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ABSTRACT

This thesis mathematically analyzes the systems in biology and informatics that in-
dividual learning and populational evolution coordinate to make decisions by solving an
optimization problem. Individual learning and populational evolution are two methods
to solve optimization problems. In individual learning, individual agents update a can-
didate of a solution by processing information. An example of individual learning in
biology is the decision-making of individual organisms, whereas an example in informa-
tion systems is iterative optimization algorithms such as gradient descent and Newton ’
s method. In populational evolution, by contrast, a population of replicating agents
solves the optimization problem without processing information by themselves: If an
agent with a better candidate of a solution has more daughters and the daughters inherit
the candidate, the share of better candidates expands in the population. An example in
biology of populational evolution is biological evolution by natural selection. An example
in information systems is the evolutionary algorithms. In each field, the coordination of
individual learning and populational evolution has been considered. This thesis aims to
solve the following two problems about coordination in biology and information systems.

The first problem is the acceleration of the evolutionary process by learning from
experience. In biology, researchers have considered the evolution of agents that can
process information to understand the fitness value of information processing. In this
line of research, some studies indicated the possibility that learning from ancestors ’
experiences accelerates the evolutionary process. However, it is still unclear whether
learning can accelerate the evolutionary process. Also, we do not know what information
is sufficient for learning to accelerate the evolutionary process. Furthermore, we do not
have a method to quantify the acceleration.

In this thesis, we solve these problems. We first propose ancestral learning and
numerically validate that a population of agents with ancestral learning acquires the
optimal strategy faster than the conventional evolution. We next theoretically clarify the
relationship between ancestral learning and the fitness gradient and prove that learning
can accelerate the evolutionary process without communication between agents. To
quantify the acceleration, we finally extend Fisher’s fundamental theorem (FF-thm) of
natural selection, which quantifies the speed of the evolutionary process. The extended
FF-thm helps our understanding of when and why ancestral learning is beneficial for
organisms.

The second problem is theoretical guarantee of the evolutionary algorithms with it-
erative optimization algorithms. In information systems, researchers have attempted to
improve the evolutionary algorithms by incorporating a possibly stochastic iterative op-
timization algorithm, which is called the memetic algorithm. However, it is difficult to
show theoretical guarantees of the memetic algorithm.

In this thesis, we propose a theoretical framework to analyze the memetic algorithm.
To focus on the effect of populational evolution, we analyze the memetic algorithm with-
out cross-over, which we call the Branching Algorithm (BA). We first extend FF-thm to
the BA, which states that the BA always performs better than the parallel execution of
an iterative optimization algorithm.

Although FF-thm gives us a general result that is applicable to all iterative optimiza-
tion algorithms, it is difficult to calculate the difference in the performance in concrete
examples. To resolve this problem, we introduce a more concise framework than FF-thm
by introducing the retrospective process from population dynamics. We demonstrate the
usefulness of the retrospective process by calculating the performance of the BA with
Stochastic Gradient Descent (SGD). We show that the BA with SGD achieves a faster
convergence rate for certain not strongly convex functions than the usual SGD because
of populational evolution.

The contributions of the thesis are 1-1) the numerical and theoretical validation that
learning from experience accelerates the evolutionary process of acquiring an optimal
strategy, 1-2) the quantification of the acceleration by the extended FF-thm, and 2) a
framework to analyze the memetic algorithms without cross-over by the extended FF-thm
and the retrospective process.
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Chapter 1

Introduction

Decision-making appears both in science and in engineering. In biological sci-
ence, organisms change their traits to survive in surrounding environments [121,
122, 118, 59]. In engineering, decision-making is of course an important topic of
information systems to address scheduling, routing, resource allocation, portfolio
design, and so on [97, 21, 17]. In addition, we can regard statistical estimation
as a decision of parameters [9]. Decision making in each field is often modeled
as mathematical optimization by employing the framework of decision theory [9].
In biology, we can sometimes explain the behavior of organisms by the properties
of the optimal solutions. In information systems, such formulation helps us to
design algorithms to solve the desired problems.

To make an optimal decision, we have two approaches to solve the mathemat-
ical optimization: individual learning and populational evolution (Figure 1.1). In
individual learning, an individual agent solves the mathematical optimization to
update a candidate of a solution by processing information. In biology, individ-
ual learning corresponds to the phenomenon that organisms actively change their
traits to increase fitness by using signals from the surrounding environment and
its experience. For example, bacteria can sense chemical substances and move
towards their source, which is called chemotaxis [106]. In information systems,
individual learning is iterative optimization algorithms, that recursively update
a candidate of the solution, like gradient descent and Newton’s method [17]. In
populational evolution, by contrast, a population of replicating agents solves the
optimization problem without processing information by themselves: When an
agent with a better candidate of a solution has more daughters and the daughters
inherit the candidate, the share of better candidates expands in the population.
An example in biology of populational evolution is biological evolution by natural
selection. An example in information systems is the evolutionary algorithms. In
addition, Sequential Monte-Carlo (SMC) methods utilized populational evolution
of replicating particles to solve filtering problems [14].

Researchers have considered the coordination between individual learning and
populational evolution in each field. The aim of this thesis is to theoretically ana-
lyze the coordination and solve the problem in each field from a unified view point.
We first review individual learning, populational evolution, and their coordination
in each field (Table 1.1; See also Chapter 2).
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Figure 1.1: Schematic illustration of individual learning and populational evolu-
tion. Both methods aim to solve a mathematical optimization problem min .f(x)
(x ∈ X ). An optimal solution is denoted by x∗. (a) Schematic illustration of
Individual learning. An agent at time t has a candidate x(t) of a solution and
update it to decrease the value of the objective function. To update a candi-
date of a solution, an agent can use one or both of the following two sources of
information. One is the experiences, that is, f(x(t′)), ∇f(x(t′)), and so on for
t′ ≤ t. The other is the signal ψ that stochastically controls the objective func-
tion as f(x) = F (x;ψ). (b) Populational evolution. We consider a population
of agents each of which have a candidate of a solution. First, each agent update
the solution by mutation. In mutation, an agent does not use the information of
objective function. After that, the agents are replicated and selected depending
on the value of the objective function: An agent with smaller value of the objec-
tive function have more daughters. By this replication competition, the share of
solutions with smaller value of the objective function expands in the population.
In the figure, red bell-shape objects represent the distribution of the value of the
objective function in the population.

biology information systems
individual learn-
ing

information processing and
decision-making by individ-
ual organisms

iterative optimization algo-
rithms

populational
evolution

biological evolution evolutionary algorithms
and Sequential Monte-Carlo
(SMC) methods

coordination fitness value of individual
agent’s information process-
ing

memetic algorithms

Table 1.1: Examples of individual learning, populational evolution, and their
coordination in each field.
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1.1 Individual Learning

In individual learning, individual agents update a candidate of the solution by
using two sources of information: experience and signals (Figure 1.1 (a)). The
experience is information that is related to the past candidates {x(t′)}t′≤t of a
solution. Examples of the experience are of the value of an objective function
f(x(t

′)) and gradient ∇f(x(t′)) for t′ < t. An example of individual learning from
experience is gradient descent. To explain what is the signal , we consider the
case where the objective function depends on some random variable ψ as f(x) =
F (x;ψ) for some function F . Under this setting, the signal is the information
related to random variable ψ. An example of individual learning from signals is
chemotaxis. In chemotaxis, the signal is the sensing of chemical substances.

We add remarks on individual learning in information systems, that is, iter-
ative optimization algorithms. It includes deterministic [17] and stochastic [124]
algorithms. Since these algorithms uses the information of objective functions
like f(x(t)) and ∇f(x(t)), we can regard these algorithms as individual learning
from experience. These algorithms are applied to many fields, including statis-
tical estimation and machine learning [14]. Also, we can regard the maximum
likelihood estimation as individual learning since it is point estimation instead of
distribution estimation. Researchers have tried to show theoretical guarantees of
such algorithms [124, 14].

1.2 Populational Evolution

The concept of populational evolution originates from biological evolution by nat-
ural selection. To understand and predict the evolutionary process, researchers
have developed mathematical models [40, 25] and tools [43, 57, 71, 111, 103, 6,
104], including a variational principle and retrospective process. In this context,
we are interested in how fitness increases by natural selection. A pioneering study
by R. A. Fisher [33] proved that the increase of the fitness is proportional to the
variance of the fitness. This result is called Fisher’s Fundamental theorem (FF-
thm) of natural selection. This simple relationship is insightful for understanding
the impact and efficiency of natural selection.

In natural selection, organisms do not process any information about the sur-
rounding environments by themselves. Even without information processing and
according active change of the traits, natural selection can increase the fitness at
the population level if the traits in the population are diversified by random mu-
tations. Indeed, an organism with the trait that fits to surrounding environments
has more daughters and the share of the trait expands in the population. In this
sense, populational evolution is a collective and passive process. In other words,
the replication competition of organisms biases the random mutations so that the
fitness increases. This bias is a generalization of so-called survivorship bias. We
use this term in the rest of the thesis.

Populational evolution is applied to information systems. An example is the
evolutionary algorithms that solve mathematical optimization by using a popu-
lation of candidates of the solution. The evolutionary algorithms simulate the
evolution of the population of candidates of the solution by calculating their fit-
ness from the value of an objective function. As in the biological evolution, the
diversity of the candidates is generated by mutation. Several researchers have
attempted to show theoretical guarantees of evolutionary algorithms [32]. The-
oretical analysis is insightful for tuning hyperparameters of the algorithms. In
addition, the theoretical analysis enables us to quantitatively compare the evolu-
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tionary algorithms to other optimization algorithms, especially to parallel algo-
rithms, to select the best algorithm in advance of the execution.

Another example is SMC method. SMC method can solve the filtering prob-
lems of hidden Markov models (HMM). HMM is a time-series model that has a
hidden state and an observation at each time. The former is unknown while the
latter is observable. In the filtering problem, our objective is the calculation of
the posterior distribution of the hidden state in an on-line manner given the ob-
servations. SMC methods solve filtering problems by simulating the populational
evolution of particles in the hidden state space so that the population becomes
an approximation of the posterior distribution.

1.3 Coordination between Individual Learning and Populational
Evolution

1.3.1 Acceleration of Evolutionary Process by Learning from Ances-
tors’ Experience

In theoretical biology, the coordination between individual learning and popula-
tional evolution has been considered to understand how fitness is increased by
information processing by individual organisms. The gain of fitness is called a
fitness value of information processing. For example, researchers have quantified
the fitness gain by sensing the state of environment by using mutual informa-
tion [38, 55, 90, 53]. We can regard this information processing as individual
learning from signals.

In this context, some papers [115, 54] pointed out the possibility that learning
from its ancestors’ experience can accelerate evolutionary process. This infor-
mation processing is an example of individual learning from experience. At first
sight, the idea seems to violate the conventional assumption of evolutionary bi-
ology that offspring cannot genetically inherit acquired traits including what the
parent experienced. However, there is accumulating evidence that an organism
can transmit information to the offspring via nongenetic ways, for example, via
epigenetic states and culture. The information transmission enables an organism
to convey what it learned to the offspring. Therefore, the acceleration of evo-
lutionary process by learning from ancestors’ experience does not contradict to
the conventional assumption of evolutionary biology. This point of view may be
important to understand the variety of phenotypic traits and its inheritance mea-
sured by recently developed experimental techniques [105, 23, 72, 116, 113, 41, 66].
We might be able to explain these phenomena from the view point of individual
learning from experience.

Since the coordination of learning from ancestors’ experience and evolutionary
process by natural selection is complicated, we first explain the situation that
we consider and clarify individual learning from experience in this context. We
consider a population of agents that replicates asexually. Each agent has type and
expresses one type in one generation. The type and the state of the environment
affect the number of daughters of an agent. Biologically, an agent models an
organism and the type models the phenotypic trait. The type is not directly
inherited by the daughters. Each agent also has a type-switching strategy that
determines the stochastic expression of the types. The stochastic expression is
known as bet-hegding and beneficial when the environment is stochastic [99, 27].
We assume that the strategy is heritable. Biologically, the strategy is genetic
or epigenetic traits that can be transmitted to the daughters. The types of the
daughter are correlated with those of the parent via the inherited strategy.
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Since the strategy is heritable, it subjects to natural selection. Therefore, if
we have a diversity of strategies in a population, an organism can acquire better
strategies during the evolutionary process. In conventional biology, the diversity
of strategies is generated by random (mutational or epigenetic) changes that occur
when an agent inherits the strategy of the parent. As individual learning from
experience, we consider the situation where the inherited strategy is biased by
the information that the parent acquired. Specifically, we consider the bias that
increases the fitness of the agent. We can regard the conventional random changes
as the special case of individual learning from experience by which the daughter
does not gain fitness. Therefore, we call the random changes the zeroth-order
learning rules. Our main focus is the rules with which the daughter can gain
fitness on average. To gain fitness, the bias of strategies should be in the direction
of the gradient of fitness. Since the gradient is the first-order derivative, we call
such rules the first-order learning rules.

Our research question is whether such first-order learning rules accelerate
the process of acquiring the optimal strategy. A pioneering study by Xue and
Leibler [115] considered the acceleration in a model of population dynamics. They
showed that an organism can acquire the optimal strategy by a simple learning
rule, which we call Xue’s rule.

1.3.2 Memetic Algorithms

In information systems, several researchers have tried to improve the performance
of the evolutionary algorithms by incorporating local search of solutions by iter-
ative optimization algorithms. In usual evolutionary algorithms, the mutation of
the solutions does not use the information of the objective function. However,
we might improve the performance of the evolutionary algorithms by using such
information. We can locally search a better candidate of the solution around the
current candidate of the solution by, for example, exhausting search or gradient
descent. We call such a generalized mutation an individual learning from expe-
rience in this context. Examples of the evolutionary algorithms with generalized
mutation are memetic algorithm [69], covariance matrix adaptation evolutionary
strategy (CMA-ES) [39], and information geometric optimization (IGO) [1]. In
addition, a recent study [51] has attempted to integrate the evolutionary algo-
rithms and reinforcement learning.

1.3.3 Model Estimation by Particle Methods

Although the typical use of SMC methods are filtering, we can use it to estimate
parameters of the model in an on-line manner. There are two approaches to es-
timate the parameters by SMC methods. In the maximum likelihood approach,
we estimate the gradient of the log-likelihood function by particles and then up-
date the parameters to increase the log-likelihood function by gradient descent or
expectation-maximization [50]. We can regard this approach as individual learn-
ing since we iteratively update a single set of parameters. In Bayesian approach,
in contrast, we consider the particles in the parameter space in addition to the
hidden state space and solve the parameter estimation as the filtration in the
parameter space [50]. The dynamics of the particle in the parameter space is ar-
tificial: We use random mutations that do not use the information of likelihood.
We can regard this approach as populational evolution since it is an extension
of the conventional SMC method to the parameter space. We might improve
the performance by combining both approaches. Let us consider the filtering in
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the parameter space, in which the dynamics of particles use the information of
log-likelihood in the form of, for example, the gradient flow induced by the log-
likelihood function. We can regard such a method as a coordination between
individual learning and populational evolution.

1.4 Unsolved Problems in Each Field

Although the coordination between individual learning and populational evolution
has been discussed in each field, there are several unsolved problems. In this
section, we state the problems in biology and information systems.

1.4.1 Unsolved Problems in Biology

In evolutionary biology, we have at least three problems about the acceleration of
biological evolution by the first-order learning rules. The first problem is whether
the first-order rule can actually accelerate the biological evolution or not. Since
biological agents cannot implement complicated learning rules by using chemical
reactions or connections of neurons, we should investigate whether simple learning
rules can accelerate the the evolutionary process. Previous study by Xue and
Leibler [115] showed that agents can attain an optimal strategy by simple Xue’s
rule. However, since the zeroth-order learning rule with populational evolution
can attain the optimal strategy, their result is insufficient to state that the first-
order rule can accelerate the evolutionary process. We should check whether the
population of agents which adopt the first-order rule attain the optimal strategy
faster than that of agents which adopt the zeroth-order learning rule.

The second problem is whether an agent can estimate the fitness gradient.
Specifically, we do not know what kind of information is sufficient to estimate
the gradient. As discussed in Section 2.3.1, the first-order rule should update the
strategy in the direction of the fitness gradient. Since the fitness gradient is a
property of a population, it is nontrivial that an individual agent can estimate it
from ancestors’ experience. Such estimation might require communication among
agents within the same generation.

The third problem is the quantification of how much the first-order learning
rule accelerates the evolutionary process. Since the coordination between individ-
ual learning and populational evolution is more complicated than the conventional
evolutionary process, a simple relationship like FF-thm in the conventional evo-
lutionary biology is useful to understand when and why learning from experience
is beneficial for organisms.

1.4.2 Unsolved Problems in Information Systems

In information systems, we have a problem in theoretical analysis about why the
evolutionary algorithms work well. Several researchers have tackled this problem
and proposed useful techniques [32]. Indeed, some of the techniques are the
basis of our thesis. However, their results still have room for improvement (See
Section 2.2.2). Some of their analysis do not predict quantitative behaviors like
the convergence rate [45, 31, 24, 79, 96] and others focus on a specific objective
function [89, 10, 12, 11].

The issues in the previous attempts are summarized by the following two
points. The first issue is that the previous research tried to analyze the whole
procedure of the evolutionary algorithms, that is, mutation, recombination (cross-
over), and selection. This approach is preferable to fully understand the power
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of the evolutionary algorithms. However, sustained but unsatisfactory previous
attempts have revealed that the whole procedure is too difficult to analyze. We
should separately analyze the effect of mutation-selection (populational evolution)
and that of recombination.

The second issue is the way to compare the performance of the evolutionary al-
gorithms to others. Previous research adopted the following approach: They first
tried to show an upper bound of the value of the objective function after the ex-
ecution of the evolutionary algorithm; They then compare the upper bound with
those of other algorithms. However, this approach may underestimate the perfor-
mance of the evolutionary algorithms. Evolutionary algorithms can incorporate
an iterative optimization algorithm L, like the gradient descent, as a substitute
for mutation to improve its performance. Indeed, memetic algorithms use an
iterative optimization algorithm L as mutation. We should therefore compare
the performance of the memetic algorithm with other algorithms to avoid the
underestimation. In this sense, the theoretical analysis of the evolutionary pro-
cess is related to the coordination between individual learning and populational
evolution.

1.5 Our Contribution

1.5.1 Contribution to Biology

In Chapter 4, we address the problems in Section 1.4.1. We solve the first problem
by proposing ancestral learning, which is a generalization of Xue’s rule (Figure 1.2
(a)). Ancestral learning is a simple learning rule that only utilizes the information
from the ancestors, which we call ancestral information. The candidates of the
information carrier are the abundance of proteins and mRNAs [105], epigenetic
scars of social defeat stress [23], and the intergenerational effects of space-flight
on epigenetic states [116]. We validate that ancestral learning can accelerate
the evolutionary process via a numerical simulation. The numerical simulation
showed that a population of agents with ancestral learning acquires the optimal
strategy faster than that of agents with the zero-th order rules.

We next solve the second problem by characterizing sufficient information
to estimate the fitness gradient. We show that ancestral information used in
ancestral information is sufficient to estimate the fitness gradient. Since ancestral
learning does not utilize communication among agents, this result indicates that
an agent can estimate the gradient without communication. We in addition show
that ancestral learning updates the strategy in the direction of the fitness gradient
(Figure 1.2 (b)). This result implies that ancestral learning is indeed a first-order
learning rule.

We finally quantify the acceleration of the evolutionary process by learning
via extending FF-thm to ancestral learning. Extended FF-thm relates the accel-
eration to the variance of the fitness among ancestors. This theorem enables us
to quantitatively predict the acceleration of the evolutionary process by ancestral
learning. Therefore, the theorem is useful to understand when and why ancestral
learning is beneficial.

7



τ e
st

-generations

: 2/3

: 1/3

ancestral information
(ancestors’ types)

imitate ancestors’ types
update of the strategy:

(a)

π
(i)
F

π
(i−1)
F

π
(i−1)
F

π
(i−1)
F

π
(i)
F

∇λ(πF
(i−1)

)

fitness gradient

relationship?

up
da

te

(b)

Figure 1.2: Schematic illustration of our contribution to biology. (a) Schematic
illustration of ancestral learning. See also Section 4.2. Ancestral learning uses
ancestors’ types back to τest-generations. This information is called ancestral
information. By using ancestral information, an agents update its strategy πF(i−1)

to πF(i) by imitating the ancestors’ types. (b) Remaining problem in this field.
To determine whether ancestral learning accelerates the evolutionary process of
acquiring optimal strategy, we need to clarify the relationship between the update
πF

(i) − πF(i−1) of the strategy and the fitness gradient. In Section 4.4, we prove
that the update is in the direction of the fitness gradient.

1.5.2 Contribution to Information Systems

In Chapter 5, we tackle the problems discussed in Section 1.4.2: We propose a
theoretical framework to analyze the performance of the evolutionary algorithms
by importing techniques from population dynamics (Figure 1.3). Our framework
addresses two issues raised in Section 1.4.2. By using the framework, we present
an approach to answer why the evolutionary algorithms perform well.

To address the first issue, we focus on the effect of mutation-selection (popula-
tional evolution) in this thesis. To focus on the effect of populational evolution, we
introduce the memetic algorithm without recombination, which we call a branch-
ing algorithm (BA) in Section 5.1. To address the second issue, we adopt the
following approach: We fix a stochastic iterative optimization algorithm L; We
then evaluate how much the performance of the BA with L differs from that of
the parallel execution of L. In other words, we examine whether populational
evolution can accelerate individual learning L. We call this approach a relative
evaluation since we evaluate the difference of the performance. By adopting the
relative evaluation, we can evaluate the effect of populational evolution separately
from L. We can therefore construct a unified theory that is applicable to all it-
erative algorithm L. In addition, by setting L to conventional mutation, we can
evaluate the performance of the conventional evolutionary algorithms.

By using this framework, we relatively evaluate the performance of the BA.
As the previous approaches [45, 110], we assume that the size of the population
is sufficiently large and approximate the BA as population dynamics. This ap-
proximation enables us to use techniques in population dynamics, in particular,
FF-thm. We extend FF-thm for natural selection as in Chapter 4 and prove that
the BA with learning rule L always performs better than the parallel execution
of L. In other words, the extended FF-thm reveals that populational evolution
can accelerate individual learning.

Although the extended FF-thm is applicable to all learning rules, the differ-
ence of the performance predicted by FF-thm is difficult to calculate in concrete
examples. FF-thm enables us to calculate the difference by using the distribu-
tion of the whole trajectories (paths) of the candidate of solutions updated by

8



f(x)

parallel execution of

branching algorithm

How much?

- Fisher’ s fundamental theorem

- retrospective process

iterative optimization algorithm

Figure 1.3: Schematic illustration of our contribution to informatics. In Chap-
ter 5, we introduce a variant of the memetic algorithm without recombination,
which we call a Branching Algorithm (BA). We compare the performance of the
BA with stochastic iterative optimization algorithm L to that of the parallel exe-
cution (PA) of L. For this purpose, we introduce two techniques from population
dynamics: Fisher’s fundamental theorem and the retrospective process. In the
figure, the blue and the red curves show each trajectories of the value of objective
function in PA and in BA, respectively. The blue and the red bell-shape represent
the distribution of the value of the objective function at the end of the execution
of the PA and the BA, respectively.

an iterative algorithm L. However, the huge state space of paths makes the cal-
culation difficult. To resolve this problem, we next introduce the retrospective
process as another technique of population dynamics. The retrospective process
L(t)T,B in this context is a transition matrix of a Markov chain that describes the

behavior of L biased by populational evolution. The retrospective process L(t)T,B

is relatively easier to calculate than the distribution of the path of the solutions.
Moreover, the retrospective process still has sufficient information to evaluate the
effect of populational evolution. As a demonstration, we apply the retrospective
process to the BA with SGD since SGD is one of the most common stochastic
optimization algorithms and that theoretical analysis is well developed. The ret-
rospective process enables us to prove that the BA improves the convergence rate
of SGD. The BA with SGD achieves O(1/T )-convergence even for not strongly
convex functions like f(x) = ∥x∥33, while the conventional SGD does O(1/

√
T )-

convergence. We emphasize that the objective of this analysis is to demonstrate
that the retrospective process is useful to analyze the evolutionary algorithm. We
do not aim to propose the BA with SGD as a practically superior algorithm to
the other optimization algorithms.
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1.6 Structure of This Thesis

In Chapter 2, we review the relevant research in each field. In Chapter 3, we
introduce the notation used in this thesis. In addition, we explain previous results
that are necessary for later discussion. From Chapter 4 to Chapter 5, we explain
our contribution. In Chapter 4, we solve the problem about the acceleration of
the evolutionary process by learning presented in Section 1.4.1. In Chapter 5,
we solve the problems about theoretical analysis of the evolutionary algorithms
presented in Section 1.4.2. In Chapter 6, we summarize and conclude the thesis.
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Chapter 2

Background

In this chapter, we explain the related work and its connection to the thesis.

2.1 Individual Learning

2.1.1 Examples in Biology

We add extra examples of individual learning in biology that we have not men-
tioned in Chapter 1. An example is an animals’ decision making like when to
sleep and to feed [64]. In addition, plants may optimize their life history [122].
To explain these phenomena, a viewpoint from mathematical optimization has
played an important role. By assuming that the choice of an organism maximizes
its fitness, we can explain these phenomena [64, 121, 122, 80, 86, 73, 74]. A stem
cell decides the differentiating cell type [59]. The decision of fatal type called
apoptosis is also known [118]. We also add extra explanations about the theo-
retical approach to individual learning in biology. Chemotaxis is modeled as a
filtering problem and an optimal control [73, 74]. The division interval of bacteria
is explained by optimal scheduling [86].

2.1.2 Examples in Information Systems

A typical example of individual learning in information systems is iterative opti-
mization algorithms for an optimization problem:

minimize f(x),
subject to x ∈ X ⊆ Rd.

(2.1)

An iterative algorithm recursively updates a candidate of the solution x(t) to
x(t+1) by a certain rule. We call a candidate of the solution just the solution
for simplicity in the rest of the thesis. When a certain stopping condition is
satisfied, the algorithm outputs the current candidate x(T ) of the solution. We
call x(T ) the output of the algorithm. Since the iterative optimization algorithm
is characterized by the update rule, we sometimes identify the algorithm with
the update rule. An example of iterative algorithms is gradient descant (GD),
which updates the solution in the direction of the negative gradient −∇f(x)
(Algorithm 3.1 in Section 3.5.2) [17]. Newton’s method is a variant of the gradient
descent that additionally uses the second order derivative ∇2f(x) to update the
solution [17].

When we cannot compute f(x) but obtain its noisy estimator, we can use
stochastic optimization methods. A typical situation is where the objective func-
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tion is a summation with respect to the data di (i ∈ [n]), i.e.,

f(x) =
1

n

n−1∑
i=0

l(x; di), (2.2)

and the size n of the data is too much to compute f(x). Another situation is where
the objective function f(x; ξ) depends on some random variable ξ and we want
to minimize E[f(x; ξ)] [91]. Typically, the random variable ξ is the realization
of a stochastic observation. An example of stochastic optimization methods is
stochastic gradient descent (SGD): We select a small subset of the data S ⊆ [n]
randomly and then compute an estimator gS of the gradient from the selected
data as

gS = 1/|S| ·
∑
i∈S
∇l(x; di). (2.3)

The solution is then updated in the negative direction of gS . Since the size of the
selected data is small, we can save the computational time.

To resolve the problems that worsen the performance of SGD, many tech-
niques are proposed. One problem is the variance of x(t) caused by the stochastic
fluctuation of gS with respect to the choice of S. The variance inhibits the so-
lution from converging to a minimizer 1. To suppress the variance, a technique
called averaging over time is developed. Instead of the solution x(T ) at the end
time T , SGD with averaging over time outputs x̄(T ) =

∑
t s

(t+1)x(t), where s(t)

is a weight satisfying s(t) ≥ 0 and
∑T+1

t=1 s
(t) = 1. Another problem is the zigzag

movement toward a minimizer around the critical point (i.e., ∇f(x) = 0). When
the solution is near the critical point, the gradient ∇f(x) is close to zero and
the direction of ∇f(x) becomes unstable. This instability makes the convergence
slow. Many techniques are proposed to resolve this problem. One is a momentum
method [87, 93]. A momentum GD updates the solution in the negative direc-
tion of the average 1/k ·

∑t
s=t−k+1∇f(x(s)) of the history of the gradient. The

averaging makes the direction of the gradient stable. An sophisticated version of
the momentum method is Nesterov’s acceleration [78]. Nesterov’s acceleration is
originally proposed for GD and extended to SGD [46, 36, 37].

