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Abstract

Relational data matrices are everywhere around us, including user-movie rating data and
document-word occurrence data. Pattern extraction from such relational data matrices has
been extensively studied in the literature to capture and visualize a latent global structure
of a given matrix. Specifically, in this paper, we focus on the two well-known problems of
relational data analysis: biclustering and matrix reordering. In the biclustering problem,
we assume that a data matrix contains some homogeneous submatrices, say biclusters, and
estimate the locations of such biclusters. The matrix reordering problem deals with more
general structural patterns than biclusters, and its purpose is to find the optimal row/column
permutations for a given matrix with which some latent pattern appears (biclusters are
special cases here).

An open problem in the biclustering and matrix reordering is that we need to accept
various kinds of assumptions in its procedure, such as the number of biclusters or features
to be used for row/column orderings. In practice, however, we do not always know the
validity of such assumptions in advance. Therefore, we need some evaluation method for
the reliability of the model, features, and estimation results of these problems.

In this dissertation, we propose three new approaches for solving this problem in both
biclustering and matrix reordering: evaluations of the number of biclusters, the estimated
bicluster structure, and the row and column features used for matrix reordering. The
first two methods are based on the statistical hypothesis tests, whereas in the last one we
maximize the “goodness” of the row/column features in terms of the reconstruction error
of the original matrix by a new neural network model.

First, we develop a statistical test on the number of biclusters in a given data matrix A.
For a given hypothetical number of biclusters (K0, H0), we test whether matrix A consists
of K0 ×H0 biclusters or more. The proposed test statistic is based on the largest singular
value of the standardized data matrix, and its asymptotic distribution based on the null
hypothesis is derived by using random matrix theory. We also give a theoretical guarantee
for the proposed test statistic under the alternative hypothesis. Based on these results, we
propose an asymptotically valid sequential testing on the number of biclusters.

Second, we construct a test on the estimated bicluster structure that have been selected
based on a given data matrix A and a specific loss function. Such data-driven selection of
a hypothetical bicluster structure is a natural choice when we have no knowledge about
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the latent structure of a matrix A in advance. However, to construct a statistically valid
test (i.e., the Type I error is controlled by a given significance rate), we need to take the
selective bias into account. If we derive the p-value of the test statistic based on an invalid
assumption that the hypothetical bicluster structure is independent of the data matrix, the
test is biased towards optimistic. To avoid this difficulty, we develop a statistical test based
on the framework of selective inference, where we derive the null distribution of the test
statistic under the condition that the hypothetical bicluster structure is selected based on
the data matrix.

Finally, we propose a new neural network model for matrix reordering, which auto-
matically extracts row and column features from a given matrix, which are later used for
determining the row/column orderings. To evaluate the goodness of the extracted features,
we assume a generative model of a data matrix with an autoencoder-like architecture, and
evaluate the features based on the reconstruction error of the original matrix. By using the
trained neural network model, we can not only determine the row/column orderings of a
given matrix A but also visualize a global structural pattern in the matrix A as the output
of the model.

Our results provide a clue for examining the validity of the assumptions used in the
relational data analysis, and they can be used as first-step analysis tools for acquiring
knowledge about the latent structure of a given data matrix.
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matrix size (n, p) and mean vector µ0, where ĝ is output by the approxi-
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obtained by applying random row-column permutation to Ā, reordered
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Chapter 1

Introduction

1.1 Structural pattern mining in relational data
Relational data are a kind of data with the form of d-dimensional array, where d ≥ 2. Each
dimension of an array corresponds to generally different object, and each entry indicates
the relationship among the d objects. Specifically, in this dissertation, we focus on the
matrix data (i.e., d = 2). Such relational data exist everywhere around us (see Section 2.1
for specific examples), and there have been many studies for analyzing them. For instance,
relational data analysis includes:

• Biclustering: We assume that a data matrix contains a homogeneous submatrix or
bicluster, in which all the entries have similar values [5, 63]. Biclustering is a task
to find such biclusters from a given matrix. A well-known model for a regular-grid
bicluster structure is a latent block model or an LBM [58], where we assume that
each entry in a bicluster independently follows an identical distribution. We give a
specific formulation of biclustering in Section 2.2.

• Community detection in network: Community detection is similar to biclustering
in that its purpose is to find a homogeneous submatrix in an adjacency matrix of
a given graph. The difference between these two tasks lies in that, in network
community detection, both rows and columns represent the same set of nodes and
therefore the submatrix consists of the same set of indices in both row and column
directions. In other words, community detection is a task to find the set of node
indices among which the edges have similar weights. A probabilistic model in this
setting, which corresponds to an LBM in the biclustering setting, is a stochastic
block model or an SBM [65]. Aside from an SBM, many studies have proposed
community detection algorithms based on the modularity [116], which quantifies
the assortativity (i.e., there are more intra-community edges than inter-community
ones) of a network given the community structure [19, 35, 115].
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• Matrix reordering or seriation: Biclustering and community detection can also be
seen as a problem to find a set of row and column permutations of a given matrix
such that the reordered matrix shows a block structure. In matrix reordering, we
consider a more general problem to discover such row and column permutations that
reveal some pattern in a given matrix without explicit structural assumption (e.g.,
bicluster structure) [11, 98]. Such generality is both an advantage and a disadvantage
of matrix reordering. While it enables us to capture other structural patterns than
block structures, the interpretation of the reordered matrix depends more heavily on
the analyst than in the case of biclustering. Matrix reordering methods are called
“non-destructive data analysis,” since all the information of entry values of an original
data matrix is preserved after applying them [6, 110]. We give a specific formulation
of matrix reordering in Section 2.3.

• Matrix factorization (dimensionality reduction): Matrix factorization is another
approach for knowledge acquisition from a given data matrix A ∈ Rn×p, where
we assume that it can be well approximated by a product of two low-rank matrices
W ∈ Rn×d and H ∈ Rd×p: A ≈ WH with d � n, p. This type of relational
data analysis includes singular value decomposition [14, 55, 133] and non-negative
matrix factorization [85, 86, 87]. By such decomposition, we can interpret each row
of the original matrix A as a weighted sum of d templates (i.e., rows of matrix H).
Matrix factorization methods can also be used for the purpose of link prediction with
a matrix with missing entries [29, 109, 149].

• Influential node detection based on network centrality: The main purpose of the
above tasks is to capture or reconstruct a global structure of a given relational data
matrix. Another direction in network analysis is to detect an important node which
would have a significant influence on the other nodes. To date, various different
measures for such importance or centrality of a node have been proposed (e.g.,
degree, closeness, and betweenness centralities) [21, 49, 50]. For instance, these
centrality measures can be used for identifying a super-spreader of an infectious
disease [80, 102, 167] and a key location in the air transportation network [59, 60].

Particularly, in this dissertation, we consider a task to discover a latent structural
pattern in a given relational data matrix based on biclustering and matrix reordering. These
problems are particularly important in case that we do not have prior knowledge about the
relationship between rows or columns of a given matrix. For example, let A ∈ Rn×p be a
given relational data matrix and each entry Aij represents the rating of the jth item by the
ith user. Suppose that we want to develop a recommender system solely based on the data
matrix A. A natural assumption would be that similar users like similar items. That is, if
the i1th and i2th users gave high ratings to the same set of items (e.g., mystery novels) and
they gave low ratings to the same set of items (e.g., fantasy novels), and if the i1th user
purchased the jth item and gave it a high rating, we expect that the i2th user will also give
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a high rating to the jth item. In practice, this kind of data matrix tends to be sparse, that
is, it has many zero entries and few non-zero ones. Therefore, to take the local similarity
(i.e., common ratings in small number of items) into account, we need to simultaneously
discover the similarity pattern in both users and items. The algorithms of the above two
tasks, biclustering and matrix reordering, enable us to find such a homogeneous pattern in
a given matrix. By permuting the rows and columns of a data matrix based on the result
given by such algorithms, we can visualize and interpret the latent structural pattern in the
given matrix.

1.2 Estimation and evaluation of structural pattern in re-
lational data matrix

An open problem in relational data analysis including biclustering and matrix reordering
is that we need to accept various kinds of assumptions in its procedure. For instance, in
most cases, we assume that a given model (e.g., the number of biclusters) or features are
appropriate, which should be fixed in advance. Based on such assumptions, we find an
optimal set of row and column permutations of a given matrix. Finally, we check the
results and interpret them.

However, in practice, it is not always the case that we know the appropriate model
or features to represent the latent structural pattern in a given data matrix in advance.
Moreover, an estimation result by a biclustering or matrix reordering method is not always
accompanied by a guarantee for its reliability. A research question here is,

How can we evaluate the reliability of the model, features, and estimation results of
these problems?

Based on this perspective, there exist roughly two directions of research in these
problems: to estimate a latent structure of a given matrix based on a predefined model or
features and to evaluate the given model or features or estimation results. In the subsequent
paragraphs, we briefly review the existing studies on the former estimation algorithms and
describe open problems with regard to the latter evaluation tasks.

Statistical analysis for biclustering With regard to the biclustering problem, there have
been many studies on the estimation algorithms, whereas much less studies have been
conducted on the evaluation methods. The estimation algorithms of bicluster structure
can be decomposed into several categories, according to their structural constraints (i.e.,
supposed bicluster arrangements). For instance, we assume that a given matrix consists
of a regular-grid or checkerboard bicluster structure (i.e., each row (column) belongs to
exactly one row (column) cluster) in some algorithms [33, 34, 82], whereas we consider
possibly overlapping bicluster structures in other algorithms [40, 134, 168]. Several studies
also assumed a hierarchical bicluster structure [63, 128, 129]. These methods can also be
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categorized based on their computational approaches. For instance, some algorithms seek
the (approximately) optimal bicluster assignments in terms of a given loss function (e.g.,
mean squared residue) [32, 34, 63], while other ones use spectral methods (e.g., singular
value decomposition) to avoid directly solving a combinatorial optimization problem
[41, 82]. For more comprehensive review, we can refer to [25, 107, 123, 141].

Evaluation in the biclustering problem includes the following problems, on which we
focus in this dissertation.

• Evaluation of the number of biclusters: As for the number of biclusters in a given
matrix, there have been proposed statistical tests and model selection methods based
on information criteria and cross-validation (see Section 3.3 for a comprehensive
review). The purposes of information criteria (and also cross-validation) and sta-
tistical tests are slightly different in that the former methods are used to select the
best model from a given set of candidates in terms of some statistical property (e.g.,
marginal likelihood or generalization error), while the latter ones are used when we
would like to explicitly control the probability of Type I error. As we discuss later in
Chapter 3, even though there have been many studies on the biclustering algorithm
itself, there has been no statistical test on the number of biclusters in a two-mode
relational data matrix, where the rows and columns represent generally different
objects (we give the definition of two-mode relational data in Section 2.1.1).

• Evaluation of the estimated bicluster structure: It is also an important task to
evaluate the estimation result of biclustering, as well as its model. For this purpose,
several studies have proposed statistical tests on bicluster assignments of rows and
columns (see Section 4.1 for a comprehensive review). Since the number of possible
bicluster assignments of rows and columns increases in exponential order of matrix
size (a proof of this is given in Section 4.C), to test all the patterns of block structure
is computationally intractable. Instead, we can select a representative block structure
from all the patterns and test it. In case that we do not have any prior knowledge
about the block structure of a given matrix, a natural choice is to test the optimal
set of block memberships that has been selected by some biclustering algorithm.
However, there has been no statistical test with the exact p-value derivation that we
can apply in such a problem setting.

Extraction of the row and column features used for matrix reordering In matrix
reordering, most studies have proposed a method to reorder the rows and columns of a
given matrix based on a predefined features (see Section 5.2 for a comprehensive review).
Although these algorithms provide the (approximately) optimal row and column orderings
for predefined features, there is no way to evaluate the validity of using such features. As
in the case of determining the number of biclusters in the biclustering problem, we do not
always have a prior knowledge about what features should be used to capture the structural
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pattern in a given matrix. To solve this problem, it would be useful if we can determine the
row and column feature extraction process in a data-driven way.

1.3 Contribution of this dissertation
The main contribution of this dissertation is that we develop three approaches for answering
the research question given in Section 1.2. Each approach corresponds to one of the three
open problems with regard to the biclustering and matrix reordering tasks described in
Section 1.2.

• Evaluation of the number of biclusters: We develop a statistical test on the number
of biclusters in a given relational data matrix in Chapter 3. By sequentially testing
multiple sets of hypothetical row and column cluster numbers (K0, H0) in ascending
order, we can select the accepted one (K̂, Ĥ) as the estimated number of biclusters.
We derive theoretical guarantee for the proposed test in both realizable (i.e., the
number of biclusters in a given matrix is equal to (K0, H0)) and unrealizable (i.e.,
there are more biclusters than (K0, H0) in a given matrix) cases. All the main results
here are based on the asymptotic theory in terms of matrix sizem, where we consider
the limit ofm→∞. Although there have been several studies for testing the number
of communities in a one-mode relational data (i.e., network adjacency matrices)
[16, 67, 92], this is the first study that has proposed a test on the number of biclusters
for two-mode relational data matrices. To check the effectiveness of the proposed
test, we conduct experiments by using both synthetic and practical data matrices.
The summary of the characteristics of the proposed method is as follows.

– We can test and select the number of biclusters in a given matrix.

– The proposed test is validated in the asymptotic sense in terms of the matrix
size. The main theorems are based on the recent results in random matrix
theory, which we introduce in Section 2.1.3.

– We can use an arbitrary biclustering algorithm for estimating the bicluster
assignments, as long as it satisfies the consistency condition given in Section
3.2. We can test the number of biclusters in the same procedure regardless of
the biclustering algorithm.

• Evaluation of the estimated bicluster structure: To evaluate an estimation result
of biclustering, in Chapter 4, we construct a statistical test on the estimated bicluster
memberships of rows and columns that have been selected based on a given data
matrix and a specific loss function. Specifically, the proposed test can be applied
to the optimal bicluster assignments in terms of the squared residue or the sample
variance within the same block [34, 63] (the definition of the squared residue is given
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in Section 4.2.2). Unlike the test in Chapter 3, the validity of this proposed test is
shown (i.e., we derived the exact p-value of the proposed test statistic) with a finite
size data matrix. A naive approach for constructing such a test would be to assume
that the estimated bicluster structure is independent of the data matrix and derive the
null distribution of a test statistic. However, this assumption is invalid in our setting,
where the estimated bicluster structure is selected based on the data matrix. To
overcome this difficulty and construct a valid test on the estimated bicluster structure,
we employ a selective inference approach [13, 88]. This approach can be used for
testing the optimal solution of a problem that can be formulated as a set of quadratic
inequalities in terms of the vectorized data matrix, each of whose entry is assumed
to follow a Gaussian distribution [103]. Aside from such an exact selective test,
we also develop an approximated test based on simulated annealing to reduce the
computational cost. The summary of the characteristics of the proposed method is
as follows.

– We can test the optimal bicluster structure of a given matrix in terms of the
squared residue.

– The proposed test is validated with a finite size data matrix. The main theorems
are based on the theory of selective inference.

– To reduce the computational complexity, we develop an approximated test
based on simulated annealing as well as the exact test.

• Extraction of the row and column features used for matrix reordering: To
solve the matrix reordering task, we consider a slightly different approach to the
biclustering problem. In biclustering, we first assume a specific probabilistic model
(i.e., latent block model, which is described later in Section 2.2.1) that depends
on the bicluster structure and then seek the optimal bicluster structure that best
explains the data matrix. In the spectral and dimension-reduction methods of matrix
reordering, which we focus in Chapter 5, we also assume a probabilistic model
for a given matrix1. However, instead of assuming a discrete model that directly
depends on the row/column orderings and finding the optimal orderings, we assume
a continuous low-dimensional model (e.g., bilinear model in (5.1)) and determine
the row/column orderings based on its estimation result. In this case, it is difficult to
directly test the row and column orderings. Therefore, we adopt a different approach
to “evaluate” the goodness of a matrix reordering result. As the existing spectral
and dimension-reduction matrix reordering methods, we develop a generative model
of a given data matrix based on a set of row and column features, and evaluate the
goodness of the extracted features by the reconstruction error of the original matrix.

1As for the advantages of these approaches compared to the other ones (e.g., Robinsonian and graph-
theoretic methods), we give a detailed explanation in Section 5.2.
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The difference between the proposed and existing methods lies in that the feature
extraction, as well as the matrix reconstruction based on the extracted features,
is trained as a neural network model by using a data matrix. In other words, the
features used for matrix reordering are not predefined, and they are determined in a
data-driven way such that they can successfully explain the given data matrix. The
summary of the characteristics of the proposed method is as follows.

– The matrix reordering is done by using a new autoencoder-like neural network
model, which first extracts the row and column features from a given matrix
and then reconstruct each entry of the data matrix based on such extracted
features. The encoder (i.e., the shallower part of the neural network which
extracts the row and column features) as well as the decoder (i.e., the deeper
part of the neural network which reconstructs each entry from the features) are
trained by using the data matrix. The extracted row and column features by the
trained model can then be used for determining the row and column orderings.

– The proposed model including the feature extraction process is trained via
back-propagation to minimize the reconstruction error of the original matrix.

– As we discuss later in Chapter 5, the output of the trained model can be seen
as a denoised version of the original data matrix, which provides us with the
knowledge of the global structure of the matrix.

The publications contained in or related to this dissertation are as follows.

• (Chapter 3) C. Watanabe and T. Suzuki. “Goodness-of-fit test for latent
block models,” Computational Statistics & Data Analysis, 154:107090, 2021.
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• (Chapter 4) C. Watanabe and T. Suzuki.. “Selective inference for latent block models,”
Electronic Journal of Statistics, 15(1):3137–3183, 2021. doi:10.1214/21-EJS1853.

• (Chapter 5) C. Watanabe and T. Suzuki. “Deep two-way matrix re-
ordering for relational data analysis,” Neural Networks, 146:303–315, 2022.
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1.4 Organization of this dissertation
The reminder of this dissertation proceeds as follows.

Chapter 2 First, we describe the formal definitions and formulations of the keywords
of this dissertation: one-mode and two-mode relational data (Section 2.1), biclustering
(Section 2.2) and matrix reordering (Section 2.3) problems. In Section 2.1.1 and 2.1.2,
we also give some examples of such relational data matrices. Moreover, in Section 2.1.3,
we introduce some important asymptotic properties of a two-mode random relational data
matrix, which we use for deriving our main results in Chapter 3.

Chapter 3 This chapter corresponds to the first contribution of this dissertation (i.e.,
“evaluation of the number of biclusters”) given in Section 1.3, and it is based on the
study of [152]. In Section 3.1, we introduce the background of latent block models and
their open problem in determining the number of biclusters. Then, in Section 3.2, we
formally state the problem and give definitions and assumptions that are necessary for
the proofs of the main results. Before stating our main results, we review the related
studies and describe the difference between them and the proposed method in Section 3.3.
Section 3.4 is the main part of this Chapter, where we derive the asymptotic properties (i.e.,
Theorems 3.4.1, 3.4.2, and 3.4.3) of the proposed test statistic in both null and alternative
cases. These properties give the theoretical guarantee for the proposed sequentially ordered
test given in Section 3.2. Next, we demonstrate the effectiveness of the proposed test
experimentally in Section 3.5. In this section, we first check the behavior of the proposed
test statistic with increasing matrix size and compare it to the theory given in Section
3.4. For reference, we also evaluate the accuracy of the proposed test in terms of model
selection and compared it with the existing criterion (although the purpose of the proposed
test is not to choose a model from multiple candidates as high accuracy as possible, as we
also mention in this section). Aside from the above experiments using synthetic data sets,
we apply the proposed test to a practical data and analyze the result. Finally, we discuss the
main results of this chapter and refer to their limitations in Section 3.6, and give chapter
conclusion in Section 3.7. In the appendices, we show detailed proofs for deriving the
results in the previous sections.

Chapter 4 This chapter corresponds to the second contribution of this dissertation (i.e.,
“evaluation of the estimated bicluster structure”) given in Section 1.3, and it is based on
the study of [154]. We describe the difficulty in constructing a statistically valid test on the
estimated bicluster structure that has been selected based on the data matrix, introduce the
framework of selective inference to solve such a problem, and refer to the related studies
in Section 4.1. Then, in Section 4.2, we describe the notations and assumptions for the
proposed test, including the formulation of the specific biclustering algorithm based on
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squared residue minimization for selecting the bicluster structure of a given matrix. Section
4.3 states the main result of this chapter, that is, the null distribution of the proposed test
statistic. We give a proof for the main result and the test procedure (i.e., computation of
the p-value). Aside from the exact test, as we mentioned in Section 1.3, we develop an
approximated test in Section 4.3.3 to reduce the computational cost. In Section 4.4, we
conduct experiments to check the validity of the proposed exact and approximated tests in
both realizable and unrealizable cases. Then, we discuss the proposed test and room for
improvement in Section 4.5. We conclude this chapter in Section 4.6. In the appendices,
we give some proofs for a part of the main result and the additional experimental results.

Chapter 5 This chapter corresponds to the third contribution of this dissertation (i.e.,
“extraction of the row and column features used for matrix reordering”) given in
Section 1.3, and it is based on the study of [155]. In Section 5.1, we explain an open
problem in matrix reordering and briefly introduce our approach to solve it. Then, in
Section 5.2, we review the related studies on matrix reordering problem. Here, we describe
three specific algorithms of the spectral and dimension-reduction methods, which are
particularly relevant to the proposed approach. The proposed matrix reordering method
is described in Section 5.3, including the model formulation and the loss function to be
minimized. In Section 5.4, we apply the proposed method to both synthetic and practical
data matrices to verify its effectiveness. We analyze the reordering results of several types
of data matrices with different structural patterns and compare the accuracy of the proposed
method in matrix reordering with that of the existing methods. Finally, in Section 5.5, we
discuss the results and possible future directions. The conclusion for this chapter is given
in Section 5.6.

Finally, we conclude this dissertation by summarizing it and introducing the follow-up
works and future perspectives.

1.5 Notations
Throughout this dissertation, we use the following notations.

Order notations We define the orders of sequence of deterministic variables {xm}:

• We denote xm = O [f(m)] iff there exist C > 0 and M > 0 such that for all
m ≥M , Cf(m) ≥ |xm| holds.

• We denote xm = Ω [f(m)] iff there exist C > 0 andM > 0 such that for allm ≥M ,
Cf(m) ≤ |xm| holds.

• We denote xm = Θ [f(m)] iff there exist C1, C2 > 0 and M > 0 such that for all
m ≥M , C1f(m) ≤ |xm| ≤ C2f(m) holds.
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Similarly, we also define the probabilistic orders of sequence of random variables {Xm}:

• We denote Xm = Op [f(m)] iff for all ε > 0, there exist C > 0 and M > 0 such
that for all m ≥M , Pr [Cf(m) ≥ |Xm|] ≥ 1− ε holds.

• We denote Xm = Ωp [f(m)] iff for all ε > 0, there exist C > 0 and M > 0 such
that for all m ≥M , Pr [Cf(m) ≤ |Xm|] ≥ 1− ε holds.

• We denote Xm = Θp [f(m)] iff for all ε > 0, there exist C1, C2 > 0 and M > 0
such that for all m ≥M , Pr [C1f(m) ≤ |Xm| ≤ C2f(m)] ≥ 1− ε holds.

Operator and Frobenius norms The operator and Frobenius norms of matrix A =
(Aij)1≤i≤n,1≤j≤p ∈ Rn×p are given by

‖A‖op = sup
u∈Rp\0

‖Au‖
‖u‖

, ‖A‖F =

√√√√ n∑
i=1

p∑
j=1

A2
ij, (1.1)

respectively.
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Chapter 2

Preliminaries

2.1 Relational data

In this dissertation, we use the term relational data to indicate matrix-form data A =
(Aij)1≤i≤n,1≤j≤p ∈ Rn×p with real entries, each of which represents a relationship between
two objects. Relational data can be decomposed into two groups: either two-mode or
one-mode matrix. In the next subsections, we describe the definition, examples, and several
important properties of each of them.

2.1.1 Two-mode relational data

If the rows and columns of a data matrixA represent mutually different objects, we call that
A is a two-mode matrix (Figure 2.1 left). In this case, the numbers of rows and columns, n
and p, respectively, are not necessarily identical (i.e., A is not necessarily a square matrix).
For instance, a matrix A that represents the relationship between tourists and locations
is a two-mode relational data. In this example, each ith row indicates the ith tourist and
each jth column indicates the jth location. The (i, j)th entry Aij represents the rating of
the jth location by the ith tourist. In this dissertation, we mostly consider such two-mode
relational data matrices.

The examples of two-mode relational data include the MovieLens datasets that contain
movie ratings by users [62], the Jester dataset that contains joke ratings by users [57], the
congressional voting dataset [44] that represents relationship between congressmen and
their attributes [77, 158], the NeurIPS conference papers dataset that counts words (i.e.,
columns) in NeurIPS conference papers (i.e., rows) [120], and gene expression datasets that
represent expression levels of genes (i.e., rows) under different experimental conditions
(i.e., columns) [123, 131].
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Two-mode matrix One-mode matrix

(undirected network)

One-mode matrix

(directed network)

Figure 2.1: Two-mode and one-mode data matrices. The color of each entry indicates its
value. One-mode matrices can be further decomposed into two sub-groups: either directed
(center) or undirected (right) networks.

2.1.2 One-mode relational data

If the rows and columns of data matrix A represent the same set of objects, we call that A
is a one-mode matrix (Figure 2.1 center and right). By definition, the numbers of rows and
columns of matrix A are always the same (i.e., n = p, A is a square matrix). This kind
of data matrix can be viewed as an adjacency matrix of a graph, where the (i, j)th entry
Aij indicates the weight of the edge between the ith and the jth nodes. Such adjacency
matrices can be further decomposed into two sub-groups: either directed or undirected
networks. If the adjacency matrix of a graph is symmetric (i.e., Aij = Aji for all (i, j)), it
is called undirected, and otherwise, it is called directed. For instance, an adjacency matrix
of a friendship network is a kind of one-mode relational data. Each ith row or column
indicates the ith person, and the (i, j)th entry indicates whether the ith and jth persons are
friends (Aij = 1) or not (Aij = 0). In this example, if the network is undirected, we only
consider the following two cases: for each pair of persons (i, j), (1) i and j are friends each
other, or (2) i and j are not friends. However, if the network is directed, it corresponds to
considering the following four cases: (1) i and j are friends each other, (2) i likes j but j
does not like i, (3) j likes i but i does not like j, and (4) i and j do not like each other.

The examples of one-mode relational data (i.e., graph data) include social networks
such as Zachary’s karate club network [165] and Facebook network [95], coauthorship
networks [93, 113], web graphs [3, 94], a neural network of a creature [156, 157], and a
word adjacency network [114].

2.1.3 Key properties of two-mode random relational data matrices

A random matrix is a matrix with random entries. In this dissertation, we assume that
a given relational data matrix is a sample of a random matrix, and called it an observed
matrix. In this dissertation, we use some recent results with regard to the properties of
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Figure 2.2: Approximated probability density function of TW1 distribution [148].

two-mode random matrices. Particularly, in Chapter 3, we use the asymptotic distribution
of the scaled maximum eigenvalue of a sample covariance matrix and the delocalization
property of the eigenvectors of a sample covariance matrix. Before we describe these two
properties, we introduce the Tracy-Widom distribution with index 1 (TW1 distribution),
which is used as a null distribution of the proposed test statistic in Chapter 3.

TW1 distribution The cumulative distribution function of the TW1 distribution is given
by F1(x) = E(x)F (x), where

E(x) = exp

(
−1

2

∫ ∞
x

q(y)dy

)
,

F (x) = exp

(
−1

2

∫ ∞
x

(y − x)q(y)2dy

)
. (2.1)

Here, q(y) is the unique solution of a Painlevé equation of type II (i.e., d2q
dx2 = xq + 2q3)

that satisfies the boundary condition q(x) ∼ Ai(x) in the limit of x → ∞ with Ai(x) =
1
π

∫∞
0

cos
(
t3

3
+ xt

)
dt. Since the probability density function of the TW1 distribution

cannot be derived explicitly, an approximated function has been proposed [148], as shown
in Figure 2.2.

Asymptotic distribution of the scaled maximum eigenvalue of a sample covariance
matrix Let Z = (Zij)1≤i≤n,1≤j≤p ∈ Rn×p be an n × p matrix, each of whose entries
independently follows a (not necessarily identical) distribution with a sub-exponential
decay (see Section 3.2 for the precise definition) and with zero mean and unit variance.
We assume that the matrix size increases in proportion to some (large) number m (i.e.,
n, p ∝ m) and consider the asymptotic property of matrix Z in the limit of m → ∞. A
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recent study [122] revealed that the scaled maximum eigenvalue T ∗ of sample covariance
matrix Z>Z converges in law to the TW1 distribution in the limit of m→∞.

Theorem 2.1.1 (Corollary 1.2 of [122]). Under the above assumptions, in the limit of
m→∞,

T ∗ =
λ1 − aTW

bTW
 TW1 (Convergence in law), (2.2)

where λ1 is the maximum eigenvalue of the matrix Z>Z and

aTW = (
√
n+
√
p)2, bTW = (

√
n+
√
p)

(
1√
n

+
1
√
p

) 1
3

. (2.3)

An important point here is that this convergence in low holds without the assumption
that the entries of matrix Z follow an identical distribution. This enables us to utilize this
property to prove our main result (Theorem 3.4.1) in Chapter 3, where we define the test
statistic based on submatrix-wise standardization of an observed matrix.

Aside from the result in [122], many studies have shown the asymptotic distribution
of the above T ∗ in different problem settings. The studies of [72, 73] have considered a
basic setting in which the entries of matrix Z independently follow the standard Gaussian
distribution. In [118, 138], the same result has been shown for non-Gaussian cases
under some assumptions (e.g., each entry of matrix Z independently follows a symmetric
distribution with Gaussian decay and with zero mean and unit variance). The result in
[122] is quite general, and it does not require the underlying distribution of each entry of
matrix Z to be symmetric. This enables us to apply this result to various types of data
matrices, including binary matrices with which we assume that each entry is generated
from a Bernoulli distribution.

Delocalization property of the eigenvectors of a sample covariance matrix From
Theorem 2.17 of another recent study [17], the eigenvectors of the above sample covariance
matrix Z>Z satisfy the following delocalization property.

Theorem 2.1.2 (Delocalization property of the eigenvectors of matrix Z>Z [17]). Under
the above assumptions, the eigenvectors {vj} (‖vj‖ = 1 for all j) of matrix Z>Z satisfy
the following property. For all d̃ ∈ N, for any deterministic vectors {w(i)} that satisfies
‖w(i)‖ = 1 for i = 1, . . . ,md̃,

max
i∈1,...,md̃

max
j=1,...,p

|v>j w(i)| = Op

(
m−

1
2

+ε
)
, for all ε > 0. (2.4)
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Regular-grid biclustering Submatrix detection

Figure 2.3: Bicluster structures which we assume in regular-grid biclustering (left) and
submatrix detection (right).

In Chapter 3, we use this property several times to bound the difference between λ1

and λ̃1, where λ̃1 is the maximum eigenvalue of matrix Z̃>Z̃ and matrix Z̃ is defined as a
random matrix standardized with submatrix-wise sample mean and variance (see (3.14) in
Section 3.4 for the precise definition). It has also been shown that a similar delocalization
property holds for the normalized eigenvectors of a one-mode symmetric random matrix
[18].

In this subsection, we introduced two important properties of random matrices without
assuming any specific structure behind a data matrix. In the subsequent sections, we
formulate two problems, biclustering and matrix reordering, where we assume that a data
matrix has some latent structural pattern.

2.2 Biclustering problem
Biclustering is a problem to find a homogeneous submatrix (i.e., bicluster) in a given
two-mode relational data matrix A [5, 63]. Specifically, we assume that the entries in a
bicluster independently follow an identical distribution. The term of biclustering is used to
indicate two different meanings: either clustering all the rows and columns of matrix A to
form a regular-grid structure or finding one or more biclusters in matrix A, as shown in
Figure 2.3. In Chapters 3 and 4, we consider the former problem setting (i.e., regular-grid
structure). In the subsequent subsections, we describe the specific formulations of each
setting.

2.2.1 Regular-grid biclustering
Let A ∈ Rn×p be an n × p data matrix. In regular-grid biclustering (Figure 2.3 left),
we assume that the set of rows and columns of matrix A are decomposed into row and
column clusters, respectively. Specifically, let K and H , respectively, be the numbers of
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row and column clusters. We denote the row cluster index of the ith row of matrix A as
g

(1)
i ∈ {1, . . . , K}. Similarly, we denote the column cluster index of the jth column of

matrix A as g(2)
j ∈ {1, . . . , H}. In regular-grid biclustering, we assume that each entry Aij

is independently generated from a bicluster-wise identical distribution. Such a statistical
model is called a latent block model (LBM) [58, 63]. In this dissertation, we distinguish
an LBM from a stochastic block model (SBM), where we assume that the observed matrix
is square symmetric and g(1)

i = g
(2)
i holds for all i ∈ {1, . . . , n}.

2.2.2 Submatrix detection and localization
Let A ∈ Rn×p be an n × p data matrix. Submatrix detection is a problem to detect
the existence of one or more biclusters in matrix A [26, 63, 106, 134]. Particularly, in
many studies, the term of submatrix detection is used to indicate the problem to detect
large average submatrices, where the mean of the entries is significantly larger than the
other entries [26, 27, 101, 106]. Submatrix localization is a problem to estimate the
location (i.e., the set of rows and columns) of biclusters in a given matrix A, and it is also
called biclustering (Figure 2.3 right). Without the assumption that the entries within a
bicluster have larger mean than the other entries, in submatrix localization problem, we
can consider more general bicluster structures than in regular-grid biclustering. This is
because the K ×H block structure in regular-grid biclustering corresponds to a special
case in submatrix localization, where there are K ×H − 1 biclusters. Unlike regular-grid
biclustering, where each row or column should belong to at least one cluster, we can
consider more local bicluster structure in submatrix localization.

2.3 Matrix reordering problem
Matrix reordering is a problem to find a set of row and column permutations π =
(πrow, πcolumn) of a given relational data matrixA ∈ Rn×p such that the matrix reordered by
π shows some structural pattern. Specifically, let πrow be a permutation of {1, 2, . . . , n} and
let πcolumn be a permutation of {1, 2, . . . , p}. We define that the πrow(i)th row (πcolumn(j)th
column) in the original matrix corresponds to the ith row (jth column) in the reordered
matrix. We denote the reordered matrix as A(π) ∈ Rn×p, each of whose entry is given
by A(π)

ij = Aπrow(i)πcolumn(j). For a one-mode relational data matrix, the permutations are
constrained to satisfy πrow = πcolumn, and such a task is also called graph reordering or
graph layout.

Regular-grid biclustering in Section 2.2.1 can be seen as an example of matrix reorder-
ing methods, if we reorder the rows and columns based on their cluster memberships. As
we described in Chapter 1, there are various matrix reordering formulations other than the
biclustering-based methods, according to the structural pattern that we assume in a given
matrix.
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Chapter 3

Statistical test on the number of
biclusters in a latent block model

Latent block models are used for probabilistic biclustering, which is shown to be an
effective method for analyzing various relational data sets. However, there has been no
statistical test method for determining the row and column cluster numbers of latent block
models. Recent studies have constructed statistical-test-based methods for stochastic block
models, which assume that the observed matrix is a square symmetric matrix and that the
cluster assignments are the same for rows and columns. In this chapter, we develop a new
goodness-of-fit test for latent block models to test whether an observed data matrix fits a
given set of row and column cluster numbers, or it consists of more clusters in at least one
direction of the row and the column. To construct the test method, we use a result from
the random matrix theory for a sample covariance matrix. We experimentally demonstrate
the effectiveness of the proposed method by showing the asymptotic behavior of the test
statistic and measuring the test accuracy.

3.1 Introduction

Block modeling [5, 63] is known to be effective in representing various relational data
sets, such as the data sets of movie ratings [135], customer-product transactions [135],
congressional voting [77], document-word relationships [41], and gene expressions [123].
Latent block models or LBMs [58] are used for probabilistic biclustering of such relational
data matrices, where rows and columns represent different objects. For instance, suppose
that a matrix A = (Aij)1≤i≤n,1≤j≤p ∈ Rn×p represents the relationship between users and
movies, where entry Aij is the rating of the jth movie by the ith user. In LBMs, we assume
a regular-grid block structure behind the observed matrix A; i.e., both rows (users) and
columns (movies) of matrix A are simultaneously decomposed into latent clusters. A block
is defined as a combination of row and column clusters, and entries of the same block in

32



3. Statistical test on the number of biclusters in a latent block model

matrix A are supposed to be i.i.d. random variables.

