(f) =

∫
X (1− ϕ(f(x)))η(x)p(x)dx∫

X {ϕ(−f(x))(1− η(x)) + π}p(x)dx
.

In addition, we let B denote the Bayes-optimal set such that

B := { f | f(x){(1 + U(f))η(x)− U(f)} > 0 ∀x ∈ X } ,

as characterized by Proposition 3.11. We follow the same proof technique, i.e.,
proof by contradiction, that we used in the proof of Theorem 3.14. Assume that

sup
f ̸∈B

Uϕ(f) = sup
f
Uϕ(f),

which implies that there exists an optimal function f∗ 6∈ B that achieves Uϕ(f∗) =
supf Uϕ(f) := U∗

ϕ, that is, Uϕ(f∗) = U∗
ϕ and f∗(x̄){(1+U(f∗))η(x̄)−U(f∗)} ≤ 0

for some x̄ ∈ X . By Assumption 3.13, the case (1 + U(f∗))η(x̄) − U(f∗) = 0 is
excluded.

The stationary condition of Uϕ around f∗ can be stated along with Equa-
tion (3.9) in Theorem 3.14:

η(x̄) =
ϕ′(−f∗(x̄))U∗

ϕ

ϕ′(f∗(x̄)) + ϕ′(−f∗(x̄))U∗
ϕ

. (3.10)
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1) If f∗(x̄) > 0 and η(x̄) < U(f∗)
1+U(f∗) , we show η(x̄) ≥ U(f∗)

1+U(f∗) . First, take the
difference between the left- and the right-hand sides.

η(x̄)− U(f∗)

1 + U(f∗)
=

ϕ′(−f∗(x̄))U∗
ϕ − ϕ′(f∗(x̄))U(f∗)

(ϕ′(f∗(x̄)) + ϕ′(−f∗(x̄))U∗
ϕ)(1 + U(f∗))

,

where the denominator is always negative. Next, we show that the numer-
ator is always negative. If ϕ′(−f∗(x̄)) < 0,

ϕ′(−f∗(x̄))U∗
ϕ − ϕ′(f∗(x̄))U(f∗)

= ϕ′(−f∗(x̄))
(
U∗
ϕ −

ϕ′(f∗(x̄))

ϕ′(−f∗(x̄))
U(f∗)

)
≤ ϕ′(−f∗(x̄))

(
U∗
ϕ −

ϕ′(f∗(x̄))

ϕ′(−f∗(x̄))

)
(∵ U(f∗) ≤ 1)

≤ ϕ′(−f∗(x̄))(U∗
ϕ − τ)

≤ 0, (∵ U∗
ϕ ≥ τ)

where the assumption limm↘0 ϕ
′(m) ≥ τ limm↗0 ϕ

′(m) (for m > 0) and
convexity of ϕ imply the second inequality. Thus, η(x̄) ≥ U(f∗)

1+U(f∗) holds,
which is contradiction.

If ϕ′(−f∗(x̄)) = 0, then ϕ′(f∗(x̄)) = 0 from the assumption limm↘0 ϕ
′(m) ≥

τ limm↗0 ϕ
′(m), which immediately results in a contradiction.
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2) If f∗(x̄) ≤ 0 and η(x̄) > U(f∗)
1+U(f∗) , we begin from the stationary condition

Equation (3.10). If ϕ′(−f∗(x̄)) < 0,

η(x̄) =
U∗
ϕ

ϕ′(f∗(x̄))
ϕ′(−f∗(x̄)) + U∗

ϕ

≤
U∗
ϕ

1 + U∗
ϕ

≤ U(f∗)

1 + U(f∗)
,

where the first inequality follows from ϕ′(m)
ϕ′(−m) ≥ 1 for m ≤ 0, and the second

inequality follows because Uϕ(f) ≤ U(f) (∀f) and the function x 7→ x
1+x

(0 ≤ x ≤ 1) is monotonically increasing (see Figure 3.11). This contradicts
η(x̄) > U(f∗)

1+U(f∗) .

It is easy to see such a contradiction in the case of ϕ′(−f∗(x̄)) = 0.

Combining the above cases, it follows that

sup
f ̸∈B

Uϕ(f) < sup
f
U(f).

3.8.3 Proof of Lemma 3.16

First, we need to carefully analyze our non-smooth surrogate loss to handle the
Rademacher complexity.

Definition 3.18 (Rademacher complexity). Let S := { z1, . . . , zn } ⊆ Z be a
sample with size n. In addition, let G ⊆ RZ be a subset of measurable func-
tions, and σ := (σ1, . . . , σn) be the Rademacher variables. Then, the Rademacher
complexity of G of the sample size n is defined as

Rn(G) := E
S
E
σ

[
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

σig(zi)

∣∣∣∣∣
]
.

We usually analyze the Rademacher complexity of the composite function
class ϕ ◦ F := {(x, y) 7→ ϕ(yf(x)) | f ∈ F} by applying the Ledoux-Talagrand’s
contraction inequality [Ledoux and Talagrand, 1991] when the surrogate ϕ is
Lipschitz continuous: Rn(ϕ ◦ F) ≤ 2ρϕRn(F), where ρϕ is the Lipschitz norm of
ϕ. By contrast, we need to deal with the case of the uniform convergence of the
gradients, which requires a smoothness of the surrogate, whereas the τ -discrepant
loss is a non-smooth surrogates. Thus, we need an alternative analysis.

Lemma 3.19. Assume that ϕ is τ -discrepant and can be decomposed as ϕ(m) =
ϕ+1(m)1{m>0} + ϕ−1(m)1{m≤0}. For k = 0, 1, define

W̃ ′
k,ϕ ◦ F :=

{
(x, y) 7→ W̃ ′

k,ϕ(f(x), y)
∣∣∣ f ∈ F } .

Then,

Rn(W̃
′
k,ϕ ◦ F) ≤ 2(γ+1 + γ−1)Rn(F).
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Proof. First, we provide a proof for k = 0. Note that W̃ ′
0,ϕ(f(x), y) = −yϕ′(yf(x)).

Rn(W̃
′
0,ϕ ◦ F) = E

S,σ

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σi(−yiϕ′(yif(xi)))

∣∣∣∣∣
]

= E
S,σ

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σiϕ
′(yif(xi))

∣∣∣∣∣
]

≤ E
S,σ

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σiϕ
′
−1(yif(xi))1{yif(xi)≤0}

∣∣∣∣∣
]

︸ ︷︷ ︸
(A)

+ E
S,σ

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σiϕ
′
+1(yif(xi))1{yif(xi)>0}

∣∣∣∣∣
]

︸ ︷︷ ︸
(B)

,

where the triangular inequality is invoked at the last inequality. For (A), let
ψ−1(m) := ϕ′−1(m) m|m| if m 6= 0, and ψ−1(0) := 0. Because ψ′

−1(m) = ϕ′′−1(m) m|m| ,
the Lipschitz norm of ψ−1 can be computed as

sup
f∈F ,(x,y)∈X×Y

|ψ′
−1(f(x))| = sup

f,x,y
|ϕ′′−1(yf(x))| · sup

f,x,y

∣∣∣∣ yf(x)|yf(x)|

∣∣∣∣ = γ−1.

Note that the Lipschitz norm of ϕ′−1 is γ−1 because ϕ−1 is γ−1-smooth. We then

further bound (A) by using the fact 1{yif(xi)≤0} =
1− yif(xi)

|yif(xi|
2 .

(A) = E
S,σ

sup
f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

σiϕ
′
−1(yif(xi))

1− yif(xi)
|yif(xi)|

2

∣∣∣∣∣∣


≤ 1

2
E
S,σ

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σiϕ
′
−1(yif(xi))

∣∣∣∣∣
]
+

1

2
E
S,σ

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σiψ−1(yif(xi))

∣∣∣∣∣
]

=
1

2
Rn(ϕ

′
−1 ◦ F) +

1

2
Rn(ψ−1 ◦ F)

≤ 1

2
· 2γ−1Rn(F) +

1

2
· 2γ−1Rn(F)

= 2γ−1Rn(F),

where the second inequality is the result of Ledoux-Talagrand’s contraction in-
equality [Ledoux and Talagrand, 1991, Theorem 4.12]. Note that both ϕ′−1 and
ψ−1 are γ−1-Lipschitz. The bound (B) ≤ 2γ+1Rn(F) can be proven as well. We
omit the proof for k = 1, which follows the same proof strategy.

Now, we move on to the proof of Lemma 3.16.

Proof of Lemma 3.16. We write Vϕ(fθ) as Vϕ(θ). If we explicit note for which
sample we take the empirical average in V̂ϕ(θ), let us write V̂ϕ(θ;S). Let E(S) :=
supθ∈Θ ‖V̂ϕ(θ;S)−Vϕ(θ)‖. For simplicity, we write zi := (xi, yi) and W̃0,ϕ(θ; zi) :=

W̃0,ϕ(fθ(xi), yi). First, we observe E(S) admits the bounded difference prop-
erty [McDiarmid, 1989].

67



Denote S := { zi }i∈[n] and S ′ := { z1, . . . , z′k, . . . , zn }. If 1 ≤ k ≤ m,

sup
S⊆X×Y
z′k∈X×Y

|E(S)− E(S ′)|

≤ sup
S,z′k,θ

‖V̂ϕ(θ;S)− V̂ϕ(θ;S ′)‖ (∵ triangular inequality)

=
1

m(n−m)
sup
S,z′k,θ

∥∥∥∥∥∥
{
∇W̃0,ϕ(θ; zk)−∇W̃0,ϕ(θ; z

′
k)
} n∑
j=m+1

W̃1,ϕ(θ; zj)

−
{
W̃0,ϕ(θ; zk)− W̃0,ϕ(θ; z

′
k)
} n∑
j=m+1

∇W̃1,ϕ(θ; zj)

∥∥∥∥∥∥
≤ 1

m(n−m)
sup
S,z′k,θ

(‖∇W̃0,ϕ(θ; zk)‖+ ‖∇W̃0,ϕ(θ; z
′
k)‖
) n∑
j=m+1

|W̃1,ϕ(θ; zj)|

+
(
|W̃0,ϕ(θ; zk)|+ |W̃0,ϕ(θ; z

′
k)|
) n∑
j=m+1

‖∇W̃1,ϕ(θ; zj)‖


≤ 2ρ0cX · (n−m)c1 + 2c0 · (n−m)ρ1cX

m(n−m)

=
4cX (ρ1c0 + ρ0c1)

n
,

where the second inequality also holds owing to the triangular inequality, and the
last inequality follows from the fact that W̃0,ϕ and W̃1,ϕ are ρ0-/ρ1-Lipschitz and
bounded by c0 and c1, respectively. The same holds for the case m+ 1 ≤ k ≤ n.

Thus, E is the bounded difference with a constant (4cX (ρ1c0 + ρ0c1))/n for
each index, and we can obtain the following inequality by McDiarmid’s inequal-
ity [McDiarmid, 1989], i.e., with a probability of at least 1− δ,

E(S)− E
S
[E(S)] ≤

√
8c2X (ρ1c0 + ρ0c1)2 log

2
δ

n
.

Next, we bound ES [E(S)] based on the symmetrization device [Ledoux and
Talagrand, 1991, Lemma 6.3].

E
S
[E(S)]

≤ E
S
sup
θ

∥∥∥∥∥∥ 1

m(n−m)

m∑
i=1

n∑
j=m+1

W̃1,ϕ(θ; zj)∇W̃0,ϕ(θ; zi)− E[W1,ϕ∇W0,ϕ]

∥∥∥∥∥∥︸ ︷︷ ︸
(A)

+ E
S
sup
θ

∥∥∥∥∥∥ 1

m(n−m)

m∑
i=1

n∑
j=m+1

W̃0,ϕ(θ; zi)∇W̃1,ϕ(θ; zj)− E[W0,ϕ∇W1,ϕ]

∥∥∥∥∥∥︸ ︷︷ ︸
(B)

,

(3.11)
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where the second line is the result of the triangular inequality, and

E
S
[(A)]

= E
S
sup
θ

∥∥∥∥∥∥ 1

m(n−m)

m∑
i=1

n∑
j=m+1

W̃1,ϕ(θ; zj)
(
∇W̃0,ϕ(θ; zi)− E[∇W0,ϕ]

)

+
1

m(n−m)

m∑
i=1

n∑
j=m+1

E[∇W0,ϕ]
(
W̃1,ϕ(θ; zj)− E[W1,ϕ]

)∥∥∥∥∥∥
≤ E

S
sup
θ

 1

m(n−m)

n∑
j=m+1

|W̃1,ϕ(θ; zj)| ·

∥∥∥∥∥
m∑
i=1

∇W̃0,ϕ(θ; zi)− E[∇W0,ϕ]

∥∥∥∥∥
+

1

m(n−m)

m∑
i=1

‖E[∇W0,ϕ]‖ ·

∣∣∣∣∣∣
n∑

j=m+1

W̃1,ϕ(θ; zj)− E[W1,ϕ]

∣∣∣∣∣∣


= c1 E
S

[
sup
θ

∥∥∥∥∥ 1

m

m∑
i=1

∇W̃0,ϕ(θ; zi)− E[∇W0,ϕ]

∥∥∥∥∥
]

︸ ︷︷ ︸
(A’)

+ ρ0cX E
S

sup
θ

∣∣∣∣∣∣ 1

n−m

n∑
j=m+1

W̃1,ϕ(θ; zj)− E[W1,ϕ]

∣∣∣∣∣∣


︸ ︷︷ ︸
(A”)

,

where the first inequality is the triangular inequality. Now we introduce the
Rademacher random variables σ1:n := (σ1, . . . , σn).

• For (A’),

(A’) ≤ E
S,σ1:m

[
sup
θ

d∑
l=1

∣∣∣∣∣ 1n
m∑
i=1

∇θlW̃0,ϕ(θ; zi)− E[∇θlW0,ϕ]

∣∣∣∣∣
]

≤
d∑
l=1

E
S,σ1:m

[
sup
θ

∣∣∣∣∣ 2m
m∑
i=1

σi∇θlW̃0,ϕ(θ; zi)

∣∣∣∣∣
]

=

d∑
l=1

2 E
S,σ1:m

[
sup
θ

∣∣∣∣∣ 1m
m∑
i=1

σiW̃
′
0,ϕ(θ; zi) · xl

∣∣∣∣∣
]

≤
d∑
l=1

2 E
S,σ1:m

[
sup
θ

∣∣∣∣∣ 1m
m∑
i=1

σiW̃
′
0,ϕ(θ; zi)

∣∣∣∣∣ · cX
]

≤ 4dcX (γ+1 + γ−1)Rm(F)
= 4dcX (γ+1 + γ−1)Rn/2(F),

where the first inequality is owing to ‖·‖2 ≤ ‖·‖1, the second inequality is ow-
ing to the symmetrization device, the third line is owing to∇θW̃0,ϕ(θ

⊤x), y) =
−yϕ′(yθ⊤x) · x, and the last inequality uses Lemma 3.19.

• For (A”),

(A”) ≤ E
S,σm:n−m

sup
θ

∣∣∣∣∣∣ 2

n−m

n∑
j=m+1

σjW̃1,ϕ(θ; zi)

∣∣∣∣∣∣


≤ 4ρ1Rn−m(F) = 4ρ1Rn/2(F),
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where the first inequality is owing to the symmetrization device and the
second inequality uses Ledoux-Talagrand’s contraction inequality [Ledoux
and Talagrand, 1991, Theorem 4.12], together with the fact that W̃1,ϕ is
ρ1-Lipschitz continuous.

Thus, Equation (3.11) can be bounded as follows.

E
S
[E(S)]

≤ c1(A’) + ρ0cX (A”) + E
S
[(B)]

≤ 4dcX c1(γ+1 + γ−1)Rn/2(F) + 4ρ0ρ1cXRn/2(F)
+ 4dcX c0(γ+1 + γ−1)Rn/2(F) + 4ρ1ρ0cXRn/2(F)︸ ︷︷ ︸

can be proven in the same manner as (A)

= (4cX c0dγ + 4cX c1dγ + 8ρ0ρ1cX )Rn/2(F) (γ := γ+1 + γ−1)

≤ (4cX c0dγ + 4cX c1dγ + 8ρ0ρ1cX )

√
2cX cΘ√
n

,

where the last inequality comes from Mohri et al. [2018, Theorem 4.3].
Finally, we obtain the desired uniform bound: with a probability of at least

1− δ,

sup
θ∈Θ

∥∥∥V̂ϕ(θ;S)− Vϕ(θ)∥∥∥ = E(S)

≤ E
S
[E(S)] +

√
8cX (ρ1c0 + ρ0c1)

√
log 2

δ√
n

≤
(4cX c0dγ + 4cX c1dγ + 8ρ0ρ1cX ) +

√
8cX (ρ1c0 + ρ0c1)

√
log 2

δ√
n

.

3.9 Conclusion

In this chapter, we provided a new insight into a calibrated surrogate for the
linear-fractional metrics. Sufficient conditions for a surrogate calibration were
given, which to the best of our knowledge are the first calibration results for the
linear-fractional metrics. A surrogate maximization can be conducted through
the combination of concave and quasiconcave programs, and its performance is
validated based on simulations.
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Chapter 4

Calibrated Surrogate Losses for Robust
Classification

Adversarially robust classification seeks a classifier that is insensitive to adversar-
ial perturbations of the test patterns. This problem is often formulated through
a minimax objective, where the target loss is the worst-case value of the 0-1 loss
subject to a bound placed on the size of the perturbation. In an effort to make the
optimization more tractable, recent studies have proposed convex surrogates for
the adversarial 0-1 loss. A primary question is that of consistency, that is, whether
a minimization of the surrogate risk implies a minimization of the adversarial 0-1
risk. In this chapter, we analyze this question through the lens of calibration,
which is a pointwise notion of consistency. We show that no convex surrogate
loss is calibrated with respect to the adversarial 0-1 loss when restricted to the
class of linear models. We further introduce a class of nonconvex losses and offer
necessary and sufficient conditions for losses in this class to be calibrated. We
also show that if the underlying distribution satisfies Massart’s noise condition,
convex losses can also be calibrated within an adversarial setting.

4.1 Introduction

In conventional machine learning, training and testing instances are assumed to
follow the same probability distribution. In adversarially robust machine learning,
test instances may be perturbed by an adversary before being presented to the
predictor. Recent studies have shown that seemingly insignificant adversarial
perturbations can lead to significant performance degradations of otherwise highly
accurate classifiers [Goodfellow et al., 2015]. This has led to the development of a
number of methods for learning predictors with decreased sensitivity to adversarial
perturbations [Xu et al., 2009, Xu and Mannor, 2012, Goodfellow et al., 2015,
Cisse et al., 2017, Wong and Kolter, 2018, Raghunathan et al., 2018a, Tsuzuku
et al., 2018].

Adversarially robust classification is typically formulated as an empirical risk
minimization with an adversarial 0-1 loss, which is the maximum of the usual
0-1 loss over a set of possible perturbations of the test instance. This minimax
optimization problem is nonconvex, and a recent study, reviewed in Section 4.4,
has proposed several convex surrogate losses. However, it is still unknown whether
minimizing these convex surrogates leads to a minimization of the adversarial 0-1
loss.

In this chapter, we examine the question of which surrogate losses are cali-
brated with respect to (w.r.t.) the adversarial 0-1 loss. The term “calibration”,
defined accurately below, means that for each possible input x, minimization of
the excess surrogate risk (over a specified class of decision functions) implies a
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(a) Ramp loss (β = 0.5)
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Figure 4.1: The best linear classifier under each loss. The shift parameter β for a surrogate
loss is defined in Section 4.8. The ℓ2-balls associated with each instance indicate adversarial
perturbations with a radius of 0.1. The yellow balls indicate instances vulnerable to perturba-
tions, in that they are within 0.1 of the decision boundary. In this example, 1.2% of instances
are vulnerable under the ramp loss, whereas 10.4% of the instances are vulnerable under the
hinge loss.

minimization of the excess target risk. Calibration thus ensures pointwise con-
sistency, and this notion has been repeatedly used to prove the consistency of
algorithms based on the surrogate losses. Employing the calibration function per-
spective of Steinwart [2007], we show that no convex surrogate loss is calibrated
w.r.t. the adversarial 0-1 loss for general distributions when restricted to the class
of linear models (Section 4.6). Intuitively, this is because convex losses prefer pre-
dictions close to the decision boundary on average when P(Y = +1 | X) ≈ 1

2 ,
whereas predictions that are too close to the decision boundary should be pe-
nalized in adversarially robust classification. We also provide necessary and suf-
ficient conditions for a certain class of nonconvex losses to be calibrated w.r.t.
the adversarial 0-1 loss (Section 4.7). These calibrated losses attain robustness
by penalizing predictions that are too close to the decision boundary. Finally,
we show that under a certain type of low-noise condition [Massart and Nédélec,
2006], convex losses can be calibrated (Section 4.9).

Our analysis depends on the fact that the adversarially robust 0-1 loss equals
the horizontally shifted (non-robust) 0-1 loss when restricted to linear models
(Proposition 4.1). In summary, we argue against the use of convex losses in
adversarially robust classification (with linear models), and calibrated nonconvex
losses serve as good alternatives.

Our results demonstrate that adversarial robustness requires different surro-
gates than other notions of robustness. For example, symmetric losses such as the
sigmoid and ramp losses are robust to label noise [Ghosh et al., 2015], but not cal-
ibrated w.r.t. the adversarial 0-1 loss. Figure 4.1 illustrates the results of learning
a linear classifier w.r.t. a shifted ramp loss, which is calibrated w.r.t. the adver-
sarial 0-1 loss, and a shifted hinge loss, which is not (these losses are discussed in
detail later). Whereas the hinge loss yields a classifier with smaller misclassifica-
tion rate w.r.t. the conventional 0-1 loss, this classifier is quite sensitive to small
perturbations of the test instances. The classifier learned by the ramp loss, by
contrast, makes fewer errors when subjected to adversarial perturbations.
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4.1.1 Organization of This Chapter

The rest of this chapter is organized as follows. Section 4.3 formalizes the nota-
tions and the problem. Related studies on robust learning and calibration analysis
are reviewed in Section 4.4. Technical details of the calibration analysis are re-
viewed in Section 4.5. Section 4.6 describes the nonexistence of convex calibrated
surrogate losses, whereas Section 4.7 presents general calibration conditions for a
certain class of nonconvex losses. Section 4.8 applies our theory to several convex
and nonconvex losses for the calibrated nonconvex losses. Calibration analysis
under low-noise conditions is shown in Section 4.9. Section 4.10 shows simula-
tion results verifying that calibrated losses achieve an excess target risk tending
toward zero under a robust 0-1 loss. Finally, some concluding remarks are given
in Section 4.12.

4.2 Notation and Preliminaries

4.2.1 Basic Notation

Let Bp(r) :=
{
v ∈ Rd

∣∣ ‖v‖p ≤ r } be a d-dimensional closed ℓp-ball with radius
r, and B◦p(r) :=

{
v ∈ Rd

∣∣ ‖v‖p < r
}

be an open ℓp-ball. We define the infimum
over an empty set as +∞. For a function h : S → R, we write h⋆⋆ : S → R for the
Fenchel-Legendre biconjugate of h, characterized by epi(h⋆⋆) = co epi(h), where
coS is the closure of the convex hull of the set S, and epi(h) is the epigraph of
the function h: epi(h) := { (x, t) | x ∈ S, h(x) ≤ t }.

4.2.2 Convex and Quasiconvex Analysis

This subsection summarizes the basic tools used for convex and quasiconvex anal-
yses.

Quasiconvex function. A function h : S → R on a (finite-dimensional) vector
space S is said to be quasiconvex if for all x,y ∈ S and λ ∈ [0, 1], h(λx+(1−λ)y) ≤
max { h(x), h(y) }. A function h is said to be quasiconcave if −h is quasiconvex:
For all x,y ∈ S and λ ∈ [0, 1], h(λx+ (1− λ)y) ≥ min { h(x), h(y) }. Intuitively,
quasiconvexity relaxes the convexity in that a function still preserves the “uni-
modality” although it loses a definite curvature. There is an equivalent definition
(herein, we only show this for quasiconcavity) such that h is quasiconcave if every
superlevel set { x | h(x) ≥ t } for t ∈ R is a convex set [Boyd and Vandenberghe,
2004].

Subderivative. To analyze the convexity and quasiconvexity, a subderivative
is a useful tool. We adopt the Clarke definition of subderivative [Clarke, 1990,
Aussel et al., 1994]. Let S∗ be the dual space of S and 〈·, ·〉 be the dual pairing.1

The (Clarke) subderivative of a lower semicontinuous function h is the operator
∂h : S → S∗ defined for each x ∈ S such that

∂h(x) := { x∗ ∈ S∗ | 〈x∗,x〉 ≤ h◦(x;v) ∀v ∈ S } ,

1For two vector spaces U and V over the same field F and a bilinear map ⟨·, ·, ⟩ : U×V → F ,
we state that a triple (U, V, ⟨·, ·, ⟩) is a dual pair if there exists v ∈ V such that ⟨u,v⟩ ̸= 0 for
all u ∈ U and there exists u ∈ U such that ⟨u,v⟩ ̸= 0 for all v ∈ V . Here, V is called a dual
space of V , and ⟨·, ·⟩ is called a dual pairing.
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where h◦(x;v) is the Rockafellar directional derivative (see Clarke [1990] and
Aussel et al. [1994] for the formal definition). When h is locally Lipschitz at
x ∈ S, Clarke [1990] states that this is equivalent to

∂h(x) = co { lim∇f(xi) | xi → x,xi 6∈ Υ ∪ Ωh } ,

where co is the convex hull, Υ is any set of measure zero, and Ωh is the set of
points where h is non-differentiable.

Properties of subderivative. Several basic properties of subderivatives are
shown in Clarke [1990, Section 2.3] such as

• (scalar multiples) ∂(th)(x) = t∂h(x) := { tx∗ | x∗ ∈ ∂h(x) },

• (finite sums) ∂ (
∑
hi) (x) ⊆

∑
∂hi(x) := {

∑
xi,∗ | xi,∗ ∈ ∂hi(x) },

• 0 ∈ ∂h(x) if h attains a local extrema at x.

When h is locally Lipschitz, it clearly holds that ∂h(x) = {h′(x)} if h is differen-
tiable at x.

Operator monotonicity. Convex smooth functions have monotonically non-
decreasing derivatives. This can be extended to non-smooth functions through
the subderivatives. Let h : S → R be a lower semicontinuous function. Then h
is convex if and only if ∂h : S → S∗ is a monotone operator [Aussel et al., 1994],
that is, 〈y∗−x∗,y−x〉 ≥ 0 for all x,y ∈ dom(h) and x∗ ∈ ∂h(x),y∗ ∈ ∂h(y). In
addition, h is quasiconvex if and only if ∂h is a quasimonotone operator [Aussel
et al., 1994], that is, 〈x∗,y − x〉 > 0 =⇒ 〈y∗,y − x〉 ≥ 0 for all x,y ∈ dom(h)
and x∗ ∈ ∂h(x),y∗ ∈ ∂h(y).

4.2.3 Formulation of Loss and Risk

Let X := B2(1) be the feature space, Y := {±1} be the binary label space, and
F ⊆ RX be a function class. We consider symmetric F , that is, −f ∈ F for
all f ∈ F . We write Fall ⊆ RX for the space of all measurable functions. Let
ℓ : Y × X × F → R≥0 be a loss function.2 Then, we write

Rℓ(f) := E
(X,Y)

[ℓ(Y,X, f)]

for the ℓ-risk of f ∈ F , where (X,Y) ∈ X × Y are random variables jointly
distributed following the underlying distribution P(X,Y). Subsequently, P(X)
and P(Y|X) denote the X -marginal and the posterior distributions, respectively.
If ℓ can be represented by ℓ(y,x, f) = ϕ(yf(x)) with some ϕ : R → R≥0 for any
y ∈ Y , x ∈ X , and f ∈ F , ϕ is called a margin-based loss function. We define the
ϕ-risk of f ∈ F for a margin-based loss ϕ by

Rϕ(f) := E
(X,Y)

[ϕ(Yf(X))] = E
X

E
Y|X

[ϕ(Yf(X))], (4.1)

where EX and EY|X indicate the expectation over P(X) and P(Y|X), respectively.
We can rewrite Equation (4.1) as Rϕ(f) = EX[Cϕ(f,P(Y = +1 | X),X)] with

Cϕ(f, η,x) := ηϕ(f(x)) + (1− η)ϕ(−f(x)).
2Although the loss function ℓ introduced in Section 2.1.2 is defined over (f(x), y) ∈ R × Y,

the loss function introduced in this chapter is defined over (y,x, f) ∈ Y×X ×F . This is because
the norm of the feature x has an influence on the loss value in adversarial robust classification.

74



We call Cϕ(f, η,x) the class-conditional ϕ-risk, or ϕ-CCR. The minimal ϕ-risk
(over a function class F)

R∗
ϕ,F := inf

f∈F
Rϕ(f)

is called the Bayes (ϕ, F)-risk, and the minimal ϕ-CCR on F at x is denoted by

C∗
ϕ,F (η,x) := inf

f∈F
Cϕ(f, η,x).