Many studies have tried to show the theoretical guarantee of the performance
of GD and SGD (eg. [94, 3, 16, 70]). They typically try to bound the deviation
f(x(T ))− f(x∗) of the value of the objective function at the end of the algorithm
from the optimal value. If we have an upper bound f(x(T )) − f(x∗) = O(h(T )),
we say that the convergence rate is O(h(T )). For GD, the convergence rate is
exponential O(e−µT ) for some constant µ > 0 under mild assumptions [17]. For
SGD, the convergence rate is polynomial instead of O(e−µT ) due to the stochastic
fluctuation of the estimator gS of ∇f(x). The upper bound is usually proven for
the output x̄(T ) averaged over time. The convergence rate for convex functions
is O(1/

√
T ) [102, 77, 101]. Precisely, E[f(x̄(T ))] − f(x∗) = O(1/

√
T ). If we can

further assume the strong convexity, the convergence rate is O(1/T ) [56, 88].
These bounds are known to be optimal up to constant factor [1]. When the
variance of the estimator of the gradient is sufficiently small, we can achieve
almost O(1/T 2)-convergence by Nesterov’s acceleration [78, 46, 36, 37].

The convergence rate is also proven for parallel SGD. Let us consider the
situation where we execute SGD on Nsize-computational nodes and then sup-
press the stochastic fluctuation of the outputs x(T )

i at each node by averaging
1A minimizer is the point x ∈ X satisfying f(x) = minx′∈X f(x′).
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1/Nsize ·
∑Nsize

i=1 x
(T )
i . We call this technique averaging over paths. Under this

setting, the convergence rate is O(1/TNsize) for strongly convex functions when
Nsize <

√
T [119]. Therefore, parallel execution on Nsize-computational nodes

makes convergence Nsize-times faster.
More detailed properties of SGD than the convergence rate are analyzed under

the assumption that the estimator gS of the gradient follows a normal distribution.
This assumption is justified when we use a mini-batch S with a sufficiently large
size by the central limit theorem. For example, some authors [60, 120, 58] approx-
imate SGD as an Ornstein-Uhlenbeck process under the normality assumption.
We use the normality approximation as well in Section 5.4.

2.2 Populational Evolution

2.2.1 Populational Evolution in Biology

Biological evolution is one of the central topics in current biology and studied by
both experimental and theoretical approaches. One of the pioneering theoretical
results is FF-thm of natural selection [33]. Price generalized FF-thm as Price’s
equation [85] to incorporate the effect of recombination [84]. FF-thm and Price’s
equations are proven in various models of population dynamics.

Biological evolution is related to the adaptation (micro-evolution) of organ-
isms. In this context, researchers are interested in how organisms can survive
in harsh and randomly ever-changing environments. One strategy for survival is
bet-hedging, which is a special form of strategies [99, 27]. In bet-hedging, an or-
ganism stochastically expresses types to keep the variety of types in a population.
The variety is useful to avoid the extinction of the whole population.

To quantitatively understand the idea, we should calculate the fitness of the
strategy. For this purpose, a pathwise formulation, variational principle, and ret-
rospective processes are proposed [43, 57, 71, 111, 103, 6, 104]. In the pathwise
formulation, we consider the history (path) of the ancestors’ type to represent the
fitness. The pathwise formulation is further simplified as a variational problem
of the strategy. This representation is called variational principle and related to
thermodynamics [103]. The maximizer of the variational problem is called the
retrospective process. The retrospective process is useful to calculate the gradi-
ent of the fitness. These techniques are extended to various models of population
dynamics. For example, the author and two collaborators extended these tech-
niques to population dynamics with age-structure [104]. The retrospective process
is useful to estimate the type-switching strategy of an organism from the data at
the population level. Since the data at the population level is affected by sur-
vivorship bias, we should correct the bias. The retrospective process is useful for
this correction. Indeed, the author [76] and other researchers [61, 62] proposed
such methods.

2.2.2 Populational Evolution in Information Systems

Examples of populational evolution in information systems are the evolutionary
algorithms and particle filters. We review these two topics.

Evolutionary algorithms

The evolutionary algorithms are an application of populational evolution to math-
ematical optimization. Examples of the evolutionary algorithms are the genetic
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algorithm and the evolutionary strategies. A simple form of the evolutionary al-
gorithm is as follows: The algorithm uses a population of solutions {x(t)i }i∈[Nsize].
Each solution is stochastically updated to x′

(t)
i depending on x(i) by some rule

called mutation. Mutation is usually directionless: it does not use the information
of the objective function f(x). After that, the population of solutions is further
updated to {x′′(t)i }i∈[Nsize] by some rule called recombination (cross-over). The
difference between mutation and recombination is the dependency on other solu-
tions: When updating x(t)i , mutation depends only on x

(t)
i while recombination

can depend on other solutions x(t)j (j ̸= i) in addition. Then, the population at

the next time step is sampled from {x′(t)i }i∈[Nsize] with weight wi(f(x
′(t)
i )) that is

monotonically decreasing with respect to the value of the objective function. This
step is called selection. Due to populational evolution caused by wi, we expect
that the population will consists of the solutions with small f(x) as t becomes
large.

Several researchers have tried to show theoretical guarantees of evolutionary
algorithms [32]. Holland [45] invented a schema theory and proved the funda-
mental theorem of genetic algorithms [18], which turned out to be a special
case of Price’s equation [2]. However, the schema theory cannot explain the
behavior of the genetic algorithms in the limit t → ∞. The Markov chain the-
ory [31, 24, 79, 96] models the genetic algorithm as a Markov chain of the pop-
ulation {x(t)}i∈[Nsize] ∈ X

Nsize and tries to show the behavior in the limit t → ∞
from the property of the Markov chain. The approach is too complicated to show
a transient behavior like the convergence rate. The state space XNsize of the
Markov chain is too large to theoretically analyze. Another approach is direct
calculations for specific functions. Rechenberg [89, 98] 2 showed a convergence
rate of the evolutionary strategy when the size Nsize of the population is one and
the objective functions are limited to several specific functions, including linear
and quadratic functions. Beyer [10, 11, 12] extended the result to the situation
where the evaluation of the objective function is noisy and Nsize > 1 by approx-
imating the offspring distribution. Other approach assumes that the size of the
population is infinite and approximates the behavior of the evolutionary algo-
rithms as quadratic dynamical systems [110]. Mühlenbein and Voosen [63] used
FF-thm to quantify the effect of mutation-selection, which is separated from the
effect of recombination.

We use some of the ideas in the previous approaches in the thesis. We consider
the effect of mutation-selection separately from that of recombination as [63].
We assume that the size of the population is infinite and approximate the BA
as dynamical system [110]. The difference is that we model the evolutionary
algorithm as a population dynamics (5.5) while the previous result models as
quadratic dynamical systems. We extend FF-thm to the BA in a different for-
mulation from [45, 18, 2, 63]. We apply the retrospective process to the BA,
which is a Markov chain over X instead of the whole population XNsize as done
in [31, 24, 79, 96]. Although the state space is reduced, the retrospective process
incorporates the effect of populational evolution and works usefully to analyze the
evolutionary algorithms.

2Since this thesis is written in Germany and unavailable in Japan, I have never read it. Two
papers [10, 98] pointed out that Rechenberg firstly proved this result in [89].
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Sequential Monte-Carlo Methods

SMC methods (also called particle filters) solve filtering, smoothing, and param-
eter estimation of HMM by employing populational evolution [50]. In filtering
of HMM, our aim is to estimate the hidden state x(t) that is not observable and
evolves as a Markov chain that follows P[X(T )]. For this estimation, we can use the
set of observations Y(T ) = {y(0), y(1), . . . , y(T )} that follows a conditional distri-
bution K(x(t) | y(t)). Naïve calculation of the conditional probability P[x(t) | Y(t)]
is intractable since the computation of the normalization factor requires Ω(Xt)-
time. If K(x(t) | y(t)) is conjugate to the time evolution of X(t), we can recursively
compute the conditional probability [14]. However, in general settings, we need to
use approximation methods. One of the approximation method is SMC method.

SMC methods use a population of particles, each of which has a value on the
hidden state space X . Each particle is updated by simulating the time evolution
of X(T ). After that, the particles that are compatible with the current observation
y(t) reproduces more daughter particles than the particles that are not compatible.
Precisely, a particle with value x(t) has K(x(t) | y(t))-daughters on average. The
total number Nsize of the particles are kept constant by selection. By this pop-
ulational evolution of particles, the empirical distribution 1/Nsize

∑
i∈[Nsize]

δx,x(t)

becomes an approximation of the conditional distribution P[x(t) | Y(t)]. A similar
calculation is applicable to smoothing and parameter estimation of HMM [50].

The measure transformation from P[X(T )] to P[X(T ) | Y(T )] is an example of
Feynmann-Kac formula [68]. This interpretation is useful to design computation-
ally efficient SMC methods. For example, an improved algorithm is proposed by
using the history of the particles [28]. This technique is similar to the retrospective
process in population dynamics. We deepen this connection in Chapter 4.

2.3 Coordination between Individual Learning and Natural Se-
lection

2.3.1 Coordination in Biology

In theoretical biology, researchers have discussed the relationship between individ-
ual learning and populational evolution to understand the fitness value of informa-
tion processing by organisms. An example is sensing of the state of environment.
If an organism can sense the state and change its traits accordingly, the organism
can survive more easily than without sensing. We can regard this information
processing as individual learning from signals of environments. To quantify the
fitness value of the sensing, researchers have calculated the difference of the fitness
with and without sensing. The difference is characterized by the mutual infor-
mation between the sensed signal and the state of environment [38, 55, 90, 53].
Although sensing is different from learning from experience that we consider in
Chapter 4, these studies revealed an aspect of the coordination between individual
learning and populational evolution.

In this context, several researchers [115, 54] pointed out the possibility of the
acceleration of the evolutionary process by learning from ancestors’ experience.
A pioneering study by Xue and Leibler [115] proposed Xue’s rule and showed
that an agent can acquire the optimal strategy by Xue’s rule. In Xue’s rule, an
organism chooses the phenotypic traits of the parent more frequently than the
parent. Our ancestral learning is a generalization of Xue’s rule and we deepen
their argument in this thesis.
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2.3.2 Coordination in Information Systems

One example of coordination in information systems is the memetic algorithms [69].
This kind of extensions are also used as CMA-ES [39] and IGO [1]. Indeed, at
the mutation step, these algorithms use a distribution whose parameter is tuned
by f(x). Recently, the evolutionary algorithm is combined with reinforcement
learning, which is another example of individual learning [51].
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Chapter 3

Preliminary

In this chapter, we first introduce the notation used in this thesis. We then outline
the previous results that are used later in the thesis.

3.1 Notation

We here summarize the notation used in this thesis.
Let [n] := {0, 1, 2, . . . , n − 1}. Also, let [n : m] := {n, n + 1, . . . ,m − 1} for

n,m ∈ N with n ≤ m. Let [s, t] := {u ∈ R | s ≤ u ≤ t} and (s, t) := {u ∈ R | s <
u < t}. For a finite set A, let |A| be its cardinality.

For x = (x0, x1, . . . , xd−1) ∈ Rd, let ∥x∥p :=
(∑d−1

i=0 x
p
i

)1/p
be the lp-norm.

For p = 2, we omit the subscript. For a d × d positive-definite matrix A and
x ∈ Rd, let ∥x∥A := x⊤Ax. Let I be the identity matrix. For a square matrix A,
let Tr (A) be its trace.

For two functions f, g : R → R and a ∈ R ∪ {−∞,∞}, we say that f(x) =
O(g(x)) in the limit x → a if there exists δ > 0 and M > 0 such that |f(x)| ≤
Mg(x) for all |x − a| ≤ δ. We omit a when it is clear from the context. We say
that f(x) = o(g(x)) if, for all M > 0, there exists δ > 0 such that |f(x)| ≤Mg(x)
for all |x − a| ≤ δ. We say that f(x) = Ω(g(x)) if g(x) = O(f(x)) and that
f(x) = ω(g(x)) if g(x) = o(f(x)). We say that f(x) = Θ(g(x)) if f(x) = O(g(x))
and f(x) = Ω(g(x)).

Let t ∈ [T + 1] be an index of time. For a set X , a path X (T ) on X is a map
x(·) : [T + 1]→ X and denoted by X = {x(0), x(1), . . . , x(1)} or X = {x(t)}t. For a
path X(T ) and t, t′ ∈ [T + 1] with t ≤ t′, let X(t:t′) := {x(t), x(t+1), . . . , x(t

′)} be a
truncation of X(T ). We note that X(0:T ) = X(T ). For two paths X(t:t′) = {x(s)}s
and Y(t:t′) = {y(s)}s on R, we define an inner product of the paths by

〈
X(t:t′),Y(t:t′)

〉
:=

t′∑
s=t

x(s)y(s). (3.1)

In this paper, we sometimes abbreviate integration
∫
x∈X f(x)dx as

∑
x∈X f(x).

For ϵ ∈ R and f(ϵ) defined over ϵ > 0, let limϵ→0+ f(ϵ) be the one-sided limit of
f from the positive half line. We denote by δx,y both Kronecker’s delta and the
delta function.

For a set X and its σ-algebra Σ, we denote by P(X ,Σ) the set of the probability
measures on (X ,Σ). We omit Σ when it is clear from context. For a random
variable X with distribution p, we denote the expectation and the variance of
X by Ep[X] and Vp[X], respectively. We omit p from the subscript when it
is clear from the context. Let N (µ,Σ) be the multivariate normal distribution
with mean vector µ and covariance matrix Σ. We abbreviate “independently
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identically distributed” to “i.i.d.”. We write X ∼P ν if a random variable X
follows a distribution ν under a measure P. We omit P if it is clear from the
context. For two distributions p and p′ on X , the Kullback-Leibler divergence
(KL-divergence) is defined by

D
[
p
∥∥p′] := ∑

x∈X
p(x) log

p(x)

p′(x)
, (3.2)

if the support of p′ contains that of p.
For two random variables X and Y whose joint distribution is p(X,Y ), we

define a log-covariance and a log-variance by

log-Covp [X,Y ] := log
Ep[e

X+Y ]

Ep[eX ]Ep[eY ]
, (3.3)

log-Vp[X] := log-Covp [X,X] , (3.4)

respectively. We use the term “log-covariance” since

log-Covp [X,Y ] = logEp[e
XeY ]− logEp[e

X ]Ep[e
Y ], (3.5)

is similar to the definition of the covariance:

Covp [X,Y ] = Ep[XY ]− Ep[X]Ep[Y ]. (3.6)

By a direct calculation, we can prove the relationship between the covairance and
the log-covariance:

log-Covp [X,Y ] = log

(
1 +

Covp
[
eX , eY

]
Ep[eX ]Ep[eY ]

)
. (3.7)

3.2 Population Dynamics

We introduce a model of populational evolution that is the basis of the model in
Chapter 4. We consider a population dynamics of asexual agents with discrete
time t ∈ {0, 1, . . . , } (Figure 4.1). Let x(t) ∈ X and y(t) ∈ Y be the time of
an agent and the state of the environment at time t. For simplicity, we call the
state of the environment the environmental state. We assume that X and Y are
finite. Each agent has a strategy πF(x) ∈ P(X ). The environmental state y(t)

follows a distribution Q(y(t)) independently. An agent first determines its type
by πF(x). An agent then reproduces the daughters depending on its type and
the environmental state. An agent with type x reproduces ek(x,y(t))-daughters
on average. We call the term ek(x,y

(t)) an individual fitness. We define a path
(history) of the type along a lineage and environmental states from time 0 to time
t as X(t) and Y(t), respectively. Here, a lineage is the sequence of the ancestors of
a specified agent at some time. We suppose that the path of the environmental
states is Y(t). Then, the number of agents in the population at time t is

N (t)
πF

[Y(t−1)] =

[∑
x∈X

ek(x,y
(t−1))πF(x)

]
N (t−1)

πF
[Y(t−2)]. (3.8)

Here, N (0) is the initial size of the population. We omit πF and Y(t−1) when it is
clear from the context.
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By using this dynamical system, we can define the “fitness” of strategy. A
cumulative fitness of strategy πF until time t is

Λ(t)(πF | Y(t−1)) := log
N

(t)
πF [Y(t−1)]

N
(0)
πF

. (3.9)

A time-averaged population fitness of πF is

λ(πF) := lim
t→∞

1

t
Λ(t)(πF | Y(t−1)), (3.10)

which exists almost surely and independently of Y(t) due to the ergodicity of the
environmental state. For simplicity, we call λ(πF) the population fitness.

3.2.1 Pathwise Formulation and Variational Principle

To calculate the population fitness and its gradient, we use pathwise formulation
and variational principle [103]. Suppose that the environmental states are Y(t).
We calculate the number of agents at time t + 1 whose path of ancestors’ types
is X(t). By recursively applying (3.8),

NπF [X
(t) | Y(t)] = ek(X

(t),Y(t))PF[X(t)]N (0), (3.11)

where k(X(t),Y(t)) =
∑t

t′=0 k(x
(t′), y(t

′)) and PF[X(t)] =
∏t

t′=0 πF(x
(t′)) are the

pathwise (historical) individual fitness and pairwise forward probability, respec-
tively. We call (3.11) the pathwise formulation. Under the pathwise formulation,
the cumulative population fitness is

Λ(t)(πF | Y(t−1)) = log
∑

X(t−1)∈X t

ek(X
(t−1),Y(t−1))PF[X(t−1)]. (3.12)

Since y(t) follows Q(y(t)) independently, the population fitness is (cf. [100, 52])

λ(πF) = EQ(y)

[
logEπF(x)

[
ek(x,y)

]]
. (3.13)

Since the inside of the expectation in the right hand side is the scaled cumu-
lant generating function, we have the following variational representation of the
populational fitness:

Proposition 3.1 (Variational Principle).

λ(πF) = EQ(y)

[
max

π∈P(X )

{∑
x∈X

k(x, y)π(x)−D [π∥πF]

}]
. (3.14)

In addition, the maximizer of the variational problem in the right hand side is

πB(x | y) =
ek(x,y)πF(x)∑

x′∈X e
k(x′,y)πF(x′)

. (3.15)

The variational representation enables us to calculate the gradient of popula-
tion fitness:

Proposition 3.2.

∂λ(πF(x))

∂πF(x)
=
π̄B(x)

πF(x)
, (3.16)

where

π̄B(x) :=
∑
y∈Y

πB(x | y)Q(y), (3.17)

For the completeness of the thesis, we give a proof in Section 3.7.
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3.2.2 Retrospective Process

We give an interpretation of the maximizer (3.15). For this purpose, we define
the empirical distribution jπF

emp of the ancestors’ types. Let us choose an agent at
time T uniformly at random. The empirical distribution jπF

emp of ancestors’ type
of the chosen agent is

jπF
emp(x) :=

1

T

T−1∑
t′=0

δx,x(t′) , (3.18)

where δx,x(t) is the Kronecker’s delta and x(t
′) is the type of the ancestor of the

chosen agent at time t′. The empirical distribution is biased from πF in that
jπF
emp ≈ π̄B ̸= πF when T is sufficiently large. This is an example of the survivor-

ship bias and an interpretation of π̄B(x) and πB(x | y). Since an agent with a type
better fitted to the environmental state has more daughters, such types are em-
phasized in the empirical distribution. Therefore, π̄B ≈ jπF

emp contains information
about populational evolution and is useful to analyze population dynamics.

Let us prove that jπF
emp ≈ π̄B when T is sufficiently large. For simplicity, we

first consider the following situation where the environment is constant Y = {∗}.
In this case, we can write ek(x,∗) as ek(x) since the individual fitness is independent
of the environmental states. We also write πB(x | y) as πB(x) and specially define
that π̄B(x) = πB(x). Since jπF

emp = 1/T ·
∑T−1

t′=0 δx,x(t′) is a summation of random
variables, the law of large number implies that

jemp(x) ≈ E
[
δx,x(t′)

]
, (3.19)

when T is sufficiently large. We calculate E
[
δx,x(t′)

]
. If we choose an agent at

time t′ + 1, then the number of the descendants of the chosen agent at time T
is independent of x(t′). We denote by u(t

′+1:T ) this constant. We also denote
by N (t′) the number of the agents in the population at time t′. By using these
quantities, we can calculate the number of agents at time T whose ancestor at
time t′ expresses type x as

u(t
′+1:T )ek(x)πF(x)N

(t′). (3.20)

By a similar way, we can calculate the total number of agents at time T as∑
x′∈X

u(t
′+1:T )ek(x

′)πF(x
′)N (t′). (3.21)

By using these equations, we know that

E
[
δx,x(t′)

]
=

u(t
′+1:T )ek(x)πF(x)N

′(t′)∑
x∈X u

(t′+1:T )ek(x)πF(x)N (t′)

=
ek(x)πF

(i−1)(x)∑
x∈X e

k(x)πF(i−1)(x)
(3.22)

= πB(x). (3.23)

This equation and (3.19) indicates that jπF
emp ≈ πB when T is sufficiently large.

Owing to this fact, we call πB(x) the retrospective process of πF when the envi-
ronment is constant [43, 6, 35, 103].
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We next consider the case where the environment is not constant. We cal-
culate jπF

emp by a similar argument. Since the environmental state follows Q(y)
independently, the law of large number implies that

jemp(x) ≈ EQ(y)

[
E
[
δx,x(t′) | y

]]
, (3.24)

where E
[
δx,x(t′) | y

]
is the conditional expectation of random variable δx,x(t′) given

that the environmental state y(t) = y. We can calculate E
[
δx,x(t′) | y

]
by a similar

argument to (3.23):

E
[
δx,x(t′) | y

]
=

ek(x,y)πF(x)∑
x′∈X e

k(x′,y)πF(x′)
= πB(x | y). (3.25)

This equation and (3.24) indicates that jπF
emp ≈ π̄B when T is sufficiently large.

Owing to this fact, we call πF(x | y) the retrospective process and π̄B the averaged
retrospective process.

3.2.3 Extension to Continuous-Time Age-Structured Models

The author and collaborators extended the variational principles and retrospective
processes to continuous-time models. An important difference between discrete-
time model (3.8) and continuous-time model are the synchronicity of the timing
of replication. In discrete-time model, we implicitly assumed that the replication
of all agents in the population synchronizes and occurs ones at every time step
t. However, in real data (for example, [41]), the replication does not synchronize
and we should consider more realistic models. The continuous-time model is an
example of such models. In the model, we consider a waiting time τ for the next
replication of each agent. In other words, we consider the age of an agent from
its birth and τ is the age that the agent replicates. Therefore, we say this model
is age-structured.

In continuous-time age-structured model, we consider the population dynamics
defined as follows. We suppose that the environment is constant for simplicity.
An agent has one type x ∈ X as in (3.8). The type is determined when an agent
is born by using strategy πF ∈ P(X ) 1. We define an age of an agent as the time
length from its birth. An agent replicates at age τ , which is called a division time.
We suppose that τ independently follows a type-dependent distribution µ(τ, x).
The distribution µ(τ, x) can be represented by using type-dependent rate r(a, x)
as follows [104]:

µ(τ) := r(τ, x)e−
∫ τ
0 r(a,x)da. (3.26)

We can interpret r(a, x)δa as the probability that an agent with type x replicates
at age [a, a+δa] given that it has not replicated until age a. We also suppose that
the average number of the offspring of an agent with type x and division time τ
is ek(τ,x).

Under this setting, we consider the time evolution of the number N (t)(a, x) of
agent with age a and type x at time t. The number N (t)(a, x) follows McKendric-
von Voerster equation [67, 109]:

∂

∂t
N (t)(a, x) =

[
− ∂

∂a
− r(a, x)

]
N (t)(a, x), (3.27)

1In our paper [103], we considered a generalized situation in which the strategy πF depends
on the age τ when the parent replicates. We consider a simplified model to make the discussion
concise.
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where the boundary condition is

N (t)(0, x) = πF(x)
∑
x∈X

∫ ∞

0
ek(τ,x)r(τ, x)N (t)(x, τ)dτ. (3.28)

The population fitness λ(πF) in this model is defined as

λ(πF) := lim
t→∞

1

t
log

∑
x∈X

∫∞
0 N (t)(a, x)da∑

x∈X
∫∞
0 N (0)(a, x)da

. (3.29)

The author and collaborators extended variational principle (3.14) to this
model [104]. For this purpose, let T (X ) be the set of measures j(x; τ, x′) in
X × R×X → R satisfying the normalization condition:∑

x,x′∈X

∫
τ ′j(x; τ ′, x′)dτ ′ = 1, (3.30)

and the shift-invariance condition:∑
x∈X

∫ ∞

0
j(x; τ ′, x′)dτ ′ =

∑
x∈X

∫ ∞

0
j(x′; τ ′, x)dτ ′ =: gj(x). (3.31)

We define a rate function IF : T (X )→ R by

IF[j] =
∑

x,x′∈X

∫ ∞

0
j(x; τ ′, x′) log

j(x;x′, x′)

πF(x)µ(τ, x)gj(x′)
. (3.32)

Under this setting, we have the following variational principle.

Proposition 3.3 (Variational Principle in age-structured models [104]).

λ(πF) = max
j∈T (X )

 ∑
x,x′∈X

k(x; τ, x′)j(x; τ ′, x′)− IF[j]

 . (3.33)

As in the case of discrete-time models, the optimal solution j∗ is related to the
empirical distribution of the ancestors’ types and division times. Let us take an
agent at time T uniformly at random. We define the empirical distribution jemp

of ancestors’ types and division times of the chosen agent by generalizing (3.18):

jemp(τ, x) :=
1

n

n−1∑
n′=0

δx,x(n′)δτ (n′)(τ), (3.34)

where the chosen agent is the n-th generation, x(n′) and τ (n′) are the type and the
division time of the ancestor of the chosen agent at time n′-generation, respec-
tively, and δτ (t′)(τ) is the delta function. From the explicit form of j∗, we proved
the following convergence result.

Proposition 3.4 ([104]).

jemp(τ, x)→ µB(τ, x)πB(x), (3.35)

as T →∞, where

µB(τ, x) :∝ ek(τ,x)−λ(πF)τµ(τ, x), (3.36)

πB(x) :∝ π(x)
∫ ∞

0
ek(τ,x)−λ(πF)τdτ. (3.37)

22



Owing to this property, jemp(τ, x) is called the retrospective process of this
model.

The retrospective process is useful to analyze the data of the growing popula-
tion of cells. Such data is available for cells by using microfluidic devices [113, 41].
To analyze such data, we typically interested in statistics of the population all
over the time. Suppose that there are N cells in the population in total from
time 0 to time T . Let i be the label of cells and xi and τi are the type and the
division time of the i-th cell, respectively. Then, we consider the statistics of the
population of the form:

ST [h] :=
1

N

∑
i

h(τi, xi), (3.38)

where h is a certain function. Marguet [61, 62] first considered this problem in
a certain age-structured model and the author and collaborators [76] simplified
the results to the model specialized but applicable to analyze existing data [41].
Marguet and we showed that

ST [h]→
∑
x∈X

∫ ∞

0
h(τ, x)π(x)µB(τ)dτ, (3.39)

as T →∞ under certain regularity conditions.

3.3 Fisher’s Fundamental Theorem of Natural Selection

We review FF-thm of natural selection. FF-thm relates the speed of evolution
to the variance of individual fitness in the population. To see this clearly, we
consider the following fixed-type population dynamics in a constant environment.
The model is a modification of (3.8). We suppose that Y = {∗}. As in the
derivation of (3.23), we write the individual fitness by ek(x) instead of ek(x,∗). We
suppose that the type of an agent equals that of its parent. Under this setting,
the number N (t)(x) of the agents with type x at time t satisfies

N (t)(x) = ek(x)N (t−1)(x). (3.40)

Since we are interested in summary statistics of the population like the variance of
the individual fitness, we introduce the fraction p(t)(x) := N (t)(x)/

∑
x′∈X N

(t)(x′)

of the agents with type x in the population at time t. By (3.40), the fraction p(t)

satisfies

p(t)(x) =
ek(x)p(t−1)(x)∑

x′∈X e
k(x)p(t−1)(x)

. (3.41)

One way to measure the speed of evolution in this model is the increase in the
averaged individual fitness Ep(t)

[
ek(x)

]
. By (3.41), the increase satisfies the fol-

lowing:

Theorem 3.5 (Fisher’s Fundamental Theorem of Natural Selection).