An open problem in using LBMs is that there has been no statistical procedure for
determining the numbers of row and column clusters. Recently, statistical-test-based
approaches [16, 67, 92] have been proposed for estimating the cluster number of stochastic
block models (SBMs) [65]. SBMs are similar to LBMs in the sense that they assume a block
structure behind an observed matrix; however, they are based on different assumptions
from LBMs that an observed matrix is a square symmetric matrix and that the cluster
assignments are common for rows and columns [108]. In regard to the LBM setting, no
statistical method has been constructed to determine row and column cluster numbers. The
analysis for an SBM cannot be directly applied to the LBM case due to the difference in
the underlying random matrices. To prove the main theorem (i.e., Theorem 3.4.1), we need
to derive the orders of multiple variables related to the sample covariance matrix Z>Z of a
two-mode random matrix Z, such as the number of “large” eigenvalues of Z>Z [i.e., t in
(3.75)] and an inner product of an eigenvector of Z>Z and a deterministic vector. These
building blocks of Theorem 3.4.1 should be proven under the different condition from the
SBM case.

Aside from the test-based methods, several model selection approaches have been
proposed based on cross-validation [30] or an information criterion [76, 77, 119]. However,
these approaches have several limitations. (1) First, they cannot provide knowledge about
the reliability of the result besides the finally estimated cluster numbers. Rather than
minimizing the generalization error, in some cases, it is more appropriate to provide a
probabilistic guarantee in reliability for the purpose of knowledge discovery. (2) Second,
both the cross-validation-based and information-criterion-based methods depend on the
clustering algorithm used. For instance, we can employ the Bayesian information criterion
(BIC) for estimating the marginal likelihood only if the Fisher information matrix of the
model is regular, which is not the case for block models. Constructing an information
criterion that estimates the expectation of the generalization error for a wider class of
models is generally difficult. (3) Finally, the above methods require relatively large
computational complexity. Computation of an information criterion requires the process
of approximating the posterior distribution by the Markov chain Monte Carlo (MCMC)
method, and cross-validation requires the iterative calculation of the test error with different
sets of partitions of the training and test data sets.

In this chapter, we propose a new statistical test method for LBMs. To construct a
hypothesis test with a theoretical guarantee, we use a result from random matrix theory.
Recent studies on random matrix theory have revealed the asymptotic behavior of singular
values of an n× p random matrix [7, 8, 43, 54, 72, 73, 118, 122, 137, 138, 161]. Here, we
assume that each entry Zij of matrix Z, which is given by Zij = (Aij − Pij)/σij (which
is computed by the original matrix A, its block-wise mean P and standard deviation σ)
follows a distribution with a sub-exponential decay. From the result in [122], the normalized
maximum eigenvalue of Z>Z converges in law to the Tracy-Widom distribution with index
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1, under the above sub-exponential condition. Based on this result, we construct a goodness-
of-fit test for a given set of row and column cluster numbers of an LBM, using the maximum
singular value of matrix Ẑ, which is an estimator of the matrix Z. We prove that under the
null hypothesis (i.e., observed matrix A consists of a given set of row and column cluster
numbers), the proposed test statistic T converges in law to the Tracy-Widom distribution
with index 1 (Theorem 3.4.1). We also show that under the alternative hypothesis, test
statistic T increases in proportion to m

5
3 with a high probability, where m is a number

proportional to the matrix size (Theorems 3.4.2 and 3.4.3).
The proposed method solves the limitations of other model selection approaches. (1)

Our statistical test method enables us to obtain knowledge about the reliability of the test
results. When testing a given set of row and column cluster numbers, we can explicitly set
the probability of Type I error (or false positive) as a significance level α. (2) Unlike the
other model selection methods, the proposed method does not depend on the clustering
algorithm as long as it satisfies the consistency condition (Section 3.2). It only uses the
output of a clustering algorithm to test a given set of cluster numbers; there is no need
to modify the test method according to the clustering algorithm. (3) The proposed test
method requires relatively small computational complexity. It does not require the MCMC
procedure or partitioning into the training and test data sets. For these reasons, the proposed
test-based method can be widely used for the purpose of knowledge discovery.

The next sections consist of the detailed explanation of the proposed test method for
LBMs. In Section 3.2, we describe the proposed goodness-of-fit test and its theoretical
guarantee with the assumptions required for the problem setting. Next, we briefly review
the related works and their differences from the proposed method in Section 3.3. The
main results are presented in Section 3.4, where we prove the asymptotic properties of the
proposed test statistic. In Section 3.5, we experimentally demonstrate the effectiveness
of the proposed test method by showing the asymptotic behavior of the test statistic and
calculating the test accuracy. We discuss the results and limitations of the proposed method
in Section 3.6 and conclude the chapter in Section 3.7.

3.2 Problem settings
Let A ∈ Rn×p be an n × p observed matrix. We assume that each entry of matrix A is
independently generated, given its row and column clusters. Let (K,H) be the null set
of cluster numbers for rows and columns of an observed matrix A, which is unknown in
advance. We denote the cluster indices of the ith row and the jth column of matrix A
as g(1)

i ∈ {1, . . . , K} and g(2)
j ∈ {1, . . . , H}, respectively. We assume that each entry of

matrix A is independently subject to a distribution with the block-wise mean P and the
block-wise standard deviation σ:

P = (Pij)1≤i≤n,1≤j≤p, Pij = B
g

(1)
i g

(2)
j
.
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σ = (σij)1≤i≤n,1≤j≤p, σij = S
g

(1)
i g

(2)
j
.

A = (Aij)1≤i≤n,1≤j≤p, E[Aij] = Pij, E[(Aij − Pij)2] = σ2
ij, (3.1)

where Bkh and Skh > 0, respectively, are the mean and the positive standard deviation of
entries in the (k, h)th null block under the null hypothesis.

In this chapter, we propose a goodness-of-fit test for selecting the cluster numbers
(K,H) from observed matrix A. In such a test, we test whether (K,H) is equal to a
given set of cluster numbers (K0, H0) or at least one of the given row and column cluster
numbers K0 or H0 is smaller than the null cluster numbers K or H . In other words, the
null (N) and alternative (A) hypotheses are given by

(N) : (K,H) = (K0, H0), (A) : K > K0 or H > H0. (3.2)

By sequentially testing the cluster numbers in the following order (Figure 3.1), we can
select the cluster numbers of a given observed matrix A.

1. Test (K0, H0) = (1, 1).

2. Test (K0, H0) = (1, 2), (2, 1).

3. Test (K0, H0) = (1, 3), (2, 2), (3, 1).

4. · · ·

5. Test (K0, H0) = (1, L), (2, L− 1), . . . , (L, 1). Let (K̂, Ĥ) be the row and column
cluster numbers where the null hypothesis is accepted and K̂ + Ĥ = L+ 1 holds.
The selected set of cluster numbers is (K̂, Ĥ).

It must be noted that the smaller set of cluster numbers (K̂, Ĥ) is selected with the smaller
significance rate α. Based on the above sequentially ordered test, selection of the cluster
numbers requires (K̂ + Ĥ)(K̂ + Ĥ − 1)/2 tests at most.

Assumptions. Throughout this chapter, we make the following assumptions to derive
the test statistics:

(i). We assume that a distribution of Zij , which is given by Zij = (Aij − Pij)/σij as in
(3.7) later, has a sub-exponential decay. That is, there exists some ϑ > 0 such that
for x > 1, Pr (|Zij| > x) ≤ ϑ−1 exp(−xϑ). From this assumption, note that for any
ň ∈ N, the ňth moment of a random variable Zij is finite (i.e., E[Z ň

ij] <∞).

(ii). We denote the number of rows and columns of matrix A as n and p, respectively. We
assume that both n and p increase in proportion to some sufficiently large number m
(i.e., n, p ∝ m).
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Figure 3.1: The sequential order for testing row and column cluster numbers. For example,
let the blue entry (4, 3) be the null cluster numbers (K,H). Based on this sequentially
ordered test, the given cluster numbers (K0, H0) are always unrealizable (that is, at least
one of K > K0 or H > H0 holds), until it reaches to (K,H).

(iii). Let K and H , respectively, be the minimum row and column cluster numbers to
represent the block structure of observed matrix A under the null hypothesis. We
assume that both K and H are finite constants that do not increase with the matrix
sizes n and p. We also assume that the minimum row and column sizes of a block
in the null block structure, which we denote as nmin and pmin, respectively, satisfy
nmin = Ωp(m) and pmin = Ωp(m). In other words, we assume that with high
probability, there is no “too small” block in matrix A.

(iv). We assume that the minimum difference between the means of the null blocks
satisfies the following conditions.

∆B(1) = min
k,k′∈{1,...,K},h∈{1,...,H}

|Bkh −Bk′h| = Ω(1),

∆B(2) = min
k∈{1,...,K},h,h′∈{1,...,H}

|Bkh −Bkh′ | = Ω(1). (3.3)

(v). If the given set of cluster numbers (K0, H0) is equal to the null cluster numbers
(K,H), then we call it a realizable case. Otherwise, we call it an unrealizable
case (K > K0 or H > H0). In Section 3.4, we see that Theorems 3.4.2 and 3.4.3
guarantee the behavior of the test statistic T in unrealizable cases. For now, there is
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no way to detect the cases where (K < K0)∩ (H ≤ H0) or (K ≤ K0)∩ (H < H0)
holds, and to cope with such settings is beyond the scope of this dissertation.

(vi). In the realizable case, we assume that a clustering algorithm is consistent, that is,
the probability that it outputs the correct block structure converges to 1, in the limit
of m → ∞. By using this assumption, the proposed method does not depend on
a specific clustering algorithm. Several clustering algorithms including [4, 23, 47]
have been proven to be consistent. Such consistency in estimating the block structure
is also related to the resolution limit in network community detection problem for
one-mode data matrices [48].

Remark 3.2.1 (Extension of the assumptions with regard to the row and column cluster
numbers). From the result of the follow-up study [153], we can prove the main theorems
under more relaxed conditions with regard to the row and column cluster numbers. In the
realizable case, Theorem 3.4.1 holds with the following condition:

KH = O
(
m

1
42
−ε1
)
, for some ε1 > 0. (3.4)

nmin = Ω
(
m

8
21

)
, pmin = Ω

(
m

8
21

)
. (3.5)

In the unrealizable case, we can prove the upper bound of test statistic T in Theorem 3.4.3
and the lower bound of T = Ωp

(
m

2
3

)
under the following condition:

KH
√
nminpmin

= O
(
m−

3
4
−ε2
)
, for some ε2 > 0. (3.6)

3.3 Related works
In this section, we briefly review the related works and explain the differences between
them and the proposed method.

Statistical-test-based methods (for SBM) Recently, several methods have been pro-
posed for testing the properties of a given observed matrix in relation to SBMs
[16, 67, 74, 92, 164]. Particularly, the methods proposed in [16, 67, 92] have enabled us to
estimate the number of blocks for SBMs. However, these methods differ from ours in the
problem setting; they can be applied only to an SBM setting, where an observed matrix is
a square symmetric matrix, and the cluster assignments are common for rows and columns.
There has been no method to estimate the block number for LBMs, where rows and
columns (not necessarily square) of an observed matrix are simultaneously decomposed
into clusters.
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Cross-validation-based methods Cross-validation is a widely used method for model
selection, where a data set is first split into training and test data sets, and then the best
model with the minimum test error is determined. Recently, cross-validation methods for
matrix data have been proposed [30, 39, 75, 97] to determine the number of clusters in
network data. Although the purpose of these methods and our method is similar, these
methods differ from ours in that their target is the network data, where the observed matrix
is square and its rows and columns represent the same node sets. Thus, the block structure
is symmetric regardless of whether the network itself is directed or undirected. Moreover,
unlike a statistical test, these methods cannot provide quantitative knowledge about the
reliability of the selected model. Furthermore, the computational cost of cross-validation
is generally high because it requires the iterative calculation of the test error with different
data set partitions.

Information-criterion-based methods Another approach for determining the number
of blocks in a matrix is to estimate the generalization error or marginal likelihood by
some information criteria for given sets of block numbers. By using such information
criteria, we can select a model in a statistically meaningful (non-heuristic) way. In regard
to block models, many variants of BIC [66, 76, 77, 119, 130] or MDL [132, 160] have
been proposed. Unlike our test-based method, which only requires a clustering algorithm
to satisfy the consistency condition (Section 3.2), an information criterion for a theoretical
guarantee should be carefully chosen according to the given clustering algorithm. For
instance, BIC can be employed for estimating the marginal likelihood only if the Fisher
information matrix of the model is regular, which is not the case for block models.

To solve this problem, as an alternative criterion to BIC, the integrated completed
likelihood (ICL) criterion has been used in many studies for estimating the number of
blocks in LBMs [37, 104, 159]. In ICL, we first derive a marginal likelihood for a given set
of an observed matrix and block assignments and then substitute the set of estimated block
assignments to approximate the marginal likelihood. However, since ICL is computed
based on a single estimator of block assignments, there is no guarantee for the goodness of
the approximation of marginal likelihood.

Similar to cross-validation-based methods, information-criterion-based methods cannot
provide a probabilistic guarantee for the reliability of the selected model, which is a
disadvantage for the purpose of knowledge discovery. The computational cost also becomes
a problem because the computation of an information criterion requires the process of
approximating the posterior distribution by MCMC.

Other model selection methods Aside from the information criteria, several studies
have proposed to determine the number of blocks in LBMs based on the co-clustering
adjusted rand index [125], the extended modularity for biclustering [84], or the expected
posterior loss for a given loss function [124]. Another approach is to define the posterior
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distribution not only on cluster assignments of rows and columns but also on row and
column cluster numbers [117, 158]. Unlike the model selection approaches, such non-
parametric Bayesian methods can estimate the distribution of the block numbers. The
best-fitted number of the blocks can be determined based on the posterior distribution (e.g.,
we can choose a MAP estimator [117]). However, in this case, the computational cost of
MCMC is higher than that of the information-criterion-based methods because it requires
a large number of iterations to approximate the posterior distribution both on the block
assignments and the number of blocks.

3.4 Main results: Test statistic for determining the set of
cluster numbers

To derive the test statistic for the proposed goodness-of-fit test, we first normalize each
entry Aij of an observed matrix A by subtracting Pij and dividing it by σij , where P and
σ, respectively, are the block-wise mean and standard deviation in (3.1):

Z = (Zij)1≤i≤n,1≤j≤p, Zij =
Aij − Pij

σij
. (3.7)

By definition, each entry Zij of matrix Z in (3.7) independently follows a distribution with
zero mean and standard deviation of one. Let T ∗ be the scaled maximum eigenvalue of
matrix Z>Z, which is given by

T ∗ =
λ1 − aTW

bTW
, (3.8)

where λ1 is the maximum eigenvalue of the matrix Z>Z and aTW and bTW are defined as
in (2.3). According to Theorem 2.1.1 [122], T ∗ converges in law to the TW1 distribution
in the limit of m→∞.

In most cases, the null cluster numbers (K,H) and the null cluster assignments g(1)

and g(2) are unknown in advance. Therefore, we can only estimate the block structure
based on the observed matrix A and the given cluster numbers. Let (K0, H0) be the given
set of row and column cluster numbers, and ĝ(1) and ĝ(2), respectively, be the estimated
cluster assignments for rows and columns. Based on such an estimated block structure
(ĝ(1), ĝ(2)), we estimate the block-wise mean and standard deviation by

B̂ = (B̂kh)1≤k≤K0,1≤h≤H0 , B̂kh =
1

|Ik||Jh|
∑

i∈Ik,j∈Jh

Aij,

P̂ = (P̂ij)1≤i≤n,1≤j≤p, P̂ij = B̂
ĝ

(1)
i ĝ

(2)
j
,

Ŝ = (Ŝkh)1≤k≤K0,1≤h≤H0 , Ŝkh =

√
1

|Ik||Jh|
∑

i∈Ik,j∈Jh

(
Aij − P̂ij

)2

,
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σ̂ = (σ̂ij)1≤i≤n,1≤j≤p, σ̂ij = Ŝ
ĝ

(1)
i ĝ

(2)
j
, (3.9)

where Ik is the set of row indices of matrix A that are assigned to the kth cluster, and Jh is
the set of column indices of matrix A that are assigned to the hth cluster:

Ik =
{
i : ĝ

(1)
i = k

}
, Jh =

{
j : ĝ

(2)
j = h

}
. (3.10)

The consistency assumption (vi) guarantees that if (K0, H0) = (K,H), the probability
that the cluster assignments (Ik)1≤k≤K0 and (Jh)1≤h≤H0 are correct converges to 1 in the
limit of m→∞.

We define an estimator of normalized matrix Z in (3.7) based on the estimated block-
wise mean P̂ and standard deviation σ̂ in (3.9):

Ẑ = (Ẑij)1≤i≤n,1≤j≤p, Ẑij =
Aij − P̂ij

σ̂ij
. (3.11)

The test statistic T for the proposed goodness-of-fit test is given by the scaled maximum
eigenvalue of matrix Ẑ>Ẑ:

T =
λ̂1 − aTW

bTW
, (3.12)

where λ̂1 is the maximum eigenvalue of matrix Ẑ>Ẑ, and aTW and bTW are given by (2.3).
Based on the following results in Theorems 3.4.1, 3.4.2 and 3.4.3, we propose a one-

sided goodness-of-fit test for a given set of cluster numbers (K0, H0) at the significance
level of α by using the test statistic T :

Reject null hypothesis ((K,H) = (K0, H0)), if T ≥ t(α), (3.13)

where t(α) is the α upper quantile of the TW1 distribution. By applying the sequentially
ordered test that we explained in Section 3.2 based on the above rejection rule (3.13), we
can select a set of row and column cluster numbers (K̂, Ĥ) for a given observed matrix A.

In the proof of Theorem 3.4.1, we also use the following notations. Let B̃kh and S̃kh,
respectively, be the sample mean and sample standard deviation of all the entries in the
(k, h)th null block in matrix A. Based on such notations, we define the sample mean
matrix P̃ and standard deviation matrix σ̃ for the correct block structure, and matrix Z̃ by:

P̃ = (P̃ij)1≤i≤n,1≤j≤p, P̃ij = B̃
g

(1)
i g

(2)
j
,

σ̃ = (σ̃ij)1≤i≤n,1≤j≤p, σ̃ij = S̃
g

(1)
i g

(2)
j
,

Z̃ = (Z̃ij)1≤i≤n,1≤j≤p, Z̃ij =
A− P̃ij
σ̃ij

. (3.14)
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Theorem 3.4.1 (Realizable case). Under the assumptions in Section 3.2, if (K0, H0) =
(K,H),

T  TW1 (Convergence in law), (3.15)

in the limit of m→∞, where T is defined as in (3.12).

Proof. First of all, we derive the difference between Bkh (Skh) and B̃kh (S̃kh), which have
been defined in (3.1) and (3.14). Since the number of entries in the block is proportional to
m2 by the assumption (iii),

√
m2
(
Bkh − B̃kh

)
converges to N (0, S2

kh) from the central
limit theorem. Therefore, from Prokhorov’s theorem [146], we have∣∣∣B̃kh −Bkh

∣∣∣ = Op

(
1

m

)
. (3.16)

Also, the following equation holds (The proof is given in Appendix 3.A):∣∣∣S̃kh − Skh∣∣∣ = Op

(
1

m

)
. (3.17)

From here, we derive the difference between the maximum eigenvalue λ̃1 of the matrix
Z̃>Z̃ and the maximum eigenvalue λ1 of Z>Z, where the definitions of Z and Z̃ have
been given in (3.7) and (3.14), respectively. From Theorem 2.1.1, we have λ1 = Op(m).
Therefore, the largest singular value of Z, which is equal to ‖Z‖op, is in the order of
Op(
√
m).

By the subadditivity of the operator norm, we have∣∣∣‖Z‖op − ‖Z̃‖op

∣∣∣ ≤ ‖Z − Z̃‖op. (3.18)

Let A(k,h), P (k,h), P̃ (k,h), Z(k,h), and Z̃(k,h), respectively, be the (k, h)th null blocks of
matrices A, P , P̃ , Z, and Z̃. We also denote the row and column sizes of the (k, h)th null
block as nk and ph, respectively. From the definitions in (3.7) and (3.14), we have

Z(k,h) =
A(k,h) − P (k,h)

Skh
, Z̃(k,h) =

A(k,h) − P̃ (k,h)

S̃kh
. (3.19)

Combining this with (3.16), (3.17), and the fact that the Frobenius norm upper bounds the
operator norm, we have

‖Z(k,h) − Z̃(k,h)‖op =

∥∥∥∥∥A(k,h) − P (k,h)

Skh
− A(k,h) − P̃ (k,h)

S̃kh

∥∥∥∥∥
op
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=

∥∥∥∥∥A(k,h) − P (k,h)

Skh
− A(k,h) − P (k,h)

S̃kh
+
A(k,h) − P (k,h)

S̃kh
− A(k,h) − P̃ (k,h)

S̃kh

∥∥∥∥∥
op

≤
∥∥∥∥A(k,h) − P (k,h)

Skh
− A(k,h) − P (k,h)

S̃kh

∥∥∥∥
op

+

∥∥∥∥∥A(k,h) − P (k,h)

S̃kh
− A(k,h) − P̃ (k,h)

S̃kh

∥∥∥∥∥
op

=

∣∣∣∣∣ S̃kh − SkhSkhS̃kh

∣∣∣∣∣ ‖A(k,h) − P (k,h)‖op +
1

S̃kh
‖P (k,h) − P̃ (k,h)‖op

≤

∣∣∣∣∣ S̃kh − SkhSkhS̃kh

∣∣∣∣∣ ‖A(k,h) − P (k,h)‖op +
1

S̃kh
‖P (k,h) − P̃ (k,h)‖F

=

∣∣∣∣∣ S̃kh − SkhS̃kh

∣∣∣∣∣ ‖Z(k,h)‖op +
1

S̃kh

√
nkph

∣∣∣Bkh − B̃kh

∣∣∣
=

Op(1/m)

Skh +Op(1/m)
‖Z(k,h)‖op +

Op(1/m)

Skh +Op(1/m)

√
nkph (∵ (3.16), (3.17))

=
Op(1/m)

Skh +Op(1/m)
Op(
√
m) +

Op(1/m)

Skh +Op(1/m)

√
nkph (∵ Theorem 2.1.1)

= Op

(
1√
m

)
+Op(1) = Op(1). (3.20)

Therefore, since the operator norm of a matrix is not larger than the sum of the operator
norms of all of its blocks and the number of blocks are finite constants, we have

‖Z − Z̃‖op ≤
K∑
k=1

H∑
h=1

‖Z(k,h) − Z̃(k,h)‖op = Op(1). (3.21)

By combining this with (3.18), we obtain∣∣∣‖Z‖op − ‖Z̃‖op

∣∣∣ = Op(1). (3.22)

Next, we consider the joint probability of the event Fm that Z̃ = Ẑ holds and the event
Gm,C that

∣∣∣‖Z‖op − ‖Z̃‖op

∣∣∣ ≤ C holds. Such a joint probability satisfies the following
inequality:

Pr (Fm ∩ Gm,C) ≥ 1− Pr
(
FC
m

)
− Pr

(
GC
m,C

)
, (3.23)

where AC is the complement of event A. The consistency assumption (vi) guarantees that
if (K0, H0) = (K,H), Pr

(
FC
m

)
converges to 0 in the limit of m → ∞. By combining

this fact with (3.22), for all ε > 0, there exist C > 0 and M > 0 such that for all m ≥M ,
Pr (Fm ∩ Gm,C) ≥ 1− ε holds, which results in∣∣∣‖Z‖op − ‖Ẑ‖op

∣∣∣ = Op(1). (3.24)
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Figure 3.2: Difference between matrices P , P̄ , and P̂ in an unrealizable case.

By using the above results, we can prove that the following equation holds for all ε ∈
(
0, 2

7

)
(The proof is given in Appendix 3.B):

|λ1 − λ̂1|
bTW

= Op

(
m−

1
21

+ε
)
, (3.25)

From Theorem 2.1.1, (3.25), and Slutsky’s theorem, by setting ε < 1
21

,

λ̂1 − aTW

bTW
= T ∗ +

λ̂1 − λ1

bTW
 TW1 (Convergence in law). (3.26)

This is equivalent to the statement of Theorem 3.4.1.

Theorem 3.4.2 (Unrealizable case, lower bound). Under the assumptions in Section 3.2,
if K0 < K or H0 < H ,

T = Ωp

(
m

5
3

)
, (3.27)

where T is defined as in (3.12).

Proof. Let P̄ be a matrix that consists of the estimated block structure and whose entries
are the population block-wise means, which can be calculated using P (see also Figure
3.2). To derive the difference between matrices P and P̂ , we first focus on the relationship
between matrices P and P̄ . In the unrealizable case (i.e., K0 < K or H0 < H), we can
assume K0 < K without loss of generality.

Let nk be the number of rows in the kth null row cluster. For all the null row cluster
indices k ∈ {1, . . . , K}, at least one estimated row cluster contains nk/K0 or more rows
that are assigned to the kth row cluster in the null block structure (otherwise, the total
number of rows in the kth null row cluster is smaller than nk). Since K0 < K, at least one
estimated block contains two or more sets of rows whose null row clusters are mutually
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different, and both of which have the row sizes of at least nmin/K0, where nmin is the
minimum row size of a block in the null block structure. By the same reasoning, for all
the null column cluster indices h ∈ {1, . . . , H}, at least one estimated column cluster
contains ph/H0 or more columns that are assigned to the hth column cluster in the null
block structure, where ph is the number of columns in the hth null column cluster. By
combining these facts, there exists at least one estimated block that contains two or more
submatrices, both of which have the sizes of at least (nmin/K0)× (pmin/H0) and whose
null blocks are mutually different.

Let X1 and X2 be such submatrices, whose null block-wise mean are q1 and q2,
respectively. We can assume q1 > q2 without loss of generality. In matrix P̄ , which
has the estimated block structure, both of X1 and X2 have the same values q̄. Here,
|q2 − q̄| ≥ |q1−q2|

2
holds if q̄ ≥ q1+q2

2
, and otherwise |q1 − q̄| ≥ |q1−q2|

2
. Therefore, for any

q̄, there exists at least one submatrix X̄ (which is either X1 or X2) with a size of at least
(nmin/K0)× (pmin/H0), where all the entries are q (which is either q1 or q2) in matrix P
and

|q − q̄| ≥ min{∆B(1),∆B(2)}
2

. (3.28)

Here, we used the definitions of ∆B(1) and ∆B(2) in (3.3).
Let (k1, h1) be the row and column cluster indices of the estimated block which

contains the above submatrix X̄ . We denote the row and column sizes of the (k1, h1)th

estimated block as n1 and p
1
, respectively. Let A(k1,h1), P (k1,h1), P̄ (k1,h1), and P̂

(k1,h1)
,

respectively, be the (k1, h1)th estimated block of A, P , P̄ , and P̂ . We define q̂ ≡ B̂k1h1 .
In regard to the difference between matrices P̄ and P̂ (both of which have the estimated
block structure), we have

|q̂ − q̄| = 1

n1p1

∣∣∣∣∣
n1∑
i=1

p
1∑

j=1

(
P̂

(k1,h1)

ij − P̄ (k1,h1)
ij

)∣∣∣∣∣
=

1

n1p1

∣∣∣∣∣
n1∑
i=1

p
1∑

j=1

(
A

(k1,h1)
ij − P (k1,h1)

ij

)∣∣∣∣∣ =
1

n1p1

∣∣∣〈u1,
(
A(k1,h1) − P (k1,h1)

)
u2

〉∣∣∣
≤ 1

n1p1

‖u1‖‖u2‖‖A(k1,h1) − P (k1,h1)‖op =
1

√
n1p1

‖A(k1,h1) − P (k1,h1)‖op

≤

√
K0H0

nminpmin

‖A(k1,h1) − P (k1,h1)‖op ≤

√
K0H0

nminpmin

‖A− P‖op

≤

√
K0H0

nminpmin

K∑
k=1

H∑
h=1

‖A(k,h) − P (k,h)‖op =

√
K0H0

nminpmin

K∑
k=1

H∑
h=1

Skh‖Z(k,h)‖op
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≤

√
K0H0

nminpmin

KH max
k=1,...,K,h=1,...,H

Skh‖Z‖op = Op

(
1√
m

)
, (3.29)

where A(k,h), P (k,h), and Z(k,h), respectively, are the (k, h)th null blocks of matrices A, P ,
and Z, and u1 = [1, 1, . . . , 1]> ∈ Rn1 and u2 = [1, 1, . . . , 1]> ∈ Rp

1 . To derive the final
equation in (3.29), we used the assumptions that nmin, pmin = Ωp(m) and that K, H , K0,
and H0 are fixed constants, and the fact that ‖Z‖op = Op(

√
m) holds from Theorem 2.1.1.

Let Em,C be the event that |q − q̄| − C/
√
m ≤ |q − q̂| holds. For all q, q̄, and q̂, the

following inequality holds: ∣∣∣|q − q̄| − |q − q̂|∣∣∣ ≤ |q̂ − q̄|. (3.30)

By combining (3.29) and (3.30), for all ε > 0, there exist C > 0 and M > 0 such that for
all m ≥M , Pr(Em,C) ≥ 1− ε holds.

From now on, we denote the row and column sizes of submatrix X̄ , respectively, by
n̄1 and p̄1. Let A∗, P ∗, P̄ ∗, P̂ ∗, Z∗, and Ẑ∗, respectively, be the submatrices of matrices
A, P , P̄ , P̂ , Z, and Ẑ with the same row and column indices as submatrix X̄ . We also
denote the constant entries of the submatrices of σ and σ̂ with the same row and column
indices as submatrix X̄ , respectively, as σ∗ and σ̂∗. From the definition (3.11) and since
the operator norm of a submatrix is not larger than that of the original matrix, we have

‖Ẑ‖op ≥ ‖Ẑ∗‖op =
1

σ̂∗
‖A∗ − P̂ ∗‖op =

1

σ̂∗
‖(A∗ − P ∗) + (P ∗ − P̂ ∗)‖op

≥ 1

σ̂∗

∣∣∣‖A∗ − P ∗‖op − ‖P ∗ − P̂ ∗‖op

∣∣∣
=

1

σ̂∗

∣∣∣σ∗‖Z∗‖op − ‖P ∗ − P̂ ∗‖op

∣∣∣ . (3.31)

First, the order of the estimated standard deviation σ̂∗ is given by

σ̂∗ = Op(1). (3.32)

The proof of (3.32) is in Appendix 3.C.
The only non-zero (and thus, the largest) singular value of matrix

(
P ∗ − P̂ ∗

)
is

√
n̄1p̄1 |q − q̂|. Since the largest singular value of a matrix is equal to its operator norm,

we have

‖P ∗ − P̂ ∗‖op =
√
n̄1p̄1 |q − q̂| ≥

√
nmin

K0

pmin

H0

|q − q̂| . (3.33)

Therefore, by combining this fact with (3.28), if the statement of event Em,C holds, the
following inequality also holds:√

nmin

K0

pmin

H0

(
min{∆B(1),∆B(2)}

2
− C√

m

)
≤ ‖P ∗ − P̂ ∗‖op, (3.34)
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which results in that ‖P ∗ − P̂ ∗‖op = Ωp(m) from the assumption (iv).
Also, from Theorem 2.1.1, we have ‖Z∗‖op ≤ ‖Z‖op = Op(

√
m). By substituting this

fact, (3.32), and (3.34) into (3.31), we finally obtain

‖Ẑ‖2
op = Ωp

(
m2
)
. (3.35)

Here, ‖Ẑ‖2
op is equal to the maximum eigenvalue λ̂1 of Ẑ>Ẑ, and the test statistic is

T = λ̂1−aTW

bTW . Using the definition (2.3), we obtain aTW = Op(m) and

bTW =
(√

n+
√
p
)( 1√

n
+

1
√
p

) 1
3

=
(√

β1m+
√
β2m

)( 1√
β1m

+
1√
β2m

) 1
3

= m
1
3

(√
β1 +

√
β2

)( 1√
β1

+
1√
β2

) 1
3

, (3.36)

where we used the definitions β1 ≡ n/m and β2 ≡ p/m.
By combining these results and (3.35), we obtain

Tm
1
3 = Ωp

(
m2
)
⇐⇒ T = Ωp

(
m

5
3

)
, (3.37)

which concludes the proof.

Theorem 3.4.3 (Unrealizable case, upper bound). Under the assumptions in Section 3.2,
if K0 < K or H0 < H ,

T = Op

(
m

5
3

)
, (3.38)

where T is defined as in (3.12).

Proof. We define P , P̄ , and P̂ as in Theorem 3.4.2. Let Ẑ
(k,h)

, A(k,h), and P̂
(k,h)

, respec-
tively, be the (k, h)th estimated blocks of matrices Ẑ, A, and P̂ . We denote the row and
column sizes of the (k, h)th estimated block as nk and p

h
, respectively. Since the operator

norm of a matrix is not larger than the sum of the operator norms of all its blocks, we have

‖Ẑ‖op ≤
K0∑
k=1

H0∑
h=1

‖Ẑ
(k,h)
‖op =

K0∑
k=1

H0∑
h=1

1

Ŝkh
‖A(k,h) − P̂

(k,h)
‖op

=

K0∑
k=1

H0∑
h=1

√
nkph

‖A(k,h) − P̂
(k,h)
‖F

‖A(k,h) − P̂
(k,h)
‖op

≤
K0∑
k=1

H0∑
h=1

√
nkph

‖A(k,h) − P̂
(k,h)
‖F

‖A(k,h) − P̂
(k,h)
‖F
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=

K0∑
k=1

H0∑
h=1

√
nkph ≤ K0H0

√
np = Op(m). (3.39)

The test statistic is T = λ̂1−aTW

bTW , where λ̂1 = ‖Ẑ‖2
op = Op(m

2). Based on the same
discussion as in Theorem 3.4.2, aTW = Op(m) and (3.36) hold. Consequently, we obtain
T = Op(m

2/m
1
3 ) = Op(m

5
3 ), which concludes the proof.

3.5 Experiments

3.5.1 Realizable case: Convergence of test statistic T in law to Tracy-
Widom distribution

First of all, we check the convergence of the proposed test statistic T in law to the TW1

distribution, under the realizable setting, which has been stated in Theorem 3.4.1, by using
synthetic data that were generated based on three types of distributions:

• Gaussian LBM: The observed matrices were generated whose entries in the (k, h)th
block follow the normal distributionN (Bkh, Skh). In the Gaussian LBM setting, we
used the following null model and parameters:

(K,H) = (4, 3), B =


0.9 0.1 0.4
0.2 0.7 0.3
0.3 0.2 0.8
0.6 0.9 0.1

 , S =


0.08 0.06 0.15
0.14 0.12 0.07
0.09 0.1 0.11
0.16 0.13 0.05

 . (3.40)

• Bernoulli LBM: The observed matrices were generated whose entries in the (k, h)th
block follow the Bernoulli distribution Bernoulli(Bkh). In the Bernoulli LBM
setting, we used the following null model and parameters:

(K,H) = (4, 3), B =


0.9 0.1 0.4
0.2 0.7 0.3
0.3 0.2 0.8
0.6 0.9 0.1

 . (3.41)

• Poisson LBM: The observed matrices were generated whose entries in the (k, h)th
block follow the Poisson distribution Pois(Bkh). In the Poisson LBM setting, we
used the following null model and parameters:

(K,H) = (4, 3), B =


9.0 1.0 4.0
2.0 7.0 3.0
3.0 2.0 8.0
6.0 9.0 1.0

 . (3.42)
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Based on the above LBMs, we independently generated 1000 observed matrices,
estimated their block structures based on the Ward’s hierarchical clustering algorithm
[150], and computed the test statistic T . With respect to the matrix size, we tried the
following 10 settings: (n, p) = (300 × i, 225 × i), i = 1, . . . , 10. When generating
an observed matrix, the null cluster of each row was independently chosen from the
discrete uniform distribution on {1, 2, 3, 4}. Similarly, the null cluster of each column was
independently chosen from the discrete uniform distribution on {1, 2, 3}.

Figures 3.3, 3.4, and 3.5, respectively, show the Q-Q plots of the test statistic T
and the TW1 distribution in the Gaussian, Bernoulli, and Poisson settings. Each plotted
point corresponds to a sample of test statistic T , and the horizontal and vertical lines,
respectively, show its theoretical and sample quantiles. These figures show that the test
statistic converged in law to the TW1 distribution.