We refer to Rϕ(f) − R∗
ϕ,F as the (ϕ,F)-excess risk. We occasionally use the

abbreviation

∆Cϕ,F (f, η,x) := Cϕ(f, η,x)− C∗
ϕ,F (η,x)

to denote the excess (ϕ,F)-CCR at x. For non-margin-based loss function ℓ, we
define the ℓ-CCR Cℓ,F (f, η,x), the minimal ℓ-CCR C∗

ℓ,F (η,x), and ∆Cℓ,F (f, η,x)
in the same manner.

4.3 Surrogate Losses for Adversarial Robust Classification

In supervised binary classification, a learner is asked to output a predictor f :
X → R that minimizes the classification error P{Yf(X) ≤ 0}, where P is the
unknown underlying distribution. This can be equivalently interpreted as the
minimization of the risk E(X,Y)[ℓ01(Y,X, f)] w.r.t. f , where

ℓ01(y,x, f) :=

{
1 if y 6= sgn(f(x)),

0 otherwise

is the 0-1 loss. Here, we adopt the convention sgn(0) := +1. By contrast, an
adversarially robust learner is asked to output a predictor f that minimizes the
0-1 loss while being tolerant to small perturbations to the input data points.
Following existing studies [Xu et al., 2009, Tsuzuku et al., 2018, Bubeck et al.,
2019], we consider ℓ2-ball perturbations and define the goal as the minimization
of

P{∃∆x ∈ B2(γ) s.t. X+∆x ∈ X and Yf(X+∆x) ≤ 0},

where ∆x is a perturbation vector and γ ∈ (0, 1) is a pre-defined perturbation
budget. Equivalently, the goal of adversarially robust classification is to minimize
E(X,Y)[ℓγ(Y,X, f)] w.r.t. f , where

ℓγ(y,x, f) :=

{
1 if ∃∆x ∈ B2(γ) s.t. x+∆x ∈ X and yf(x+∆x) ≤ 0,

0 otherwise.

We call this loss function ℓγ adversarially robust 0-1 loss, or robust 0-1 loss for
short.

The robust 0-1 loss is a margin-based loss when restricted to the class of
linear models Flin :=

{
x 7→ θ⊤x

∣∣ θ ∈ Rd, ‖θ‖2 = 1
}
⊆ RX . Note that Flin is

symmetric.

Proposition 4.1. For any x ∈ X , y ∈ Y, and f ∈ Flin, we have ℓγ(y,x, f) =
1{yf(x)≤γ}.
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Proof. Fix (x, y) ∈ X × Y and f ∈ Flin associated with parameter θ ∈ Rd.
Because we can prove the case y = −1 in the same manner, assume y = +1 below
without loss of generality.

We will check the existence of ∆x ∈ B2(γ) such that θ⊤(x + ∆x) ≤ 0 and
x+∆x ∈ X , depending on the value θ⊤x. If θ⊤x ≤ 0, the trivial choice ∆x = 0
satisfies θ⊤(x+∆x) ≤ 0.

If 0 < θ⊤x ≤ γ, the choice ∆x := −(θ⊤x)θ satisfies them, i.e., ‖∆x‖2 =
θ⊤x ≤ γ implies ∆x ∈ B2(γ), θ⊤(x +∆x) = θ⊤x − θ⊤x = 0, and ‖x +∆x‖22 =

‖x‖2 −
(
θ⊤x

)2 ≤ ‖x‖2 ≤ 1 implies x+∆x ∈ X .
If θ⊤x > γ, we can check θ⊤(x+∆x) > 0 for any ∆x ∈ B2(γ). We consider the

convex optimization problem min∆x∈B2(γ) θ
⊤(x+∆x). Consider the Lagrangian

L(∆x, µ) := θ⊤(x+∆x) + µ(‖∆x‖2 − γ),

where µ ∈ R is a KKT multiplier. Its KKT conditions are
−θ = µ ∆x

∥∆x∥2 ,

‖∆x‖2 ≤ γ,
µ ≥ 0,

µ(‖∆x‖2 − γ) = 0.

The objective is minimized when the constraint ‖∆x‖2 ≤ γ is activated, where the
multiplier µ > 0 and ∆x = − γ

µθ, meaning that ∆x is parallel to θ in the opposite
direction. Hence, ∆x = −γθ is the minimizer. We have θ⊤(x+∆x) = θ⊤x−γ > 0
with this minimizer ∆x.

By combining the three cases, we have ℓγ(+1,x, f) = 1{θ⊤x≤γ}.

Subsequently, when considering Flin, we work with the loss function

ϕγ(α) := 1{α≤γ}

and call ϕγ the γ-robust 0-1 loss. We will study calibrated surrogates w.r.t. ϕγ
instead of ℓγ , and both are equivalent under the restricted function class Flin.

In many machine learning problems, there are often dichotomies between opti-
mization (learning) and evaluation. For instance, binary classification is evaluated
by the 0-1 loss, whereas common learning methods such as the support vector ma-
chine and logistic regression minimize surrogates to the 0-1 loss. This dichotomy
arises because minimizing the 0-1 loss directly is known to be NP-hard [Feldman
et al., 2012]. Many studies has investigated surrogates ϕ satisfying

Rϕ(fi)−R∗
ϕ,F → 0 =⇒ Rℓ(fi)−R∗

ℓ,F → 0, (4.2)

for all probability distributions and the sequence of {fi}i∈N ⊆ F . When Equa-
tion (4.2) is satisfied, the surrogate ϕ is said to be (ℓ,F)-consistent.

In this chapter, we study a pointwise form of consistency, known as calibration,
which can be viewed as consistency of the excess (ϕ,F)-CCR Cϕ,F (f, η,x) −
C∗
ϕ,F (η,x) at each x ∈ X (formally defined in Section 4.5). Because CCRs are

defined in a pointwise manner, calibration analysis is easier than analyzing the
consistency directly, and has been used to prove the consistency in a number of
learning settings, as we will see in Section 4.4. For example, calibration analysis
has been conducted in standard binary classification [Bartlett et al., 2006], where
calibration is necessary [Steinwart, 2007, Theorem 3.3] and sufficient [Steinwart,
2007, Theorem 2.8] for consistency when F = Fall. When F 6= Fall, calibration
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may not be sufficient for consistency, although it remains an important first step
to analyze and understand the consistency in standard classification [Long and
Servedio, 2013, Zhang and Agarwal, 2020]. This motivated the study of calibration
in the context of adversarially robust classification.

4.4 Related Work

From the viewpoint of robust optimization [Ben-Tal et al., 2009, Bertsimas et al.,
2011], adversarially robust binary classification can be formulated as3

min
f∈F

E
(X,Y)

[
max

X̃∈U(X)
ℓ(Y, X̃, f)

]
, (4.3)

where ℓ is a loss function and U(x) is a user-specified uncertainty set. The op-
timization problem of adversarially robust classification minf∈F Rℓγ (f) can be
regarded as a special case, ℓ = ℓ01 and U(x) = x+ B2(γ).

Because the minimax problem (4.3) is generally nonconvex, it is traditionally
tackled by minimizing a convex upper bound. Lanckriet et al. [2002] and Shiv-
aswamy et al. [2006] chose U(x) = { x ∼ (x̄,Σx) } as an uncertainty set, where
x ∼ (x̄,Σx) means that x is drawn from a distribution that has a prespecified
mean x̄, covariance Σx, and arbitrarily higher moments. Lanckriet et al. [2002]
and Shivaswamy et al. [2006] convexified Equation (4.3) and obtained a second-
order cone program. In addition, Xu et al. [2009] studied the relationship between
robustness and regularization, and showed that Equation (4.3) with the hinge loss
and U(x) = x + B2(γ) is equivalent to ℓ2-regularized SVM. Recently, Wong and
Kolter [2018], Madry et al. [2018], Raghunathan et al. [2018a], Raghunathan
et al. [2018b], and Khim and Loh [2019] examined Equation (4.3) using the soft-
max cross entropy loss and U(x) = x+ Bd∞(γ) when F is a set of deep nets, and
provided convex upper bounds of the worst-case loss in Equation (4.3). However,
no approach other than Cranko et al. [2019] considered whether the surrogate
objectives minimize the robust 0-1 excess risk. In addition, Cranko et al. [2019]
showed that no canonical proper loss [Reid and Williamson, 2010] can minimize
the robust 0-1 loss. Because canonical proper losses are convex, this result aligns
with our results. Dan et al. [2020] proposed the plug-in classifier based on the
linear discriminant analysis and showed that this procedure is consistent to the
robust 0-1 loss but under the assumption that data are normally distributed. We
show more general results through calibration analysis for U(x) = x+ B2(γ).

There are several other approaches to the robust classification such as mini-
mizing the Taylor approximation of the worst-case loss in Equation (4.3) [Good-
fellow et al., 2015, Gu and Rigazio, 2015, Shaham et al., 2018], regularization
on the Lipschitz norm of models [Cisse et al., 2017, Hein and Andriushchenko,
2017, Tsuzuku et al., 2018], and an injection of random noises to model parame-
ters called randomized smoothing [Lecuyer et al., 2019, Cohen et al., 2019, Pinot
et al., 2019, Salman et al., 2019]. It is not known whether these methods imply a
minimization of the robust 0-1 excess risk.

Other forms of robustness have also been considered in the literature. A
number of existing studied have considered the worst-case test distribution. This

3This formulation of adversarial robustness is often called loss-based robustness [Seshia et al.,
2018]. For other types of adversarial robustness, one may consider local robustness and global
robustness (also known as certification [Cohen et al., 2019]), which are interested in how a
classifier behaves around a fixed or each data point. Loss-based robustness is a stricter notion
because it involves the distributional information as well. Please refer to Seshia et al. [2018],
Dreossi et al. [2019] for more details.
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line includes divergence-based methods [Namkoong and Duchi, 2016, 2017, Hu
et al., 2018, Sinha et al., 2018], domain adaptation [Mansour et al., 2009, Ben-
David et al., 2010, Germain et al., 2013, Kuroki et al., 2019, Zhang et al., 2019b],
and methods based on constraints on the feature moments [Farnia and Tse, 2016,
Fathony et al., 2016].

In addition to adversarial robustness, it is worth mentioning outlier and label-
noise robustness. It is known that convex losses are vulnerable to outliers, thus
a truncation making the losses nonconvex is useful [Huber, 2011]. In a machine
learning context, Masnadi-Shirazi and Vasconcelos [2009] and Holland [2019] de-
signed nonconvex losses robust to outliers. By contrast, label-noise robustness,
particularly a random classification noise model, has been extensively studied [An-
gluin and Laird, 1988], where training labels are flipped with a fixed probability.
Long and Servedio [2010] showed that there is no convex loss that is robust to
label noises. Later, Ghosh et al. [2015], van Rooyen et al. [2015], and Charoen-
phakdee et al. [2019] discovered that a certain class of nonconvex losses is a good
alternative for label-noise robustness. In both outlier and label-noise robustness,
nonconvex loss functions play an important role, as we can see in adversarial
robustness.

Calibration analysis has been formalized in Lin [2004], Zhang [2004a], Bartlett
et al. [2006], and Steinwart [2007], and employed to analyze not only binary clas-
sification, but also complicated problems such as multi-class classification [Zhang,
2004b, Tewari and Bartlett, 2007, Long and Servedio, 2013, Ávila Pires and
Szepesvári, 2016, Ramaswamy and Agarwal, 2016], multi-label classification [Gao
and Zhou, 2011, Dembczynski et al., 2012], cost-sensitive learning [Scott, 2011,
2012, Ávila Pires et al., 2013], ranking [Duchi et al., 2010, Ravikumar et al.,
2011, Ramaswamy et al., 2013], structured prediction [Hazan et al., 2010, Ra-
maswamy and Agarwal, 2012, Osokin et al., 2017, Blondel, 2019], AUC optimiza-
tion [Gao and Zhou, 2015], and optimization of non-decomposable metrics [Bao
and Sugiyama, 2020]. In addition, Zhang [2004a], Ravikumar et al. [2011], and
Gao and Zhou [2015] determined ad hoc derivations of excess risk bounds, whereas
Bartlett et al. [2006], Steinwart [2007], Scott [2012], Ávila Pires et al. [2013],
Ávila Pires and Szepesvári [2016], Osokin et al. [2017], and Blondel [2019] used
more systematic approaches. For adversarially robust classification, Zhang et al.
[2019a, Theorem 3.1] applied the classical result of calibration analysis on convex
losses to upper bound the robust classification risk, resulting in a term requiring
numerical approximation in practice.

Finally, Awasthi et al. [2021a] contributed calibration analysis of adversarially
robust classification by showing that realizability assumptions are sufficient for
calibrated losses to imply consistency. They showed that no continuous margin-
based losses are calibrated and that some nonconvex and minimax-type losses
are consistent w.r.t. the robust 0-1 loss. Awasthi et al. [2021b] independently
corrected our main results and extended them to more general function classes
beyond Flin.

4.5 Calibration Analysis

Calibration analysis is a tool used to study the relationship between surrogate
losses and target losses. This section is devoted to describing the calibration
function introduced in Steinwart [2007] and specializing it to the current study.4

4We import toolsets from Steinwart [2007] for two reasons: (i) Steinwart [2007] formalized
calibration analysis that is dependent on the user-specified function classes, which is useful for
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Note that the subsequent definitions are more general than those introduced
in Section 2.3 in that a function class F is fixed. This is useful for our subsequent
analysis restricted to a linear model.

Definition 4.2. For a loss ψ : R → R≥0 and a function class F , we say a loss
ϕ : R → R≥0 is calibrated w.r.t. (ψ,F), or (ψ,F)-calibrated, if for any ε > 0,
η ∈ [0, 1], and x ∈ X , there exists δ > 0 such that for all f ∈ F , we have

Cϕ(f, η,x) < C∗
ϕ,F (η,x) + δ =⇒ Cψ(f, η,x) < C∗

ψ,F (η,x) + ε. (4.4)

If ϕ is (ψ,F)-calibrated, the condition (4.2) holds for any probability distri-
bution on X × Y satisfying the regularity conditions [Steinwart, 2007, Theorem
2.8].5

Next, we introduce the calibration function [Steinwart, 2007, Lemma 2.9].

Definition 4.3. For a margin-based loss ψ and ϕ, and a function class F , the
calibration function of ϕ w.r.t. (ψ,F), or simply calibration function if the context
is clear, is defined as

δ̄(ε, η,x) = inf
f∈F

{
Cϕ(f, η,x)− C∗

ϕ,F (η,x)
∣∣ Cψ(f, η,x)− C∗

ψ,F (η,x) ≥ ε
}
.

(4.5)

Note that δ̄(ε, η,x) is nondecreasing for ε > 0. The calibration function
δ̄(ε, η,x) is the maximal δ satisfying the CCR condition (4.4). Steinwart [2007] es-
tablished the following important result confirming whether a surrogate is (ψ,F)-
calibrated.

Proposition 4.4 (Steinwart [2007]). A surrogate loss ϕ is (ψ,F)-calibrated if and
only if its calibration function δ̄ satisfies δ̄(ε, η,x) > 0 for all ε > 0, η ∈ [0, 1],
and x ∈ X .

To see the relationship between (ψ,F)-excess risk and (ϕ,F)-excess risk, a
stronger notion of calibrated losses than Definition 4.2 is necessary.

Definition 4.5. For a loss ψ : R → R≥0 and a function class F , we state that
a loss ϕ : R → R≥0 is uniformly (ψ,F)-calibrated, if for any ε > 0, there exists
δ > 0 such that for all η ∈ [0, 1], f ∈ F , and x ∈ X , we have

Cϕ(f, η,x) < C∗
ϕ,F (η,x) + δ =⇒ Cψ(f, η,x) < C∗

ψ,F (η,x) + ε.

The corresponding uniform calibration function is defined as

δ(ε) = inf
η∈[0,1]

inf
x∈X

δ̄(ε, η,x).

Note that Definition 4.5 is slightly but substantially different from Defini-
tion 4.2 in that the order of quantifiers of δ and (η,x) is reversed. With this
notion, we can connect the surrogate excess risk to the target excess risk, as
shown in the following statement.

our analysis on Flin. (ii) Steinwart [2007] gave a general form of the calibration function (4.5),
whereas most of literature has focused on specific target losses.

5To imply (ψ,F)-consistency (4.2), the two loss functions ϕ and ψ are required to be P-
minimizable for the underlying distribution P, roughly indicating that their CCRs can be made
arbitrarily small by a function in F . This ensures that R∗

ϕ,F = EX[C
∗
ϕ,F (P(Y = +1 | X),X)].

The precise statements and more details regarding P-minimizability can be found in Section 2.3.
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Proposition 4.6 (Theorem 2.13 in Steinwart [2007]). Let δ : R≥0 → R≥0 be
the uniform calibration function of ϕ w.r.t. (ψ,F). Define δ̌ : R≥0 → R≥0 as
δ̌(ε) = δ(ε) if ε > 0 and δ̌(0) = 0. Suppose that ϕ and ψ are P-minimizable and
R∗
ϕ,F , R

∗
ψ,F <∞. Then, for all f ∈ F , we have

δ̌⋆⋆
(
Rψ(f)−R∗

ψ,F
)
≤ Rϕ(f)−R∗

ϕ,F , (4.6)

where δ̌⋆⋆ denotes the Fenchel-Legendre biconjugate of δ̌.

The relationship in Equation (4.6) is called an excess risk transform. The
excess risk transform is invertible iff ϕ is uniformly (ψ,F)-calibrated [Steinwart,
2007, Remark 2.14]. In this case, we obtain the excess risk bound Rψ(f)−R∗

ψ,F ≤
(δ̌⋆⋆)−1(Rϕ(f) − R∗

ϕ,F ).
6 In the end, the calibration function can be used in two

ways: Proposition 4.4 enables us to check if a surrogate loss is calibrated, and
Proposition 4.6 gives us a quantitative relationship between the surrogate excess
risk and the target excess risk. Such an analysis has been carried out in a number
of learning problems, as we mentioned in Section 4.4.

We review an important result regarding convex surrogates for the non-robust
0-1 loss ℓ01.

Proposition 4.7 (Theorem 6 in Bartlett et al. [2006]). Let ϕ be a convex sur-
rogate loss. Then, ϕ is uniformly calibrated w.r.t. (ℓ01,Fall) if and only if it is
differentiable at 0 and ϕ′(0) < 0.

As a result of Proposition 4.7, we know that many surrogate losses used in
practice such as the hinge loss, logistic loss, and squared loss are uniformly cal-
ibrated w.r.t. (ℓ01,Fall). One of our objectives in this paper is to establish a
general class of loss functions that are calibrated w.r.t. the adversarial 0-1 loss,
in analogy to Proposition 4.7.

Before proceeding to our main results, we present two lemmas that facilitate
our analysis. All proofs are deferred to Section 4.11.

Lemma 4.8. Let X̃ρ := X \ B◦2(γ + ρ) and ϕ be a continuous surrogate loss.
Denote

δρ(ε) = inf
η∈[0,1],
x∈X̃ρ,
f∈Flin

{
Cϕ(f, η,x)− C∗

ϕ,Flin
(η,x)

∣∣∣ Cϕγ (f, η,x)− C∗
ϕγ ,Flin

(η,x) ≥ ε
}
.

Then, ϕ is (ϕγ ,Flin)-calibrated if and only if δρ(ε) > 0 for all ε > 0 and ρ ∈
(0, 1− γ).

Proof. By Proposition 4.4, we need to show the following conditions are equiva-
lent.

(i) For all ε > 0, η ∈ [0, 1], and x ∈ X , δ̄(ε, η,x) > 0.

(ii) For all ε > 0 and ρ ∈ (0, 1− γ), δρ(ε) > 0.

We have ∆Cϕγ ,Flin
(f, η,x) = 0 for x with ‖x‖2 ≤ γ, from Equation (4.9) in the

proof of Lemma 4.9 (below). This means that the constraint ∆Cϕγ ,Flin
(f, η,x) ≥ ε

6In addition, it is known that a non-vacuous and distribution-independent excess risk trans-
form is available only if a surrogate is uniformly calibrated provided that the biconjugate of the
calibration function is invertible [Steinwart, 2007, Theorem 2.17]. Hence, a uniform calibration
is necessary to obtain an excess risk bound.
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in δ̄ would never be satisfied for ε > 0, where the infimum value of δ̄(ε, η,x) =∞
for all ε > 0, η ∈ [0, 1]. Note that

δρ(ε) = inf
η∈[0,1]

inf
∥x∥2≥γ+ρ

inf
f∈Flin

{
∆Cϕ,Flin

(f, η,x)
∣∣ ∆Cϕγ ,Flin

(f, η,x) ≥ ε
}

= inf
η∈[0,1]

inf
∥x∥2≥γ+ρ

δ̄(ε, η,x).

For (i) ⇒ (ii), let X̃ρ := X \ B◦2(γ + ρ) = { x ∈ X | ‖x‖2 ≥ γ + ρ }. For a
fixed ε > 0, the extreme value theorem states that δρ(ε) = δ̄(ε, ηε,xε) for some
(ηε,xε) ∈ [0, 1]×X̃ρ, by noting that δ̄(ε, ·, ·) : [0, 1]×X̃ρ → R≥0 is continuous and
its domain [0, 1]× X̃ρ is compact. Indeed, δ̄(ε, ·, ·) is continuous because it is the
infimum function of a continuous function over a compact set (see Equation (4.7)
in Lemma 4.9). Eventually, we have δρ(ε) ≥ δ̄(ε, ηε,xε) > 0 by using (i).

Subsequently, we check (ii) ⇒ (i). The condition (ii) implies that δ̄(ε, η,x) ≥
δρ(ε) > 0 for all ε > 0, η ∈ [0, 1], and x ∈ X with ‖x‖2 > γ. Together with
δ̄(ε, η,x) =∞ for all ε > 0, η ∈ [0, 1], and x ∈ X with ‖x‖2 ≤ γ, (i) is assured.

The calibration function with the restricted domain δρ is easier to work with
in the subsequent analyses.

Finally, we characterize the calibration function of an arbitrary surrogate loss
ϕ w.r.t. (ϕγ ,Flin).

Lemma 4.9. Let ϕ be a surrogate loss. Then, the (ϕγ ,Flin)-calibration function
is

δ̄(ε, η,x)

=


∞ if ε > max { η, 1− η },

inf
f∈Flin:|f(x)|≤γ

∆Cϕ,Flin
(f, η,x) if |2η − 1| < ε ≤ max { η, 1− η },

inf
f∈Flin:

(2η−1)f(x)≤0 or |f(x)|≤γ

∆Cϕ,Flin
(f, η,x) if ε ≤ |2η − 1|,

(4.7)

when ‖x‖ > γ, and δ̄(ε, η,x) =∞ when ‖x‖ ≤ γ.

Proof. We first simplify the constraint in the calibration function (4.5). The ϕγ-
CCR for f ∈ Flin at x is

Cϕγ (f, η,x) = η1{f(x)≤γ} + (1− η)1{f(x)≥−γ}

=


1 if |f(x)| ≤ γ,
1− η if γ < f(x),

η if f(x) < −γ.
(4.8)

To compute the minimal (ϕγ ,Flin)-CCR, we divide it into two cases.

• If ‖x‖2 ≤ γ, Cϕγ (f, η,x) = 1 for any f ∈ Flin because |f(x)| ≤ γ. Thus, we
have C∗

ϕγ ,Flin
(η,x) = 1 and ∆Cϕγ ,Flin

(f, η,x) = 0.

• If ‖x‖2 > γ, there exists f ∈ Flin such that Cϕγ (f, η,x) = min { η, 1− η }.
Thus, we have C∗

ϕγ ,Flin
(η,x) = min { η, 1− η }.
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This implies that

∆Cϕγ ,Flin
(f, η,x) =

{
max { η, 1− η } if |f(x)| ≤ γ,
|2η − 1| · 1{(2η−1)f(x)≤0} if γ < |f(x)|.

Note that the latter case is obtained in the same manner as Bartlett et al. [2006,
Proof of Theorem 3]. To summarize, we obtain the expression of ∆Cϕγ ,Flin

as

∆Cϕγ ,Flin
(f, η,x) =


0 if ‖x‖2 ≤ γ,
max{η, 1− η} if ‖x‖2 > γ and |f(x)| ≤ γ,
|2η − 1| · 1{(2η−1)f(x)≤0} if ‖x‖2 > γ and γ < |f(x)|.

(4.9)

Next, we simplify the infimum on f

inf
f∈Flin

{
∆Cϕ,Flin

(f, η,x)
∣∣ ∆Cϕγ ,Flin

(f, η,x) ≥ ε
}
= δ̄(ε, η,x)

in Equation (4.5), for a fixed η ∈ [0, 1] and x ∈ X .

• If ‖x‖2 ≤ γ or ε > max{η, 1− η}, no f ∈ Flin achieves ∆Cϕγ ,Flin
(f, η,x) ≥

ε, meaning that δ̄(ε, η,x) =∞.

• If ‖x‖2 > γ and |2η − 1| < ε ≤ max { η, 1− η },
∆Cϕγ ,Flin

(f, η,x) ≥ ε is achieved when |f(x)| ≤ γ. Hence,

δ̄(ε, η,x) = inf
f∈Flin

{∆Cϕ,Flin
(f, η,x) | |f(x)| ≤ γ } .

Note that |2η − 1| ≤ max { η, 1− η } = 1+|2η−1|
2 for all η ∈ [0, 1].

• If ‖x‖2 > γ and ε ≤ |2η − 1|,
∆Cϕ,Flin

(f, η,x) ≥ ε is achieved if either |f(x)| ≤ γ or (2η − 1)f(x) ≤ 0
holds. Hence,

δ̄(ε, η,x) = inf
f∈Flin

{∆Cϕ,Flin
(f, η,x) | |f(x)| ≤ γ or (2η − 1)f(x) ≤ 0 } .

These verify the statement of this lemma.

Lemmas 4.8 and 4.9 are used in the proofs and examples below.

4.6 Convex Surrogates are Not (ϕγ, Flin)-calibrated

Our first result concerns calibration of convex surrogate losses w.r.t. the γ-robust
0-1 loss.

Theorem 4.10. For any margin-based surrogate loss ϕ : R→ R≥0, if ϕ is convex,
then ϕ is not calibrated w.r.t. (ϕγ,Flin).

Proof. (Sketch) In a non-robust setup, Bartlett et al. [2006] showed that a surro-
gate loss is calibrated w.r.t. (ℓ01,Fall) iff inf(2η−1)f(x)≤0Cϕ(f, η,x) (the minimum
ϕ-risk over the “wrong” predictions) is larger than inff(x)∈RCϕ(f, η,x) (the mini-
mum ϕ-risk over all predictions) for η 6= 1

2 . This means that the wrong predictions
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α

ϕ(α) + ϕ(−α)

2

γ−γ−1 1

Figure 4.2: ϕ(α) + ϕ(−α) = 2Cϕ

(
f, 1

2
,x

)
is illustrated with α = f(x), where ϕ is the hinge

loss and γ = 0.5. ϕ(α) + ϕ(−α) has the same minimizers in both |α| ≤ γ and |α| ≤ 1.

α

ϕ(α) + ϕ(−α)

1

γ−γ

Figure 4.3: ϕ(α)+ϕ(−α) = 2Cϕ

(
f, 1

2
,x

)
is illustrated with α = f(x), where ϕ is the ramp loss

with β = 0.6 (defined in Section 4.8) and γ = 0.5. The condition ϕ(γ) + ϕ(−γ) > ϕ(α) + ϕ(−α)
for α ∈ (γ, 1] reflects the idea that predictions falling into the shaded area (|α| ≤ γ) must be
penalized more than the others.

must be penalized more. In our robust setup, we must penalize not only the wrong
predictions but also predictions that fall within the γ-margin, i.e.,

inf
f∈Flin:|f(x)|≤γ

Cϕ(f, η,x) > inf
f∈Flin

Cϕ(f, η,x), (4.10)

which is an immediate corollary of Proposition 4.4 and Lemma 4.9 and stated
in part 3 of Lemma 4.16 in Section 4.11. Equation (4.10) becomes harder to
satisfy as a data point becomes more uncertain (η → 1

2). In the limit, we have
inf |α|≤γ ϕ(α) + ϕ(−α) > infα∈R ϕ(α) + ϕ(−α), meaning that the even part of ϕ
should take larger values in |α| ≤ γ than in the rest of α. However, ϕ(α)+ϕ(−α)
attains the infimum at α = 0 because ϕ(α) + ϕ(−α) is convex and even as long
as ϕ is convex. Therefore, Equation (4.10) would never be satisfied through a
convex surrogate ϕ. This idea is illustrated in Figure 4.2.

Hence, many popular surrogate losses such as the hinge, logistic, and squared
error losses are not calibrated w.r.t. (ϕγ ,Flin). We defer all proofs to Section 4.11.

Note that the definition of calibration makes no assumptions regarding the
conditional distribution P(Y = +1 | X = x). If we additionally adopt the low
noise assumption [Massart and Nédélec, 2006], then it is possible for a convex
loss to be calibrated w.r.t. (ϕγ ,Flin). We will discuss the details of this later in
Section 4.9.