∆Ep(t)

[
ek(x)

]
:= Ep(t)

[
ek(x)

]
− Ep(t−1)

[
ek(x)

]
(3.42)

= Vp(t−1)

[
ek(x)

]
/Ep(t−1)

[
ek(x)

]
. (3.43)

The theorem reveals the relationship between the gain of the average and the
variance of individual fitness in the population. For the completeness of the thesis,
we give a proof in Section 3.7.
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3.4 Hidden Markov Models and Sequential Monte-Carlo Meth-
ods

We here explain a basic fact about HMM and SMC methods. We first introduce
HMM. In HMM, a hidden state x(t) ∈ X is a realization of the Markov chain
whose transition matrix is TF(x

(t) | x(t−1)). The hidden state is not observable.
Instead, we observe y(t) which follows K(x(t) | y(t)) at each time. Let θ = {TF,K}
be the parameters of the model. The joint distribution of the model is

PF[X(T ),Y(T )] = ν(x(0))

(
T−1∏
t=0

TF(x
(t+1) | x(t))

)
T∏
t=0

K(x(t) | y(t)), (3.44)

where ν is the initial distribution of x(0) and X(T ) and Y(T ) are the paths of x(t)

and y(t), respectively. By definition, the conditional distribution is

PF[X(T ) | Y(T )] =
PF[X(T ),Y(T )]∑

X(T )∈XT+1 PF[X(T ),Y(T )]
(3.45)

=
PF[X(T )]

∏T
t=0K(x(t) | y(t))∑

X(T )∈XT+1 PF[X(T )]
∏T

t=0K(x(t) | y(t))
. (3.46)

The log-likelihood l(θ) to observe Y(T ) is

l(θ) = log
∑

X(T )∈XT+1

PF[X(T ),Y(T )]. (3.47)

The gradient of log-likelihood satisfies the following identity:

Proposition 3.6 (Fisher’s identity [30]).

∇l(θ) = EPB[X(t)|Y(t)]

[
∇ logPF[X(t)]

]
. (3.48)

Fisher’s identity is useful to estimate the parameters θ by SMC methods.
Indeed, the right hand side can be approximated by SMC methods. Therefore,
we can update parameters by, for example, gradient descent or EM algorithms.
When we use the EM algorithm and TF(x

(t) | x(t−1)) is simplified as πF(x(t)), the
parameter πF is recursively updated by

πF
(i) ← 1

T + 1

T∑
t=0

PF[x
(t) | Y(T )], (3.49)

where the right hand side is calculated for πF(i−1) [14].

3.5 Mathematical Optimization

In this section, we summarize the previous results about mathematical optimiza-
tion.

3.5.1 Convex functions

We here review the definition and the properties of convex functions. Convex
functions [17, 124] form a broad class of objective functions that admit theoret-
ical guarantees of the performance of optimization algorithms. Let X ⊆ Rd. A
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function f : X → Rd is proper if X ̸= ∅. A function f : X → Rd is closed if the epi-
graph {(x, t) ∈ Rd×R | f(x) ≤ t} is closed. A set X is convex if (1− t)x+ ty ∈ X
for all x, y ∈ X and t ∈ [0, 1]. A function f : Rd → R is said to be convex if X is
convex and

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), (3.50)

for all x, y ∈ X and t ∈ [0, 1]. In this thesis, a convex function is supposed to be
proper and closed unless we explicitly mention.

A convex function f : Rd → R is said to be α-strongly convex (α ≥ 0) if

α

2
t(1− t)∥x− y∥2 + f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), (3.51)

for all x, y ∈ X and t ∈ [0, 1]. We note that 0-strongly convexity coincides with
the original convexity. We call an α-strongly convex function with α > 0 just a
strongly convex function when α is not important. When f is differentiable, the
α-strong convexity is equivalent to the following condition [124]:

f(x) + ⟨∇f(x), y − x⟩+ α

2
∥x− y∥2 ≤ f(y), (3.52)

for any x, y ∈ X . By adding this inequality to the symmetric condition

f(y) + ⟨∇f(y), x− y⟩+ α

2
∥x− y∥2 ≤ f(x), (3.53)

we have

⟨∇f(x)−∇f(y), x− y⟩ ≥ α∥x− y∥2. (3.54)

A twice differentiable convex function f is α-strongly convex if and only if the
minimum eigenvalue of ∇2f(x) is not less than α [17].

A convex function f is said to be γ-smooth if it is differential for any x ∈ Rd

and

∥∇f(x)−∇f(y)∥ ≤ γ∥x− y∥. (3.55)

3.5.2 Gradient Descent and its Variants

In this section, we review GD and its variants. Since Chapter 5 focuses on stochas-
tic optimization, we intensively review SGD. Recall that we consider the following
optimization problem:

minimize f(x),
subject to x ∈ X ⊆ Rd.

(3.56)

Algorithm 3.1 Gradient Decent

1: Set initial solution x(0).
2: for t = 0, 1, . . . , do
3: x(t+1) ← ΠX

(
x(t) − η(t+1)∇f(x(t))

)
.

4: if the solution x(t+1) satisfies the stopping condition. then
5: Exit the loop.
6: end if
7: end for
8: Output x(t+1).
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Algorithm 3.2 Stochastic Gradient Decent

1: Set initial solution x(0).
2: for t = 0, 1, . . . , do
3: Get an estimator g(t+1) of the gradient.
4: x(t+1) ← ΠX

(
x(t) − η(t+1)g(t+1)

)
.

5: if the solution x(t+1) satisfies the stopping condition. then
6: Exit the loop.
7: end if
8: end for
9: Output x(t+1).

Algorithm 3.3 Nesterov’s Acceleration for Stochastic Gradient Decent

1: Set initial solution x(0) = 0.
2: Set µ(0) = ζ(0) = x(0).
3: for t = 0, 1, . . . , do
4: µ(t+1) ← (1− ω(t+1))β(t) + ω(t+1)ζ(t).
5: Get an estimator g(t+1) of the gradient.
6: β(t+1) ← ΠX

(
β(t+1) − η(t+1)µ(t+1)

)
.

7: ζ(t+1) ← ζ(t)−(η(t+1)ω(t+1)+α)−1[η(t+1)(µ(t+1)−β(t+1))+α(ζ(t)−µ(t+1))].
8: if the solution x(t+1) satisfies the stopping condition. then
9: Exit the loop.

10: end if
11: end for
12: Output x(t+1).

For later convenience, we suppose that 0 ∈ X .
Gradient descent (GD) (Algorithm 3.1) is an iterative optimization algorithm

that uses the gradient ∇f(x) to update the solution. GD first take an initial
solution x(0). At each time step, the algorithm updates the solution by

x(t+1) ← x(t) − η(t+1)∇f(x(t)). (3.57)

where η(t) is a constant called a learning rate. The learning rate is given as
a hyperparameter in advance of the execution of GD or determined by a line
search [17]. When we consider the convex constraint X ⊆ Rd of the feasible
domain, the update rule is modified as

x(t+1) ← ΠX

(
x(t) − η(t+1)∇f(x(t))

)
. (3.58)

where ΠX is the projection onto X defined by

ΠX (x) = argmin
x′∈X

∥x− x′∥. (3.59)

The convergence rate of the gradient descent for convex functions is exponential
O(e−µT ) under mild assumptions [17].

When the gradient ∇f(x) is unavailable but its stochastic estimator g is avail-
able, we use Stochastic Gradient Descent (SGD) (Algorithm 3.2) instead of GD.
Typical situations are explained in Section 2.1.2. SGD updates the solution by
substituting the gradient ∇f(x) with its estimator g in (3.58):

x(t+1) ← ΠX

(
x(t) − η(t+1)g(t+1)

)
, (3.60)
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where g(t+1) is the estimator of the gradient∇f(x(t)) sampled from some probabil-
ity measure P. We suppose that EP[g

(t+1)] = ∇f(x(t)) from the typical construc-
tion of g (ex. (2.3)). When we want to see the difference between g and ∇f(x)
clearly, we use the following random variable called a noise of the estimator of
the gradient:

ξ := g −∇f(x). (3.61)

By using the noise, the update by SGD becomes

x(t+1) ← ΠX

(
x(t) − η(t+1)(∇f(x(t)) + ξ(t+1))

)
. (3.62)

We summarize the theoretical guarantees of SGD. To prove theoretical guar-
antees of SGD, we usually use a technique called averaging over time (See Sec-
tion 2.1.2). Let {s(t)}t=0,1,...,T ∈ RT+1 be a weight satisfying s(t) ≥ 0 for all t and∑T+1

t=1 s
(t) = 1. In addition, let x̄(T ) :=

∑T
t=0 s

(t+1)x(t) be the averaged output
and x∗ be an optimal solution. We prove an upper bound for E[f(x̄(T ))]− f(x∗).

To prove the bound, we introduce two assumptions. We suppose that

E[∥g(t)∥2] ≤ G2, (3.63)

for some constant G2. In addition, we suppose that

E[∥x(t) − x∗∥2] ≤ D2. (3.64)

for some constant D2.
Under the setting, we state the theoretical guarantees.

Theorem 3.7 ([102, 124]). Suppose that (3.63) and (3.64) hold. For a convex
function f , let us choose η(t) = η/

√
t and s(t) = 1/(T + 1). Then, Algorithm 3.2

yields {x(t)}t such that

E
[
f(x̄(T ))

]
− f(x∗) ≤

D2

η +G2η
√
T + 1

. (3.65)

We have a faster convergence rate for strongly convex functions. We first
explain the convergence rate measured by l2-norm from the optimal solution.

Theorem 3.8 ([88]). Suppose that (3.63) holds. We also assume that f is α-
strongly convex. Let η(t) = 1/αt. Then, Algorithm 3.2 yields {x(t)}t such that

E[∥x(t) − x∗∥2] ≤ 4G2

α2(t+ 1)
, (3.66)

for all t = 0, 1, . . . .

We next explain the convergence rate of f(x̄(T )).

Theorem 3.9 ([56, 124]). Suppose that (3.63) holds. We also assume that f is
α-strongly convex. Let

η(t) =
2

α(t+ 1)
, (3.67)

s(t) =
2t

(T + 1)(T + 2)
. (3.68)

Then, Algorithm 3.2 yields {x(t)}t such that

E[f(x̄(T ))]− f(x∗) ≤ 2G2

α(T + 1)
. (3.69)
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When the variance of the noise ξ(t) is small, then we can almost achieve
O(1/T 2)-convergence by using Nesterov’s acceleration [78] (Algorithm 3.3).

Theorem 3.10 ([46]). Let

ω(t) =

√
s(t−1) +

(
s(t−1)

2

)2

− s(t−1)

2
, (3.70)

s(t) =

t∏
k=1

(1− ω(t)), (3.71)

η(t) = γ +
α

s(t−1)
. (3.72)

Suppose that f is α-strongly convex and γ-smooth. We also assume that (3.64)
holds and

E[∥g(t) −∇f(x(t))∥2] ≤ σ2. (3.73)

Under these assumptions, Algorithm 3.3 yields {x(t)}t such that

E[f(x(T ))]− f(x∗) ≤ C
(
σ2

Tα
+
D2(α+ γ)

T 2

)
. (3.74)

When the coefficient σ2 of the leading O(1/T )-term is sufficiently small, we can
neglect it and the convergence rate is approximately O(1/T 2). One way to reduce
σ2 is using a large mini-batch to calculate g(t) by (2.3). By using a mini-batch
whose size is n-times larger, we can reduce σ2 to σ2/n.

We reformulate Theorem 3.9 to apply it in Chapter 5. Since we will consider
a measure transformation of P(ξ(t)), we explicitly write it in the next theorem. In
this theorem, we do not assume that EP[ξ

(t)] = 0.

Theorem 3.11 (Reformulation of [124, 56]). Suppose that (3.63) holds for prob-
ability measure P. We also assume that

EP

[〈
g(t+1), x(t) − x∗

〉]
+

C

t+ 2
≥ EP[f(x

(t))]− f(x∗) + κ−1EP

[
∥x(t) − x∗∥2

]
,

(3.75)

for some non-negative constants C and κ. Let

η(t) =
κ

t+ 1
, (3.76)

s(t) =
2t

(T + 1)(T + 2)
. (3.77)

Then,

T∑
t=0

s(t+1)EP[f(x
(t))]− f(x∗) ≤ κG2 + 2C

T + 1
. (3.78)

If C = 0 and κ = 2α−1, then we have Theorem 3.9 since the condition (3.75)
follows by taking expectation of (3.52). For the completeness of the paper, we
give a proof in Section 3.7.
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3.6 Central Limit Theorem for Dependent Variables

In this section, we review the Central Limit Theorem (CLT) and its extension to
dependent random variables, which we use in Chapter 5. The CLT states that the
average Si := 1/T ·

∑T−1
i=0 Xi of i.i.d. random variables Xi converges to N (µ,Σ)

in distribution, where µ and Σ are the expectation and the covariance matrix
of Xi, respectively. This theorem is extended to dependent random variables.
An important extension is the martingale CLT [19]. In this thesis, we use the
following two extensions.

The first extension is the Markov chain CLT. Let {X(t)}t=0,1,... be a Markov
chain on X . We suppose that this Markov chain has a stationary distribution π
and X(t) follows π for all t. For a function g : X → R, let

µ = E[g(X(0))], (3.79)

σ2 =
∞∑
t=0

Cov
[
X(0), X(t)

]
. (3.80)

Also, let

µ̂(t) =
1

t

t−1∑
t′=0

g(X(t′)). (3.81)

Under this setting, the following Markov chain CLT holds. See [47] for a review
of the sufficient condition of the Markov Chain CLT.

Theorem 3.12 (Markov Chain Central Limit Theorem (Informal) [47]). Under
a certain ergodicity condition,

√
tµ̂(t) → N

(
µ, σ2

)
, (3.82)

in distribution as t→∞.

The second extension is a mixingale CLT. A mixingale is a generalization of a
martingale [29]. A sequence {X(t)}t=0,1,..., of random variables on R adapted to
a filtration F (t) is said to be a mixingale if it satisfies the following condition 2:
There exists a positive sequence ψk such that (1) ψk → 0 as k → ∞ and (2) for
all t ≥ 1 and k ≥ 0,

E[∥X(t) | F (t−k)∥] ≤ ψk. (3.83)

If ψk = 0, then the mixingale coincides with the martingale difference sequence.
When the above ψk is O(n−p/2−ϵ) for some ϵ > 0, it is said to be size −p. Under
this setting, we explain the mixingale CLT. Let

S(t) =
1

t

t−1∑
t′=0

X(t′). (3.84)

We assume that E[X(t)] = 0 and the existence of the variance E[S2
t ] = σ2. For-

mally, we assume that

E


(∑t+k−1

t′=t Xt′

)2
k

∣∣∣∣∣∣∣F (t−m)

→ σ2, (3.85)

as min(t, k,m)→∞. We also assume that ψk in the above definition is size −1/2.
2Original condition in [65] is weaker. We present a simplified definition in this thesis.
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Theorem 3.13 (Mixingale Central Limit Theorem [65]). Under the above con-
ditions,

√
tS(t) ∼ N

(
0, σ2

)
. (3.86)

3.7 Proofs

3.7.1 Proofs in Section 3.2

Proof of Proposition 3.1. The proof is a special case of [103, 53]. For the com-
pleteness of the thesis, we give the proof. For a fixed y ∈ Y and an arbitrary
distribution π over X ,

logEπF(x)

[
ek(x,y)

]
= log

∑
x∈X

π(x)
πF(x)

π(x)
ek(x,y). (3.87)

By applying the Jensen’s inequality, we have

logEπF(x)

[
ek(x,y)

]
≥
∑
x∈X

π(x)

[
log

πF(x)

π(x)
ek(x,y)

]
(3.88)

=
∑
x∈X

π(x)

[
k(x, y)− log

π(x)

πF(x)

]
(3.89)

=
∑
x∈X

π(x)k(x, y)−D [π∥πF] . (3.90)

By substituting π(x) with πB(x | y), we can see that the equality is attained.
Therefore,

logEπF(x)

[
ek(x,y)

]
= max

π∈P(X )

{∑
x∈X

k(x, y)π(x)−D [π∥πF]

}
, (3.91)

and the maximizer is πB(x | y). By averaging the equality with respect to Q(y),
we have (3.14).

Proof of Proposition 3.2. The proof is essentially the same as [103]. Since the
maximizer of the right hand side of Eq. (3.91) is πB(x | y),

logEπF(x)

[
ek(x,y)

]
=
∑
x∈X

k(x, y)πB(x | y)−D [πB∥πF] . (3.92)

We differentiate both sides with respect to πF(x) while taking into account of the
dependence of πB on πF:

∂

∂πF(x)
logEπF(x)

[
ek(x,y)

]
(3.93)

= −∂D [πB∥πF]
∂πF(x)

+
∑
x′∈X

∂πB(x
′ | y)

∂πF(x)

∂F [πB]

∂πB(x′ | y)
, (3.94)

where F [π] :=
∑

x∈X k(x, y)π(x) − D [π∥πF]. Since πB is the maximizer of the
F , the derivative of F by πB is zero and consequently the second term vanishes.
Therefore,

∂

∂πF(x)
logEπF(x)

[
ek(x,y)

]
=
πB(x | y)
πF(x)

. (3.95)

By taking the average with respect to Q(y), we have Eq. (3.16).
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Proof of Theorem 3.5. By a direct calculation,

∆Ep(t)

[
ek(x)

]
=
∑
x∈X

ek(x)p(t)(x)−
∑
x∈X

ek(x)p(t−1)(x) (3.96)

=
∑
x∈X

ek(x)
ek(x)p(t−1)(x)∑

x′∈X e
k(x′)p(t−1)(x′)

−
∑
x∈X

ek(x)p(t−1)(x) (3.97)

=

∑
x∈X

(
ek(x)

)2
p(t−1)(x)−

(∑
x∈X e

k(x)p(t−1)(x)
)2∑

x′∈X e
k(x′)p(t−1)(x′)

(3.98)

=
Vp(t−1)

[
ek(x)

]
Ep(t−1)

[
ek(x)

] . (3.99)

3.7.2 Proofs in Section 3.5

The following proof is essentially the same as [124, 56]. The following two lemmas
are cited from [124].

Lemma 3.14 (Cauchy-Schwartz inequality). For two vectors a, b ∈ Rd and µ > 0,

| ⟨a, b⟩ | ≤ ∥a∥
2

2µ
+
µ∥b∥2

2
. (3.100)

Proof.

0 ≤ ∥a/√µ−√µb∥2 ≤ ∥a∥2/µ− 2 ⟨a, b⟩+ µ∥b∥2. (3.101)

By rewriting it, we have

⟨a, b⟩ ≤ ∥a∥
2

2µ
+
µ∥b∥2

2
. (3.102)

By substituting a with −a, we have

⟨a, b⟩ ≥ −∥a∥
2

2µ
− µ∥b∥2

2
. (3.103)

We have the statement of the lemma from these two inequalities.

Lemma 3.15. For x, y, z ∈ Rd,

⟨x− y, y − z⟩ = −1

2
∥x− y∥2 − 1

2
∥y − z∥2 + 1

2
∥x− z∥2. (3.104)

Proof.

1

2
∥x− z∥2 = 1

2
∥(x− y) + (y − z)∥2 (3.105)

=
1

2
∥x− y∥2 + 1

2
∥y − z∥2 + ⟨x− y, y − z⟩ . (3.106)

By rewriting it, we have the statement of this lemma.
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Lemma 3.16. Let X be a convex set. For any x, x′ ∈ X and y ∈ Rd with
x = ΠX (y), we have 〈

x′ − x, x− y
〉
< 0. (3.107)

Proof. Suppose to the contrary that ⟨x′ − x, x− y⟩ ≥ 0. By the definition of ΠX ,
we have

x = argmin
z∈X

∥z − y∥2. (3.108)

Let xt = (1 − t)x + tx′. Since X is convex, xt ∈ X for t ∈ [0, 1]. By a direct
calculation,

d

dt
∥xt − y∥2 = 2

〈
x′ − x, x− y

〉
. (3.109)

In contradicts to the fact that x is the unique minimizer.

Proof of Theorem 3.11. We follow the proof in [56, 124].
By the assumption (3.75),

EP[f(x
(t))]− f(x∗) ≤ EP

[〈
g(t+1), x(t) − x∗

〉]
− 1

κ
EP[∥x(t) − x∗∥2] +

C

t+ 2
.

(3.110)

We evaluate each terms in (3.110). By Lemma 3.14,〈
g(t+1), x(t) − x∗

〉
(3.111)

≤
〈
g(t+1), x(t) − x(t+1)

〉
+
〈
g(t+1), x(t+1) − x∗

〉
(3.112)

≤ η(t)∥g(t+1)∥2

2
+

1

2η(t)
∥x(t) − x(t+1)∥2 +

〈
g(t+1), x(t+1) − x∗

〉
, (3.113)

for t = 1, 2, . . . , T − 1. By a similar argument, we have〈
g(T+1), x(T ) − x∗

〉
≤ η(T−1)∥g(T+1)∥2

2
+

1

2η(T−1)
∥x(t) − x∗∥2. (3.114)

Here, we allow g(T+1) that is not used in the algorithm. By Lemma 3.16,

0 ≤ 1

η(t−1)

〈
x∗ − x(t), x(t) −

(
x(t−1) − η(t)g(t)

)〉
(3.115)

≤ 1

η(t−1)

〈
x∗ − x(t), x(t) − x(t−1)

〉
+

t

t+ 1

〈
g(t), x∗ − x(t)

〉
(3.116)

≤ 1

2η(t−1)

(
∥x(t−1) − x∗∥2 − ∥x(t) − x∗∥2 − ∥x(t) − x(t−1)∥2

)
(3.117)

− t

t+ 1

〈
g(t), x(t) − x∗

〉
, (3.118)

for t = 1, 2, . . . , T . In the last transformation, we used (3.15). To simplify the
notation, we define η̃(T ) = η(T−1) and η̃(t) = η(t) otherwise. By using these two
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inequalities, (3.110) becomes

EP[f(x
(t))]− f(x∗)− C

t+ 2
(3.119)

≤ EP

[
η(t)∥g(t+1)∥2

2
+

1

2η(t)
∥x(t) − x(t+1)∥2 +

〈
g(t+1), x(t+1) − x∗

〉
(3.120)

+
1

2η(t−1)

(
∥x(t−1) − x∗∥2 − ∥x(t) − x∗∥2 − ∥x(t) − x(t−1)∥2

)
(3.121)

− t

t+ 1

〈
g(t), x(t) − x∗

〉
− 1

κ
∥x(t) − x∗∥2

]
(3.122)

= EP

[
η̃(t)∥g(t+1)∥2

2
+

(
1

2η̃(t−1)
∥x(t−1) − x∗∥2 − 1/η̃(t−1) + 2/κ

2
∥x(t) − x∗∥2

)
(3.123)

+

(
1

2η̃(t)
∥x(t+1) − x(t)∥2 − 1

2η̃(t−1)
∥x(t) − x(t−1)∥2

)
(3.124)

+

(〈
g(t+1), x(t+1) − x∗

〉
− t

t+ 1

〈
g(t), x(t) − x∗

〉)]
, (3.125)

for t = 1, 2, . . . , T − 1. For t = T , we have

EP[f(x
(T ))]− f(x∗)− C

T + 2
(3.126)

≤ EP

[
η(T−1)∥g(T )∥2

2
+

1

2η(T−1)
∥x(T ) − x∗∥2+ (3.127)

+
1

2η(T−1)

(
∥x∗ − x(T−1)∥2 − ∥x(T ) − x∗∥2 − ∥x(T ) − x(T−1)∥2

)
(3.128)

− T

T + 1

〈
g(T ), x(T ) − x∗

〉
− 1

κ
∥x(T ) − x∗∥2

]
(3.129)

≤ EP

[
η̃(T )∥g(T )∥2

2
+

1

2η̃(T )
∥x(T−1) − x∗∥2 (3.130)

− 1

2η̃(T )
∥x(T ) − x(T−1)∥2 − T

T + 1

〈
g(T ), x(T ) − x∗

〉]
. (3.131)

For t = 0, we have

EP[f(x
(0))]− f(x∗)− C

2
≤ EP

[〈
g(1), x(0) − x∗

〉]
− 1

κ
EP[∥x(0) − x∗∥2]. (3.132)

By summing up (3.125), (3.131), and (3.132) with weight s(t+1) and use the
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method of differences (telescoping sum), we have

EP

[
T∑
t=0

s(t+1)
(
f(x(t))− f(x∗)

)]
(3.133)

≤ EP

[
T∑
t=1

s(t+1)η̃(t)∥g(t+1)∥2

2

]
+

T∑
t=0

Cs(t+1)

t+ 2
(3.134)

+ EP

[
T−1∑
t=1

s(t+2)/η̃(t) − s(t+1)(1/η̃(t−1) + 2/κ)

2
∥x(t) − x∗∥2

]
(3.135)

+ EP

[
s(2)

2η̃(0)
∥x(0) − x∗∥2 − s(2)

2η̃(0)
∥x(1) − x(0)∥2 (3.136)

−s
(2)

2

〈
g(1), x(1) − x∗

〉
+ s(1)

〈
g(1), x(0) − x∗

〉
− s(1)

κ
∥x(0) − x∗∥2

]
(3.137)

≤ EP

[
T∑
t=1

s(t+1)η̃(t)∥g(t+1)∥2

2

]
+

T∑
t=0

Cs(t+1)

t+ 2
(3.138)

+ EP

[
T−1∑
t=1

s(t+2)/η̃(t) − s(t+1)(1/η̃(t−1) + 2/κ)

2
∥x(t) − x∗∥2

]
(3.139)

+ EP

[
s(2)

2η̃(0)
∥x(0) − x∗∥2 − s(2)

2η̃(0)
∥x(1) − x(0)∥2 (3.140)

−s(1)
〈
g(1), x(1) − x(0)

〉
− s(1)

κ
∥x(0) − x∗∥2

]
(3.141)

≤ EP

[
T∑
t=1

s(t+1)η̃(t+1)∥g(t+1)∥2

2

]
+

T∑
t=0

Cs(t+1)

t+ 2
(3.142)

+ EP

[
T−1∑
t=0

s(t+2)/η̃(t) − s(t+1)(1/η̃(t−1) + 2/κ)

2
∥x(t) − x∗∥2

]
(3.143)

+ EP

[
−s(1)

〈
g(1), x(1) − x(0)

〉
− s(2)

2η̃(0)
∥x(1) − x(0)∥2

]
. (3.144)

Here, we specially define that 1/η(−1) := 0. By Lemma 3.14,

−s(1)
〈
g(1), x(1) − x(0)

〉
− s(2)

2η̃(0)
∥x(1) − x(0)∥2 ≤ (s(1))2η̃(0)

2s(2)
∥g(1)∥2 (3.145)

≤ s(1)η̃(0)

2
∥g(1)∥2. (3.146)

Therefore,

EP

[
T∑
t=0

s(t+1)
(
f(x(t))− f(x∗)

)]
(3.147)

≤ EP

[
T∑
t=0

s(t+1)η̃(t)∥g(t+1)∥2

2

]
+

T∑
t=0

Cs(t+1)

t+ 2
(3.148)

+ EP

[
T−1∑
t=0

s(t+2)/η̃(t) − s(t+1)(1/η̃(t−1) + 2/κ)

2
∥x(t) − x∗∥2

]
. (3.149)
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We evaluate three terms in the right hand side. For the first term, we have

EP

[
T∑
t=0

s(t+1)η̃(t)∥g(t+1)∥2

2

]
≤

T∑
t=0

s(t+1)η̃(t)G2

2
≤ κG2

T + 1
. (3.150)

For the second term, since (t+ 1)/(t+ 2) ≤ 1, we have

T∑
t=0

Cs(t+1)

t+ 2
≤ 2C

T + 2
≤ 2C

T + 1
. (3.151)

For the third term, by the choice of η(t) and s(t), we have

s(t+2)/η(t) − s(t+1)(1/η(t−1) + 2/κ) = 0. (3.152)

Therefore, the third term vanishes. All in all, we have

EP[f(x̄
(T ))− f(x∗)] ≤ κG2 + 2C

T + 1
. (3.153)
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Chapter 4

Acceleration of Evolutionary Processes by
Learning and Extended Fisher’s Fundamental
Theorem

In this chapter, we solve the problems presented in Section 1.4.1 and explain our
contributions presented in Section 1.5.1. See Section 4.11 for the derivation of the
equations that we omit from the main text. This chapter is published in Physical
Review Research [75].

4.1 Setup

We first introduce a model of population dynamics with learning. In the case
where agents learn, we use the following dynamical system instead of (3.8) 1. The
number N (t)(π) of the agents with strategy π at time t is

N (t)(π) =

 ∑
x∈X ,π′∈P(X )

L(π | π′)ek(x,y(t−1))π′(x)

N (t−1)(π′). (4.1)

Here, L is a possibly stochastic learning rule which is represented as a transition
matrix of Markov chain on P(X ).

The learning rule can depend on the information which organisms can use to
learn. In this thesis, we suppose the following source of information. We assume
that an agent can access to the types of its ancestors. This assumption models the
information transmission to daughters via epigenetic states or culture. Although
we do not explicitly consider communication among agents in the same generation,
we will show that agents can acquire the acceleration of the evolutionary process
without communication in Section 4.4. In addition, we do not assume that the
organism can access the environmental states. For further generalization, see the
discussion in Section 4.10.