Figure 3.6 shows the ratios of the trials where T ≥ t(0.01), T ≥ t(0.05), and T ≥
t(0.1) for the above three LBM settings, where t(α) is the α upper quantile of the TW1

distribution. We used the approximated values t(0.01) ≈ 2.02345, t(0.05) ≈ 0.97931, and
t(0.1) ≈ 0.45014, according to Table 2 in [145]. From Figure 3.6, we see that the tail
probabilities of the test statistic T also converged to those of the TW1 distributions for all
of the three LBM settings.

We also plotted the results of the Kolmogorov-Smirnov test [36] for the test statistic
T in Figure 3.7. We tested whether the distribution of T is the TW1 distribution or not
based on the test statistic D

√
r, where D is the maximum absolute difference between

the empirical distribution function of T and the cumulative distribution function of the
TW1 distribution, and r is the sample size, which is set at 1000 in this experiment. Figure
3.7 shows the convergence of the proposed test statistic T in law to the TW1 distribution
under the realizable setting.

3.5.2 Unrealizable case: Asymptotic behavior of test statistic T
Next, we checked the asymptotic behavior of the proposed test statistic T under the
unrealizable setting, which has been stated in Theorems 3.4.2 and 3.4.3, by using synthetic
data that were generated based on the same three types of distributions as in Section 3.5.1.
By combining Theorems 3.4.2 and 3.4.3, we obtain the following theorem:

Theorem 3.5.1 (Unrealizable case, two-sided bound). Under the assumptions in Section
3.2, if K0 < K or H0 < H ,

T = Θp

(
m

5
3

)
. (3.43)

In other words, with high probability, the proposed test statistic T increases in propor-
tion to m

5
3 in the limit of m→∞.
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Figure 3.3: Q-Q plot of test statistic T against the TW1 distribution in the setting of
Gaussian case.
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Figure 3.4: Q-Q plot of test statistic T against the TW1 distribution in the setting of
Bernoulli case.
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Figure 3.5: Q-Q plot of test statistic T against the TW1 distribution in the setting of
Poisson case.
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Figure 3.6: Ratio of the number of trials where test statistic T ≥ t(α), where t(α) is the
α upper quantile of the TW1 distribution. The left, center, and right figures, respectively,
show the results for the settings of Gaussian, Bernoulli, and Poisson distributions. The
horizontal line shows the number of rows n in the observed matrix.
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Figure 3.7: Test statistics D
√
r of the Kolmogorov-Smirnov test [36] for the test statistic

T . The left, center, and right figures, respectively, show the results for the settings of
Gaussian, Bernoulli, and Poisson distributions. If the test statistic D

√
r is larger than

the significance level α, then the null hypothesis that T follows the TW1 distribution is
rejected, and otherwise, the null hypothesis is accepted.

With respect to the null models and parameters, we used the same settings as in Section
3.5.1 for all of the three LBM settings (i.e., Gaussian, Bernoulli, and Poisson LBMs).
Based on such settings, we independently generated 100 observed matrices, estimated their
block structures based on the Ward’s hierarchical clustering algorithm [150], and computed
the test statistic T . With respect to the matrix size, we tried the following 10 settings:
(n, p) = (200× i, 150× i), i = 1, . . . , 10. When generating an observed matrix, the null
cluster of each row was independently chosen from the discrete uniform distribution on
{1, 2, 3, 4}. Similarly, the null cluster of each column was independently chosen from the
discrete uniform distribution on {1, 2, 3}.

Figures 3.8 and 3.9 show the asymptotic behavior of the proposed test statistic T under
the unrealizable setting. As shown in Theorem 3.5.1, we see that T increases in proportion
to m

5
3 , where n, p ∝ m.
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Figure 3.8: Mean test statistic T in the unrealizable case for 100 trials. The null row and
column cluster numbers are 4 and 3, respectively. The left, center, and right figures, respec-
tively, show the results for the settings of Gaussian, Bernoulli, and Poisson distributions.
The horizontal line shows the number of rows n in the observed matrix.
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Figure 3.9: Mean test statistic T divided by n
5
3 in the unrealizable case for 100 trials. The

left, center, and right figures, respectively, show the results for the settings of Gaussian,
Bernoulli, and Poisson distributions.

3.5.3 Accuracy of the proposed goodness-of-fit test

Finally, we evaluated the proposed goodness-of-fit test in terms of its accuracy. By using
synthetic data that were generated based on the same three types of distributions as in
Section 3.5.1, we checked the ratio of trials where the selected set of cluster numbers
(K0, H0) is equal to the null one (K,H). Here, we set the null set of cluster numbers at
(K,H) = (4, 3). For each LBM setting (i.e., Gaussian, Bernoulli, and Poisson LBMs), we
tried 10 settings with respect to the block-wise mean B. The concrete settings were as
follows:

• Gaussian LBM: We used the following parameters:

B′ =


0.9 0.1 0.4
0.2 0.7 0.3
0.3 0.2 0.8
0.6 0.9 0.1

 , S =


0.08 0.06 0.15
0.14 0.12 0.07
0.09 0.1 0.11
0.16 0.13 0.05

 ,

∀k, h, Bkh =

(
1− t

10

)
(B′kh − 0.5) + 0.5, for t = 0, . . . , 9. (3.44)
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• Bernoulli LBM: We used the following parameters:

B′ =


0.9 0.1 0.4
0.2 0.7 0.3
0.3 0.2 0.8
0.6 0.9 0.1

 ,

∀k, h, Bkh =

(
1− t

10

)
(B′kh − 0.5) + 0.5, for t = 0, . . . , 9. (3.45)

• Poisson LBM: We used the following parameters:

B′ =


9.0 1.0 4.0
2.0 7.0 3.0
3.0 2.0 8.0
6.0 9.0 1.0

 ,

∀k, h, Bkh =

(
1− t

10

)
(B′kh − 5) + 5, for t = 0, . . . , 9. (3.46)

With respect to the matrix size, we tried the following 10 settings for each LBM setting
and for each setting of B: (n, p) = (40 × i, 30 × i), i = 1, . . . , 10. When generating
an observed matrix, the null cluster of each row was independently chosen from the
discrete uniform distribution on {1, 2, 3, 4}. Similarly, the null cluster of each column
was independently chosen from the discrete uniform distribution on {1, 2, 3}. In each of
3 (Gaussian, Bernoulli, or Poisson LBM) ×10 (for the setting of B) ×10 (for the setting
of matrix size) settings, we generated 1000 observed matrices and applied the proposed
sequential goodness-of-fit test, until the null hypothesis (K,H) = (K0, H0) was accepted.
For each observed matrix, we estimated its block structure based on the Ward’s hierarchical
clustering algorithm [150] under each setting of a hypothetical set of cluster numbers
(K0, H0), computed the test statistic T , and performed the proposed test for the given
cluster numbers (K0, H0) using a significance level of α = 0.01. Figures 3.10, 3.11,
and 3.12, respectively, show the examples of generated observed matrices of Gaussian,
Bernoulli, and Poisson LBMs.

Figure 6 shows the accuracy of the proposed test under 10 different settings of block-
wise mean B. From Figure 6, we see that the test accuracy increases with matrix size n for
a fixed block-wise mean B, and that it decreases with the smaller differences between the
block-wise means for a fixed matrix size n.

Comparison to the integrated completed likelihood (ICL) We also checked the dif-
ference in the behavior of the proposed test and the ICL. For the Bernoulli LBM, we can
compute the asymptotic ICL [76] by assuming the following model:

p(A, g(1), g(2)|π, ρ,B)
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Figure 3.10: Examples of null block structures of the Gaussian LBM. 40× 30 observed
matrices are plotted for 10 different settings of B (t = 1, . . . , 10). The rows and columns
of matrix A were sorted according to the null clusters.
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Figure 3.11: Examples of null block structures of the Bernoulli LBM.
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Figure 3.12: Examples of null block structures of the Poisson LBM.
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Figure 3.13: Accuracy of the proposed goodness-of-fit test under 10 different settings of
block-wise mean B. The left, center, and right figures, respectively, show the results for
the settings of Gaussian, Bernoulli, and Poisson distributions.
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where p(·) represents a probability density, and aD and bB are the hyperparameters.
From Lemma 4.2 in [76], for an estimated block structure (ĝ(1), ĝ(2)), the resulting

asymptotic ICL is given by

ICL(K0, H0) =
∑
k

|Ik| log

(
|Ik|
n

)
+
∑
h

|Jh| log

(
|Jh|
p

)
+
∑
k,h

|Ik||Jh|
[
B̂kh log B̂kh +

(
1− B̂kh

)
log
(

1− B̂kh

)]
− K0 − 1

2
log n− H0 − 1

2
log p− K0H0

2
log(np). (3.48)

The proof of (3.48) is given in Appendix 3.D.
As a preliminary experiment, we checked the relationship between the proposed test

statistic T or the ICL and the eigenvalues of matrix Ẑ>Ẑ. By setting the cluster numbers
and the matrix size at (K,H) = (K0, H0) = (4, 3) and (n, p) = (300, 225), respectively,
we generated 1000 observed matrices based on the Bernoulli distribution and estimated
their bicluster structure as in Section 3.5.1. For each estimated bicluster structure, we
computed the proposed test statistic T , the ICL, and the eigenvalues of matrix Ẑ>Ẑ.
Figure 3.14 shows the correlation coefficients ρ between the proposed test statistic T or
the ICL and the eigenvalues of matrix Ẑ>Ẑ. Since the proposed test statistic T is a scaled
maximum eigenvalue of Ẑ>Ẑ, the correlation coefficient between T and the maximum
eigenvalue is always one, while those between T and the other eigenvalues were relatively
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Figure 3.14: Correlation coefficients between the proposed test statistic T or the ICL
and the eigenvalues of matrix Ẑ>Ẑ. As for the horizontal axes, index j ∈ {1, . . . , p}
corresponds to the jth largest eigenvalue.

small. In regard to the ICL, unlike the proposed test statistic, the correlation coefficients
were small (i.e., −0.2 < ρ < 0.2) for all the indices of eigenvalues.

Next, to check the accuracy of the proposed test and the ICL, we generated synthetic
binary data matrices based on the Bernoulli distribution as in Section 3.5.3, and checked
the ratio of trials where the selected set of cluster numbers (K0, H0) is equal to the null one
(K,H). We set the null set of cluster numbers at (K,H) = (4, 3), and tried the following
five settings with respect to the block-wise mean B.

B′ =


0.9 0.1 0.4
0.2 0.7 0.3
0.3 0.2 0.8
0.6 0.9 0.1

 ,

∀k, h, Bkh =

(
1− t

5

)
(B′kh − 0.5) + 0.5, for t = 0, . . . , 4. (3.49)

With respect to the matrix size, we tried the following five settings for each setting of B:
(n, p) = (40× i, 30× i), i = 1, . . . , 5. The null block of each element was chosen in the
same way as in Section 3.5.3. In each of 5 (for the setting of B) ×5 (for the setting of
matrix size) settings, we generated 100 observed matrices, and applied the proposed test
using a significance level of α = 0.01 and the model selection based on the ICL. Unlike
the proposed sequential test, which stopped if the null hypothesis was accepted, the ICL
was computed for all the sets of cluster numbers from (1, 1) to (n, p) and then the optimal
setting was selected that achieved the maximum ICL. For each setting, we estimated the
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Figure 3.15: Accuracy of the proposed test and the model selection based on the ICL under
five different settings of block-wise mean B.

block structure of an observed matrix based on the Ward’s hierarchical clustering algorithm
[150].

Figure 3.15 shows the accuracy of the proposed test and the model selection based
on the ICL. Although the purpose of the proposed test is not to achieve high accuracy
in model selection, in some cases with small differences between the block-wise means
{Bkh}, it achieved better performance than the ICL. With larger difference among {Bkh},
the ICL performed better than the proposed test in terms of model selection. Figures 3.16
and 3.17, respectively, show the ratios of the trials where each set of cluster numbers was
selected by the proposed test and the ICL. From Figures 3.16 and 3.17, we see that in
most cases (e.g., Bkh ∈ [0.26, 0.74] for all (k, h)), the ICL tended to select smaller sets of
cluster numbers than the proposed test.

3.5.4 Real data analysis: Congressional Voting Records Data Set
Selection of the number of biclusters by the proposed test and the ICL

We also checked the result when we applied the proposed test to 1984 United States
Congressional Voting Records Database from UCI Machine Learning Repository [44].
The original data set contains three types of votes (“yea,” “nay,” and unknown) for the
pairs of a congressman and an attribute. We treated unknown as “nay,” as in [159]. The
number of instances or congressmen and that of attributes are 435 and 16, respectively.
Based on this data set, we defined a binary matrix A ∈ R435×16, where the elements of one
and zero, respectively, correspond to “yea” and “nay.”

As in Section 3.5.3, we applied the proposed sequential tests using a significance level
of α = 0.01, until the null hypothesis was accepted. We also computed the ICL for each
setting of a hypothetical set of cluster numbers (K0, H0), and selected one with the largest
ICL. For each setting of a hypothetical set of cluster numbers (K0, H0), we estimated the
block structure based on the Ward’s hierarchical clustering algorithm [150].

As a result, the sets of cluster numbers (9, 14) and (3, 13) were selected by the proposed
test and the ICL, respectively. Figure 3.18 shows the observed data matrix and its estimated
block structures with the selected sets of cluster numbers. From Figure 3.18, we see that
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Figure 3.16: Ratios of the trials where each set of cluster numbers (K0, H0) was selected
by the proposed test. The cyan rectangles show the null set of cluster numbers (K,H).
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Figure 3.17: Ratios of the trials where each set of cluster numbers (K0, H0) was selected
by the model selection based on the ICL. The cyan rectangles show the null set of cluster
numbers (K,H).
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Figure 3.18: The observed data matrix of the Congressional Voting Records Data Set [44]
and its estimated block structures. The black and white elements, respectively, show “yea”
and “nay.”

a finer block structure was accepted by the proposed test than the ICL, particularly for
the row (i.e., congressman) cluster assignments. As for the column (i.e., attribute) cluster
assignments, “anti-satellite-test-ban,” “aid-to-nicaraguan-contras,” and “mx-missile” were
assigned into the same cluster in the selected block structure of the ICL, whereas the
proposed test distinguished the first two attributes from the last one. Figure 3.19 shows the
p-value of the proposed test and the ICL for each setting of a hypothetical set of cluster
numbers (K0, H0) until the null hypothesis was accepted.

Robustness of the proposed test and the ICL to data noise

By using the same Congressional Voting Records Data Set, we compared the proposed
test and the ICL in terms of robustness to the data noise. Specifically, we chose m̆ entries
without replacement from the discrete uniform distribution on all the entries of matrix A
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Figure 3.19: The p-value of the proposed test and the ICL for each setting of a hypothetical
set of cluster numbers (K0, H0). In the left figure, we plotted the p-values only for the
tested settings (i.e., until the null hypothesis was accepted). As for the ICL, we plotted a
part of results (K0 ≤ 16, H0 ≤ 16) for visibility. The cyan rectangles show the selected
sets of cluster numbers.

and flipped the values of these selected entries (i.e., from zero to one or from one to zero).
In the experiment, we tried m̆ = 2t + 2 for t = 0, 1, . . . , 4. For each setting of m̆, we
generated 1000 matrices Ă with noise based on the above procedure. We estimated the
block structure of matrix Ă based on the Ward’s hierarchical clustering algorithm [150]
and applied the proposed test with a significance level of α = 0.01 and the ICL.

Figure 3.20 shows the ratio of the trials in which each set of row and column cluster
numbers was selected by the proposed test and the ICL. From this result, we see that the
ICL was more robust than the proposed test with regard to the data noise. The selected sets
of cluster numbers by the ICL were (3, 9) in most trials, while those by the proposed test
varied more greatly depending on the selection results of the flipped entries.

3.6 Discussions
In this section, we discuss the proposed test method in terms of the test statistic and the
conditions for the generative model.

With respect to the asymptotic behavior, the proposed test has a favorable property
in terms of the power. From Theorem 3.5.1, under the alternative hypothesis, the test
statistic T increases in proportion to m

5
3 with high probability, where n, p ∝ m. In other

words, the probability that the test makes a type II error (i.e., T < t(α)) converges to zero
in the limit of p → ∞. Based on this fact, in the asymptotic sense, we do not need to
consider the correction for the multiple comparison when applying the proposed sequential
testing. However, it has not been shown what occurs in the non-asymptotic setting. In
general, practical data matrices have finite sizes, where there has been shown no theoretical
guarantee like Theorems 3.4.1, 3.4.2, and 3.4.3. On the other hand, for a Gaussian case
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Figure 3.20: The ratio of the trials in which each set of row and column cluster numbers
was selected by the proposed test and the ICL. We plotted the results only for the settings
which were selected at least once by the proposed test or the ICL.

(i.e., each entry of a matrix independently follows N (0, 1)), the following statement holds
[105]: Suppose n = n(p) > p and n/p → γ ∈ [1,∞) in the limit of p → ∞. Then, for
any s0, there exists N0 ∈ N such that when max(n, p) ≥ N0 and max(n, p) is even, for all
s ≥ s0,

|Pr(T ∗ ≤ s)− F1(s)| ≤ C(s0)[max(n, p)]−2/3 exp
(
−s

2

)
, (3.50)

where T ∗ is defined as in (2.2), F1 is the cumulative distribution function of the TW1

distribution, and C(·) is a continuous and non-increasing function. From the above
inequality (3.50), if the clustering algorithm outputs the correct block assignments, the
convergence rate of the normalized maximum eigenvalue T ∗ of matrix Z̃>Z̃ (where Z̃ is
defined as in (3.14)) to the TW1 distribution is O(m−2/3). However, since the distribution
of T is unknown in the case where the correct block assignment is not obtained, the
convergence rate of T is also unknown. Deriving the convergence rate of T by considering
the above discussion is a future research topic.

In regard to the conditions for using the proposed test method, our proposed test is
applicable to a wide range of practical settings (e.g., Bernoulli distribution for binary data
matrices and Poisson distribution for sparse ones). Nevertheless, it still requires some
assumptions for the latent block structure of an observed matrix. For instance, the row
and column cluster numbers (K,H) should be constants that do not increase with the
matrix sizes n and p. Also, there should be no too small block (i.e., nmin = Ωp(m) and
pmin = Ωp(m)). In some practical cases, where it is more appropriate to assume that the
number of blocks increases with the matrix size, it will be useful to construct a test which
does not require the above conditions. As for the sub-exponential condition, Ding and Yang
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[43] have shown more relaxed sufficient condition for the scaled maximum eigenvalue T ∗

to converge in law to the TW1 distribution. However, the delocalization property of an
eigenvector of matrix Z>Z [17], which we used in Appendix 3.B to prove our main result,
has not been derived in the form as in the sub-exponential case [17]. If Theorem 2.1.2 is
shown in the above more general case, it would also be possible to extend our proposed
test to such a case. Furthermore, there are proposed variants of latent block models with
which we assume different block structures from a regular grid [112, 129]. To construct
test methods for the above settings is an important topic for future research.

3.7 Chapter conclusion
Latent block models are effective tools for biclustering, where rows and columns of an
observed matrix are simultaneously decomposed into clusters. Such a bicluster structure
appears in various types of relational data, such as the customer-product transaction data
and the document-word relationship data. One open problem in using latent block models
is that there has been no statistical test method for determining the number of blocks. In
this chapter, we developed a goodness-of-fit test for latent block models based on a result
from the random matrix theory. By defining the test statistic T based on the estimators of
the block-wise means and standard deviations, we have derived its asymptotic behavior
in both realizable (i.e., (K,H) = (K0, H0)) and unrealizable (i.e., K > K0 or H > H0)
cases. Particularly, it has been shown that the test statistic T converges in law to the
TW1 distribution in the realizable case. Based on these results, it was made possible
to test whether the given observed matrix had K0 × H0 latent blocks or more ones. In
the experiments, we showed the validity of the proposed test method in terms of both
the asymptotic behavior of the test statistic and the test accuracy by using synthetic data
matrices. We also applied the proposed test to practical data and analyzed the result.

3.A Proof of
∣∣S̃kh − Skh∣∣ = Op

(
1
m

)
Let nk and ph, respectively, be the row and column sizes of the (k, h)th null block, and
A(k,h), P (k,h), and P̃ (k,h), respectively, be the (k, h)th null blocks of matrices A, P , and P̃ .
Here, we prove the following lemma:

Lemma A1. Under the assumption that the fourth moment of the noise Zij is bounded
(E[Z4

ij] <∞), ∣∣∣S̃kh − Skh∣∣∣ = Op

(
1

m

)
, (3.51)

where S̃kh =

√
1

nkph

∑nk
i=1

∑ph
j=1

(
A

(k,h)
ij − B̃kh

)2

.
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Proof. From the above definition of S̃kh, we have

S̃2
kh =

1

nkph

nk∑
i=1

ph∑
j=1

(
A

(k,h)
ij − B̃kh

)2

=
1

nkph

nk∑
i=1

ph∑
j=1

(
A

(k,h)
ij −Bkh

)2

−
(
Bkh − B̃kh

)2

. (3.52)

To derive the second equation, we used the fact that B̃kh = 1
nkph

∑nk
i=1

∑ph
j=1 A

(k,h)
ij . There-

fore, the following inequality holds:∣∣∣S̃2
kh − S2

kh

∣∣∣ ≤ ∣∣∣∣∣ 1

nkph

nk∑
i=1

ph∑
j=1

(
A

(k,h)
ij −Bkh

)2

− S2
kh

∣∣∣∣∣+
(
Bkh − B̃kh

)2

. (3.53)

The first term in (3.53) is given by

1

nkph

nk∑
i=1

ph∑
j=1

(
A

(k,h)
ij −Bkh

)2

− S2
kh

=
1

nkph

nk∑
i=1

ph∑
j=1

[(
A

(k,h)
ij −Bkh

)2

− S2
kh

]
=

1

nkph

nk∑
i=1

ph∑
j=1

Y
(k,h)
ij , (3.54)

where we defined that Y (k,h)
ij ≡

(
A

(k,h)
ij −Bkh

)2

− S2
kh. Note that (Y

(k,h)
ij )1≤i≤nk,1≤j≤ph is

independent. The expectation and the variance of Y (k,h)
ij are given by

E
[
Y

(k,h)
ij

]
= E

[(
A

(k,h)
ij −Bkh

)2
]
− S2

kh = 0,

V
[
Y

(k,h)
ij

]
= E

[(
Y

(k,h)
ij

)2
]

= E

[{(
A

(k,h)
ij −Bkh

)2

− S2
kh

}2
]

= S4
kh

(
E
[(
Z

(k,h)
ij

)4
]
− 1

)
. (3.55)

From (3.55), we have

E

[
1

nkph

nk∑
i=1

ph∑
j=1

Y
(k,h)
ij

]
= 0,

V

[
1

nkph

nk∑
i=1

ph∑
j=1

Y
(k,h)
ij

]
=

1

nkph
S4
kh

(
E
[(
Z

(k,h)
ij

)4
]
− 1

)
. (3.56)
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From (3.54), (3.56), and Chebyshev’s inequality, for all t > 0,

Pr

(∣∣∣∣∣ 1

nkph

nk∑
i=1

ph∑
j=1

(
A

(k,h)
ij −Bkh

)2

− S2
kh

∣∣∣∣∣ ≥
t

1
√
nkph

√
S4
kh

(
E
[(
Z

(k,h)
ij

)4
]
− 1

))
≤ 1

t2
. (3.57)

Therefore, we have∣∣∣∣∣ 1

nkph

nk∑
i=1

ph∑
j=1

(
A

(k,h)
ij −Bkh

)2

− S2
kh

∣∣∣∣∣ = Op

(
1

m

)
. (3.58)

On the other hand, the second term in (3.53) is given by(
Bkh − B̃kh

)2

= Op

(
1

m2

)
. (3.59)

from (3.16).
By combining (3.53), (3.58), and (3.59),∣∣∣S̃2

kh − S2
kh

∣∣∣ = Op

(
1

m

)
. (3.60)

The difference between S̃kh and Skh is given by

∣∣∣S̃kh − Skh∣∣∣ =

∣∣∣S̃2
kh − S2

kh

∣∣∣
S̃kh + Skh

. (3.61)

Here, from (3.60), m
∣∣∣S̃2

kh − S2
kh

∣∣∣ is bounded in probability. Therefore, S̃kh converges in

probability to Skh, which results in that S̃kh + Skh = Θp(1). By combining this fact with
(3.60) and (3.61), we finally obtain∣∣∣S̃kh − Skh∣∣∣ = Op

(
1

m

)
, (3.62)

which concludes the proof.

3.B Proof of |λ1−λ̂1|
bTW

= Op

(
m−

1
21+ε
)

for all ε ∈
(
0, 2

7

)
in

realizable case
We first derive the relationship between the maximum eigenvalues of matrices Z>Z and
Z̃>Z̃ in Lemma B1 and B2.

64



3. Statistical test on the number of biclusters in a latent block model

Lemma B1. Let λ1 and λ̃1, respectively, be the maximum eigenvalues of matrices Z>Z
and Z̃>Z̃ (i.e., ‖Z‖2

op and ‖Z̃‖2
op, respectively). Then, for all ε ∈

(
0, 1

2

)
, the following

equation holds:

λ1 ≤ λ̃1 +Op (mε) . (3.63)

Proof. Let v and ṽ, respectively, be the normalized eigenvectors of Z>Z and Z̃>Z̃,
corresponding to the maximum eigenvalues λ1 and λ̃1:

Z>Zv = λ1v, ‖v‖ = 1,

Z̃>Z̃ṽ = λ̃1ṽ, ‖ṽ‖ = 1. (3.64)

Since
√
λ̃1 is the largest singular value of matrix Z̃, we have√

λ̃1 = sup
u∈Rp

‖Z̃u‖
‖u‖

≥ ‖Z̃v‖
‖v‖

= ‖Z̃v‖ ⇐⇒ λ̃1 ≥ ‖Z̃v‖2. (3.65)

We also define the following matrix Q(k,h) for each (k, h)th block:

Q(k,h) ≡ Z(k,h) − S̃kh
Skh

Z̃(k,h) =
1

Skh

(
P̃ (k,h) − P (k,h)

)
=

1

nkph

[ ∑
i∈Ik,j∈Jh

Aij − Pij
Skh

]1 · · · 1
...

...
1 · · · 1


=

(
1

nkph

nk∑
i=1

ph∑
j=1

Z
(k,h)
ij

)1 · · · 1
...

...
1 · · · 1

 , (3.66)

where nk and ph, respectively, are the row and column sizes of the (k, h)th null block.
Let Z(k,h), Z̃

(k,h)
, and Q(k,h), respectively be n× p matrices whose (k, h)th null blocks

are Z(k,h), Z̃(k,h) and Q(k,h) and whose all the other entries are zero. As shown in Figure
3.B1, we define matrix Q as Q ≡

∑K
k=1

∑H
h=1Q

(k,h). We also define that τkh ≡ Skh
S̃kh

.
From (3.65), we have

λ̃1 ≥ ‖Z̃v‖2 = ‖
K∑
k=1

H∑
h=1

Z̃
(k,h)

v‖2 = ‖
K∑
k=1

H∑
h=1

τkh(Z
(k,h) −Q(k,h))v‖2

≥

[
‖

K∑
k=1

H∑
h=1

(Z(k,h) −Q(k,h))v‖ − ‖
K∑
k=1

H∑
h=1

(1− τkh) (Z(k,h) −Q(k,h))v‖

]2
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Figure 3.B1: Definition of matrix Q.

=

[
‖(Z −Q)v‖ − ‖

K∑
k=1

H∑
h=1

(1− τkh) (Z(k,h) −Q(k,h))v‖

]2

≥ ‖(Z −Q)v‖2 − 2‖(Z −Q)v‖‖
K∑
k=1

H∑
h=1

(1− τkh) (Z(k,h) −Q(k,h))v‖

≥ ‖(Z −Q)v‖2 − 2‖(Z −Q)v‖

[
K∑
k=1

H∑
h=1

|1− τkh| ‖(Z(k,h) −Q(k,h))v‖

]

≥ ‖(Z −Q)v‖2 − 2‖(Z −Q)v‖

[
K∑
k=1

H∑
h=1

|1− τkh|
(
‖Z(k,h)v‖+ ‖Q(k,h)v‖

)]

≥ ‖(Z −Q)v‖2 − 2‖(Z −Q)v‖

[
K∑
k=1

H∑
h=1

|1− τkh|
(√

λ
(k,h)
1 + ‖Q(k,h)v‖

)]

≥ λ1 − 2
√
λ1‖Qv‖ − 2(

√
λ1 + ‖Qv‖)

[
K∑
k=1

H∑
h=1

|1− τkh|
(√

λ
(k,h)
1 + ‖Q(k,h)v‖

)]
,

(3.67)

where λ(k,h)
1 is the maximum eigenvalue of matrix

(
Z(k,h)

)>
Z(k,h).

From now on, we prove that ‖Qv‖ = Op

(
1√
m

)
and ‖Q(k,h)v‖ = Op

(
1√
m

)
. We use

the following notations:

νkh ≡
1

nkph

nk∑
i=1

ph∑
j=1

Z
(k,h)
ij , ωhh′ ≡

K∑
k=1

nkνkhνkh′ , ζh ≡
H∑
h′=1

ωhh′
∑
j∈Jh′

vj, (3.68)

where vj is the jth entry of vector v. Note that the (k, h)th block of matrix Q, the (h, h′)th

block of matrix Q>Q, and the hth block of vector Q>Qv are given by νkh

1 · · · 1
...

...
1 · · · 1

,
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ωhh′

1 · · · 1
...

...
1 · · · 1

, and ζh

1
...
1

, respectively. Let u(h) ∈ Rp be a vector whose entries in

the hth column cluster are 1√
ph

and whose all the other entries are zero.
Here, Theorem 2.1.2 (i.e., the delocalization property) holds for the eigenvectors {vj}

of matrix Z>Z in our case, where we assume that n, p ∝ m and that each entry of Z
is independently generated from a distribution with zero mean and unit variance that
satisfies the sub-exponential condition. Therefore, we have |v>u(h)| = Op

(
m−

1
2

+ε
)

for all ε > 0. Since Q>Qv =
∑H

h=1 ζh
√
phu

(h) and νkh = Op

(
1
m

)
, ωhh′ = Op

(
1
m

)
,

ζh =
∑H

h′=1 ωhh′
√
ph′v

>u(h′) = Op (m−1+ε) for all ε > 0 by definition, the following
equation holds:

‖Qv‖2 =
H∑
h=1

ζh
√
phv

>u(h) = Op

(
m−1+2ε

)
⇐⇒ ‖Qv‖ = Op

(
m−

1
2

+ε
)
, for all ε > 0. (3.69)

Similarly, (h, h)th block of matrix (Q(k,h))>Q(k,h) is nkν2
kh

1 · · · 1
...

...
1 · · · 1

, and its all the

other entries are zero, which results in that (Q(k,h))>Q(k,h)v = nkν
2
kh

(∑
j∈Jh vj

)√
phu

(h).
Therefore, we have

‖Q(k,h)v‖2 = nkν
2
kh

(∑
j∈Jh

vj

)
√
phv

>u(h) = nkν
2
kh

(√
phv

>u(h)
)2

= Op

(
m−1+2ε

)
⇐⇒ ‖Q(k,h)v‖ = Op

(
m−

1
2

+ε
)
, for all ε > 0. (3.70)

Moreover, from Lemma A1, we have

|1− τkh| = Op

(
1

m

)
. (3.71)

By substituting (3.69), (3.70), and (3.71) into (3.67) and by setting ε < 1
2
, we have

λ̃1 ≥ λ1 −Op (mε)−Op

(
m

1
2

)[ K∑
k=1

H∑
h=1

Op

(
m−1

)
Op

(
m

1
2

)]
= λ1 −Op (mε) , (3.72)
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which concludes the proof. Here, we used the assumption that K and H are fixed constants.

Lemma B2. Let λ1 and λ̃1, respectively, be the maximum eigenvalues of matrices Z>Z
and Z̃>Z̃. Then, the following equation holds:

λ̃1 ≤ λ1 +Op

(
m

2
7

+ε
)
, for all ε ∈

(
0,

2

7

)
. (3.73)

Proof. We use the same notations as in Lemmas B1. Let {λj} and {vj}, respectively, be
the sets of the eigenvalues and the corresponding normalized eigenvectors (i.e., ‖vj‖ = 1
for all j) of matrix Z>Z, where j = 1, . . . , p and λ1 ≥ λ2 ≥ · · · ≥ λp. Let ṽ(h) ∈ Rph be
a subvector of ṽ in the hth column cluster.