4.7 Calibration Conditions for Nonconvex Surrogates

As described in Section 4.6, convex surrogate losses that are calibrated w.r.t.
(ϕγ ,Flin) do not exist. This has motivates a search for nonconvex surrogate
losses. Nonconvex surrogates are used for outlier robustness [Collobert et al.,
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2006, Masnadi-Shirazi and Vasconcelos, 2009, Holland, 2019] or label-noise ro-
bustness [Ghosh et al., 2015, van Rooyen et al., 2015, Charoenphakdee et al.,
2019]. Bounded monotone surrogates such as the ramp loss and the sigmoid loss
are simple and common choices for such purposes. In this section, we also look
for good surrogates from bounded monotone losses.

The following assumption will be adopted.

Assumption 4.11. For a margin-based loss function ϕ : R → R≥0, ϕ(−α) >
ϕ(α) for α ∈ (γ, 1], and its ϕ-CCR Cϕ(·, η) is quasiconcave for all η ∈ [0, 1].

The assumption ϕ(−α) > ϕ(α) for α ∈ (γ, 1] is naturally satisfied by surro-
gates strictly decreasing in [−α0, α0] with sufficiently large α0 > 0.

Next, we state our main positive result, the proof of which is included in
Section 4.11.

Theorem 4.12. Let ϕ : R→ R≥0 be a surrogate loss. Assume that ϕ is bounded,
continuous, nonincreasing, and satisfies Assumption 4.11. Let F = Flin. Then,

1. ϕ is (ℓ01,Flin)-calibrated.

2. ϕ is (ϕγ ,Flin)-calibrated if and only if ϕ(γ)+ϕ(−γ) > ϕ(α)+ϕ(−α) for all
α ∈ (γ, 1].

Proof. (Sketch of 2) As in the proof sketch of Theorem 4.10, Equation (4.10) is
needed for (ϕγ ,Flin)-calibration, and thus ϕ(α)+ϕ(−α) should take larger values
in |α| ≤ γ than in the rest of α. Quasiconcavity of ϕ(α)+ϕ(−α) naturally implies
this property with a non-strict inequality, and the condition ϕ(γ) + ϕ(−γ) >
ϕ(α)+ϕ(−α) (for all α > γ) ensures a strict inequality. Figure 4.3 illustrates this
idea with the ramp loss.

To the best our knowledge, this is the first characterization of losses calibrated
to ϕγ .

Remark 4.1. For all α > γ, ϕ(γ)+ϕ(−γ) ≥ ϕ(α)+ϕ(−α) always holds when ϕ is
bounded, continuous, nonincreasing, and satisfies Assumption 4.11 (see part 3 of
Lemma 4.17 in Section 4.11). The strict inequality ϕ(γ)+ϕ(−γ) > ϕ(α)+ϕ(−α)
is then necessary and sufficient for (ϕγ ,Flin)-calibration.

Remark 4.2. Charoenphakdee et al. [2019] shows that the ramp loss and the sig-
moid loss are (ℓ01,Fall)-calibrated. Note that these two losses are bounded, con-
tinuous, nonincreasing, and satisfy Assumption 4.11, hence (ℓ01,Flin)-calibrated.

4.8 Examples

Several examples of loss functions are shown in Figure 4.4. For each base sur-
rogate ϕ, we consider the shifted surrogate ϕβ(α) := ϕ(α − β) with the hori-
zontal shift parameter β. The ramp, sigmoid, and modified squared losses are
examples of nonconvex losses satisfying Assumption 4.11 when β ≥ 0, whereas
the hinge, logistic, and squared losses are examples of convex losses. We show
(ϕγ ,Flin)-calibration functions in this subsection.7 As a result, we will see that
the ramp, sigmoid, and modified squared losses are calibrated with appropriate
shift parameters. Detailed derivations of the calibration functions and the proofs
of quasiconcavity are described in Section 4.11.7.

7In this section, we call δρ(ε) defined in Lemma 4.8 as a calibration function instead of
δ̄(ε, η,x) with a slight abuse of terminology.
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Figure 4.4: Surrogate losses. They are different from the traditional losses through a horizontal
translation of +β (β = 0.2 here).
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Figure 4.5: Calibration function of the ramp loss (plotted in the real blue lines). ε0 :=
ρ

4(1+γ+ρ−β)
. The dashed red line is δ̌⋆⋆ρ .

4.8.1 Ramp Loss

The ramp loss is

ϕ(α) = min

{
1,max

{
0,

1− α
2

}}
.

We consider the shifted ramp loss

ϕβ(α) = ϕ(α− β) = min

{
1,max

{
0,

1− α+ β

2

}}
.

The (ϕγ ,Flin)-calibration function and its Fenchel-Legendre biconjugate of the
ramp loss are plotted in Figure 4.5. We can see that the ramp loss is calibrated
w.r.t. (ϕγ ,Flin) when 1 − γ < β < 1 + γ. Since the ramp loss satisfies As-
sumption 4.11 when β ≥ 0, we also observe that the ramp loss is not calibrated
when β = 0 because it is a symmetric loss [Charoenphakdee et al., 2019], that
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Figure 4.6: Calibration function of the sigmoid loss. A0 := ϕβ(−γ − ρ) − ϕβ(γ + ρ), A1 :=
ϕβ(γ)− ϕβ(−γ)− ϕβ(γ + ρ) + ϕβ(−γ − ρ), δ0 := (ϕβ(γ) + ϕβ(−γ)− ϕβ(γ + ρ)− ϕβ(−γ − ρ))/2,
and ε0 := δ0

A0
. The dashed line is δ̌⋆⋆ρ .

is, ϕ0(α) + ϕ0(−α) = 1 for all α ∈ R, which does not satisfy the condition
ϕ0(γ) + ϕ0(−γ) > ϕ0(α) + ϕ0(−α) for all α ∈ (γ, 1] in Theorem 4.12.

4.8.2 Sigmoid Loss

The sigmoid loss is

ϕ(α) =
1

1 + eα
.

We consider the shifted sigmoid loss

ϕβ(α) =
1

1 + eα−β

for β > 0. The (ϕγ ,Flin)-calibration function is plotted in Figure 4.6. Thus, the
sigmoid loss is (ϕγ ,Flin)-calibrated when δ0 > 0, which is equivalent to β > 0.
Again, we observe that the sigmoid loss with β = 0 is not calibrated in the same
way as the ramp loss because it is symmetric.

4.8.3 Modified Squared Loss

We make a bounded monotone surrogate

ϕ(α) = clip[0,1]

(
max { 0, 1− α }2

)
by modifying the squared loss, where clip[a,b](·) clips values outside the inter-
val [a, b], and consider the shifted version ϕβ(α) := ϕ(α − β). The (ϕγ ,Flin)-
calibration function and its Fenchel-Legendre biconjugate are plotted in Fig-
ure 4.7. We can deduce that the modified squared loss is calibrated w.r.t. (ϕγ ,Flin)
for all 0 ≤ β ≤ γ. In contrast to the proceeding examples, the modified squared
loss is not symmetric.
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Figure 4.8: Calibration function of the modified squared loss when β < 0. A0, A1, δ0, ε0 are
the same as in the caption of Figure 4.7.

Moreover, the modified squared loss is (ϕγ ,Flin)-calibrated even if ϕβ for β < 0
does not satisfy Assumption 4.11.8 We plot two examples in Figure 4.8. As seen
in the proof sketch of Theorem 4.12, it is crucial that ϕβ(α)+ϕβ(−α) takes higher
values in |α| ≤ γ than in |α| > γ. When γ ≤ 2

5 , the modified squared loss with
−1− γ +

√
1 + 2γ2 < β < 0 satisfies this property (see Figure 4.9).

4.8.4 Hinge Loss and Squared Losses

Here we consider the shifted hinge loss

ϕβ(α) = max { 0, 1− α+ β } ,

and the shifted squared loss

ϕβ(α) = (1− α+ β)2

8Indeed, its CCR is not necessarily quasiconcave. See Figure 4.17 in Section 4.11.7.
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Figure 4.9: Illustration of ϕβ(α) + ϕβ(−α) for the modified squared loss when γ ≤ 0.4 and
−1− γ +

√
1 + 2γ2 < β < 0. Here, β = −0.2 and γ = 0.4.
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Figure 4.10: Calibration functions of the hinge and squared losses. ε0 := 1+β+γ
2(1+β)

.

as examples of convex losses. Their (ϕγ ,Flin)-calibration functions are shown in
Figure 4.10, which tell us that the hinge and squared losses are not (ϕγ ,Flin)-
calibrated. This result aligns with Theorem 4.10.

4.9 Calibrated Losses under Low-noise Condition

In Sections 4.6 and 4.7, we have seen that convex ϕ would not be (ϕγ ,Flin)-
calibrated whereas some nonconvex ϕ can be calibrated. In this section, we will
see that convex losses can be (ϕγ ,Flin)-calibrated under a certain assumption on
the conditional distribution.

Assumption 4.13. Let ξ ∈ (0, 1). The conditional distribution satisfies

|2P(Y = +1 | X = x)− 1| ≥ ξ

almost surely.

This assumption is commonly known as Massart’s noise condition and we
sometimes refer to it as the ξ-Massart condition [Massart and Nédélec, 2006].
With the Massart condition, we further introduce a modified version of (ϕγ ,Flin)-
calibrated losses and the calibration function.

Definition 4.14. For the robust 0-1 loss ϕγ and a function class F , we state that
a loss ϕ : R→ R≥0 is (ϕγ ,F)-calibrated under the ξ-Massart condition if for any
ε > 0, there exists δ > 0 such that for all η ∈ [0, 1] with |2η − 1| ≥ ξ, x ∈ X , and
f ∈ F , we have

Cϕ(f, η,x) < C∗
ϕ,F (η,x) + δ =⇒ Cϕγ (f, η,x) < C∗

ϕγ ,F (η,x) + ε.
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Figure 4.11: ϕ-CCR for the hinge and logistic losses with different η. The dots are minimizers
of each line.

The corresponding (ϕγ ,F)-calibration function is defined as

δMassart
ξ (ε) = inf

η∈[0,1]
|2η−1|≥ξ

inf
x∈X

inf
f∈F

{
∆Cϕ(f, η,x)

∣∣ ∆Cϕγ (f, η,x) ≥ ε } .
As shown in the case of (ϕγ ,F)-calibration (Proposition 4.4), to check (ϕγ ,F)-

calibration under ξ-Massart condition, it is necessary and sufficient to check
δMassart
ξ (ε) > 0 for all ε > 0.

We can then obtain a positive result for convex losses under the Massart
condition.

Theorem 4.15. Under the ξ-Massart condition,

• the shifted hinge loss ϕ(α) = [1−α+ β]+ with any shift β ≥ 0 is (ϕγ ,Flin)-
calibrated for any ξ > 0, and

• the logistic loss ϕ(α) = log(1+e−α) is (ϕγ ,Flin)-calibrated for ξ > tanh
(γ
2

)
.

Proof. (Sketch) As we can see in the proof sketches of Theorems 4.10 and 4.12,
the suboptimal predictions should be penalized more strictly than the optimal
predictions. Under the ξ-Massart condition, let us focus on predictions f(x)
for η ≥ 1+ξ

2 . Because f(x) spans [−‖x‖, ‖x‖] when f ∈ Flin for a fixed x,
the suboptimal predictions are obtained by the infimum of ϕ-CCR in f(x) ∈
[−‖x‖, γ] ([−‖x‖, 0] indicates incorrect predictions and (0, γ] indicates non-robust
predictions), whereas the optimal predictions are obtained by the infimum in
f(x) ∈ [−‖x‖, ‖x‖]. Now, take a look at Figure 4.11. Figure 4.11a tells us that
the optimal minimizers of the hinge loss is always f(x) = ‖x‖ unless η = 1

2 . By
contrast, we can see that the optimal minimizers of the logistic loss satisfy f(x) >
γ if η > 1+ξ

2 . They are strictly less penalized than the calibrated suboptimal
minimizers.

Theorem 4.15 shows that surrogate losses can be (ϕγ ,Flin)-calibrated under
the Massart condition even if they are not calibrated for all distributions.

Remark 4.3. Awasthi et al. [2021a, Theorem 25] provides a sufficient condition
for (ℓγ ,Flin)-consistency to hold for (ϕγ ,Flin)-calibrated surrogate loss. Their con-
dition assumes R∗

ℓγ ,Flin
= 0. Because Rℓ01,Flin

≤ Rℓγ , this assumption immediately
implies R∗

ℓ01
= 0, which is equivalent to Assumption 4.13 with ξ = 1. Hence, con-

vex losses lead to (ℓγ ,Flin)-consistency under the assumptions of Awasthi et al.
[2021a, Theorem 25].
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4.10 Simulation

4.10.1 Learning Curve on Synthetic Data

We use two synthetic datasets.

• Twonorm. Positive data are generated from N ([0.3 0.3]⊤, 0.12I2), and
negative data are generated from N (−[0.3 0.3]⊤, 0.12I2). The class ratio
is 0.5. All data points lie in the ℓ2 unit ball with high probability. The
classifier θ = [1/

√
2 1/
√
2]⊤ achieves (ϕγ ,Flin)-Bayes risk.

• Advnorm. First, clean positive data are generated from

N
([

0.3
0.3

]
, 0.1422I2

)
,

and clean negative data are generated from

N
(
−
[
0.3
0.3

]
, 0.1422I2

)
.

Then, the labels of (x, y = +1) with 0 < x1 + x2 < 0.25 are flipped to
y = −1. All data points lie within the ℓ2 unit ball with high probability.
The classifier θ = [1/

√
2 1/
√
2]⊤ achieves (ϕγ ,Flin)-Bayes risk. This dataset

is the same that used in the illustration of Figure 4.1.

For each dataset, we generate 500 training and 500 test points.
Linear models f(x) = θ⊤x+θ0 are used, where θ and θ0 are learnable param-

eters. As surrogate losses, we use the ramp, sigmoid, logistic, and hinge losses.
Batch gradient descent with the fixed step size 0.01 is used in the optimization,
and 3,000 steps are applied for each trial. After every parameter update, the
parameters are normalized to ensure ‖[θ θ0]⊤‖2 = 1.

Bayes risk computation. The robust 0-1 loss is used as the target loss. The
Bayes risk for each surrogate loss and the robust 0-1 loss is numerically computed,
which is used to compute the excess risk. To compute the Bayes (ϕ,Flin)-risk for
a loss ϕ, we substitute the Bayes (ϕγ ,Flin)-classifier f∗γ ∈ Flin into

Rϕ(f
∗
γ )

= E[ϕ(Yf∗γ (X))]

=

∫
X

{
ϕ(f∗γ (x))P(Y = +1 | X = x) + ϕ(−f∗γ (x))P(Y = −1 | X = x)

}
dP(X = x)

and apply numerical integration. The partitioning quadrature method was used
with a grid size of 0.05. The Bayes (ϕγ ,Flin)-classifier is f∗γ (x) = (x1 + x2)/

√
2

for both twonorm and advnorm datasets.
To apply a numerical integration, P(Y = +1 | X = x) needs to be estimated.

Note that P(X) can be estimated given P(Y = +1 | X = x). For the advnorm
dataset, we estimate P(X = x | Y = +1) with the kernel density estimator and
then compute P(Y = +1 | X = x) and P(X). Subsequently, we focus on the
twonorm dataset and derive the closed-form expression of P(Y = +1 | X = x).
Let q+ and q− be the probability density functions of N ([0.3 0.3]⊤, 0.12I2) and
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Table 4.1: Approximated Bayes risks. For advnorm, we used a kernel density estimator with
an RBF kernel (bandwidth: 0.25) to estimate P(X = x | Y = +1).

Loss twonorm advnorm

Robust 0-1 0.012 0.067
Ramp 0.389 0.550
Sigmoid 0.445 0.525
Hinge 0.778 1.100
Logistic 0.590 0.750
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(a) Twonorm dataset (γ = 0.1, β = 0.2)
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(b) Advnorm dataset (γ = 0.1, β = 0.5)

Figure 4.12: Optimization trajectories are shown. The horizontal (vertical) axis shows surro-
gate excess risk (excess risk of the robust 0-1 loss) on the test data.

N ([−0.3 − 0.3], 0.12I2), respectively. Then,

P(Y = +1 | X = x)

=
P(Y = +1)P(X = x | Y = +1)

P(Y = +1)P(X = x | Y = +1) + P(Y = −1)P(X = x | Y = −1)

=
1
2q+(x)

1
2q+(x) +

1
2q−(x)

.

The approximated Bayes risks are listed in Table 4.1.

Results. The surrogate and target excess risks are shown in Figure 4.12. A
total of 20 trials are run for each data realization. As we can see from Figure 4.12,
for both twonorm and advnorm, the optimization trajectories of the calibrated
surrogates (the ramp and sigmoid) have target excess risks tending toward zero,
whereas the logistic loss fails. This observation agrees with our theoretical findings
in Theorems 4.10 and 4.12 for the logistic loss. As for the hinge loss, we observe
that it achieves a near-optimal target excess risk on twonorm. This distribution
does not satisfy Massart’s condition for any ξ > 0, which suggests there might
be a more general condition that guarantees calibration for certain convex losses.
For advnorm, which does not satisfy Massart’s condition, hinge fails to converge
to a zero target excess risk, most likely because P(Y = +1 | X = x) changes more
smoothly around 1

2 for advnorm compared to twonorm (see Figure 4.13).
Note again that even if a surrogate loss ϕ is (ϕγ ,Flin)-calibrated, it does not

immediately imply (ℓγ ,Flin)-consistency as pointed out by Awasthi et al. [2021a].
Nonetheless, nonconvex calibrated surrogate losses are useful in practice as illus-
trated above, and the hinge loss may also perform reasonably when there is not
too much noise near the decision boundary.
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Figure 4.13: The estimated posterior distributions P(Y = +1 | X) are plotted with the same
scale. The black dashed line indicates the Bayes (ϕγ ,Flin)-classifier and the red solid line
indicates the contour line for P(Y = +1 | X) = 0.5. As can be seen, the posterior value changes
more gradually around 0.5 in Figure 4.13b.

Table 4.2: The simulation results of the γ-adversarially robust 0-1 loss with γ = 0.1 and
β = 0.5. A total of 50 trials were conducted for each pair of a method and dataset. Standard
errors (multiplied by 104) are shown in parentheses. Bold font indicates outperforming methods,
which were chosen by a one-sided t-test with a significance level of 5%.

Ramp Sigmoid Hinge Logistic

0 vs 1 0.034 (3) 0.017 (2) 0.087 (12) 0.321 (19)
0 vs 2 0.111 (7) 0.133 (10) 0.109 (8) 0.281 (19)
0 vs 3 0.107 (7) 0.126 (8) 0.120 (9) 0.307 (18)
0 vs 4 0.069 (6) 0.093 (12) 0.072 (7) 0.269 (21)
0 vs 5 0.233 (21) 0.340 (25) 0.233 (21) 0.269 (16)
0 vs 6 0.129 (8) 0.167 (13) 0.127 (8) 0.287 (22)
0 vs 7 0.067 (6) 0.073 (6) 0.090 (9) 0.302 (18)
0 vs 8 0.096 (7) 0.123 (12) 0.100 (9) 0.263 (20)
0 vs 9 0.082 (6) 0.101 (8) 0.092 (8) 0.279 (22)

4.10.2 Benchmark Data

We compare the ramp, sigmoid, hinge, and logistic losses on MNIST. Simulation
details are as follows.

• Dataset: MNIST extracted with two digits (7,000 instances for each digit).

• Preprocessing: Reduced to 2-dimensions with a principal component anal-
ysis.

• Train-test split: 14,000 instances are randomly split into training and test
data with a ratio of 4 to 1.

• Model: Linear models f(x) = θ⊤x+θ0 (θ and θ0 are learnable parameters)

• Surrogate loss: The ramp, sigmoid, hinge, and logistic losses with shift
β = +0.5.

• Target loss: The γ-adversarially robust 0-1 loss with γ = 0.1.

• Optimization: Batch gradient descent with 1,000 iterations.

The results are shown in Tables 4.2 and 4.3, where we can see that nonconvex
losses, particularly the ramp loss, outperform convex losses in terms of the robust
0-1 loss.
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Table 4.3: The simulation results of the 0-1 loss with β = 0.5. A total of 50 trials were
conducted for each pair of a method and dataset. Standard errors (multiplied by 104) are shown
in parentheses. Bold font indicates outperforming methods, which were chosen by a one-sided
t-test with a significance level of 5%.

Ramp Sigmoid Hinge Logistic

0 vs 1 0.012 (2) 0.005 (1) 0.038 (7) 0.228 (18)
0 vs 2 0.050 (5) 0.059 (7) 0.058 (7) 0.206 (18)
0 vs 3 0.047 (4) 0.054 (6) 0.064 (8) 0.229 (15)
0 vs 4 0.028 (4) 0.029 (4) 0.032 (6) 0.184 (18)
0 vs 5 0.117 (11) 0.185 (20) 0.117 (11) 0.193 (15)
0 vs 6 0.060 (5) 0.080 (8) 0.063 (6) 0.206 (18)
0 vs 7 0.027 (3) 0.027 (4) 0.045 (6) 0.214 (18)
0 vs 8 0.050 (6) 0.054 (6) 0.054 (7) 0.186 (18)
0 vs 9 0.040 (4) 0.044 (5) 0.046 (6) 0.192 (20)

4.11 Proofs

4.11.1 Useful Lemmas

The following lemmas are useful in the remaining proofs in Section 4.11. The
proofs are provided in Sections 4.11.5 and 4.11.6.

Lemma 4.16. Let ϕ : R→ R≥0 be a margin-based loss function, and F = Flin.

1. For all f ∈ F and x ∈ X , Cϕ(f, η,x) and ∆Cϕ,F (f, η,x) are symmetric
about η = 1

2 , i.e., Cϕ(f, η,x) = Cϕ(−f, 1 − η,x) and ∆Cϕ,F (f, η,x) =
∆Cϕ,F (−f, 1− η,x) for all η ∈ [0, 1].

2. Fix x ∈ X . When η = 1
2 , we have

inf
f∈F :|f(x)|≤γ

∆Cϕ,F
(
f, 12 ,x

)
= inf

f∈F :0≤f(x)≤γ
∆Cϕ,F

(
f, 12 ,x

)
.

3. A surrogate loss ϕ is calibrated w.r.t. (ϕγ,F) if and only if

inf
f∈F :|f(x)|≤γ

Cϕ
(
f, 12 ,x

)
> inf

f∈F
Cϕ
(
f, 12 ,x

)
, and

inf
f∈F :f(x)≤γ

Cϕ(f, η,x) > inf
f∈F

Cϕ(f, η,x),

for all η ∈
(
1
2 , 1
]

and x ∈ X such that ‖x‖2 > γ.

4. A surrogate loss ϕ is calibrated w.r.t. (ℓ01,F) if and only if

inf
f∈F :f(x)≤0

Cϕ(f, η,x) > inf
f∈F

Cϕ(f, η,x),

for all η ∈
(
1
2 , 1
]

and x ∈ X \ {0}.

Lemma 4.17. Let ϕ : R→ R≥0 be a margin-based loss function. In addition, let
C̄ϕ(α, η) := ηϕ(α) + (1 − η)ϕ(−α). If ϕ is bounded, continuous, non-increasing,
and satisfies Assumption 4.11, then

1. for all η ∈
(
1
2 , 1
]
, C̄ϕ(α, η) is nonincreasing in α when α ≥ 0.

2. for all η ∈
(
1
2 , 1
]

and α > 0, C̄ϕ(−α, η) > C̄ϕ(α, η) if ϕ(−α) > ϕ(α).

3. ϕ(α) + ϕ(−α) is nonincreasing in α when α ≥ 0.

4. for l, u ∈ R (l ≤ u), infα∈[l,u] C̄ϕ(α, η) = min{C̄ϕ(l, η), C̄ϕ(u, η)} for all
η ∈ [0, 1].
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4.11.2 Proof of Theorem 4.10

Part 3 of Lemma 4.16 states that ϕ is calibrated w.r.t. (ϕγ ,Flin) if and only if

inf
f∈Flin:0≤f(x)≤γ

Cϕ
(
f, 12 ,x

)
> inf

f∈Flin:f(x)≥0
Cϕ
(
f, 12 ,x

)
and

inf
f∈Flin:f(x)≤γ

Cϕ(f, η,x) > inf
f∈Flin:f(x)≥0

Cϕ(f, η,x) for any η ∈
(
1
2 , 1
]
,

for all x ∈ X such that ‖x‖2 > γ. To show ϕ is not calibrated w.r.t. (ϕγ ,Flin), it
is sufficient to show the existence of x ∈ X such that ‖x‖2 > γ and

inf
f∈Flin:0≤f(x)≤γ

Cϕ
(
f, 12 ,x

)
= inf

f∈Flin:f(x)≥0
Cϕ
(
f, 12 ,x

)
,

which is equivalent to

inf
f∈Flin:0≤f(x)≤γ

ϕ(f(x)) + ϕ(−f(x)) = inf
f∈Flin:f(x)≥0

ϕ(f(x)) + ϕ(−f(x)). (4.11)

Because ϕ̄(α) := ϕ(α) + ϕ(−α) is a convex even function, we have ϕ̄(0) ≤ ϕ̄(α)
for all α ∈ R. To see this, assume that there exists α∗ ∈ R such that α∗ 6= 0 and
ϕ̄(0) > ϕ̄(α∗). We then also have ϕ̄(−α∗) < ϕ̄(0) because ϕ̄ is even. It follows that
1
2{ϕ̄(−α∗)+ϕ̄(α∗)} < ϕ̄(0). However, we have 1

2{ϕ̄(−α∗)+ϕ̄(α∗)} ≥ ϕ̄
(−α∗+α∗

2

)
=

ϕ̄(0) because of the convexity of ϕ̄. Hence, we can see that ϕ̄(0) ≤ ϕ̄(α) for all
α ∈ R. This means that inf0≤α≤γ ϕ̄(α) = infα∈A:0≤α ϕ̄(α) = ϕ̄(0), where A is any
subset of the real line containing 0. Note that for x ∈ X such that ‖x‖2 > γ, f(x)
ranges [−‖x‖2, ‖x‖2] ⊇ [−γ, γ] with f ∈ Flin. Therefore, for any choice of a fixed
x ∈ X such that ‖x‖2 > γ, we have inff∈Flin:0≤f(x)≤γ ϕ̄(f(x)) = inf0≤α≤γ ϕ̄(α)
and inff∈Flin:f(x)≥0 ϕ̄(f(x)) = inf0≤α≤∥x∥2 ϕ̄(α). This implies that the sufficient
condition (4.11) for the nonexistence of convex surrogate losses holds.

4.11.3 Proof of Theorem 4.12

Let C̄ϕ(α, η) := ηϕ(α) + (1− η)ϕ(−α).

Part 1. Based on part 4 of Lemma 4.16, (ℓ01,Flin)-calibration is equivalent to

inf
f∈Flin:f(x)≤0

Cϕ(f, η,x) > inf
f∈Flin

Cϕ(f, η,x) for all η ∈
(
1
2 , 1
]

and x ∈ X \ {0}.

(4.12)

Fix an arbitrary η such that 1
2 < η ≤ 1 and x ∈ X \ {0}. We can observe

through part 4 of Lemma 4.17 that

inf
f∈Flin:
f(x)≤0

Cϕ(f, η,x) = inf
α∈[−∥x∥2,0]

C̄ϕ(α, η)

= min
{
C̄ϕ(−

∥∥ x‖2, η), C̄ϕ(0, η)
}

(part 4 of Lemma 4.17)

= min
{
ηB + (1− η)B,ϕ(0)

}
,

and

inf
f∈Flin

Cϕ(f, η,x) = inf
α∈[−∥x∥2,∥x∥2]

C̄ϕ(α, η)

= min
{
C̄ϕ(−

∥∥ x‖2, η), C̄ϕ(‖x‖2, η)
}

(part 4 of Lemma 4.17)
= C̄ϕ(‖x‖2, η) (part 2 of Lemma 4.17)

= ηB + (1− η)B,
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where B := ϕ(‖x‖2) and B := ϕ(−‖x‖2). Note that B > B because ‖x‖2 > 0.
Here,

C̄ϕ(−‖x‖2, η)− C̄ϕ(‖x‖2, η) = (B −B)(2η − 1) > 0,

C̄ϕ(0, η)− C̄ϕ(‖x‖2, η) = ϕ(0)−B + η(B −B)

≥ B +B

2
−B + η(B −B)

>
B +B

2
−B +

B −B
2

(B > B and η > 1
2)

= 0,

where the first inequality is shown through quasiconcavity of α 7→ ϕ(α) + ϕ(−α).
Indeed, by letting F (α) := ϕ(α) + ϕ(−α),

2ϕ(0) = F (0) = F

(
‖x‖2
2

+
−‖x‖2

2

)
≥ min { F ( ‖ x‖2), F (−‖x‖2) }
= F (‖x‖2)
= B +B.

We then have

inf
f∈Flin:f(x)≤0

Cϕ(f, η,x)− inf
f∈Flin

Cϕ(f, η,x)

= min
{
C̄ϕ(−

∥∥ x‖2, η)− C̄ϕ(‖x‖2, η), C̄ϕ(0, η)− C̄ϕ(‖x‖2, η)
}

> 0.

This verifies Equation (4.12).