Under this setting, we consider how agents gradually acquire the optimal strat-
egy,

π∗F = argmax
π

λ(π), (4.2)

which is unique due to the strong concavity of λ(π) 2. The concavity easily follows
from (3.13)

1Although the order of type-switching, replication, and learning in (4.1) is different from the
BA in Chapter 5, the difference is not so important.

2If there exist x, x′ ∈ X such that x ̸= x′ and k(x, y) = k(x′, y) for all y ∈ Y, then the optimal
solution is not unique. We call this situation a degeneration. However, we do not consider the
degeneration since we can resolve it by identifying x with x′.
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Figure 4.1: Schematic representation of population dynamics of agents that learn.
The figure is adopted from [75]. (a) Examples of agents that can replicate and
learn. The examples are microbes, animals, and humans. (b–d) Schematic il-
lustration of the model. (b) Type-switching of an agent. Each agent expresses
one type x ∈ X in one generation. The type of agent is determined by its own
strategy π ∈ P(X ). In this figure, the color other than gray represents the type
of an agent. (c) Replication of an agent. Each agent at time t − 1 reproduces
ek(x,y

(t−1))-daughters on average if its type is x and the environmental state is
y(t−1). (d) Learning of an agent. After the replication, each agent updates its
strategy by using some given learning rule L. The learning rule is a Markov chain
of the strategy. The daughter agents inherit the learned strategy.
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4.2 Ancestral Learning

We introduce ancestral learning and validate that learning can accelerate the evo-
lutionary process. Ancestral learning updates the strategy every τest-generations.
Here, τest is a hyperparameter called an update interval. For simplicity, we sup-
pose that the i-th update occurs at time t = iτest − 1 (i = 1, 2, . . . ). We specially
regard that the initial strategy πF(0) is acquired by the 0-th update at time −1.
After an agent acquires πF(i−1) by the (i − 1)-th update, the descendants of the
agent at time (i− 1)τest ≤ t ≤ iτest − 1 have the same strategy. At time iτest − 1,
i.e., at the next update, each descendant at time iτest calculates the empirical
distribution jemp of the types of its ancestors back to time (i − 1)τest. Precisely,
the empirical distribution is defined by

jπF
(i−1)

emp (x) :=
1

τest

iτest−1∑
t′=(i−1)τest

δx,x(t′) , (4.3)

x(t
′) is the type of the ancestor at time t′. Each descendant then updates the

strategy by

πF
(i) = (1− α)πF(i−1) + αjemp, (4.4)

where α is a hyperparameter called a learning rate. In this update rule, the
updated strategy πF

(i) is the mixture of πF(i−1) and jemp. If α ≈ 1, then the
update strategy almost equals the empirical distribution of the ancestors’ type.
If α is small, then the empirical distribution jemp is gradually assimilated to the
strategy. Ancestral learning coincides with Xue’s rule if τest = 1.

Ancestral learning is a biologically reasonable learning rule. The update rule
only utilizes the empirical distribution jemp of ancestors’ types, which can be
transmitted via epigenetic states or culture. Owing to this fact, we call jemp

ancestral information. Also, the memory to store jemp is sufficiently small. An
agent stores jemp ∈ P(X ), whose size is substantially smaller than the whole path
X(t) of ancestors’ types. We will see in Section 4.4 that this reduced information is
sufficient for ancestral learning to accelerate the evolutionary process. The update
rule of ancestral learning is natural since it is similar to Hebb’s rule [44] as pointed
out in [115]. Hebb’s rule is a reinforcement of the synaptic connection between
activated and coactivated neurons. Both Hebb’s rule and ancestral learning are
positive feedbacks. Indeed, with the updated strategy πF

(i), an agent is more
likely to express type x that the ancestor expresses more frequently.

The intuitive reason why an agent can acquire the optimal strategy by an-
cestral learning is that replicating the types with which the ancestors survived
is likely to contribute to the survival of the descendants. Due to populational
evolution, the empirical distribution jπF

(i−1)

emp is biased from πF
(i−1). The empir-

ical distribution jπF
(i−1)

emp seen as a strategy has greater populational fitness than
πF

(i−1). This survivorship bias is the driving force of ancestral learning as well as
the conventional evolutionary process by natural selection.

To make the discussion clear, we first consider a simple case where the envi-
ronment is constant Y = {∗}, the learning rate α = 1.0, and the update interval
τest is sufficiently long. In this case, the optimal strategy isπ

∗
F(x

∗) = 1 (x∗ = argmax
x∈X

k(x)),

π∗F(x) = 0 (otherwise),
(4.5)
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Figure 4.2: Schematic representation of ancestral learning. The figure is adopted
from [75]. The color of an agent represents its type. After an agent acquires the
strategy πF(i−1) by the (i− 1)-th update, its descendants have the same strategy
for τest-generations. After τest-generations, the descendant calculate the empirical
distribution jπF

(i−1)

emp of ancestors’ types defined by (4.3). Then, the strategy is
updated by the rule (4.4). The figure corresponds to the case where τest = 4 and
α = 1.0.

which means that the optimal strategy π∗F only selects the optimal type x∗ that
maximizes the individual fitness. To see πF(i) converges to π∗F as i → ∞, let us
calculate jπF

(i−1)

emp . By the assumption α = 1.0 and τest ≈ ∞, we know that jπF
(i−1)

emp

is close to retrospective process πB(i−1) of πF(i−1). The retrospective process (3.23)
is biased so that πB(i−1)(x∗), the probability selecting the optimal type, is larger
then πF(i−1)(x∗) due to the factor ek(x) in the numerator. Therefore, πB(i−1) seen
as a strategy has greater population fitness. By recursively applying the update
πF

(i) ← πB
(i−1) of the strategy, we know that πF(i)(x) ∝ eik(x)πF

(0)(x). This
equation implies that πF(i) converges to the optimal strategy (4.5) as i→∞.

We next consider the case where the environment is not constant. By a similar
argument, we know that πF(i) = π̄

(i−1)
B , where π̄(i−1)

B (x) = EQ(y)[πB(x | y)] is
the averaged retrospective process (3.17) of πF(i−1). The retrospective process
πB

(i−1)(x | y) is better fitted to the environmental state y. Therefore, the updated
strategy πF

(i) is the mixture of πB(x | y), each of which is better fitted to y
than πF

(i−1). In the following, we numerically (Section 4.3) and theoretically
(Section 4.4) show that the recursive updates to such a mixed strategy lead to
the optimal strategy.

4.3 Ancestral Learning can Accelerate Evolutionary Process

We next numerically validate that ancestral learning can accelerate the evolu-
tionary process. Specifically, we numerically show that the optimal strategy πF
is acquired by ancestral learning faster than the zeroth-order rules.

We simulated the evolutionary process as a multitype branching process in
random environments [40, 114]. In other words, we simulated the dynamical
system (4.1) while taking into account of the individuality and the finite size
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of the population. In this simulation, we set X = Y = {0, 1, 2} (Figure 4.3
(a)). We set Q(0) = 0.6 and Q(y) = 0.2 otherwise. Each agent with type x
at time t reproduces four daughters if x = y(t) and one daughter otherwise. In
short, ek(x,y) = 4 if x = y and ek(x,y) = 1 otherwise. We represent πF in the
form (πF(0), πF(1), πF(2)). The optimal strategy in this setting is approximately
π∗F = (0.92, 0.04, 0.04) since it satisfies the optimality condition (Karush-Kuhn-
Tucker condition) with a small error [22, Theroem 16.2.1]. The optimal strategy
has greater πF(0) than πF(1) and πF(2). We started the simulation from a single
agent with an initial strategy πF(0) = (1/3, 1/3, 1/3). We limited the number of
agents in the population to Nsize = 30 to avoid the situation where exponential
growth of the population makes the simulation intractable. If the number of
agents exceeded Nsize, then we selected Nsize-agents uniformly at random.

We investigated three learning rules. Each learning rule updates the strategy
at every generation, i.e., τest = 1. The first rule was ancestral learning with
α = 0.01. The second and the third rules were the zeroth-order rules. Since
there were innumerable zeroth-order rules, we selected two rules as representative
to perform the control experiments for ancestral learning. The second learning
rule was πF ← (1 − α)π′F + αδx,xrand

, where π′F and πF were the strategy before
and after the update and xrand was selected uniformly at random from X . In
biological systems, this update rule can be seen as a random mutation of πF
with a constant mutation rate. The trajectory of πF updated by this rule is a
random walk over strategies if no growth occurs, that is, ek(x,y) = 1 for all x ∈ X
and y ∈ Y . Therefore, we call this rule a random walk. The third rule was
πF ← (1 − α)π′F + αδx,xsamp , where xsamp was sampled from π′F. In biological
systems, this rule can be seen as a mutation of πF whose rate is dependent on
current πF. The change of the mutation rate is known as adaptive mutation [92].
Therefore, we call this rule an adaptive random walk. The adaptive random
walk coincides with the ancestral learning if no growth occurs. In this sense, the
adaptive random walk is a control to see the effect of populational evolution on
ancestral learning.

Figure 4.3 showed the simulation of the three learning rules. We ran the
simulation until t = 50. The population fitness of the population with ancestral
learning increased faster than those with the other learning rules along the lineage
of the agent that had the greatest population fitness among the population at the
end, which we call the most successful agent in the following (Figure 4.3 (b)).
We observed the faster increase in the population fitness of the population with
ancestral learning at the lineage tree level (Figure 4.3 (d–f)). In (g–i), we showed
the trajectories of the strategies along the lineage of the most successful agent
with each learning rule. We observed that the strategy moved faster towards the
optimal strategy π∗F ≈ (0.92, 0.04, 0.04) when agents adopt ancestral learning.

To see whether the optimal strategy was acquired by ancestral learning, we ran
another simulation until t = 1500. We first checked that the strategy converged
and then verified that the converged strategy was optimal. The strategy converged
since the population fitness along the lineage of the most successful agent with
ancestral learning reached a ceiling (Figure 4.3). We observed the convergence
directly from the trajectories of the strategies along the lineage (Figure 4.3 (j–l)).
The converged strategy was closed to the optimal one π∗F ≈ (0.92, 0.04, 0.04).

From these results, we conclude that ancestral learning accelerates the evo-
lutionary process. The population with ancestral learning acquired the optimal
strategy faster than those with the other learning rules. Since ancestral learning
does not utilize communication among agents, these results indicate that learning
can accelerate the evolutionary process even without communication.
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Figure 4.3: Numerical experiments of ancestral learning. This figure is adopted
from [75]. (a) The parameters of the model we simulate. In this panel, 0, 1, 2 ∈ Y
are represented by red, yellow, and blue, respectively. The red environmental
state occurs more frequently than the others. An agent reproduces more daugh-
ters when its type equals the environmental state. (b) The trajectories of the
population fitness until t = 50 along the lineage of the agent whose population
fitness was the greatest among the population at the end of the simulation, which
we call the most successful agent in the following. The blue, green, and orange
curves represent ancestral learning, the random walk, and the adaptive random
walk, respectively. Ancestral learning increased the population fitness the best
among the three learning rules. (c) The same plot as (b) until t = 1500. The
dotted line showed the population fitness of the most successful agent with an-
cestral learning at t = 1500. We observed the convergence of the population
fitness. (d–f) The simulated lineage trees of the population of agents that adopt
ancestral learning (d), the random walk (e), and the adaptive random walk (f),
respectively. Each dot corresponds to an agent, and a parent and its daughters
are connected by lines. The color of each dot represents the population fitness
of the corresponding agent. We observed that ancestral learning increases the
population fitness the best at the lineage tree level. (g–i) The trajectories of the
strategy until t = 50 along the linage of the most successful agent that adopts
ancestral learning (g), random walk (h), adaptive random walk (i), respectively.
(j–l) The same plot as (g–i) until t = 1500. In (j), the above dotted line showed
πF(0) and the below showed the average of πF(1) and πF(2) at the end of the
lineage. In (j), we can see that the strategy converged. The converged strategy
was approximately (0.92, 0.04, 0.04), which satisfied the optimality condition with
a small error [22, Theroem 16.2.1]. In (k) and (l), the strategies do not converge.
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4.4 Ancestral Information is Sufficient to Estimate Fitness Gra-
dient

We next address the second problem: We investigate whether an agent can esti-
mate the gradient of the population fitness from the accessible information. Al-
though we numerically showed that ancestral learning accelerates the evolutionary
process, the relationship between the ancestral information and the gradient is
not clear. The ancestral information might be insufficient to estimate the gradient
and communication among agents might be required. In this section, we theoret-
ically show that an agent can estimate the gradient of the population fitness from
the ancestral information.

Since πF has a constraint πF ∈ P(X ), we use a the following quantity instead
of the gradient ∂λ/∂πF(x):

lim
ϵ→+0

argmax
δπ

πF+δπ∈Dϵ(πF)

{λ(πF + δπ)} , (4.6)

where δπ ∈ RX and Dϵ(πF) is the sphere around πF with radius ϵ. To define the
sphere, we use the KL-divergence as a natural distance on P(X ) as

Dϵ(πF) := {π ∈ P(X ) | D [πF∥π] < ϵ}. (4.7)

We note that (4.6) is similar to the representation of the gradient by a proximal
operator [82]. Indeed, if we consider no constraints and we use the l2-norm in-
stead of the KL-divergence, then (4.6) coincides with the gradient. We therefore
call (4.6) a proximal gradient of the population fitness. Intuitively, the proximal
gradient is the direction where the population fitness increases the most among
the alternatives that satisfy the constraint and that is the same distance from πF.

P ({x(t)}t | {y(t)}t) = ek({x
(t)}t,{y

(t)}t)P ({x(t)}t)∑
{x(t)}t

ek({x
(t)}t,{y(t)}t)P ({x(t)}t)

We can calculate the proximal gradient from Proposition 3.2.

Theorem 4.1. If πF is interior 3 of P(X ), then

lim
ϵ→+0

argmax
δπ

πF+δπ∈Dϵ(πF)

{λ(πF + δπ)} ∝ π̄B − πF. (4.8)

The theorem addresses the second problem. To estimate the proximal gra-
dient of the population fitness, an agent must estimate π̄B. By the discussion
in Section 4.2, we know that the ancestral information jemp is an unbiased es-
timator of π̄B. Therefore, an agent can estimate the proximal gradient without
communication among agents at the same generation. The theorem also implies
that ancestral learning updates the strategy in the direction of the proximal gra-
dient. The direction πF(i)− πF(i−1) of the update is proportional to the proximal
gradient. In particular, ancestral learning can attain the optimal strategy if the
learning rate α is sufficiently small since the population fitness λ(πF) is concave.

4.5 Fisher’s Fundamental Theorem of Ancestral Learning

We next solve the third problem, the quantification of the acceleration of the
evolutionary process by learning. The acceleration may depend on the property

3We exclude the case where πF is on the boundary of P(X ) since the boundary is measure
zero. By considering the KKT-condition, we can generalize the theorem for such a case.
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Q(y) of the environment and the hyperparameters (α and τest) of ancestral learn-
ing. We can quantitatively understand such dependency by extending FF-thm of
natural selection to ancestral learning.

To see the connection of the original FF-thm and ancestral learning, we first
extend FF-thm to the population fitness in the fixed-type constant environment
model (3.40). Although the original FF-thm quantifies the increase in the average
individual fitness, we are not interested in the average individual fitness but the
population fitness. The population fitness at time t in the fixed-type model is
defined by

λ(t) := log

∑
x∈X N

(t)(x)∑
x∈X N

(t−1)(x)
. (4.9)

We measure the speed of the evolutionary process by the increase of the population
fitness. We can characterize the increase by using the log-variance (3.4).

Lemma 4.2 (Fisher’s Fundamental Theorem of Population Fitness).

∆λ(t) := λ(t) − λ(t−1) = log-Vp(t−1) [k(x)] (4.10)

FF-thm of the population fitness relates the increase of the population fitness
to the log-variance of the individual fitness in the population.

FF-thm of the population fitness has a close connection with ancestral learn-
ing. To see this, let us consider a simple situation where the environment is
constant Y = {∗}, the learning rate α = 1.0, and the update interval τest ≈ ∞. In
this situation, we define the acceleration of the evolutionary process by ancestral
learning learning as ∆λ(i) := λ(πF

(i))−λ(πF(i−1)), where πF(i−1) and πF(i) are the
strategies before and after the update by ancestral learning, respectively. Since the
gain ∆λ(i) is independent of populational evolution, we can regard it as the accel-
eration of evolutionary process by ancestral learning. The gain ∆λ(i) is equivalent
to the left hand side of (4.10) if we identify πF(i) with p(t). In addition, we showed
in Section 4.2 that the update of ancestral learning is πF(i) ← πB

(i−1) under this
setting, where πB(i−1) is the retrospective process with respect to πF(i−1). The
update rule is equivalent to the time evolution of the fraction p(t)(x) of organisms
with type x in the fixed-type model (3.41) if we identify πF(i) with p(t) again. By
these equivalences, we have FF-thm of ancestral learning.

Theorem 4.3 (Fisher’s Fundamental Theorem of Ancestral Learning in Constant
Environments).

∆λ(i) := λ(πF
(i))− λ(πF(i−1)) = log-VπF

(i−1) [k(x)]. (4.11)

The theorem relates the gain of the population fitness by ancestral learning
to the log-variance of the individual fitness of the strategy. The theorem also
reveals the trade-off between the acceleration ∆λ(i) and the population fitness
λ(πF

(i)). When the log-variance log-VπF
(i−1) [k(x)] is large, an agent can acquire

information about which type is fitted to the environment by expressing a variety
of types. Therefore, the gain of the population fitness by ancestral learning is
large as the extended FF-thm indicates. We call such a situation exploratory. In
contrast, when πF(i) is close to the optimal and λ(πF(i)) is large, the log-variance
of the strategy is small since the optimal strategy only expresses the optimal type
x∗ (4.5). Therefore, the gain λ(πF

(i)) is small by the extended FF-thm. We
call such a situation exploitation. In all, we can see the so-called exploratory-
exploitation trade-off in this setting.

We can further extend FF-thm to the case where the environment is not
constant.
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Theorem 4.4 (Fisher’s Fundamental Theorem of Ancestral Learning).

∆λ(i) = EQ(y)Q(y′)

[
log-CovπF

(i−1)

[
k(x, y), k(x, y′)

]]
+D

[
Q(y)Q(y′)

∥∥∥Q̄(i)(y′ | y)Q(y)
]
, (4.12)

where

Q̄(i)(y′ | y) :∝
∑
x∈X

ek(x,y)πB
(i−1)(x | y′)Q(y′). (4.13)

We note that Theorem 4.4 is reduced to Theorem 4.3 when the environment is
constant. We also note that Theorem 4.4 is different from the FF-thm of natural
selection in random environments. Indeed, the time evolution of p(t) in random
environments differs from the update of by ancestral learning. The time evolution
of p(t) is stochastic and satisfies

p(t)(x) =
ek(x,y)p(t−1)(x)∑

x′∈X e
k(x′,y)p(t−1)(x′)

, (4.14)

with probability Q(y).

4.6 Measures to Characterize Ancestral Learning

Since FF-thm in general environments (4.12) has the second term that does not
appear in (4.11), we give an interpretation why two terms appear in (4.12). For
this purpose, we define actual gain ∆acλ

(i) and expected gain ∆exλ
(i) as the left

hand and the right hand side of (4.12), respectively:

∆acλ
(i) := λ(πF

(i))− λ(πF(i−1)), (4.15)

and

∆exλ
(i) := Σ̃(i) +KL(i), (4.16)

where Σ̃(i) and KL(i) are the variance and the KL terms of ∆exλ
(i) defined re-

spectively as

Σ̃(i) := EQ(y)Q(y′)

[
log-CovπF

(i−1)

[
k(x, y), k(x, y′)

]]
, (4.17)

and

KL(i) := D
[
Q(y)Q(y′)

∥∥∥Q̄(i)(y′ | y)Q(y)
]
. (4.18)

The reason the additional KL term appears in (4.12) is attributed to the exis-
tence of two representative strategies: specialist and generalist. Each term ((4.17)
and (4.18)) corresponds to one of the representative strategies and measures the
gain of the population fitness to acquire the corresponding strategy by ances-
tral learning. Specialist is defined as a situation where an agent expresses a few
types that are fitted to the environment. Formally, a strategy πF is specialized
to X ′ ⊆ X if πF(x) > 0 for all x ∈ X ′ and πF(x) = 0 otherwise. An example of
specialist is the optimal strategy (4.5) when the environment is constant. Special-
ization is beneficial when the environment is constant or the environmental states
are similar. In such situations, an agent can survive by expressing a few types.
However, if the environmental states are dissimilar, an agent cannot survive by
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expressing a few types because concentrated types might not be fitted to some
environmental states. Therefore, an agent should stochastically choose types from
a variety of alternatives to reduce the risk of specialization. The probability to
express a type should be set so that the population fitness is maximized. Even if
the strategy is concentrating on X ′ ⊊ X with |X ′| > 1, the probability πF(x) for
x ∈ X ′ should be set to maximize the population fitness. We call such a situation
a generalist. Formally, a strategy is generalized in X ′ if πF(x) > 0 for all x ∈ X ′

and the probabilities πF(x) are set so that the population fitness is maximized.
An example of generalization is the optimal strategy in the model we used in
Section 4.3 (Figure 4.3 (a)). In general, the optimal strategy is the combination
of specialist and generalist. For example, let us examine the optimal strategy
π∗F = (0.72, 0.0, 0.28) of the model shown in Figure 4.4 (j). The optimal strategy
is specialized to and generalized in {0, 2} ⊊ X .

During the evolutionary process with learning, an agent attains the optimal
strategy by acquiring two representative strategies. The gain of the population
fitness by acquiring each representative strategy is measured by the variance term
Σ̃(i) and the KL term KL(i) of the expected gain (4.16). The variance term
measures the fitness gain by acquiring a specialist strategy and the KL term does
the gain by acquiring a generalist strategy. To see this interpretation, we rewrite
π̄B since the update rule is πF(i) ← π̄B under the setting of Theorem 4.4. By
definition,

π̄
(i−1)
B (x) = EQ(y)

[
ek(x,y)

EπF
(i−1)(x′)

[
ek(x′,y)

]]πF(i−1)(x) (4.19)

∝ EQ(y)

[
ek(x,y)

]
πF

(i−1)(x). (4.20)

The equation is a transformation of the probability measure from πF
(i−1) to π̄(i−1)

B

by multiplicative factors {E[ek(x,y)]}x∈X . We examine these multiplicative factors.
We regard the multiplicative factors {E[ek(x,y)]}x∈X as a vector in RX . Then, the
multiplicative factors are the average of Fy = (Fy(x))x∈X := (ek(x,y))x∈X ∈ RX

defined for each y ∈ Y. We regard Fy as an embedding of the environmental
state y into RX . By using this embedding, we can measure the similarity of the
environmental states y and y′ by log-CovπF

(i−1)

[
ky,ky′

]
, where

ky = (logFy(x))x∈X = (k(x, y))x∈X ∈ RX . (4.21)

By (3.7), we know that

log-Cov
[
ky,ky′

]
= log

(
1 +

CovπF
(i−1)

[
Fy(x), Fy′(x)

]
EπF

(i−1) [Fy(x)]EπF
(i−1) [Fy′(x)]

)
, (4.22)

and this quantity indeed measures the similarity between the embedding Fy and
Fy′ since it is monotonically increasing with respect to the covariance of the
embedding. By considering the normalization factor in (4.19), we in addition
define the scaled version fy of Fy by

fy(x) :=
Fy(x)

EπF
(i−1)(x′)

[
ek(x′,y)

] , (4.23)

which depends on the current strategy πF(i−1). By using fy(x), we can rewrite (4.19)
as

π̄
(i−1)
B (x) = EQ(y) [fy(x)]πF

(i−1)(x). (4.24)
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The updated strategy is more specialist if the environmental states are similar
since, if fy (y ∈ Y) have similar peaks, then so does their average π̄(i−1)

B (Fig-
ure 4.4 (e)). Iteration of such updates leads to concentration on the types where
the peaks lie. We will see in the next paragraph that the variance term (4.17)
measures the similarity between environmental states and thus quantifies the fit-
ness gain by acquiring a specialist strategy. On the other hand, the updated
strategy is more generalist if the environmental states are dissimilar since, if fy
(y ∈ Y) have different peaks, then their average π̄(i−1)

B becomes flat (Figure 4.4
(h)). Iteration of such update leads to a generalist since concentration does not
occur and the probability πF(x) is adjusted to maximize the population fitness
during the process of ancestral learning. We will see that the KL term (4.18)
measures the dissimilarity of environmental states and thus quantifies the fitness
gain by becoming a generalist.

We rewrite (4.12) to see that the variance term Σ̃(i) and the KL term KL(i)

measures the similarity and the dissimilarity of the environmental state, respec-
tively. We first treat the variance term. By definition, the variance term equals

Σ̃(i) =EQ(y)Q(y′)

[
log-CovπF

(i−1)

[
ky(x), ky′(x)

]]
. (4.25)

Since the log-covaricene in the right hand side measures the similarity of environ-
mental states, so does the variance term. We next treat the KL term. We can
rewrite the KL term as follows.

Lemma 4.5.

KL(i) = EQ(y)Q(y′)

[
− log

EπF
(i−1)

[
Fy(x)Fy′(x)

]
EπF

(i) [Fy(x)]EπF
(i−1)

[
Fy′(x)

]] . (4.26)

By this lemma, we can see that the KL term is in principle greater when
environmental states are dissimilar since the second moment of Fy appears in the
numerator. However, the dependency on πF(i) in the denominator may change the
relationship. Therefore, the KL term measures the dissimilarity of environmental
states in principle.

4.7 Numerical Validation of FF-thm of Ancestral Learning

We numerically verified FF-thm. To check the interpretation in Section 4.6, we
simulated four models whose environments Q(y) are different. In each model,
we checked that FF-thm held, i.e., ∆acλ

(i) = ∆exλ
(i). In the following, we set

α = 1.0 unless otherwise specified. Also, we set τest = 1000 to suppress the
stochastic fluctuation of jemp.

We first validated FF-thm when the environment was constant. We simulated
the model shown in Figure 4.4 (a) and call it a constant environment model.
We observed that ∆acλ

(i) ≈ ∆exλ
(i) along the lineage of an agent whose initial

strategy was πF(0) = (0.5, 0.5) (Figure 4.4 (b)). To validate FF-thm beyond
one initial strategy, we compared ∆acλ

(1) and ∆exλ
(1) of an agent which had

a randomly generated initial strategy after the first update. We observed that
∆acλ

(1) ≈ ∆exλ
(1) for most of the initial strategies (Figure 4.4 (c)).

We next validated FF-thm when the environment was not constant by using
three models. We first simulated the model shown in Figure 4.4 (d) whose envi-
ronmental states were similar. We call the model the similar environment model.
In this model, the optimal strategy is specialized {0} ⊆ X (Figure 4.4 (e)) and we
expect that the variance term dominates. We compared the actual gain ∆acλ

(i),
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the expected gain ∆exλ
(i), the variance term Σ̃(i), and the KL term KL(i) along

the lineage of an agent whose initial strategy was πF(0) = (0.5, 0.5) in Figure 4.4
(f). We observed that ∆acλ

(i) ≈ ∆exλ
(i) and that Σ̃(i) dominated as expected.