Since Z>Z is a symmetric matrix, its eigenvectors {vj} form an orthonormal system,
and thus there exists a unique set of coefficients {cj} and t (1 ≤ t ≤ p) that satisfies

ṽ =

p∑
j=1

cjvj = ṽ1 + ṽ2, (3.74)

where

ṽ1 ≡
t∑

j=1

cjvj, ṽ2 ≡
p∑

j=t+1

cjvj,

λt ≥ λ1 − nd, λt+1 < λ1 − nd, d =
5

7
. (3.75)

Therefore, by using (3.71), the following equation holds:

λ̃1 = ṽ>Z̃>Z̃ṽ = ‖
K∑
k=1

H∑
h=1

[
Z(k,h) + (τkh − 1)Z(k,h) − τkhQ(k,h)

]
ṽ‖2

= ‖

{
Z +

K∑
k=1

H∑
h=1

[
(τkh − 1)Z(k,h) − τkhQ(k,h)

]}
ṽ‖2

= ‖Zṽ‖2 + 2ṽ>Z>
K∑
k=1

H∑
h=1

[
(τkh − 1)Z(k,h) − τkhQ(k,h)

]
ṽ

+ ‖
K∑
k=1

H∑
h=1

[
(τkh − 1)Z(k,h) − τkhQ(k,h)

]
ṽ‖2

≤ ‖Zṽ‖2 + 2
√
λ1

K∑
k=1

H∑
h=1

|τkh − 1|‖Z(k,h)ṽ‖ − 2ṽ>Z>
K∑
k=1

H∑
h=1

τkhQ
(k,h)ṽ
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+ ‖
K∑
k=1

H∑
h=1

[
(τkh − 1)Z(k,h) − τkhQ(k,h)

]
ṽ‖2

= ‖Zṽ‖2 + 2
√
λ1

K∑
k=1

H∑
h=1

|τkh − 1|‖Z(k,h)ṽ(h)‖ − 2ṽ>Z>
K∑
k=1

H∑
h=1

τkhQ
(k,h)ṽ

+ ‖
K∑
k=1

H∑
h=1

[
(τkh − 1)Z(k,h) − τkhQ(k,h)

]
ṽ‖2

= ‖Zṽ‖2 +Op(
√
m)

K∑
k=1

H∑
h=1

Op

(
1

m

)
Op(
√
m)− 2ṽ>Z>

K∑
k=1

H∑
h=1

τkhQ
(k,h)ṽ

+ ‖
K∑
k=1

H∑
h=1

[
(τkh − 1)Z(k,h) − τkhQ(k,h)

]
ṽ‖2

= ‖Zṽ‖2 +Op(1)− 2ṽ>Z>
K∑
k=1

H∑
h=1

τkhQ
(k,h)ṽ

+ ‖
K∑
k=1

H∑
h=1

[
(τkh − 1)Z(k,h) − τkhQ(k,h)

]
ṽ‖2 (∵ K and H are fixed constants)

≤ ‖Zṽ‖2 +Op(1)− 2ṽ>Z>
K∑
k=1

H∑
h=1

τkhQ
(k,h)ṽ

+

(
‖

K∑
k=1

H∑
h=1

(τkh − 1)Z(k,h)ṽ‖+ ‖
K∑
k=1

H∑
h=1

τkhQ
(k,h)ṽ‖

)2

≤ ‖Zṽ‖2 +Op(1)− 2ṽ>Z>
K∑
k=1

H∑
h=1

τkhQ
(k,h)ṽ

+

(
K∑
k=1

H∑
h=1

|τkh − 1|‖Z(k,h)ṽ‖+
K∑
k=1

H∑
h=1

τkh‖Q(k,h)ṽ‖

)2

= ‖Zṽ‖2 +Op(1)− 2
K∑
k=1

H∑
h=1

τkhṽ
>Z>Q(k,h)ṽ

+

[
Op

(
1√
m

)
+

K∑
k=1

H∑
h=1

τkh‖Q(k,h)ṽ‖

]2

(∵ K and H are fixed constants). (3.76)

As for the last term in (3.76), the following equation holds:

‖Q(k,h)ṽ‖2 = ṽ>(Q(k,h))>Q(k,h)ṽ =

p∑
j=1

p∑
j′=1

cjcj′v
>
j (Q(k,h))>Q(k,h)vj′
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= Op

(
1

m

) p∑
j=1

p∑
j′=1

cjcj′v
>
j ph(v

>
j′u

(h))u(h)

= Op(1)

[
p∑
j=1

cj(v
>
j u

(h))

]2

≤ Op(1)

√√√√ p∑
j=1

c2
j

√√√√ p∑
j=1

(v>j u
(h))2

2

= Op(1)

(
p∑
j=1

c2
j

)[
p∑
j=1

(v>j u
(h))2

]
= Op(1)‖ṽ‖2

[
p∑
j=1

(v>j u
(h))2

]

= Op(1)

[
p∑
j=1

(v>j u
(h))2

]
= Op

(
m2ε
)

(∵ Theorem 2.1.2) (3.77)

⇐⇒ ‖Q(k,h)ṽ‖ = Op (mε) , for all ε > 0, (3.78)

where u(h) ∈ Rp is a vector whose elements in the hth column cluster is 1√
ph

and whose
all the other elements are zero. In the last equation in (3.77), we used the delocalization
property of {vj}, which are eigenvectors of matrix Z>Z. By substituting (3.78) into (3.76)
and using (3.71) and the assumption that K and H are fixed constants, we have

λ̃1 ≤ ‖Zṽ‖2 − 2
K∑
k=1

H∑
h=1

τkhṽ
>Z>Q(k,h)ṽ +Op

(
m2ε
)
, for all ε > 0. (3.79)

Here, by definition in (3.75), the following equation holds:

‖Zṽ‖2 − 2
K∑
k=1

H∑
h=1

τkhṽ
>Z>Q(k,h)ṽ

= (ṽ1 + ṽ2)>Z>Z(ṽ1 + ṽ2)− 2
K∑
k=1

H∑
h=1

τkhṽ
>Z>Q(k,h)ṽ

= ṽ>1 Z
>Zṽ1 + ṽ>2 Z

>Zṽ2 − 2
K∑
k=1

H∑
h=1

τkhṽ
>Z>Q(k,h)ṽ

=

(
t∑

j=1

cjvj

)> t∑
j=1

cjλjvj +

(
p∑

j=t+1

cjvj

)> p∑
j=t+1

cjλjvj − 2
K∑
k=1

H∑
h=1

τkhṽ
>Z>Q(k,h)ṽ

=
t∑

j=1

c2
jλj +

p∑
j=t+1

c2
jλj − 2

K∑
k=1

H∑
h=1

τkhṽ
>Z>Q(k,h)ṽ (∵ ‖vj‖ = 1 for all j)

≤ λ1

t∑
j=1

c2
j + (λ1 − nd)

p∑
j=t+1

c2
j − 2

K∑
k=1

H∑
h=1

τkhṽ
>Z>Q(k,h)ṽ
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= λ1‖ṽ‖2 − nd‖ṽ2‖2 − 2
K∑
k=1

H∑
h=1

τkhṽ
>Z>Q(k,h)(ṽ1 + ṽ2)

= λ1 − nd‖ṽ2‖2 − 2
K∑
k=1

H∑
h=1

τkhṽ
>Z>Q(k,h)ṽ1 − 2

K∑
k=1

H∑
h=1

τkhṽ
>Z>Q(k,h)ṽ2. (3.80)

The third term in (3.80) can be upper bounded as follows:

− ṽ>Z>Q(k,h)ṽ1 ≤ |ṽ>Z>Q(k,h)ṽ1| =

∣∣∣∣∣ṽ>Z>Q(k,h)

(
t∑

j=1

cjvj

)∣∣∣∣∣
= |

t∑
j=1

cjṽ
>Z>Q(k,h)vj|

= Op

(
1

m

)
|

t∑
j=1

cj

[√
nk
(
w̃(k)

)>
Zṽ
]>√

ph
(
ũ(h)

)>
vj|

= Op(1)|
(
ṽ>Z>w̃(k)

) t∑
j=1

cj
(
ũ(h)

)>
vj|

≤ Op(1)‖Zṽ‖‖w̃(k)‖|
t∑

j=1

cj
(
ũ(h)

)>
vj| ≤ Op(1)‖Z‖op|

t∑
j=1

cj
(
ũ(h)

)>
vj|

= Op(
√
m)|

t∑
j=1

cj
(
ũ(h)

)>
vj| ≤ Op(

√
m)

√√√√ t∑
j=1

c2
j

√√√√ t∑
j=1

[
(ũ(h))

>
vj

]2

= Op(
√
m)‖ṽ‖

√
tOp

(
m−

1
2

+ε
)

(∵ Theorem 2.1.2)

=
√
t Op (mε) , for all ε > 0, (3.81)

where w̃(k) ∈ Rn is a vector whose elements in the kth row cluster is 1√
nk

and whose all
the other elements are zero. Here we used the delocalization property of {vj}, which are
eigenvectors of matrix Z>Z.

The fourth term in (3.80) can also be upper bounded as follows:

−ṽ>Z>Q(k,h)ṽ2 ≤ |ṽ>Z>Q(k,h)ṽ2| ≤ ‖ṽ‖‖Z>Q(k,h)ṽ2‖ = ‖Z>Q(k,h)ṽ2‖
≤ ‖Z>Q(k,h)‖op‖ṽ2‖ ≤ ‖Z‖op‖Q(k,h)‖F‖ṽ2‖

= Op(
√
m)Op

(
1

m

)
√
nkph‖ṽ2‖ = ‖ṽ2‖Op(

√
m). (3.82)

By substituting (3.81) and (3.82) into (3.80), we have

‖Zṽ‖2 − 2
K∑
k=1

H∑
h=1

τkhṽ
>Z>Q(k,h)ṽ
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≤ λ1 − nd‖ṽ2‖2 + 2
K∑
k=1

H∑
h=1

τkh
√
t Op (mε) + 2

K∑
k=1

H∑
h=1

τkh‖ṽ2‖Op(
√
m)

= λ1 − nd‖ṽ2‖2 +
√
t Op (mε) + ‖ṽ2‖Op(

√
m). (3.83)

In the last equation of (3.83), we used (3.71) and the assumption that K and H are fixed
constants.

Let νj ≡ 1
n
λj be a normalized eigenvalue of matrix Z>Z. Note that t in (3.75) is the

number of normalized eigenvalues {νj} that satisfy νj ≥ ν1 − nd−1. We also define the
following variables:

ν+ ≡
(

1 +

√
p

n

)2

, ν− ≡
(

1−
√
p

n

)2

, ε1 ≡ ν+ − ν1. (3.84)

From (4.1) of [122], |ε1| = Op

(
φCm−

2
3

)
holds for some constant C > 0, where φ ≡

(log p)log log p. Since φ = o(mε̃0) holds for any ε̃0 > 0, we have |ε1| = Op

(
m−

2
3

+ε0

)
for

any ε0 > 0.
From (3.7) of [122], ∣∣∣∣n̄− t

p

∣∣∣∣ = Op

(
m−1+ε2

)
, ∀ε2 > 0, (3.85)

where

n̄ =

∫ ∞
ν1−nd−1

q(x)dx,

q(x) =
1

2π

n

p

√
max{(ν+ − x)(x− ν−), 0}

x
. (3.86)

By setting ε0 < d− 1
3
, we have

q(ν1 − nd−1) = q(ν+ − nd−1 − ε1)

=

√
ν+ − ν−
ν+

[
n
d−1

2 +Op

(
m−

1
3

+
ε0
2

)] [
1 +O

(
m

d−1
2

)
+Op

(
m−

1
3

+
ε0
2

)]
=

√
ν+ − ν−
ν+

n
d−1

2 +Op

(
mmax{ d−1

2
,− 1

3
+
ε0
2
}
)

=

√
ν+ − ν−
ν+

n
d−1

2 +Op

(
m

d−1
2

) (
∵ ε0 < d− 1

3

)
. (3.87)

From (3.87) and the fact that |ε1| = Op

(
m−

2
3

+ε0

)
for any ε0 > 0, by setting ε0 < d− 1

3
,

the following equation holds:

n̄ =

∫ ∞
ν1−nd−1

q(x)dx ≤
∣∣∣∣∫ ν+

ν1−nd−1

q(x)dx

∣∣∣∣+

∣∣∣∣∫ ∞
ν+

q(x)dx

∣∣∣∣
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=

∣∣∣∣∫ ν+

ν1−nd−1

q(x)dx

∣∣∣∣ ≤ |ε1 + nd−1| q(ν1 − nd−1)

= Op

(
md−1

)
Op

(
m

d−1
2

)
= Op

(
m

3(d−1)
2

)
. (3.88)

Therefore, from (3.85), by setting ε2 < 3
2
d− 1

2
, we have

t = Op

(
m

3
2
d− 1

2

)
. (3.89)

By combining (3.83) and the assumption in (3.75) that d = 5
7
, the following equation

holds for all ε > 0:

‖Zṽ‖2 − 2
K∑
k=1

H∑
h=1

τkhṽ
>Z>Q(k,h)ṽ ≤ λ1 + ‖ṽ2‖

[
n

1
2$ − nd‖ṽ2‖

]
+Op

(
m

2
7

+ε
)
,

$ ≡ n−
1
2‖Z‖op‖Q(k,h)‖F = Op(1) (∵ (3.82)). (3.90)

Here, we consider the following two patterns: (a) If n
1
2$ − nd‖ṽ2‖ ≤ 0, from (3.90), we

have

‖Zṽ‖2 − 2
K∑
k=1

H∑
h=1

τkhṽ
>Z>Q(k,h)ṽ = λ1 +Op

(
m

2
7

+ε
)
. (3.91)

(b) If n
1
2$ − nd‖ṽ2‖ > 0, we have ‖ṽ2‖ < n

1
2
−d$ and thus

‖ṽ2‖
[
n

1
2$ − nd‖ṽ2‖

]
≤ n1−d$2. (3.92)

By assumption in (3.75) that d = 5
7
, we have n1−d$2 = Op

(
m

2
7

)
and thus (3.91) holds.

In summary, (3.91) always holds. By combining this fact and (3.79), we have

λ̃1 ≤ λ1 +Op

(
m

2
7

+ε
)

+Op

(
m2ε
)
, for all ε > 0. (3.93)

By setting ε < 2
7
, we finally obtain

λ̃1 ≤ λ1 +Op

(
m

2
7

+ε
)
, for all ε ∈

(
0,

2

7

)
, (3.94)

which concludes the proof.

Lemma B3. Let λ1 and λ̂1, respectively, be the maximum eigenvalues of matrices Z>Z
and Ẑ>Ẑ (i.e., ‖Z‖2

op and ‖Ẑ‖2
op, respectively). Then, for all ε ∈

(
0, 2

7

)
,

|λ1 − λ̂1|
bTW

= Op

(
m−

1
21

+ε
)
, (3.95)

where bTW is defined as in (2.3).
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Proof. From Lemma B1 and B2, we have already shown that the following equation holds
for all ε ∈

(
0, 2

7

)
:

|λ1 − λ̃1| = Op

(
m

2
7

+ε
)
⇐⇒ |λ1 − λ̃1|

bTW
= Op

(
m−

1
21

+ε
)
. (3.96)

We consider the joint probability of the event Fm that Z̃ = Ẑ holds and the event Gm,C
that |λ1−λ̃1|

bTW ≤ Cm−
1
21

+ε holds. Such a joint probability satisfies the following inequality:

Pr (Fm ∩ Gm,C) ≥ 1− Pr
(
FC
m

)
− Pr

(
GC
m,C

)
, (3.97)

where AC is the complement of event A. The consistency assumption (vi) guarantees that
if (K0, H0) = (K,H), Pr

(
FC
m

)
converges to 0 in the limit of m → ∞. By combining

this fact with (3.96), for all ε̃ > 0, there exist C > 0 and M > 0 such that for all m ≥M ,
Pr (Fm ∩ Gm,C) ≥ 1− ε̃ holds, which results in (3.95).

3.C Proof of σ̂∗ = Op(1) in unrealizable case
Proof. Throughout the proof, we use the following notations:

• A(k,h), P (k,h), and Z(k,h), respectively, are the (k, h)th null blocks of matrices A, P ,
and Z.

• A(k,h), P (k,h), and P̂
(k,h)

, respectively, are the (k, h)th estimated blocks of matrices
A, P , and P̂ .

• We denote the row and column sizes of the (k, h)th estimated block as nk and p
h
,

respectively.

• (k1, h1) is the set of row and column cluster indices of submatrix X̄ in the estimated
block structure.

As for the order of the estimated standard deviation σ̂∗, we have σ̂∗ = Ŝk1h1 . Note that
the block size (n̄1, p̄1) of submatrix X̄ is at least (nmin/K0)× (pmin/H0). Therefore, we
have

σ̂∗ = Ŝk1h1 =
1√
nk1

p
h1

‖A(k1,h1) − P̂
(k1,h1)

‖F

≤ 1√
n̄1p̄1

‖A(k1,h1) − P̂
(k1,h1)

‖F ≤

√
K0H0

nminpmin

‖A(k1,h1) − P̂
(k1,h1)

‖F

≤

√
K0H0

nminpmin

‖A− P̂‖F =

√
K0H0

nminpmin

‖A− P + P − P̂‖F
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≤

√
K0H0

nminpmin

(
‖A− P‖F + ‖P − P̂‖F

)

=

√
K0H0

nminpmin


√√√√ K∑

k=1

H∑
h=1

‖A(k,h) − P (k,h)‖2
F + ‖P − P̂‖F


=

√
K0H0

nminpmin


√√√√ K∑

k=1

H∑
h=1

S2
kh‖Z(k,h)‖2

F + ‖P − P̂‖F


≤

√
K0H0

nminpmin

[√
KH

(
max

k=1,...,K,h=1,...,H
Skh

)
‖Z‖F + ‖P − P̂‖F

]
. (3.98)

Here, for all (i, j),
(
Z

(k,h)
ij

)2

independently follows the same distribution, and

E
[(
Z

(k,h)
ij

)2
]

= 1. We also have V
[(
Z

(k,h)
ij

)2
]

= E
[(
Z

(k,h)
ij

)4
]
− 1 < ∞, since

we have assumed that E
[(
Z

(k,h)
ij

)4
]
< ∞ from the sub-exponential assumption.

Therefore, from the central limit theorem and Prokhorov’s theorem [146], we have
1√
nkph

∑nk
i=1

∑pk
j=1

[(
Z

(k,h)
ij

)2

− 1

]
= Op(1). In other words, the following equation

holds:
∑nk

i=1

∑pk
j=1

(
Z

(k,h)
ij

)2

= nkph+Op(m) = Op(m
2). Based on this result, we obtain

‖Z‖F =

√√√√ K∑
k=1

H∑
h=1

‖Z(k,h)‖2
F =

√√√√ K∑
k=1

H∑
h=1

nk∑
i=1

pk∑
j=1

(
Z

(k,h)
ij

)2

=

√√√√ K∑
k=1

H∑
h=1

Op(m2) = Op(m). (3.99)

Here, we used the assumption that K and H are fixed constants.
Furthermore, we have

‖P − P̂‖F =

√√√√ n∑
i=1

p∑
j=1

(
Pij − P̂ij

)2

=

√√√√ n∑
i=1

p∑
j=1

(
Pij − P̄ij + P̄ij − P̂ij

)2

≤

√√√√ n∑
i=1

p∑
j=1

(∣∣Pij − P̄ij∣∣+
∣∣∣P̄ij − P̂ij∣∣∣)2
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≤

√√√√ n∑
i=1

p∑
j=1

[(
max

i′=1,...,n,j′=1,...,p

∣∣Pi′j′ − P̄i′j′∣∣)+
∣∣∣P̄ij − P̂ij∣∣∣]2

≤

√√√√√ n∑
i=1

p∑
j=1

 max
k=1,...,K,h=1,...,H,
k′=1,...,K,h′=1,...,H

|Bkh −Bk′h′ |

+
∣∣∣P̄ij − P̂ij∣∣∣

2

≤

√√√√√ n∑
i=1

p∑
j=1

 max
k=1,...,K,h=1,...,H,
k′=1,...,K,h′=1,...,H

|Bkh −Bk′h′|+ max
k=1,...,K0,h=1,...,H0

∣∣∣B̄kh − B̂kh

∣∣∣
2

=
√
np

 max
k=1,...,K,h=1,...,H,
k′=1,...,K,h′=1,...,H

|Bkh −Bk′h′ |+
K0∑
k=1

H0∑
h=1

∣∣∣B̄kh − B̂kh

∣∣∣


≤ √np

 max
k=1,...,K,h=1,...,H,
k′=1,...,K,h′=1,...,H

|Bkh −Bk′h′ |+Op

(
1√
m

)
= Op(m). (3.100)

Here, to derive the last inequality in (3.100), we used (3.29) and the assumption
that K0 and H0 are fixed constants. In the final equation, we used the fact that
max k=1,...,K,h=1,...,H,

k′=1,...,K,h′=1,...,H

|Bkh −Bk′h′| is bounded by a finite constant.

By combining (3.98), (3.99), and (3.100), we obtain σ̂∗ = Op(1).

3.D Proof of the asymptotic ICL in the Bernoulli case
Proof. From Lemma 4.2 in [76], the resulting asymptotic ICL is given by

ICL(K0, H0) = max
π,ρ,B

log p(A, ĝ(1), ĝ(2)|π, ρ,B)

− K0 − 1

2
log n− H0 − 1

2
log p− K0H0

2
log(np). (3.101)

In regard to the first term in (3.101), we consider the following optimization problem:

max
π,ρ,B

log p(A, ĝ(1), ĝ(2)|π, ρ,B),

s.t.

K0∑
k=1

πk = 1, πk ≥ 0 for all k,

H0∑
h=1

ρh = 1, ρh ≥ 0 for all h,

0 ≤ Bkh ≤ 1 for all (k, h). (3.102)
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The above problem is solved with the Lagrangian undetermined multiplier method, which
employs

f ≡ log p(A, ĝ(1), ĝ(2)|π, ρ,B)− ξ1

K0∑
k=1

πk − ξ2

H0∑
h=1

ρh,

=

K0∑
k=1

|Ik| log πk +

H0∑
h=1

|Jh| log ρh − ξ1

K0∑
k=1

πk − ξ2

H0∑
h=1

ρh

+

K0∑
k=1

H0∑
h=1

∑
i∈Ik,j∈Jh

[Aij logBkh + (1− Aij) log (1−Bkh)] , (3.103)

∂f

∂πk
=

∂f

∂ρh
=

∂f

∂Bkh

= 0 for all k, h. (3.104)

By substituting (3.103) into (3.104), we have

|Ik|
πk

= ξ1,
|Jh|
ρh

= ξ2,
∑

i∈Ik,j∈Jh

[
Aij
Bkh

− 1− Aij
1−Bkh

]
= 0

⇐⇒ πk =
|Ik|
ξ1

, ρh =
|Jh|
ξ2

, Bkh =

∑
i∈Ik,j∈Jh Aij

|Ik||Jh|
, (3.105)

for all (k, h). In regard to {πk} and {ρh}, from the conditions in (3.102),
∑K0

k=1 |Ik| = ξ1

and
∑H0

h=1 |Jh| = ξ2 hold and thus we finally have

πk =
|Ik|∑K0

k=1 |Ik|
, ρh =

|Jh|∑H0

h=1 |Jh|
. (3.106)

We can easily check that the solutions of (3.105) and (3.106) satisfy all the conditions in
(3.102).

Finally, by substituting the above results into (3.101), we have

ICL(K0, H0) =

K0∑
k=1

|Ik| log

(
|Ik|∑K0

k=1 |Ik|

)
+

H0∑
h=1

|Jh| log

(
|Jh|∑H0

h=1 |Jh|

)

+

K0∑
k=1

H0∑
h=1

( ∑
i∈Ik,j∈Jh

Aij

)
log

(∑
i∈Ik,j∈Jh Aij

|Ik||Jh|

)

+

K0∑
k=1

H0∑
h=1

(
|Ik||Jh| −

∑
i∈Ik,j∈Jh

Aij

)
log

(
1−

∑
i∈Ik,j∈Jh Aij

|Ik||Jh|

)
− K0 − 1

2
log n− H0 − 1

2
log p− K0H0

2
log(np)

77



3. Statistical test on the number of biclusters in a latent block model

=

K0∑
k=1

|Ik| log

(
|Ik|
n

)
+

H0∑
h=1

|Jh| log

(
|Jh|
p

)

+

K0∑
k=1

H0∑
h=1

|Ik||Jh|
[
B̂kh log B̂kh +

(
1− B̂kh

)
log
(

1− B̂kh

)]
− K0 − 1

2
log n− H0 − 1

2
log p− K0H0

2
log(np). (3.107)

Note that we have defined B̂kh as in (3.9).

3.E Jarque–Bera test for selecting the cluster numbers

For Gaussian LBMs, we can use Jarque–Bera test [12, 22, 71] instead of the proposed one
for determining the row and column cluster numbers. We define the sample skewness θ̃kh
and sample kurtosis κ̃kh of the (k, h)th null block as follows:

θ̃ = (θ̃kh)1≤k≤K,1≤h≤H , θ̃kh ≡
1

nkph

∑nk
i=1

∑ph
j=1(Aij − B̃kh)

3

S̃3
kh

,

κ̃ = (κ̃kh)1≤k≤K,1≤h≤H , κ̃kh ≡
1

nkph

∑nk
i=1

∑ph
j=1(Aij − B̃kh)

4

S̃4
kh

. (3.108)

From the result of [22, 71], for each (k, h)th block, T̃ JB
kh ≡

nkph
6

[
θ̃2
kh + 1

4
(κ̃kh − 3)2

]
converges in law to the chi-squared distribution with 2 degrees of freedom. Since we
assume that {Aij} are mutually independent, given the block structure, the statistic T̃ JB ≡∑K

k=1

∑H
h=1 T̃

JB
kh converges in law to the chi-squared distribution with 2KH degrees of

freedom. Here, we used the additivity of the chi-squared distribution.
We also define the sample skewness θ̂kh and sample kurtosis κ̂kh of the (k, h)th

estimated block as follows:

θ̂ = (θ̂kh)1≤k≤K0,1≤h≤H0 , θ̂kh ≡
1

|Ik||Jh|
∑|Ik|

i=1

∑|Jh|
j=1(Aij − B̂kh)

3

Ŝ3
kh

,

κ̂ = (κ̂kh)1≤k≤K0,1≤h≤H0 , κ̂kh ≡
1

|Ik||Jh|
∑|Ik|

i=1

∑|Jh|
j=1(Aij − B̂kh)

4

Ŝ4
kh

. (3.109)

As in the proof of Theorem 3.4.1, we consider the probability of the event Fm that
[(nk)1≤k≤K , (ph)1≤h≤H , θ̃, κ̃] = [(|Ik|)1≤k≤K0 , (|Jh|)1≤h≤H0 , θ̂, κ̂] holds. The consistency
assumption (vi) guarantees that if (K0, H0) = (K,H), Pr

(
FC
m

)
converges to 0 in the limit
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Figure 3.E1: Accuracy of the Jarque–Bera test under 10 different settings of block-wise
mean B (Gaussian LBM).

of m→∞. Therefore,
∣∣∣T JB − T̃ JB

∣∣∣ also converges in probability to zero, where

T JB ≡
K0∑
k=1

H0∑
h=1

T JB
kh ,

T JB
kh ≡

|Ik||Jh|
6

[
θ̂2
kh +

1

4
(κ̂kh − 3)2

]
, for all k = 1, . . . , K0, h = 1, . . . , H0. (3.110)

From Slutsky’s theorem, T JB = T̃ JB + (T JB − T̃ JB) converges in law to the chi-squared
distribution with 2K0H0 degrees of freedom. Based on this discussion, to determine the
number of blocks, we can use T JB in (3.110) as a test statistic.

As in Section 3.5.3, we evaluated the accuracy of the above Jarque–Bera test. We
generated data matrices from Gaussian LBMs with (K,H) = (4, 3). We used the same
experimental settings as in Section 3.5.3 except for the test method.

Figure 3.E1 shows the accuracy of the Jarque–Bera test under 10 different settings
of block-wise mean B. By comparing Figures 6 and 3.E1, we see that the proposed test
achieved comparable or better performance than the Jarque–Bera one in most settings
(especially when the matrix size is small).

Currently, there is no other way than the proposed and Jarque–Bera tests for testing
the cluster numbers of LBMs. A possible option might be to construct a test based on the
Frobenius norm of matrix Ẑ instead of the operator one. However, as also pointed out in a
study [92], such a test is expected to have lower power than the proposed test, since it does
not aggressively detect the direction in which the matrix Ẑ deviates from the one generated
from the null hypothesis, a distribution with zero mean and unit variance.
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Chapter 4

Statistical test on the estimated bicluster
structure of a relational data matrix

Model selection in latent block models has been a challenging but important task in the
field of statistics. Specifically, a major challenge is encountered when constructing a test on
a block structure obtained by applying a specific clustering algorithm to a finite size matrix.
In this case, it becomes crucial to consider the selective bias in the block structure, that is,
the block structure is selected from all the possible cluster memberships based on some
criterion by the clustering algorithm. To cope with this problem, this chapter provides a
selective inference method for latent block models. Specifically, we construct a statistical
test on a set of row and column cluster memberships of a latent block model, which is given
by a squared residue minimization algorithm. The proposed test, by its nature, includes
and thus can also be used as the test on the set of row and column cluster numbers. We
also propose an approximated version of the test based on simulated annealing to avoid
combinatorial explosion in searching the optimal block structure. The results show that the
proposed exact and approximated tests work effectively, compared to the naive test that
does not take the selective bias into account.

4.1 Introduction

As we have described in Chapter 3, a latent block model or an LBM [58, 63] has been widely
used as a generative model of a relational data matrix. In LBMs, we assume that there is
an underlying block structure (i.e., a set of row and column cluster memberships) behind
the observed data matrix and that each element of the matrix is generated independently
from an identical distribution, given such a block structure. Particularly, a Gaussian LBM
[104, 111] is useful to model a relational data matrix with real elements; this type of LBM
is the focus of the current study. In a Gaussian LBM, we assume that each entry follows a
Gaussian distribution, whose mean and variance are fixed constants in the same block (a

80



4. Statistical test on the estimated bicluster structure of a relational data matrix

formal description of Gaussian LBMs is given in Section 4.2.1).

Besides estimating the block structure from a given observed data matrix based on an
LBM, it is also important to test the validity of a model (i.e., the number of blocks) or an
estimation result. Until now, several tests have been proposed for determining the number
of blocks in block models [16, 67, 92, 152, 164] (see Chapter 3 for details). Among these
studies, only Chapter 3’s test [152] can be applied to the LBM setting; however, its target
is limited to the number of blocks, not to the cluster memberships. Moreover, it is an
asymptotic test, and thus its guarantee cannot be verified with a finite size observed matrix.

In regard to an SBM, several studies have proposed a statistical test for a given set
of community memberships of an observed matrix [53, 67, 74]. In [53], based on the
numbers of edges within and across the clusters, two tests were proposed for an SBM;
one of these tests included a goodness-of-fit test of community memberships. Although
this study’s objective is similar to ours, its problem setting is quite different from ours in
various aspects, such as the setting of the alternative hypothesis and the assumptions in
the network structure (e.g., there are two equal-sized communities in a given network and
more intra-community edges than inter-community ones). Another study [67] proposed an
asymptotic test on both the number of communities and the community memberships of
an SBM, whose validity is guaranteed with the infinite matrix size. This study is different
from ours in that our proposed test in this chapter is validated with a finite size matrix.
[74] proposed a non-asymptotic test for an SBM setting; they generate finite samples of
networks from the distribution of an SBM, conditioned on its sufficient statistics based
on Markov chain Monte Carlo (MCMC), and, subsequently, compute the estimator of
the p-value as the ratio of the test statistics of sampled networks being equal to or larger
than that of an observed network. This study is somewhat similar to ours in that it tries
to approximate the p-value under the condition that some function value of an observed
matrix is given; however, it is fully based on a Metropolis-Hastings (MH) algorithm, and
thus the resulting p-value is not exact with finite samples.

There have been many studies on statistical tests for SBMs, but none of them have
enabled us to test the cluster memberships of LBMs. Particularly, in this chapter, we derive
an exact p-value in the following context, which is a typical case in practice. First, we
estimate an underlying block structure or cluster memberships of the rows and columns
of an observed data matrix, based on a specific criterion. For instance, as a criterion, we
use the squared residue or the sample variance within the same block [34, 63], whose
formal definition is given in Section 4.2.2. Subsequently, we perform a statistical test on
the clustering result, which has been selected as an optimal block structure based on the
data matrix, in terms of the criterion described above. In regard to the construction of a
valid statistical test, one concern is that it necessitates taking into account the selective
bias [13, 88, 103]. A test on cluster memberships tends to be inappropriately positive, that
is, it tends not to reject the hypothesis that the estimated cluster memberships are correct,
when the test fails to consider the fact that the hypothetical set of cluster memberships was
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selected by using the information of a data matrix.
In order to perform a valid statistical inference in such a situation, [13, 88] introduced

the methodology of post-selection inference. Particularly, selective inference methods
facilitate inference of a hypothesis selected based on some criterion, where we use the
same data for the hypothesis selection as well as for its inference [88]. The main idea
behind the selective inference is to reveal the probability distribution of a given test statistic
under the selection condition. By conditioning on the selection event, we can appropriately
construct a test without the selective bias. Such selective inference methods have been
developed for various problem settings, including variable selection in linear regression
with L1 regularization [88] and that with marginal screening [90] and k-means clustering
[69]. Concerning the problems related to the analysis of relational data matrices, several
studies have proposed selective inference methods for biclustering [64, 89]. Although they
also concern a block (or multiple blocks) in a relational data matrix, their problem settings
are different from ours. In our problem setting, a block structure corresponds to a set of
cluster memberships of all the rows and columns of an observed matrix. In other words, by
rearranging the indices of rows and columns, a block structure is represented by a regular
lattice on a matrix. However, [64, 89] aimed to find a submatrix (or multiple submatrices)
of the original data matrix whose mean is significantly larger than zero. Figure 1 illustrates
the difference between the optimal cluster memberships of the proposed and existing
methods [89]1. Since they are based on the mutually different assumptions on the latent
bicluster structure, their “optimal” cluster memberships are not always identical, even with
the same observed matrix. No study has proposed a selective inference method for the
LBM setting, despite the effectiveness of LBMs in relational data analysis.

This chapter proposes a new selective inference method for LBMs. Unlike Chapter
3, where the validity of the test is guaranteed only in the asymptotic sense (i.e., with
the infinite matrix size), we develop an exact test on a block structure, which is selected
based on a given observed matrix with a finite size and the squared residue minimization
algorithm. To construct such a statistical test, we consider the fact that the selection event
based on the squared residue can be formulated as a set of quadratic inequalities in terms
of the data vector, which is the vectorization of the observed data matrix. On this basis,
we can show that the test statistic follows a truncated chi distribution, under the selection
condition (a formal definition of the test statistic is given in Section 4.3).

1To plot Figure 1, we independently generated data matrices with the sizes of (n, p) = (9, 9). We set
the null and hypothetical sets of cluster numbers at (2, 2); we defined the null cluster memberships as
g
(N),(1)
i = (i mod 2) + 1, for all i, and g(N),(2)

j = (j mod 2) + 1 for all j. In regard to the mean vector, we

used the following setting: µ0 = vec

([
0.5 0
0 0

])
. Based on the above settings, we generated a data vector

by x ∼ N(µ0, 0.75
2I) and applied the biclustering algorithms of the proposed and existing methods [89].

The biclustering algorithm of the proposed method outputs a regular-grid bicluster structure based on the
squared residue minimization, while that of [89] outputs an n0 × p0 submatrix with the largest sample mean,
where we set n0 = p0 = 5.
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Figure 1: Examples of the null and estimated bicluster structures of the observed data
matrix with the size of (n, p) = (9, 9). The rows and columns of the observed matrix were
sorted according to their clusters, and the blue lines indicate the cluster memberships. The
biclustering algorithms of the proposed and existing methods [89] do not necessarily yield
identical bicluster structures with the same observed matrix.

Since the exact test requires solving two combinatorial optimization problems—one
for selecting the block structure with the minimum squared residue, and the other for
determining the truncation interval of the distribution of the test statistic—its computation
will be intractable with a large size observed matrix or with a larger hypothetical number
of blocks. To cope with such combinatorial explosion, we also develop an approximated
version of the test based on simulated annealing (SA).

The remaining part of this chapter is as follows. In Section 4.2, we first define notations
and describe assumptions necessary for developing the proposed statistical test. We also
define the squared residue, which we use for measuring the quality of a given set of row
and column cluster memberships. In Section 4.3, we give the formal statement of the
null and alternative hypotheses of the proposed test, define the test statistic, and derive
its null distribution. Our main contribution lies in Theorem 4.3.1; it states that, under the
null hypothesis, the test statistic follows a truncated chi distribution, whose truncation
interval is determined by the selection result. We also give an approximated version of
the test. In Section 4.4, we experimentally show the effectiveness of the proposed exact
and approximated tests, by checking the behavior of the p-values and measuring the true
and false positive ratios (TPR and FPR) in both the realizable [i.e., the hypothetical cluster
numbers of rows and columns (K0, H0) are equal to the null ones (K,H)] and unrealizable
(i.e., at least one of K0 < K and H0 < H holds) cases. Finally, we discuss the findings
and conclude the chapter in Section 4.5 and Section 4.6, respectively.
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4.2 Problem settings

4.2.1 Notations and assumptions on data matrix
Throughout this chapter, we use the following definitions and notations.

• Let A = (Aij)1≤i≤n,1≤j≤p ∈ Rn×p be an observed data matrix with the size of
n× p. When constructing a statistical test, it is more convenient to use the vector
representation of matrix A, instead of A itself:

x = vec(A) ∈ Rnp, xn(j−1)+i = Aij, for i = 1, . . . , n, j = 1, . . . , p. (4.1)

• Let g(1)
i be the cluster index of the ith row, and g(1) = (g

(1)
i )1≤i≤n. Similarly, let g(2)

j

be the cluster index of the jth column, and g(2) = (g
(2)
j )1≤j≤p. We denote a set of

row and column clusters as g = (g(1), g(2)) ∈ G, where G = {(g(1), g(2))} is a set of
all possible cluster memberships. We also define that GK0H0 is a set of all possible
cluster memberships with K0 ×H0 or less blocks.

• In the null hypothesis of the proposed test, we assume that there exists a set of block
memberships g(N) = (g(N),(1), g(N),(2)) and that, given g(N), each (i, j)th element Aij
of an observed matrix A is generated independently from a Gaussian distribution
with a block-wise (unknown) mean Pij ≡ B

g
(N),(1)
i g

(N),(2)
j

and (known2) variance σ2
0 ,

where Bkh is the mean of the (k, h)th block:

Aij ∼ N(Pij, σ
2
0), for all i = 1, . . . , n, j = 1, . . . , p. (4.2)

In vector representation, this assumption is given by

x ∼ N(µ0, σ
2
0I), (4.3)

where µ0 is the unknown block-wise mean vector.

• Let (K,H) be the minimum set of row and column cluster numbers required to
represent the above null set of block memberships g(N). In the proposed test, we
fix a hypothetical set of cluster numbers (K0, H0), estimate the block structure
of an observed matrix with K0 × H0 blocks, and perform a test on the estimated
block memberships, which, by its nature, includes a test on cluster numbers (i.e.,
(K,H) = (K0, H0) or at least one of K0 < K and H0 < H holds)3.

2We also derive the null distribution of a test statistic in case that variance σ2
0 is unknown in Appendix

4.G.
3It must be noted, however, that the proposed test cannot be applied directly for sequential testing on

cluster numbers, where the hypothetical numbers of clusters are tested in ascending order (i.e., (K0, H0) =
(1, 1), (1, 2), (2, 1), . . . ) until the null hypothesis is accepted. This is because the proposed test cannot
distinguish the following two alternative cases: (1) (K,H) = (K0, H0) holds, however, the estimated cluster
memberships are incorrect, and (2) K0 < K or H0 < H holds.
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• We denote the set of rows in the kth cluster as Ik = {i : g
(1)
i = k}. Similarly, we

denote the set of columns in the hth cluster as Jh = {j : g
(2)
j = h}.