Part 2. Here, ϕ is calibrated w.r.t. (ϕγ ,Flin) if and only if

(i) inf
f∈Flin:|f(x)|≤γ

Cϕ
(
f, 12 ,x

)
> inf

f∈Flin

Cϕ
(
f, 12 ,x

)
, and

(ii) inf
f∈Flin:f(x)≤γ

Cϕ(f, η,x) > inf
f∈Flin

Cϕ(f, η,x) for all η ∈
(
1
2 , 1
] (4.13)

for any x ∈ X such that ‖x‖2 > γ, based on part 3 of Lemma 4.16. Now, assuming
(i) and (ii), we show ϕ(γ) + ϕ(−γ) > ϕ(α) + ϕ(−α) for any α ∈ (γ, 1]. For an
arbitrary α ∈ (γ, 1], choose an x such that ‖x‖2 = α, and thus { f(x) | f ∈ Flin }
ranges within [−α, α].

ϕ(γ) + ϕ(−γ) = inf
0≤α′≤γ

ϕ(α′) + ϕ(−α′) (part 3 of Lemma 4.17)

= inf
f∈Flin:0≤f(x)≤γ

ϕ(f(x)) + ϕ(−f(x))

= inf
f∈Flin:|f(x)|≤γ

ϕ(f(x)) + ϕ(−f(x)) (ϕ(α) + ϕ(−α) is even)

> inf
f∈Flin

ϕ(f(x)) + ϕ(−f(x)) ((i) is used)

= inf
−∥x∥2≤α′≤∥x∥2

ϕ(α′) + ϕ(−α′)

= inf
0≤α′≤α

ϕ(α′) + ϕ(−α′) (ϕ(α) + ϕ(−α) is even)

= ϕ(α) + ϕ(−α). (part 3 of Lemma 4.17)
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Conversely, assume ϕ(γ) + ϕ(−γ) > ϕ(α) + ϕ(−α) for any α ∈ (γ, 1]. We
will show (i) and (ii) in Equation (4.13). Fix an x ∈ X such that ‖x‖2 > γ
arbitrarily, and thus { f(x) | f ∈ Flin } ranges within [−‖x‖2, ‖x‖2] ⊇ [−γ, γ].
Because ϕ(α)+ϕ(−α) is nonincreasing in α ≥ 0 (part 3 of Lemma 4.17), we have

2 inf
f∈Flin:
|f(x)|≤γ

Cϕ
(
f, 12 ,x

)
= inf

|α|≤γ
ϕ(α) + ϕ(−α) (f(x) ∈ [−‖x‖2, ‖x‖2])

= inf
0≤α≤γ

ϕ(α) + ϕ(−α) (ϕ(α) + ϕ(−α) is even)

= ϕ(γ) + ϕ(−γ) (part 3 of Lemma 4.17)
> ϕ(‖x‖2) + ϕ(−‖x‖2) (by assumption)
= inf

0≤α≤∥x∥2
ϕ(α) + ϕ(−α), (part 3 of Lemma 4.17)

= inf
−∥x∥2≤α≤∥x∥2

ϕ(α) + ϕ(−α) (ϕ(α) + ϕ(−α) is even)

= 2 inf
f∈Flin

Cϕ
(
f, 12 ,x

)
,

which is equivalent to (i). For (ii), fix an η such that 1
2 < η ≤ 1. We first observe

through parts 2 and 4 of Lemma 4.17 that

inf
−∥x∥2≤α≤γ

C̄ϕ(α, η) = min
{
C̄ϕ(−

∥∥ x‖2, η), C̄ϕ(γ, η)
}
,

inf
−∥x∥2≤α≤∥x∥2

C̄ϕ(α, η) = min
{
C̄ϕ(−

∥∥ x‖2, η), C̄ϕ(‖x‖2, η)
}
= C̄ϕ(‖x‖2, η).

Here, we have

C̄ϕ(‖x‖2, η) = (B −B)η +B,

C̄ϕ(γ, η) = (ϕ(γ)− ϕ(−γ))η + ϕ(−γ),

where B := ϕ(‖x‖2) and B := ϕ(−‖x‖2). Then, for all η ∈
(
1
2 , 1
]
,

C̄ϕ(γ, η)− C̄ϕ(‖x‖2, η) = (ϕ(γ)− ϕ(−γ) +B −B)η + (ϕ(−γ)−B)

≥ (ϕ(γ)− ϕ(−γ) +B −B)
1

2
+ ϕ(−γ)−B

=
{ϕ(γ) + ϕ(−γ)} − {ϕ(‖x‖2) + ϕ(−‖x‖2)}

2
> 0,

where the first inequality holds because (ϕ(γ)− ϕ(−γ) +B −B) > 0 and η > 1
2 ,

and the second inequality holds because of the assumption ϕ(γ)+ϕ(−γ) > ϕ(α)+
ϕ(−α) for any α ∈ (γ, 1]. In addition, we have C̄ϕ(−‖x‖2, η) > C̄ϕ(‖x‖2, η) for
η > 1

2 through part 2 of Lemma 4.17. Therefore,

inf
f∈Flin:f(x)≤γ

Cϕ(f, η,x)− inf
f∈Flin

Cϕ(f, η,x)

= inf
−∥x∥2≤α≤γ

C̄ϕ(α, η)− inf
−∥x∥2≤α≤∥x∥2

C̄ϕ(α, η)

= min
{
C̄ϕ(−

∥∥ x‖2, η)− C̄ϕ(‖x‖2, η), C̄ϕ(γ, η)− C̄ϕ(‖x‖2, η)
}

> 0

holds for all η such that 1
2 < η ≤ 1, which verifies (ii).
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4.11.4 Proof of Theorem 4.15

First, we derive the equivalent condition for a (ϕγ ,Flin)-calibration under a ξ-
Massart condition. Let us introduce

δMassart
ρ,ξ (ε) := inf

η∈[0,1]
|2η−1|≥ξ

inf
x∈X̃ρ

inf
f∈F

{
∆Cϕ(f, η,x)

∣∣ ∆Cϕγ (f, η,x) ≥ ε } ,
where X̃ρ := X \B◦2(γ+ ρ). A loss function ϕ is (ϕγ ,Flin)-calibrated if and only if
δMassart
ξ (ε) > 0 for all ε > 0. It is easy to see that ϕ is (ϕγ ,Flin)-calibrated if and

only if δMassart
ρ,ξ (ε) > 0 for all ε > 0 and ρ ∈ (0, 1−γ) by the same argument as the

proof of Lemma 4.8. By following the same argument as the proof of Lemma 4.16
(part 3), we claim that a surrogate ϕ is calibrated if and only if

inf
f∈Flin:f(x)≤γ

Cϕ(f, η,x) > inf
f∈Flin

Cϕ(f, η,x)

for all η and x such that η ≥ 1+ξ
2 and ‖x‖2 > γ.9 Denote C̄ϕ(f(x), η) =

Cϕ(f, η,x) = ηϕ(f(x)) + (1− η)ϕ(−f(x)). This is then equivalent to

H(η,x) := inf
α∈[−∥x∥2,γ]

C̄ϕ(α, η)− inf
α∈[−∥x∥2,∥x∥2]

C̄ϕ(α, η) > 0 for all η ≥ 1+ξ
2 ,

by noting that f(x) spans [−‖x‖2, ‖x‖2] for f ∈ Flin.
Next, we will check each loss function.

Shifted hinge loss. Because

C̄ϕ(α, η) =


−ηα+ η(1 + β) if α < −(1 + β),
(1− 2η)α+ (1 + β) if −(1 + β) ≤ α < 1 + β,
(1− η)α+ (1− η)(1 + β) if 1 + β ≤ α,

we have

inf
α∈[−∥x∥2,γ]

C̄ϕ(α, η) = C̄ϕ(γ, η), inf
α∈[−∥x∥2,∥x∥2]

C̄ϕ(α, η) = C̄ϕ(‖x‖2, η).

Hence, H(η,x) = (1− 2η)(γ − ‖x‖2) ≥ ξ(‖x‖2 − γ) > 0, implying that the hinge
loss is (ϕγ ,Flin)-calibrated under any ξ > 0.

Logistic loss. The minimizer of

C̄ϕ(α, η) = η log(1 + e−α) + (1− η) log(1 + eα)

in α ∈ R is α∗(η) = ln
(

η
1−η

)
. When η ≥ 1+ξ

2 with ξ > tanh
(γ
2

)
, we have

α∗(η) > γ. Because C̄ϕ(α, η) is convex in α, it is decreasing for α ≤ α∗(η).
Hence,

• when α∗(η) ≤ ‖x‖2, H(η,x) = C̄ϕ(γ, η)− C̄ϕ(α∗(η), η) > 0, and

• when γ < ‖x‖2 < α∗(η), H(η,x) = C̄ϕ(γ, η) − C̄ϕ(‖x‖2, η) > 0 since γ <
‖x‖2.

Therefore, the logistic loss is (ϕγ ,Flin)-calibrated under ξ > tanh
(γ
2

)
.

9The proof of this argument is a routine given the proof of Lemma 4.16 (part 3), which is
omitted.
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4.11.5 Proof of Lemma 4.16

Parts 1 and 2 are obvious from the definition of the class-conditional ϕ-risk.

Part 3. Let δ̄ : R≥0 × [0, 1] × X → R≥0 be the (ϕγ ,Flin)-calibration function,
whose expression is given in Lemma 4.9: for x ∈ X such that ‖x‖2 > γ,

δ̄(ε, η,x)

=


∞ if ε > max { η, 1− η },

inf
f∈Flin:|f(x)|≤γ

∆Cϕ,Flin
(f, η,x) if |2η − 1| < ε ≤ max { η, 1− η },

inf
f∈Flin:

|f(x)|≤γ or (2η−1)f(x)≤0

∆Cϕ,Flin
(f, η,x) if ε ≤ |2η − 1|,

and δ̄(ε, η,x) = ∞ for ‖x‖2 ≤ γ. Proposition 4.4 states that ϕ is (ϕγ ,Flin)-
calibrated if and only if δ̄(ε, η,x) > 0 for all ε > 0, η ∈ [0, 1], and x ∈ X with
‖x‖2 > γ. We subsequently fix ‖x‖2 > γ and simplify the third expression

inf
f
{∆Cϕ,Flin

(f, η,x) | f ∈ Flin, |f(x)| ≤ γ or (2η − 1)f(x) ≤ 0 }

first. Using part 1 of Lemma 4.16 and the symmetry of Flin, for η ≤ 1
2 we have

inf
f∈Flin:

|f(x)|≤γ or (2η−1)f(x)≤0

Cϕ(f, η,x)

= inf
f∈Flin:f(x)≥−γ

Cϕ(f, η,x)

= inf
f∈Flin:f(x)≥−γ

Cϕ(−f, 1− η, x) (part 1 of Lemma 4.16)

= inf
f∈Flin:f(x)≤γ

Cϕ(f, 1− η, x), (replace −f with f)

and for η ≥ 1
2 we have

inf
f∈Flin:|f(x)|≤γ or (2η−1)f(x)≤0

Cϕ(f, η,x) = inf
f∈Flin:f(x)≤γ

Cϕ(f, η,x).

By combining these two, we see that inff∈Flin:f(x)≤γ ∆Cϕ,Flin
(f, η,x) > 0 holds

for all η ≥ 1
2 if and only if

inf
f∈Flin:|f(x)|≤γ or (2η−1)f(x)≤0

∆Cϕ,Flin
(f, η,x) > 0

holds for all η ∈ [0, 1]. Hence,

inf
f∈Flin:|f(x)|≤γ or (2η−1)f(x)≤0

∆Cϕ,Flin
(f, η,x) > 0

for ε > 0 and η ∈ [0, 1] such that ε ≤ |2η − 1| if and only if

inf
f∈Flin:f(x)≤γ

∆Cϕ,Flin
(f, η,x) > 0

for ε > 0 and η ∈ [12 , 1] such that ε ≤ 2η − 1.
Note that the second expression inff {∆Cϕ,Flin

(f, η,x) | f ∈ Flin, |f(x)| ≤ γ }
can be simplified in the same way. Therefore, δ̄(ε, η,x) > 0 for all ε > 0, η ∈ [0, 1],
and x ∈ X if and only if

inf
f∈Flin:|f(x)|≤γ

Cϕ(f, η,x) > inf
f∈Flin

Cϕ(f, η,x) ∀η ≥ 1
2 (2η − 1 < ε ≤ η),

inf
f∈Flin:f(x)≤γ

Cϕ(f, η,x) > inf
f∈Flin

Cϕ(f, η,x) ∀η ≥ 1
2 (ε ≤ 2η − 1),
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for all ε > 0, which is equivalent to
inf

f∈Flin:|f(x)|≤γ
Cϕ(f, η,x) > inf

f∈Flin

Cϕ(f, η,x) ∀η ≥ 1
2 (ε ≤ η < 1+ε

2 ),

inf
f∈Flin:f(x)≤γ

Cϕ(f, η,x) > inf
f∈Flin

Cϕ(f, η,x) ∀η ≥ 1
2 (1+ε2 ≤ η ≤ 1),

for all ε > 0.
We immediately observe that⋃

ε>0

{
η ≥ 1

2

∣∣∣∣ ε ≤ η < 1 + ε

2

}
=

{
1

2
≤ η ≤ 1

}
, and

⋃
ε>0

{
η ≥ 1

2

∣∣∣∣ 1 + ε

2
≤ η ≤ 1

}
=

{
1

2
< η ≤ 1

}
.

Therefore, we reduce the above conditions to
inf

f∈Flin:|f(x)|≤γ
Cϕ(f, η,x) > inf

f∈Flin

Cϕ(f, η,x) if 1
2 ≤ η ≤ 1,

inf
f∈Flin:f(x)≤γ

Cϕ(f, η,x) > inf
f∈Flin

Cϕ(f, η,x) if 1
2 < η ≤ 1.

Note that inf |f(x)|≤γ Cϕ(f, η,x) ≥ inff∈Flin:f(x)≤γ Cϕ(f, η,x) (note that inequality
is not strict) always holds for all values of η. Because the first case is included in
the second case except when η = 1

2 , this is equivalent to

inf
f∈Flin:|f(x)|≤γ

Cϕ
(
f, 12 ,x

)
> inf

f∈Flin

Cϕ
(
f, 12 ,x

)
, and

inf
f∈Flin:f(x)≤γ

Cϕ(f, η,x) > inf
f∈Flin

Cϕ(f, η,x) for η ∈
(
1
2 , 1
]
.

Part 4. First, we obtain the calibration function δ̄ w.r.t. (ℓ01,Flin) following
the same strategy as Lemma 4.9. The ℓ01-CCR for f ∈ Flin at x is

Cℓ01(f, η,x) = η1{sgn(f(x))=+1} + (1− η)1{sgn(f(x))=−1}

=

{
η if f(x) ≥ 0,
1− η if f(x) < 0.

To compute ∆Cℓ01,Flin
(f, η,x), note that given x, f(x) ranges [−‖x‖2, ‖x‖2] for

f ∈ Flin. When ‖x‖2 = 0, Cℓ01(f, η,x) = η for all f ∈ Flin, which is equivalent
to ∆Cℓ01,Flin

(f, η,x) = 0. When ‖x‖2 > 0, we have ∆Cℓ01,Flin
(f, η,x) = |2η − 1| ·

1{(2η−1)f(x)≤0} in the same way as in Steinwart [2007, Lemma 4.1]. Hence,

∆Cℓ01,Flin
(f, η,x) =

{
0 if ‖x‖2 = 0,
|2η − 1| · 1{(2η−1)f(x)≤0} if ‖x‖2 > 0.

Now, if ‖x‖2 = 0 or ε > |2η−1|, we always have ∆Cℓ01,Flin
(f, η,x) < ε, and hence

δ̄(ε, η,x) = ∞. If ‖x‖2 > 0 and ε ≤ |2η − 1|, we have ∆Cℓ01,Flin
(f, η,x) < ε if

and only if (2η − 1)f(x) > 0. Therefore, we have

δ̄(ε, η,x) =


∞ if ‖x‖2 = 0 or ε > |2η − 1|,

inf
f∈Flin:

(2η−1)f(x)≤0

∆Cϕ,Flin
(f, η,x) if ‖x‖2 > 0 and ε ≤ |2η − 1|.
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Next, based on Proposition 4.4, ϕ is (ℓ01,Flin)-calibrated if and only if δ̄(ε, η,x) >
0 for all ε > 0, η ∈ [0, 1], and x ∈ X . In the same way as in part 3 of Lemma 4.16,
this is equivalent to

inf
f∈Flin:f(x)≤0

Cϕ(f, η,x) > inf
f∈Flin

Cϕ(f, η,x) for all η ≥ 1
2 such that 1+ε

2 ≤ η ≤ 1,

for all ε > 0 and x ∈ X \{0} when using part 1 of Lemma 4.16 and the symmetry
of Flin. This is equivalent to the lemma statement.

4.11.6 Proof of Lemma 4.17

Denote the following: ϕ̄(α) := ϕ(α) + ϕ(−α).

Part 1. Fix an η ∈
(
1
2 , 1
]

and α1, α2 ≥ 0 such that α1 < α2. Based on the fact
that ϕ is nonincreasing, we have

ϕ(α1)− ϕ(−α1)− ϕ(α2) + ϕ(−α2) = (ϕ(α1)− ϕ(α2)) + (ϕ(−α2)− ϕ(−α1))

≥ 0.

Then,

C̄ϕ(α1, η)− C̄ϕ(α2, η)

= (ϕ(α1)− ϕ(−α1)− ϕ(α2) + ϕ(−α2))η + ϕ(−α1)− ϕ(−α2)

≥ (ϕ(α1)− ϕ(−α1)− ϕ(α2) + ϕ(−α2))
1

2
+ ϕ(−α1)− ϕ(−α2)

=
ϕ(α1) + ϕ(−α1)− ϕ(α2)− ϕ(−α2)

2
≥ 0,

where the last inequality holds because ϕ(α)+ϕ(−α) is nonincreasing when α ≥ 0
by part 3. Therefore, C̄ϕ(α, η) is nonincreasing in α ≥ 0.

Part 2. Fix an η ∈
(
1
2 , 1
]
. Then,

C̄ϕ(−α, η)− C̄ϕ(α, η) = (2η − 1)(ϕ(−α)− ϕ(α)) > 0.

Part 3. Here, ϕ̄ is an even function, and thus is symmetric in α = 0. In
addition, ϕ̄ is continuous because of the continuity of ϕ. Every quasiconcave
continuous function is nondecreasing, or nonincreasing, or there is global maxima
in its domain [Boyd and Vandenberghe, 2004]. If ϕ̄ is either nondecreasing or
nonincreasing in α, it is a constant function in α and clearly nonincreasing in
α ≥ 0. If ϕ̄ has the global maxima, i.e., there is a point α∗ ∈ dom(ϕ̄) such
that ϕ̄ is nondecreasing for α ≤ α∗ and nonincreasing for α ≥ α∗, it is still
nonincreasing in α ≥ 0. This is clear when α∗ ≤ 0. When α∗ > 0, ϕ̄ may only
be a constant function in α ∈ [0, α∗]; otherwise, we have a point α̃ ∈ [0, α∗) such
that ϕ̄(α̃) < ϕ̄(α∗), and hence ϕ̄(α∗) = ϕ̄(−α∗) (:= ϕ̄∗) by the symmetry and
ϕ̄0 := ϕ̄(α̃) < ϕ̄∗, which means there is no convex superlevel sets for ϕ̄ within the
range (ϕ̄0, ϕ̄∗). For example, choose t ∈ (ϕ̄0, ϕ̄∗) and consider the t-superlevel set
of ϕ̄. If the t-superlevel set is convex, it must contain every point in [−α∗, α∗]
because t < ϕ̄∗ = ϕ̄(−α∗) = ϕ̄(α∗). However, the t-superlevel set will not contain
α̃ ∈ [−α∗, α∗] because t > ϕ̄0 = ϕ̄(α̃). This contradicts the quasiconcavity of ϕ̄.
In any case, ϕ̄ is nonincreasing in α ≥ 0.
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C̄ϕβ
(α, η)

• •
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|α| ≤ γ

−1 − β −1 + β 1 − β 1 + β

(a) 0 ≤ β < 1− γ

α

C̄ϕβ
(α, η)

• •
•

−1 − β −1 + β 1 − β 1 + β

(b) 1− γ ≤ β < 1 + γ

α

C̄ϕβ
(α, η)

• • •

−1 − β −1 + β1 − β 1 + β

(c) 1 + γ ≤ β < 2

α

C̄ϕβ
(α, η)

• • •

−1 + β1 − β

(d) 2 ≤ β

Figure 4.14: Class-conditional risk for the ramp loss.

Part 4. This is an immediate consequence of the quasiconcavity and continuity
of C̄ϕ(α, η) (Assumption 4.11).

4.11.7 Derivation of Calibration Functions

In this subsection, we derive closed-forms of (ϕγ ,Flin)-calibration functions for
several surrogate losses ϕ by minimizing δ̄(ε, η,x) in (4.7) w.r.t. η ∈ [0, 1] and
x ∈ X̃ρ, or in other words, ‖x‖2 ≥ γ+ρ. To simplify the notation, let C̄ϕ(α, η) :=
ηϕ(α) + (1− η)ϕ(−α).

Ramp Loss

The ramp loss is ϕ(α) = min
{
1,max

{
0, 1−α2

} }
. We consider the shifted ramp

loss ϕβ(α) = ϕ(α− β) as follows:

ϕβ(α) =


1 if α ≤ −1 + β,
1−α+β

2 if −1 + β < α ≤ 1 + β,

0 if 1 + β < α.

The ϕβ-CCR is plotted in Figure 4.14. We can confirm that C̄ϕβ is quasiconcave
with each β ≥ 0.

Minimal inner risk. By part 4 of Lemma 4.17, it is easy to check

C∗
ϕβ ,Flin

(η,x) = inf
f∈Flin

Cϕβ (f, η,x) = inf
α∈[−∥x∥2,∥x∥2]

C̄ϕβ (α, η)

= min
{
C̄ϕβ (−

∥∥ x‖2, η), C̄ϕβ (‖x‖2, η)
}
.

Calibration function. We analyze ϕβ-CCR Cϕβ (f, η,x) = ηϕβ(f(x)) + (1 −
η)ϕβ(−f(x)) = C̄ϕβ (f(x), η), and restrict η > 1

2 by virtue of the symmetry of Cϕβ
(part 1 in Lemma 4.16). It is easy to see that C∗

ϕβ ,Flin
(η,x) = C̄ϕβ (‖x‖2, η). Subse-

quently, we divide the cases depending on the relationship among C̄ϕβ (−‖x‖2, η),
C̄ϕβ (γ, η), and C̄ϕβ (−γ, η).
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(A) When 0 ≤ β < 1− γ,

C̄ϕβ (−‖x‖2, η) =

{
η + 1−∥x∥2+β

2 (1− η) if γ + ρ ≤ ‖x‖2 < 1− β,
1+∥x∥2+β

2 η + 1−∥x∥2+β
2 (1− η) otherwise,

C̄ϕβ (γ, η) =
1− γ + β

2
η +

1 + γ + β

2
(1− η),

C̄ϕβ (−γ, η) =
1 + γ + β

2
η +

1− γ + β

2
(1− η),

from which it follows that C̄ϕβ (−γ, η) − C̄ϕβ (γ, η) = γ
2 (2η − 1) > 0, that is,

C̄ϕβ (−γ, η) > C̄ϕβ (γ, η) for all η > 1
2 . In addition, because when γ + ρ ≤ ‖x‖2 <

1− β,

C̄ϕβ (−‖x‖2, η)− C̄ϕβ (γ, η) = (γ + ‖x‖2)
(
η − 1

2

)
,

we have Cϕβ (γ, η) < Cϕβ (−‖x‖2, η) for β and ‖x‖2. Based on part 4 in Lemma 4.17,
it follows that

inf
f∈Flin:|f(x)|≤γ

Cϕβ (f, η,x) = inf
|α|≤γ

C̄ϕβ (α, η) = C̄ϕβ (γ, η),

inf
f∈Flin:f(x)≤γ

Cϕβ (f, η,x) = inf
α∈[−∥x∥2,γ]

C̄ϕβ (α, η)

= min{C̄ϕβ (γ, η), C̄ϕβ (−‖x‖2, η)}.

Thus, based on Lemma 4.9,

δ̄(ε, η,x)

=


∞ if η < ε,
C̄ϕβ (γ, η)− C̄ϕβ (‖x‖2, η) if ε ≤ η and C̄ϕβ (−‖x‖2, η) ≥ C̄ϕβ (γ, η),
C̄ϕβ (−‖x‖2, η)− C̄ϕβ (‖x‖2, η) if ε ≤ η and C̄ϕβ (−‖x‖2, η) < C̄ϕβ (γ, η),

=


∞ if η < ε,
C̄ϕβ (γ, η)− C̄ϕβ (‖x‖2, η) if ε ≤ η and C̄ϕβ (−‖x‖2, η) ≥ C̄ϕβ (γ, η),
1+∥x∥2−β

2

(
η − 1

2

)
if ε ≤ η and C̄ϕβ (−‖x‖2, η) < C̄ϕβ (γ, η),

where the last identity holds because ‖x‖2 ≥ 1 − β when C̄ϕβ (−‖x‖2, η) <
C̄ϕβ (γ, η). Because C̄ϕβ (α, η) is nonincreasing in α ≥ 0 (part 1 of Lemma 4.17),
we know that C∗

ϕβ
(η,x) = C̄ϕβ (‖x‖2, η) is maximized at ‖x‖2 = γ + ρ, which

implies

δρ(ε) = inf
η∈( 1

2
,1]

inf
x∈X :∥x∥2≥γ+ρ

δ̄(ε, η,x)

= inf
η∈( 1

2
,1]:ε≤η

1 + γ + ρ− β
2

(
η − 1

2

)
=

1 + γ + ρ− β
2

[
ε− 1

2

]
+

.

(B) When 1− γ ≤ β < 1 + γ,

C̄ϕβ (−‖x‖2, η) = η +
1− ‖x‖2 + β

2
(1− η),

C̄ϕβ (γ, η) =
1− γ + β

2
η + (1− η),

C̄ϕβ (−γ, η) = η +
1− γ + β

2
(1− η),
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from which it follows that C̄ϕβ (−γ, η) − C̄ϕβ (γ, η) =
1+γ−β

2 (2η − 1) > 0, that is,
C̄ϕβ (−γ, η) > C̄ϕβ (γ, η) for all η > 1

2 . In addition, because

C̄ϕβ (γ, η)− C̄ϕβ (−‖x‖2, η) = −
2− 2β + γ + ‖x‖2

2
(η − η0(x)) ,

where

η0(x) :=
1

1 + 1+γ−β
1+∥x∥2−β

,

and 2− 2β + γ + ‖x‖2 > 0, we have C̄ϕβ (γ, η) > C̄ϕβ (−‖x‖2, η) if 1
2 < η < η0(x),

and C̄ϕβ (γ, η) ≤ C̄ϕβ (−‖x‖2, η) if η0(x) ≤ η. Note that 1
2 < η0(x) < 1.

• If 1
2 < η < η0(x): By part 4 in Lemma 4.17, it follows that

inf
f∈Flin:|f(x)|≤γ

Cϕβ (f, η,x) = inf
|α|≤γ

C̄ϕβ (α, x) = C̄ϕβ (γ, η),

inf
f∈Flin:f(x)≤γ

Cϕβ (f, η,x) = inf
α∈[−∥x∥2,γ]

C̄ϕβ (α, x) = C̄ϕβ (−‖x‖2, η).

Thus, by Lemma 4.9,

δ̄(ε, η,x) =


∞ if η < ε,

C̄ϕβ (γ, η)− C̄ϕβ (‖x‖2, η) =
∥x∥2−γ

2 η if ε ≤ η < 1+ε
2 ,

C̄ϕβ (−‖x‖2, η)− C̄ϕβ (‖x‖2, η)
= (1 + ‖x‖2 − β)

(
η − 1

2

)
if 1+ε

2 ≤ η,

and

inf
η∈( 1

2
,η0(x))

δ̄(ε, η,x) = min

{
‖x‖2 − γ

2
max

{
ε, 12

}
, (1 + ‖x‖2 − β)ε

}

=


(1 + ‖x‖2 − β)ε if 0 < ε ≤ ε0(x),
∥x∥2−γ

4 if ε0(x) < ε ≤ 1
2 ,

∥x∥2−γ
2 ε if 1

2 < ε,

where ε0(x) :=
∥x∥2−γ

4(1+∥x∥2−β) . Finally, by taking the infimum over x ∈ X̃ρ,

inf
x∈X̃ρ

inf
η∈( 1

2
,η0(x))

δ̄(ε, η,x) =


(1 + γ + ρ− β)ε if 0 < ε ≤ ε0,
ρ
4 if ε0 < ε ≤ 1

2 ,
ρ
2ε if 1

2 < ε,

where ε0 := ρ
4(1+γ+ρ−β) .

• If η0(x) ≤ η ≤ 1, by part 4 in Lemma 4.17, it follows that

inf
f∈Flin:|f(x)|≤γ

Cϕβ (f, η,x) = inf
|α|≤γ

C̄ϕβ (α, η) = C̄ϕβ (γ, η),

inf
f∈Flin:f(x)≤γ

Cϕβ (f, η,x) = inf
α∈[−∥x∥2,γ]

C̄ϕβ (α, η) = C̄ϕβ (γ, η).