We next simulated the model shown in Figure 4.4 (g) whose environmental
states are dissimilar. We call the model a different environment model. In this
model, the optimal strategy is generalist and we expect that the KL term is not
negligible (Figure 4.4 (h)). We observed that ∆acλ

(i) ≈ ∆exλ
(i) and that KL(i) is

not negligible as expected along the lineage of an agent whose initial strategy is
πF

(0) = (0.9, 0.1) (Figure 4.4 (i)).
We finally simulated the model shown in Figure 4.4 (j). Since the red and

yellow environmental states are similar while they are dissimilar from the blue
state, we call the model a combined model. In this model, the optimal strategy
is approximately π∗ ≈ (0.72, 0, 0.28) and the combination of specialized to and
generalized in X ′ = {0, 2}. We observed that ∆acλ

(i) ≈ ∆exλ
(i) along the lineage

of an agent whose initial strategy was πF(0) = (1/3, 1/3, 1/3). We in addition
observed that Σ̃(i) dropped faster than the KL term. This result indicated that an
agent acquired a specialist strategy first and then the strategy became a generalist
in the specialized types. This interpretation was supported by the strategy πF(5) =
(0.31, 0.04, 0.65) just before the variance term became negative for the first time.
The strategy was almost specialized X ′ while it was not generalized in X ′ since
πF

(5)(x) for x ∈ X ′ was still far from the optimizer π∗(x). To validate FF-thm
beyond one initial strategy, we compared ∆acλ

(1) and ∆exλ
(1) of an agent which

had randomly generated initial strategy after the first update. We observed that
∆acλ

(1) ≈ ∆exλ
(1) for most of the initial strategies (Figure 4.4 (l)).
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Figure 4.4: The numerical verification of FF-thm of ancestral learning. We
adopted this figure from [75]. We set α = 1.0 unless otherwise specified. (a–
c) The constant environment model. (a) The parameters of the model. (b) The
trajectories of the actual gain ∆acλ

(i) (4.15) and the expected gain ∆exλ
(i) (4.16)

along the lineage of an agent. Since ∆exλ
(i) = Σ̃(i), we plot Σ̃(i). We observed

that ∆acλ
(i) ≈ ∆exλ

(i) and FF-thm held. (c) The comparison between ∆acλ
(1)

and ∆exλ
(1) when an agent has a randomly generated strategy. We observed

that ∆acλ
(1) ≈ ∆exλ

(1) for most of the initial strategies when α = 1.0 and
α = 0.1. Therefore, FF-thm held beyond one lineage. (d–f) The similar envi-
ronment model. (d) The parameters of the model. (e) An illustration of the
embedding Fy of the environmental state y into RX . The environmental states
are similar in this model since the angle between two embedded states are small.
Therefore, the optimal strategy is a specialist. The red line represents the con-
straint πF ∈ P(X ). Ancestral learning updates the strategy towards the axis
corresponding to the optimal type, which is the red type in the figure. (f) The
trajectories of the actual gain ∆acλ

(i), the expected gain ∆exλ
(i), the variance

term Σ̃(i), and the KL term KL(i) along the lineage of an agent. We observed
that ∆acλ

(i) ≈ ∆exλ
(i). In addition, Σ̃(i) dominates. (g–i) The different environ-

ment model. (g) The parameters of the model. (h) The same illustration as (e).
We can see that the environmental states are dissimilar in this model. Therefore,
the optimal strategy is a generalist and ancestral learning updates the strategy
towards the intermediate point of the red line. (i) The same plot as (f). We can
see that ∆acλ

(i) ≈ ∆exλ
(i) and KL(i) is not negligible. (j–l) The combined model.

(j) The parameters of the model. (k) The same plot as (f). We observed that
∆acλ

(i) ≈ ∆exλ
(i). In this case, the variance term dropped faster than the KL

term. This result indicated that an agent first acquired a specialist strategy and
then acquired the generalist strategy. (i) The same plot as (c). We observed that
FF-thm held for most of the initial strategies.
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4.8 Trade-off Between Learning Rate and Update Interval

We extended FF-thm in the case where α = 1.0 and τest ≈ ∞. To address the
third problem in other cases, we further extend FF-thm of ancestral learning to
the case where α < 1.0 and τest is finite. By this FF-thm, we can see a trade-off
between α and τest.

As a preparation for further extension, we first introduce an α-log-covariance
by generalizing (3.7):

log-Covαp [f(x), g(x)] := log

(
1 + α

Covp
[
ef(x), eg(x)

]
Ep

[
ef(x)

]
Ep

[
eg(x)

]) . (4.27)

By using this quantity, we extend FF-thm of ancestral learning.

Theorem 4.6.

∆λ(i) = EQ(y)Q(y′)

[
log-Covα

πF
(i−1)

[
k(x, y), k(x, y′)

]]
+D

[
Q(y)Q(y′)

∥∥∥Q̄(i)
α (y′ | y)Q(y)

]
, (4.28)

where

Q̄(i)
α (y′ | y) :∝

∑
x∈X

ek(x,y)πα
(i−1)(x | y′)Q(y′), (4.29)

and

πα
(i−1)(x | y′) = απB

(i−1)(x | y′) + (1− α)πF(i−1)(x). (4.30)

We redefine the actual and the expected gain as the left and right hand side
of (4.28):

∆acλ
(i) := λ(πF

(i))− λ(πF(i−1)), (4.31)

and

∆exλ
(i) :=EQ(y)Q(y′)

[
log-Covα

πF
(i−1)

[
k(x, y), k(x, y′)

]]
+D

[
Q(y)Q(y′)

∥∥∥Q̄(i)
α (y′ | y)Q(y)

]
. (4.32)

To validate this FF-thm (Theorem 4.6), we simulated the constant and the
combined model when the learning rate was α = 0.1. We compared ∆acλ

(1) and
∆exλ

(1) of an agent that had a randomly generated initial strategy (Figure 4.4
(c,l)). We observed that ∆acλ

(1) ≈ ∆exλ
(1) for most of the initial strategies.

When τest is finite, FF-thm (Theorem 4.6) does not hold since the ancestral
information jemp does not converge to π̄B. Since jemp stochastically fluctuates
around its expectation π̄B, so does the updated strategy πF

(i) = αjπF
(i−1)

est +

(1 − α)πF(i−1) around π̄
(i−1)
α = απ̄

(i−1)
B + (1 − α)πF(i−1). Since the population

fitness is concave, Jensen’s inequality implies that ∆acλ
(i) < ∆exλ

(i) in this case.
We evaluate the deviation. When τest is sufficiently large (but finite), we can
approximate jest by the central limit theorem [107] as

jest ∼ N
(
π̄
(i−1)
B ,V

)
, (4.33)

where

V (x, x′) = E
[
jest(x)jest(x

′)
]
− π̄B(x)π̄B(x′). (4.34)

By assuming this approximation, we can evaluate the deviation.
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Proposition 4.7. Suppose that jest ∼ N
(
π̄
(i−1)
B ,V

)
. Then,

∆acλ
(i) = ∆exλ

(i) +
α2

2
Tr (IλV ) +O(α3) (4.35)

≈ ∆exλ
(i) +

α2

2
Tr (IλV ) , (4.36)

where

Iλ(x, x
′) =

∂2λ(π̄B)

∂π(x)∂π(x′)
. (4.37)

We note that the second term of (4.35) is not positive since the concavity of
λ implies that Iλ is negative semi-definite. Since V = O(1/τest), the deviation
α2

2 Tr (IλV ) is negligible when the learning rate is sufficiently small. Precisely,
we can neglect the deviation if α2/τest ≪ 1. We can regard this inequality as a
trade-off between α and τest in relation to the efficiency of ancestral learning.

In Section 4.5, we focused on the case where τest ≈ ∞. However, a short τest
is realistic and might be beneficial in biological systems. The advantageous point
of a short τest is that an agent has more opportunities to increase the population
fitness by the update of ancestral learning. On the other hand, the drawback is
the decrease in the fitness gain ∆acλ

(i) compared to the case where τest ≈ ∞ due
to the stochastic fluctuation of jemp. Proposition 4.7 indicates that the decrease is
O(α2/τest). Therefore, an agent can keep the decrease small by adopting a small
learning rate α, although such a small learning rate makes the learning speed
slow. In other words, the decrease in memory size τest can be compensated by the
decrease in the learning speed α. Since the decrease depends on the second order
of α while it does on the first order of τest, an agent might prefer small α to large
τest. Indeed, we showed that ancestral learning with small α = 0.01 can acquire
the optimal strategy even for τest = 1 in Section 5.3. In such a situation, FF-thm
(Theorem 4.6) is useful since the decrease of the fitness gain is negligible.

4.9 Connection with Sequential Monte-Carlo Methods

Before concluding this chapter, we point out the relationship between popula-
tion dynamics and HMM. This point of view deepens our understanding of the
population dynamics with learning and has potential for future applications.

Population dynamics (3.8) without learning is equivalent to the joint dis-
tribution of a hidden Markov model (3.44) up to the normalization factor if
TF(x

(t) | x(t−1)) = πF(x) and K(x(t) | y(t)) = ek(x
(t),y(t)). This equivalence is

known as an example of Feynman-Kac formula [68]. In addition to the model, the
cumulative population fitness (3.12) is equivalent to log-likelihood (3.47). Specif-
ically, the objective of learning by agents and that of the maximum likelihood
estimation of TF is equivalent.

This equivalence gives another explanation why ancestral information is suf-
ficient to estimate the gradient of the population fitness. From the equivalence
of (3.11) and (3.46) up to the normalization factor, we know that the ances-
tral information jπF

(i)

emp (4.3) is equivalent to the average posterior distribution
1/τest ·

∑iτest−1
t′=(i−1)τest−1 P[x

(t′) | Y(t)]. If τest is sufficiently long,

π̄B(x) ≈ jπF
(i)

emp (x) = 1/τest ·
iτest−1∑

t′=(i−1)τest−1

P[x(t
′) | Y(t)], (4.38)
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since y(t) is i.i.d. Therefore, Proposition 3.2 is equivalent to Fisher’s identity
(Proposition 3.6). This is an proof of Theorem 4.1 from the view point of
Feynman-Kac formula.

The equivalence also explains why ancestral learning can attain the optimal
strategy. The update rule πF

(i) ← π̄B of ancestral learning when α = 1 and
τest ≈ ∞ is equivalent to the update of πF by EM-algorithm (3.49). Therefore,
the populational fitness, which corresponds to log-likelihood, always increases
by the update of ancestral learning since EM-algorithm always increases log-
likelihood [14]. Since the populational fitness is concave, this is an alternative
proof why ancestral learning acquires the optimal strategy.

4.10 Discussion

In this chapter, we investigated the acceleration of evolutionary process by in-
dividual learning from experience. We first introduced ancestral learning and
numerically showed that ancestral learning accelerates the acquisition of the op-
timal strategy. We next prove that ancestral information jemp is sufficient to
estimate the gradient of the population fitness. Agents can estimate the gradient
without communication among agents. We then quantified the acceleration of
evolutionary process by ancestral learning via extending FF-thm of natural se-
lection. Extended FF-thm decomposes the fitness gain into two terms, each of
which corresponds to the gain by acquiring one of two representative strategies.
We finally showed the trade-off between a learning rate and an update interval.
All in all, we established a theoretical framework to discuss the acceleration of
evolutionary process by individual learning from experience.

Since our framework is general, we may apply it to various biological problems.
One example is the adaptation (micro-evolution) of microbes. Recent develop-
ment in experimental techniques enables us to measure the phenotypic traits and
their inheritance over generations at a single cell level. Examples are division
times, sizes [113, 41], and sensitivity to chemical substances in chemotaxis [66].
Our framework may become a basis to understand such inheritance of phenotypic
traits in the form of learning by cells. Moreover, our framework may be useful to
design new experiments to measure and to understand the impact of learning. To
analyze such data, modeling with continuous-time age-structured setting (3.27)
and characterization of the convergence of the population level statistics in such
model 3.39 might be useful [104, 76].

Our theory still has room for further improvement since there are some factors
that might be useful to learn but we have not considered. An example is the type
of a parent. Although individual agents use the type of parent in ancestral learning
via the ancestral information jemp, the type of parent can be used more directly.
We can consider the situation where an agent expresses its type depending on
the strategy and the type of the parent. The dependency might be useful when
the environmental state is strongly correlated with the previous state. In such a
situation, the strategy should be modeled as a Markov chain TF(x | x′), where x′

is the type of the parent, instead of the distribution πF(x). To consider ancestral
learning of TF, the promising techniques are the variational principle, which we
used in Section 4.4, for Markov chains in random environments [100, 52]. In
addition, Feynman-Kac formula discussed in Section 4.9 is promising.

Another example is communication among agents. Although we showed that
ancestral learning can accelerate the evolutionary process without communication,
learning with communication might further accelerate the evolutionary process.
In Section 4.8, we showed that the acceleration is small when τest is small due
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to the stochastic fluctuation of ancestral information jemp. The communication
might be beneficial to suppress the fluctuation.

The last example is the sensing of environmental states. In the context of
population dynamics, researchers have considered the situation where an agent
can receive a signal z(t) of environmental state y(t) and then expresses the type
by using signal-dependent strategy πF(x | z(t)). Since sensing is invidual learning
from signals (See Section 1.1), the integration of sensing and learning from experi-
ence is important to fully understand the information processing of organisms. In
such a situation, an agent might acquire the optimal signal-dependent strategy by
extending ancestral learning. In addition, the signal of the environmental states
may be useful to improve ancestral learning. To achieve such generalization, we
should construct a framework that can treat the retrospective and prospective in-
formation processing of organisms by ancestral learning and sensing, respectively.

4.11 Derivations

In this section, we give proofs that are omitted from the main text.

4.11.1 Proofs in Section 4.4

Proof of Proposition 4.1. We prove Eq. (4.8) via the method of Lagrange multi-
plier. For sufficiently small ϵ, we need to solve the following linearized optimiza-
tion:

max
δπ

.
∑
x∈X

π̄B(x)

πF(x)
δπ(x) (4.39)

under the constraints πF + δπ ∈ P(X ) and D [πF∥πF + δπ] = ϵ. Since πF is an
interior point of P(X ), the former constraint πF + δπ ∈ P(X ) is equivalent to∑

x∈X δπ(x) = 0. For a sufficiently small ϵ, we can approximate D [πF∥πF + δπ]
by using the Fisher information matrix [4] as

D [πF∥πF + δπ] =
1

2

∑
x,x′∈X

δπ(x)δx,x′
1

πF(x)
δπ(x′) =

1

2

∑
x∈X

δπ2(x)

πF(x)
. (4.40)

Here, the Fisher information matrix is a |X | × |X | diagonal matrix with diagonal
entries {1/πF(x)}x∈X . By using this approximation, the Lagrangian function is

L(δπ;λ, λ′) =
∑
x∈X

π̄B(x)

πF(x)
δπ(x) + λ

(
1

2

∑
x∈X

δπ2(x)

πF(x)
− ϵ

)
+ λ′

(∑
x∈X

δπ(x)

)
.

(4.41)

By differentiating L with respect to δπ(x), we have the stationary condition:

∂L

∂δπ(x)
=
π̄B(x)

πF(x)
+
λδπ(x)

πF(x)
+ λ′ = 0, (4.42)

for all x ∈ X . By multiplying πF(x) and taking sum
∑

x∈X of both sides of
Eq. (4.42), we have

1 + λ′ = 0. (4.43)

We here used
∑

x∈X δπ(x) = 0. By rearranging Eq. (4.42) and substituting
λ′ = −1, we have

δπ(x) =
πF(x)− π̄B(x)

λ
∝ π̄B(x)− πF(x). (4.44)

52



4.11.2 Proofs in Section 4.5

Proof of Lemma 4.2. By a direct calculation,

∆λ(t) = log
∑
x∈X

ek(x)p(t)(x)− log
∑
x∈X

ek(x)p(t−1)(x) (4.45)

= log
∑
x∈X

ek(x)
ek(x)p(t−1)(x)∑

x′∈X e
k(x′)p(t−1)(x′)

− log
∑
x∈X

ek(x)p(t−1)(x) (4.46)

= log
∑
x∈X

(
ek(x)

)2
p(t−1)(x)− 2 log

∑
x∈X

ek(x)p(t−1)(x) (4.47)

= log
Ep(t−1)

[(
ek(x)

)2]
Ep(t−1)

[
ek(x)

]2 (4.48)

= log-Vp(t−1) [k(x)]. (4.49)

Proof of Theorem 4.4. By a direct calculation,

λ(πF
(i)) (4.50)

= EQ(y)

[
logE

π̄
(i−1)
B

[
ek(x,y)

]]
(4.51)

= EQ(y)Q(y′)

[
logE

π̄
(i−1)
B

[
ek(x,y)

]]
(4.52)

= EQ(y)Q(y′)

[
logEπB

(i−1)(x|y′)

[
ek(x,y)

]]
+ EQ(y)Q(y′)

log E
π̄
(i−1)
B

[
ek(x,y)

]
EπB

(i−1)(x|y′)
[
ek(x,y)

]
 .

(4.53)

We first treat the first term. By a similar argument to Eq. (4.10), the term inside
the expectation satisfies the following relationship.

logEπB
(i−1)(x|y′)

[
ek(x,y)

]
− logEπF

(i−1)

[
ek(x,y)

]
(4.54)

= log
∑
x∈X

ek(x,y)
ek(x,y

′)πF
(i−1)(x)

EπF
(i−1)(x′)

[
ek(x′,y′)

] − logEπF
(i−1)

[
ek(x,y)

]
(4.55)

= log
EπF

(i−1)

[
ek(x,y)+k(x,y′)

]
EπF

(i−1)

[
ek(x,y)

]
EπF

(i−1)

[
ek(x,y′)

] (4.56)

= log-Cov
[
k(x, y), k(x, y′)

]
. (4.57)

By taking average with respect to Q(y)Q(y′), we have

EQ(y)Q(y′)

[
logEπB

(i−1)(x|y′)

[
ek(x,y)

]]
− λ(πF(i−1)) (4.58)

= EQ(y)Q(y′)

[
log-CovπF

(i−1)

[
ek(x,y), ek(x,y

′)
]]
. (4.59)

We next treat the second term of Eq. (4.53). By definition,

Q̄(i)(y′ | y)
Q(y′)

=

∑
x∈X e

k(x,y)πB
(i−1)(x | y′)∑

x∈X ,y′∈Y e
k(x,y)πB(i−1)(x | y′)Q(y′)

(4.60)

=
EπB

(i−1)(x|y′)
[
ek(x,y)

]
E
π̄
(i−1)
B

[
ek(x,y)

] . (4.61)
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We thus have

EQ(y)Q(y′)

log E
π̄
(i−1)
B

[
ek(x,y)

]
EπB

(i−1)(x|y′)
[
ek(x,y)

]
 = EQ(y)Q(y′)

[
log

Q(y′)

Q̄(i)(y′ | y)

]
(4.62)

= EQ(y)Q(y′)

[
log

Q(y)Q(y′)

Q̄(i)(y′ | y)Q(y)

]
(4.63)

= D
[
Q(y)Q(y′)

∥∥∥Q̄(i)(y′ | y)Q(y)
]
.

(4.64)

In conclusion, we proved Eq. (4.12).

4.11.3 Proofs in Section 4.6

Proof of Lemma 4.5. By Eq. (4.60),

log
Q(y)Q(y′)

Q̄(i)(y′ | y)Q(y)
= − log

EπB
(i−1)(x|y′)

[
ek(x,y)

]
E
π̄
(i−1)
B

[
ek(x,y)

] (4.65)

= − log
EπF

(i−1)

[
ek(x,y)+k(x,y′)

]
E
π̄
(i−1)
B

[
ek(x,y)

]
EπF

(i−1)

[
ek(x,y′)

] (4.66)

= − log
EπF

(i−1)

[
Fy(x)Fy′(x)

]
EπF

(i) [Fy(x)]EπF
(i−1)

[
Fy′(x)

] . (4.67)

By averaging with respect to Q(y)Q(y′), we have Eq. (4.26).

4.11.4 Proofs in Section 4.8

Proof of Theorem 4.6. We can prove the theorem by almost the same argument
as Theorem 4.4. Let π̄(i−1)

α (x) := απ̄
(i−1)
B (x) + (1 − α)πF(i−1)(x). By a direct

calculation, we have

λ(πF
(i)) (4.68)

= EQ(y)

[
logE

π̄
(i−1)
α

[
ek(x,y)

]]
(4.69)

= EQ(y)Q(y′)

[
logE

π̄
(i−1)
α

[
ek(x,y)

]]
(4.70)

= EQ(y)Q(y′)

[
logEπα

(i−1)(x|y′)

[
ek(x,y)

]]
+ EQ(y)Q(y′)

[
log

E
π̄
(i−1)
α

[
ek(x,y)

]
Eπα

(i−1)(x|y′)
[
ek(x,y)

]] .
(4.71)
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We first treat the first term. By a similar argument to Eq. (4.10), the term inside
the expectation satisfies

logEπα
(i−1)(x|y′)

[
ek(x,y)

]
− logEπF

(i−1)

[
ek(x,y)

]
(4.72)

= logEπF
(i−1)(x)

[
ek(x,y)

(
α

ek(x,y
′)

EπF
(i−1)(x′)

[
ek(x′,y′)

] + 1− α

)]
− logEπF

(i−1)

[
ek(x,y)

]
(4.73)

= log

αEπF
(i−1)

[
ek(x,y)+k(x,y′)

]
EπF

(i−1)

[
ek(x,y′)

] + (1− α)EπF
(i−1)

[
ek(x,y)

] (4.74)

− logEπF
(i−1)

[
ek(x,y)

]
(4.75)

= log

α EπF
(i−1)

[
ek(x,y)+k(x,y′)

]
EπF

(i−1)

[
ek(x,y)

]
EπF

(i−1)

[
ek(x,y′)

] + 1− α

 . (4.76)

By (3.6),

logEπα
(i−1)(x|y′)

[
ek(x,y)

]
− logEπF

(i−1)

[
ek(x,y)

]
(4.77)

= log

1 + α
CovπF

(i−1)

[
ek(x,y), ek(x,y

′)
]

EπF
(i−1)

[
ek(x,y)

]
EπF

(i−1)

[
ek(x,y′)

]
 (4.78)

= log-Covα
πF

(i−1)

[
k(x, y), k(x, y′)

]
. (4.79)

By taking average with respect to Q(y)Q(y′), we have

EQ(y)Q(y′)

[
logEπα

(i−1)(x|y′)

[
ek(x,y)

]]
− λ(πF(i−1)) (4.80)

= EQ(y)Q(y′)

[
log-Covα

πF
(i−1)

[
k(x, y), k(x, y′)

]]
. (4.81)

We next treat the second term of Eq. (4.71). By definition,

Q̄
(i)
α (y′ | y)
Q(y′)

=

∑
x∈X e

k(x,y)πα
(i−1)(x | y′)∑

x∈X ,y′∈Y e
k(x,y)πα(i−1)(x | y′)Q(y′)

(4.82)

=
Eπα

(i−1)(x|y′)
[
ek(x,y)

]
E
π̄
(i−1)
α

[
ek(x,y)

] . (4.83)

Thus,

EQ(y)Q(y′)

[
log

E
π̄
(i−1)
α

[
ek(x,y)

]
Eπα

(i−1)(x|y′)
[
ek(x,y)

]] = EQ(y)Q(y′)

[
log

Q(y′)

Q̄
(i)
α (y′ | y)

]
(4.84)

= EQ(y)Q(y′)

[
log

Q(y)Q(y′)

Q̄
(i)
α (y′ | y)Q(y)

]
(4.85)

= D
[
Q(y)Q(y′)

∥∥∥Q̄(i)
α (y′ | y)Q(y)

]
. (4.86)

In conclusion, we proved Eq. (4.28).
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Proof of Proposition 4.7. The updated strategy πF
(i) = αjest + (1 − α)πF

(i−1)

satisfies

πF
(i) ∼ N

(
π̄α, α

2V
)
, (4.87)

where we omitte the superscript of π̄(i−1)
α to avoid the complication. The growth

rate is approximated as

λ(πα + δπ) = λ(πα) +
∑
x∈X

∂λ

∂π(x)
δπ(x) +

1

2

∑
x,x′∈X

δπ(x)
∂2λ

∂π(x)π(x′)
δπ(x′) +O(δπ3)

(4.88)

= λ(πα) +
∑
x∈X

∂λ

∂π(x)
δπ(x) +

1

2

∑
x,x′∈X

δπ(x)Iλ(x, x
′)δπ(x′) +O(δπ3).

(4.89)

We note that O(δπ3) = O(α3) by the update rule of ancestral learning. By this
approximation,

∆acλ
(i) = E [λ(jest)]− λ(i−1) (4.90)

= λ(πα)− λ(i−1) + EN (0,α2V )

[∑
x∈X

∂λ

∂π(x)
δπ(x)

]

+
1

2
EN (0,α2V )

 ∑
x,x′∈X

δπ(x)Iλ(x, x
′)δπ(x′)

+O(α3) (4.91)

= ∆exλ
(i) +

1

2
EN (0,α2V )

 ∑
x,x′∈X

δπ(x)Iλ(x, x
′)δπ(x′)

+O(α3). (4.92)

In the last equation, the third term vanishes because

EN (0,α2V )

[∑
x∈X

∂λ

∂π(x)
δπ(x)

]
(4.93)

=
∑
x∈X

∂λ

∂π(x)
EN (0,α2V ) [δπ(x)] (4.94)

= 0. (4.95)

By the usual matrix calculation [83],

EN (0,α2V )

∑
x,x′

δπ(x)Iλ(x, x
′)δπ(x′)

 (4.96)

= α2Tr (IλV ) . (4.97)

In all, we proved (4.35).

56



Chapter 5

Theoretical Analysis of Evolutionary
Algorithms via Techniques from Population
Dynamics

In this chapter, we aim to solve the problems about the theoretical guarantees of
the evolutionary algorithms (See Section 1.4.2 and Section 1.5.2). See Section 5.6
for the proofs that we omit from the main text.

We consider the following minimization problem in this chapter:

minimize f(X),
subject to x ∈ X ⊆ Rd.

(5.1)

We do not assume any property of f at this moment. We consider general f in
Section 5.3 and possibly not strongly convex f in Section 5.4. When we assume
that f is a convex function, let x∗ be a minimizer.

5.1 Parallel Algorithm and Branching Algorithm

We address the two issues raised in Section 1.4.2 by considering the relative eval-
uation in Section 1.5.2: We will compare the BA with individual learning L to
parallel execution of L. For this comparison, we clarify the individual learning
rule L in this context. Individual learning in the context is update rules of the
iterative optimization algorithms (See Section 2.1.2). We use stochastic iterative
optimization algorithms since individual learning in this context is a generaliza-
tion of mutation, which should generate a variety of solutions. We also focus on
the iterative optimization algorithm L(t)(x(t+1) | x(t)) that can be represented as
a time-dependent Markov chain. Examples are the update rule of GD (3.58) and
SGD (3.60). Another example is random update used as mutation in conventional
evolutionary algorithms. The inclusion of random update enables us to analyze
the conventional evolutionary algorithm in our framework.

We first introduce the parallel execution of iterative optimization algorithm
L since it is simpler than the BA. A Parallel Algorithm (PA) (Algorithm 5.1)
execute a given iterative optimization algorithm L(t) onNsize-computational nodes
independently. The algorithm first samples a set of initial solutions {x(0)i }i∈[Nsize]

from a certain initial distribution ν(x). After that, each solution x(t)i is recursively
updated by L(t). The solution x(t)i at time t+ 1 is sampled from the distribution
L(t)(x(t+1)

i | x(t)i ).
We next introduce the BA (Algorithm 5.2; Figure 5.1). The BA has hyper-

parameters βg
(T ) = {β(t)}t=1,2,...,T with β(t) ≥ 0 for all t. Here, the subscript

g stands for “growth”. The BA first samples the population of the tentative
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solutions {x′(0)i }i∈[Nsize] from ν(x). After that, the set of initial solutions is con-
structed by sampling (Step 2 in Algorithm 5.2): For each i ∈ [Nsize], the next
solution x

(0)
i is independently sampled from the population {x′(0)i }i∈[Nsize] with

weight 1 e−βg
(0)f(x′(0)

i ). After that, BA iterates the loop of learning and sampling:
At learning (Step 4 in Algorithm 5.2), the BA updates the solution x

(t)
i by L(t):

A tentative solution x′
(t+1)
i is sampled from L(t)(x′(t+1)

i | x(t)). After that, the
population at the next step is constructed by sampling (Step 5 in Algorithm 5.2),
which is the same procedure as Step 2 in Algorithm 5.2. We call x(t+1)

i is a
daughter of x(t)j if x(t+1)

i = x′
(t+1)
j . We call x(t)j is a parent of x(t+1)

i if x(t+1)
i is

the daughter of x(t)j .
We note that we can implement the sampling step by using copies of the

solutions. In this implementation, we first make Zi-copies of x′(t+1)
i , where Z(t+1)

i

be any random variable in R≥0 with E[Z(t+1)
i ] = e−βg

(t+1)f(x′(t+1)
i ). After that,

we select Nsize-solutions uniformly at random from the copied solutions. This
procedure implements the sampling step. In this sense, the factor e−βg

(t+1)f(x(t+1))

can be interpreted as populational evolution.
We also note that the BA satisfies the Markov property: The time evolution

of the solution x(t) is not affected by events at time t′ (t′ < t) if the population
of the solutions at time t is given.

We explain the reason that we use the growth factor of the form e−βf(x) instead
of the conventional choice like f(x). It is because the BA satisfies the invariance
property with respect to the affine transformation of the objective function f(x),
which is desirable for evolutionary algorithms [81]. The scalar addition f+c(x) :=
f(x) + c for some constant c ∈ R does not change the behavior of the algorithm
since the weight e−βg

(t+1)f+c(x′(t+1)
i ) is the same as the original weight up to the

constant factor ec. Also, the scalar multiplication f×a(x) := af(x) for a > 0 does
not change the behavior of the BA substantially: the behavior of the BA for f
with βg(t+1) is the same as that for f×a with βg(t+1)/a.