• We denote the cluster membership vector of rows as follows:

e(k) = (e
(k)
i )1≤i≤n ∈ Rn, e

(k)
i =

{
1√
|Ik|

if g
(1)
i = k,

0 otherwise.
(4.4)

Similarly, we denote the cluster membership vector of columns as follows:

e(h) = (e
(h)
j )1≤j≤p ∈ Rp, e

(h)
j =

{
1√
|Jh|

if g
(2)
j = h,

0 otherwise.
(4.5)

Based on these vectors e(k) and e(h), we define a vector e(k,h) ≡ e(h) ⊗ e(k) ∈ Rnp

and matrix E(g) ≡ I −
∑

k

∑
h e

(k,h)(e(k,h))>. It must be noted that E(g) is a
projection matrix, that is, (E(g))> = E(g) and (E(g))2 = E(g) hold.

4.2.2 Clustering algorithm based on squared residue minimization
To estimate the block structure of a given observed matrix A, we use a clustering algorithm
A : x 7→ M̂ ∈ GK0H0 that outputs a block structure minimizing the squared residue, that
is, the sample variance σ2 within the same block. A squared residue has been proposed for
measuring the quality of a biclustering result [34, 63], and its definition is given by

σ2 =
1

np

K0∑
k=1

H0∑
h=1

∑
i∈Ik

∑
j∈Jh

(
Aij −

1

|Ik||Jh|
∑
i′∈Ik

∑
j′∈Jh

Ai′j′

)2

=
1

np

∑
i,j

A2
ij −

K0∑
k=1

H0∑
h=1

1

|Ik||Jh|

(∑
i∈Ik

∑
j∈Jh

Aij

)2


=
1

np

∑
i,j

A2
ij −

K0∑
k=1

H0∑
h=1

(
1√
|Ik||Jh|

∑
i∈Ik

∑
j∈Jh

Aij

)2


=
1

np

{
x>x−

K0∑
k=1

H0∑
h=1

[
(e(h) ⊗ e(k))>x

]2}

=
1

np

{
x>x−

K0∑
k=1

H0∑
h=1

[
(e(k,h))>x

]2}

=
1

np
x>

[
I −

K0∑
k=1

H0∑
h=1

e(k,h)(e(k,h))>

]
x =

1

np
x>E(g)x. (4.6)
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Therefore, the squared residue minimization clustering algorithm A outputs the set of
cluster memberships ĝ = (ĝ(1), ĝ(2)), which satisfies

ĝ ∈ M̂(x) = arg min
g∈GK0H0

σ2 = arg min
g∈GK0H0

x>E(g)x. (4.7)

It must be noted that the above solution ĝ is the maximum likelihood estimator of the
cluster memberships with a mean estimator B̂(g) and a known standard deviation σ0. The
log likelihood of a set of cluster memberships g = (g(1), g(2)) and the mean parameter B
is given by

L(g,B;x) = −np log

(√
2πσ2

0

)
− 1

2σ2
0

n∑
i=1

p∑
j=1

(
xn(j−1)+i −Bg

(1)
i g

(2)
j

)2

= −np log

(√
2πσ2

0

)
− 1

2σ2
0

K0∑
k=1

H0∑
h=1

∑
i∈Ik

∑
j∈Jh

(
xn(j−1)+i −Bkh

)2
. (4.8)

Let B̂(g) = (B̂kh(g))1≤k≤K0,1≤h≤H0 be the maximum likelihood estimator of mean B for
a given fixed cluster memberships g. From (4.8), we can easily derive that B̂kh(g) =
(1/|Ik||Jh|)

∑
i∈Ik

∑
j∈Jh xn(j−1)+i. By combining this fact with (4.6) and (4.8), we see

that the squared residue minimization is equivalent to the likelihood maximization with a
mean estimator B̂(g).

Equation (4.7) is equivalent to a set of quadratic inequalities

x>E(ĝ)x ≤ x>E(g)x ⇐⇒ x>
(
E(g) − E(ĝ)

)
x ≥ 0, (4.9)

for all g ∈ GK0H0 . In other words, the selection rule can be represented as a set of quadratic
inequalities in terms of the data vector x. It must be noted that, under the null hypothesis,
the solution ĝ of (4.7) is unique almost surely. To prove this fact, we first define a quadratic
function F (g,g′) : Rnp 7→ R for a fixed (g, g′) as F (g,g′)(x) ≡ x>

(
E(g) − E(g′)

)
x. We

also define that g = g′, if the sets of cluster memberships g and g′ are equivalent up to the
permutation of cluster indices, and that g 6= g′ otherwise. If g 6= g′, we have

E(g) − E(g′) 6= O (∵ the proof is in Appendix 4.A), (4.10)

and thus the Lebesgue measure of a set of points x that satisfy F (g,g′)(x) = 0 is zero. By
combining this fact and the assumption (4.3) of the null hypothesis, F (g,g′)(x) 6= 0 holds
for a fixed combination of (g, g′) almost surely. Since {(g, g′) : g, g′ ∈ GK0H0 , g 6= g′} is a
finite set, we finally have

Pr

(
∃g, g′ ∈ GK0H0 , s.t. g 6= g′, g, g′ ∈ arg min

g∈GK0H0

σ2

)
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= Pr

(
∃g, g′ ∈ GK0H0 , s.t. g 6= g′, F (g,g′)(x) = 0, g, g′ ∈ arg min

g∈GK0H0

σ2

)
≤ Pr

(
∃g, g′ ∈ GK0H0 , s.t. g 6= g′, F (g,g′)(x) = 0

)
≤

∑
g,g′∈GK0H0

,g 6=g′
Pr
(
F (g,g′)(x) = 0

)
= 0. (4.11)

In case of a tie (i.e., multiple solutions of ĝ exist that satisfy (4.7)) that occurs with
probability zero, we can choose any one of them as ĝ independently with x.

4.3 Main results: Statistical test on the solution of
squared residue minimization

4.3.1 Null distribution of test statistic T
As described in Section 4.2, in the null hypothesis of the proposed test, we assume that
there exists a set of block memberships g(N) and that given g(N), each element of an
observed data vector x is generated independently from a Gaussian distribution, whose
mean is constant within the same block. Our main purpose is to test whether an estimated
block structure ĝ ≡ (ĝ(1), ĝ(2)), which is selected based on the squared residue criterion in
Section 4.2.2, is equal to the null one g(N). Formally, the null and alternative hypotheses of
the proposed test are given by

(N) : E(ĝ)µ0 = 0, (A) : E(ĝ)µ0 6= 0. (4.12)

It must be noted that the equation E(ĝ)µ0 = 0 is equivalent to the statement that the
elements of the vector µ0 are constant in the same block in the set of cluster memberships
ĝ. In other words, the above statement of the null hypothesis is that a given observed
matrix is generated based on the latent block structure ĝ, which is selected as a solution
that minimizes the squared residue.

To perform the test of (4.12), we check the squared residue σ2 of the given observed
matrix A under the condition that the estimated block structure ĝ is selected. Under the
null hypothesis, we have E(ĝ)µ0 = 0. Here, matrix E(ĝ) solely depends on the estimated
set of cluster memberships ĝ. In other words, under the condition that M̂(x) = ĝ holds,
matrix E(ĝ) is fixed. Therefore, based on the result in [103], the following theorem holds:

Theorem 4.3.1. Under the null hypothesis, we have

T ≡ ‖r‖2

σ0

, T |{ĝ, z,u} ∼ χ(np−K0H0)|M̂(ĝ) , (4.13)
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where ‖ · ‖2 and χc|M , respectively, denote the Euclid norm and the truncated chi distribu-
tion with c degrees of freedom and with truncation interval of M and

r ≡ E(ĝ)x, u ≡ 1

‖r‖2

r, z ≡ x− r,

M̂ (ĝ) ≡ {t ≥ 0 : ĝ ∈ M̂(tσ0u+ z)}. (4.14)

Proof. Let E be a fixed np× np projection matrix satisfying the following conditions:

• rank(E) = np−K0H0.

• Eµ0 = 0.

A singular value decomposition of a matrix E satisfying the above two conditions is
given by

E = V >DV, D ≡
[

I(np−K0H0) O(np−K0H0),K0H0

OK0H0,(np−K0H0) OK0H0,K0H0

]
, (4.15)

where we denote the a× a identity matrix and a× b zero matrix, respectively, as Ia and
Oa,b.

Based on such a matrix E, we use the following notations:

rE ≡ Ex, TE =
‖rE‖2

σ0

, uE ≡
1

‖rE‖2

rE, zE ≡ x− rE. (4.16)

We can transform TE by the following equations:

TE =

√
x>Ex

σ0

=

√
(x− µ0)>E(x− µ0)

σ0

(∵ Eµ0 = 0)

=

√
(x− µ0)>V >DV (x− µ0)

σ0

=

√
(x− µ0)>V >D̃>D̃V (x− µ0)

σ0

,

D̃ ≡
[
I(np−K0H0) O(np−K0H0),K0H0

]
∈ R(np−K0H0)×np. (4.17)

Here, we used the fact that D̃>D̃ = D.
By using the assumption that x ∼ N(µ0, σ

2
0I) holds and the independence of matrix

E of x, we have

1

σ0

D̃V (x− µ0) ∼ N(0, D̃V (D̃V )>)

⇐⇒ 1

σ0

D̃V (x− µ0) ∼ N(0, Inp−K0H0). (4.18)
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Here, we used the fact that D̃D̃> = I . Therefore, by combining (4.17) and (4.18), we have

TE ∼ χ(np−K0H0), (4.19)

where χc denotes the chi distribution with c degrees of freedom.
In regard to uE and zE , we have

uE · zE =
1

‖rE‖2

r>E(x− rE) =
1

‖rE‖2

(x>E>x− x>E>Ex) = 0. (4.20)

In the last equation, we considered the fact that E>E = E.
Here, since TE and (uE, zE) are mutually independent (the proof of this is in Appendix

4.D), we have

TE|uE, zE ∼ χ(np−K0H0). (4.21)

Next, we consider adding a condition of selection event of ĝ to the distribution of
TE|uE, zE in (4.21). Given uE and zE , the result of selection depends solely on the
value of TE . Therefore, adding the selection condition M̂(uETEσ0 + zE) = ĝ to (4.21)
corresponds to truncation of TE to the region where M̂(uETEσ0 + zE) = ĝ holds:

TE|uE, zE, ĝ ∼ χ(np−K0H0)|M̂(ĝ)(E). (4.22)

Third, we consider replacing E in (4.22) with E(ĝ), which is the output by clustering
algorithm A based on the data vector x. It must be noted that the matrix E(ĝ) is also a
projection matrix that satisfies

rank(E(ĝ)) = np−K0H0 (∵ the proof is in Appendix 4.B), (4.23)

from its definition, and E(ĝ)µ0 = 0 holds.
Since the matrix E(ĝ) depends on the data vector x only through the choice of ĝ (i.e.,

E(ĝ) is fixed, given ĝ), under the condition that the selection result ĝ is given, (4.22) still
holds with E(ĝ), which concludes the proof.

Remark 4.3.1 (Generalization of Theorem 4.3.1). Theorem 4.3.1 holds if the selection
event of the estimated block structure ĝ can be formulated as a set of quadratic inequalities
in terms of the data vector x, by modifying the definition of the functionM. In other
words, for a selected block structure ĝ, there exists some Iĝ ∈ N and {Q(ĝ,i),α(ĝ,i), β(ĝ,i)},
i = 1, . . . , Iĝ, and the selection event of ĝ is represented by

ĝ ∈M(x) ⇐⇒ ∩i∈{1,...,Iĝ}
{
x>Q(ĝ,i)x+ (α(ĝ,i))>x+ β(ĝ,i) ≥ 0

}
. (4.24)

Let g(i) be the ith pattern of all the block structures with K0 ×H0 blocks or less, where
i = 1, . . . , |GK0H0|. Then, if we set Iĝ ≡ |GK0H0|, Q(ĝ,i) = E(g(i)) − E(ĝ), α(ĝ,i) = 0, and
β(ĝ,i) = 0, the selection event in (4.24) will lead to the use of a squared residue solution.

89



4. Statistical test on the estimated bicluster structure of a relational data matrix

It must be noted that if there exists multiple sets of cluster memberships that minimize
the squared residue σ2, which occurs with probability zero, from the discussion in Section
4.2.2, then Theorem 4.3.1 will hold for any one of them. Moreover, we define that a set of
block memberships g′ is a refinement of g iff any block in g′ is a submatrix of some block
in g. If ĝ′ is a refinement of ĝ, then Theorem 4.3.1 will also hold when ĝ is replaced by ĝ′.
In other words, we cannot detect that a given block structure represents a “finer division
than necessary” with the proposed test; solving this problem is beyond the scope of this
dissertation.

4.3.2 Statistical test based on truncated chi distribution

To perform a statistical test based on Theorem 4.3.1, we have to specify the truncation
interval of M̂ (ĝ) ≡ {t ≥ 0 : M̂(tσ0u+ z) = ĝ}. As shown in (4.9), this is equivalent to
an interval satisfying the following condition for all g:

(tσ0u+ z)>
(
E(g) − E(ĝ)

)
(tσ0u+ z) ≥ 0

⇐⇒ f (g,ĝ)(t) ≡ a(g,ĝ)t2 + b(g,ĝ)t+ c(g,ĝ) ≥ 0, (4.25)

where

a(g,ĝ) ≡ σ2
0u
> (E(g) − E(ĝ)

)
u,

b(g,ĝ) ≡ σ0

[
u>
(
E(g) − E(ĝ)

)
z + z>

(
E(g) − E(ĝ)

)
u
]
,

c(g,ĝ) ≡ z>
(
E(g) − E(ĝ)

)
z. (4.26)

From the definition of u and z in (4.14), we have E(ĝ)u = u and E(ĝ)z = 0, which
simplify the above coefficients a(g,ĝ), b(g,ĝ), and c(g,ĝ) as follows:

a(g,ĝ) = −σ2
0u
> (I − E(g)

)
u = −σ2

0

∥∥(I − E(g)
)
u
∥∥2

2
≤ 0,

b(g,ĝ) = 2σ0u
>E(g)z,

c(g,ĝ) = z>E(g)z = ‖E(g)z‖2
2 ≥ 0. (4.27)

Here, in the transformation of b(g,ĝ), we used the fact that matrices E(g) and E(ĝ) are
symmetric.

We consider the condition under which (4.25) holds in the two cases, a(g,ĝ) = 0 and
a(g,ĝ) < 0.

• If a(g,ĝ) = 0, we have E(g)u = u, which results in that b(g,ĝ) = 2σ0u
>z = 0 (since

u>z = 0 holds from (4.20)). Therefore, in this case, the selection condition (4.25)
always holds.
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• If a(g,ĝ) < 0, maxt f
(g,ĝ)(t) ≥ f (g,ĝ)(0) = c(g,ĝ) ≥ 0. Therefore, for t ≥ 0, the

interval that satisfies f (g,ĝ)(t) ≥ 0 is
[
0,
−b(g,ĝ)−

√
(b(g,ĝ))2−4a(g,ĝ)c(g,ĝ)

2a(g,ĝ)

]
.

Overall, the interval of t where (4.25) holds is given by

M̂ (ĝ) =
[
0, β(ĝ)

]
, β(ĝ) ≡ min

g:a(g,ĝ) 6=0

(
−b(g,ĝ) −

√
(b(g,ĝ))2 − 4a(g,ĝ)c(g,ĝ)

2a(g,ĝ)

)
. (4.28)

It must be noted that ∩g∈GK0H0
,g 6=ĝ

(
a(g,ĝ) < 0

)
holds almost surely, based on a similar

discussion as that in Section 4.2.2. Formally, for a fixed g, g′ ∈ GK0H0 , y ≡ E(g′)x
follows a Gaussian distribution. If g 6= g′, E(g) − E(g′) is not a zero matrix, and thus
the Lebesgue measure of a set of points y satisfying y>

(
E(g) − E(g′)

)
y = 0 is zero.

Similarly, ‖y‖2
2 > 0 holds with probability one. By combining these facts, a(g,g′) ≡

1
‖y‖22

y>
(
E(g) − E(g′)

)
y 6= 0 holds for a fixed combination of (g, g′) satisfying g 6= g′

almost surely. Therefore, we have

Pr
(
∃g ∈ GK0H0 , s.t. g 6= ĝ, a(g,ĝ) = 0

)
≤ Pr

(
∃g, g′ ∈ GK0H0 , s.t. g 6= g′, a(g,g′) = 0

)
≤

∑
g,g′∈GK0H0

,g 6=g′
Pr
(
a(g,g′) = 0

)
= 0. (4.29)

To derive the last equation, we used the fact that {(g, g′) : g, g′ ∈ GK0H0 , g 6= g′} is a finite
set.

We denote a set of cluster memberships attaining the boundary of this interval as g̃,
that is,

g̃ ≡ arg min
g:a(g,ĝ) 6=0

(
−b(g,ĝ) −

√
(b(g,ĝ))2 − 4a(g,ĝ)c(g,ĝ)

2a(g,ĝ)

)
. (4.30)

From Theorem 4.3.1, given {ĝ,z,u}, a p-value pT of the test statistic T in (4.13) is
given by

pT =


1−

γ
(
np−K0H0

2
,T

2

2

)
γ

np−K0H0
2

,
(β(ĝ))

2

2

 ∼ U [0, 1] if 0 ≤ T ≤ β(ĝ),

0 otherwise,

(4.31)

where γ(·, ·) is the lower incomplete gamma function. This holds from the fact that, for
any random variable X with a probability density function f(x), F (X) ≡

∫ X
−∞ f(x)dx ∼
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U [0, 1]. To derive the p-value in (4.31), we used the fact that the cumulative distribution
function of the chi-square distribution with c degrees of freedom and with truncation
interval of [0, a] is given by

F (x) = 0 if x < 0,

F (x) = γ(c/2,x/2)
γ(c/2,a/2)

if 0 ≤ x ≤ a,

F (x) = 1 if x > 1.

(4.32)

4.3.3 Approximated test based on simulated annealing
The exact statistical test in Section 4.3.2 requires us to find (i) the optimal set of cluster
memberships ĝ, which minimizes the squared residue in (4.6), and (ii) the set of cluster
memberships g̃ in (4.30), which determines the truncation interval. We can see that the
number of mutually different patterns of block structures with exactly K0 ×H0 blocks is
lower bounded by Kn−K0

0 Hp−H0

0 (see Appendix 4.C for more detailed discussions).
To cope with such combinatorial explosion, we propose an approximated statistical test

based on SA, besides the exact test described in Section 4.3.2. SA is an iterative algorithm
that can be used for obtaining approximated solutions of combinatorial optimization
problems [79, 147]; its basic procedure is given as follows:

1. Define a cooling schedule or the sequence of temperatures {Tt}∞t=0, a threshold ε, a
finite set of states S, and an objective function f on S. For all the experiments, we
set the threshold at ε = 10−6. Our purpose is to find a state x ∈ S that minimizes
f(x). For each state x ∈ S, we also define a set of neighbors N(x) ⊆ S and a
transition probability R(x, x′) from state x to x′, for all x′ ∈ S , where R(x, x′) > 0
if x′ ∈ N(x) and R(x, x′) = 0 otherwise. Finally, define an initial step t← 0 and
initial state x0 ∈ S, and let f (0) ≡ f(x0).

2. If Tt < ε, stop the algorithm and output the current state xt. Otherwise, randomly
choose a neighbor x′ of the current state xt (i.e., x′ ∈ N(xt)) with probability
R(xt, x

′). Let f ′ ≡ f(x′) and ∆f ≡ f ′ − f (t).

• If ∆f < 0, then move to state x′ and set xt+1 = x′ and f (t+1) = f ′.

• Otherwise, with probability exp
(
−∆f

Tt

)
, move to state x′ and set xt+1 = x′

and f (t+1) = f ′. Otherwise, stay at the current state xt and set xt+1 = xt and
f (t+1) = f (t).

3. Let t← t+ 1 and go to 2.

It has been proven that the solution given by the above SA algorithm converges in proba-
bility to the global optimal solution of a given problem, under the following conditions
[61]:
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(a) Irreducibility: we call that the state y is reachable at height E from state x if x = y
or a sequence of states x = x1, x2, . . . , xp = y exists such that (1) R(xt, xt+1) > 0,
for all t ∈ {1, . . . , p − 1}, and (2) f(xt) ≤ E, for all t ∈ {1, . . . , p}. We simply
call that y is reachable from x if y is reachable from x at some height E. The first
condition is that for any pair of states (x, y), y is reachable from x.

(b) Weak reversibility: The second condition is that, for any E ∈ R and for any pair of
states (x, y), y is reachable at height E from x iff x is reachable at height E from y.

(c) We call that state x is a local minimum if no state y ∈ S satisfying f(y) < f(x) (i.e.,
a better solution) is reachable at height f(x) from x. In other words, to find a better
solution from a local minimum x, we need to pass through some “worse” states,
where the value of the objective function is larger than that of x. We define that the
depth of a local minimum x is +∞ if x is a global optimal state; otherwise, it is
the minimum E > 0 such that some state y (i.e., better solution) with f(y) < f(x)
exists and y is reachable at height f(x) + E from x. The third condition is that the
cooling schedule of temperature satisfies the following conditions: (1) Tt ≥ Tt+1,
for all t ≥ 0, (2) limt→∞ Tt = 0, and (3)

∑∞
t=0 exp

(
−d∗

Tt

)
= +∞, where d∗ is the

maximum depth of all the states that are locally, but not globally, optimal solutions.

Algorithm 1 is the SA algorithm for obtaining an approximated solution for the optimal
set of cluster memberships ĝ in terms of the squared residue. In this algorithm, from (4.7),
we define that the set of states S and the objective function f are given by S ≡ GK0H0

and f(g) ≡ x>E(g)x, respectively. In each step of the algorithm, neighbors N(g) of
the current state g are defined as a set of all the cluster memberships that differ from
g in exactly one row or column. It must be noted that the size of such neighbors is
|N(g)| = n(K0 − 1) + p(H0 − 1). We choose a neighbor g′ from the uniform distribution
on N(g) (i.e., with probability R(g, g′) = 1/|N(g)|). By these definitions, Algorithm 1
satisfies the conditions of (a) irreducibility and (b) weak reversibility.

Algorithm 2 is the SA algorithm used for finding an approximated solution of the
cluster memberships g̃, which determines the truncation interval. In this algorithm, we
define that the set of states S and the objective function f are given by S ≡ GK0H0 and

f(g) ≡ −b(g,ĝ)−
√

(b(g,ĝ))2−4a(g,ĝ)c(g,ĝ)

2a(g,ĝ) , respectively. Unlike Algorithm 1, we have to consider
the feasibility of a solution g̃, that is, it should satisfy a(g̃,ĝ) < 0. To guarantee the condition
of (a) irreducibility while avoiding infeasible solutions, we defined the neighbors N(g)
of the current state g as N(g) ≡ GK0H0 . By this definition, for any pair of states (g, g′),
transition from g to g′ is possible with non-zero probability: R(g, g′) > 0. Accordingly, we
restrict the significant change in the state by controlling the transition probability R(g, g′),
as in (4.33). By setting the objective function values for infeasible solutions at +∞, we
can avoid moving to them throughout the algorithm while satisfying the conditions of (a)
irreducibility and (b) weak reversibility.
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Algorithm 1 SA algorithm for finding the minimum squared residue solution ĝ.
Require: A cooling schedule of temperature {Tt}∞t=0 and a threshold ε.
Ensure: Approximated optimal set of cluster memberships ĝ in terms of the squared

residue.
1: t← 0.
2: Randomly generate initial cluster memberships: ĝ = (ĝ(1), ĝ(2)).
3: Compute the initial value of the objective function: f ← x>E(ĝ)x.
4: while Tt ≥ ε do
5: Randomly choose a row or column index m from the uniform distribution on

{1, . . . , n+ p}.
6: if m ≤ n then
7: i← m.
8: Randomly generate a new cluster index k′ of the ith row from the uniform

distribution on {1, . . . , K} \ ĝ(1)
i . Let ĝ′ be the set of cluster memberships given

by ĝ′ = ((ĝ′)(1), (ĝ′)(2)), (ĝ′)
(1)
i = k′, (ĝ′)

(1)
i′ = ĝ

(1)
i′ , for i′ 6= i, and (ĝ′)(2) = ĝ(2).

9: else
10: j ← m− n.
11: Randomly generate a new cluster index h′ of the jth column from the uniform

distribution on {1, . . . , H} \ ĝ(2)
j . Let ĝ′ be the set of cluster memberships given

by ĝ′ = ((ĝ′)(1), (ĝ′)(2)), (ĝ′)(1) = ĝ(1), (ĝ′)
(2)
j = h′, and (ĝ′)

(2)
j′ = ĝ

(2)
j′ , for j′ 6= j.

12: end if
13: Compute the value of the objective function: f ′ ← x>E(ĝ′)x.
14: ∆f ← f ′ − f .
15: if ∆f < 0 then
16: ĝ ← ĝ′, f ← f ′.
17: else
18: With probability exp

(
−∆f

Tt

)
, ĝ ← ĝ′, f ← f ′.

19: end if
20: t← t+ 1.
21: end while
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Algorithm 2 SA algorithm for finding the solution g̃ of the truncation interval.
Require: Optimal set of cluster memberships ĝ in terms of the squared residue, a cooling

schedule of temperature {Tt}∞t=0, and a threshold ε.
Ensure: Approximated optimal set of cluster memberships g̃ for determining the trunca-

tion interval.
1: t← 0.
2: Randomly generate initial cluster memberships: g̃ = (g̃(1), g̃(2)).
3: Compute the initial value of the objective function: if a(g̃,ĝ) = 0, then f ← +∞;

otherwise, f ← (−b(g̃,ĝ) −
√

(b(g̃,ĝ))2 − 4a(g̃,ĝ)c(g̃,ĝ))/(2a(g̃,ĝ)).
4: while Tt ≥ ε do
5: Randomly choose the size s of a subset of row or column indices from {1, . . . , n+

p}: {
s← 1 with probability 1

2
+ 1

2n+p ,

s← s′ with probability 1
2s′
, for s′ ∈ {2, . . . , n+ p}.

(4.33)

6: Randomly choose a set of s row or column indices S without duplication from the
uniform distribution.

7: g̃′ ← g̃.
8: for each row or column index in S do
9: if the ith row is selected then

10: Randomly generate a new cluster index k′ of the ith row from the uniform
distribution on {1, . . . , K} \ g̃(1)

i . (g̃′)
(1)
i ← k′.

11: else if the jth column is selected then
12: Randomly generate a new cluster index h′ of the jth column from the uniform

distribution on {1, . . . , H} \ g̃(2)
j . (g̃′)

(2)
j ← h′.

13: end if
14: end for
15: Compute the value of the objective function: if a(g̃′,ĝ) = 0, then f ← +∞; other-

wise, f ′ ← (−b(g̃′,ĝ) −
√

(b(g̃′,ĝ))2 − 4a(g̃′,ĝ)c(g̃′,ĝ))/(2a(g̃′,ĝ)).
16: ∆f ← f ′ − f .
17: if ∆f < 0 then
18: g̃ ← g̃′, f ← f ′.
19: else
20: With probability exp

(
−∆f

Tt

)
, g̃ ← g̃′, f ← f ′.

21: end if
22: t← t+ 1.
23: end while
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Regarding the cooling schedule of temperature, we can use the following definition
[61], which satisfies the conditions (1), (2), and (3) in (c):

Tt = c/ log(t+ 2) for all t ≥ 0, (4.34)

where c is a constant satisfying c ≥ d∗. In our cases, for instance, we can define the
constant c as follows:

c ≡ ‖x‖2
2 −

1

np

([
1 · · · 1

]
x
)2
, (4.35)

for Algorithm 1, since d∗ ≤ maxg∈GK0H0
x>E(g)x − ming∈GK0H0

x>E(g)x ≤ c. Here,
we take into account the fact that the cluster memberships g ≡ arg max

g∈GK0H0

x>E(g)x are

attained by assigning all the elements of an observed matrix into a single block, where
the objective function value is given by x>E(g)x = ‖x‖2

2 − 1
np

([
1 · · · 1

]
x
)2, and that

ming∈GK0H0
x>E(g)x ≥ 0. It must be noted that, in Algorithm 2, there is no state that

is local but not global minimum (i.e., all local minima are also global minima); this is
because, for any pair of states (g, g′), g′ is reachable at height f(g) from g. Therefore, from
the result in [61], the convergence in probability to a global minimum state is guaranteed
without the condition (3) in (c).

Practically, an algorithm based on the cooling schedule (4.34) is too slow, that is, it
requires much computation time before convergence. Therefore, in the experiments in
Section 4.4, we used the cooling schedule of Tt = T0 × rt with r < 1 for all t ≥ 0, though
this definition satisfies only the conditions (1) and (2), not (3).

4.4 Experiments
To show the validity of our proposed test, we compared its behavior with that of a naive
statistical test, which does not consider the selection event. By ignoring the fact that the
set of cluster memberships ĝ was selected based on the data vector x, we construct a naive
test (which is invalid in fact) with test statistic T in (4.13) by assuming

T |{z,u} ∼ χ(np−K0H0), (4.36)

from (4.21). The p-value of such a naive test is given by

pT =

1−
γ
(
np−K0H0

2
,T

2

2

)
Γ(np−K0H0

2 )
if 0 ≤ T,

0 otherwise,
(4.37)

where Γ(·) is the Gamma function.
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In the following sections 4.4.1 and 4.4.2, we check the behavior of the p-values and
the TPR and FPR when using the proposed and naive tests, in order to show the validity
of our proposed method. In these sections, we use the term “realizable case” to indicate
that the hypothetical cluster numbers of rows and columns (K0, H0) are equal to the null
ones (K,H), and the term “unrealizable case” to indicate that at least one of K0 < K and
H0 < H holds, as described in Section 4.1.

Aside from the experiments in this section, we conducted sensitivity analysis of the
approximated version of the proposed test with respect to the cooling schedule of SA in
the realizable case in Appendix 4.E. Moreover, we conducted an additional experiment
to employ an existing fast biclustering method [140] instead of the proposed SA-based
algorithm for estimating the cluster memberships in Appendix 4.F.

4.4.1 Exact test in realizable case: (K0, H0) = (K,H)

First, we check the behavior of the p-values calculated by using the proposed (4.31) and
naive (4.37) tests, under the condition that the given set of cluster numbers (K0, H0) are
equal to that of the null one (K,H). As shown in Section 4.3.2, the p-value of the proposed
test follows the uniform distribution on [0, 1], while there is no such guarantee for that of
the naive test.

For experiment, we independently generated data matrices with the sizes of (n, p) =
(5, 5), (6, 6), . . . , (9, 9). We set the null and hypothetical sets of cluster numbers at (2, 2);
we defined the null cluster memberships as g(N),(1)

i = (i mod K) + 1, for all i, and
g

(N),(2)
j = (j mod H) + 1, for all j. In regard to the mean vector µ0, we tried the following

five settings:

µ
(l)
0 =

(
1− l − 1

5

)[
vec

([
0.7 0.55
0.5 0.6

])
− 0.5

]
+ 0.5, l = 1, . . . , 5. (4.38)

Based on the above settings, we generated 1000 data vectors by x ∼ N(µ
(l)
0 , 0.052I),

for each setting of matrix size (n, p) and mean vector µ0. Figure 2 shows the examples of
the generated data matrices. For each generated data vector x, we computed the squared
residues of all the patterns of cluster memberships g. Subsequently, we chose the optimal
set of cluster memberships ĝ (i.e., solution with the minimum squared residue) and checked
if it is equivalent to the null set of cluster memberships g(N). For both cases of ĝ = g(N)

and ĝ 6= g(N), we computed the test statistic T in (4.13), the truncated interval in (4.28),
and the p-values in (4.31) and (4.37). Subsequently, we plotted the results as follows:

• For the trials where ĝ = g(N) holds (i.e., under null hypothesis), we plotted the
p-values given by (4.31) and (4.37), in Figures 3 and 4, respectively. We also plotted
(i) the test statistics D

√
r of the Kolmogorov-Smirnov test [36] for the p-values of

the proposed and naive tests and (ii) the accuracy of the clustering algorithm A, that
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is, the ratio of the number of such null cases (i.e., ĝ = g(N)) to the 1000 trials, for
each setting, in Figures 5 and 6, respectively.

• For null (i.e., ĝ = g(N)) and alternative (i.e., ĝ 6= g(N)) cases, we plotted the FPR and
TPR, in Figure 7, respectively. We also plotted the AUC score in Figure 8.

From Figures 3, 4, and 5, we see that the distribution of the p-values of the proposed
test was closer to the uniform distribution on [0, 1] than that of the naive test, particularly
when the difference in block-wise mean between the blocks was small. This result
shows that the proposed test can successfully take into account the selective bias of
using the squared residue minimization solution, by using the truncated chi distribution
in (4.13). However, the p-values of the naive test based on (4.36) did not follow the
uniform distribution on [0, 1], since we did not treat the selective bias and conducted
tests based on the (not truncated) chi distribution in the naive test. It must be noted
that, in our problem setting, unlike the common statistical tests, the assertion of the null
hypothesis ((g(N),(1), g(N),(2)) = (ĝ(1), ĝ(2))) is stronger than that of alternative hypothesis
((g(N),(1), g(N),(2)) 6= (ĝ(1), ĝ(2))). This results in that the p-values of the naive test are
biased toward larger values than the correct ones.

In regard to the test performance, from the results in the top of Figure 7, we see that the
FPR was low in all the settings (i.e., proposed and naive; significance rate α = 0.1, 0.05,
and 0.01; and block-wise mean µ0). The results in the bottom of Figure 7 shows that
the TPR of the proposed test was higher than that of the naive test in the same setting,
which is consistent with the discussion in the previous paragraph. However, the TPR of the
proposed test was not sufficiently close to one, in all the settings. This can be attributed to
the few “true positive” cases in the realizable setting. Figure 6 shows that the estimated
block structure ĝ that attained the minimum squared residue was equivalent to the null
one g(N) in most cases. In other words, almost all trials were “null cases,” where the small
number of false negative cases significantly affect the TPR. Particularly, when there is
an increase in the matrix size or in the difference in the block-wise mean between the
blocks, it becomes easier to estimate the null block structure, and the clustering algorithm
almost always outputs the correct cluster memberships. With regard to the AUC score,
from Figure 8, we see that the proposed test outperformed the naive one in all the settings.

4.4.2 Exact test in unrealizable cases: K0 < K or H0 < H

Next, we compared the behavior of the proposed and naive tests in the unrealizable cases,
that is, either K0 < K or H0 < H holds.

For the experiment, we independently generated data matrices with the sizes of (n, p) =
(5, 5), (6, 6), . . . , (9, 9). We set the null set of cluster numbers at (3, 2) and defined the null
cluster memberships as in Section 4.4.1. In regard to the mean vector µ0, we tried the
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μ0= [0.50, 0.70]
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0.7
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Figure 2: Examples of the observed data matrices with the size of (n, p) = (9, 9), which
are generated based on the different block-wise means. The title of each figure shows the
range of the block-wise mean vector µ0. The blue lines show the null cluster memberships.
For visibility, we plotted the matrices whose rows and columns were sorted according to
their null clusters.

following five settings:

µ
(l)
0 =

(
1− l − 1

5

)vec

 0.7 0.55
0.5 0.6
0.55 0.5

− 0.5

+ 0.5, l = 1, . . . , 5. (4.39)

Based on the above settings, we generated 1000 data vectors by x ∼ N(µ
(l)
0 , 0.052I),

for each setting of matrix size (n, p) and mean vector µ0. For each generated data
vector x, we computed the squared residues of all the patterns of cluster memberships g.
Subsequently, we chose the optimal set of cluster memberships ĝ with a given set of cluster
numbers (K0, H0). In regard to the hypothetical cluster numbers, we tried the following
five settings: (K0, H0) = (1, 1), (2, 1), (3, 1), (1, 2), and (2, 2). For each setting, based on
the selected result ĝ, we computed the test statistic T in (4.13), the truncated interval in
(4.28), and the p-values in (4.31) and (4.37). Finally, we plotted the TPR of the proposed
and naive tests in Figure 9.