Thus,

δ̄(ε, η,x) =

{
∞ if η < ε,

C̄ϕβ (γ, η)− C̄ϕβ (‖x‖2, η) =
∥x∥2−γ

2 η if ε ≤ η,
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and

inf
η∈[η0(x),1]

δ̄(ε, η,x) =
‖x‖2 − γ

2
max { η0(x), ε } .

By taking the infimum over x ∈ X̃ρ,

inf
x∈X̃ρ

inf
η∈[η0(x),1]

δ̄(ε, η,x) =

{
ρ
2ε1 if 0 < ε ≤ ε1,
ρ
2ε if ε1 < ε,

where ε1 := η0(xγ+ρ) =
1+γ+ρ−β

2+2γ−2β+ρ with ‖xγ+ρ‖2 = γ + ρ.

Finally, we obtain the calibration function by combining the above cases as follows:

δρ(ε) =


(1 + γ + ρ− β)ε if 0 < ε ≤ ε0,
ρ
4 if ε0 < ε ≤ 1

2 ,
ρ
2ε if 1

2 < ε.

(C) When 1 + γ ≤ β < 2, it is easy to see that

inf
f∈Flin:|f(x)|≤γ

Cϕβ (f, η,x) = inf
|α|≤γ

C̄ϕβ (α, η) = 1,

inf
f∈Flin:f(x)≤γ

Cϕβ (α, η) = inf
α∈[−∥x∥2,γ]

C̄ϕβ (α, η) = C̄ϕβ (−‖x‖2, η)

=

{
1 if γ < ‖x‖2 ≤ −1 + β,

η + 1−∥x∥2+β
2 (1− η) if −1 + β < ‖x‖2 ≤ 1,

C∗
ϕβ ,Flin

(η,x) = C̄ϕβ (‖x‖2, η)

=

{
1 if γ < ‖x‖2 ≤ −1 + β,
1−∥x∥2+β

2 η + (1− η) if −1 + β < ‖x‖2 ≤ 1.

Hence, by part 4 in Lemma 4.17, it follows that

δ̄(ε, η,x) =


∞ if η < ε,

1− C̄ϕβ (‖x‖2, η) if ε ≤ η < 1+ε
2 ,

C̄ϕβ (−‖x‖2, η)− C̄ϕβ (‖x‖2, η) if 1+ε
2 ≤ η.

=



∞ if η < ε,

0 if ε ≤ η < 1+ε
2 and γ < ‖x‖2 ≤ −1 + β,

1+∥x∥2−β
2 η if ε ≤ η < 1+ε

2 and −1 + β < ‖x‖2 ≤ 1,

0 if 1+ε
2 ≤ η and γ < ‖x‖2 ≤ −1 + β,

(1 + ‖x‖2 − β)
(
η − 1

2

)
if 1+ε

2 ≤ η and −1 + β < ‖x‖2 ≤ 1.

Thus, Lemma 4.9 implies δρ(ε) = infη∈( 1
2
,1] inf∥x∥2∈[γ+ρ,1] δ̄(ε, η,x) = 0 when

γ + ρ ≤ −1 + β ⇐⇒ 1 + γ + ρ ≤ β, by setting ‖x‖2 ≤ −1 + β and arbitrary η.
When 1 + γ + ρ > β, δρ(ε) = 1+γ+ρ−β

2 ε by setting ‖x‖2 = γ + ρ.
(D) When 2 ≤ β, C̄ϕβ (α, η) = 1 for all η ∈ [0, 1] and α ∈ [−1, 1]. Hence,

∆Cϕβ ,Flin
(f, η,x) = 0 and δρ(ε) = 0.

To summarize, the (ϕγ ,Flin)-calibration function and its Fenchel-Legendre
biconjugate of the ramp loss is as follows:

• If 0 ≤ β < 1− γ, δρ(ε) = δ⋆⋆ρ (ε) = 1+γ+ρ−β
2

[
ε− 1

2

]
+
.
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Figure 4.15: Class-conditional risk of the sigmoid loss.

• If 1− γ ≤ β < 1 + γ,

δρ(ε) =


(1 + γ + ρ− β)ε if 0 < ε ≤ ε0,
ρ
4 if ε0 < ε ≤ 1

2 ,
ρ
2ε if 1

2 < ε,
and δ⋆⋆ρ (ε) =

ρ

2
ε.

• If 1 + γ ≤ β < 1 + γ + ρ, δρ(ε) = δ⋆⋆ρ (ε) = 1+γ+ρ−β
2 ε.

• If 1 + γ + ρ ≤ β, δρ(ε) = δ⋆⋆ρ (ε) = 0.

We can see that the ramp loss is (ϕρ,Flin)-calibrated when 1− γ ≤ β < 1 + γ.

Sigmoid Loss

The sigmoid loss is ϕ(α) = 1
1+eα . We consider the shifted sigmoid loss as ϕβ(α) =

1
1+eα−β for β ≥ 0. Here, ϕβ-CCR is

Cϕβ (f, η,x) = C̄ϕβ (f(x), η)

=
η

1 + ef(x)−β
+

1− η
1 + e−f(x)−β

.

In addition, C̄ϕβ is plotted in Figure 4.15, from which we can see that C̄ϕβ is
quasiconcave when β ≥ 0.

Minimal inner risk. Based on part 4 of Lemma 4.17, it is easy to check that

C∗
ϕβ ,Flin

(η,x)

= inf
f∈Flin

Cϕβ (f, η,x)

= inf
α∈[−∥x∥2,∥x∥2]

C̄ϕβ (α, η)

= min{C̄ϕβ (−‖x‖2, η), C̄ϕβ (‖x‖2, η)}

= min

{
η

1 + e∥x∥2−β
+

1− η
1 + e−∥x∥2−β

,
η

1 + e−∥x∥2−β
+

1− η
1 + e∥x∥2−β

}
.

Calibration function. We focus on the case η > 1
2 owing to the symmetry of

Cϕβ . The minimal inner risk is

C∗
ϕβ ,Flin

(η,x) = C̄ϕβ (‖x‖2, η) =
η

1 + e∥x∥2−β
+

1− η
1 + e−∥x∥2−β

.
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We compute Cϕβ (f, η,x). Because

C̄ϕβ (−γ, η)− C̄ϕβ (γ, η) =
(

η

1 + e−γ−β
+

1− η
1 + eγ−β

)
−
(

η

1 + eγ−β
+

1− η
1 + e−γ−β

)
= (2η − 1)

(
1

1 + e−γ−β
− 1

1 + eγ−β

)
> 0, (since −γ − β < γ − β)

we have C̄ϕβ (γ, η) < C̄ϕβ (−γ, η) for all η > 1
2 , implying that inf |α|≤γ C̄ϕβ (α, η) =

C̄ϕβ (γ, η) and inff :|f(x)|≤γ Cϕβ (f, η,x) = C̄ϕβ (γ, η). Note that because we assume
‖x‖2 > γ, f ∈ Flin exists such that f(x) = γ. By contrast, we divide the cases
to compute inff :f(x)≤γ Cϕβ (f, η,x) = infα∈[−∥x∥2,γ] C̄ϕβ (α, η). Based on part 4 of
Lemma 4.17,

inf
f∈Flin:f(x)≤γ

Cϕβ (f, η,x) =

{
C̄ϕβ (−‖x‖2, η) if C̄ϕβ (−‖x‖2) < C̄ϕβ (γ, η),

C̄ϕβ (γ, η) if C̄ϕβ (−‖x‖2) ≥ C̄ϕβ (γ, η).

Thus, based on Lemma 4.9, we can compute δ by evaluating δ̄ and dividing the
cases regarding η and x. If C̄ϕβ (−‖x‖2) < C̄ϕβ (γ, η) and η ≥ 1+ε

2 ,

δ̄(ε, η,x) = C̄ϕβ (−‖x‖2, η)− C̄ϕβ (‖x‖2, η)
= (2η − 1) {ϕβ(−‖x‖2)− ϕβ(‖x‖2)} ,

which is minimized at η = 1+ε
2 and ‖x‖2 = γ+ρ because ϕβ(−‖x‖2)−ϕβ(‖x‖2) >

0 is increasing in ‖x‖2, and the constraint

{
C̄ϕβ (−‖x‖2) < C̄ϕβ (γ, η)

}
∧
{
η ≥ 1 + ε

2

}
⇐⇒ F (‖x‖2) :=

ϕβ(−γ)− ϕβ(‖x‖2)
ϕβ(−‖x‖2)− ϕβ(γ)

<
1 + ε

1− ε

is always satisfied for any ε > 0 and x such that ‖x‖2 > γ. Note that F (‖x‖2) is
increasing in ‖x‖2 and thereby maximized at ‖x‖2 = 1, where F (1) < 1 < 1+ε

1−ε .
Under the choice of the minimizers,

δ̄

(
ε,

1 + ε

2
,x

)
= ε {ϕβ(−γ − ρ)− ϕβ(γ + ρ)} := A0ε,

where A0 := ϕβ(−γ − ρ)− ϕβ(γ + ρ).
If C̄ϕβ (−‖x‖2) ≥ C̄ϕβ (γ, η) and ε ≤ η, we have F (‖x‖2) ≥ ε

2−ε . This
constraint with ‖x‖2 ≥ γ + ρ is always satisfied because F is increasing and
F (‖x‖2) > F (γ) = 1 ≥ ε

2−ε for all ε ∈ (0, 1). Consequently,

δ̄(ε, η,x)

= C̄ϕβ (γ, η)− C̄ϕβ (‖x‖2, η)
= {ϕβ(γ)− ϕβ(−γ)− ϕβ(‖x‖2) + ϕβ(−‖x‖2)} η + ϕβ(−γ)− ϕβ(−‖x‖2),

which is minimized at η = max
{
ε, 12
}

and ‖x‖2 = γ+ρ because it is nondecreasing
in both η and x. Note that −C̄ϕβ (·, η) is nondecreasing (part 1 of Lemma 4.17).
Under the choice of the minimizers,

δ̄
(
ε,max

{
ε, 12

}
, γ + ρ

)
= A1

[
ε− 1

2

]
+

+ δ0,
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where

A1 := ϕβ(γ)− ϕβ(−γ)− ϕβ(γ + ρ) + ϕβ(−γ − ρ),

δ0 :=
ϕβ(γ) + ϕβ(−γ)− ϕβ(γ + ρ)− ϕβ(−γ − ρ)

2
.

Note that δ0 > 0 because ϕβ(α) + ϕβ(−α) is nonincreasing in α ≥ 0 (part 3 of
Lemma 4.17).

If C̄ϕβ (−‖x‖2) < C̄ϕβ (γ, η) and ε ≤ η < 1+ε
2 , the condition is equivalent to

1+ε
1−ε < F (‖x‖2) ≤ ε

2−ε . This condition is never satisfied because 1+ε
1−ε ≥

ε
2−ε for all

ε ∈ (0, 1).
By combining these cases, we have

δρ(ε) = inf
η∈[ 12 ,1]

inf
∥x∥2>γ+ρ

δ̄(ε, η,x) =


A0ε if 0 < ε ≤ ε0,
δ0 if ε0 < ε ≤ 1

2 ,

A1

(
ε− 1

2

)
+ δ0 if ε > 1

2 ,

δ⋆⋆ρ (ε) =

{
A0ε if 0 < ε ≤ 1

2 ,
A1

(
ε− 1

2

)
+ δ0 if 1

2 < ε,

where ε0 := δ0
A0

.
Thus, the sigmoid loss is calibrated w.r.t. (ϕγ ,Flin) when δ0 > 0. This always

holds as long as β > 0.

Modified Squared Loss

We design a bounded and nonincreasing surrogate loss by modifying the squared
loss, which we call the modified squared loss herein:

ϕ(α) =


1 if α ≤ 0,

(1− α)2 if 0 < α ≤ 1,

0 if 1 < α,

and consider the shifted version ϕβ(α) := ϕ(α− β):

ϕβ(α) =


1 if α ≤ β,
(1− α+ β)2 if β < α ≤ 1 + β,

0 if 1 + β < α.

Here, C̄ϕβ is plotted in Figure 4.16, from which we can see C̄ϕβ is quasiconcave
when β ≥ 0.

Calibration function. Now, we consider ϕβ-CCR Cϕβ (f, η,x) = C̄ϕβ (α, η) =

ηϕ(α)+ (1− η)ϕ(−α), where α = f(x), and focus on the case η > 1
2 owing to the

symmetry of C̄ϕβ in η (part 1 of Lemma 4.16). Based on part 4 of Lemma 4.17,
it is easy to see that

C∗
ϕβ ,Flin

(η,x) = min{C̄ϕβ (−‖x‖2, η), C̄ϕβ (‖x‖2, η)} = C̄ϕβ (‖x‖2, η).

We divide into three cases depending on the relationship among C̄ϕβ (−‖x‖2, η),
C̄ϕβ (−γ, η), and C̄ϕβ (‖x‖2, η).
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(A) When 0 ≤ β < γ, because

C̄ϕβ (−γ, η)− C̄ϕβ (γ, η)
=
{
η · 1 + (1− η)(1− γ + β)2

}
−
{
η(1− γ + β)2 + (1− η) · 1

}
= (2η − 1)(γ − β) {2− (γ − β)}
≥ 0,

we have C̄ϕβ (γ, η) < C̄ϕβ (−γ, η) for all η > 1
2 . By contrast, because

C̄ϕβ (γ, η)− C̄ϕβ (−‖x‖2, η)
= −

{
(1− (1− γ + β)2) + (1− (1− ‖x‖2 + β)2)

}
(η − η0(x))

where η0(x) :=
1− (1− ‖x‖2 + β)2

(1− (1− γ + β)2) + (1− (1− ‖x‖2 + β)2)

and 1
2 < η0(x) < 1, we have C̄ϕβ (γ, η) ≥ C̄ϕβ (−‖x‖2, η) if 1

2 < η ≤ η0(x) and
C̄ϕβ (γ, η) < C̄ϕβ (−‖x‖2, η) if η > η0(x).

• If 1
2 < η ≤ η0(x): By part 4 in Lemma 4.17,

inf
f∈Flin:

|f(x)|≤γ or (2η−1)f(x)≤0

Cϕβ (f, η,x) = inf
α∈[−∥x∥2,γ]

C̄ϕβ (α, η) = C̄ϕβ (−‖x‖2, η),

inf
f∈Flin:|f(x)|≤γ

Cϕβ (f, η,x) = inf
|α|≤γ

C̄ϕβ (α, η) = C̄ϕβ (γ, η).

Thus, by Lemma 4.9,

δ̄(ε, η,x) =



∞ if η < ε,

C̄ϕβ (γ, η)− C̄ϕβ (‖x‖2, η)
= (‖x‖2 − γ)(2 + 2β − γ − ‖x‖2)η if ε ≤ η < 1+ε

2 ,

C̄ϕβ (−‖x‖2, η)− C̄ϕβ (‖x‖2, η)
= (‖x‖2 − β)(2− ‖x‖2 + β)(2η − 1) if 1+ε

2 ≤ η.

Hence, we obtain

inf
η∈( 1

2
,η0(x)]

inf
∥x∥2≥γ+ρ

δ̄(ε, η,x) =


A0ε if 0 < ε ≤ ε0,
δ0 if ε0 < ε ≤ 1

2 ,

A1ε if 1
2 < ε,

where A0 := (γ + ρ− β)(2 + β − γ − ρ), A1 := ρ(2 + 2β − 2γ − ρ), δ0 := A1
2 ,

and ε0 := δ0
A0

. Note that the second case will not degenerate (δ0 > 0).

• If η0(x) < η ≤ 1, based on part 4 in Lemma 4.17, it follows that

inf
f∈Flin:|f(x)|≤γ or (2η−1)f(x)≤0

Cϕβ (f, η,x) = inf
α∈[−∥x∥2,γ]

C̄ϕβ (α, η) = C̄ϕβ (γ, η),

inf
f∈Flin:|f(x)|≤γ

Cϕβ (f, η,x) = inf
|α|≤γ

C̄ϕβ (α, η) = C̄ϕβ (γ, η).

Thus, by Lemma 4.9,

δ̄(ε, η,x) =


∞ if η < ε,
C̄ϕβ (γ, η)− C̄ϕβ (‖x‖2, η)
= (‖x‖2 − γ)(2 + 2β − γ − ‖x‖2)η if ε ≤ η.
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Hence, we obtain

inf
η∈(η0(x),1]

inf
∥x∥2≥γ+ρ

δ̄(ε, η) =

{
η0(γ + ρ)ε if 0 < ε ≤ η0(γ + ρ),

A1ε if η0(γ + ρ) < ε.

Note that η0(γ+ρ) > 1
2 . Combining the above, we obtain the (ϕγ ,Flin)-calibration

function from Lemma 4.9:

δρ(ε) =


A0ε if 0 < ε ≤ ε0,
δ0 if ε0 < ε ≤ 1

2 ,

A1ε if 1
2 < ε,

where A0 = (γ + ρ − β)(2 + β − γ − ρ), A1 = ρ(2 + 2β − 2γ − ρ), δ0 = A1
2 , and

ε0 =
δ0
A0

.
(B) When γ ≤ β < 1, it is easy to see that

inf
f∈Flin:|f(x)|≤γ

Cϕβ (f, η,x) = inf
|α|≤γ

C̄ϕβ (α, η) = 1,

inf
f∈Flin:|f(x)|≤γ or (2η−1)f(x)≤0

Cϕβ (f, η,x) = inf
α∈[−∥x∥2,γ]

C̄ϕβ (α, η) = C̄ϕβ (−‖x‖2, η).

Hence, by noting that C̄ϕβ (‖x‖2, η) = C̄ϕβ (−‖x‖2, η) = 1 for ‖x‖2 ≤ β, it follows
that

δ̄(ε, η,x)

=



∞ if η < ε,

1− C̄ϕβ (‖x‖2, η)
= (‖x‖2 − β)(2− ‖x‖2 + β)η if ε ≤ η < 1+ε

2 and ‖x‖2 > β,

C̄ϕβ (−‖x‖2, η)− C̄ϕβ (‖x‖2, η)
= (‖x‖2 − β)(2− ‖x‖2 + β)(2η − 1) if 1+ε

2 ≤ η and ‖x‖2 > β

0 if ε ≤ η and ‖x‖2 ≤ β.

Thus, by Lemma 4.9, we have δρ(ε) = 0 when β ≥ γ + ρ, and

δρ(ε) = inf
η∈( 1

2
,1]

inf
∥x∥2≥γ+ρ

δ̄(ε, η,x) = A0ε

when β < γ + ρ, where A0 = (γ + ρ− β)(2 + β − γ − ρ).
(C) When 1 ≤ β, C̄ϕβ (α, η) = 1 for all α ∈ [−1, 1]. Hence, ∆Cϕβ ,Flin

(f, η,x) =
0 and δρ(ε) = 0.

To summarize, the (ϕγ ,Flin)-calibration function and its Fenchel-Legendre
biconjugate of the modified squared loss are as follows:

• If 0 ≤ β < γ,

δρ(ε) =


A0ε if 0 < ε ≤ ε0,
δ0 if ε0 < ε ≤ 1

2 ,

A1ε if 1
2 < ε,

and δ⋆⋆ρ (ε) = A1ε,

where A0 = (γ + ρ− β)(2 + β − γ − ρ), A1 = ρ(2 + 2β − 2γ − ρ), δ0 = A1
2 ,

and ε0 = δ0
A0

.

• If γ ≤ β < γ + ρ, δρ(ε) = δ⋆⋆ρ (ε) = A0ε.

• If γ + ρ ≤ β, δ(ε) = δ⋆⋆(ε) = 0.

We deduce that the modified squared loss is calibrated w.r.t. (ϕγ ,Flin) if 0 ≤ β ≤
γ.
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Figure 4.16: Class-conditional risk of the modified squared loss.
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(a) η = 0.7
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•
• • •

−1 − β −ββ 1 + β

(b) η = 0.5

Figure 4.17: Class-conditional risk of the modified squared loss when γ < 2
5

and −1 − γ +√
1 + 2γ2 < β < 0.

When β < 0. In this case, the CCR of the modified squared loss is no longer
quasiconcave (see Figure 4.17b). However, ϕβ is still (ϕγ ,Flin)-calibrated under
some γ and β < 0. Here, we show an example.

Assume that 0 < γ < 2
5 and (−γ <) − 1 − γ +

√
1 + 2γ2 < β < 0. We

focus on η > 1
2 owing to the symmetry of C̄ϕβ (α, η) in η (part 1 of Lemma 4.16).

Because we still have η0(x) > 1
2 , we can confirm in the same way as in the case

(A) that C̄ϕβ (−γ, η) > C̄ϕβ (γ, η), C̄ϕβ (γ, η) ≥ C̄ϕβ (−‖x‖2, η) if 1
2 < η ≤ η0(x),

and C̄ϕβ (γ, η) < C̄ϕβ (−‖x‖2, η) if η0(x) < η. In addition, we can see that

C̄ϕβ (−‖x‖2, η)− C̄ϕβ (0, η) =
{
η + (1− η)(1− ‖x‖2 + β)2

}
− (1 + β)2

= η(1− (1− ‖x‖2 + β2))− ‖x‖2(2 + 2β − ‖x‖2)

>
1

2
(1− (1− ‖x‖2 + β2))− ‖x‖2(2 + 2β − ‖x‖2)

>
1

2
(1− (1− ‖x‖2)2)− ‖x‖2(2− ‖x‖2)

(nonincreasing in −1− γ +
√

1 + 2γ2 < β < 0)

=
1

2
‖x‖2(‖x‖2 − 2)

< 0,
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C̄ϕβ (0, η)− C̄ϕβ (γ, η) = (1 + β)2 −
{
η(1− γ + β)2 + (1− η)

}
= (1 + β)2 − 1 + η(1− (1− γ + β)2)

> (1 + β)2 − 1 +
1

2
(1− (1− γ + β)2)

> (1 + β)2 − 1 +
1

2
(1− (1− γ)2)

= (1 + β)2 + (1 + γ)2 − 1

2
> 0,

and

C̄ϕβ (γ, η)− C̄ϕβ (‖x‖2, η) > 0.

Thus, we have C̄ϕβ (0, η) > C̄ϕβ (−‖x‖2, η), C̄ϕβ (0, η) > C̄ϕβ (γ, η), and C̄ϕβ (γ, η) >
C̄ϕβ (‖x‖2, η) Figure 4.17 and the above comparisons give us

C∗
ϕβ ,Flin

(η,x) = inf
α∈[−∥x∥2,∥x∥2]

C̄ϕβ (α, η) = Cϕβ (‖x‖2, η),

inf
f∈F :|f(x)|≤γ

Cϕβ (f, η,x) = inf
|α|≤γ

C̄ϕβ (α, η) = C̄ϕβ (γ, η),

inf
f∈F :f(x)≤γ

Cϕβ (f, η,x) = inf
α∈[−∥x∥2,γ]

C̄ϕβ (α, η) = min{C̄ϕβ (−‖x‖2, η), C̄ϕβ (γ, η)}.

By Lemma 4.9, when ε ≤ η < 1+ε
2 ,

δ̄(ε, η,x) = inf
f∈Flin:|f(x)|≤γ

∆Cϕβ (f, η,x)

= C̄ϕβ (γ, η)− C̄ϕβ (‖x‖2, η)
=
{
η(1− γ + β)2 + (1− η)

}
−
{
η(1− ‖x‖2 + β)2 + (1− η)

}
= (‖x‖2 − γ)(2 + 2β − γ − ‖x‖2)η,

and

inf
η∈[ε, 1+ε

2 ]∩( 1
2
,1]

inf
∥x∥2≥γ+ρ

δ̄(ε, η,x)

= inf
∥x∥2≥γ+ρ

(‖x‖2 − γ)(2 + 2β − γ − ‖x‖2)max

{
ε,

1

2

}
=

{
δ0 if 0 < ε ≤ 1

2 ,
A1ε if 1

2 < ε.

When 1+ε
2 ≤ η,

δ̄(ε, η) = inf
f∈Flin:f(x)≤γ

∆Cϕβ (f, η,x)

= min
{
C̄ϕβ (−‖x‖2, η)− C̄ϕβ (‖x‖2, η), C̄ϕβ (γ, η)− C̄ϕβ (‖x‖2, η)

}
= min

{
(1− (1− ‖x‖2 + β))2(2η − 1), (‖x‖2 − γ)(2 + 2β − γ − ‖x‖2)η

}
,
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Figure 4.18: Class-conditional risk of the hinge loss.

and

inf
η∈[ 1+ε

2
,1]∩( 1

2
,1]

inf
∥x∥2≥γ+ρ

δ̄(ε, η,x)

= inf
∥x∥2≥γ+ρ

min

{
(1− (1− ‖x‖2 + β)2)ε, (‖x‖2 − γ)(2 + 2β − γ − ‖x‖2)

1 + ε

2

}
= min

{
A0ε,A1

1 + ε

2

}
.

Hence, the (ϕγ ,Flin)-calibration function of ϕβ is

δρ(ε) =


A0ε if 0 < ε ≤ ε0,
δ0 if ε0 < ε ≤ 1

2 ,
A1ε if 1

2 < ε,

where A0 = (γ + ρ − β)(2 + β − γ − ρ), A1 = ρ(2 + 2β − 2γ − ρ), δ0 = A1
2 , and

ε0 =
δ0
A0

. We can see that the second case will not degenerate (i.e., δ0 > 0) under
the range −1− γ +

√
1 + 2γ2 < β < 0 and 0 < γ ≤ 2

5 .

Hinge Loss

The ϕβ-CCR is Cϕβ (f, η,x) = C̄ϕβ (f(x), η), where

C̄ϕβ (α, η) =


−ηα+ η(1 + β) if α < −(1 + β),

(1− 2η)α+ (1 + β) if −(1 + β) ≤ α < 1 + β,

(1− η)α+ (1− η)(1 + β) if 1 + β < α.

Minimal inner risk. When η > 1
2 , C̄ϕβ (α, η) is minimized at α = ‖x‖2, and

when η ≤ 1
2 , C̄ϕβ (α, η) is minimized at α = −‖x‖2. Hence,

C∗
ϕβ ,Flin

(η,x) = inf
α∈[−∥x∥2,∥x∥2]

C̄ϕβ (α, η)

=

{
C̄ϕβ (‖x‖2, η) if η > 1

2

C̄ϕβ (−‖x‖2, η) if η ≤ 1
2

= −|1− 2η| · ‖x‖2 + 1 + β.

Calibration function. We restrict the range of η to η > 1
2 by virtue of part 1

of Lemma 4.16. Then, C∗
ϕβ ,Flin

(η,x) = C̄ϕβ (‖x‖2, η). In addition, C̄ϕβ (α, η) is
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Figure 4.19: Class-conditional risk of the squared loss.

plotted in Figure 4.18 in case of η > 1
2 . From the figure, we can see that

inf
f∈Flin:f(x)≤γ

Cϕβ (f, η,x) = inf
α∈[−∥x∥2,∥x∥2]:|α|≤γ or

(2η−1)α≤0

C̄ϕβ (α, η)

= C̄ϕβ (γ, η)

= inf
|α|≤γ

C̄ϕβ (α, η)

= inf
f∈Flin:|f(x)|≤γ

Cϕβ (f, η,x),

by noting that ‖x‖2 > γ is assumed. Hence, by Lemma 4.9,

δ̄(ε, η,x) =


∞ if ‖x‖2 ≤ γ or η < ε,

C̄ϕβ (γ, η)− C̄∗
ϕβ ,Flin

(‖x‖2, η)
= (‖x‖2 − γ)(2η − 1) if ‖x‖2 > γ and ε ≤ η,

for η > 1
2 , and

δρ(ε) = inf
η∈[ 12 ,1]

inf
x∈X̃ρ

δ̄(ε, η,x) =

{
0 if 0 < ε ≤ 1

2 ,

2ρ
(
ε− 1

2

)
if 1

2 < ε,

and δ⋆⋆ρ (ε) = δρ(ε).

Squared Loss

The ϕβ-CCR is Cϕβ (f, η,x) = C̄ϕβ (f(x), η), where

C̄ϕβ (α, η) = η(1− α+ β)2 + (1− η)(1 + α+ β)2

= {α− (1 + β)(2η − 1)}2 + 4(1 + β)2η(1− η).

Let α∗ := (1 + β)(2η − 1).

Minimal inner risk. When η > 1
2 , C̄ϕβ (α, η) is minimized at α = ‖x‖2 if

‖x‖2 ≥ α∗, and at α = α∗ if ‖x‖2 < α∗. When η ≤ 1
2 , C̄ϕβ (α, η) is minimized at

α = −‖x‖2 if ‖x‖2 ≤ −α∗, and at α = α∗ if ‖x‖2 > −α∗. Hence,

C∗
ϕβ ,Flin

(η,x) = inf
α∈[−∥x∥2,∥x∥2]

C̄ϕβ (α, η)

=


C̄ϕβ (‖x‖2, η) if η > 1

2 and ‖x‖2 ≥ α∗,

C̄ϕβ (−‖x‖2, η) if η ≤ 1
2 and ‖x‖2 ≤ −α∗,

C̄ϕβ (α∗, η) otherwise.
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Calibration function. We restrict the range of η to η > 1
2 by virtue of part 1

of Lemma 4.16. Here, C̄ϕβ (α, η) is plotted in Figure 4.19 in case of η > 1
2 . By

comparing α∗ and ‖x‖2, we have

C∗
ϕβ ,Flin

(η,x) =

{
C̄ϕβ (α∗, η) if α∗ < ‖x‖2,
C̄ϕβ (‖x‖2, η) if α∗ ≥ ‖x‖2.