Before proceeding, we discuss when we use the BA with SGD since we adopt
it as examples in Section 5.3.4 and Section 5.4.3. Since the BA requires the exact
value of f(x), we can compute∇f(x) by numerical differentiation. Although using
SGD seems to be irrational when we have exact ∇f(x), we have the following
example where we use the BA with SGD. The situation is where the dimension d
of x is large and we want to save the time of numerical differentiation. Suppose
that f(x) is of the form (2.2) and the time to compute f(x) is O(nh(d)) for some
function h. We also assume that we do not have an analytical form of ∇f(x).
In this situation, the numerical differentiation requires O(ndh(d))-computational
time. When both n and d is large, we might want to reduce the time to compute
∇f(x) by using a mini-batch (2.3). Indeed, if the size of a mini-batch is O(1), we
can compute the estimator gS of the gradient in O(dh(d))-time.

1If the weight is too small or too large, we can use e−βg
(0)f(x′(0)

i )+c(0) as an equivalent weight,
where c(0) ∈ R is a certain constant.

58



Algorithm 5.1 Simple Parallel Algorithm

1: Sample initial solutions {x(0)i }i∈[Nsize] from distribution ν(x).
2: for t = 0, 1, . . . , T − 1 do
3: Update each solution by L(t): x(t+1)

i ∼ L(t)(x | x′(t)i ) for each i ∈ [Nsize].
4: end for

Algorithm 5.2 Branching Algorithm

1: Sample {x′(0)i }i∈[Nsize] from distribution ν(x).
2: For each i ∈ [Nsize], independently sample the initial solution x

(0)
i from the

population {x′(0)i }i∈[Nsize] with weight e−β(0)f(x′(0)
i ).

3: for t = 0, 1, . . . , T − 1 do
4: Update each solution by learning: x′

(t+1)
i ∼ L(t)(x′(t)i | x(t)i ) for each

i ∈ [Nsize].
5: For each i ∈ [Nsize], independently sample the solution x

(t+1)
i from the

population {x′(t+1)
i }i∈[Nsize] with weight e−β(t+1)f(x′(t+1)

i ).
6: end for

t+ 1t

e
−β

(t)
g f(x)

replicationlearning selection
L(t)(x | x′)

x
(t)

x
(t+1)

x
(t+1)

Figure 5.1: Schematic representation of the BA. In this figure, each circle repre-
sents a solution and its color does the value of x(t). Each solution in the popula-
tion is updated by learning rule L(t). Then, a solution x reproduces e−βg

(t)f(x)-
daughters on average. Finally, Nsize solutions are selected uniformly at random.
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5.2 Infinite Population Approximation and Pathwise Formula-
tion

Following the approach of [45, 110], we analyze the performance of the PA and the
BA in the situation where the size Nsize of the population is sufficiently large. See
Section 5.5 for a further discussion about this assumption. Under this assumption,
we can approximate the BA as a dynamical system. This approximation admits
a pathwise formulation of the BA, which we use for further analysis throughout
the chapter.

We first introduce the pathwise formulation of PA as a basis of that of BA
(Figure 5.2 (a)). After the execution of PA, we haveNsize-sequences {x(t)i }t=0,1,...,T

(i ∈ [Nsize]) of solutions. We call each of the sequence X(T )
i = {x(t)i }t=0,1,...,T a path

of the solutions. By the definition of the algorithm, the solutions {x(t)i }t=0,1,...,T

on the i-th computational node is a Markov chain generated by L(t). Therefore,
the probability PF[X(t)] that a realization of the i-th path {x(t)i }t=0,1,...,T equals
X(T ) = {x(t)}t=0,1,...,T is given by

PF[X(t)] = ν(x(0))
T−1∏
t=0

L(t)(x(t+1) | x(t)) (5.2)

=
T−1∏
t=−1

L(t)(x(t+1) | x(t)), (5.3)

where we specially define L(−1)(x(0) | x(−1)) := ν(x(0)) for notational simplicity.
We next consider the infinite population approximation of the BA. We will

approximate the empirical distribution j(x) of the solution at the end of the t-th
loop of the BA. The empirical distribution is defined by

j(t)(x) :=
1

Nsize

∑
i∈[Nsize]

δ
x
(t)
i ,x

, (5.4)

where δx,x′ is the delta function. In the limitNsize →∞, the empirical distribution
converges to its expectation P(t)

B that evolves as follows:

P(t+1)
B (x) =

∑
x′∈X e

−βg
(t+1)f(x)L(t)(x | x′)P(t)

B (x′)∑
x′,x′′∈X e

−βg
(t+1)f(x′′)L(t)(x′′ | x′)P(t)

B (x′)
, (5.5)

where we specially define

P(0)
B (x) :=

e−βg
(0)f(x)ν(x)∑

x′′∈X e
−βg

(0)f(x′′)ν(x′′)
. (5.6)

We call PB the infinite population approximation of the BA. See Section 5.6 for
the derivation of Equations (5.5) and (5.6).

We simplify the infinite population approximation (5.5) by considering the
pathwise formulation of BA. To introduce a pathwise formulation, we first define
the path of the BA (Figure 5.2 (b)). The path of the BA is a sequence of the
solutions followed backwardly from a solution x

(T )
i at time T . Precisely, let us

take any solution x
(T )

i(T ) at the end of the algorithm. We recursively define that

x
(t)

i(t)
is a parent of x(t+1)

i(t+1) for t = T − 1, T − 2, . . . , 0. Then, a path of the BA with

respect to the solution x
(T )

i(T ) is the sequence {x(t)
i(t)
}t=0,1,...,T . We note that the

paths of the BA might join while those of the PA are independent (Figure 5.2).
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(b)

x
(0)
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(3)
2 ∼ PF[X

(T )
2 ]

x
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Figure 5.2: Schemetic representation of the pathwise-formulation of the PA (a)
and the BA (b). In the PA, each path X(T )

i = {x(t)i }t=0,1,...,T (i ∈ [Nsize]) inde-
pendently follows PF defined by (5.2). In (b), the head of the arrow indicates
a daughter and the tail does the parent. In the BA, we choose a solution at
time T and consider the path X(T ) followed backwardly from the chosen solution.
For example, the solutions connected by the red arrows are the path followed
backwardly from the red solution x(3). In BA, the paths are not independent in
general: For different solutions x(T ) and x′(T ) at time T , the paths may join. For
example, the path with respect to the red solution x(3) and that with respect to
the blue solution x′(3) join. The path X(T ) follows the distribution PB biased from
PF. The relationship between PF and PB is given by (5.7).

We consider the probability PR[X(T )] that a realization of a path of the BA is
X(T ) = {x(t)}t=0,1,...,T . Let f [X(T )] = {f(x(t))}t=0,1,...,T be the path of the value
of the objective function evaluated along X(T ). By recursively applying (5.5), we
have the following.

Proposition 5.1 (Pathwise Formulation of Branching Algorithm).

PB[X(T )] =
e−⟨βg

(T ),f [X(T )]⟩PF[X(T )]∑
X′(T )∈XT+1 e

−⟨βg
(T ),f [X′(T )]⟩PF[X′(T )]

. (5.7)

The probability PB is biased from PF due to the effect of populational evolu-
tion. In other words, the probability PB incorporates the effect of populational
evolution. Therefore, the pathwise formulation reduces the problem of the com-
parison of the PA and the BA to the comparison of the properties of the proba-
bility measures PF and PB. The pathwise formulation is simpler than (5.5) since
the effect PF[X(T )] of individual learning and that e−⟨βg

(T ),f [X(T )]⟩ of populational
evolution are separated.

We discuss the connection between these results and population dynamics.
This difference equation (5.5) is the same as the following population dynamics
of N (t)(x) up to the normalization factor.

N (t+1)(x) =
∑
x′∈X

e−βg
(t+1)f(x)L(t)(x | x′)N (t)(x′). (5.8)

Since the population dynamics is insightful, especially in Section 5.4.1, we explain
its interpretation in detail. The quantity N (t)(x) can be interpreted as the ex-
pected number of the solution x at time t when we execute the BA without caring
capacity as follows. Suppose that we implement the sampling step by using copies
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of the solutions (See section 5.1). We consider the modified implementation that
the population at the next step is all copied solutions instead of the randomly
selected Nsize-solutions. We call this modification the BA without caring capacity.
Let us consider the number of the solution j′(t)(x) :=

∑
i δx(t)

i ,x
in the population

{x(t)i }i at the t-th step of the BA without caring capacity. By a similar argument
to (5.5), we know that j′(t)(x) converges to its expectation N (t)(x) satisfying (5.8)
as Nsize → ∞. The correspondence between (5.5) and (5.8) shows that we can
neglect the effect of selection in the limit Nsize → ∞. Also, the correspondence
enables us to calculate P(t)

B (x) by normalizing N (t)(x). This calculation is useful
because N (t)(x) is more intuitive than P(t)

B (x). This correspondence is extended
to the path level ((3.11) and (5.7)).

5.3 Populational Evolution can Accelerate Stochastic Optimiza-
tion

In this section, we prove that the BA always performs better than the PA by
using the pathwise formulation (5.7). In particular, we extend FF-thm for natural
selection to the BA.

5.3.1 Criterion to Compare Parallel and Branching Algorithms

To compare the performance of the PA and the BA quantitatively, we need a
criterion to measure the performance of the PA and the BA. Therefore, we first
introduce such a criterion. Since both the PA and the BA yields Nsize-paths
{X(T )

i }i∈[Nsize] of the solutions, the criterion must (1) measure the quality of a
path X(T ) and (2) integrate the qualities of each path measured by (1). For the
first point (1), a trivial measure of the quality is f(x(T )). However, the interme-
diate progress f(x(t)) (t < T ) of the algorithm might be important in addition to
f(x(T )). For example, such intermediate progress is important when we use SGD
with the averaging over time (Section 2.1.2). We therefore need a more sophisti-
cated measure c : X (T+1) → R of the quality that converts the whole path X(T ) to
a scalar. For the second part (2), the integration is difficult because applying the
measure of the quality for each path yields {c[X(T )]}i∈[Nsize] ∈ RNsize , which is not
comparable in general since RNsize is not totally ordered. We therefore need a func-
tion π : Rk → R to compare the measured qualities of the paths. Typical choices
are the average and the minimum functions. The former is suitable for parallelized
SGD with the averaging over paths (Section 2.1.2). On the other hand, the min-
imum function is another natural candidate especially for non-convex functions.
To make the criterion general, the function π should be an unification of the
average and the minimum functions. In addition, since the minimum function
behaves singularly, the function π should be a smoothed version of the mini-
mum function. For example, the minimum of (f(x(T )

0 ), f(x
(T )
1 ), . . . , f(x

(T )
Nsize−1))

converges to f(x∗) as Nsize →∞ under a mild assumption on L(t).
Let us consider the first part (1). To measure the quality of the solutions over

the whole path, we use a weighted path-level average〈
βw

(T ), f [X(T )]
〉
, (5.9)

where βw
(T ) := {βw(0), βw

(1), . . . , βw
(T )} is a weight with βw(t) ≥ 0 for all t. Here,

the subscript w stands for “weight”. A typical choice of the weight is 1(T ) :=
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{1, 1, . . . , 1} ∈ R(T+1). If we are only interested in x(T ), we can use the weight
defined by βw(T ) = 1 and βw(t) = 0 otherwise.

We next consider the second part (2). To compare the qualities of the multiple
paths measured by the weighted path-level average, we introduce a smooth mini-
mum that unifies the average and the minimum functions. For zi ∈ R (i ∈ [Nsize]),
we define a smooth minimum by

sminβc(z0, z1, . . . , zNsize−1) := −
1

βc
log

 1

Nsize

∑
i∈[Nsize]

e−βczi

 . (5.10)

Here, βc > 0 is a hyperaparameter and c stands for “criteion”.
The smooth minimum is indeed an unification of the average and the minimum

functions:

Proposition 5.2.

lim
βc→0+

sminβc(z0, z1, . . . , zNsize−1) =
1

Nsize

∑
i∈[Nsize]

zi, (5.11)

lim
βc→∞

sminβc(z0, z1, . . . , zNsize−1) = min
i∈[Nsize]

zi. (5.12)

To connect the smooth minimum and the infinite population approximation,
we introduce a smooth minimum for Nsize → ∞. For a real random variable Z
with distribution p(z), we define the smooth minimum of Z by

sminβc
p [Z] := − 1

βc
logEp

[
e−βcZ

]
. (5.13)

The smooth minimum for Nsize → ∞ satisfies the same property as Proposi-
tion 5.2.

Proposition 5.3. If E[Z] and E[Z2e−βcZ ] exist for all sufficiently small βc > 0,
then

lim
βc→0+

sminβc
p [Z] = Ep[Z]. (5.14)

Also,

lim
βc→∞

sminβc
p [Z] = inf{z | FZ(z) > 0}, (5.15)

where FZ is the cumulative distribution function of Z.

In conclusion, we measure the performance of the PA and the BA by combining
the weighted path-level average and the smooth minimum. The performance of
the PA is

PAf

L(t) := sminβc

PF

[〈
β(T )
w , f [X(T )]

〉]
, (5.16)

and the performance of BA is

BAf

L(t) := sminβc

PB

[〈
β(T )
w , f [X(T )]

〉]
. (5.17)

We note that these quantities are similar to the cumulative fitness 3.12 if we
interpret e−βg

(t)f(x) as the individual fitness.
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Before proceeding, we note that the weighted path-level average and the
smooth minimum are natural choices although there are other alternatives. The
weighted path-level average is a natural measure since it has a connection to
averaging over time. If we have a bound〈

βw
(T ), f [X(T )]

〉
∑T

t=0 βw
(t)

− f(x∗) ≤ C, (5.18)

and f is convex, then the Jensen inequality implies that

f(x̄(T ))− f(x∗) ≤ C, (5.19)

where

x̄(T ) :=

∑T
t=0 βw

(t)x(t)∑T
t=0 βw

(t)
. (5.20)

Therefore, the bound for the weighted path-level average implies the bound for the
output x̄(T ) averaged over time. This technique is used in many previous studies
to show the bound for SGD with averaging over time [124, 102, 56, 7, 117]. It
means that we might be able to utilize the proof of the previous studies to bound
the weighted path-level average.

The smooth minimum is a natural choice for the following reasons. The smooth
minimum is similar to the LogSumExp function and an example of Kolmogorov’s
mean [26]. Also, the smooth minimum is conjugate to the negative Shannon
entropy [17] and its derivative is the SoftMax function. Moreover, the smooth
minimum is known as the Helmholtz free energy in statistical mechanics [123].

5.3.2 Fisher’s Fundamental Theorem of Branching Algorithm

We compare the performance of the PA and the BA measured by the criterion
in the previous section. To address the second issue raised in Section 1.4.2, we
evaluate the difference PAf

L(t)−BAf

L(t) of two performances by using the pathwise
formulation (5.7).

Theorem 5.4 (Fisher’s Fundamental Theorem of Branching Algorithm).

PAf

L(t) − BAf

L(t) =
1

βc
log-CovPF

[
−
〈
βg

(T ), f [X(T )]
〉
,−
〈
βcβw

(T ), f [X(T )]
〉]
.

(5.21)

The theorem implies that BA always performs better than the PA. Indeed,
since βg

(T ) is a hyperparameter of the BA, we can choose it arbitrary. In par-
ticular, we can choose βg

(T ) = βgβw
(T ) for a given βw

(T ), where βg > 0 is some
constant. For this choice of βg

(T ), we have the following bound.

Corollary 5.5. If βg
(T ) = βgβw

(T ), then

PAf

L(t) − BAf

L(t) =
1

βc
log-CovPF

[
−
〈
βgβw

(T ), f [X(T )]
〉
,−
〈
βcβw

(T ), f [X(T )]
〉]
≥ 0.

(5.22)
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5.3.3 Simplified Calculations When Performance Satisfies Central Limit
Theorem

The performance of the PA and the BA has a simple form when we can assume
the normality of

〈
βw

(T ), f [X(T )]
〉

by using the CLT. To demonstrate it, we first
prove the following formula for the smooth minimum and FF-thm of the BA when〈
βw

(T ), f [X(T )]
〉

is a normal random variable.

Proposition 5.6. Suppose that Z ∼ N
(
µ, σ2

)
. Then,

sminβc [Z] = µ− βcσ
2

2
. (5.23)

Corollary 5.7 (Corollary of Theorem 5.4). Suppose that βg
(T ) = βgβw

(T ) and〈
βw

(T ), f [X(T )]
〉

follows N
(
µ, σ2

)
under the probability measure PF. Then,

PAf

L(t) − BAf

L(t) = βcβgσ
2. (5.24)

Intuitively, Corollary 5.7 indicates that the performance of the BA is better
when the variance of the performance of the PA is larger, namely, the learning
rule L is exploratory.

These results help us to prove the upper bound of the performance of the PA
and the BA. Since

〈
βw

(T ), f [X(T )]
〉

is a sum of random variables, we can use
the CLT and assume the normality when the dependency between the random
variables is weak (Section 3.6). Such an assumption holds when L(t) is SGD and
the objective function is strongly convex (See Section 5.3.4) or when L(t) is a
random update that satisfies a certain ergodicity [47]. Under this assumption, we
can calculate the performance via Proposition 5.6. To bound the right hand side
of (5.23) for Z =

〈
βw

(T ), f [X(T )]
〉
, what we have to prove is the followings two

bounds under PF or PB: (1) the upper bound for the mean of
〈
βw

(T ), f [X(T )]
〉
;

and (2) the lower bound for the variance of
〈
βw

(T ), f [X(T )]
〉
. Let us first consider

the case of PF. The former (1) is usually proven by the previous studies as we
discussed in Section 5.3.1. Therefore, the remaining task is the latter (2). In
other words, previous studies do half of the jobs to bound the smooth minimum.
In the case of PB, we can calculate in a similar way by Corollary 5.7. We will see
this procedure by using an example in Section 5.3.4.

We note that the assumption of the normality is not justified for too large
βg and βc even if

〈
βw

(T ), f [X(T )]
〉

follows a normal distribution with a small
error under PF. In the proof of Corollary 5.7, we use the normality of Z1 :=〈
βgβw

(T ), f [X(T )]
〉

and Z2 :=
〈
βcβw

(T ), f [X(T )]
〉

that follow from the normality

of Z3 :=
〈
βw

(T ), f [X(T )]
〉
. The deviations of Z1 and Z2 from normal distributions

are greater than that of Z3 when βc and βg are large. Since Z3 is not exactly
a normal random variable, this enlargement of the deviation makes the assump-
tion of normality unjustified when βc and βg are too large. Indeed, since f(x)
is bounded from below while the support of the normal distribution is R, the
normality of

〈
βw

(T ), f [X(T )]
〉

under PF does not hold exactly. This argument
resolves the following confusion about Corollary 5.7. At first sight, Corollary 5.7
seems to contradict to the fact that f(x) is bounded from below by f(x∗): It
seems that we can make BAf

L(t) arbitrary small by taking large βg and βc. This
is not true since we cannot apply Corollary 5.7 to the case of too large βc and βg.
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5.3.4 Application to Stochastic Gradient Descent

Let us consider a simple example to see the consequence of FF-thm. Let f(x) =
∥x∥2/2. We note that x∗ = 0 and f(x∗) = 0. We assume that the noise ξ(t)

independently follows N
(
0, a2I/d

)
. We set L(t) to SGD (Algorithm 3.2) with

η(t) = η, (5.25)

βw
(t) = 1/(T + 1), (5.26)

where η is some constant.
We first check that

〈
βw

(T ), f [X(T )]
〉

satisfies CLT. Namely, we check that

Z(t) = f(x(t)) − E[f(x(t))] is a mixingale (See Section 3.6). Let F (t) be the σ-
algebra generated by {ξ(t′)}t′≤t. In addition, let Z(t) = f(x(t)) − E[f(x(t))]. We
suppose that ξ(t) is bounded 2. Under this setting, we have the following:

Lemma 5.8. If ∥ξ(t)∥ ≤ C, then

E[Z(t) | F (t−k)] = O((1− η)2k). (5.27)

Therefore, Z(t) is a mixingale with size −1/2 and Z(t) satisfies CLT.
To use Corollary 5.7, let us prove an upper bound of the mean µ and a lower

bound of the variance σ2 of
〈
βw

(T ), f [X(T )]
〉
. For this setting, the following upper

bound of µ is know.

Lemma 5.9 (Theorem 4.8 in [15]). If η ≤ 1, then

E[f(x(t))] ≤ ηa2

2
+ (1− η)tf(x(0)). (5.28)

Since the second term decays exponentially, it implies that

PAf

L(t) = E
[〈

βw
(T ), f [X(T )]

〉]
≈ ηa2

2
. (5.29)

For the lower bound of σ, we have the following lemma:

Lemma 5.10.

σ2 ≥ 2η4a4. (5.30)

Therefore, we know that

PAf

L(t) ≤
ηa2

2
− βcη4a4 (5.31)

BAf

L(t) ≤
ηa2

2
− (1 + 2βg)βcη

4a4. (5.32)

Since PAf

L(t) = O(η), taking βg = Ω(η−3β−1
c ) substantially improves the smooth

minimum of BAf

L(t) .
We summarize implications of the example. The example illustrates that FF-

thm is useful to tune the hyperparemters. Also, since we can use the previous
result (ex. [124, 102, 56, 7, 117]) to bound µ, Proposition 5.6 and Corollary 5.7

2This assumption is not problematic because the probability of the exceptional event ∥ξ(t)∥ >
C decays exponentially with respect to C ∈ R. We can therefore neglect the exceptional event
if we take sufficiently large C like C = Ω(log T ).
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indeed help us to apply FF-thm to concrete examples. On the other hand, the
calculation in Lemma 5.10 is heavy and might have a room to tighten the bound.
One reason is that the calculation of the performance of the PA and the BA
requires the smooth mean or the variance of

〈
βw

(T ), f [X(T )]
〉
, whose state space

is X T+1. The huge state space X (T+1) makes the calculation difficult. Although
FF-thm is useful to prove general results like Corollary 5.5, application of FF-thm
to concrete examples is difficult. We resolve this problem in the next section.

5.4 Retrospective Process of Branching Algorithm and its Ap-
plication to Stochastic Gradient Descent

We next introduce an easier technique to evaluate the performance of the BA than
FF-thm. Recall that the difficulty in the application of FF-thm is the huge state
space X T+1 of PF[X(T )] and PB[X(T )]. A simpler representation of PB than the
path-level probability is preferable. In this section, we represent PB as a Markov
chain, which will turn out to be the retrospective process. In this section, we
consider the case where βc → 0+ for simplicity. In other words, we evaluate the
performance of the BA by EPB

[〈
βw

(T ), f [X(T )]
〉]

.

5.4.1 Retrospective Process of Branching Algorithm

Let us represent PB[X(t)] as a Markov chain with time-dependent transition matrix
L(t

′)
T,B:

PB[X(T )] = P(0)
B (x(0))

T−1∏
t′=0

L(t
′)

T,B(x
(t′+1) | x(t′)), (5.33)

where L(t)T,B is defined as follows. Let us assume that x(t) = x′ and consider

the probability L(t)T,B(x | x′) that x(t+1) = x under the conditional probability

PB[X(t:T ) | x(t) = x′]. By the Markov property of the BA, we know that L(t
′)

T,B can

decompose PB as (5.33). We call L(t)x,B the transition matrix of the retrospective
process.

We explicitly calculate the retrospective process L(t)T,B. As a preparation, we
define a lineage fitness u(t+1:T )(x(t+1)) by

u(t+1:T )(x(t+1)) :=
∑

x(t+2),x(t+3),...,x(T )∈X

T−1∏
t′=t+1

e−βg
(t′+1)f(x(t′+1))L(t′)(x(t′+1) | x(t′)).

(5.34)

We specially define u(T :T )(x) = 1. By using the BA without caring capacity (5.8),
we can interpret the lineage fitness as the expected number of the descendants of
the solution x(t+1) at time T . We can calculate L(t)T,B by using lineage fitness.

Theorem 5.11.

L(t)T,B(x | x
′) =

u(t+1:T )(x)e−βg
(t)f(x)L(t)(x | x′)

u(t:T )(x′)
. (5.35)

We intuitively derive the theorem via the BA without caring capacity (5.8)
(Figure 5.3). We first give an operational interpretation of PB[X(t:T ) | x(t) = x′].
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Let us consider the subpopulation that consists of the descendants of the solution
x′ at time t. Let us take a path X(t:T ) = {x(t′)}t′=t,t+1,...,T of the BA without caring
capacity in the subpopulation. Precisely, we choose an descendant at time T in the
sub-population uniformly at random and then take the path X(t:T ) with respect
to the chosen solution. Under this setting, X(t:T ) follows PB[X(t:T ) | x(t) = x′].
Therefore, L(t)T,B(x | x′) is the probability that x(t+1) = x on the path X(t:T ). We
evaluate this probability. By (5.8), the expected number of the solution x at time
t + 1 in the sub-population is e−βg

(t+1)f(x)L(t)(x | x′). Each solution x at time
t + 1 yields u(t+1:T )(x) descendants at time T . Therefore, the number of paths
that satisfies x(t+1) = x is u(t+1:T )(x)e−βg

(t+1)f(x)L(t)(x | x′). Also, the total
number of paths (total number of solutions at time T ) is u(t:T )(x′). Therefore,
the probability is given by (5.35).

We give some remarks on the retrospective process. Since L(t)T,B has the same
information as PB, the retrospective process is a simpler representation of PB.
Also, since L(t)x,B defines the one-step time evolution of the solution, we can regard
it as an iterative optimization algorithm biased from L(t) due to populational evo-
lution. By using the convention L(−1)(x(0) | x(−1)) = ν(x), we can simplify (5.33)
as

PB[X(T )] =

T−1∏
t′=−1

L(t
′)

T,B(x
(t′+1) | x(t′)). (5.36)

We note that L(−1)
T,B (x(0) | x(−1)) does not depends on x(−1).
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Figure 5.3: Schematic representation of the intuitive proof of Theorem 5.11. The
retrospective process L(t)T,B(x1 | x′) can be interpreted as the following probability:
We consider the BA without caring capacity (5.8). We focus on the sub-population
that consists of the descendants of the solution x′ at time t. We choose a descen-
dant at time T in the sub-population uniformly at random. In the figure, the
red solution is chosen. Under this setting, L(t)T,B(x1 | x′) is the probability that
x(t+1) = x1 on the path followed backwardly from the chosen solution connected
by red allows. We evaluate the probability. The expected number of the solution
x1 at time t + 1 in the sub-population is e−βg

(t+1)f(x1)L(t)(x1 | x′). Also, the
solution x1 at time t+1 yields u(t+1:T )(x1)-descendants at time T . Therefore, the
probability is proportional to u(t+1:T )(x1)e

−βg
(t+1)f(x1)L(t)(x1 | x′), which proves

Theorem 5.11.
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5.4.2 One-Step Approximation of the Retrospective Process

Although the retrospective process is simpler than the path probability PB[X(T )],
it is still difficult to calculate in concrete examples. The reason is that the lineage
fitness u(T :t)(x) in (5.35) is difficult to calculate. The calculation of u(t:T )(x) is
similar to the calculation of the normalization factor and thus difficult in gen-
eral [14].

To avoid these problems, we use an one-step approximation of retrospective
process. In this approximation, we substitute u(t+1:t)(x) with unity in the numer-
ator of (5.35) and define a new transition matrix L(t)+1,B by

L(t)+1,B(x | x
′) :=

e−βg
(t+1)f(x)L(t)(x | x′)
u′

(t)
+1(x

′)
, (5.37)

where u′+1 is an one-step lineage fitness defined by

u′
(t)
+1(x

′) :=
∑
x∈X

e−βg
(t+1)f(x)L(t)(x | x′). (5.38)

In addition, we define the path probability of the one-step approximation by

PR[X(t)] := P(0)
B (x(0))

T−1∏
t′=0

L(t
′)

+1,B(x
(t′+1) | x(t′)) (5.39)

=
T−1∏
t′=−1

L(t
′)

+1,B(x
(t′+1) | x(t′)). (5.40)

The numerator of (5.39) incorporates the effect e−βg
(t+1)f(x) of replication at

present time. On the other hand, the numerator of (5.35) incorporates the effect
u(t+1:T )(x) of replication from the next step to time T in addition to e−βg

(t+1)f(x).
We therefore call L(t)+1,B the one-step approximation of the retrospective process.

Since (5.39) does not contain the lineage fitness, the one-step approximation L(t)+1,B

is easier to calculate than L(t)T,B.
Although the one-step approximation is different from the original retrospec-

tive process, it is useful to prove an upper bound of EPB

[〈
βw

(T ), f [X(T )]
〉]

. We
aim to prove the following conjecture in the rest of the section:

Conjecture 5.12.