Figure 9 shows that the TPR of the proposed test was higher than that of the naive test in
the same setting; however, in most cases, there was a small difference between them. This
may be attributed to the fact that we set the matrix size (n, p) and the hypothetical block
size (K0, H0) at small numbers in order to perform the exact test, which is computationally
expensive, and thus there is a marginal effect of selecting the optimal block structure ĝ
from all the patterns GK0H0 . It must be noted that, unlike the realizable case in Section
4.4.1, the block structures output by the clustering algorithm were always different from
the null ones because the hypothetical set of cluster numbers were insufficient to represent
the null block structure in the unrealizable cases. In other words, all the 1000 trials in each
setting correspond to the alternative cases. The TPRs of the proposed and naive tests were
comparable particularly under the following two settings: (1) the case where we set the
hypothetical number of blocks at (K0, H0) = (1, 1) and (2) the case where the difference
in the null block-wise mean µ between the blocks was relatively big. These results were
caused by the nature of the biclustering problem itself, as well as by the limitation in the
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Figure 3: Histograms of p-values in the null case (i.e., ĝ = g(N)) for different matrix sizes,
which was computed by the proposed test (4.31) on the set of cluster memberships ĝ with
the minimum squared residue.
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Figure 4: Histograms of p-values in the null case (i.e., ĝ = g(N)) for different matrix sizes,
which was computed by the naive test (4.37).
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Figure 5: Test statistics D
√
r of the Kolmogorov-Smirnov test [36] for the p-values of the

proposed (left) and naive (right) tests. The null hypothesis that p-value follows the uniform
distribution on [0, 1] is rejected if D

√
r > α, where α is a given significance level.
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Figure 6: The ratio of the number of the null cases (i.e., ĝ = g(N)) for each setting of
matrix size (n, p) and mean vector µ0. For this experiment, we used the setting of n = p.

power of the proposed selective test. In the case of (1), we assume that the entire data
matrix A consists of a single block, and thus there is only one possible estimated bicluster
structure ĝ, regardless of the selection event. Therefore, in this case, the proposed and
naive tests are equivalent in the first place. As for the case of (2), since the difference in the
null block-wise mean between the blocks was big, the test statistics of both the proposed
and naive tests got large enough for the null hypothesis to be rejected.

4.4.3 Approximated test in both realizable and unrealizable cases

Finally, we checked the behavior of the approximated test introduced in Section 4.3.3.
In both realizable and unrealizable cases, we generated data matrices with the sizes of
(n, p) = (10+2×m, 10+2×m), for m = 0, 1, . . . , 4, in the same way as that in Sections
4.4.1 and 4.4.2. Concerning the following conditions, we used the same setting as in
Sections 4.4.1 and 4.4.2, respectively, for the realizable and unrealizable cases: the null
and hypothetical sets of cluster numbers, the definition of null cluster memberships g(N),
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Figure 7: FPR and TPR in the realizable case with different significance rates (e.g.,
α = 0.1, 0.05, and 0.01), for the proposed (left) and naive (right) statistical tests. If there
were no null (i.e., ĝ = g(N)) or alternative (i.e., ĝ 6= g(N)) cases, respectively, then the
corresponding points of FPR or TPR would not have been plotted.

5 6 7 8 9
n

0.0

0.5

1.0 AUC score, μ0 = [0.50, 0.70]

5 6 7 8 9
n

0.0

0.5

1.0 AUC score, μ0 = [0.50, 0.66]

5 6 7 8 9
n

0.0

0.5

1.0 AUC score, μ0 = [0.50, 0.62]

5 6 7 8 9
n

0.0

0.5

1.0 AUC score, μ0 = [0.50, 0.58]

5 6 7 8 9
n

0.0

0.5

1.0 AUC score, μ0 = [0.50, 0.54]
Proposed
Naive

Figure 8: AUC score in the realizable case for the proposed and naive statistical tests.

102



4. Statistical test on the estimated bicluster structure of a relational data matrix

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(p
ro

po
se

d)

(K0,H0) = (1, 1),
α= 0.1

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(n
ai

ve
)

(K0,H0) = (1, 1),
α= 0.1

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(p
ro

po
se

d)

(K0,H0) = (1, 1),
α= 0.05

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(n
ai

ve
)

(K0,H0) = (1, 1),
α= 0.05

5 6 7 8 9
n

0.0

0.5

1.0
TP

R 
(p

ro
po

se
d)

(K0,H0) = (1, 1),
α= 0.01

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(n
ai

ve
)

(K0,H0) = (1, 1),
α= 0.01

μ0 = [0.50, 0.70]
μ0 = [0.50, 0.66]
μ0 = [0.50, 0.62]
μ0 = [0.50, 0.58]
μ0 = [0.50, 0.54]

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(p
ro

po
se

d)

(K0,H0) = (1, 2),
α= 0.1

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(n
ai

ve
)

(K0,H0) = (1, 2),
α= 0.1

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(p
ro

po
se

d)

(K0,H0) = (1, 2),
α= 0.05

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(n
ai

ve
)

(K0,H0) = (1, 2),
α= 0.05

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(p
ro

po
se

d)

(K0,H0) = (1, 2),
α= 0.01

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(n
ai

ve
)

(K0,H0) = (1, 2),
α= 0.01

μ0 = [0.50, 0.70]
μ0 = [0.50, 0.66]
μ0 = [0.50, 0.62]
μ0 = [0.50, 0.58]
μ0 = [0.50, 0.54]

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(p
ro

po
se

d)

(K0,H0) = (2, 1),
α= 0.1

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(n
ai

ve
)

(K0,H0) = (2, 1),
α= 0.1

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(p
ro

po
se

d)

(K0,H0) = (2, 1),
α= 0.05

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(n
ai

ve
)

(K0,H0) = (2, 1),
α= 0.05

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(p
ro

po
se

d)

(K0,H0) = (2, 1),
α= 0.01

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(n
ai

ve
)

(K0,H0) = (2, 1),
α= 0.01

μ0 = [0.50, 0.70]
μ0 = [0.50, 0.66]
μ0 = [0.50, 0.62]
μ0 = [0.50, 0.58]
μ0 = [0.50, 0.54]

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(p
ro

po
se

d)

(K0,H0) = (2, 2),
α= 0.1

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(n
ai

ve
)

(K0,H0) = (2, 2),
α= 0.1

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(p
ro

po
se

d)

(K0,H0) = (2, 2),
α= 0.05

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(n
ai

ve
)

(K0,H0) = (2, 2),
α= 0.05

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(p
ro

po
se

d)

(K0,H0) = (2, 2),
α= 0.01

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(n
ai

ve
)

(K0,H0) = (2, 2),
α= 0.01

μ0 = [0.50, 0.70]
μ0 = [0.50, 0.66]
μ0 = [0.50, 0.62]
μ0 = [0.50, 0.58]
μ0 = [0.50, 0.54]

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(p
ro

po
se

d)

(K0,H0) = (3, 1),
α= 0.1

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(n
ai

ve
)

(K0,H0) = (3, 1),
α= 0.1

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(p
ro

po
se

d)

(K0,H0) = (3, 1),
α= 0.05

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(n
ai

ve
)

(K0,H0) = (3, 1),
α= 0.05

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(p
ro

po
se

d)

(K0,H0) = (3, 1),
α= 0.01

5 6 7 8 9
n

0.0

0.5

1.0

TP
R 

(n
ai

ve
)

(K0,H0) = (3, 1),
α= 0.01

μ0 = [0.50, 0.70]
μ0 = [0.50, 0.66]
μ0 = [0.50, 0.62]
μ0 = [0.50, 0.58]
μ0 = [0.50, 0.54]

Figure 9: TPR in the unrealizable case (i.e., K0 < K or H0 < H) with different sig-
nificance rates (e.g., α = 0.1, 0.05, and 0.01), for the proposed (left) and naive (right)
statistical tests.
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mean vectors and the standard deviation σ0, and the number of data vectors for each setting.
Concerning the SA algorithms, both in the Algorithms 1 and 2, we defined the cooling
schedule as follows: T0 = 10, Tt = T0 × 0.99t for all t.

As in the cases of the exact tests, Figures 10 and 11, respectively, show the histograms
of the p-values of the proposed and naive approximated tests in the realizable case. For
the realizable case, we also plotted (i) the test statistics D

√
r of the Kolmogorov-Smirnov

test [36], for the p-values of the proposed and naive tests, and (ii) the accuracy of the
approximated clustering algorithm in Figures 12 and 13, respectively. Figure 14 shows the
FPR and TPR in the realizable case, Figure 15 shows the AUC score in the realizable case,
and Figure 16 shows the TPR in the unrealizable cases.

Figures 10, 11, and 12 show that the distributions of the p-values of the proposed test
were closer to the uniform distribution on [0, 1] than that of the naive test, as in the result
of the exact test in Section 4.4.1. Concerning the test performance in the realizable case,
Figure 14 shows that the FPR was low in all the settings, and the TPR of the proposed test
was higher than that of the naive test in the same setting. However, as in the exact case,
the TPR of the proposed test was not sufficiently close to one in all the setting; this can
be attributed to the few “true positive” cases. In the next Section 4.4.4, we checked more
difficult cases for the approximated clustering algorithm, where the null cluster numbers
were more than (2, 2). With regard to the AUC score, from Figure 15, we see that the
proposed test achieved comparable or better performance than the naive one in all the
settings.

4.4.4 Approximated test in the realizable case, (K,H) =
(3, 3), (4, 4), (5, 5)

To check the behavior of the p-values, FPR, and TPR of the proposed test in more dif-
ficult settings, where the clustering algorithm cannot successfully estimate the cluster
memberships in most cases, we tried the following three settings of null cluster numbers:
(K,H) = (3, 3), (4, 4), and (5, 5). These settings have more patterns of the possible block
structures than those in the case of (K,H) = (2, 2) in Section 4.4.3. Hence, it becomes
difficult for the approximated clustering algorithm (which stops at a fixed finite number of
steps in the experiment) to output the null set of cluster memberships.

We generated data matrices in the same way as that in Section 4.4.3. Concerning the
following conditions, we used the same setting as that of the realizable case in Section
4.4.3: the set of matrix sizes (n, p), the definition of the null cluster memberships g(N), the
standard deviation σ0, and the cooling schedule of the SA algorithm. We tried the following
three settings of the null number of blocks: (3, 3), (4, 4), and (5, 5); subsequently, for each
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Figure 10: Histograms of p-values in the null case (i.e., ĝ = g(N)) for different matrix sizes,
which was computed by the approximated version of the proposed test.
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Figure 11: Histograms of p-values in the null case (i.e., ĝ = g(N)) for different matrix sizes,
which was computed by the approximated version of the naive test (4.37).
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Figure 12: Test statistics D
√
r of the Kolmogorov-Smirnov test [36] for the p-values of

the proposed (left) and naive (right) approximated tests.

10 12 14 16 18
n

0.0

0.5

1.0

Ac
cu

ra
cy

μ0= [0.50, 0.70]
μ0= [0.50, 0.66]
μ0= [0.50, 0.62]
μ0= [0.50, 0.58]
μ0= [0.50, 0.54]

Figure 13: The ratio of the number of the null cases (i.e., ĝ = g(N)) for each setting of
matrix size (n, p) and mean vector µ0, where ĝ is output by the approximated clustering
algorithm in Section 4.3.3. For the experiment, we used the setting of n = p.

setting, we defined the mean vector µ0 as follows:

µ
(l)
0 =

(
1− l − 1

5

)vec

 0.6 0.55 0.7
0.4 0.6 0.5
0.65 0.5 0.6

− 0.5

+ 0.5,

l = 1, . . . , 5, (4.40)

for (K,H) = (3, 3),

µ
(l)
0 =

(
1− l − 1

5

)vec




0.6 0.55 0.7 0.5
0.4 0.6 0.5 0.7
0.65 0.5 0.6 0.4
0.5 0.4 0.45 0.6


− 0.5

+ 0.5,

l = 1, . . . , 5, (4.41)
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Figure 14: FPR and TPR in the realizable case with different significance rates (e.g.,
α = 0.1, 0.05, and 0.01), for the approximated version of the proposed (left) and naive
(right) statistical tests.
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Figure 15: AUC score in the realizable case for the approximated version of the proposed
and naive statistical tests. If there were no null (i.e., ĝ = g(N)) or alternative (i.e., ĝ 6= g(N))
cases, respectively, then the corresponding bars would not have been plotted.
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Figure 16: TPR in the unrealizable case (i.e., K0 < K or H0 < H) with different
significance rates (e.g., α = 0.1, 0.05, and 0.01), for the approximated version of the
proposed (left) and naive (right) statistical tests.
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for (K,H) = (4, 4), and

µ
(l)
0 =

(
1− l − 1

5

)vec




0.6 0.55 0.7 0.5 0.65
0.4 0.6 0.5 0.7 0.55
0.65 0.5 0.6 0.4 0.45
0.5 0.4 0.45 0.6 0.7
0.7 0.65 0.55 0.45 0.6


− 0.5

+ 0.5,

l = 1, . . . , 5, (4.42)

for (K,H) = (5, 5). We set the number of data vectors for each setting at 500.
We plotted the test statisticsD

√
r of the Kolmogorov-Smirnov test [36] for the p-values

of the proposed and naive tests and the accuracy of the approximated clustering algorithm
in Figures 17 and 18, respectively. Figures 19, 20, and 21 show the FPR and TPR of the
proposed and naive tests. These figures show that the TPRs of both the proposed and
naive tests were higher than the case of (K,H) = (2, 2); the TPR of the proposed test was
higher than that of the naive one in these settings. Figures 22, 23, and 24 show the AUC
score of the proposed and naive tests. From these results, we see that the proposed test
achieved higher AUC score than the naive one in most settings.

4.5 Discussions
In this section, we discuss the following three points about the proposed statistical test: its
power, the trade-off between computational efficiency and accuracy, and the extension of
the finding to more generalized cases.

First, as also pointed out in a study [103], the null distribution of the test statistic of
the proposed test is given by the conditioning on z and u, besides the selected set of
cluster memberships ĝ, which leads to a reduction in the test power [46]. For now, we
do not have any way of removing these unnecessary parameters, owing to the problem
setting of an LBM. In a one-way clustering problem, where there are n data vectors with
p dimensions, we can at least approximate the distributions of z and u based on their
histograms; however, in the LBM setting, there is only a single observed matrix with the
size of n× p. Solving this problem is beyond the scope of this dissertation; future studies
should focus on constructing a more powerful selective test on a bicluster structure by
using an additional technique such as a bootstrap method [142, 144].

Second, we have proposed both exact and approximated tests to cope with the combi-
natorial explosion of the possible block memberships. The null distribution (4.13) of the
proposed test statistic is based on the assumption that the estimated cluster memberships ĝ
is the global minimum solution of the squared residue, which is difficult to obtain in the
first place. Although it is guaranteed that the solutions of the two SA algorithms 1 and 2
converge in probability to the globally optimal solutions of their corresponding problems,

109



4. Statistical test on the estimated bicluster structure of a relational data matrix

10 12 14 16 18
n

100

4 × 10−1

6 × 10−1

2 × 100
D√ r  (proposed)

10 12 14 16 18
n

100

4 × 10−1

6 × 10−1

2 × 100
D√ r  (naive)

μ0 = [0.40, 0.70]
μ0 = [0.42, 0.66]
μ0 = [0.44, 0.62]
μ0 = [0.46, 0.58]
μ0 = [0.48, 0.54]
α= 0.1
α= 0.05
α= 0.01

10 12 14 16 18
n

100

6 × 10−1

2 × 100

D√ r  (proposed)

10 12 14 16 18
n

100

6 × 10−1

2 × 100

D√ r  (naive)
μ0 = [0.40, 0.70]
μ0 = [0.42, 0.66]
μ0 = [0.44, 0.62]
μ0 = [0.46, 0.58]
μ0 = [0.48, 0.54]
α= 0.1
α= 0.05
α= 0.01

10 12 14 16 18
n

100

4 × 10−1

6 × 10−1

2 × 100

D√ r  (proposed)

10 12 14 16 18
n

100

4 × 10−1

6 × 10−1

2 × 100

D√ r  (naive)
μ0 = [0.40, 0.70]
μ0 = [0.42, 0.66]
μ0 = [0.44, 0.62]
μ0 = [0.46, 0.58]
μ0 = [0.48, 0.54]
α= 0.1
α= 0.05
α= 0.01

Figure 17: Test statistics D
√
r of the Kolmogorov-Smirnov test [36] for the p-values of the

proposed (left) and naive (right) approximated tests, where (K,H) = (3, 3) (top), (4, 4)
(middle), and (5, 5) (bottom).
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Figure 18: The ratio of the number of the null cases (i.e., ĝ = g(N)), for each setting of
matrix size (n, p) and mean vector µ0, where ĝ is output by the approximated clustering
algorithm in Section 4.3.3; (K,H) = (3, 3) (top), (4, 4) (middle), and (5, 5) (bottom). For
experiment, we used the setting of n = p.
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Figure 19: FPR and TPR in the realizable case with different significance rates (e.g.,
α = 0.1, 0.05, and 0.01), for the approximated version of the proposed (left) and naive
(right) statistical tests, where (K,H) = (3,3).
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Figure 20: FPR and TPR in the realizable case with different significance rates (e.g.,
α = 0.1, 0.05, and 0.01), for the approximated version of the proposed (left) and naive
(right) statistical tests, where (K,H) = (4,4).
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Figure 21: FPR and TPR in the realizable case with different significance rates (e.g.,
α = 0.1, 0.05, and 0.01), for the approximated version of the proposed (left) and naive
(right) statistical tests, where (K,H) = (5,5).
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Figure 22: AUC score in the realizable case for the approximated version of the proposed
and naive statistical tests, where (K,H) = (3,3).
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Figure 23: AUC score in the realizable case for the approximated version of the proposed
and naive statistical tests, where (K,H) = (4,4).
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Figure 24: AUC score in the realizable case for the approximated version of the proposed
and naive statistical tests, where (K,H) = (5,5).
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we cannot validate the outputs of these algorithms with a finite number of steps, which
are used in practice. It would be more desirable to derive an exact p-value of some other
approximated test. Stopping the SA algorithms in a constant number of steps would also
affect the accuracy of the test; to find the optimal solutions, we should have checked all
the patterns of possible block memberships, which increase with the observed matrix size
and the number of blocks. However, if we increase the number of steps according to such
a problem size, then computation of the SA algorithms will get intractable. Therefore, it
would be another important direction to seek a more computationally efficient test, which
mitigates this trade-off.

Finally, the proposed test enables us to perform a valid statistical inference for a
Gaussian LBM, where we assume that each element of an observed matrix independently
follows a Gaussian distribution, given a block structure. This Gaussian assumption is
crucial for deriving the exact p-value in the selective inference framework, as in [103].
However, in many practical datasets, including the “MovieLens” dataset of movie ratings
[62] and the dataset of document-word relationships in NeurIPS conference papers [120],
the elements of the observed matrix take discrete values, where the proposed test cannot
be employed. So far, there has been no selective test that can be directly applied to binary
data vectors from a Bernoulli distribution. To address this problem, a randomized model
selection method [143] has been proposed to construct an asymptotically valid selective
test on binary data by adding a random noise to the statistic used for a selection event. By
using such a technique, future studies should generalize the proposed test for non-Gaussian
cases.

4.6 Chapter conclusion

We developed a new selective inference method on the row and column cluster mem-
berships of a latent block model given by a clustering algorithm based on the squared
residue minimization. By considering the selective bias, which is caused by the fact that
the hypothetical block structure is estimated based on a given data matrix, we constructed
a valid test based on a truncated chi distribution. Since such an exact test required us to
obtain the global optimal solutions of two combinatorial optimization problems, we also
constructed an approximated test based on simulated annealing algorithms. Experimen-
tal results showed that the proposed exact and approximated tests worked successfully,
compared to the naive tests that did not take the selective bias into account.
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4.A Proof of (4.10) that E(g)−E(g′) 6= O for g, g′ ∈ GK0H0,
g 6= g′

Proof. We prove that E(g) − E(g′) 6= O by contradiction. Let g, g′ ∈ GK0H0 be two sets
of cluster memberships, both of which have K0 × H0 blocks or less and which satisfy
g 6= g′. Specifically, we denote the exact number of blocks of g as (K

(g)
0 , H

(g)
0 ). Assume

that E(g) − E(g′) = O holds. Then, for all x ∈ Rnp, we have x>E(g)x = x>E(g′)x. In
other words, from (4.6), block structures g and g′ yield the same squared residue σ2 for
any data matrix A.

Let us consider a data matrix A that has a block structure g, and all of the elements
in the (k, h)th block are (k − 1)H

(g)
0 + h, where k = 1, . . . , K

(g)
0 and h = 1, . . . , H

(g)
0 ,

as shown in Figure 4.A1. The squared residue of such matrix A and block structure g
is zero, and thus x>E(g)x = 0 holds. However, in block structure g′ satisfying g′ 6= g,
there exists at least one block of matrix A that contains two or more mutually different
values, unless g′ is a refinement of g, which results in x>E(g′)x > 0. In case that g′ is a
refinement of g, by considering an observed matrix A with block structure g′ instead of g,
we obtain x>E(g′)x = 0 and x>E(g)x > 0 from the similar discussion. This contradicts
the assumption that x>E(g)x = x>E(g′)x for all x ∈ Rnp.

4.B Proof of (4.23) that rank(E(ĝ)) = np−K0H0

Proof. For any cluster memberships ĝ, by simultaneously switching rows and columns
with the same indices, matrix E(ĝ) can be transformed into matrix Ẽ(ĝ), which is given by

Ẽ(ĝ) =


X(1) O · · · · · · O

O
. . . . . . · · · ...

... . . . X [H0(k−1)+h] . . . ...

... · · · . . . . . . O
O · · · · · · O X(K0H0)

 , (4.43)

where

X [H0(k−1)+h] ≡
(
X

[H0(k−1)+h]
ij

)
1≤i≤|Ik||Jh|,1≤j≤|Ik||Jh|

,

X
[H0(k−1)+h]
ij =

{
1− 1

|Ik||Jh|
if i = j,

− 1
|Ik||Jh|

otherwise,

i = 1, · · · , |Ik||Jh|, j = 1, · · · , |Ik||Jh|, (4.44)

for all (k, h).
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Figure 4.A1: A data matrix A whose squared residue σ2 is zero with block structure g.

Let ẽ[H0(k−1)+h]
i be the ith column of the [H0(k − 1) + h]th row block of matrix Ẽ(ĝ).

For (k, h) 6= (k′, h′), vectors ẽ[H0(k−1)+h]
i and ẽ[H0(k′−1)+h′]

j are linearly independent for an
arbitrary set of (i, j).

From here, we show that within the same [H0(k − 1) + h]th block, the maximum
number of linearly independent columns is |Ik||Jh| − 1. First, from (4.44), we have

|Ik||Jh|∑
i=1

ẽ
[H0(k−1)+h]
i = 0.

(
∵ 1− 1

|Ik||Jh|
+ (|Ik||Jh| − 1)

(
− 1

|Ik||Jh|

)
= 0

)
(4.45)

Therefore, the maximum number of linearly independent columns is smaller than |Ik||Jh|.
Next, the columns of the indices of i = 1, · · · , |Ik||Jh| − 1 are linearly independent, since

|Ik||Jh|−1∑
i=1

ciẽ
[H0(k−1)+h]
i = 0

⇐⇒ c1

(
1− 1

|Ik||Jh|

)
+
∑
i 6=1

ci

(
− 1

|Ik||Jh|

)
= 0, · · · ,
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c|Ik||Jh|−1

(
1− 1

|Ik||Jh|

)
+

∑
i 6=|Ik||Jh|−1

ci

(
− 1

|Ik||Jh|

)
= 0

⇐⇒ c1 +

(
− 1

|Ik||Jh|

) |Ik||Jh|−1∑
i=1

ci = 0, · · · , c|Ik||Jh|−1 +

(
− 1

|Ik||Jh|

) |Ik||Jh|−1∑
i=1

ci = 0

⇐⇒ c1 = c2 = · · · = c|Ik||Jh|−1,

ci +

(
− 1

|Ik||Jh|

)
(|Ik||Jh| − 1) ci = 0, for all i

⇐⇒ c1 = c2 = · · · = c|Ik||Jh|−1,
1

|Ik||Jh|
ci = 0, for all i

⇐⇒ c1 = c2 = · · · = c|Ik||Jh|−1 = 0. (4.46)

By combining the above results, the maximum number of linearly independent columns
of matrix Ẽ(ĝ) is

∑K0

k=1

∑H0

h=1(|Ik||Jh| − 1) = np−K0H0. Since the rank of matrix E(ĝ)

is equal to that of matrix Ẽ(ĝ), we finally have rank(E(ĝ)) = np−K0H0.

4.C Proof that the number of mutually different patterns
of block structures with exactly K0 × H0 blocks is
lower bounded by Kn−K0

0 Hp−H0
0

Proof. We give a proof of the statement in the first paragraph of Section 4.3.3. To derive a
lower bound for the number of mutually different patterns of block structures, let us define
a subset G(1)

0 of all the possible patterns of row cluster indexing as a set of all the row
cluster membership vectors satisfying the following two conditions.

• n rows are clustered into exactly K0 clusters.

• It can be equivalently represented in the unique form of Figure 4.C1 for some
ñ ∈ {K0, . . . , n}. In other words, its first (ñ− 1) elements contain 1, . . . , (K0 − 1)
in ascending order, where ñ is the minimum row index of the K0th cluster.

For a fixed ñ, there are (ñ−2)!
(ñ−K0)!(K0−2)!

possible patterns of the first (ñ− 1) elements of a

cluster membership vector in G(1)
0 . The last (n− ñ) elements are arbitrary (i.e., different

indexing of these elements yields mutually not equivalent set of row cluster memberships),
which have Kn−ñ

0 patterns. Therefore, there are
∑n

ñ=K0

(ñ−2)!
(ñ−K0)!(K0−2)!

Kn−ñ
0 patterns of

mutually different sets of row cluster memberships. From the same discussion for column
cluster memberships, we obtain a lower bound for the total number κ of the patterns of
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1 1 2 3 3 3 4 ⋯ ⋯ 𝐾
− 1

𝐾
− 1 𝐾 ⋯ ⋯ ⋯

1 2 3 4 ⋯ ⋯ ෤𝑛 ⋯ ⋯ 𝑛

෤𝑛: minimum 

row index of 

the 𝐾th cluster

Cluster indices of 

the last (𝑛 − ෤𝑛) 

rows are arbitrary

Cluster indices of the first 
( ෤𝑛 − 1) rows are 1,… , (𝐾 − 1)
in ascending order

Figure 4.C1: Unique representation of row cluster indexing where n rows are clustered
into exactly K0 clusters. It must be noted that the set of cluster membership vectors g(1)

that can be represented in this form is a subset of all the possible cluster membership
vectors.

mutually different block structures:

κ ≥

[
n∑

ñ=K0

(ñ− 2)!

(ñ−K0)!(K0 − 2)!
Kn−ñ

0

][
p∑

p̃=H0

(p̃− 2)!

(p̃−H0)!(H0 − 2)!
Hp−p̃

0

]
≥ Kn−K0

0 Hp−H0

0 ,

(4.47)

which is in the exponential order of n and p for a fixed number of blocks (K0, H0).

4.D Proof that TE and (uE, zE) are mutually independent
Proof. We give a proof of the statement in Section 4.3.1, which is used to prove (4.21).
We have assumed that x ∼ N(µ0, σ

2
0I) and have defined that rE ≡ Ex, TE = ‖rE‖2

σ0
,

uE ≡ 1
‖rE‖2

rE , zE ≡ x− rE . Note that the following equations hold:

u>Eµ0 =
1

‖rE‖2

r>Eµ0 =
1

‖rE‖2

x>E>µ0 = 0. (4.48)

u>EuE =
1

‖rE‖2
2

r>ErE = 1. (4.49)

To obtain the last equation, we used the assumption that Eµ0 = 0.
Therefore, we have

p(x) =
1√

(2πσ2
0)np

exp

[
− 1

2σ2
0

‖x− µ0‖2
2

]
=

1√
(2πσ2

0)np
exp

[
− 1

2σ2
0

‖uETEσ0 + zE − µ0‖2
2

]
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=
1√

(2πσ2
0)np

exp

{
− 1

2σ2
0

[
σ2

0T
2
Eu
>
EuE + 2σ0TEu

>
E(zE − µ0) + ‖zE − µ0‖2

2

]}
=

1√
(2πσ2

0)np
exp

[
−1

2
T 2
E −

1

2σ2
0

‖zE − µ0‖2
2

]
(∵ (4.20), (4.48), (4.49))

=
1√

(2πσ2
0)np

exp

(
−1

2
T 2
E −

1

2σ2
0

‖zE‖2
2

)
exp

[
− 1

2σ2
0

(−2z>Eµ0 + ‖µ0‖2
2)

]
. (4.50)

Next, we use the following Proposition 2.1 in [136]: let pθ be a probability density
function of an exponential family distribution with parameter θ, which is given by pθ(x) =
h(x) exp{[η(θ)]>T (x) − ξ(θ)}. Then, T is complete and sufficient for η. From this
proposition and (4.50), zE is complete and sufficient for µ0.

We also show that (TE,uE) are ancillary for µ0. To prove this, we first show that
TE and uE are mutually independent. Let y ≡ D̃V x ∈ Rnp−K0H0 , where V and D̃
are the matrices defined in (4.15) and (4.17), respectively. From (4.18) and the fact that
D̃V µ0 = 0 (∵ ‖D̃V µ0‖2

2 = µ>0 Eµ0 = 0), we have y ∼ N(0, σ2
0Inp−K0H0). Therefore,

we have

p(y) =
1√

(2πσ2
0)np−K0H0

exp

(
− 1

2σ2
0

‖y‖2
2

)
. (4.51)

From Proposition 2.1 in [136] and the fact that T 2
E = ‖y‖2

2/σ
2
0 , T 2

E is complete and
sufficient for µ0. Since there is a one-to-one correspondence between TE and T 2

E , TE
is also complete and sufficient for µ0. Let ũE ≡ y/‖y‖2. Since ũE follows a uniform
distribution on the surface of unit sphere and uE = V >D̃>ũE , uE is ancillary for µ0. By
combining these results, TE and uE are mutually independent from Basu’s theorem [10].
Therefore, we have p(TE,uE) = p(TE)p(uE), where p(·) denotes a probability density
function. From the above discussion about p(uE) and the fact that TE ∼ χ(np−K0H0) (∵
(4.19)), (TE,uE) are ancillary for µ0.

Based on the above results, zE and (TE,uE) are independent from Basu’s theorem
[10]. Therefore, we have

p(TE,uE, zE) = p(zE|TE,uE)p(TE,uE) = p(zE)p(TE)p(uE). (4.52)

From (4.52) and the fact that the ranges of zE , TE , and uE do not depend on each other,
we also have p(uE, zE) = p(uE)p(zE) and thus

p(TE|uE, zE) =
p(TE,uE, zE)

p(uE, zE)
=
p(zE)p(TE)p(uE)

p(uE, zE)
=
p(zE)p(TE)p(uE)

p(uE)p(zE)

= p(TE), (4.53)

which concludes the proof.
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4.E Sensitivity analysis with respect to the cooling sched-
ule of simulated annealing

We conducted sensitivity analysis of the approximated version of the proposed test with
respect to the cooling schedule of SA in the realizable case (i.e., (K0, H0) = (K,H)).
Aside from the settings of the mean vector µ0 and the cooling schedule of SA, we
employed the same settings as in Section 4.4.3. We tried the following five cooling
schedules: Tt = 10× rt, for all t ≥ 0, where r = 0.99, 0.97, 0.95, 0.93, 0.91. As for the
mean vector, we used the following setting:

µ0 = 0.6

[
vec

([
0.7 0.55
0.5 0.6

])
− 0.5

]
+ 0.5. (4.54)

Figures 4.E1 and 4.E2, respectively, show the histograms of the p-values of the proposed
and naive approximated tests for different matrix sizes and cooling schedules r. We also
plotted (i) the test statistics D

√
r of the Kolmogorov-Smirnov test [36], for the p-values of

the proposed and naive tests, and (ii) the accuracy of the approximated clustering algorithm
in Figures 4.E3 and 4.E4, respectively. Figure 4.E5 shows the FPR and TPR. From Figure
4.E4, we see that the accuracy of the SA algorithm got lower with the smaller value of r.
As shown in Figure 4.E5, the FPR was low in all the settings, while the TPR of both the
proposed and naive tests got lower with the larger value of r. A possible reason for this
result is that with small r, the SA algorithm tends to output “bad” solutions (i.e., solutions
that yield large squared residues) and thus both the proposed and naive tests can easily
reject the null hypothesis.

4.F Application of computationally efficient biclustering
algorithm for estimating the cluster memberships

The proposed approximated test based on the SA algorithm is guaranteed to converge
in probability to the global minimum solution in terms of the squared residue under the
conditions given in Section 4.3.3. However, this SA algorithm requires much computation
time before convergence. As another option, we can use some computationally efficient
biclustering algorithm for estimating the cluster memberships ĝ.

There have been proposed various fast biclustering algorithms [33, 91, 140]. Among
these algorithms, we applied the biclustering algorithm that has been proposed by Tan
and Witten [140], which is aim to minimize the loss function L(g,B;x) in (4.8). In this
algorithm, to find the local optimal solution, we iteratively estimate the block-wise mean
B and row and column cluster memberships, g(1) and g(2), respectively. The specific
algorithm of this method is given in Algorithm 3. There is no theoretical guarantee that
this algorithm converges to the global optimal solution in terms of the squared residue
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Figure 4.E1: Histograms of p-values in the null case (i.e., ĝ = g(N)) for different matrix
sizes and cooling schedules r, which was computed by the approximated version of the
proposed test.
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Figure 4.E2: Histograms of p-values in the null case (i.e., ĝ = g(N)) for different matrix
sizes and cooling schedules r, which was computed by the approximated version of the
naive test (4.37).
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Figure 4.E3: Test statistics D
√
r of the Kolmogorov-Smirnov test [36] for the p-values

of the proposed (left) and naive (right) approximated tests under the different cooling
schedule settings r.
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Figure 4.E4: The ratio of the number of the null cases (i.e., ĝ = g(N)) for each setting
of matrix size (n, p) and cooling schedule r, where ĝ is output by the approximated
clustering algorithm in Section 4.3.3. For the experiment, we used the setting of n = p.

in any way, however, under the assumption that it yields a good approximation of the
global optimal solution, we can use this algorithm instead of the proposed SA algorithm in
Section 4.3.3 for estimating ĝ.

We checked the behavior of the approximated test in a realizable case when using
Algorithm 3 for estimating the optimal cluster memberships ĝ. For finding the solution
g̃ of the truncation interval, we used Algorithm 2 as in the experiment in Section 4.4.3.
As in Section 4.4.3, we generated data matrices and applied the approximated test. Aside
from the method for estimating the cluster memberships, we used the same settings as in
Section 4.4.3. This experiment was conducted on an Intel Xeon E5-2680 v3 (12 cores @
2.50 GHz) server with 1, 007 GB of RAM.

Figures 4.F1 and 4.F2, respectively, show the histograms of the p-values of the proposed
and naive approximated tests. We also plotted (i) the test statisticsD

√
r of the Kolmogorov-

Smirnov test [36], for the p-values of the proposed and naive tests, and (ii) the accuracy
of the biclustering algorithm in [140] in Figures 4.F3 and 4.F4, respectively. Figure 4.F5
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Figure 4.E5: FPR and TPR in the realizable case with different significance rates (e.g.,
α = 0.1, 0.05, and 0.01), for the approximated version of the proposed (left) and naive
(right) statistical tests under the different cooling schedule settings r.

shows the FPR and TPR. Finally, we plotted the computation time for each setting of mean
vector µ0 and matrix size n in Figure 4.F6. From these figures, we see that the biclustering
algorithm in [140] was able to achieve accuracy comparable to or better than the proposed
SA-based algorithm in less computation time.

4.G Null distribution of test statistic with unknown vari-
ance σ2

0

We derive the null distribution of a new test statistic in case that variance σ2
0 is unknown

based on a general framework that has been proposed in [103].

Theorem 4.G.1. Under the null hypothesis, we have

T ≡ 1

c

(‖r‖2
2 − ‖r1‖2

2)

‖r1‖2
2

=
1

c

‖r2‖2
2

‖r1‖2
2

, T |{ĝ,u1,u2, z, ‖r‖2} ∼ Fd1,d2|M̂(ĝ) , (4.55)

where ‖ · ‖2 and Fd1,d2|M , respectively, denote the Euclid norm and the truncated F
distribution with parameters d1 and d2 and with truncation interval of M and

d1 ≡ |I1||J1| − 1, d2 ≡ np−K0H0 − |I1||J1|+ 1, c ≡ d1

d2

,

I(k,h) ≡ {n(j − 1) + i : i ∈ Ik, j ∈ Jh},

Q(ĝ) ≡ (Q
(ĝ)
ij )1≤i≤np,1≤j≤np, Q

(ĝ)
ij =

{
E

(ĝ)
ij if [i ∈ I(1,1)] ∩ [j ∈ I(1,1)],

0 otherwise,

Q̄(ĝ) ≡ E(ĝ) −Q(ĝ),

r1 ≡ Q(ĝ)x, r2 ≡ Q̄(ĝ)x, r ≡ E(ĝ)x,
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Figure 4.F1: Histograms of p-values in the null case (i.e., ĝ = g(N)) for different matrix
sizes, which was computed by the approximated version of the proposed test based on
the biclustering algorithm in [140].
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Figure 4.F2: Histograms of p-values in the null case (i.e., ĝ = g(N)) for different matrix
sizes, which was computed by the approximated version of the naive test (4.37) based on
the biclustering algorithm in [140].
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4. Statistical test on the estimated bicluster structure of a relational data matrix

Algorithm 3 Computationally efficient biclustering algorithm that has been proposed by
Tan and Witten [140].
Require: A mean-centered observed matrix Ā = (Āij)1≤i≤n,1≤j≤p, Āij = Aij −

1
np

∑n
i=1

∑p
j=1Aij .