From the figure, we can see that

inf
f∈Flin:f(x)≤γ

Cϕβ (f, η,x) = inf
α∈[−∥x∥2,∥x∥2]:|α|≤γ or

(2η−1)α≤0

C̄ϕβ (α, η)

= inf
|α|≤γ

C̄ϕβ (α, η)

= inf
f∈Flin

Cϕβ (f, η,x)

=

{
C̄ϕβ (α∗, η) if γ > α∗,

C̄ϕβ (γ, η) if γ ≤ α∗,

by noting that ‖x‖2 > γ is assumed. Hence, by Lemma 4.9,

δ̄(ε, η,x)

=


∞ if ‖x‖2 ≤ γ or η < ε,

C̄ϕβ (α∗, η)− C̄ϕβ (α∗, η) if ‖x‖2 > γ and ε ≤ η and α∗ < γ,

C̄ϕβ (γ, η)− C̄ϕβ (α∗, η) if ‖x‖2 > γ and ε ≤ η and γ ≤ α∗ < ‖x‖2,
C̄ϕβ (γ, η)− C̄ϕβ (‖x‖2, η) if ‖x‖2 > γ and ε ≤ η and ‖x‖2 ≤ α∗.

By taking the infimum over η and x,

δρ(ε) = inf
η∈[ 12 ,1]

inf
x∈X̃ρ

δ̄(ε, η,x) =

{
0 if 0 < ε ≤ ε0,
4(1 + β)2(ε− ε0)2 if ε0 < ε,

where ε0 := 1+β+γ
2(1+β) , and δ⋆⋆ρ (ε) = δρ(ε).

4.12 Conclusion

Calibration analysis was leveraged to analyze the adversarially robust 0-1 loss.
Focusing on the class of linear classifiers, we found that no convex surrogate loss
is calibrated w.r.t. the adversarially robust 0-1 loss for general distributions. We
also established necessary and sufficient conditions for a certain class of nonconvex
surrogate losses to be calibrated w.r.t. the adversarially robust 0-1 loss, which
includes shifted versions of the ramp and sigmoid losses.

Recently, Tsipras et al. [2019] and Suggala et al. [2019] revealed that there is an
intrinsic trade-off between the adversarial robustness and classification accuracy.
Tsipras et al. [2019] showed a simple scenario under which the trade-off exists, and
Suggala et al. [2019] proposed an alternative evaluation framework of robustness
to overcome the trade-off. Since then, many works investigated the trade-off
in detail and how to overcome it. Javanmard et al. [2020] showed that linear
classifiers do not exhibit the trade-off under the overparametrized regime but
the Pareto frontier emerges as the sample size grows. Raghunathan et al. [2020]
used self-training as a part of regularization to mitigate the trade-off. Krishnan
et al. [2020] showed that there exists a lower bound of the Lipschitz constant of
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classifiers given a fixed budget of the classification accuracy. Since the Lipschitz
constant measures the smoothness of classifiers, this result is also related to the
robustness-accuracy trade-off. Dobriban et al. [2021] characterized the Bayes
classifier of adversarially robust classification assuming that the data is normally
distributed and showed the trade-off from the viewpoint of the Bayes risk. Our
proof approach based on calibration analysis could also contribute elucidating and
characterizing the robustness-accuracy trade-off and providing better insights,
which is left as a future work.
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Chapter 5

Connecting Similarity Learning to
Classification

One needs to look near at hand if one wants to study men; but to study man
one must learn to look from afar; one must first observe differences in order to
discover attributes.

— Jean-Jacques Rousseau, On the Origin of Language

Similarity learning is a general problem to elicit useful representations by pre-
dicting the relationship between a pair of patterns. This problem is related to
various important preprocessing tasks such as metric learning, kernel learning,
and contrastive learning. Despite the fact that a classifier built upon the repre-
sentations is expected to perform well in downstream classification, little theory
has been provided in literature thus far. Therefore, we tackle a fundamental
question: How is similarity learning relevant to standard classification? In this
chapter, we reveal that a specific formulation of similarity learning is strongly
related to an objective of binary classification. This formulation generalizes many
types of existing similarity learning, and an excess risk bound shows its explicit
connection to classification. Consequently, our results elucidate that similarity
learning is capable of solving binary classification by directly eliciting a decision
boundary.

5.1 Introduction

Similarity learning is a learning paradigm [Kulis, 2013], that builds a pairwise
model to predict whether given paired patterns are similar or dissimilar in the
latent classes. We call such a pair of patterns pairwise supervision, instead of or-
dinary pointwise supervision, which binds a class label to a single input pattern.
Pairwise supervision is commonly available in many domains such as geographi-
cal analysis [Wagstaff et al., 2001], chemical experiment [Eisenberg et al., 2000],
click-through feedback [Davis et al., 2007], computer vision [Yan et al., 2006, Wang
and Gupta, 2015], natural language processing [Mikolov et al., 2013], and crowd-
sourcing [Gomes et al., 2012]. Similarity learning has therefore been extensively
studied, including metric learning [Xing et al., 2003, Bilenko et al., 2004, Davis
et al., 2007, Weinberger and Saul, 2009, Bellet et al., 2012, Niu et al., 2014], kernel
learning [Cristianini et al., 2002, Bach et al., 2004, Lanckriet et al., 2004, Li and
Liu, 2009, Cortes et al., 2010], and (ε, γ, τ )-good similarity [Balcan et al., 2008,
Wang et al., 2009, Kar and Jain, 2011, Bellet et al., 2012]. The obtained pairwise
model is viewed as a metric function within the pattern space. If a good metric
is learned, the model is expected to achieve a good performance in downstream
tasks by capturing inherent structures within the data. Correspondingly, it has
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been widely used for various downstream tasks, such as classification [Cristianini
et al., 2002, Balcan et al., 2008, Hsu et al., 2019, Saunshi et al., 2019, Nozawa
et al., 2020], clustering [Bromley et al., 1994, Xing et al., 2003, Davis et al., 2007,
Weinberger and Saul, 2009], model selection [Lanckriet et al., 2004], and one-shot
learning [Koch et al., 2015].

Several studies have theoretically investigated the relationship between sim-
ilarity learning and downstream classification. Kar and Jain [2011] and Bellet
et al. [2012] proved that a feature space built on a learned metric is linearly sepa-
rable under the framework of (ε, γ, τ )-good similarity. In addition, Saunshi et al.
[2019] provided a similar result unique to contrastive learning. These results boil
down to two-step learners, which first solve similarity learning and then train the
classifiers. However, the latter step often requires as many samples as the for-
mer step because the feature space will potentially become high-dimensional to
guarantee its separability.

In this chapter, we yield a clue to a fundamental question, i.e., how is simi-
larity learning relevant to downstream classification, by revealing that a specific
formulation of similarity learning is tightly connected to binary classification.
This interrelation provides a new insight in that a binary decision boundary can
essentially be obtained with only pairwise supervision up to the label flipping. As a
result, the post-process resolving the label flipping becomes less label-demanding
than the previous formulations [Kar and Jain, 2011, Bellet et al., 2012, Saunshi
et al., 2019]. This post-process can further be applied with only pairwise super-
vision. Our results are notable in that: (i) they show that similarity learning
enables us to implicitly elicit a binary decision boundary without any explicit
training of classifiers, and (ii) the post-process is less costly in terms of pointwise
supervision. Specifically, we will see the following:

• Section 5.4.1: Similarity learning is tied to the binary classification error up
to the label flipping.

• Section 5.4.2: The post-process, i.e., how to resolve the label flipping, is
discussed. As a by-product, we come across a training method of binary
classifiers with only pairwise supervision (Section 5.4.3).

• Section 5.5: A finite-sample excess risk bound is established to connect
similarity learning to binary classification. This theoretical finding is nu-
merically demonstrated (Section 5.6).

Remark 5.1 (Multi-class case). Despite the fact that multi-class classification
may be more natural when working with pairwise supervision, our result is still
limited to a binary case. In practice, the one-versus-rest approach is effective, by
generating pairwise supervision from pointwise supervision with treating one class
as positive and the rest as negative. Recall that this approach is more beneficial
than the similar one-versus-rest approach taken in the previous studies on (ε, γ, τ )-
good similarity [Kar and Jain, 2011] because the post-process in our formulation
is less label-demanding, as we will see in Section 5.4.5.

5.2 Related Work

A number of studies have tackled pattern recognition with only pairwise supervi-
sion. Semi-supervised clustering [Wagstaff et al., 2001, Basu et al., 2002, Bilenko
et al., 2004, Zeng and Cheung, 2011] is one of the common approaches, which
applies clustering without violating pairwise supervision. Despite its success with
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domain-specific assumptions [Chapelle et al., 2006], it is not targeted for clas-
sification owing to a lack of the generalization guarantee. Recently, a meta-
classification approach has emerged [Hsu et al., 2019, Wu et al., 2020], in which
a model predicting pairwise labels is decomposed into pointwise classifiers. Al-
though the pairwise generalization performance of the meta-classifier has been
studied [Wu et al., 2020], the pointwise counterpart remains unexplored. Zhang
and Yan [2007] theoretically justified a similar approach but only for the squared
loss and asymptotically. In parallel, several studies have solved classification with
pairwise supervision by minimizing unbiased classification risk estimators [Bao
et al., 2018, Shimada et al., 2021, Cui et al., 2020, Dan et al., 2021]. Although
their approaches are blessed with pointwise generalization error bounds, their
performance deteriorates when the class-prior probability is close to uniform.

Note that another related learning paradigm is similarity as features [Graepel
et al., 1999, Balcan et al., 2008, Chen et al., 2009]. This line of research considers
a setup in which learners are given labels without features, and similarity relations
among data points are utilized as features. By contrast, we treat similarity as a
type of supervision, and features are available independently; thus, both feature
and similarity information can be incorporated simultaneously into learning.

5.3 Problem Setup

Let X ⊆ Rd be a d-dimensional pattern space, Y = {±1} be the label space,
and p(x, y) be the density of an underlying distribution over X × Y . Denote the
positive (negative, resp.) class prior by π+ := p(y = +1) (π− := p(y = −1),
resp.). Let sgn(α) = 1 for α > 0 and −1 otherwise.

Binary classification. The goal of binary classification is to classify unseen
patterns into two classes. This can be formulated as a problem of finding a
classifier h : X → Y that minimizes

Rpoint(h) := E
(X,Y)∼p(X,Y)

[
1{h(X) ̸=Y}

]
, (5.1)

where E(X,Y)∼p(X,Y)[·] denotes the expectation with respect to p(x, y). Typically,
we specify a hypothesis class H beforehand and find a minimizer h∗ of Rpoint

within it, i.e.,

h∗ ∈ argmin
h∈H

Rpoint(h).

The empirical mean of Rpoint is computed with finite samples.

Similarity learning. Here, we introduce similarity learning, which aims to
learn the relationship between a pair of patterns. Specifically, we focus on the
following formulation to predict whether a pair of patterns belong to the same
class. Hereafter, we suppose that (x, y) and (x′, y′) in a pair are independent of
each other. Assume that X = x and X′ = x′ are observed first, and the pairwise
supervision T is drawn from

p(T = YY′ | x,x′)

=

{
p(Y = +1 | x)p(Y′ = +1 | x′) + p(Y = −1 | x)p(Y′ = −1 | x′) if YY′ = +1,
p(Y = +1 | x)p(Y′ = −1 | x′) + p(Y = −1 | x)p(Y′ = +1 | x′) if YY′ = −1.
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The product YY′ indicates whether Y and Y′ are the same or similar, namely,
T = +1, or not the same or dissimilar, namely, T = −1. We are then interested
in the minimizer of the following classification error

Rpair(h) := E
X,X′∼p(X)

E
T∼p(T=YY′|x,x′)

[
1{h(X)·h(X′) ̸=T}

]
. (5.2)

The similarity model h(x) · h(x′) is legitimate in the current context because
the product form T = YY′ is used as the target such that we predict the label
agreement. We call Rpoint the pointwise classification error and Rpair the pairwise
classification error. The empirical mean of Rpair is computed with a finite number
of triplets (x,x′, yy′).

Remark 5.2 (T is not a hard similarity label). Even if Y = Y′ = +1 (sim-
ilar) with high probability, we can observe T = −1 (dissimilar) with a certain
probability. Assume

η := p(Y = +1 | x) ∈
(
1
2 , 1
)

and η′ := p(Y′ = +1 | x′) ∈
(
1
2 , 1
)
.

Then, the flipping rate p(T = −1 | x,x′) lies in (0, 12). In fact,

p(T = −1 | x,x′) = η(1− η′) + (1− η)η′

= η (1− 2η′)︸ ︷︷ ︸
<0

+η′

<
1

2
· (1− 2η′) + η′

=
1

2
.

This means that we do not preclude pairwise supervision with flipping in the prob-
ability, which is sufficiently general to cover common annotation scenarios.

5.4 Learning a Binary Classifier with Pairwise Supervision

We draw a connection between the specific formulation of similarity learning (5.2)
and binary classification (Theorem 5.1). This linkage enables us to train a point-
wise binary classifier using pairwise supervision (Section 5.4.3).

5.4.1 Connection between Similarity Learning and Classification

We first introduce a performance metric for binary classification called a cluster-
ing error that quantifies the discriminative power of a classifier up to the label
flipping:1

Rclus(h) := min {Rpoint(h), Rpoint(−h) } . (5.3)

Here, although Rclus is used as an evaluator of binary classifiers, it is usually
applied for an evaluation of clustering methods [Fahad et al., 2014]. The clustering
error differs from Rpoint in that it dismisses the difference between +h and −h;
however, a binary decision boundary is still properly evaluated. The clustering
error Rclus can be tied to the pairwise classification error Rpair as follows, which
is our primary result.

11 − Rclus is known as the clustering accuracy [Fahad et al., 2014]. The number of clusters
is confined to two for our specific purpose.
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Theorem 5.1. Any classifier h : X → Y satisfies

Rclus(h) =
1

2
−
√

1− 2Rpair(h)

2
. (5.4)

Proof. We derive an equivalent expression of the pairwise classification error Rpair

as follows:

Rpair(h) = E
(X,Y)∼p(X,Y)

E
(X′,Y′)∼p(X,Y)

[
1{h(X)·h(X′) ̸=YY′}

]
= E

(X,Y)∼p(X,Y)
E

(X′,Y′)∼p(X,Y)

[
1{h(X) ̸=Y}1{h(X′)=Y′}

]
+ E

(X,Y)∼p(X,Y)
E

(X′,Y′)∼p(X,Y)

[
1{h(X)=Y}1{h(X) ̸=Y′}

]
= E

(X,Y)∼p(X,Y)

[
1{h(X) ̸=Y}

]
E

(X′,Y′)∼p(X,Y)

[
1{h(X′)=Y′}

]
+ E

(X,Y)∼p(X,Y)

[
1{h(X)=Y}

]
E

(X′,Y′)∼p(X,Y)

[
1{h(X′) ̸=Y′}

]
= 2 E

(X,Y)∼p(X,Y)

[
1{h(X) ̸=Y}

]
E

(X′,Y′)∼p(X,Y)

[
1{h(X′)=Y′}

]
= 2Rpoint(h) (1−Rpoint(h)) .

We can transform the above equation as

Rpoint(h) =
1

2
±
√
1− 2Rpair(h)

2
.

Then, we also have

Rpoint(−h) = 1−Rpoint(h) =
1

2
∓
√
1− 2Rpair(h)

2
.

By combining them, we obtain Equation (5.4).

An immediate corollary is the monotonic relationship

Rclus(h1) < Rclus(h2) ⇐⇒ Rpair(h1) < Rpair(h2)

for any h1 and h2. Hence, the minimization of Rpair amounts to the minimiza-
tion of Rclus, constituting a decision boundary. That is, similarity learning can
essentially discover a binary decision boundary. Although similarity learning has
previously been connected to downstream classification through intermediate fea-
ture spaces [Kar and Jain, 2011, Bellet et al., 2012, Saunshi et al., 2019, Nozawa
et al., 2020], our result is the first to explicate that similarity learning is directly
related to the construction of a decision boundary.

Surrogate risk minimization. Here, we discuss surrogate losses for similarity
learning. We define a hypothesis class by H = { sgn ◦ f | f ∈ F }, where F ⊆ RX

is a specified class of prediction functions and sgn◦f(·) := sgn(f(·)). Theorem 5.1
suggests that we may minimize Rclus by minimizing Rpair instead. As in the
standard binary classification case, the indicator function appearing in Rpair is
replaced with a surrogate loss ϕ : R × Y → R≥0 because it is intractable to
minimize a discrete objective [Bartlett et al., 2006]. Eventually, the pairwise
surrogate risk

Rϕpair(f) := E
X,X′∼p(X)

E
T∼p(T=YY′|X,X′)

[
ϕ(f(X)f(X′),T)

]
(5.5)
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is minimized. If ϕ is classification-calibrated, the minimization of Rϕpair is expected
to lead to minimizing Rpair as well. This will be justified by Lemma 5.4 in
Section 5.5.

As we will discuss in Section 5.4.5, the formulation (5.5) is general to subsume
several existing formulations in similarity learning in terms of the surrogate loss.

5.4.2 Determination of Correct Sign of Classifiers

In Section 5.4.1, we observed that similarity learning can draw a decision boundary
up to the label flipping. For a given hypothesis h, we are now interested in its
sign, that is, +h or −h, leading to a smaller pointwise classification error. We
refer to this step as a class assignment. The optimal class assignment is denoted
by

s∗ := argmin
s∈{±1}

Rpoint(s · h).

We can consider two scenarios. Under both, a class assignment is much cheaper
in supervision than training the post-hoc linear separators.

Class assignment with pointwise supervision. If pointwise supervision is
available, we can determine the class assignment by minimizing the pointwise
classification error Rpoint computed using the additional data. This procedure
admits the exponentially small sample complexity [Zhang and Yan, 2007].

Class assignment without pointwise supervision. Herein, we further ask
if it is possible to obtain the correct class assignment without any class labels.
Surprisingly, we found that this is possible if the positive and negative proportions
are not equal and we know which class is the majority. Based on the equivalent
expression of Rpoint [Shimada et al., 2021], this finding is formally stated in the
following theorem.

Theorem 5.2. Assume that the class prior π+ 6= 1
2 . The optimal class assignment

s∗ can then be represented as s∗ = sgn(2π+ − 1) · sgn(1− 2Q(h)), where

Q(h) := E
X,X′∼p(X)

E
T∼p(T=YY′|X,X′)

[
1{h(X) ̸=T} + 1{h(X′) ̸=T}

2

]
.

The proof is provided in Section 5.7. We approximate Q with a finite number
of pairs. As we will see in Lemma 5.6 in Section 5.5, the class assignment error is
exponentially small in the number of pairs.

Remark 5.3 (Necessity of Q(h)). If we know which class is the majority, a class
assignment may appear to be possible by simply looking at the average of h(x) with
unlabeled validation data, instead of Theorem 5.2. Unfortunately, this does not
always succeed even asymptotically. This will be discussed in Section 5.4.4.

5.4.3 Learning a Binary Classifier with Only Pairwise Supervision is
Possible

As a result of Theorems 5.1 and 5.2, the following two-stage method can train a
pointwise classifier using only pairwise supervision. Assume that the class prior is
not 1

2 and the majority class is known. Let Strain := {(xi,x′
i, τi)}

npair

i=1 be a training
set, where τi := yiy

′
i and (xi, yi) and (x′

i, y
′
i) are i.i.d. samples following p(x, y).
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We randomly divide npair pairs in Strain into two sets S1 and S2, where |S1| = m1

and |S2| = m2 satisfying m1 +m2 = npair.2

In Step 1, we obtain a minimizer of the empirical pairwise classification risk
with S1:

f̂ := argmin
f∈F

R̂ϕpair(f), (5.6)

where R̂ϕpair is the sample mean of Rϕpair with S1. In Step 2, we assign classes with
sgn ◦ f̂ and S2:

ŝ := sgn(2π+ − 1) · sgn(1− 2Q̂(sgn ◦ f̂)), (5.7)

where Q̂ is the sample mean of Q with S2. After all, ŝ · sgn ◦ f̂ is a desideratum.
If a class assignment is not necessary and only separating test patterns into two
disjoint groups is the goal, we may simply set m1 = npair and omit Step 2 of
finding ŝ.

Remark 5.4 (When π = 1
2). With only pairwise supervision, a class assignment

is hopeless because both classes are essentially symmetric; however, it is still pos-
sible to draw a decision boundary. A class assignment with pointwise supervision
is still possible.

5.4.4 Class Assignment is Impossible with Only Unlabeled Data

In this subsection, we discuss the impossibility of recovering a class assignment
with only unlabeled validation data. Given a real-valued prediction function f :
X → R and the class prior π+, we consider the following class assignment strategy
with only unlabeled data, instead of the proposed method:

s̃ := sgn (2π+ − 1) · sgn
(

E
X∼p(X)

[sgn (f(X))]

)
.

Our aim is to estimate the optimal class assignment

s∗ = argmin
s∈{±1}

Rpoint (s · sgn ◦ f) .

In the following lemma, we claim that the alternative estimator s̃ cannot recover
s∗ even with access to an infinite number of data.

Lemma 5.3. There exists an underlying distribution such that s̃ 6= s∗.

Proof. The optimal class assignment s∗ can be expressed by

s∗ = sgn (Rpoint (−sgn ◦ f)−Rpoint (sgn ◦ f))
= sgn ((1−Rpoint (sgn ◦ f))−Rpoint (sgn ◦ f))
= sgn (1− 2Rpoint(sgn ◦ f)) .

Thus, the following condition is necessary and sufficient for s̃ = s∗:

sgn (2π+ − 1) · sgn
(

E
X∼p(X)

[sgn (f(X))]

)
︸ ︷︷ ︸

=s̃

· sgn (1− 2Rpoint(sgn ◦ f))︸ ︷︷ ︸
=s∗

> 0. (5.8)

2The independent two sets are necessary; otherwise, the errors of Steps 1 and 2 correlate,
which leads to an overfitting. Technically, they are required because Theorem 5.7 relies on the
union bound.
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Figure 5.1: Illustration of the areas corresponding to the condition (5.9) (highlighted in blue).
s̃ = s∗ in the blue areas; other cases are shown in the orange areas.

We will investigate whether this condition always holds. Denote the following:

R+
point := π+ E

X∼p(X|Y=+1)

[
1{sgn(f(X)) ̸=+1}

]
,

R−
point := (1− π+) E

X∼p(X|Y=−1)

[
1{sgn(f(X)) ̸=−1}

]
.

Note that 0 ≤ R+
point ≤ π+ and 0 ≤ R−

point ≤ 1− π+ always hold. Now, we have

E
X∼p(X)

[
1{sgn(f(X))=+1}

]
= π+ E

X|Y=+1

[
1{sgn(f(X))=+1}

]
+ (1− π+) E

X|Y=−1

[
1{sgn(f(X))=+1}

]
= π+ E

X|Y=+1

[(
1− 1{sgn(f(X))=−1}

)]
+ (1− π+) E

X|Y=−1

[
1{sgn(f(X))=+1}

]
= −π+ E

X|Y=+1

[
1{sgn(f(X))=−1}

]
+ (1− π+) E

X|Y=−1

[
1{sgn(f(X))=+1}

]
+ π+

= −R+
point +R−

point + π+.

Similarly, we have

E
X∼p(X)

[
1{sgn(f(X))=−1}

]
= R+

point −R
−
point + 1− π+.

By combining them, the following expression can be obtained.

E
X∼p(X)

[sgn (f(X))] = E
X∼p(X)

[
1{sgn(f(X))=+1}

]
− E

X∼p(X)

[
1{sgn(f(X))=−1}

]
= −2R+

point + 2R−
point + 2π+ − 1.

Hence, the necessary and sufficient condition (5.8) is rewritten as

sgn (2π+ − 1)

× sgn
(
−2R+

point + 2R−
point + 2π+ − 1

)
× sgn

(
1− 2R+

point − 2R−
point

)
> 0.

(5.9)

This condition is satisfied when π+, R+
point, and R−

point satisfy any of the following
conditions.
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Table 5.1: Comparison of closely related methods used to train classifiers with pairwise su-
pervision. The column “π+ = 1

2
” shows whether the formulation is valid under π+ = 1

2
. In the

sample complexity, m denotes the number of paired data in Step 1, and either paired or point-
wise data in Step 2. The sample complexity analysis of Step 1 is with respect to either pointwise
classification or clustering error. In OVPC, the asymptotic convergence analysis is provided for
Step 1 but no sample complexity analysis is provided in Zhang and Yan [2007]. To achieve a
proper comparison, we assume that the hinge loss is used and eventually the ψ-transform is
ψ(u) = u. This is detailed in Section 5.5 (Discussion).

Sample complexity of

π+ = 1
2

Similarity learning
(Step 1)

Post-process
(Step 2) Comment

CIPS (Ours) 3 Op(m
− 1

4 )
(Lemma 5.5)

Op(e−m)
(Lemma 5.6) Step 2 is class assignment.

OVPC
[Zhang and Yan, 2007]

3 (N/A) Op(e−m) Step 2 is a class assignment.

SLLC
[Bellet et al., 2012]

3 Op(m
− 1

4 ) Op(m
− 1

2 ) Step 2 is SVM training.

MCL
[Hsu et al., 2019]

3 (N/A) (N/A) Inner product of classifiers
is fitted in Step 1.

SD
[Shimada et al., 2021]

7 Op(m
− 1

2 ) (unnecessary) Step 1 trains the classifiers
directly.

• π+ ≥ 1
2 , R

−
point ≥ R

+
point +

1
2 − π+, and R−

point ≤ −R
+
point +

1
2 ,

• π+ ≥ 1
2 , R

−
point < R+

point +
1
2 − π+, and R−

point > −R
+
point +

1
2 ,

• π+ < 1
2 , R

−
point ≥ R

+
point +

1
2 − π+, and R−

point > −R
+
point +

1
2 ,

• π+ < 1
2 , R

−
point < R+

point +
1
2 − π+, and R−

point ≤ −R
+
point +

1
2 .

The conditions (5.9) are depicted in Figure 5.1. As can be seen from this figure,
for any binary classification problem (i.e., for any π+), there exists a case in which
the class assignment with unlabeled data fails (s̃ 6= s∗).

5.4.5 Benefits of Our Formulation over Existing Similarity Learning

We reiterate that similarity learning in our formulation directly elicits a bound-
ary and the post-process (class assignment) is cheaper than training a classifier.
Indeed, classifier training requires the usual Op(m− 1

2 ) sample complexity [Bel-
let et al., 2012, Theorem 1]. Table 5.1 provides an overview of the comparison
with previous related studies. We remark that the sample complexity of SLLC is
transformed into the complexity in terms of paired data (Step 1) from the original
complexity in the pointwise data [Bellet et al., 2012, Theorem 3].3 In addition,
although our Step 1 is worse than SD, our formulation is valid even when π+ = 1

2
with pointwise supervision. Subsequently, we discuss the other perspectives of
our formulation.

Generalization in terms of surrogate losses. Several existing formulations
can be regarded as special cases of our formulation (5.5). Kernel alignment [Cris-
tianini et al., 2002] measures the similarity between a kernel and a target func-
tion, as defined by the cosine similarity. If the product f(x) · f(x′) is used as
a kernel and the similarity between data points is regarded as a target function,
a kernel alignment is equivalent (up to the normalization factor) to minimizing

3Given m pointwise data, O(m2) pairs can be generated and thereby the sample complexity
is transformed.
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Equation (5.5) with the linear loss ϕlin(z, t) := −zt. By contrast, (ε,γ,τ)-good
similarity [Balcan et al., 2008] regards a similarity function inducing a good lin-
ear separator as a good similarity. Here, the linear separability is defined through
the hinge loss ϕhinge(z, t) := [1− zt]+. Bellet et al. [2012] formulated the learning
of a bilinear similarity x⊤Ax′ by minimizing the hinge loss, which is equivalent to
the minimization of Equation (5.5) with ϕhinge and the choice of A = ww⊤ such
that f(x) = w⊤x. In addition to these examples, recent contrastive learning [Lo-
geswaran and Lee, 2018, Saunshi et al., 2019] can be regarded as learning the good
similarity f(x) · f(x′) by minimizing the logistic loss ϕlog(z, t) := log(1 + e−zt),
although they are subtly different in that triplets (or N -tuples, in general) are
used as supervision.