EPB

[〈
βw

(T ), f [X(T )]
〉]
≤ EPR

[〈
βw

(T ), f [X(T )]
〉]
. (5.41)

If the conjecture holds, then an upper bound EPR

[〈
βw

(T ), f [X(T )]
〉]
≤ C

for the one-step approximation with a constant C implies that the upper bound
EPB

[〈
βw

(T ), f [X(T )]
〉]
≤ C for the BA with the same constant C.

We explain an intuition why we expect that the conjecture holds, although
we need additional assumptions to rigorously prove the conjecture. The discus-
sion will reveal the additional assumptions. To make the discussion concise, let
g[X(T )] :=

〈
βw

(T ), f [X(T )]
〉
. Recall that the one-step approximation incorpo-

rates the replication e−βg
(t+1)f(x) at present time while it does not the replication

u(t+1:T )(x) until time T . Since FF-thm indicates that

EPB

[
g[X(T )]

]
≤ EPF

[
g[X(T )]

]
, (5.42)
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and the one-step approximation partly incorporates the acceleration by popula-
tional evolution, we expect that

EPB

[
g[X(T )]

]
≤ EPR

[
g[X(T )]

]
≤ EPF

[
g[X(T )]

]
. (5.43)

However, the inequality does not hold in general because the averaged future
values g[X(t+1:T )] of objective function might not be monotonically decreasing
with respect to the replication u(t+1:T )(x(t+1)) until time T . Since u(t+1:T )(x(t+1))
depends on the hyperparameter βg

(T ) while g[X(t+1:T )] does on the different hy-
perparameter βw

(T ), such a monotonicity does not hold in general. In such a
situation, L(t)T,B tends to update x(t) to a solution x(t+1) with higher E[g[X(t+1:T )] |
x(t+1)] than other alternatives due to the factor u(t+1:T )(x(t+1)) in the numera-
tor. In short, u(t+1:T )(x(t+1)) may increase EPB

[
g[X(T )]

]
. Since PR does not have

the factor u(t+1:T )(x(t+1)), the expectation EPR
[g[X(T )]] may become smaller than

EPB
[g[X(T )]]. The discussion reveals that the monotonicity of u(t+1:T )(x(t+1)) with

respect to E[g[X(t+1:T )] | x(t+1)] is necessary to prove Conjecture 5.12.
We precisely state the assumption of the monotonicity. For a technical reason,

we consider the following form of the monotonicity.

Assumption 5.13 (Local Monotonicity). For any t = −1, 0, . . . , T −1 and x(t) ∈
X , let X (t+1) be the set of the solution x(t+1) at the next step sampled from
L(t)+1,B(x

(t+1) | x(t)). Then, for all x, x′ ∈ X (t+1) with f(x) ≥ f(x′), we have the
following:

u(t+1:T )(x) ≤ u(t+1:T )(x′), (5.44)

EPR
[g[X(t+1:T )] | x(t+1) = x] ≥ EPR

[g[X(t+1:T )] | x(t+1) = x′]. (5.45)

The assumption is sufficient to prove Conjecture 5.12.

Theorem 5.14. Under Assumption 5.13, Conjecture 5.12 holds.

Before proceeding, we discuss that we can expect that the assumption holds
for a broad class of iterative optimization algorithm L(t). We can expect that
the monotonicity holds if the update by L(t) is local, continuous, and mixing:
The locality means that x(t+1) and x(t) are sufficiently close under PF; The con-
tinuity means that, if x(t+1) and x′(t+1) are sampled from L(t)(x(t+1) | x(t)) and
L(t)(x′(t+1) | x′(t)) respectively and x(t) is close to x′(t), then the distribution of
x(t+1)−x(t) and that of x′(t+1)−x′(t) is close; The mixing means that, if x(t) and
x′(t) are close, then the distribution of x(t+k) updated k-times from x(t) and that
of x′(t+k) updated from x′(t) are almost identical for sufficiently large k. Since
these assumptions are mild, we can expect that they hold for a broad class of L(t).

An intuitive explanation why these conditions imply the monotonicity is as
follows (Figure 5.4). We first consider the monotonicity of u(t+1:T )(x(t+1)) with
respect to f(x(t+1)). Let us take two updated solutions x(t+1) and x′(t+1) sampled
from L(t)(· | x(t)). To compare u(t+1:T )(x(t+1)) and u(t+1:T )(x′(t+1)), we focus on
the path X(t+1:T ) of the solutions after x(t+1) and the path X′(t+1:T ) := {x′(t

′)}t′
after x′(t+1). By locality, the solutions x(t+1) and x′(t+1) are also close. It implies
that the difference between the distribution of x(t′) and x′(t

′) disappears in a few
steps due to the mixing property. Therefore, the difference between u(t+1:T )(x)
and u(t+1:T )(x′) is determined in the next few steps. Precisely, we expect that

u(t+1:T )(x(t+1)) ∝ u(t+1:t+k)(x(t+1)), (5.46)
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for some t + k ≪ T . In the next few steps i = 1, 2, . . . , k, we can expect that
the distribution of f(x(t+i)) is that of f(x′(t+i)) shifted by f(x(t+1)) − f(x′(t+1))
since k is small and L(t+i) is continuous (Figure 5.4). It implies the monotonicity
of u(t:T )(x(t+1)) with respect to f(x(t+1)) due to (5.46). By a similar argument,
we can expect that E[g[X(t+1:T )] | x(t+1)] is monotonically non-decreasing with
respect to f(x(t+1)). Therefore, we expect that Assumption 5.13 holds for a
broad class of learning rules.
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Figure 5.4: Schematic representation of the intuitive proof why the monotonicity
holds. We first intuitively prove that u(t+1:T )(x) is monotonically decreasing with
respect to f(x) when the update by the iterative optimization algorithm L(t)(· | x′)
that is local, continuous, and mixing. We consider two updated solutions x(t+1)

and x′(t+1) sampled from L(t)(· | x(t)). We suppose that f(x(t+1)) ≥ f(x′(t+1)).
We consider the trajectory {x(t+i)}i=2,3,... updated from x(t+1) and that {x′(t+i)}i
updated from x′(t+1). In the figure, the vertical axis represent the value of f(x)
and the horizontal axis does the distribution of f(x(t+i)) and f(x′(t+i)). The blue
bell-type distribution shows the distributions of f(x(t+i)) and the red distribution
does for f(x′(t+i)). Since x(t+i) and x′(t+i) (i = 2, 3, . . . ) are stochastically deter-
mined, we represent the parent-daughter relationship as a blue or a red trapezoid
between two successive times. When i is small (i ≪ k), we can expect that
the distribution of f(x(t+i)) is that of f(x′(t+i)) shifted by f(x(t+1)) − f(x′(t+1))
due to the continuity of L(t+i). When i is large (i ≥ k), we expect that the
two distributions of f(x(t+i)) and f(x′(t+i)) are almost identical since x(t+1) and
x′(t+1) are close and L(t) is mixing. Therefore, we can expect that u(t+1:T )(x) is
mainly determined by f(x(t+i)) for i = 1, 2, . . . , k. These two arguments imply
the monotonicity of the lineage fitness u(t+1:T )(x). A similar argument holds for
the monotonicity of E[g[X(t+1:T )] | x(t+1)].
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5.4.3 Retrospective Behavior of Stochastic Gradient Descent

We will see an application of the one-step approximation of the retrospective
process (5.37) and Theorem 5.14 to SGD. Since the one-step approximation is
easy to calculate, we can derive an explicit formula of L(t)+1,B in this example by
using a linear approximation of f .

To make the calculation easier, we assume that x(t) is interior of the constraint
X . In this setting, we can omit the projection operator in (3.62) and the update
becomes

x(t+1) = x(t) − η(t+1)(∇f(x(t)) + ξ(t+1)). (5.47)

We also assume that the noise ξ(t) follows a normal distribution.

Assumption 5.15 (Normality of the noise). For all t and x(t) ∈ X

ξ(t+1) ∼PF
N
(
0,Σ(x(t)))

)
, (5.48)

where Σ(x(t)) is some positive definite matrix.

These assumptions imply that x(t+1) ∼ N
(
µF

(t), (η(t+1))2Σ(x(t))
)

where

µF
(t) = x(t) − η(t+1)∇f(x(t)). (5.49)

In other words,

L(t)(x | x′) (5.50)

=
exp

(
−1

2(η
(t+1))−2(x− x′ + η(t+1)∇f(x′))⊤Σ−1(x′)(x− x′ + η(t+1)∇f(x′)

)
(2π)−d/2(η(t+1))d|Σ(x′)|1/2

.

(5.51)

For notational simplicity, we define ∆ = x − x′ + η(t+1)∇f(x′) and rewrite the
above equation as

L(t)(x | x′) =
exp

(
−1

2(η
(t+1))−2∆⊤Σ−1(x′)∆

)
(2π)−d/2(η(t+1))d|Σ(x′)|1/2

. (5.52)

The normality of ξ(t) and a linear approximation of f enable us to calculate
L(t)+1,B(x | x′). If x is sampled from L(t)(x | x′), then the distance ∥x − x′∥ =

O(η(t+1)). When η(t+1) is small, we can approximate f(x) as

f(x) = f(x′) +
〈
∇f(x′), x− x′

〉
+O((η(t+1))2) (5.53)

≈ f(x′) +
〈
∇f(x′), x− x′

〉
(5.54)

= f(x′) +
〈
∇f(x′),∆− η(t+1)∇f(x′)

〉
. (5.55)
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By this approximation and (5.52), we have 3

(2π)−d/2(η(t+1))d|Σ(x′)|1/2u′(t)+1(x
′)L(t)+1,B(x | x

′) (5.56)

= e−βg
(t+1)f(x)L(t)(x | x′) (5.57)

≈ exp
(
−βg(t+1)

(
f(x′) +

〈
∇f(x′),∆− η(t+1)∇f(x′)

〉))
(5.58)

× exp

(
−1

2
(η(t+1))−2∆⊤Σ−1(x′)∆

)
(5.59)

= exp
(
−βg(t+1)

(
f(x′)− η(t+1)∥∇f(x′)∥2

))
(5.60)

× exp

(
−βg(t+1)

〈
∇f(x′),∆

〉
− 1

2
(η(t+1))−2∆⊤Σ−1(x′)∆

)
(5.61)

= exp

(
−βg(t+1)

(
f(x′)− η(t+1)∥∇f(x′)∥2

)
+

(β(t+1)η(t+1))2

2
∥∇f(x)∥2Σ(x)

)
(5.62)

× exp

(
−1

2
(η(t+1))−2∆⊤

RΣ
−1(x′)∆R

)
, (5.63)

where

∆R := ∆ + βg
(t+1)(η(t+1))2Σ(x′)∇f(x′). (5.64)

By comparing (5.50) and (5.62), we know that x(t+1) approximately follows dis-
tribution N

(
µR

(t+1), (η(t+1))2Σ(x(t))
)

under PR, where

µR
(t+1) = x(t) − η(t+1)

(
I + βg

(t+1)η(t+1)Σ(x(t))
)
∇f(x(t)). (5.65)

We can also see that

u′
(t)
+1(x

(t)) ≈ exp
(
−βg(t+1)

(
f(x(t))− η(t+1)∥∇f(x(t))∥2

)
(5.66)

+
(βg

(t+1)η(t+1))2

2
∥∇f(x(t))∥2

Σ(x(t))

)
. (5.67)

We calculate EPR
[f(x(t+1)) | x(t)] for the later purpose. By a direct calculation,

EPR
[f(x(t+1)) | x(t)] (5.68)

= EN(µR
(t+1),(η(t+1))2Σ(x(t)))[f(x

(t+1))] (5.69)

≈ EN(µR
(t+1),(η(t+1))2Σ(x(t)))

[
f(x(t)) +

〈
∇f(x(t)), x(t+1) − x(t)

〉]
(5.70)

= f(x(t))− η(t+1)∥∇f(x(t))∥2 − βg(t+1)(η(t+1))2∥∇f(x(t))∥2
Σ(x(t))

. (5.71)

We can generalize the argument to the solution x(t+k) after k-steps when we
can assume kη(t+1) = O(η(t+1)). When ∇f(x) and Σ(x) is sufficiently smooth,
we have

∇f(x(t+i+1)) = ∇f(x(t)) +O(η(t+1)), (5.72)

Σ(x(t+i)) = Σ(x(t)) +O(η(t+1)), (5.73)

3Here, we left O((η(t+1))2) terms to keep the equations exact for linear f .
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for any i ∈ [k]. By using these linear approximations, we can calculate L(t+i)
+1,B and

other quantities as before. For L(t+i)
+1,B, we know that 4

x(t+i+1) ∼PR
N
(
µR

(t+i+1), (η(t+i+1))2Σ(x(t+i))
)
, (5.74)

where

µR
(t+i+1) (5.75)

≈ x(t+i) − η(t+i+1)
(
I + βg

(t+i+1)η(t+i+1)Σ(x(t+i))
)
∇f(x(t+i)) (5.76)

= x(t+i) − η(t+i+1)
(
I + βg

(t+i+1)η(t+i+1)Σ(x(t))
)
∇f(x(t)) +O((η(t+1))2)

(5.77)

≈ x(t+i) − η(t+i+1)
(
I + βg

(t+i+1)η(t+i+1)Σ(x(t))
)
∇f(x(t)). (5.78)

We also have

u′
(t+i)
+1 (x(t+i)) ≈ exp

(
−βg(t+i+1)

(
f(x(t+i))− η(t+i+1)∥∇f(x(t+i))∥2

)
(5.79)

+
(βg

(t+i+1)η(t+i+1))2

2
∥∇f(x(t+i))∥2

Σ(x(t+i))

)
(5.80)

= exp
(
−βg(t+i+1)

(
f(x(t+i))− η(t+i+1)∥∇f(x(t))∥2

)
(5.81)

+
(βg

(t+i+1)η(t+i+1))2

2
∥∇f(x(t))∥2

Σ(x(t))
+O((η(t+1))2)

)
(5.82)

≈ exp
(
−βg(t+i+1)

(
f(x(t+i))− η(t+i+1)∥∇f(x(t))∥2

)
(5.83)

+
(βg

(t+i+1)η(t+i+1))2

2
∥∇f(x(t))∥2

Σ(x(t))

)
. (5.84)

In addition,

EPR
[f(x(t+i+1)) | x(t+i)] (5.85)

≈ f(x(t+i))− η(t+i+1)∥∇f(x(t+i))∥2 − βg(t+i+1)(η(t+i+1))2∥∇f(x(t+i))∥2
Σ(x(t+i))

(5.86)

= f(x(t+i))− η(t+i+1)∥∇f(x(t))∥2 (5.87)

βg
(t+i+1)(η(t+i+1))2∥∇f(x(t))∥2

Σ(x(t))
+O((η(t+1))2) (5.88)

≈ f(x(t+i))− η(t+i+1)∥∇f(x(t))∥2 − βg(t+i+1)(η(t+i+1))2∥∇f(x(t))∥2
Σ(x(t))

.

(5.89)

We state the above results in the form of an assumption to make further
discussion clear.

Assumption 5.16 (Local Linearity of f and Σ(x)). Let k ∈ N such that we
can still regard kη(t+1) as O(η(t+1)). For any i ∈ [k], Equations (5.74), (5.79),
and (5.85) hold.

We will see the consequences of the local linearity of f . The first consequence
is the measure transformation of the noise ξ(t+1).

4We note that these equations are exact if f is linear and Σ(x) is constant.
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Lemma 5.17. Under the Assumption 5.16,

ξ(t+1) ∼PR
N
(
βg

(t+1)η(t+1)Σ(x(t))∇f(x(t)),Σ(x(t))
)
. (5.90)

When Σ(x(t)) = I, then the above lemma implies that ξ(t) is biased toward
the negative gradient under PR. The bias accelerates SGD under PR compared
to PF. Indeed, we can see the acceleration from the third term of (5.85).

The other consequence is the local monotonicity (Assumption 5.13) and Theo-
rem 5.14. To show the local monotonicity of SGD, we need an additional assump-
tion about the mixing property. Since the solution x(t) is perturbed by ξ(t+1), a
similar argument to (5.46) implies that we can expect

u(t+1:T )(x(t+1)) ∝ u(t+1:t+k)(x(t+1)), (5.91)

EPR
[g[X(t+1:T )] | x(t+1)] ∝ EPR

[g[X(t+1:t+k)] | x(t+1)], (5.92)

for some t+ k ≪ T and any x(t+1) sampled from L(t)(x(t+1) | x(t)). We state this
property in the form of the following assumption to make the further discussion
clear.

Assumption 5.18 (Local Mixing). There exists k = O(1) such that (5.91)
and (5.92) hold for any x(t+1) sampled from L(t)(x(t+1) | x(t)).

Lemma 5.19. Under Assumption 5.16 and Assumption 5.18, Assumption 5.13
holds.

In particular, Theorem 5.14 is applicable to SGD. One-step approximation
L(t)+1,B calculated in this section is therefore a useful tool to bound EPB

[〈
βw

(T ), f [X(T )]
〉]

.

5.4.4 Theoretical Guarantee of Branching Algorithm with Stochastic
Gradient Descent

In this section, we will see the application of the calculated distribution of the
noise ξ(t) under PR (Lemma 5.17).

We first show that the BA accelerates SGD with Nesterov’s acceleration by
effectively reducing the variance of the noise ξ(t). Suppose the assumptions of
Assumption 3.10. Also, we assume that Σ(x) = σ2I/d for simplicity. We set the
hyperparameters including η(t) of Nesterov’s acceleration as in Theorem 3.10. Let
us take

β(t) =
d(A− 1)

σ2η(t)
, (5.93)

for some constant A > 1. Then, Lemma 5.17 implies that

g(t) ∼Pf
R
N
(
A∇f(x(t)), σ2I/d

)
. (5.94)

We add the superscript of PR to clarify the dependency on the objective function
The distribution is the same as that of g(t) under PF when the objective function
is fA(x) = Af(x):

g(t) ∼PfA
F

N
(
A∇f(x(t)), σ2I/d

)
. (5.95)

Intuitively, optimizing f(x) by the BA with SGD is equivalent to optimizing fA(x)
by conventional SGD. In particular, by applying Theorem 3.10 for fA(x), we can
prove the following acceleration.
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Theorem 5.20.

EPf
R
[f(x(T ))]− f(x∗) ≤ C

(
σ2

A2Tα
+
D2(α+ γ)

T 2

)
. (5.96)

By taking A sufficiently large, we can neglect the leading O(1/T ) term and
achieve O(1/T 2)-convergence. Although the assumption Σ(x) = σ2I/d is restric-
tive, we can assume it by adding sufficiently large isotropic noise artificially on
g(t).

We next prove that the BA with SGD has an O(1/T )-convergence rate be-
yond strongly convex functions. Before stating a rigorous theory, we explain the
intuition why the BA can achieve an O(1/T )-convergence rate. For simplicity, we
assume that Σ(x) = I in this paragraph. In the case of conventional SGD, the
key property to prove an O(1/T )-convergence rate is the following [124, 88, 56]:

EPF

[〈
g(t+1), x(t) − x∗

〉]
≥ αEPF

[∥x(t) − x∗∥2], (5.97)

which follows from the strong convexity since EPF
[g(t+1) | x(t)] = ∇f(x(t)). The

corresponding condition for the BA is

EPR

[〈
g(t+1), x(t) − x∗

〉]
≥ αEPR

[∥x(t) − x∗∥2]. (5.98)

If this condition holds, we can prove O(1/T )-convergence under PR, i.e., of the
BA with SGD by following the previous proofs [124, 88, 56]. However, since we
consider not strongly convex functions, we need to adopt a different approach to
prove (5.98). By Lemma 5.17, we have

EPR

[〈
g(t+1), x(t) − x∗

〉]
=
(
1 + βg

(t+1)η(t+1)
)
EPR

[〈
∇f(x(t)), x(t) − x∗

〉]
.

(5.99)

Therefore, it suffices to prove(
1 + βg

(t+1)η(t+1)
)
EPF

[〈
∇f(x(t)), x(t) − x∗

〉]
≥ αEPR

[∥x(t) − x∗∥2]. (5.100)

This condition holds even for not strongly convex functions by taking sufficiently
large βg(t+1). Indeed, if we know that

EPR

[〈
∇f(x(t)), x(t) − x∗

〉]
≈ h(t)EPF

[∥x(t) − x∗∥2], (5.101)

for some positive function h, then taking

β(t+1) =
α

η(t+1)h(t)
, (5.102)

seems to be sufficient to prove (5.98).
To formalize the above idea, we introduce the following concepts about the

objective functions. We first introduce a weaker concept of the α-strong con-
vexity by generalizing (3.54). Since ∇f(x∗) = 0 from the first-order stationary
condition, (3.54) is simplified as

⟨∇f(x), x− x∗⟩ ≥ α∥x− x∗∥2, (5.103)

for all x ∈ X . By using θ1 ≥ 0, we have a weaker concept: For all x ∈ X ,

⟨∇f(x), x− x∗⟩ ≥ α∥x− x∗∥2(1+θ1). (5.104)
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To incorporate the noise of the SGD, we consider the following modification: For
all x ∈ X , 〈

Σ̃(x)∇f(x), x− x∗
〉
≥ α∥x− x∗∥2(1+θ1), (5.105)

where Σ̃(x) is a positive semi-definite matrix. We call the above condition (α, θ1, Σ̃)-
strong convexity. We next introduce a modified version of the γ-smoothness by
generalizing (3.55). Fix 0 < θ2 ≤ 1. A function is said to be (γ, θ2, Σ̃)-smooth if

∥Σ̃(x)∇f(x)∥ ≤ γ∥x− x∗∥θ2 , (5.106)

for all x ∈ X .
By using Lemma 5.17, we can prove that the convergence rate of (α, θ1,Σ)-

strongly convex and (γ, θ2,Σ)-smooth function f is O(1/T ). To prove the con-
vergence rate, we introduce the following usual assumptions [124].

Assumption 5.21. The second moment EPF
[∥g(t)∥2] ≤ G2 of g(t) is bounded for

all t.

We also assume the following to avoid the divergence of EPR
[∥g(t)∥2] (See the

proof of Lemma 5.23).

Assumption 5.22.

0 ≤ θ2 − 2θ1 < 1. (5.107)

Let us take η(t) and βg
(t). Let κ > 0 be an arbitrary constant. By follow-

ing [124, 56], we use

η(t) =
κ

t+ 1
. (5.108)

We next take β(t) as follows:

β(t) =
(t+ 1)θ1

ακη(t)(GBκ)2θ1
, (5.109)

where GB is a constant defined later.
Since the usual proof ofO(1/T )-convergence requires the bound for EPF

[∥g(t)∥2],
we need to bound EPR

[∥g(t)∥2]. To bound EPR
[∥g(t)∥2], we introduce a constant

GB. Let GB be any constant satisfying the following inequalities.

G2
B ≥ 4G2 + 4

3θ2γ2

α2κ2
(GBκ)

2θ2−4θ1 , (5.110)

EPR
[∥x(0) − x∗∥2] ≤ 6G2

Bκ
2. (5.111)

Sufficiently large GB satisfies the above inequality because the order of GB in
the left hand side is greater than that in the right hand side due to the fact
θ2 − 2θ1 < 1. By this preparation, we have the following bound:

Lemma 5.23. For t = 1, 2, . . . ,,

EPR
[∥g(t)∥2] ≤ G2

B. (5.112)

Under this setting, we can prove the O(1/T )-convergence rate.
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Theorem 5.24. For t = 0, 1, . . . ,

EPR

[
∥x(t) − x∗∥2

]
≤

3G2
Bκ

2

t+ 2
, (5.113)

for t ≥ 1.

Theorem 5.25. Let

s(t) :=
2t

(T + 1)(T + 2)
, (5.114)

x̄(T ) :=

T∑
t=0

s(t+1)x(t). (5.115)

Then,

EPR
[f(x̄(T ))− f(x∗)] ≤

7G2
Bκ

T + 1
. (5.116)

5.4.5 Examples

We will see an example of a not strongly convex function that achieves O(1/T )-
convergence by Theorem 5.25. Let us consider f(x) = ∥x−x∗∥pp for some 2 < p ≤ 3
and some constant vector x∗ ∈ X . We assume that the covariance of the noise ξ(t)

is Σ = I. By the equivalence of the norm [49], we know that there exist constants
C2,p and Cp−1,2 such that,

C2,p∥x− x∗∥2 ≤ ∥x− x∗∥p, (5.117)
Cp−1,2∥x− x∗∥p−1 ≤ ∥x− x∗∥2, (5.118)

for all x ∈ X . Since

⟨x− x∗,∇f(x)⟩ = p∥x− x∗∥pp ≥ pC
p
2,p∥x− x

∗∥2(1+
p−2
2 )

2 , (5.119)

f is (pCp
2,p,

p−2
2 , I)-strongly convex. Also, we have

∥∇f(x)∥ = p∥x− x∗∥p−1
p−1 ≤ pC

1−p
p−1,2∥x− x

∗∥p−1
2 . (5.120)

Therefore, by taking sufficiently large R like the diameter of X , we have

∥∇f(x)∥ ≤ R∥x− x∗∥, (5.121)

and f is (R, 1, I)-smooth. Therefore, we can apply Theorem 5.25 and we have an
O(1/T )-convergence.

5.5 Discussion

In this chapter, we proposed two methods to theoretically analyze the perfor-
mance of the evolutionary algorithms. To focus on the effect of populational
evolution separately from the recombination, we introduced the BA that omits
the recombination step. The BA with L can incorporate the iterative optimization
algorithm L as a generalization of the mutation step. We then extended FF-thm
and proved that the BA always performs better than the parallel execution of
L. We next introduced the retrospective process and its one-step approximation
as a convenient way to evaluate the performance of the BA. To demonstrate the
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power of the retrospective process, we explicitly calculated the one-step approxi-
mation for SGD and showed that the BA accelerated the SGD. In particular, we
showed O(1/T )-convergence for not strongly-convex functions, which improves
the existing O(1/

√
T )-convergence. The analysis showed that both FF-thm and

the retrospective process are useful and have potential for further analysis of the
evolutionary algorithms.

Although the BA uses an iterative optimization algorithm L as mutation, our
work has theoretical implications for the conventional evolutionary algorithm.
Indeed, the BA coincides with the conventional evolutionary algorithm without
recombination if L is a random update. In this setting, FF-thm implies that
the conventional evolutionary algorithm always performs better than the parallel
execution of conventional mutation. This acceleration can be regarded as the
effect of populational evolution in conventional evolutionary algorithms. Since
the acceleration (Corollary 5.7) is larger when the variance is larger, the evolu-
tionary algorithm might perform better when the mutation is more exploratory.
Also, the quantification of the acceleration by FF-thm might be useful to tune
hyperparameters like βg

(T ).
We have room for theoretical extensions and further analysis of the BA. The

first direction is an application of our methods to other examples. Although we
focused on SGD in the examples, both FF-thm and the retrospective process
are applicable to all iterative optimization algorithm L. Since we demonstrated
how to use FF-thm and the retrospective process in examples, further analysis
by a similar approach might reveal accelerations of the BA for other iterative
optimization algorithms L.

Another direction is to include the environmental state y (See Chapter 4). In
Chapter 4, we considered the situation where the replication depends on a random
variable y as ek(x,y), while the BA uses the deterministic factor e−βg

(t)f(x) in the
sampling step. The inclusion of the environmental state y might be useful when
the estimation of f(x) and the gradient ∇f(x) at each computational nodes corre-
late. For this generalization, the techniques developed for a multitype branching
process in random environments in Chapter 4 might be useful. Another promising
approach is the retrospective process extended to population dynamics in random
environments [8, 20, 48, 13, 5, 108]. Other techniques used in population dynam-
ics in random environments might also be useful. The examples are the product
of random matrices [34, 108] and linear random dynamical systems [42, 52, 100].

Other direction is the non-synchronization of the replication of the solutions.
In BA, the replication of the solutions at the same generation synchronizes.
However, this synchronization requires communication cost among computational
nodes. By employing continuous-time age-structured model (3.27), we may ex-
tend our theory to the case where the replication does not synchronize.

The last direction is the consideration of the finiteness of the population. We
assumed that the size of the population is infinite in this thesis. In practice, the
size of the population is finite and the problem called degeneration may occur:
The daughters of a solution x(t) with small f(x(t)) may dominate for most of the
population at the next step and the variety of solutions is lost. The variety of the
solution is important for the acceleration by populational evolution as FF-thm in-
dicates. To avoid degeneration, we need to use a moderate βg(t) with respect to the
size of the population. Since the number of offspring is e−βg

(t)f(x), we can roughly
estimate that βg(t) = O(logNsize) is necessary to completely avoid the degenera-
tion. However, in practice, we need not to avoid the degeneration completely. To
choose the hyperparameter βg(t) that maximizes the performance of the BA, we
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should quantify how much the degeneration impairs the performance. For such
analysis, promising mathematical tools are stochastic population dynamics with
finite populations like branching processes [40] and coalescent processes [112].