Ensure: Approximated optimal set of cluster memberships ĝ = (ĝ(1), ĝ(2)).
1: Define that Îk ≡ {i : ĝ

(1)
i = k} and Ĵh ≡ {j : ĝ

(2)
j = h}.

2: Define initial row cluster memberships ĝ(1) by applying one-way k-means clustering
to the rows of matrix Ā.

3: Define initial column cluster memberships ĝ(2) by applying one-way k-means cluster-
ing to the columns of matrix Ā.

4: while true do
5: ĝ

(1)
0 ← ĝ(1), ĝ(2)

0 ← ĝ(2).
6: B̂kh ← 1

|Îk||Ĵh|

∑
i∈Îk

∑
j∈Ĵh Āij .

7: for i = 1, . . . , n do
8: ĝ

(1)
i ← arg min

k∈{1,...,K}

∑H
h=1

∑
j∈Ĵh(Āij − B̂kh)

2.

9: end for
10: B̂kh ← 1

|Îk||Ĵh|

∑
i∈Îk

∑
j∈Ĵh Āij .

11: for j = 1, . . . , p do
12: ĝ

(2)
j ← arg min

h∈{1,...,H}

∑K
k=1

∑
i∈Îk(Āij − B̂kh)

2.

13: end for
14: if ĝ(1)

0 = ĝ(1) and ĝ(2)
0 = ĝ(2) then

15: break
16: end if
17: end while

u1 ≡
1

‖r1‖2

r1, u2 ≡
1

‖r2‖2

r2,

u ≡ 1

‖r‖2

r =
1√

cT + 1
u1 +

√
cT

cT + 1
u2,

z ≡ x− r,

M̂ (ĝ) ≡

{
t ≥ 0 : ĝ ∈ M̂

[
‖r‖2

(
1√
ct+ 1

u1 +

√
ct

ct+ 1
u2

)
+ z

]}
. (4.56)

Proof. Let Q and Q̄ be fixed np × np projection matrices with the ranks of d1 and d2,
respectively, satisfying the following conditions:

• Qµ0 = Q̄µ0 = 0.
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Figure 4.F3: Test statistics D
√
r of the Kolmogorov-Smirnov test [36] for the p-values

of the proposed (left) and naive (right) approximated tests based on the biclustering
algorithm in [140].
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Figure 4.F4: The ratio of the number of the null cases (i.e., ĝ = g(N)) for each setting of
matrix size (n, p) and mean vector µ0, where ĝ is output by the biclustering algorithm in
[140]. For the experiment, we used the setting of n = p.

• There exists a set of row and column indices I ⊆ {1, . . . , np} such that Qij = 0
if i /∈ I or j /∈ I holds and Q̄ij = 0 if i /∈ {1, . . . , np} \ I or j /∈ {1, . . . , np} \ I
holds.

It must be noted that Qx and Q̄x are mutually independent from the second condition.
Based on matrices Q and Q̄, we use the following notations:

E ≡ Q+ Q̄,

rQ ≡ Qx, rQ̄ ≡ Q̄x, rE ≡ Ex,

TE ≡
1

c

(‖rE‖2
2 − ‖rQ‖2

2)

‖rQ‖2
2

=
1

c

‖rQ̄‖2
2

‖rQ‖2
2

,

uQ ≡
1

‖rQ‖2

rQ, uQ̄ ≡
1

‖rQ̄‖2

rQ̄,
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Figure 4.F5: FPR and TPR in the realizable case with different significance rates (e.g.,
α = 0.1, 0.05, and 0.01), for the approximated version of the proposed (left) and naive
(right) statistical tests based on the biclustering algorithm in [140].
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Figure 4.F6: Mean computation time for estimating the cluster memberships ĝ based on
the proposed SA algorithm and fast biclustering algorithm in [140]. The error bars indicate
the sample standard deviation of the results for 1000 trials.

uE ≡
1

‖rE‖2

rE =
1√

cTE + 1
uQ +

√
cTE

cTE + 1
uQ̄,

zE ≡ x− rE. (4.57)

From the similar discussion as in the proof of Theorem 3.1, we have

‖rQ‖2

σ0

∼ χd1 ,
‖rQ̄‖2

σ0

∼ χd2 . (4.58)

Since rQ and rQ̄ are mutually independent, so do ‖rQ‖2 and ‖rQ̄‖2. By combining this
fact, (4.57), and (4.58), we have

TE ∼ Fd1,d2 . (4.59)
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4. Statistical test on the estimated bicluster structure of a relational data matrix

Here, we show that TE and (uQ,uQ̄, zE, ‖rE‖2) are mutually independent. From the
assumption, we have

p(x) =
1√

(2πσ2
0)np

exp

[
− 1

2σ2
0

(x− µ0)>(x− µ0)

]
.

=
1√

(2πσ2
0)np

exp

[
− 1

2σ2
0

(‖rE‖2uE + zE − µ0)>(‖rE‖2uE + zE − µ0)

]
=

1√
(2πσ2

0)np
exp

[
− 1

2σ2
0

(‖rE‖2
2‖uE‖2

2 + ‖zE − µ0‖2
2)

]
(∵ u>EzE = u>Eµ0 = 0)

=
1√

(2πσ2
0)np

exp

[
− 1

2σ2
0

(‖rE‖2
2 + ‖zE − µ0‖2

2)

]
(∵ ‖uE‖2 = 1)

= exp

[
− 1

2σ2
0

(‖rE‖2
2 + ‖zE‖2

2 − 2z>Eµ0)− ‖µ0‖2
2

2σ2
0

− np

2
log
(
2πσ2

0

)]
. (4.60)

By using the notation of η ≡
[
− 1

2σ2
0

1
σ2

0
µ>0
]>

, we have

− 1

2σ2
0

(‖rE‖2
2 + ‖zE‖2

2 − 2z>Eµ0) = η>
[
‖rE‖2

2 + ‖zE‖2
2 z>E

]>
, (4.61)

and thus (‖rE‖2
2 + ‖zE‖2

2, z
>
E ) are complete and sufficient for η from Proposition 2.1 in

[136]. Since there is a one-to-one correspondence between (zE, ‖rE‖2) and (‖rE‖2
2 +

‖zE‖2
2, z

>
E ), (zE, ‖rE‖2) are also complete and sufficient for η.

Next, we show that (TE,uQ,uQ̄) are ancillary for η. To prove this, we first show that
TE and (uQ,uQ̄) are mutually independent. We use the following notations:

yQ ≡ D̃QVQx ∈ Rd1 , yQ̄ ≡ D̃Q̄VQ̄x ∈ Rd2 , yE ≡ D̃EVEx ∈ RK0H0 , (4.62)

where Q = V >Q DQVQ, Q̄ = V >
Q̄
DQ̄VQ̄, and I − E = V >E DEVE are singular value

decompositions of matrices Q, Q̄, and I − E, respectively, and

D̃Q ≡
[
Id1 O(d1,np−d1)

]
∈ Rd1×np,

D̃Q̄ ≡
[
Id2 O(d2,np−d2)

]
∈ Rd2×np,

D̃E ≡
[
IKH O(K0H0,np−K0H0)

]
∈ RK0H0×np. (4.63)

It must be noted that we have

yQ ∼ N(0, σ2
0Id1), yQ̄ ∼ N(0, σ2

0Id2), yE ∼ N(D̃EVEµ0, σ
2
0IK0H0). (4.64)

From (4.60), we have

p(x) = p(yQ,yQ̄,yE)
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=
1√

(2πσ2
0)np

exp

[
− 1

2σ2
0

(‖yQ‖2
2 + ‖yQ̄‖2

2 + ‖yE − D̃EVEµ0‖2
2)

]
= p(yQ)p(yQ̄)p(yE), (4.65)

which results in that yQ, yQ̄, and yE are independent. Since rQ = V >Q D̃
>
QyQ, rQ̄ =

V >
Q̄
D̃>
Q̄
yQ̄, and zE = V >E D̃

>
EyE hold, rQ, rQ̄, and zE are also independent. Based on a

similar discussion as in Appendix 4.D, ‖rQ‖2 and uQ are mutually independent, and so
are ‖rQ̄‖2 and uQ̄. Therefore, we have

p(‖rQ‖2,uQ, ‖rQ̄‖2,uQ̄, zE) = p(‖rQ‖2,uQ)p(‖rQ̄‖2,uQ̄)p(zE)

=p(‖rQ‖2)p(uQ)p(‖rQ̄‖2)p(uQ̄)p(zE)

=p(‖rQ‖2, ‖rQ̄‖2)p(uQ,uQ̄)p(zE), (4.66)

which results in that (‖rQ‖2, ‖rQ̄‖2) and (uQ,uQ̄) are mutually independent. Based on

this fact, TE = 1
c

‖rQ̄‖22
‖rQ‖22

and (uQ,uQ̄) are mutually independent. By using this result
and the fact that uQ and uQ̄ are also mutually independent, we have p(TE,uQ,uQ̄) =
p(TE)p(uQ)p(uQ̄). Based on a similar discussion as in Appendix 4.D about p(uQ) and
p(uQ̄) and the fact that TE ∼ Fd1,d2 from (4.59), (TE,uQ,uQ̄) are ancillary for η. There-
fore, (TE,uQ,uQ̄) and (zE, ‖rE‖2) are mutually independent from Basu’s theorem [10].

By combining the above results, we have

p(TE|uQ,uQ̄, zE, ‖rE‖2) =
p(TE,uQ,uQ̄, zE, ‖rE‖2)

p(uQ,uQ̄, zE, ‖rE‖2)

=
p(TE,uQ,uQ̄)p(zE, ‖rE‖2)

p(uQ,uQ̄, zE, ‖rE‖2)
=
p(TE,uQ,uQ̄)p(zE, ‖rE‖2)

p(uQ,uQ̄)p(zE, ‖rE‖2)

=
p(TE,uQ,uQ̄)

p(uQ,uQ̄)
= p(TE). (4.67)

To derive the third equation, we used the fact that (uQ,uQ̄) and (zE, ‖rE‖2) are mu-
tually independent based on a similar discussion as above. From (4.67), TE and
(uQ,uQ̄, zE, ‖rE‖2) are mutually independent.

By combining the above fact and (4.59), we have

TE|uQ,uQ̄, zE, ‖rE‖2 ∼ Fd1,d2 . (4.68)

Next, we consider adding a condition of selection event of ĝ to the distribution of
TE|uQ,uQ̄, zE, ‖rE‖2 in (4.68). Given (uQ,uQ̄, zE, ‖rE‖2), the result of selection de-

pends solely on the value of TE , since x = ‖rE‖2

(
1√

cTE+1
uQ +

√
cTE
cTE+1

uQ̄

)
+zE holds.

Therefore, adding the selection condition to (4.68) corresponds to truncation of TE to the
region where M̂

[
‖rE‖2

(
1√

cTE+1
uQ +

√
cTE
cTE+1

uQ̄

)
+ zE

]
= ĝ holds:

TE|uQ,uQ̄, zE, ‖rE‖2, ĝ ∼ Fd1,d2|M̂(ĝ)(E). (4.69)

129



4. Statistical test on the estimated bicluster structure of a relational data matrix

Third, we consider replacing Q and Q̄ in (4.69) with Q(ĝ) and Q̄(ĝ), which is the output
by clustering algorithm A based on the data vector x. Based on a similar discussion as in
Appendix 4.B, the matrices Q(ĝ) and Q̄(ĝ) are also projection matrices with the ranks of d1

and d2, respectively, and they satisfy the following conditions:

• Q(ĝ)µ0 = Q̄(ĝ)µ0 = 0.

• There exists a set of row and column indices I ⊆ {1, . . . , np} such that Q(ĝ)
ij = 0

if i /∈ I or j /∈ I holds and Q̄(ĝ)
ij = 0 if i /∈ {1, . . . , np} \ I or j /∈ {1, . . . , np} \ I

holds.

Since matrices Q(ĝ) and Q̄(ĝ) depend on the data vector x only through the choice of ĝ,
under the condition that the selection result ĝ is given, (4.69) still holds with matrices Q(ĝ)

and Q̄(ĝ), which concludes the proof.
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Chapter 5

Matrix reordering method for
capturing flexible structural patterns in
a relational data matrix

Matrix reordering is a task to permute the rows and columns of a given observed matrix
such that the resulting reordered matrix shows meaningful or interpretable structural
patterns. Most existing matrix reordering techniques share the common processes of
extracting some feature representations from an observed matrix in a predefined manner,
and applying matrix reordering based on it. However, in some practical cases, we do
not always have prior knowledge about the structural pattern of an observed matrix. To
address this problem, we propose a new matrix reordering method, called deep two-way
matrix reordering (DeepTMR), using a neural network model. The trained network can
automatically extract nonlinear row/column features from an observed matrix, which
can then be used for matrix reordering. Moreover, the proposed DeepTMR provides the
denoised mean matrix of a given observed matrix as an output of the trained network.
This denoised mean matrix can be used to visualize the global structure of the reordered
observed matrix. We demonstrate the effectiveness of the proposed DeepTMR by applying
it to both synthetic and practical datasets.

5.1 Introduction
Matrix reordering or seriation is a task to permute the rows and columns of a given
observed matrix such that the resulting matrix shows meaningful or interpretable structural
patterns [11, 98]. Such reordering-based matrix visualization techniques provide an
overview of the various practical data matrices, including gene expression data [28, 45],
document-term relationship data [15], and archaeological data [68] (e.g., the relationships
between tombs and objects in Egypt [121]). In particular, we focus on the two-mode
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two-way matrix reordering problem, where an observed matrix or relational data matrix
A ∈ Rn×p represents the relationships between two generally different objects (e.g., rows
for documents and columns for words) and the permutations of rows and columns are not
required to be identical, even if the row and column sizes are identical (i.e., n = p).

As discussed by [11], most matrix reordering techniques proposed so far share the
common processes of extracting “intermediate objects” or feature representations from
an observed matrix in a predefined manner, and applying matrix reordering based on the
extracted intermediate objects. For instance, under biclustering-based methods [107, 141],
which is one of the seven categories defined by [11], we assume that an observed matrix
consists of homogeneous submatrices or biclusters, in which the entries are generated in an
i.i.d. sense. Based on this assumption, we first estimate the locations (i.e., a set of row and
column indices) of such biclusters and then reorder the rows and columns of the original
matrix according to the estimated bicluster structure. In this example, the intermediate
objects correspond to the bicluster assignments for the rows and columns.

However, in some practical cases, we do not always have prior knowledge about the
structural pattern of a given observed matrix, or what input features should be used as
intermediate objects. In such cases, we need to apply multiple methods and compare
the results to examine which method is more suitable for analyzing the given observed
matrix. Therefore, the procedure of feature extraction from an observed matrix, as well as
row/column reordering, should ideally be automatically fitted to a given observed matrix.

To address this problem, we propose a new matrix reordering method, called deep
two-way matrix reordering (DeepTMR), using a neural network model. The proposed
DeepTMR consists of a neural network model that can be trained in an end-to-end manner
and the shallower part (i.e., encoder) of the trained network can automatically extract
row/column features for matrix reordering based on the given observed matrix. The
expressive power of deep neural network models has been extensively studied in the
literature, including the well-known universal approximation theorems [38, 52, 70]. To
exploit the flexibility of neural networks for feature extraction, we transform the matrix
reordering problem into a parameter estimation of the neural network, which maps row
and column input features to each entry value of the observed matrix. By using an
autoencoder-like neural network architecture, we train the proposed DeepTMR to extract
one-dimensional row/column features from a given observed matrix, such that each entry
of the observed matrix can be successfully reconstructed based on the extracted features.
Then, the rows and columns are reordered based on the row/column features extracted by
the trained network.

The remainder of this chapter proceeds as follows. We first review the existing matrix
reordering methods and describe the differences between them and the proposed DeepTMR
in Section 5.2. Then, we explain how we construct two-way matrix reordering using the
proposed DeepTMR in Section 5.3. In Section 5.4, we experimentally demonstrate the
effectiveness of DeepTMR by applying it to both synthetic and practical data matrices.
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Finally, we discuss the results and future work directions in Section 5.5 and conclude with
Section 5.6.

5.2 Related works
According to a recent survey [11], matrix reordering algorithms can be roughly classi-
fied into seven categories: Robinsonian, spectral, dimension-reduction, heuristic, graph-
theoretic, biclustering, and interactive-user-controlled. Among them, we refer to the
spectral and dimension-reduction methods, which are based on singular value decompo-
sition (SVD) [51, 100] and multidimensional scaling (MDS) [127, 139]. These methods
are particularly relevant to the proposed DeepTMR in that we assume a low-dimensional
latent structure for an observed matrix. In the Robinsonian and graph-theoretic methods,
the general purpose is to identify the optimal row/column orders for a given loss func-
tion [9, 24, 42, 126, 166]. However, as to obtain the global optimal solution for such
a combinatorial optimization problem becomes infeasible with increasing matrix size,
we need approximated algorithms for outputting local optimal solutions. For instance,
finding the optimal node reordering solution for a given arbitrary graph based on bandwidth
minimization or profile minimization has been shown to be NP-hard [96, 99].

Conversely, under the spectral and dimension-reduction methods (as well as the pro-
posed DeepTMR), instead of formulating matrix reordering as a combinatorial optimization
problem, we assume that an observed matrix can be well approximated by a model with a
low-dimensional latent structure, estimate the parameter of this model, and interpret the
estimation result as a feature of matrix reordering. By this formulation, we can avoid di-
rectly solving a combinatorial optimization problem on row/column reordering. It must be
noted that biclustering-based methods are based on such a low dimensionality assumption.
However, unlike the proposed DeepTMR and the dimension-reduction-based methods,
they focus on detecting biclusters (i.e., a set of submatrices with coherent patterns) for an
observed matrix, where the row/column orders within a bicluster are not considered in
general, as also pointed out by [51].

Another advantage of the spectral and dimension-reduction methods is that some
methods, including the proposed DeepTMR, can be used to extract the “denoised” mean
information of a given observed matrix A ∈ Rn×p. Assuming that an observed matrix
is generated from a statistical model, the true purpose of matrix reordering is to reveal
the row/column orders of the denoised mean matrix, not to maximize the similarities
between the adjacent rows and columns in the original data matrix with noise. The spectral
and dimension-reduction methods address this problem, whereas the Robinsonian and
graph-theoretic methods do not. In particular, in the following examples, the SVD-based
method [100] (as well as the proposed DeepTMR) provides us with a denoised mean matrix
of a given relational data matrix. For instance, based on the method of [100], we derive
a rank-one approximation of the original matrix A = rc>, where r ∈ Rn and c ∈ Rp.
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In this case, we can expect that approximated observed matrix rc> preserves the global
structure of the original matrix A, whereas the noise in each entry is removed. Such a
denoised mean matrix can be used to visualize the global structure of an observed matrix,
together with the reordered data matrix.

In the following two paragraphs, we refer to the basic matrix reordering methods based
on SVD and MDS. Each of these methods is based on a specific assumption regarding
the low-dimensionality of an observed matrix. The main advantages of the proposed
DeepTMR for these conventional methods are as follows.

• The proposed DeepTMR can extract the low-dimensional row/column features from
an observed matrix more flexibly than other methods. Unlike SVD-based methods,
DeepTMR can be applied without a bilinear assumption. Moreover, unlike MDS, it
does not require the specification of a distance function in advance to appropriately
represent the relationships (i.e., proximity) between the pairs of rows/columns.
The row/column encoder of DeepTMR, which applies a nonlinear mapping from a
row/column to a one-dimensional feature, is automatically obtained by training a
neural network model.

• Unlike MDS, DeepTMR can provide us with the denoised mean matrix of a given
observed matrix, as well as row/column orders. Such a denoised mean matrix can be
obtained as an output of the trained neural network and can be used to visualize the
global structure of the reordered observed matrix.

SVD - (1) Rank-one approximation (SVD-Rank-One) Several studies have proposed
utilizing SVD for matrix reordering [51, 100]. For instance, [100] have proposed to model
an n× p observed matrix A with the following bilinear form:

r = (ri)1≤i≤n, c = (cj)1≤j≤p, E = (Eij)1≤i≤n,1≤j≤p,

A = rc> + E, (5.1)

where r and c are the parameters corresponding to the rows and columns, respectively,
and E is a residual matrix. Based on the above model, we estimate parameters r and c as
follows:

θ ≡
[
r1 · · · rn c1 · · · cp

]>
,

θ̂ = arg min
θ∈Rn+p

‖A− rc>‖2
F. (5.2)

It can be proven that the optimal solution of (5.2) is given by r̂ =
√
λ1u1 and ĉ =

√
λ1v1,

where λ1 is the largest singular value of matrix A and u1 ∈ Rn and v1 ∈ Rp are the
corresponding row and column singular vectors, respectively. Therefore, the order of
the estimated row and column parameters r̂ and ĉ can be respectively used for matrix
reordering.
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SVD - (2) Angle between the top two singular vectors (SVD-Angle) Friendly [51]
has pointed out that the structure of a given data matrix cannot always be represented
sufficiently by a single principal component and has proposed to define the row/column
orders using the angle between the top two singular vectors. Under this method, an
observed matrix A is first mean-centered and scaled as follows:

Ã(0) = (Ã
(0)
ij )1≤i≤n,1≤j≤p, Ã

(0)
ij = Aij −

1

p

p∑
j=1

Aij,

Ã = (Ãij)1≤i≤n,1≤j≤p, Ãij =
Ã

(0)
ij√

1
p

∑p
j=1

(
Ã

(0)
ij

)2
. (5.3)

Let ui be the row singular vector of scaled observed matrix Ã which corresponds to the
ith largest singular value. Angle αi between the top two row singular vectors is given by:

αi = tan−1(ui2/ui1) + πI[ui1 ≤ 0], (5.4)

where I[·] is an indicator function. The row order is determined by splitting angles {αi} at
the largest gap between two adjacent angles. The column order can then be defined in the
same way as the row one, by replacing observed matrix Ã with transposed matrix Ã>.

MDS MDS is also a dimension reduction method that can be used for matrix reordering
[127, 139]. Under MDS, we use a proximity matrix, each entry representing the distance
between a pair of rows or columns. For instance, we can define a proximity matrix D for
rows based on a given observed matrix A ∈ Rn×p as follows:

D = (Dii′)1≤i,i′≤n, Dii′ =

(
n∑
j=1

(Aij − Ai′j)2

) 1
2

, i, i′ = 1, . . . , n. (5.5)

The purpose of MDS is to obtain a k-dimensional representation, Ã ∈ Rn×k, of the original
observed matrix, A, based on matrix D, where k ≤ n, p. First, we define the following
matrices:

D̃ = (D̃ii′)1≤i,i′≤n, D̃ii′ = D2
ii′ , i, i′ = 1, . . . , n,

Q = (Qii′)1≤i,i′≤n, Qii′ = 1, i, i′ = 1, . . . , n,

B = −1

2

(
I − n−1Q

)
D̃
(
I − n−1Q

)
. (5.6)

It can be easily shown that B is a semi-positive definite matrix. Let λi and vi be the
ith largest eigenvalue of matrix B and the corresponding eigenvector, respectively. The
k-dimensional representation Ã of matrix A is given by:

Ã =
[
v1 · · · vk

]
diag(

√
λ1, . . . ,

√
λk). (5.7)
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It has been proven that solution Ã minimizes the Strain, which is given by L(Ã) =
‖ÃÃ> −B‖2

F [20]. By setting k = 1, we can obtain the one-dimensional row feature of
observed matrix A, which can be used to determine the row order. The column order can
be defined in the same way as the row one, by replacing observed matrix A with transposed
matrix A>.

5.3 Main results: Deep two-way matrix reordering
Given an n× p observed matrix A ∈ Rn×p, our purpose is to reorder the row and column
indices of matrix A based on a set of row and column permutations π = (πrow, πcolumn)
such that the resulting matrix, A(π), exhibits some structure (e.g., block structure), as
shown in Figure 1.

Figure 2 shows the entire network architecture of the proposed DeepTMR. To extract
the row and column features of the given matrix A, we propose a new neural network
model, DeepTMR, which has an autoencoder-like architecture. Under DeepTMR, the
(i, j)th entry Aij of the observed matrix A is estimated based on its row and column data
vectors, r(i) and c(j), respectively, which are given by:

r(i) = (r
(i)
j′ )1≤j′≤p, r

(i)
j′ = Aij′ ,

c(j) = (c
(j)
i′ )1≤i′≤n, c

(j)
i′ = Ai′j. (5.8)

Then, from these input data vectors, the features of the ith row and the jth column, gi
and hj , respectively, are extracted by row and column encoder networks:

gi = ROWENC
(
r(i)
)
, (5.9)

hj = COLUMNENC
(
c(j)
)
. (5.10)

Here, ROWENC : Rp 7→ R and COLUMNENC(·) : Rn 7→ R can be implemented
as arbitrary neural network architectures, provided that they have a fixed number of
units m and m̃ in the input and output layers, respectively, that is, (m, m̃) = (p, 1) for
ROWENC(·) and (m, m̃) = (n, 1) for COLUMNENC(·).

From these row and column features, the (i, j)th entry,Aij , is estimated using a decoder
network:

Âij = DEC (gi, hj) , (5.11)

where DEC : R2 7→ R can be implemented as an arbitrary neural network architecture
with two input layer units and one output layer unit.

By using mini-batch learning, the entire network is trained such that the following
mean squared error with the L2 regularization term is minimized:

L =
1

|It|
∑

(i,j)∈It

(Aij − Âij)2 + λ‖w‖2
2, (5.12)
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Figure 1: Matrix reordering problem. Given an observed matrix A (left), the proposed
DeepTMR reorders the rows and columns of matrix A such that the reordered input matrix
(center) shows a meaningful or interpretable structure. The proposed DeepTMR provides
us with the denoised mean matrix of the reordered matrix (right) as the output of a trained
network, as well as row/column ordering.
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Figure 2: Model architecture of DeepTMR. Given an observed matrix A, DeepTMR is
trained to reconstruct each entry Aij from one-dimensional row and column features,
which are extracted from the ith row and the jth column of matrix A. After training the
network, we reorder the rows and columns of matrix A based on the row and column
features extracted in the middle layer.
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where It is a set of row and column indices (i, j) in a mini-batch of the tth iteration, λ is a
hyperparameter, and w is a vector of parameters for the entire network1.

Finally, we define matrix A(π) with the reordered rows and columns. By using the
trained row and column encoder networks, we define the following two feature vectors:

g =
[
ROWENC

(
r(1)
)

. . . ROWENC
(
r(n)
)]>

,

h =
[
COLUMNENC

(
c(1)
)

. . . COLUMNENC
(
c(p)
)]>

. (5.13)

Because the network has been trained to recover each entry value from only the corre-
sponding row and column data vectors, vectors g and h can be expected to reflect the
row and column features of the original matrix, A. Based on this discussion, we define
πrow as a permutation of {1, 2, . . . , n} that represents the ascending order of the entries
of g (i.e., gπrow(1) ≤ gπrow(2) ≤ · · · ≤ gπrow(n) holds). Similarly, we define πcolumn as
a permutation of {1, 2, . . . , p} representing the ascending order of the entries of h (i.e.,
hπcolumn(1) ≤ hπcolumn(2) ≤ · · · ≤ hπcolumn(p) holds). Using these row and column permuta-
tions, we respectively obtain the reordered row and column features, g(π) and h(π), and the
reordered observed and estimated matrices, A(π) and Â(π), as follows:

g(π) = (g
(π)
i )1≤i≤n, g

(π)
i = gπrow(i),

h(π) = (h
(π)
j )1≤j≤p, h

(π)
j = hπcolumn(j),

A(π) = (A
(π)
ij )1≤i≤n,1≤j≤p, A

(π)
ij = Aπrow(i)πcolumn(j),

Â(π) = (Â
(π)
ij )1≤i≤n,1≤j≤p, Â

(π)
ij = Âπrow(i)πcolumn(j). (5.14)

5.4 Experiments
To verify the effectiveness of DeepTMR, we applied it to both synthetic and practical rela-
tional data matrices and plotted their latent row-column structures. For all the experiments:

• We initialized the weights and biases of the linear layers using the method described
by [56]. In other words, each weight value that connects the lth and (l+1)th layers is
initialized based on a uniform distribution on interval

[
−1/
√
m(l), 1/

√
m(l)

]
, where

m(l) is the number of units in the lth layer. As for the biases, we set their initial
values to zero.

• We used the Adam optimizer [78] with β1 = 0.9, β2 = 0.999, and ε = 1.0× 10−8

for training the DeepTMR network2.
1In the experiments in Section 5.4, we define w as a vector of all weights and biases in the linear layers

of the encoder and decoder networks.
2As for learning rates η, we used different settings for each experiment, as shown in Table 1.
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5.4.1 Preliminary experiment using synthetic datasets
First, we generated three types of synthetic datasets with latent row and column structures,
applied the DeepTMR, and checked whether we could successfully recover the latent
structure of the given observed matrices. For all three models, we set the matrix size to
(n, p) = (100, 100).

Latent block model First, we generated a matrix based on a latent block model (LBM)
[5, 58, 63]. Under an LBM, we assume that each row and column of a given matrix,
Ā(0) ∈ Rn×p, belong to one of the K row and H column clusters, respectively. Let ci
and dj be the row cluster index of the ith row and the column cluster index of the jth
column of matrix Ā(0). In this experiment, we set the number of row and column clusters
at (K,H) = (3, 3), and define the row and column cluster assignments as follows:

n(0) = ceil
( n
K

)
, p(0) = ceil

( p
H

)
,

c1 = · · · = cn(0) = 1, cn(0)+1 = · · · = c2n(0) = 2, . . . , c(K−1)n(0)+1 = · · · = cn = K,

d1 = · · · = dp(0) = 1, dp(0)+1 = · · · = d2p(0) = 2, . . . , d(H−1)p(0)+1 = · · · = dp = H,

(5.15)

where ceil(·) is the ceiling function. Based on the above definitions, under an LBM,
we assume that each entry of matrix Ā(0) is independently generated from a block-wise
identical distribution. Specifically, we generate each (i, j)th entry Ā(0)

ij based on a Gaussian
distribution with mean Bcidj and standard deviation σ given by:

B =

0.9 0.4 0.8
0.1 0.6 0.2
0.5 0.3 0.7

 , σ = 0.05. (5.16)

Striped pattern model To show that the DeepTMR can reveal a latent row-column
structure that is not necessarily represented as a set of rectangular blocks, we also used
the striped pattern model (SPM). An SPM is similar to an LBM, in that we assume that
each entry of a given matrix Ā(0) ∈ Rn×p belongs to one of the K clusters and it is
independently generated from a cluster-wise identical distribution. However, unlike an
LBM, we assume that the cluster assignments show a striped pattern rather than a regular
grid one. Specifically, let cij be the cluster index of the (i, j)th entry Ā(0)

ij of matrix Ā(0).
Under an SPM, the cluster assignment is given by:

n(0) = ceil

(
n+ p

K

)
,

cij = floor

(
i+ j − 2

n(0)

)
+ 1, i = 1, . . . , n, j = 1, . . . , p. (5.17)
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Based on the above cluster assignments with a striped pattern, we generated each (i, j)th
entry Ā(0)

ij of matrix Ā(0) based on a Gaussian distribution with mean bcij and standard
deviation σ given by:

b =
[
0.9 0.6 0.3 0.1

]
, σ = 0.05. (5.18)

Gradation block model Under the above LBM and SPM, we assume that each entry is
generated from a cluster-wise identical distribution. In the gradation block model (GBM),
we consider a different case, where a matrix Ā(0) ∈ Rn×p contains a block or submatrix
with a gradation (i.e., continuous) pattern. Specifically, we assume that the (i, j)th entry
Ā

(0)
ij of matrix Ā(0) is generated from a Gaussian distribution with mean Bij and standard

deviation σ, being given by:

n(0) = ceil
(n

2

)
, p(0) = ceil

(p
2

)
,

Bij =

{
0.1 if

(
i > n(0)

)
∪
(
j > p(0)

)
,

0.8(j−1)

p(0)−1
+ 0.1 if

(
i ≤ n(0)

)
∩
(
j ≤ p(0)

)
,

i = 1, . . . , n, j = 1, . . . , p,

σ = 0.05. (5.19)

For all the above three models, once we generated matrix Ā(0), we define matrix Ā as
follows:

Ā = (Āij)1≤i≤n,1≤j≤p, Āij =
Ā

(0)
ij −min(i,j)=(1,1),...,(n,p) Ā

(0)
ij

max(i,j)=(1,1),...,(n,p) Ā
(0)
ij −min(i,j)=(1,1),...,(n,p) Ā

(0)
ij

.

(5.20)

By definition, the maximum and minimum entries of matrix Ā are one and zero, respec-
tively. Then, we applied random permutation to the rows and columns of matrix Ā to obtain
observed matrix A. Finally, we applied the DeepTMR to observed matrix A and checked
whether it could recover the latent row-column structure of matrix A. The hyperparameter
settings for training the DeepTMR are listed in Table 1.

Figures 3, 4, and 5 show the results of the LBM, SPM, and GBM, respectively. For each
figure, we plotted matrix Ā; observed matrixA; reordered observed and estimated matrices,
A(π) and Â(π), respectively; row and column feature vectors, g and h, respectively; and
their reordered versions, g(π) and h(π). From the figures of reordered matrices A(π) and
Â(π), we see that the DeepTMR can successfully extract the latent row-column structures
(i.e., block structure, striped pattern, and gradation block structure) of given observed
matrices. Particularly, the figures of the reordered output matrices, Â(π), show that the
outputs of the DeepTMR network reflect the global structures of the given observed
matrices. It must be noted that the order of the row and column indices in matrices
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Table 1: Experimental settings of learning rate η, number of epochs T (the total num-
ber of iterations is given by ceil[Tnp/|I|]), regularization hyperparameter λ, number of
sets of row and column indices in a mini-batch |I|, and number of units in ROWENC,
COLUMNENC, and DEC networks,mROWENC,mCOLUMNENC, andmDEC, respectively
(from input to output).

η T λ |I| mROWENC mCOLUMNENC mDEC

Sec. 5.4.1, LBM

1.0× 10−2

1× 102

1.0× 10−10

2× 102 [
p, 10, 1

] [
n, 10, 1

] [
2, 10, 1

]Sec. 5.4.1, SPM
Sec. 5.4.1, GBM
Sec. 5.4.2, DGM

2× 102

Sec. 5.4.3
5× 102

Sec. 5.4.4 1× 102

A(π) and Â(π) that represents the latent structure is not always unique and, thus, it is
not necessarily identical with that of original matrix A, as shown in these figures. For
instance, the latent structures of the three models (i.e., LBM, SPM, and GBM) can also be
represented by flipping or reversing the order of the row or column indices. Moreover, for
an LBM, the arbitrary orders of the row or column clusters are permitted for representing
the latent block structure.

From the figures of vectors g(π) and h(π), we see they capture the one-dimensional
features of each row and column. For example, in the LBM case in Figure 3, the row
(column) feature values in the same row (column) cluster are more similar than those in the
mutually different row (column) clusters. In the GBM case in Figure 5, the row features
are divided into two groups: one which contains the gradation pattern block and the other
which does not. As for the column features, their values increase continuously within the
gradation pattern block, whereas the remaining feature values are almost constant.

5.4.2 Comparison with existing matrix reordering methods
We also conducted a quantitative comparison between DeepTMR and the existing ma-
trix reordering methods introduced in Section 5.2. For comparison, we chose the
spectral/dimension-reduction methods based on SVD-Rank-One, SVD-Angle, and MDS,
whose algorithms are described in Section 5.2. For the quantitative evaluation of these
methods, we generated synthetic data matrices with true row/column orders, applied pro-
posed and conventional methods, and compared their accuracies in matrix reordering. For
simplicity, we considered the following data matrices, whose true row/column orders can
be represented uniquely, except for row/column flipping.