Explicit relation to classification. Hsu et al. [2019] formulated similarity
learning in a slightly different way, i.e., as a maximum likelihood estimation of
the pairwise label Sτ := τ+1

2 :4

min
f∈F

1

m1

∑
(x,x′,τ)∈S1

−Sτ log(q̃(f(x), f(x′))− (1− Sτ ) log(1− q̃(f(x), f(x′))), (5.10)

where

q̃(z, z′) :=

[
q(z)

1− q(z)

]⊤ [
q(z′)

1− q(z′)

]
is the inner product of two binary probability vectors, and q(z) := (1+exp(−z))−1

denotes the logistic model. By contrast, our formulation (5.6) with the logistic
loss ϕlog(z, t) = −St log(q(z))− (1− St) log(1− q(z)) is

min
f∈F

1

m1

∑
(x,x′,τ)∈S1

−Sτ log(q(f(x) · f(x′)))− (1− Sτ ) log(1− q(f(x) · f(x′))).

(5.11)

In the formulation (5.10), the similarity is defined by the inner product of the
class probabilities, whereas it is defined by the inner product of f in the formu-
lation (5.11). The latter definition is often called the inner product similarity
(IPS) model [Okuno and Shimodaira, 2020].5 Although both are valid similarity
learning methods, the IPS model (5.11) would be a more natural extension of the
classification risk minimization, i.e., one can choose arbitrary loss functions; in
addition, the pairwise classification risk minimization (5.6) admits an excess risk
bound (Lemma 5.4 in Section 5.5). For this reason, we call our formulation a
Classifier with Inner Product Similarity (CIPS) from this point on.

5.5 Excess Risk and Sample Complexity Analysis

In this section, we provide the missing sample complexity analyses of CIPS in
Table 5.1. The proofs for the lemmas and theorems in this section are deferred to

4The multi-class formulation in Hsu et al. [2019] was simplified in binary classification herein
for comparison.

5The IPS model originally defined similarity between two vector data representations, and
hence is called an inner product similarity. However, the IPS model is applied to a one-
dimensional prediction f(x) in our context. The IPS model has been used in several do-
mains [Tang et al., 2015, Logeswaran and Lee, 2018, Saunshi et al., 2019, Okuno and Shimodaira,
2020].
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Section 5.7. In addition, the excess risk is obtained to claim that CIPS does solve
binary classification. Let f̂ and ŝ be the solutions to Equations (5.6) and (5.7),
respectively. The excess risk for similarity learning is denoted by

ε(ŝ, f̂) := Rpoint(ŝ · sgn ◦ f̂)−R∗
point, (5.12)

where R∗
point := inff Rpoint(sgn ◦ f), and inff indicates the infimum over all mea-

surable functions. To derive the excess risk bound on Equation (5.12), we need to
handle errors in clustering error minimization and class assignment independently,
which are described in Lemmas 5.5 and 5.6, respectively. As an important insight
when combining two errors, if the class assignment is successful, the excess risk
ε(ŝ, f̂) is equivalent to the one with respect to the clustering error minimization.
That is,

ŝ = argmin
s∈{±1}

Rpoint(s · sgn ◦ f̂) =⇒ ε(ŝ, f̂) = Rclus(sgn ◦ f̂)−R∗
clus, (5.13)

whereR∗
clus := inff Rclus(sgn◦f). To derive a probabilistic guarantee forRclus(sgn◦

f̂)−R∗
clus, we use the Rademacher complexity [Bartlett and Mendelson, 2002] de-

fined on the class { (x,x′) 7→ f(x) · f(x′) | f ∈ F }

Rm(F) := E
{(xi,x′

i)}

[
sup
f∈F

1

m

m∑
i=1

σif(xi) · f(x′
i)

]
,

where {σi}mi=1 are Rademacher variables. Before obtaining an excess risk bound
of Rclus, we need to bridge Rpair and the surrogate risk Rϕpair.

Lemma 5.4. If a surrogate loss ϕ is classification-calibrated [Bartlett et al., 2006],
then there exists a convex, non-decreasing, and invertible ψ : [0, 1]→ [0,+∞) such
that for any sequence (ui) in [0, 1],

ψ(ui)→ 0 if and only if ui → 0,

and for any measurable function f and probability distribution on X × Y,

ψ
(
Rpair(sgn ◦ f)−R∗

pair

)
≤ Rϕpair(f)−R

ϕ,∗
pair,

where R∗
pair := inff Rpair(sgn ◦ f) and Rϕ,∗pair := inff R

ϕ
pair(f).

Although this lemma is similar to Bartlett et al. [2006, Theorem 1], the proof
for Rpair, instead of for Rpoint, requires special care to properly treat the product
of the prediction functions.

Then, the excess risk bound for Rclus is derived based on Lemma 5.4 and the
uniform bound.

Lemma 5.5. Let f∗ ∈ F be a minimizer of Rϕpair, and f̂ ∈ F be a minimizer of
R̂ϕpair defined in Equation (5.6). Assume that ϕ(·,±1) is ρ-Lipschitz (0 < ρ <∞),
and that ‖f‖∞ ≤ Cb for any f ∈ F for some Cb. Let Cϕ := supt∈{±1} ϕ(C

2
b , t).

For any δ > 0, with a probability of at least 1− δ,

Rclus(sgn ◦ f̂)−R∗
clus

≤

√√√√√1

2
ψ−1

Rϕpair(f∗)−Rϕ,∗pair + 4ρRm1(F) +

√
2C2

ϕ log(2/δ)

m1

.
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Next, the class assignment error probability using pairwise supervision is an-
alyzed.

Lemma 5.6. Assume that π+ 6= 1
2 . Let ŝ be the solution defined in Equation (5.7).

We then have

Pr

(
ŝ 6= argmin

s∈{±1}
Rpoint(s · sgn ◦ f̂)

)

≤ exp

(
−m2

2
(2π+ − 1)2

(
2Rpoint(sgn ◦ f̂)− 1

)2)
.

Several observations from Lemma 5.6 follow. As π+ → 1
2 , the upper bound

becomes looser. This is derived from the fact that the estimation of the pointwise
classification error with pairwise supervision becomes more difficult as π+ →
1
2 [Shimada et al., 2021]. Moreover, the discriminability of function f̂ , i.e.,
Rpoint(sgn ◦ f̂), appears in the inequality and thus is directly related to the error
rate. Intuitively, if a given function classifies a large portion of data correctly, the
optimal sign can be identified easily.

Finally, an overall excess risk bound is derived by combining Lemmas 5.5
and 5.6 and the fact (5.13).

Theorem 5.7. Suppose that we have π+ 6= 1
2 . Let

r := exp
(
−m2

2
(2π+ − 1)2(2Rpoint(sgn ◦ f̂)− 1)2

)
.

Under the same assumptions as Lemma 5.5, for any δ > r, with a probability of
at least 1− δ,

Rpoint(ŝ · sgn ◦ f̂)−R∗
point

≤

√√√√√1

2
ψ−1

Rϕpair(f∗)−Rϕ,∗pair + 4ρRm1(F) +

√
2C2

ϕ log
2
δ−r

m1

.
If Rm1(F) = o(1), the upper bound asymptotically approaches the approxima-

tion error (i.e., Rϕpair(f
∗)−Rϕ,∗pair) in probability. For example, linear-in-parameter

model F =
{
f(x) = w⊤φ(x) + b

}
satisfies Rm1(F) = O(m1

− 1
2 ), as shown in

Kuroki et al. [2019, Lemma 5], where w ∈ Rk and b ∈ R are weights and bias
parameters, and φ : Rd → Rk are mapping functions. Note that our result is
stronger than Zhang and Yan [2007] because they only provided the asymptotic
convergence, whereas Theorem 5.7 provides a finite sample guarantee.

Discussion. Because a class assignment admits the exponential decay of the
error probability (Lemma 5.6) under the moderate condition (π+ 6= 1

2), we may
set m2 � m1 in practice. By contrast, our excess risk bound of clustering error
minimization (Lemma 5.5) is governed in part by a ψ-transform. The explicit
rate requires specific choices of loss functions: e.g., the hinge loss gives ψ(u) = u.
Hence, under the assumption Rm1(F) = O(m1

− 1
2 ), the explicit rate is Op(m1

− 1
4 )

for the hinge loss.6 This rate is no slower than the pointwise supervised case

6As another example, the logistic loss gives ψ(u) = Ω(u2), entailing the explicit rate
Op(m1

− 1
8 ) for the excess risk bound (Lemma 5.5). For more examples of ψ, please refer to

Steinwart [2007, Table 1].
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Op(m
− 1

2 ) because O(m2) pairwise supervision can be generated if m pointwise
labels are available.

Note again that CIPS assumes π+ 6= 1
2 only in a class assignment (Step 2 &

Lemma 5.6), not in the clustering error minimization (Step 1 & Lemma 5.5). This
is a subtle but notable difference from earlier similarity learning methods based
on unbiased classification risk estimators, which requires π+ 6= 1

2 even under risk
minimization (see, e.g., Shimada et al. [2021, Theorem 3]).

Our excess risk bound (Theorem 5.7) resembles transfer bounds among bi-
nary classification, class probability estimation (CPE), and bipartite ranking.
Narasimhan and Agarwal [2013] reduced classification and CPE to ranking and
showed that the excess risks of both classification and CPE can be bounded from
above through that of ranking. As can be seen in Narasimhan and Agarwal
[2013, Theorems 4 and 14], the excess risk of classification/CPE slows down to
be O(λ(m)−

1
2 ) when supposing that the excess risk of ranking is λ(m). The same

decay is observed in Theorem 5.7 as well, reducing classification to similarity
learning. This decay O((·)−

1
2 ) can be regarded as a cost arising from a problem

reduction.

5.6 Experiments

This section describes the simulation results confirming our findings.

〈♣〉 Sample complexity of the clustering error minimization through similarity
learning (Lemma 5.5).

〈♥〉 The class-prior effect in similarity learning (Discussion in Section 5.5).

〈♠〉 Class assignment without pointwise supervision (Lemma 5.6).

In addition, we conducted a comparison with the baselines using benchmark
and real-world datasets (PubMed-Diabetes). All experiments except PubMed-
Diabetes were carried out using a 3.60-GHz Intel® CoreTM i7-7700 CPU and
a GeForce GTX 1070. Experiments using the PubMed-Diabetes dataset were
carried out using 1.40-GHz Intel® Xeon PhiTM 7250 CPU.

5.6.1 Clustering Error Minimization on Benchmark Datasets

Tabular datasets from LIBSVM [Chang and Lin, 2011] and UCI [Dua and Graff,
2017] repositories and three image classification datasets, i.e., MNIST [LeCun,
2013], Fashion-MNIST [Xiao et al., 2017], and Kuzushiji-MNIST [Clanuwat et al.,
2018] were used for the benchmarks. For the image classification datasets, the
original ten class categories were converted into positive/negative labels by group-
ing even/odd class labels. Pairwise supervision was generated through a random
coupling of the pointwise data in the original datasets. We describe the details of
the baselines and the implementation details below.

We briefly introduce the baselines as follows.

• CIPS (Ours): The empirical pairwise classification risk Rpair (5.6) was com-
puted with the logistic loss. The linear model f(x) = w⊤x+ b was applied.
The risk was optimized using the stochastic gradient descent with the fol-
lowing hyperparameters.

– minibatch size: 64

– learning rate: 10−2
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– ℓ2-regularization parameter: 10−4

– training epochs: 500

• MCL (Meta-Classification Likelihood) [Hsu et al., 2019]: This is an approach
based on the maximum likelihood estimation over pairwise labels. The loss
function is based on the maximum likelihood, that is, the logistic loss as
in the original study. The model and optimization setup were the same as
those of CIPS.

• Similar-Dissimilar (SD) classification [Shimada et al., 2021]: This is a clas-
sification method using pairwise supervision, based on an unbiased risk es-
timator of the classification risk. Their proposed classification risk was
computed using the logistic loss. The model and optimization setup were
the same as those of CIPS.

• OVPC [Zhang and Yan, 2007]: This is another classification method using
pairwise supervision. We followed the authors and used the squared loss
and evaluated the closed-form minimizer.

• Semi-supervised Spectral (SSP) clustering [von Luxburg, 2007]: This is a
semi-supervised clustering method based on spectral clustering. Pairwise
data were used as hard constraints. To construct the neighborhood sets for
the Laplacian matrix, 5-nearest neighbors were used. The features are ob-
tained through a propagation of the constraints. To apply the final k-means
clustering on the obtained features, scikit-learn implementation [Pedregosa
et al., 2011] was used with the default parameters.

• Constrained k-Means (CKM) clustering [Wagstaff et al., 2001]: This is an-
other semi-supervised clustering method, in which k-means clustering is con-
ducted iteratively until hard constraints are satisfied. Pairwise data were
used as the hard constraints. Clustering was carried out using 10 different
random initializations, and the best one was reported. For each initializa-
tion, the number of maximum iterations was set to 300, and the tolerance
parameter was set to 10−4.

• k-Means (KM) clustering [MacQueen, 1967]: Pairwise data were used for
training without all link information. We used the k-means clustering imple-
mentation provided by scikit-learn [Pedregosa et al., 2011] with the default
parameters.

• Supervised (SV): The true class labels were revealed during training. The
model and optimization setup were the same as those of CIPS.

〈♣〉 First, noting the sample complexity behavior in Lemma 5.5, the classifiers
were trained using MNIST, Fashion-MNIST, and Kuzushiji-MNIST. The numbers
of pairwise data m were set to each of

m ∈ { 1,000, 2,000, 4,000, 8,000, 12,000, 16,000, 20,000 } .

Figure 5.2 presents the performances of CIPS and SV. This demonstrates that the
clustering error of CIPS constantly decreases as m increases, which is consistent
with Lemma 5.5. Moreover, CIPS performed more efficiently than expected in
terms of the sample complexity, i.e., as we discussed in Section 5.5, we expected
that CIPS with O(m2) pairs would perform comparably to SV withm data points.
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Figure 5.2: Mean clustering error and standard error (shaded areas) over 20 trials on image
classification datasets.
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Figure 5.3: Mean clustering error and standard error (shaded areas) over 10 trials on image
classification datasets under controlled class priors.

〈♥〉 Next, to see the effect of the class prior, we compared CIPS, SD, and SV
with various class priors. During this experiment, training and test data were
generated from MNIST under the controlled class prior π+, where π+ was set
to each of

{
1
7 , . . . ,

6
7

}
individually. For each trial, 10,000 pairs were randomly

subsampled from MNIST for training and the performance was evaluated with
another 10,000 labeled examples. The average clustering errors and standard
errors over 10 trials are plotted in Figure 5.3. This result indicates that CIPS is
less affected in comparison with the SD.

Finally, we show the benchmark performances of each method on the tabular
datasets in Table 5.2, where each cell contains the average clustering error and
the standard error over 20 trials. For each trial, we randomly subsampled m ∈
{ 100, 1000 } pairs for the training data and 1,000 pointwise examples for the
evaluation. This result demonstrates that CIPS performs better with a sufficient
number of data than most of the baselines and comparably to MCL. In particular,
the performance difference between CIPS and the clustering methods implies that
larger samples do improve the downstream classification performance of CIPS
thanks to its generalization guarantee (Theorem 5.7).

5.6.2 Class Assignment on Synthetic Dataset

The performance of the proposed class assignment method was empirically investi-
gated on synthetic dataset. The class-conditional distributions with the standard
Gaussian distributions were used as the underlying distribution: p(x|y = +1) =
N (x | µ+, σ+) and p(x|y = −1) = N (x | µ−, σ−). Throughout this experiment,
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Figure 5.4: Classification error for each threshold classifier (upper) and the error probability
of the proposed class assignment method over 10,000 trials (bottom) on the synthetic Gaussian
dataset with π+ ∈ { 0.1, 0.4, 0.7 }.

Table 5.3: Mean clustering error and standard error on the Pubmed-Diabetes dataset over 20
trials. Bold font indicates the outperforming method (excluding SV), which were chosen by the
one-sided t-test in the same way as in Table 5.2.

CIPS (Ours) MCL DML (SV)

86.9 (0.4) 86.6 (0.4) 85.1 (0.2) 94.7 (0.1)

we fixed (µ+, σ+, µ−, σ−) to (1, 1,−1, 2). Here, we consider a 1-D thresholded
classifier denoted by hθ(x) = 1 if x ≥ θ, and −1, otherwise. Given the class
prior π+ ∈ (0, 1), we generated m′ pairwise examples from the above distribu-
tions and applied the proposed class assignment method for a fixed classifier hθ.
We then evaluated whether the estimated class assignment is optimal or not.
Each parameter was set as follows: m′ ∈ {21, 23, 25, 27, 29}, π+ ∈ { 0.1, 0.4, 0.7 },
and θ ∈ {−3,−2, . . . , 3}. For each (θ, π+,m

′), we repeated these data generation
processes, class assignment, and evaluation procedure for 10,000 times.
〈♠〉 The error probabilities are depicted in Figure 5.4. We found that the

performance of the proposed class assignment method improves as (i) the number
of pairwise examples m′ grows and (ii) the classification error for a given classifier
Rpoint(hθ) moves away from 1

2 . These results are aligned with our analysis in
Section 5.5. Moreover, we observed that class assignment improves as the class
prior π+ reaches farther from 1

2 .

5.6.3 Clustering Error Minimization on a Real-world Dataset

Finally, we show experimental results on a citation network dataset, PubMed-
Diabetes.7 The aim of this experiment is to verify whether CIPS is sufficiently
robust against real-world noises in pairwise supervision.

The Pubmed-Diabetes dataset is a citation network dataset consisting of
19,717 nodes representing scientific publications related to diabetes and 44,338
(directed) edges representing citing relationships. Each node is described by 500-
dimensional TF/IDF features, and categorized into three classes, among which
we chose classes 1 (“Diabetes Mellitus, Experimental”) and 3 (“Diabetes Mellitus
Type 2”) to convert it into a binary-labeled dataset.

We compare CIPS (proposed) with three baselines, MCL (described above),
deep metric learning (DML), and SV (supervised). The implementation details
of CIPS and the baselines were as follows.

7Available at https://linqs.soe.ucsc.edu/data.
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• CIPS (Ours): The 4-layer perceptron (500-8-8-8-1) with the softplus activa-
tion [Dugas et al., 2000] was used. The softmax cross entropy was optimized
using Adam [Kingma and Ba, 2015], with the following hyperparameters.

– minibatch size: 4,096

– learning rate: 10−3

– training epochs: 100

The ℓ2-regularization parameter is chosen from
{
10−2, 10−4, 10−6

}
through

a five-fold cross-validation. The early stopping is applied with the patience
of 10 epochs. We randomly extracted 20% of the nodes as the test data.
The pairwise supervision was generated as follows: First, the edges having
both ends in the training data were extracted as similar, and randomly
coupled non-connected nodes were then extracted as dissimilar, with the
same numbers of similar and dissimilar pairs. Approximately 19,000 pairs
were obtained.

• MCL [Hsu et al., 2019]: The setup of model, optimization, and data gener-
ation were the same as with CIPS.

• DML [Chopra et al., 2005]: DML combines metric learning and k-means
clustering: We first train the embeddings such that their ℓ2 distances are
close for similar pairs and vice versa, and k-means clustering is applied
on the embeddings. The metric loss function proposed by Chopra et al.
[2005] was used. The model was the same as CIPS except for the last
layer, and 8-dimensional outputs of the penultimate layer were used as the
embeddings, upon which k-means clustering was performed. The scikit-
learn implementation [Pedregosa et al., 2011] of k-means clustering was used
with the default parameters. The setup of optimization and data generation
setup was the same as in CIPS.

• SV (Supervised): Labeled 7,889 nodes (π+ ≈ 0.65) were used during train-
ing. The setup of model and optimization was the same as CIPS.

The results are reported in Table 5.3, from which we can see that CIPS can
train a meaningful classifier even under the presence of real-world noises, and
operates comparably to MCL and better than DML.

5.7 Proofs

5.7.1 Proof of Theorem 5.2

The optimal sign s∗ can be written as

s∗ = argmin
s∈{±1}

Rpoint(s · h) = sgn (Rpoint(−h)−Rpoint(h)) . (5.14)

According to Shimada et al. [2021], Rpoint is equivalently expressed as follows.

Lemma 5.8 (Shimada et al. [2021]). Assume that π+ 6= 1
2 . The pointwise classi-

fication error for a given classifier h : X→ Y can then be equivalently represented
as

Rpoint(h)

= E
(X,Y)∼p(X,Y)

E
(X′,Y′)∼p(X,Y)

[
1{h(X) ̸=YY′} + 1{h(X′) ̸=YY′}

2 (2π+ − 1)

]
− 1− π+

2π+ − 1
. (5.15)
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By plugging Equation (5.15) into Equation (5.14), we obtain

Rpoint(−h)−Rpoint(h)

= E
(X,Y)∼p(X,Y)

E
(X′,Y′)∼p(X,Y)

[
1{−h(X) ̸=YY′} + 1{−h(X′) ̸=YY′}

2 (2π+ − 1)

]
− E

(X,Y)∼p(X,Y)
E

(X′,Y′)∼p(X,Y)

[
1{h(X) ̸=YY′} + 1{h(X′) ̸=YY′}

2 (2π+ − 1)

]
= E

(X,Y)∼p(X,Y)
E

(X′,Y′)∼p(X,Y)

[
1− 2 · 1{h(X) ̸=YY′} + 1− 2 · 1{h(X′) ̸=YY′}

2 (2π+ − 1)

]
=

1

2π+ − 1
E

(X,Y)∼p(X,Y)
E

(X′,Y′)∼p(X,Y)

[
1− 1{h(X) ̸=YY′} − 1{h(X′) ̸=YY′}

]
=

1

2π+ − 1
(1− 2Q(h)).

Thus, we derive the following result:

s∗h = sgn (Rpoint(−h)−Rpoint(h))

= sgn

(
1

2π+ − 1

)
· sgn(1− 2Q(h))

= sgn(2π+ − 1) · sgn(1− 2Q(h)),

which completes the proof of Theorem 5.2. Note that s∗ can be either ±1 when
Q(h) = 1

2 , which is equivalent to Rpoint(h) = Rpoint(−h) = 1
2 . Herein, we arbi-

trarily set s∗ = −sgn(2π+ − 1) in this case.

5.7.2 Proof of Lemma 5.4

We introduce the following notation:

Sϕpoint(α, η) := ηϕ(α,+1) + (1− η)ϕ(α,−1),

Hϕ
point(η) := inf

α∈R
Sϕpoint(α, η),

Hϕ,−
point(η) := inf

α:α(2η−1)≤0
Sϕpoint(α, η).

Here, Sϕpoint represents the conditional ϕ-risk in the following sense:

E
X
[Sϕpoint(f(X), p(Y = +1 | X))] = Rϕpoint(f),

where
Rϕpoint(f) := E

(X,Y)∼p(X,Y)
[ϕ(f(X),Y)] .

Define the function ψpoint : [0, 1] → [0,+∞) by ψpoint = ψ̃⋆⋆point, where ψ̃⋆⋆point is
the Fenchel-Legendre biconjugate of ψ̃point, and

ψ̃point(ε) := Hϕ,−
point

(
1 + ε

2

)
−Hϕ

point

(
1 + ε

2

)
.

In addition, ψpoint corresponds exactly to a ψ-transform introduced by Bartlett
et al. [2006] exactly.
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We will show that the statement of the lemma is satisfied by ψ = ψpoint based
on the calibration analysis. We further introduce the following notation:

Spair(α, α
′, η, η′) := ηη′1{sgn(α)sgn(α′) ̸=+1}

+ η(1− η′)1{sgn(α)sgn(α′) ̸=−1}

+ (1− η)η′1{sgn(α)sgn(α′) ̸=−1}

+ (1− η)(1− η′){sgn(α)sgn(α′) 6= +1},

Sϕpair(α, α
′, η, η′) := ηη′ϕ(αα′,+1) + η(1− η′)ϕ(αα,−1)

+ (1− η)η′ϕ(αα,−1) + (1− η)(1− η′)ϕ(αα,+1),

Hpair(η, η
′) := inf

α,α′∈R
Spair(α, α

′, η, η′),

Hϕ
pair(η, η

′) := inf
α,α′∈R

Sϕpair(α, α
′, η, η′).

Here, Sϕpair represents the conditional ϕ-risk in the following sense:

E
X,X′

[
Sϕpair(f(X), f(X

′), p(Y = +1|X), p(Y′ = +1|X′))
]
= Rϕpair(f),

and

E
X,X′

[
Spair(f(X), f(X

′), p(Y = +1|X), p(Y′ = +1|X′))
]
= Rpair(sgn ◦ f).

Let ψ̃pair : [0, 1]→ [0,+∞) be the calibration function defined by

ψ̃pair(ε) := inf
η,η∈[0,1]

inf
α,α′∈R

Sϕpair(α, α
′, η, η′)−Hϕ

pair(η, η
′)

s.t. Spair(α, α′, η, η′)−Hpair(η, η
′) ≥ ε.

Based on the consequence of Lemma 2.9 of Steinwart [2007], ψ̃pair(ε) > 0 for
all ε > 0 implies that Rϕpair(f) → R∗

pair =⇒ Rpair(sgn ◦ f) → R∗
pair. Further,

under this condition, Theorem 2.13 of Steinwart [2007] implies that ψ̃pair is non-
decreasing, invertible, and satisfies

ψ̃⋆⋆pair(Rpair(sgn ◦ f)−R∗
pair) ≤ R

ϕ
pair(f)−R

ϕ,∗
pair

for any measurable function f . Hence, it is sufficient to show that ψ̃pair(ε) > 0

for all ε > 0. Indeed, ψ̃pair = ψ̃point, and ψ̃point(ε) > 0 for all ε > 0 because ϕ is
classification-calibrated [Bartlett et al., 2006, Lemma 2]. From now on, we will
see ψ̃pair = ψ̃point.

First, we simplify the constraint part of ψ̃pair. Because

Spair(α, α
′, η, η′) = (1− η − η′ + 2ηη′)1{sgn(α)sgn(α′)=−1}

+ (η + η′ − 2ηη′)1{sgn(α)sgn(α′)=+1}

= η̃1{sgn(α)sgn(α′)=+1} + (1− η̃)1{sgn(α)sgn(α′)=−1},

where η̃ := 1− η − η′ + 2ηη′, we have Hpair(η, η
′) = min{η̃, 1− η̃}. Similarly,

Sϕpair(α, α
′, η, η′) = η̃ϕ(αα′,+1) + (1− η̃)ϕ(αα′,−1).

With a slight abuse of notation, we may write Spair(α, α′, η̃) = Spair(α, α
′, η, η′)

(the same for Sϕpair, Hpair, and Hϕ
pair). Through simple algebra, we obtain

Spair(α, α
′, η̃)−Hpair(η̃) = |2η̃ − 1| · 1{(2η̃−1)sgn(α)sgn(α′)≤0}.
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Noting that η̃ ranges over [0, 1] with η, η′ ∈ [0, 1], we have

ψ̃pair(ε) = inf
η̃∈[0,1]

inf
α,α′∈R

Sϕpair(α, α
′, η̃)−Hϕ

pair(η̃)

s.t. |2η̃ − 1| · 1{(2η̃−1)sgn(α)sgn(α′)≤0} ≥ ε.

If ε = 0, ψ̃pair(0) = 0, and the infimum is attained by η̃ = 1
2 and an arbitrary α

and α′. If ε > 0, η̃ = 1
2 cannot satisfy the constraint. Hence, we assume from

here that η̃ 6= 1
2 . When η̃ > 1

2 , the constraint reduces to

{
αα′ ≤ 0 ∧ (α, α′) 6= (0, 0)

}
∨ η̃ ≥ 1 + ε

2
.

Because Sϕpair contains α and α′ only in the form of αα′, the infimum over{
α, α′ ∈ R

∣∣ αα′ ≤ 0 ∧ (α, α′) 6= (0, 0)
}

is equal to that over {
α, α′ ∈ R

∣∣ αα′ ≤ 0
}
.

If we write αα′ := α̃, then

ψ̃pair(ε) = inf
η̃∈[ 1+ε

2
,1]

inf
α̃∈R:α̃≤0

Sϕpair(α, α
′, η̃)−Hϕ

pair(η̃)

= inf
η̃∈[ 1+ε

2
,1]

inf
α̃∈R:α̃≤0

Sϕpoint(α̃, η̃)−H
ϕ
point(η̃)

= inf
α̃∈R:α̃≤0

Sϕpoint

(
α̃,

1 + ε

2

)
−Hϕ

point

(
1 + ε

2

)
= Hϕ,−

point

(
1 + ε

2

)
−Hϕ

point

(
1 + ε

2

)
= ψ̃point(ε).

When η̃ < 1
2 , ψ̃pair = ψ̃point can be shown in the same way. Hence, the statement

is proven.

5.7.3 Proof of Lemma 5.5

We start by introducing the following statement.

Lemma 5.9. For real values α and β satisfying 0 ≤ α ≤ β ≤ 1, we have√
β −
√
α ≤

√
β − α.

Proof.

(β − α)− (
√
β −
√
α)2 = 2

√
αβ − 2α = 2

√
α
(√

β −
√
α
)
≥ 0.

Thus, we have (β−α) ≥ (
√
β−
√
α)2, which completes the proof of Lemma 5.9.

With this lemma, an excess risk of a clustering error can be connected with that
of a pairwise classification error as follows. From the equation in Equation (5.4),
we have

R∗
clus =

1

2
−

√
1− 2R∗

pair

2
.
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Thus, we can bound excess risk on the clustering error as follows.