Diagonal gradation model (DGM) We generated a matrix Ā(0) ∈ Rn×p with the follow-
ing diagonal gradation pattern, setting the matrix size at (n, p) = (100, 100). We assumed
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Figure 3: Results of the LBM. Top figures: original matrix Ā, observed matrix A obtained
by applying random row-column permutation to Ā, reordered input matrix A(π), and
reordered output matrix Â(π) (left to right). Bottom figures: Encoded row and column
features g and h and reordered row and column features g(π) and h(π) (left to right).
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Figure 4: Results of the SPM for matrices Ā, A, A(π), Â(π), and vectors g, h, g(π), h(π).
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Figure 5: Results of the GBM for matrices Ā, A, A(π), Â(π), and vectors g, h, g(π), h(π).

that the (i, j)th entry Ā(0)
ij of matrix Ā(0) is generated from a Gaussian distribution with

mean Bij given by:

Bij = 0.9− 0.8
|i− j|

max{n, p}
, i = 1, . . . , n, j = 1, . . . , p. (5.21)

For the standard deviation, we tried the following 10 settings: σt = 0.03t for t = 1, . . . , 10.
As in Section 5.4.1, we defined matrix Ā using matrix Ā(0) based on (5.20), and applied
a random permutation to the rows and columns of matrix Ā to obtain observed matrix
A. For each setting of t, we generated 10 observed matrices and applied the DeepTMR,
SVD-Rank-One, SVD-Angle, and MDS. Because the training result of the DeepTMR
depends on its initial parameters and the selection of the mini-batch for each iteration, for
the same observed matrix, A, we trained the DeepTMR model five times and adopted the
trained model with the minimum mean training loss for the last 100 iterations. The other
hyperparameter settings for training the DeepTMR are listed in Table 1.

To quantitatively evaluate these methods, we computed the following matrix reordering
error. Let P ∈ Rn×p and P̄ ∈ Rn×p be the population mean matrices of the reordered
versions of matrix Ā(0) (i.e., before normalization), which have the same row and col-
umn orders as matrices A and Ā, respectively (i.e., P̄ = B). Let πrow(0) and πcolumn(0),
respectively be the permutations of {1, 2, . . . , n} and {1, 2, . . . , p}, which indicate the
order of the rows and columns determined by each method. The flipped versions of
these orders are defined as πrow(1) and πcolumn(1) (i.e., πrow(0)(i) = πrow(1)(n − i + 1)
and πcolumn(0)(j) = πcolumn(1)(p − j + 1) for i = 1, . . . , n and j = 1, . . . , p). Let π̄row
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and π̄column, respectively be the order of the rows and columns that reconstruct original
(correctly ordered) matrix Ā. Both πrow(0) = π̄row and πrow(1) = π̄row indicate that the
correct row ordering is obtained. Based on this fact, we redefine the row/column orders,
πrow and πcolumn, obtained by each method as follows:

(k̂, ĥ) = arg min
(k,h)∈{(0,0),(0,1),(1,0),(1,1)}

1

np

n∑
i=1

p∑
j=1

(
P̄ij − Pπrow(k)(i)πcolumn(h)(j)

)2
,

πrow = πrow(k̂), πcolumn = πcolumn(ĥ). (5.22)

Finally, we define the matrix reordering error E as:

E =
1

np

n∑
i=1

p∑
j=1

(
P̄ij − Pπrow(i)πcolumn(j)

)2
. (5.23)

Figures 6 and 7 respectively show the examples of matrices Ā and A with different
levels of noise standard deviation σt, where t = 1, . . . , 10. Figures 8, 9, 10, and 11
respectively show the examples of the reordered observed matrixA(π) based on row/column
orderings (πrow, πcolumn) obtained by DeepTMR, SVD-Rank-One, SVD-Angle, and MDS.
Figure 12 shows the reordered output matrix Â(π) for the DeepTMR. From these figures,
the DeepTMR and MDS can relatively successfully reorder the observed matrix compared
to the SVD-based methods. Figure 13 shows the matrix reordering error of the DeepTMR,
SVD-Rank-One, SVD-Angle, and MDS. This figure shows that the DeepTMR can achieve
the minimum matrix reordering error in this setting compared to the other three methods.

5.4.3 Experiment using the divorce predictors dataset
Next, we applied the DeepTMR to the divorce predictors dataset [162, 163] from the
UCI Machine Learning Repository [44]. The original data matrix, A(0), consists of 170
rows and 54 columns, which represent the questionnaire respondents and their attributes,
respectively. Each entry A(0)

ij ∈ {0, 1, . . . , 4} shows the Divorce Predictors Scale (DPS),
with a higher value indicating a higher divorce risk. The meaning of the five-factor scale
is as follows: 0 for “Never,” 1 for “Rarely,” 2 for “Occasionally,” 3 for “Often,” and 4
for “Always,” for Attributes 31 to 54, while they are reversed (i.e., 0 for “Always” and 4
for “Never”) for Attributes 1 to 30. The meaning of each attribute index of this dataset is
provided in Appendix 5.B.

As in Section 5.4.1, we defined observed matrix A based on (5.20) by replacing Ā(0)

and Ā with A(0) and A, respectively. Then, we applied DeepTMR to observed matrix A
and checked the latent row-column structure of matrix A extracted by the DeepTMR. The
hyperparameter settings for training the DeepTMR are listed in Table 1.

Figure 14 shows the results of matrices A, A(π), Â(π), and vectors g, h, g(π), h(π)

for this dataset. For each row in matrices A, A(π), and Â(π), the class labels “divorced”
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Figure 6: Examples of matrix Ā for the DGM with different levels of noise standard
deviation.
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Figure 7: Examples of observed matrix A for the DGM with different levels of noise
standard deviation.
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Figure 8: Examples of reordered input matrix A(π) for the DGM with different levels of
noise standard deviation (DeepTMR).
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Figure 9: Examples of reordered input matrix A(π) for the DGM with different levels of
noise standard deviation (SVD-Rank-One).
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Figure 10: Examples of reordered input matrix A(π) for the DGM with different levels of
noise standard deviation (SVD-Angle).
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Figure 11: Examples of reordered input matrix A(π) for the DGM with different levels of
noise standard deviation (MDS).
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Figure 12: Examples of reordered output matrix Â(π) for the DGM with different levels of
noise standard deviation (DeepTMR).
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Figure 13: Matrix reordering error of the DeepTMR, SVD-Rank-One, SVD-Angle, and
MDS. The error bars indicate the sample standard deviations of the results for 10 trials.

or “married” are shown in different colors on the left-hand side of the matrix. From the
reordered input and output matrices A(π) and Â(π), we respectively see the latent row-
column structure of the observed matrix. Roughly, the DPS takes higher values in the
“divorced” rows than in the “married” ones. However, some divorced participants show
relatively low DPS for some attributes (e.g., Attributes 21, 22, and 28). We also see that
both the divorced and married participants show relatively high DPS for Attributes 43 and
48, whereas most participants show relatively low DPS for Attributes 6 and 7, both items
referring to how to behave at home with a partner.

Figure 15 shows the results obtained with SVD-Rank-One, SVD-Angle, and MDS.
From this figure, we see that the SVD-based methods (i.e., SVD-Rank-One and SVD-
Angle) did not yield any meaningful structure, aside from some groups of rows with similar
values. The result of MDS was similar to that of the DeepTMR, however, it did not provide
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denoised mean information of the reordered matrix (i.e., matrix Â(π)) as in Figure 14.

5.4.4 Experiment using the metropolis traffic census dataset

We also applied the DeepTMR to the metropolis traffic census dataset from e-Stat [1]. The
rows and columns of the relational data matrix of this dataset represent the locations of
metropolitan areas in Japan, each (i, j)th entry showing the number of people commuting
(to work or school) one way from the ith location to the jth location per day. We removed
the rows and columns that represent unknown locations (e.g., “unknown below Tokyo”)
and the total of multiple locations (e.g., “total of three wards in central Tokyo”) from the
original dataset. Let A(0) ∈ Rn×p be the matrix after removing the rows and columns,
where n = p = 249. To alleviate the significant differences between entry values and
consider relatively small entry values, we defined matrix A(1) ∈ Rn×p, whose entries are
given by A(1)

ij = log
(
A

(0)
ij + 1

)
for i = 1, . . . , n, and j = 1, . . . , p.

As in Sections 5.4.1 and 5.4.3, we defined observed matrix A by replacing Ā(0) and
Ā with A(1) and A, respectively. Then, we applied DeepTMR to observed matrix A and
checked the latent row-column structure of matrix A extracted by the DeepTMR. The
hyperparameter settings for training the DeepTMR are listed in Table 1.

Figures 16 and 17 respectively show the results of matrices A, A(π), Â(π), and vectors
g, h, g(π), h(π) for this dataset. The correspondence of the row and column indices with
locations in Figure 16 is given in Appendix 5.C. The reordered input and output matrices,
A(π) and Â(π), respectively show that the number of commuting people increases from
the lower right to the upper left corner of the matrices. For instance, regardless of the
home location, the number of people commuting to the locations in (C21) to (C25) (e.g.,
Fukaya City in Saitama Prefecture, Tatebayashi City in Gunma Prefecture, and Nogi Town
in Tochigi Prefecture) in matrices A(π) and Â(π) is relatively small. However, relatively
many people commute to locations in (C1) (e.g., Minato-ku, Chiyoda-ku, and Shinjuku-ku
in Tokyo), especially from home locations in (R1) – (R10) (e.g., Setagaya-ku, Nerima-ku,
and Ota-ku in Tokyo).

Figures 18 and 19 show the results obtained with SVD-Rank-One, SVD-Angle, and
MDS. As in the experiment in Section 5.4.3, the SVD-based methods (i.e., SVD-Rank-One
and SVD-Angle) did not yield any meaningful structure, aside from some row/column
groups with similar values. The result of MDS was similar to that of the DeepTMR except
for the row and column flipping, however, it did not provide denoised mean information of
the reordered matrix.
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Figure 14: Results of the divorce predictors dataset for matrices A, A(π), Â(π), and
vectors g, h, g(π), h(π).
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Figure 15: Results of the divorce predictors dataset with SVD-Rank-One, SVD-Angle,
and MDS.

5.5 Discussions

Here, we discuss the results and future research directions. In the experiments in Section
5.4, we showed that the DeepTMR can successfully reorder both synthetic and practical
data matrices and provide their denoised mean matrices as output. Despite its effectiveness,
DeepTMR leaves room for further improvement, as described in the subsequent paragraphs.

First, one potential merit of the proposed DeepTMR compared to other spectral and
dimension-reduction-based methods is that it only requires an n-dimensional column data
vector and p-dimensional row data vector as input, not the entire data matrix. This suggests
the possibility that, if a set of rows or columns in a data matrix increases with time, we
would not have to train DeepTMR from scratch. Instead, we could only fine-tune the
previously trained model with newly added data to predict orders. A main problem in
realizing this is that the input dimensions of the current DeepTMR should be fixed in
advance. However, to apply DeepTMR to such a time-series data matrix, we need to
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Figure 16: Results of the metropolis traffic census dataset for matrices A, A(π), and Â(π).
For visibility, we plotted the cyan lines to show the sections between the sets of 10 rows
or columns (i.e., {R1, . . . ,R25} and {C1, . . . ,C25} for rows and columns, respectively).
Because the matrix size is (n, p) = (249, 249), R25 and C25 contain nine rows and nine
columns, respectively. The correspondence of the indices with the locations is given in
Appendix 5.C.
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Figure 17: Results of the metropolis traffic census dataset for vectors g, h, g(π), and
h(π).

extend the DeepTMR such that it can accept a variable-length input data vector. Such an
extension is also desirable from the perspective of memory costs. For a large data matrix,
a DeepTMR with an (n+ p)-dimensional input layer requires a large amount of memory
to be stored. One possible solution to this problem is to first select randomly k rows and h
columns, where k � n and h� p, and use the selected rows and columns as inputs. In
this case, we need to develop a model under a different problem setting from ours, where
each entry in an input data vector does not necessarily correspond to the same row or
column.

Second, another limitation of the proposed method is that the trained DeepTMR
model is affected by random initialization, mini-batch selection for each iteration, and
hyperparameter settings (e.g., number of units in each layer). In the experiment in Section
5.4.2, to partially alleviate this problem, we trained the neural network multiple times
and chose the result with the minimum training error. However, this naı̈ve approach
increased the overall computation time. As such, it would be desirable to construct a more
sophisticated model that is more robust to the effects of these settings. In particular, it is
important to determine the optimal architecture of a neural network for a given data matrix.
The experimental results in Section 5.4 show that the DeepTMR could successfully extract
the denoised mean matrices of the input matrices with sizes ranging from 100 × 100 to
249× 249 by using row/column encoder networks with 10 units in the middle layer. Based
on these results, we expect that we do not always need to set the size of the DeepTMR
network as large as the input matrix to extract the structural patterns from a data matrix.

Finally, it would be interesting to utilize additional input information for the rows and
columns besides the entry values of an observed matrix. For instance, in the case of the
metropolis traffic census dataset [1] in Section 5.4.4, each row or column corresponds to a
specific location in Japan. If we can extend the DeepTMR to reorder a data matrix using
such additional row/column information (e.g., geographical location), it would be possible
to obtain a different structural pattern for the data matrix compared to those provided by
the current model.
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Figure 18: Results of the metropolis traffic census dataset with SVD-Rank-One.

5.6 Chapter conclusion

In this chapter, we proposed a new matrix reordering method, called DeepTMR, based on a
neural network model. By using an autoencoder-like architecture, the proposed DeepTMR
can automatically encode the row and column of an input matrix into one-dimensional
nonlinear features, which can be subsequently used to determine the row and column
orders. Moreover, a trained DeepTMR model provides a denoised mean matrix as output,
which illustrates the global structure of the reordered input matrix. Through experiments,
we showed that the proposed DeepTMR can successfully reorder the rows and columns of
both synthetic and practical datasets and achieve higher accuracy in matrix reordering than
the existing spectral and dimension-reduction-based matrix reordering methods based on
SVD and MDS.
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Figure 19: Results of the metropolis traffic census dataset with SVD-Angle and MDS.

5.A Application of DeepTMR to the statistical tests in
Chapters 3 and 4

The proposed DeepTMR can also be used for estimating the bicluster structure of a given
matrix by using its extracted row/column features. Therefore, in this section, we consider
application of the DeepTMR to the statistical tests in Chapters 3 and 4. Specifically, we
propose the following biclustering algorithm based on a trained DeepTMR model. First,
for a given observed matrix A(0), we define matrix A based on (5.20) by replacing Ā(0)

and Ā with A(0) and A, respectively. Then, we train the DeepTMR model with matrix A
and obtain the reordered row and column feature vectors g(π) and h(π) and the row and
column permutations π. For a given number of row clusters K, we find the top K − 1
boundaries between the adjacent pairs of entries in vector g(π) in terms of the absolute
value of the difference. Finally, we define the row clusters by segmentation of the reordered
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Table 5.A1: Biclustering accuracy of the DeepTMR-based method and the hierarchical
clustering (HC) in the settings of Gaussian, Bernoulli, and Poisson distributions.

Gaussian LBM Bernoulli LBM Poisson LBM
DeepTMR HC DeepTMR HC DeepTMR HC

0.94 1.00 0.47 0.98 0.92 1.00

row indices based on such boundaries. Based on the same procedure, we also define the
column clusters by using vector h(π) and a given number of column clusters H . In the
experiments of the next subsections, we use this biclustering algorithm for estimating the
block structure of a given matrix.

5.A.1 Application of DeepTMR to the asymptotic test on the number
of biclusters in Chapter 3

First, we tried using the DeepTMR-based biclustering algorithm to compute the test
statistic T of Chapter 3’s test in a realizable case. We generated 100 data matrices based
on Gaussian, Bernoulli, and Poisson LBMs, estimated their bicluster structures based on
DeepTMR, and computed the test statistics T . We set the matrix size to (n, p) = (300, 225).
Aside from the biclustering algorithm and the number of trials, we used the same settings
as in Section 3.5.1. We used the same hyperparameter settings as in Section 5.4.3 for
training the DeepTMR.

Table 5.A1 shows the biclustering accuracies (see Section 4.4.1 for definition) of
the DeepTMR-based method and the hierarchical clustering. Figures 5.A1, 5.A2, and
5.A3, respectively, show the Q-Q plots of the test statistic T and the TW1 distribution
in the settings of Gaussian, Bernoulli, and Poisson distributions. Each plotted point
corresponds to a sample of test statistic T , and the horizontal and vertical lines, respectively,
show its theoretical and sample quantiles. These figures show that (1) the DeepTMR-
based biclustering method could not achieve as high biclustering accuracy as hierarchical
clustering and (2) the empirical distribution of the test statistic computed with hierarchical
clustering was more similar to the TW1 distribution than that computed with the DeepTMR-
based biclustering method. This can be partly attributed the fact that the DeepTMR is
affected by random initialization and mini-batch selection, which sometimes leads to bad
local optimal solutions. To successfully apply the DeepTMR-based biclustering to the
goodness-of-fit test, we need to improve its robustness to such random effect, which is
beyond the scope of this dissertation.
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Figure 5.A1: Q-Q plot of test statistic T computed with the DeepTMR-based biclustering
method (left) and hierarchical clustering (right) against the TW1 distribution in the setting
of Gaussian case.
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Figure 5.A2: Q-Q plot of test statistic T computed with the DeepTMR-based biclustering
method (left) and hierarchical clustering (right) against the TW1 distribution in the setting
of Bernoulli case.
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Figure 5.A3: Q-Q plot of test statistic T computed with the DeepTMR-based biclustering
method (left) and hierarchical clustering (right) against the TW1 distribution in the setting
of Poisson case.
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5.A.2 Application of DeepTMR to the selective test on the estimated
bicluster structure in Chapter 4

Although there is no theoretical guarantee that the DeepTMR-based biclustering algorithm
outputs the minimum squared residue solution, as in the experiment in Section 4.F, we can
use it for estimating the cluster memberships ĝ under the assumption that it yields a good
approximation of the global minimum solution.

We generated data matrices and performed the approximated test in a realizable case
when using the DeepTMR-based biclustering algorithm for estimating the optimal cluster
memberships ĝ. For finding the solution g̃ of the truncation interval, we used Algorithm 2.
Aside from the biclustering algorithm, we used the same settings as in Section 4.4.3. We
used the same hyperparameter settings as in Section 5.4.2 for training the DeepTMR.

Figures 5.A4 and 5.A5, respectively, show the histograms of the p-values of the
proposed and naive approximated tests. We also plotted (i) the test statistics D

√
r of the

Kolmogorov-Smirnov test [36], for the p-values of the proposed and naive tests, and (ii)
the accuracy of the DeepTMR-based biclustering algorithm in Figures 5.A6 and 5.A7,
respectively. Figures 5.A8 and 5.A9 show the FPR/TPR and the AUC score. From these
figures, we see that the DeepTMR-based biclustering algorithm could not achieve as high
accuracy as the SA-based algorithm. This can be partly attributed to the fact that the
number of training data points (i.e., the number of entries in an observed matrix) was too
small for the neural network model to be successfully trained. With regard to the AUC
score, from Figure 5.A9, we see that the proposed test achieved comparable or better
performance than the naive one in most settings.

5.B Correspondence of the attribute indices with mean-
ings in the divorce predictors dataset

The meaning of each attribute index of the divorce predictors dataset [162, 163] is as
follows:

1. If one of us apologizes when our discussion deteriorates, the discussion ends.

2. I know we can ignore our differences, even if things get hard sometimes.

3. When we need it, we can take our discussions with my spouse from the beginning
and correct it.

4. When I discuss with my spouse, to contact him will eventually work.

5. The time I spent with my wife is special for us.

6. We don’t have time at home as partners.
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Figure 5.A4: Histograms of p-values in the null case (i.e., ĝ = g(N)) for different matrix
sizes, which was computed by the approximated version of the proposed test based on
the biclustering algorithm using DeepTMR.
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Figure 5.A5: Histograms of p-values in the null case (i.e., ĝ = g(N)) for different matrix
sizes, which was computed by the approximated version of the naive test (4.37) based on
the biclustering algorithm using DeepTMR.
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Figure 5.A6: Test statistics D
√
r of the Kolmogorov-Smirnov test [36] for the p-values

of the proposed (left) and naive (right) approximated tests based on the biclustering
algorithm using DeepTMR.
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Figure 5.A7: The ratio of the number of the null cases (i.e., ĝ = g(N)) for each setting of
matrix size (n, p) and mean vector µ0, where ĝ is output by the biclustering algorithm
using DeepTMR. For the experiment, we used the setting of n = p.

7. We are like two strangers who share the same environment at home rather than
family.

8. I enjoy our holidays with my wife.

9. I enjoy traveling with my wife.

10. Most of our goals are common to my spouse.

11. I think that one day in the future, when I look back, I see that my spouse and I have
been in harmony with each other.

12. My spouse and I have similar values in terms of personal freedom.

13. My spouse and I have similar sense of entertainment.

14. Most of our goals for people (children, friends, etc.) are the same.
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Figure 5.A8: FPR and TPR in the realizable case with different significance rates (e.g.,
α = 0.1, 0.05, and 0.01), for the approximated version of the proposed (left) and naive
(right) statistical tests based on the biclustering algorithm using DeepTMR.
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Figure 5.A9: AUC score in the realizable case for the approximated version of the
proposed and naive statistical tests based on the biclustering algorithm using DeepTMR. If
there were no null (i.e., ĝ = g(N)) or alternative (i.e., ĝ 6= g(N)) cases, respectively, then
the corresponding bars would not have been plotted.
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15. Our dreams with my spouse are similar and harmonious.

16. We’re compatible with my spouse about what love should be.

17. We share the same views about being happy in our life with my spouse.

18. My spouse and I have similar ideas about how marriage should be.

19. My spouse and I have similar ideas about how roles should be in marriage.

20. My spouse and I have similar values in trust.

21. I know exactly what my wife likes.

22. I know how my spouse wants to be taken care of when she/he sick.

23. I know my spouse’s favorite food.

24. I can tell you what kind of stress my spouse is facing in her/his life.

25. I have knowledge of my spouse’s inner world.

26. I know my spouse’s basic anxieties.

27. I know what my spouse’s current sources of stress are.

28. I know my spouse’s hopes and wishes.

29. I know my spouse very well.

30. I know my spouse’s friends and their social relationships.

31. I feel aggressive when I argue with my spouse.

32. When discussing with my spouse, I usually use expressions such as “you always” or
“you never.”

33. I can use negative statements about my spouse’s personality during our discussions.

34. I can use offensive expressions during our discussions.

35. I can insult my spouse during our discussions.

36. I can be humiliating when we discussions.

37. My discussion with my spouse is not calm.

38. I hate my spouse’s way of open a subject.
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39. Our discussions often occur suddenly.

40. We’re just starting a discussion before I know what’s going on.

41. When I talk to my spouse about something, my calm suddenly breaks.

42. When I argue with my spouse, I only go out and I don’t say a word.

43. I mostly stay silent to calm the environment a little bit.

44. Sometimes I think it’s good for me to leave home for a while.

45. I’d rather stay silent than discuss with my spouse.

46. Even if I’m right in the discussion, I stay silent to hurt my spouse.

47. When I discuss with my spouse, I stay silent because I am afraid of not being able to
control my anger.

48. I feel right in our discussions.

49. I have nothing to do with what I’ve been accused of.

50. I’m not actually the one who’s guilty about what I’m accused of.

51. I’m not the one who’s wrong about problems at home.

52. I wouldn’t hesitate to tell my spouse about her/his inadequacy.

53. When I discuss, I remind my spouse of her/his inadequacy.

54. I’m not afraid to tell my spouse about her/his incompetence.

5.C Correspondence of the indices with locations in the
metropolis traffic census dataset

The meaning of each row or column index of the metropolis traffic census dataset [1] is as
follows:

• [Tokyo] 1: Chiyoda-ku, 2: Chuo-ku, 3: Minato-ku, 4: Shinjuku-ku, 5: Bunkyo-ku, 6:
Taito-ku, 7: Sumida-ku, 8: Koto-ku, 9: Shinagawa-ku, 10: Meguro-ku, 11: Ota-ku,
12: Setagaya-ku, 13: Shibuya-ku, 14: Nakano-ku, 15: Suginami-ku, 16: Toshima-ku,
17: Kita-ku, 18: Arakawa-ku, 19: Itabashi-ku, 20: Nerima-ku, 21: Adachi-ku,
22: Katsushika-ku, 23: Edogawa-ku, 24: Hachioji City, 25: Tachikawa City, 26:
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Musashino City, 27: Mitaka City, 28: Ome City, 29: Fuchu City, 30: Akishima City,
31: Chofu City, 32: Machida City, 33: Koganei City, 34: Kodaira City, 35: Hino
City, 36: Higashimurayama City, 37: Kokubunji City, 38: Kunitachi City, 39: Fussa
City, 40: Komae City, 41: Higashiyamato City, 42: Kiyose City, 43: Higashikurume
City, 44: Musashimurayama City, 45: Tama City, 46: Inagi City, 47: Hamura City,
48: Akiruno City, 49: Nishitokyo City, 50: Mizuho Town, 51: Hinode Town, 52:
Hinohara Village, 53: Okutama Town

• [Yokohama City, Kanagawa Prefecture] 54: Tsurumi-ku, 55: Kanagawa-ku, 56:
Nishi-ku, 57: Naka-ku, 58: Minami-ku, 59: Hodogaya-ku, 60: Isogo-ku, 61:
Kanazawa-ku, 62: Kohoku-ku, 63: Totsuka-ku, 64: Konan-ku, 65: Asahi-ku, 66:
Midori-ku, 67: Seya-ku, 68: Sakae-ku, 69: Izumi-ku, 70: Aoba-ku, 71: Tsuzuki-ku

• [Kawasaki City, Kanagawa Prefecture] 72: Kawasaki-ku, 73: Saiwai-ku, 74:
Nakahara-ku, 75: Takatsu-ku, 76: Tama-ku, 77: Miyamae-ku, 78: Asao-ku

• [Sagamihara City, Kanagawa Prefecture] 79: Midori-ku, 80: Chuo-ku, 81:
Minami-ku

• [Kanagawa Prefecture] 82: Yokosuka City, 83: Hiratsuka City, 84: Kamakura City,
85: Fujisawa City, 86: Odawara City, 87: Chigasaki City, 88: Zushi City, 89: Miura
City, 90: Hadano City, 91: Atsugi City, 92: Yamato City, 93: Isehara City, 94: Ebina
City, 95: Zama City, 96: Minamiashigara City, 97: Ayase City, 98: Hayama Town,
99: Samukawa Town, 100: Oiso Town, 101: Ninomiya Town, 102: Nakai Town,
103: Oimachi, 104: Matsuda Town, 105: Kaisei Town, 106: Hakone Town, 107:
Manazuru Town, 108: Yugawara Town, 109: Aikawa Town

• [Saitama City, Saitama Prefecture] 110: Nishi-ku, 111: Kita-ku, 112: Omiya-ku,
113: Minuma-ku, 114: Chuo-ku, 115: Sakura-ku, 116: Urawa-ku, 117: Minami-ku,
118: Midori-ku, 119: Iwatsuki-ku

• [Saitama Prefecture] 120: Kawagoe City, 121: Kumagaya City, 122: Kawaguchi
City, 123: Gyoda City, 124: Chichibu City, 125: Tokorozawa City, 126: Hanno City,
127: Kazo City, 128: Honjo City, 129: Higashimatsuyama City, 130: Kasukabe City,
131: Sayama City, 132: Hanyu City, 133: Konosu City, 134: Fukaya City, 135: Ageo
City, 136: Soka City, 137: Koshigaya City, 138: Warabi City, 139: Toda City, 140:
Iruma City, 141: Asaka City, 142: Shiki City, 143: Wako City, 144: Niiza City, 145:
Okegawa City, 146: Kuki City, 147: Kitamoto City, 148: Yashio City, 149: Fujimi
City, 150: Misato City, 151: Hasuda City, 152: Sakado City, 153: Satte City, 154:
Tsurugashima City, 155: Hidaka City, 156: Yoshikawa City, 157: Fujimino City,
158: Shiraoka City, 159: Ina Town, 160: Miyoshi Town, 161: Moroyama Town,
162: Ogose Town, 163: Namegawa Town, 164: Ranzan Town, 165: Ogawa Town,
166: Kawajima Town, 167: Yoshimi Town, 168: Hatoyama Town, 169: Tokigawa
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Town, 170: Yokoze Town, 171: Higashi Chichibu Village, 172: Misato Town, 173:
Kamisato Town, 174: Yorii Town, 175: Miyashiro Town, 176: Sugito Town, 177:
Matsubushi Town

• [Chiba City, Chiba Prefecture] 178: Chuo-ku, 179: Hanamigawa-ku, 180: Inage-
ku, 181: Wakaba-ku, 182: Midori-ku, 183: Mihama-ku

• [Chiba Prefecture] 184: Ichikawa City, 185: Funabashi City, 186: Kisarazu City,
187: Matsudo City, 188: Noda City, 189: Mobara City, 190: Narita City, 191: Sakura
City, 192: Togane City, 193: Narashino City, 194: Kashiwa City, 195: Ichihara City,
196: Nagareyama City, 197: Yachiyo City, 198: Abiko City, 199: Kamagaya City,
200: Kimitsu City, 201: Urayasu City, 202: Yotsukaido City, 203: Sodegaura City,
204: Yachimata City, 205: Inzai City, 206: Shiroi City, 207: Tomisato City, 208:
Katori City, 209: Sanmu City, 210: Oamishirasato City, 211: Shisui Town, 212:
Sakae Town, 213: Kozaki Town, 214: Ichinomiya Town, 215: Chosei Village, 216:
Nagara Town, 217: Otaki Town

• [Ibaraki Prefecture] 218: Tsuchiura City, 219: Koga City, 220: Ishioka City, 221:
Yuki City, 222: Ryugasaki City, 223: Shimotsuma City, 224: Joso City, 225: Toride
City, 226: Ushiku City, 227: Tsukuba City, 228: Moriya City, 229: Chikusei City,
230: Bando City, 231: Inashiki City, 232: Kasumigaura City, 233: Tsukubamirai
City, 234: Miho Village, 235: Ami Town, 236: Kawachi Town, 237: Yachiyo Town,
238: Goka Town, 239: Sakai Town, 240: Tone Town

• [Gunma Prefecture] 241: Tatebayashi City, 242: Itakura Town, 243: Meiwa Town

• [Tochigi Prefecture] 244: Tochigi City, 245: Sano City, 246: Oyama City, 247:
Nogi Town

• [Yamanashi Prefecture] 248: Otsuki City, 249: Uenohara City
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Conclusion

Summary and Follow-up Work
The summary for the three main contributions, which have been stated in Section 1.3, is as
follows (see also Figure 1).

• Evaluation of the number of biclusters: In Chapter 3, we developed an asymptotic
statistical test on the number of row and column clusters for an LBM. By sequentially
testing the hypothetical cluster numbers in ascending order, we can estimate the
number of biclusters in a given matrix. We can use an arbitrary biclustering algorithm
for estimating the bicluster structure, as long as it satisfies the consistency condition
(Section 3.2). The proposed test is asymptotically valid in the sense that the test
statistic converges in law to the TW1 distribution in the limit of matrix size m→∞.
There is no theoretical guarantee of the proposed test for a finite size matrix, however,
in Section 3.5.3, we demonstrated its effectiveness experimentally with the matrix
sizes of several hundreds times several hundreds.

• Evaluation of the estimated bicluster structure: In Chapter 4, we proposed a se-
lective test for the estimated bicluster structure of a given matrix based on the squared
residue criterion. Unlike the asymptotic test in Chapter 3, we derived the exact null
distribution with a finite size matrix. We can also test more detailed information (i.e.,
bicluster assignments) in the proposed method than in that of Chapter 3. However,
to fulfill these conditions, stricter assumptions were required, including that each
entry follows a Gaussian distribution and that the estimated bicluster structure is
the global optimal solution of squared residue minimization problem. The latter
condition makes the proposed test intractable with increasing matrix size m, since
the number of possible bicluster assignments increases exponentially with m. To
alleviate this problem, we also proposed an approximated test based on simulated
annealing.

• Extraction of the row and column features used for matrix reordering: In Chap-
ter 5, we constructed a new neural network model for matrix reordering. Unlike
the existing methods, the proposed model extracts the row and column features
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Figure 1: Summary of the main contributions of this dissertation.

in a data-driven way, based on which the row and column orderings are defined.
The “goodness” of such row and column features is evaluated by reconstruction
error of the model output, which can be seen as a denoised mean version of the
observed matrix. On one hand, the proposed method can extract various types of
latent structural patterns in a matrix without prior knowledge. On the other hand, it
is affected the random effect in training (e.g., parameter initialization of the model).

Follow-up work As we have introduced in the last paragraph in Section 1.3, we have two
follow-up studies for this dissertation. In [153], we develop a statistical test on the number
of biclusters in more general problem setting than that of Chapter 3 in several ways. First,
we consider the submatrix detection/localization problem in Section 2.2.2 instead of the
regular-grid biclustering in Section 2.2.1. As we have discussed in Section 2.2.2, the former
problem includes more general bicluster structures than the latter one. In the former setting,
we assume that a given matrix consists of K biclusters and H background submatrices,
where the entries in all the background submatrices follow identical distributions. Second,
we assume that the number of biclusters (including background submatrices) might increase
with matrix size m. Specifically, we show that the proposed test is asymptotically valid
under the condition that K +H = O

(
m

1
42
−ε
)

for some ε > 0 in realizable case. Third, in
[151], we propose a similar neural-network-based matrix reordering method for one-mode
relational data (the definitions of two-mode and one-mode relational data are given in
Sections 2.1.1 and 2.1.2, respectively). For one-mode relational data, we assume that
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the orders of rows and columns are identical, regardless of the data matrix is symmetric
or not (i.e., the network is directed or undirected). To fulfill this condition, we use a
weight-sharing autoencoder network, which extracts the same node feature for the ith
row and the ith column of a given adjacency matrix. These studies have extended this
dissertation in some aspects, however, there still remains a room for improvement, as we
describe in the next section.

Future Perspective

Aside from the limitation of each of the three contributions, which has been stated in
Sections 3.6, 4.5, and 5.5, respectively, possible extensions for this dissertation are as
follows.

• As for the statistical test on the number of biclusters, in Chapter 3, we derived
the asymptotic behavior of the proposed test statistic T in both realizable and
unrealizable cases. However, we have not considered the case in which a given
matrix does not have any latent block structure (i.e., no block structure exists under
which each entry independently follows an block-wise identical distribution). This
case was also out of scope in the selective test of Chapter 4. When applying the
proposed tests, it is considered as a special case of the alternative hypotheses,
where we have no theoretical guarantee for now. It would be helpful to check the
asymptotic behavior of the proposed test statistics in (at least a part of) this case
through empirical simulation or to develop new test that can be applied in more
general settings.

• The proposed statistical tests in Chapters 3 and 4 cannot be applied to sparse data,
which contain unknown entries. Such a sparse data matrix can be transformed into
a real matrix by substituting the unknown entries with some constant value (e.g.,
zero). However, since such substituted entries violate the LBM assumption that it is
generated from a block-wise identical distribution, the (asymptotic) null distribution
of the proposed test statistic is no longer valid. Future studies should analyze the
null distribution of the proposed (or new) test statistic in this case.

• Another important future direction would be to provide some theoretical guarantee
for the proposed matrix reordering method in Chapter 5, as well as the biclustering
problem. There has been no statistical test directly on the row and column orderings.
However, for the spectral and dimension-reduction methods, we can at least apply
a statistical inference on the model of a given observed matrix (e.g., rank of the
matrix) [2, 31, 81, 83]. It would be useful if we can develop a statistical inference
method also for the proposed neural-network-based approach. Another theoretical
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direction would be to evaluate the denoising performance or reordering accuracy of
the proposed DeepTMR model.

• In the original matrix reordering problem, we only consider a single set of row
and column orderings that yields some latent pattern of a given matrix. It would
be interesting to further extend this setting by combining the ideas of biclustering
and matrix reordering, that is, by assuming the existence of multiple biclusters
with different structural patterns. It would be useful if we can develop a statistical
inference method for the number of biclusters or the bicluster structure for such a
setting.

• Aside from biclustering and matrix reordering, we introduced various tasks with
regard to a relational data matrix in Section 1.1. It would be further interesting if
we can provide some meta-evaluation method for selecting an appropriate task (i.e.,
what type of information we should extract) for a given matrix.
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