Rclus(sgn ◦ f̂)−R∗
clus =

1

2
−

√
1− 2Rpair(sgn ◦ f̂)

2

−
1

2
−

√
1− 2R∗

pair

2


=

1

2

{√
1− 2R∗

pair −
√

1− 2Rpair(sgn ◦ f̂)
}

≤

√
Rpair(sgn ◦ f̂)−R∗

pair

2

≤
√

1

2
ψ−1

(
Rϕpair(f̂)−R

ϕ,∗
pair

)
,

(5.16)

where Lemma 5.9 and Lemma 5.4 were applied to obtain the penultimate and
the last inequalities, respectively. The excess risk with respect to pairwise surro-
gate risk, i.e., Rϕpair(f̂)−R

ϕ,∗
pair, can be decomposed into approximation error and

estimation error as

Rϕpair(f̂)−R
ϕ,∗
pair = Rϕpair(f

∗)−Rϕ,∗pair︸ ︷︷ ︸
approximation error

+Rϕpair(f̂)−R
ϕ
pair(f

∗)︸ ︷︷ ︸
estimation error

, (5.17)

where f∗ is the minimizer of Rϕpair(f) in a specified function space F . Now, we
provide the following upper bound for the estimation error with the Rademacher
complexity.

Lemma 5.10. Let f∗ ∈ F be a minimizer of Rϕpair, and f̂ ∈ F be a minimizer of
the empirical risk R̂ϕpair. Assume that the loss function ϕ is a ρ-Lipschitz function
with respect to the first argument (0 < ρ < ∞), and all functions in the model
class F are bounded, i.e., there exists a constant Cb such that ‖f‖∞ ≤ Cb for any
f ∈ F . Let Cϕ := supt∈{±1} ϕ(C

2
b , t). For any δ > 0, with a probability of at least

1− δ,

Rϕpair(f̂)−R
ϕ
pair(f

∗) ≤ 4ρRm1(F) +

√
2C2

ϕ log
2
δ

m1
. (5.18)

Proof. The estimation error can be bounded as

Rϕpair(f̂)−R
ϕ
pair(f

∗) ≤
(
Rϕpair(f̂)− R̂

ϕ
pair(f̂)

)
+
(
R̂ϕpair(f

∗)−Rϕpair(f
∗)
)

≤ 2 sup
f∈F

∣∣∣Rϕpair(f̂)− R̂ϕpair(f̂)∣∣∣ . (5.19)

With the Rademacher complexity, the following inequalities hold with probability
at least 1− δ. ∣∣∣Rϕpair(f̂)− R̂ϕpair(f̂)∣∣∣ ≤ 2Rm1(ϕ ◦ F) +

√
C2
ϕ log

2
δ

2m1
, (5.20)

where ϕ ◦ F indicates a class of composite functions defined by { ϕ ◦ f | f ∈ F }.
By applying Talagrand’s lemma, the Rademacher complexity of ϕ ◦ F can be
bounded as

Rm1(ϕ ◦ F) ≤ ρRm1(F). (5.21)

The proofs of Equations (5.20) and (5.21) can be found in Mohri et al. [2018, The-
orem 3.1 and Lemma 4.2], respectively. By plugging Equations (5.20) and (5.21)
into Equation (5.19), we obtain the result in Equation (5.18).
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By combining Equations (5.16) and (5.17) and Lemma 5.10, we obtain the
following inequality with probability at least 1− δ,

Rclus(sgn◦f̂)−R∗
clus ≤

√√√√√1

2
ψ−1

Rϕpair(f∗)−Rϕ,∗pair + 4ρRm1(F) +

√
2C2

ϕ log
2
δ

m1

.
(5.22)

5.7.4 Proof of Lemma 5.6

We first derive a sufficient condition for the proposed class assignment failures.
Let ŝ be a estimated class assignment for a given hypothesis h : X → Y .

Pr

(
ŝ 6= argmin

s∈{±1}
Rpoint(s · h)

)
= Pr

(
sgn

(
1− 2Q̂(h)

)
6= sgn (1− 2Q(h))

)
=

Pr
(
2Q̂(h)− 1 > 0

)
(1− 2Q(h) > 0),

Pr
(
2Q̂(h)− 1 ≤ 0

)
(otherwise)

=

Pr
(
Q̂(h)−Q(h) > 1

2 −Q(h)
)

(1− 2Q(h) > 0),

Pr
(
Q(h)− Q̂(h) ≥ Q(h)− 1

2

)
(otherwise)

(5.23)

By applying Hoeffding’s inequality [Hoeffding, 1963], we obtain the following
bounds.

Pr

(
Q̂(h)−Q(h) >

1

2
−Q(h)

)
≤ exp

(
−2m2

(
Q(h)− 1

2

)2
)
, (5.24)

Pr

(
Q(h)− Q̂(h) ≥ Q(h)− 1

2

)
≤ exp

(
−2m2

(
Q(h)− 1

2

)2
)
, (5.25)

where m2 is the number of pairwise examples to compute Q̂(h). Therefore, we can
bound the error probability of the proposed class assignment method regardless
of the value of Q(h) as

Pr

(
ŝ 6= argmin

s∈{±1}
Rpoint(s · h)

)
≤ exp

(
−2m2

(
Q(h)− 1

2

)2
)
. (5.26)

Now, we further explore how the term Q(h) − 1
2 can be expressed. From the

definition of Q and the equivalent risk expression in Equation (5.15), we have

Q(h) = (2π+ − 1)Rpoint(h) + 1− π+. (5.27)

Therefore,

Q(h)− 1

2
= (2π+ − 1)

(
Rpoint(h)−

1

2

)
. (5.28)

By plugging Equation (5.28) into Equation (5.26), we finally obtain

Pr

(
ŝ 6= argmin

s∈{±1}
Rpoint(s · h)

)
≤ exp

(
−m2

2
(2π+ − 1)2 (2Rpoint(h)− 1)2

)
,

(5.29)
which completes the proof of Lemma 5.6.
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5.8 Conclusion

In this chapter, we presented the underlying relationship between similarity learn-
ing and binary classification (Theorem 5.1). Eventually, the two-step similarity
learning procedure for binary classification with only pairwise supervision was ob-
tained. Our similarity learning can elicit the underlying decision boundary and is
less affected by the class prior. The post-processing class assignment is less costly
than training a new classifier. Our framework subsumes many existing similar-
ity learning methods with specific losses. A parallel connection for multi-class
classification remains open for discussion.
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Chapter 6

Conclusions and Future Prospects

All models are wrong but some are useful.
— George E. P. Box, Science and Statistics

In this chapter, we summarize the conclusions of this dissertation and discuss
areas of future research.

6.1 Summary

This dissertation was devoted to investigating a new perspective of learning the-
ory, i.e., excess risk transfer, to thoroughly understand the gap between learning
and evaluation criteria thoroughly. This insight will help us verify whether a
learning criterion has been appropriately designed in light of the evaluation crite-
ria, leading to reliable machine learning algorithms. In addition, an investigation
into the relationship between learning and evaluation criteria will promote our
understanding of the underlying hierarchy among machine learning problems, re-
vealing what we can learn from a specific learning problem. Following Vapnik’s
principle, these perspectives will lead us to the design of a “minimally sufficient”
learning criterion given a set of our final evaluation criteria, providing a guideline
for how the learned knowledge can help us solve the other problem. We may
express this belief through the following declaration, inspired by Wittgenstein’s
famous aphorism:

The understanding of knowledge is its use in the learning.

Subsequently, we summarize the contributions of this dissertation in light of
both reliable machine learning and knowledge transfer.

Contributions to reliable machine learning. In Chapter 3, we focused on
the family of complex classification performance metrics commonly used in class
imbalance classification, called the linear-fractional metrics, and proposed learn-
ing criteria calibrated to the linear-fractional metrics. The proposed learning
criteria are computationally feasible, and we empirically observed that the sam-
ple efficiency was better than that of the plug-in classifiers. Because the linear-
fractional metrics have significant practical meaning in real-world scenarios such
as information retrieval and computer vision, the proposed learning criteria pro-
mote the reliability of a learned predictor in light of the target linear-fractional
metrics.

In Chapter 4, we used calibration analysis to investigate whether existing
learning criteria are calibrated to the adversarially robust classification risk and
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revealed that commonly used convex surrogate losses are not calibrated in adver-
sarially robust classification. We also proposed several nonconvex calibrated losses
under this setup. This chapter provided an important insight indicating that the
learning criteria will not lead to truly robust solutions without a careful design.
The analysis in this chapter is meaningful by itself because calibration analysis
was used to analyze the robustness of the classifiers, which in existing studies
has thus far been used to analyze the consistency in terms of the classification
accuracy.

Contribution to knowledge transfer. In Chapter 5, we elucidated that a
specific formulation of similarity learning has a substantial connection to binary
classification, meaning that solving the similarity learning directly elicits a bi-
nary decision boundary. Although it has yet to be clarified what knowledge a
learner elicits through similarity learning in most of the previous studies, this
chapter contributed to this area by showing that a learner can acquire a decision
boundary through similarity learning. This contribution takes the understanding
of the problem relationship one step further to reveal that binary classification
and similarity learning in the specific formulation are equivalent.

6.2 Future Prospects

A better understanding of the relationship between two learning problems will
bring us the hierarchy of learning problems, leading to a design of learning criteria
oriented to one’s multiple ultimate goals (see Section 1.4.4 for more details).
Under the current paradigm of machine learning, we still do not have satisfactory
tools to validate whether our model achieves the optimal solution, or the Pareto
optimal solution at least, to which our perspective provides an approach.

What will this novel perspective of machine learning eventually play a key
role for? We suppose that even we humans do not know what we want to solve
in the end. For this reason, the human-in-the-loop approach can be a promising
way to elucidate the underlying evaluation criteria, where we repeatedly iterate
the following steps: the machine provides multiple candidate models to the user
based on the guessed evaluation criteria, and the user chooses the best model
among them. The machine will be able to accurately guess how the user expects
to evaluate models after the repeated queries. In this regard, we argue that the
machine ought to submit the optimal models to the user by dealing with the
underlying diverse objectives and constraints.

Although our contributions in this dissertation made indispensable steps to-
wards this goal, we suppose that further research is awaited. Subsequently, we
show several important future research directions to conclude this dissertation.

6.2.1 Calibration Analysis with Restricted Function Spaces

The calibration analysis we introduced in Section 2.3 considers the convergence
towards Bayes risk. Let us recapitulate this here. Given a target loss function
ℓ : Y × Y → R≥0 and a surrogate loss function ϕ : T × Y → R≥0, the Bayes ℓ-
and ϕ-risks are defined as

R∗
ℓ := inf

f∈Fall

Rℓ(f), R∗
ϕ := inf

f∈Fall

Rϕ(f),
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respectively, where Fall ⊆ RX is the set of all measurable functions. We say that
ϕ is ℓ-consistent if for any distributions and sequence of functions {fi}i ⊆ Fall,

Rϕ(fi)→ R∗
ϕ =⇒ Rℓ(fi)→ R∗

ℓ as i→∞.

Although the ℓ-consistency is one of the key properties throughout this disserta-
tion, it is limited to the convergence to Bayes risks. Because we usually seek risk
minimizers from a restricted score function space, such as linear-in-input mod-
els, this characterization of the target consistency may be inappropriate. Indeed,
[Long and Servedio, 2013] provided theoretical evidence indicating that a finer
notion of consistency can explain the empirical success of the Crammer-Singer
loss [Crammer and Singer, 2001] in multi-class SVMs, whereas the classical cali-
bration analysis concludes that the Crammer-Singer loss is not calibrated to the
multi-class 0-1 loss [Zhang, 2004b].

This relaxation, which can be seen in Section 4.5 as well, makes the analysis
of the adversarially robust 0-1 loss easier by restricting the score function space
to the halfspaces. Correspondingly, the calibration function and the notion of
calibrated losses can be relaxed to a restricted score function space. However,
if the score function space is not Fall, it is not straightforward to guarantee the
minimizability of the loss functions (Definition 2.4), which are sufficient conditions
for the calibration to imply the target consistency. Whereas the existing research
on the relaxed calibration analysis [Long and Servedio, 2013, Zhang and Agarwal,
2020] relies heavily on the assumption of realizability, i.e., the existence of the
Bayes minimizer within the restricted score function space, the general analysis
remains open.

6.2.2 Calibration Analysis with Flexible Objectives and Constraints

Although a supervised learning problem was formulated as a minimization prob-
lem of the target risk functional,

min
g∈G

Rℓ(g),

for some hypothesis space G ⊆ YX , some real-world problems may need more
complicated formulations. Narasimhan [2018] provided many examples as follows:

• Coverage constraint: The recall must be larger than a given threshold.

• Fairness constraint: Demographic parity requires that the recall must be
equalized across all groups, for example [Kleinberg et al., 2017].

• Quantification constraint: The predicted class distribution must be close to
the true class-prior probability in terms of a certain probability divergence.

To handle these flexible constraints, Narasimhan [2018] extended the above prob-
lem formulation to incorporate into the following constraints:

min
g∈G

Rℓ(g) s.t. Qk(g) ≤ εk, ∀k ∈ [K],

where Qk : G → R characterizes a constraint with the admissible level εk.
An extension of calibration analysis would be both theoretically interesting

and practically significant. We expect to have

Rℓ(gi)→ R∗
ℓ and P(Qk(gi) > εk)→ 0 ∀k ∈ [K] as i→∞
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for a sequence {gi}i by designing a learning criterion. To date, Narasimhan [2018]
has transformed the constrained (variational) problem into a constrained opti-
mization problem over the confusion matrix. That being said, their results are
only applicable to algorithms based on a plug-in classifier. Because we believe
that a learning criterion independent of a class-posterior probability estimator is
better in terms of the sample complexity, as was observed in Chapter 3, an exten-
sion of calibration analysis to deal with general learning criteria and constraints
deserves further study.

6.2.3 Calibration Analysis with Generalized Risk Measures

We introduced calibration analysis by focusing on the surrogate and target risks,
which are the expectation of the loss functions, following the classical formulation
of statistical machine learning [Vapnik, 1998]. By contrast, some recent studies
have considered alternative risk-averse measures such as

• conditional value-at-risk (CVaR) [Kashima, 2007, Sinha et al., 2018, Soma
and Yoshida, 2020, Holland and Haress, 2021] and

• coherent risk measures [Tamar et al., 2015, Lee et al., 2020].

For example, given a loss function ℓ(f(X),Y), its CVaR is defined as follows:

CVaRα(f) := E
(X,Y)

[ℓ(f(X),Y) | ℓ(f(X),Y) ≥ VaRα(f)],

where VaRα is the value-at-risk, i.e., the (1−α)-quantile of the random variable:

VaRα(f) := inf
{
τ ∈ R

∣∣ P(X,Y)(ℓ(f(X),Y) ≤ τ) ≥ 1− α
}
.

When the CVaR is employed as a target risk functional, the classical calibra-
tion analysis is no longer applicable. Because the CVaR and coherent risk mea-
sure have attracted increasing attention in finance, insurance, and firm manage-
ment [Artzner et al., 1999], an extension for such risk measures must be valuable.

6.2.4 Hybrid Learning Theory of Calibration Analysis and Optimiza-
tion Perspective

The calibration analysis introduced in this dissertation only focused on a statisti-
cal perspective. More specifically, we assume that the exact minimizer of a given
surrogate risk can be attained. From an optimization perspective, however, this
is difficult in general with a finite number of computational resources. For this
reason, it is meaningful to allow a small admissible error for the surrogate risk.

Osokin et al. [2017] introduced the following variant of the target consistency.

Definition 6.1 (Level-η consistency [Osokin et al., 2017]). A surrogate loss ϕ is
consistent up to level η ≥ 0 with respect to a target loss ℓ and a score function
space F if and only if the (uniform) calibration function δ(ε) satisfies δ(ε) > 0
for all ε > η and there exists ε̂ > η such that δ(ε̂) is finite.

Recall that the necessary and sufficient condition of a (uniform) calibration
is δ(ε) > 0 for all ε > 0. The level-η consistency is its relaxation. Figure 6.1
illustrates a usual calibration function and a calibration function under the level-η
consistency: The calibration function represented by the solid line is not calibrated
in the strict sense but satisfies level-η consistency, whereas the calibration function
represented by the dashed line is calibrated. Nevertheless, the solid line converges
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δ(ε)

εη

Figure 6.1: Calibration function under level-η consistency.

faster towards η, meaning that the same number of optimization steps with a solid
line can contribute more up to the admissible target risk η.

This relaxation may be useful when we incorporate the optimization perspec-
tive into the analysis because each function class entails a different convergence
rate. For example, the optimal convergence rates for strongly convex and smooth
functions, smooth convex functions, non-smooth convex functions, and quasicon-
vex functions are O(e−k), O(1/k2), O(1/

√
k), and O(1/

√
k), respectively, where

k is the number of iterations [Nesterov, 2004]. It is generally known that the
convergence rate of the stochastic gradient descent (SGD) is O(1/k) for strongly
convex functions [Rakhlin et al., 2012], whereas the rate of a variant of the SGD
is O(1/

√
k) for strictly quasiconvex functions [Hazan et al., 2015]. Given these

convergence rates, a design of learning criteria should pay more attention to which
function classes we focus on. Because Osokin et al. [2017] only studied a specific
setting in a structured prediction, a more general study is important.

6.2.5 Quantitative Comparison of Surrogate Risk Minimization and
Plug-in Classifiers

When we design a target consistent algorithm, there are roughly two types of ap-
proaches: a surrogate-loss-based learning algorithm and plug-in classifiers. The
plug-in classifiers estimate the class-posterior probability P(Y | X = x) first and
then plug the estimate into the closed-form of the Bayes classifier. As we criticized
and empirically observed in Chapter 3, the plug-in classifiers may not be a good
approach particularly when the threshold for P(Y | X = x) might vary, as in the
case of the linear-fractional metrics.1 This is because the class-posterior probabil-
ity needs to be estimated as accurately as possible within the entire range of [0, 1],
which requires a high sample complexity. Hence, it is important to quantitatively
compare the two approaches from the perspective of the sample complexity.

6.2.6 Characterization of Irreducibility between Learning Problems

As we introduced in Chapter 1, excess risk transfer can be a powerful tool to
characterize the relationship among machine learning problems. For example,
Narasimhan and Agarwal [2013] showed that problems of bipartite ranking and
binary CPE can be reduced to each other. That said, if we have a good bipar-

1If the optimal threshold of the Bayes classifier does not vary as in the usual binary classi-
fication, even the plug-in classifiers can achieve faster learning rates under a strong assumption
regarding the underlying probability distribution (called the strong density assumption) [Au-
dibert and Tsybakov, 2007].
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tite ranking model, there is a procedure for transferring the model into a good
class-posterior probability estimator, and vice versa. As in this example, the re-
ducibility from one learning problem to another can be established through excess
risk transfer. However, we still do not have a satisfactory theoretical tool to es-
tablish the irreducibility, which means that for any procedure, it is impossible
to construct a good model for one learning problem based on another learning
problem.

Irreducibility should be a prominent concept for characterizing the hierarchical
relationship among machine learning problems. If one knows that problem A can-
not be reduced to problem B, then we must be careful in the design of the learning
criteria such that a learner is exposed to an equivalently difficult learning problem
to problem B. For example, if we need a class-posterior probability estimate, we
should not attempt to obtain a classifier first because it is impossible to recover
the probability. Charoenphakdee et al. [2019] discussed this perspective with a
broader class of loss functions called symmetric losses and showed the inability
to recover the class-posterior probability from symmetric loss minimizers. Their
approach is based on the form of the Bayes risk and demonstrates the inability
through the fact that the symmetric loss minimizers are proportional to

fϕ,∗(x) ∝ sgn

(
P(Y = 1 | X = x)− 1

2

)
under binary classification, and it is impossible to recover P(Y = 1 | X = x) from
fϕ,∗(x). We can also extend this discussion to wider situations. Here, the non-
invertibility of the Bayes score functions may play a key role in characterizing the
irreducibility.

The (ir)reducibility may appear similar to a Turing reduction in computational
complexity theory [Arora and Barak, 2009].2 The notion of the reducibility infor-
mally introduced herein is rather statistical in the sense that we ask if knowledge
from one learning problem is richer than and/or equivalent to knowledge that can
be obtained from another learning problem. Because there is no consideration
of the optimization and computational perspective, this notion characterizes the
statistical learnability.

One related paradigm is a property elicitation, a framework used to seek a
loss function whose minimization eventually leads to recovering a specific func-
tional of a probability distribution, called a property [Osband, 1985, Fissler,
2017]. Property elicitation has gradually gained attention in mathematical statis-
tics [Gneiting, 2011, Fissler and Ziegel, 2016] and economics [Lambert et al.,
2008]. Conceptually, the minimizer of every loss function is associated with a
property [Agarwal and Agarwal, 2015, Finocchiaro et al., 2019]. Hence, we may
organize learning problems hierarchically in terms of the properties by regarding
two properties as being hierarchically ordered if one property is obtained through
a non-invertible functional transform of the other [Frongillo et al., 2016]. How-
ever, this still requires more investigation because we only know the elicitability of
simple properties [Steinwart et al., 2014] and the general characterization remains
open [Frongillo et al., 2016].

2In comparison with proofs of the reducibility, proving the irreducibility is not straightforward
at all even in the field of computational complexity theory. A few proof techniques such as
diagonalization and relativization have been provided [Arora and Barak, 2009], leading to nice
irreducibility results such as Ladner’s Theorem [Ladner, 1975], which ensures the existence of
NP-intermediate problems in between P and NP unless P = NP.
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6.2.7 Connection between Similarity Learning and Multi-class Clas-
sification

In Chapter 5, we elucidated the equivalence between similarity learning and binary
classification under a specific formulation. Specifically, a pair of labeled examples
are regarded as similar when y = y′, and dissimilar when y 6= y′. With this
similarity, similarity learning used to predict whether a given pair of examples
belong to the same class or not can be related to binary classification through a
simple relationship:

Rpair(h) = 2Rpoint(h)(1−Rpoint(h)),

whereRpair is the similarity classification risk andRpoint is the binary classification
risk.

However, we do not have any such relationships for multi-class classification.
Because the similarity has been popularly used in the recent self-supervised rep-
resentation learning [Jaiswal et al., 2021], it has a significant impact on know-
ing whether multi-class classification is fundamentally possible through similarity
learning or not. Thus far, we conjecture that a parallel connection to multi-class
classification will never exist and that a similarity is fundamentally insufficient
to elicit sufficiently useful knowledge in solving multi-class classification. Let us
first consider binary classification. It is easy to observe that combinations of label
pairs are mutually exclusive between the similar and dissimilar cases:

• Similar: (y, y′) ∈ { (1, 1), (2, 2) }

• Dissimilar: (y, y′) ∈ { (1, 2), (2, 1) }

Here, the class labels are denoted by 1 and 2. By contrast, they are no longer
mutually exclusive for one-versus-rest multi-class classification. For example, if
the number of classes is three, then the label combinations are as follows:

• Similar: (y, y′) ∈ { (1, 1), (2, 2), (3, 3) }

• Dissimilar: (y, y′) ∈ { (1, 2), (2, 3), (3, 1), (2, 1), (3, 2), (1, 3) }

If we are to apply one-versus-rest multi-class classifiers, we expect that similar
and dissimilar label combinations are mutually exclusive for binary labels c and c̄
(c ∈ Y), where c̄ is the complementary class label reducing all examples without
class c. For example, if c = 1, we have the following:

• Similar: (y, y′) ∈ { (1, 1), (1̄, 1̄) }

• Dissimilar: (y, y′) ∈ { (1, 1̄), (1̄, 1) }

This does not correspond to the aforementioned label combinations for multi-class
classification because (2, 3) should be dissimilar but falsely classified as similar
(1̄, 1̄). Of course, this intuition only suggests the impossibility of one-versus-rest
multi-class classifiers and does not say much about other multi-class surrogate
models such as the Crammer-Singer SVMs and the softmax cross-entropy loss.
A solid study on these factors could reveal the fundamental (im)possibility of
similarity learning.
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6.2.8 Comparison between Similarity Learning and Other Binary Ma-
chine Learning Problems

The similarity learning discussed in Chapter 5 deals with relationships between
two (binary) labeled data points. This setup is somewhat similar to bipartite
ranking because a ranking model compares two given examples and ranks them
in bipartite ranking. It is then natural to seek for the underlying relationship
between similarity learning and bipartite ranking. If we know the mutual re-
ducibility relationship (see Section 6.2.6) between them, we can not only relate
similarity learning to bipartite ranking but also to binary CPE because bipartite
ranking and binary CPE are equivalent in a certain sense [Gao and Zhou, 2015].
This is valuable because CPE is one of the most fundamental learning problems
in supervised learning.

In computer vision, Parikh and Grauman [2011] introduced a learning prob-
lem called learning from relative attributes, which is a ranking problem with
untraditional supervision. They considered ordered pairs and unordered pairs:
The former tells us which data point should be ranked higher, and the latter
tells us that two data points have similar strengths. Parikh and Grauman [2011]
empirically showed that relative attributes can lead to a good few-shot learner.
This problem can be seen as a combination of (bipartite) ranking and similarity
learning.

6.2.9 Closer Look at Strongly and Strictly Proper Losses

This open problem is somewhat related to the irreducibility and problem hierarchy
(see Section 6.2.6). As introduced in Section 2.4.2, proper losses are a class of loss
functions that play an important role in (binary) CPE. We recall the notation
again. Let us focus on the binary case y ∈ {1,−1} here. A loss ℓ : [0, 1] × Y →
R≥0 is introduced to measure the quality of a probability estimate η̂ ∈ [0, 1] for
P(Y = y | X = x). The class-conditional ℓ-risk is

Cℓ(η̂, η) = ηℓ(η̂, 1) + (1− η)ℓ(η̂,−1)

with the conditional Bayes ℓ-risk C∗
ℓ (η) = inf η̂∈[0,1]Cℓ(η̂, η). We state that ℓ is

strictly proper if and only if Cℓ(η̂, η) = C∗
ℓ (η) only when η̂ = η for all η ∈ [0, 1].

Agarwal [2014] introduced a stronger class of proper losses for the convenience
of proofs.

Definition 6.2 (Strongly proper losses [Agarwal, 2014]). Let λ > 0. We state
that a binary CPE loss ℓ is λ-strongly proper if for all η, η̂ ∈ [0, 1],

Cℓ(η̂, η)− C∗
ℓ (η) ≥

λ

2
(η − η̂)2.

This definition is of course related to strongly convex functions. Indeed, −C∗
ℓ

is strongly convex for a strongly proper ℓ [Agarwal, 2014].3 Many common proper
losses such as the logistic loss and squared loss are strongly proper.

Strong properness immediately implies strict properness, but to date we do not
know anything about the converse implication. Intuitively, there should be a loss
function that is strictly proper but not strongly proper. If such a loss function is
found, we may have better characterizations of proper losses; for example, we may

3By contrast, −C∗
ℓ is strictly convex when ℓ is strictly proper [Savage, 1971, Buja et al., 2005,

Gneiting and Raftery, 2007, Reid and Williamson, 2009]. Historically, Savage [1971] imposed
this strict convexity to uniquely elicit personal preferences.

147



overcome the square-root excess risk transfer rate of strongly proper losses [Agar-
wal, 2014, Frongillo and Waggoner, 2021] using the new loss.4 Otherwise, we can
show the mutual reducibility between strongly proper and strictly proper losses,
and the hierarchy collapses. This hierarchy collapse will free us from considering
strictly convex functions.

6.2.10 Systematic Design of Learning Criteria from User Feedback

This is the most important question. Throughout this dissertation, we discussed
calibration analysis and excess risk transfer, supposing that a target loss of an
evaluation criterion has already been given. However, this is often unrealistic
because even humans may not be sure of the best way to evaluate computer
systems in an objective manner. How should we characterize algorithmic fairness?
Although fairness is one of the hottest trends in the machine learning community,
numerous definitions of fairness have been proposed during the last couple of
years and we still do not have any consensus [Verma and Rubin, 2018]. What
type of attackers should we suppose when we protect our models from adversarial
attacks? Indeed, every time a defense methods is proposed, new attack methods
are proposed immediately after for a while [Athalye et al., 2018]. Because defense
methods cannot avoid supposing a certain attack model, some researchers have
been skeptical regarding the existence of a true robustness measure [Shafahi et al.,
2018]. In addition, common definitions of adversarial robustness have thus far
had a trade-off with accuracy, which would be contradictory to human perception
because we seem to perceive targets both accurately and robustly [Suggala et al.,
2019]. In any case, designing the evaluation criteria is not a straightforward task
for us at all.

One promising direction is metric elicitation, which is a framework proposed
by Hiranandani et al. [2019] for determining the best performance metric of clas-
sifiers from a pairwise comparison oracle. We iteratively show two classifiers to a
human expert and ask which classifier is preferable. A target performance metric
is then obtained through a derivative-free optimization. Currently, metric elici-
tation has been studied for classification [Hiranandani et al., 2019] and fairness
metrics [Hiranandani et al., 2020]. This direction can also be studied for wider
applications.

4In particular, Frongillo and Waggoner [2021] showed that a surrogate risk has a lower bound
of the square-root excess risk with respect to the classification risk under certain conditions on
the surrogate loss such as the strong convexity and smoothness.
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