By using the rough estimation βg(t) = O(logNsize), we can compare the perfor-
mance of the BA with other parallel algorithms than the PA. For example, let us
compare the noise reduction in the Nesterov’s acceleration by a large mini-batch
and by the BA. By using Nsize-computational nodes, we can use a Nsize-times
larger mini-batch to estimate the gradient than the BA. In this situation, the
variance of the noise ξ(t) is reduced by 1/Nsize. On the other hand, the rough
estimation implies that the BA can reduce the variance by 1/(logNsize)

2. Al-
though the BA is less efficient, it might be superior to the large mini-batch when
the communication cost between computational nodes to process the large mini-
batch is large. Another example is the comparison of the PA with averaging over
paths on the BA when L(t) is SGD (Section 2.1.2). The PA with averaging over
paths has an O(1/TNsize)-convergence rate when Nsize <

√
T for strongly con-

vex functions. On the other hand, the BA with Nesterov’s acceleration has an
O(1/T (logNsize)

2)-convergence rate by the rough estimation. Therefore, the PA
is better than the BA when Nsize ≤

√
T , while the converse holds when Nsize

is large. In this sense, the BA might become more important when we invent a
device that enables huge Nsize. Although the above discussion does not show that
the BA is superior to other parallel algorithms, it demonstrates that our approach
is powerful for theoretically analyzing the evolutionary algorithms.

5.6 proofs

5.6.1 Proofs in Section 5.2

Derivation of Equation (5.5) and Equation (5.6). We use the same notation as
Algorithm 5.2. Equation (5.6) trivially follows from the sampling of initial solu-
tions of the BA.

We next prove (5.5). Let us consider a population P that consists of the
solutions {x′(t+1)

i }i∈Nsize updated by L. The empirical distribution of the solution
x in P is

j′
(t+1)

(x) = 1/Nsize ·
∑

i∈[Nsize]

δ
x,x′(t+i)

i

. (5.122)

By the learning step of the BA, we know that E[j′(t+1)(x)] = L(t)(x | x′)P(t)
B (x′).

By the sampling step of the BA, we have

E[j(t+1)(x) | j′(t+1)
] =

e−βg
(t+1)f(x)j′(t+1)(x)∑

x′′∈X e
−βg

(t+1)f(x′′)j′(t+1)(x′′)
. (5.123)

Since the learning and the sampling steps are independent and j′(t+1)(x) converges
to its expectation as Nsize →∞, we have

P(t+1)
B (x) = E[j(t+1)(x)] =

e−βg
(t+1)f(x)L(t)(x | x′)P(t)

B (x′)∑
x′∈X e

−βg
(t+1)f(x′′)L(t)(x′′ | x′)P(t)

B (x′)
. (5.124)

Proof of Proposition 5.1. We prove the proposition by induction on T . The base
case T = 0 holds by definition (5.6). Let us consider the step case T > 0.
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We fix a path X(T ) = {x(0), x(1), . . . , x(T )} and let X(T−1) be its truncation
{x(0), x(1), . . . , x(T−1)}. By the Markov property of the BA and (5.5), we have

PB[X(T )] =
e−βg

(T )f(x(T ))L(T−1)(x(T ) | x(T−1))PB[X(T−1)]∑
x∈X ,X′(T−1)∈XT e−βg

(T )f(x)L(T−1)(x | x′(T−1))PB[X′(T−1)]
, (5.125)

where X′(T−1) = {x′(t)}t. By applying the induction hypothesis on PB[X(T−1)]
and rewriting the equation, we have (5.7) for T .

5.6.2 Proofs in Section 5.3

Proof of Proposition 5.2. We first prove (5.11). By the Taylor’s theorem,

1 + x ≤ ex ≤ 1 + x+
x2ex

2
. (5.126)

Therefore,

− 1

βc
log

 1

Nsize

∑
i∈[Nsize]

(
1− βczi +

β2c z
2
i e

−βczi

2

) (5.127)

≤ sminβc(z0, z1, . . . , zNsize−1) (5.128)

≤ − 1

βc
log

 1

Nsize

∑
i∈[Nsize]

(1− βczi)

 . (5.129)

(5.130)

Equivalently, we have

− 1

βc
log

1− 1

Nsize

∑
i∈[Nsize]

(
βczi −

β2c z
2
i e

−βczi

2

) (5.131)

≤ sminβc(z0, z1, . . . , zNsize−1) (5.132)

≤ − 1

βc
log

1− 1

Nsize

∑
i∈[Nsize]

βczi

 . (5.133)

(5.134)

By using the Taylor’s theorem again, we have

x ≤ − log(1− x) ≤ x+
x2

2(1− x)2
, (5.135)

for 0 ≤ x ≤ 1. Since we consider the limit βc → 0+, we can assume that
0 ≤ 1

Nsize

∑
i∈[Nsize]

(
βczi −

β2
c z

2
i e

−βczi

2

)
≤ 1 and 0 ≤ 1

Nsize

∑
i∈[Nsize]

βczi ≤ 1.
Therefore, we have

1

βc

 1

Nsize

∑
i∈[Nsize]

(
βczi −

β2c z
2
i e

−βczi

2

) (5.136)

≤ sminβc(z0, z1, . . . , zNsize−1) (5.137)

≤ 1

βc

 1

Nsize

∑
i∈[Nsize]

βczi +

(
1

Nsize

∑
i∈[Nsize]

βczi

)2
2(1− 1

Nsize

∑
i∈[Nsize]

βczi)2

 . (5.138)
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By rewriting it, we have

1

Nsize

∑
i∈[Nsize]

zi +O(βc) (5.139)

≤ sminβc(z0, z1, . . . , zNsize−1) (5.140)

≤ 1

Nsize

∑
i∈[Nsize]

zi +O(βc). (5.141)

Since both hand sides converges to 1
Nsize

∑
i∈[Nsize]

zi as βc → 0+, we have (5.11)
by the squeeze theorem.

We next prove (5.12). Since

e−βc mini∈[Nsize]
zi ≤

∑
i∈[Nsize]

e−βczi ≤ Nsizee
−βc mini∈[Nsize]

zi , (5.142)

we have

min
i∈[Nsize]

zi −
1

βc
logNsize ≤ sminβc(z0, z1, . . . , zNsize−1) ≤ min

i∈[Nsize]
zi. (5.143)

Since the left hand side converges to the right hand side as βc →∞, we have (5.12)
by the squeeze theorem.

Proof of Proposition 5.3. We can prove (5.14) by a similar argument to Proposi-
tion 5.2. Indeed, by replacing 1

Nsize

∑
i∈[Nsize]

with Ep, we can prove (5.14).
We next prove (5.15). Let m = inf{z | FZ(z) > 0}. We can easily prove that

lim
βc→∞

[
− 1

βc
logEp

[
e−βcZ

]]
≥ m, (5.144)

since E[e−βcZ ] ≤ e−βcm. We show the converse in the rest of the proof. Let us
take sufficiently small ϵ > 0. By the definition of inf Z, there exist δ(ϵ) > 0 such
that FZ(δ(ϵ)) = ϵ and δ(ϵ)→ 0 as ϵ→ 0+. Since P[Z ≤ m+ δ(ϵ)] = ϵ, we have

Ep

[
e−βcZ

]
= P[Z ≤ m+ δ(ϵ)]Ep

[
e−βcZ | Z ≤ m+ δ(ϵ)

]
(5.145)

+ P[Z ≥ m+ δ(ϵ)]Ep

[
e−βcZ | Z ≥ m+ δ(ϵ)

]
(5.146)

≥ P[Z ≤ m+ δ(ϵ)]Ep

[
e−βcZ | Z ≤ m+ δ(ϵ)

]
(5.147)

≥ P[Z ≤ m+ δ(ϵ)]e−βc(m+2δ(ϵ)) (5.148)

= ϵe−βc(m+2δ(ϵ)). (5.149)

By taking the logarithm and dividing by −βc, we have

− 1

βc
logEp

[
e−βcZ

]
≤ − 1

βc
(−βc(m+ δ(ϵ)) + log(ϵ)) (5.150)

≤ m+ δ(ϵ)− 1

βc
log ϵ. (5.151)

Therefore, we have

lim
βc→∞

[
− 1

βc
logEp

[
e−βcZ

]]
≤ m+ δ(ϵ). (5.152)
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Since the above inequality holds for all δ(ϵ) > 0 by taking sufficiently small ϵ, we
have

lim
βc→∞

[
− 1

βc
logEp

[
e−βcZ

]]
≤ m. (5.153)

It completes the proof.

Proof of Proposition 5.6. Since Z ∼ N
(
µ, σ2

)
, the random variable e−βcZ follows

a log-normal distribution [14] with mean parameter −βcµ and variance parameter
(βcσ)

2. By the formula of the mean of log-normal distributions, E[e−βcZ ] =
e−βcµ+(βcσ)2/2. Therefore,

sminβc [Z] = µ− βcσ
2

2
. (5.154)

Proof of Theorem 5.4. By definition,

BAf

L(t) = sminβc

PB

[〈
β(T )
w , f [X(T )]

〉]
= − 1

βc
logEPB

[〈
βcβ

(T )
w , f [X(T )]

〉]
(5.155)

We evaluate the expectation inside the logarithm. By using (5.7), we have

EPB

[〈
βcβ

(T )
w , f [X(T )]

〉]
(5.156)

=
∑

X(T )∈XT+1

e
−
⟨
βcβ

(T )
w ,f [X(T )]

⟩
PB[X(T )] (5.157)

=
∑

X(T )∈XT+1

e
−
⟨
βcβ

(T )
w ,f [X(T )]

⟩
e−⟨βg

(T ),f [X(T )]⟩PF[X(T )]∑
X′(T )∈XT+1 e

−⟨βg
(T ),f [X′(T )]⟩PF[X′(T )]

(5.158)

=

∑
X(T )∈XT+1 e

−⟨βg
(T )+βcβw

(T ),f [X(T )]⟩PF[X(T )]∑
X′(T )∈XT+1 e

−⟨βg
(T ),f [X′(T )]⟩PF[X′(T )]

(5.159)

=
EPF

[
e−⟨βg

(T )+βcβw
(T ),f [X(T )]⟩

]
EPF

[
e−⟨βg

(T ),f [X(T )]⟩
] . (5.160)

By using this equality, we have

βc

(
PAf

L(t) − BAf

L(t)

)
(5.161)

= − logEPF

[
e
−
⟨
βcβ

(T )
w ,f [X(T )]

⟩]
+ log

EPF

[
e−⟨βg

(T )+βcβw
(T ),f [X(T )]⟩

]
EPF

[
e−⟨βg

(T ),f [X(T )]⟩
] (5.162)

= log
EPF

[
e−⟨βg

(T )+βcβw
(T ),f [X(T )]⟩

]
EPF

[
e−⟨βg

(T ),f [X(T )]⟩
]
EPF

[
e
−
⟨
βcβ

(T )
w ,f [X(T )]

⟩] (5.163)

= log-CovPF

[
−
〈
βg

(T ), f [X(T )]
〉
,−
〈
βcβw

(T ), f [X(T )]
〉]
. (5.164)

This equality implies the statement of the theorem.
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Proof of Corollary 5.5. The equality directly follows from Theorem 5.4. The
inequality follows from the property of the log-covariance (3.7). Since both
e−⟨βcβw

(T ),f [X(T )]⟩ and e−⟨βgβw
(T ),f [X(T )]⟩ is monotonically non-decreasing with re-

spect to e−⟨βw
(T ),f [X(T )]⟩, their covariance is non-negative [95]:

CovPF

[
e−⟨βgβw

(T ),f [X(T )]⟩,−⟨βcβw
(T ),f [X(T )]⟩

]
≥ 0. (5.165)

This inequality and (3.7) implies that the inequality in the statement of this
corollary.

Proof of Corollary 5.7. We use a similar argument as Proposition 5.6. Since
e−⟨βgβw

(T ),f [X(T )]⟩ follows a log-normal distribution with mean parameter βgµ and
variance parameter (βgσ)

2, we have

E
[
e−⟨βgβw

(T ),f [X(T )⟩]
]
= exp

(
−βgµ+

β2gσ
2

2

)
. (5.166)

By a similar argument, we have

E
[
e−⟨βcβg

(T ),f [X(T )]⟩
]
= exp

(
−βcµ+

β2cσ
2

2

)
, (5.167)

and

E
[
e−⟨βgβw

(T ),f [X(T )]⟩e−⟨βcβw
(T ),f [X(T )]⟩

]
= exp

(
−(βg + βc)µ+

(βg + βc)
2σ2

2

)
.

(5.168)

Therefore, by the definition of the log-covariance, we have

log-CovPF

[
−
〈
βgβw

(T ), f [X(T )]
〉
,−
〈
βcβw

(T ), f [X(T )]
〉]

= βgβcσ
2. (5.169)

Proof of Lemma 5.8. We explicitly calculate x(t). By definition, we know that

x(1) = x(0) − η(1)
(
∇f(x(0)) + ξ(1)

)
= (1− η)x(0) − ηξ(1). (5.170)

For x(2), we have

x(2) = (1− η(2))x(1) + η(2)ξ(2) (5.171)

= (1− η)2x(0) − η(1− η)ξ(1) − ηξ(2). (5.172)

By continuing this, we have

x(t) = (1− η)tx(0) − η
t∑

t′=1

(1− η)t−t′ξ(t
′). (5.173)

From this equation, we have

2f(x(t)) = (1− η)2tf(x(0)) + (1− η)tη
t∑

s=1

(1− η)t−s
〈
x(0), ξ(u)

〉
(5.174)

+ η2
t∑

s=1

t∑
u=1

(1− η)2t−s−u
〈
ξ(s), ξ(u)

〉
. (5.175)
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In particular,

2E[f(x(t))] = (1− η)2tf(x(0)) + a2η2
t∑

t′=1

(1− η)2(t−t′), (5.176)

since the expectation of the first order term of ξ(u) (i.e.
〈
ξ(u), x(0)

〉
and

〈
ξ(s), ξ(u)

〉
for s ̸= u) is zero. By a similar calculation, we have

2E[f(x(t)) | F (t−k)] = (1− η)2tf(x(0)) + a2η2
t∑

t′=t−k+1

(1− η)2(t−t′) (5.177)

+ η2
t−k∑
t′=1

(1− η)2(t−t′)∥ξ(t′)∥2. (5.178)

Since we assumed that ∥ξ(t)∥2 is bounded, we have the statement of the lemma
from these two equations.

Proof of Lemma 5.10. Let us calculate Cov
[
f(x(t)), f(x(t

′))
]
. We note that

Cov
[
f(x(t)), f(x(t

′))
]
= E[Z(t)Z(t′)]. (5.179)

By (5.173) and (5.176),

Z(t) = η2
t∑

s=1

(1− η)2(t−s)
(
∥ξ(s)∥2 − σ2

)
+ η2

∑
s̸=u

(1− η)2t−s−u
〈
ξ(s), ξ(u)

〉
.

(5.180)

Since E[ξ(t)] = 0, only even terms in Z(t)Z(t′) are non-zeros after taking the
expectation. Here, even terms are the terms of the following form:

k∏
i=1

∥ξ(ji)∥2ni , (5.181)

for some indices ji and ni ∈ N.

Therefore, we know that E[Z(t)Z(t′)] consists of the expectation of the following
terms up to positive coefficient; (1) For s = 1, 2, . . . , t and u = 1, 2, . . . , t′(

∥ξ(s)∥2 − a2
)(
∥ξ(u)∥2 − a2

)
, (5.182)

and (2) for s = 1, 2, . . . , t and u = 1, 2, . . . , t′,〈
ξ(s), ξ(t)

〉2
. (5.183)

All of these terms have non-negative expected values. Therefore, we know that

Cov
[
f(x(t)), f(x(t

′))
]
≥ 0. (5.184)

In particular, we have a bound

σ2 ≥ 1

T + 1

t∑
s=1

V[f(x(t))]. (5.185)
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Let us bound V[f(x(t))] = E
[(
Z(t)

)2]. As a special case of the discussion

in the previous paragraph, E
[(
Z(t)

)2] consists of the terms with non-negative
expected values. Therefore, we can construct a lower bound by extracting a
subset of the terms. In particular, we have

E
[(
Z(t)

)2]
≥ η4E

[(
∥ξ(t)∥2 − σ2

)2]
. (5.186)

By the property of normal distribution [83],

E
[(
Z(t)

)2]
≥ 2η4σ2. (5.187)

By (5.185) and (5.187), we have the statement of the lemma.

5.6.3 Proofs in Section 5.4

Proof of Theorem 5.11. Let X(t) = {x(0), x(1), . . . , x(T )} be the random variable
on X T+1 sampled from PB. We use the following notation in this proof for sim-
plicity:

X(T ) ↾x(t)=x′ := {x(0), x(1), . . . , x(t−1), x′, x(t+1), x(t+2), . . . , x(T )}, (5.188)

X(T ) ↾x(t)=x′,x(t+1)=x:= {x
(0), x(1), . . . , x(t−1), x′, x, x(t+2), x(t+3), . . . , x(T )}.

(5.189)

For a function g : X T+1 → R, we in addition define∑
X(T )\x(t)

g[X(t) ↾x(t)=x′ ] :=
∑

x(0),x(1),...,x(t−1),x(t+1),x(t+2),...,x(T )∈X

g[X(T ) ↾x(t)=x′ ],

(5.190)∑
X(T )\x(t),x(t+1)

g[X(t) ↾x(t)=x′,x(t+1)=x] (5.191)

:=
∑

x(0),x(1),...,x(t−1),x(t+2),x(t+3),...,x(T )∈X

g[X(T ) ↾x(t)=x′,x(t+1)=x]. (5.192)

By the pathwise formulation (5.7), the probability that x(t) = x is∑
X(T )\x(t)

PB[X(T ) ↾x(t)=x′ ] (5.193)

=
∑

X(T )\x(t)

e−⟨βg
(T ),f [X(T )↾

x(t)=x′ ]⟩PF[X(T ) ↾x(t)=x′ ]∑
X′(T )∈XT+1 e

−⟨βg
(T ),f [X′(T )]⟩PF[X′(T )]

. (5.194)
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By using the convention L(−1)(x(0) | x(−1)) = ν(x(0)), the numerator is factorized
as ∑
X(T )\x(t)

e−⟨βg
(T ),f [X(T )↾

x(t)=x′ ]⟩PF[X(T ) ↾x(t)=x′ ] (5.195)

=
∑

X(T )\x(t)

(
T∏

t′=t+1

e−βg
(t′+1)f(x(t′+1))L(t′)(x(t′+1) | x(t′))

)
(5.196)

× e−βg
(t+1)f(x(t+1))L(t)(x(t+1) | x′) (5.197)

× e−βg
(t)f(x′)L(t−1)(x′ | x(t−1))

(
t−2∏

t′=−1

e−βg
(t′+1)f(x(t′+1))L(t′)(x(t′+1) | x(t′))

)
(5.198)

=

 ∑
x(t+1),x(t+2),...x(T )

(
T∏

t′=t+1

e−βg
(t′+1)f(x(t′+1))L(t′)(x(t′+1) | x(t′))

)
(5.199)

× e−βg
(t+1)f(x(t+1))L(t)(x(t+1) | x′)

 (5.200)

×

 ∑
x(0),x(1),...,x(t−1)

e−βg
(t)f(x′)L(t−1)(x′ | x(t−1)) (5.201)

(
t−2∏

t′=−1

e−βg
(t′+1)f(x(t′+1))L(t′)(x(t′+1) | x(t′))

) (5.202)

= Au(t:T )(x′)P(t)
B (x′), (5.203)

where we used the pathwise formulation (5.7) until T = t in the last transforma-
tion and

A :=
∑

X(t)∈X t+1

e−⟨βg
(t),X(t)⟩, (5.204)

is the normalization factor of the pathwise formulation. Therefore,∑
X(T )\x(t)

PB[X(T ) ↾x(t)=x′ ] =
Au(t:T )(x′)P(t)

B (x′)∑
X′(T )∈XT+1 e

−⟨βg
(T ),f [X′(T )]⟩PF[X′(T )]

. (5.205)

By a similar calculation, we have∑
X(T )\x(t),x(t+1)

PB[X(T ) ↾x(t)=x′,x(t+1)= x] (5.206)

=
Au(t+1:T )(x)e−βg

(t+1)f(x)L(t)(x | x′)P(t)
B (x′)∑

X′(T )∈XT+1 e
−⟨βg

(T ),f [X′(T )]⟩PF[X′(T )]
. (5.207)

By using these two equalities, we have

L(t)T,B(x | x
′) =

∑
X(T )\x(t),x(t+1) PB[X(T ) ↾x(t)=x′,x(t+1)= x]∑

X(T )\x(t) PB[X(T ) ↾x(t)=x′ ]
(5.208)

=
u(t+1:T )(x)e−βg

(t+1)f(x)L(t)(x | x′)
u(t:T )(x′)

. (5.209)
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To prove Theorem 5.14, we need the following definitions and lemmas. For
t ≤ t′, let

u′+1[X(t)] :=
t∏

s=0

u′
(s)
+1(x

(s)), (5.210)

u′+1[X(t:t′)] :=

t′∏
s=t

u′
(s)
+1(x

(s)). (5.211)

The convention L(−1)(x(0) | x(−1)) := ν(x(0)) implies that u(−1:T )(x) is the nor-
malization factor of (5.7). To emphasize the fact that u(−1:T )(x) is independent
of x, we denote it by u(−1:T ). The convention also implies that u′(−1)

+1 (x) =∑
x′∈X e

−βg
(0)f(x′)ν(x′), which is independent of x.

Lemma 5.26. For any path function g : X T+1 → R,

EPB
[g[X(T )]] =

EPR
[u′+1[X(−1:T−1)]g[X(T )]]

EPR
[u′+1[X(−1:T−1)]]

. (5.212)

Proof. The transition matrices of the retrospective process (5.35) and its one-step
approximation (5.39) satisfies

u(t:T )(x′)

u(t+1:T )(x)
L(t)T,B(x | x

′) = u′
(t)
+1(x

′)L(t)+1,B(x | x
′). (5.213)

Therefore, by comparing (5.36) to (5.40), we have(
T−1∏
t′=−1

u(t
′:T )(x(t

′))

u(t′+1:T )(x(t′+1))

)
PB[X(T )] =

(
T−1∏
t′=−1

u′
(t′)
+1 (x

(t))

)
PR[X(T )]. (5.214)

Equivalently,

u(−1:T )PB[X(T )] = u′+1[X(−1:T−1)]PR[X(T )]. (5.215)

By taking the summation
∑

X∈XT+1 of the both hand side of (5.215), we have

u(−1:T ) = EPR
[u′+1[X(−1:T−1)]]. (5.216)

Also, multiplying g[X(T )] and taking the summation
∑

X∈XT+1 of the both hand
side of (5.215), we have

u(−1:T )EPB
[g[X(T )]] = EPR

[u′+1[X(−1:T−1)]g[X(T )]]. (5.217)

Using these two equations, we have the statement of the lemma.

Lemma 5.27.

u(t:T )(x) = EPR
[u′+1[X(t:T−1)] | x(t) = x]. (5.218)

Proof. We can prove this lemma by a similar argument to the derivation of (5.216).
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Proof of Theorem 5.14. By Lemma 5.26, we have

EPB
[g[X(T )]] =

EPR
[u′+1[X(−1:T−1)]g[X(T )]]

EPR
[u′+1[X(−1:T−1)]]

. (5.219)

Therefore, it suffices to prove

EPR
[u′+1[X(−1:T−1)]g[X(T )]] (5.220)

≤ EPR
[u′+1[X(−1:T−1)]]EPR

[g[X(T )]]. (5.221)

In the following, we prove the following by induction on t′ = T, . . . , 0: For any
x(t

′−1) ∈ X ,

EPR
[u′+1[X(t′:T−1)]g[X(t′:T )] | x(t′−1)] (5.222)

≤ EPR
[u′+1[X(t′:T−1)] | x(t′−1)]EPR

[g[X(t′:T )] | x(t′−1)]. (5.223)

Here, we specially define that EPR
[· | x(−1)] = EPR

[·] and u′+1[X(T :T−1)] = 1. We
note that the above statement for t′ = 0 implies the statement of the theorem.
Indeed, since u′(−1)

+1 (x(−1)) is independent of x(−1), the statement for t′ = 0 implies
that (5.219).

The base case t′ = T trivially holds. We consider the step case t′. For
simplicity, we omit the conditioning x(t′−1) of the expectation in the rest of the
proof. By the linearity of the expectation, we have

EPR
[u′+1[X(t′:T−1)]g[X(t′:T )]] (5.224)

= EPR
[u′+1[X(t′:T−1)]βw

(t′)f(x(t
′))] + EPR

[u′+1[X(t′:T−1)]g[X((t′+1):T )]]. (5.225)

For the second term in the right hand side of (5.224), we have

EPR
[u′+1[X(t′:T−1)]g[X((t′+1):T )]] (5.226)

= E
P(t′)
R (x(t′))

[
u′

(t′)
+1 (x

(t′))EPB[X((t′+1):T )]

[
u′+1[X(t′+1:T−1)]g[X(t′+1:T )] | x(t′)

]]
.

(5.227)

By using u′(t
′)

+1 (x
(t′)) > 0 and the induction hypothesis for t′ + 1, we have

EPR
[u′+1[X(t′:T−1)]g[X((t′+1):T )]] (5.228)

≤ E
P(t′)
R (x(t′))

[
u′

(t′)
+1 (x

(t′))EPB[X((t′+1):T )]

[
u′+1[X(t′+1:T−1)] | x(t′)

]
(5.229)

×EPR

[
g[X(t′+1:T )] | x(t′)

]]
(5.230)

≤ EPR
[u′+1[X(t′:T−1)]EPR

[g[X(t′+1:T )] | x(t′)]]. (5.231)

By (5.224) and (5.228), we have

EPR
[u′+1[X(t′:T−1)]g[X(t′:T )]] (5.232)

≤ EPR
[u′+1[X(t′:T−1)]EPR

[g[X(t′:T )] | x(t′)]] (5.233)

= E
P(t′)
R

[u(t
′:T )(x(t

′))EPR
[g[X(t′:T )] | x(t′)]] (5.234)

= E
P(t′)
R

[u(t
′:T )(x(t

′))]E
P(t′)
R

[
EPR

[g[X(t′:T )] | x(t′)]]
]

(5.235)

+Cov
P(t′)
R

[
u(t

′:T )(x(t
′)),EPR

[g[X(t′:T )] | x(t′)]
]

(5.236)

= EPR
[u′+1[X(t′:T−1)]]EPR

[g[X(t′:T )]] (5.237)

+Cov
P(t′)
R

[
u(t

′:T )(x(t
′)),EPR

[g[X(t′:T )] | x(t′)]
]
, (5.238)
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where we used Lemma 5.27. By Assumption 5.13, the covariance in the above
inequality is not positive [95]. Therefore,

EPR
[u′+1[X(t′:T−1)]g[X(t′:T )]] ≤ EPR

[u(t
′:T )(x(t

′))]EPR
[g[X(t′:T )]], (5.239)

which is the induction hypothesis for t′.

Proof of Lemma 5.17. By solving (5.47) for ξ(t) and applying Assumption 5.16,
we have the statement.

Proof of Lemma 5.19. Let us take x(t). We then sample x(t+1) and x′(t+1) from
L(t)+1,B(· | x(t)). Suppose that f(x(t+1)) ≥ f(x′(t+1)).

We first prove (5.44). By Assumption 5.18, it suffices to prove that

u(t+1:t+k)(x(t+1)) ≤ u(t+1:t+k)(x′
(t+1)

). (5.240)

We prove by induction on i = 1, 2, 3, . . . , k that

u
(t+1:t+i)

βg
(T ) (x(t+1)) ≤ u(t+1:t+i)

βg
(T ) (x′

(t+1)
), (5.241)

for any of βg
(T ). We add the subscript of u(t+1:t+i) to clarify the dependency on

βg
(T ). The base case i = 1 trivially holds because

u(t+1:t+1)(x(t+1)) = u(t+1:t+1)(x′
(t+1)

) = 1. (5.242)

We consider the step case i > 1. By definition,

u
(t+1:t+i)

βg
(T ) (x(t+1)) (5.243)

=
∑

X(t+2:t+i)∈X i−1

t+i−1∏
s=t+1

e−βg
(s+1)f(x(s+1))L(s)(x(s+1) | x(s)) (5.244)

=
∑

X(t+2:t+i−1)∈X i−2

t+i−2∏
s=t+1

e−βg
(s+1)f(x(s+1))L(s)(x(s+1) | x(s)) (5.245)

×
∑

x(t+i)∈X

e−βg
(t+i)f(x(t+i))L(s)(x(t+i) | x(t+i−1)) (5.246)

=
∑

X(t+2:t+i−1)∈X i−2

u′
(t+i−1)
+1 (x(t+i−1))

t+i−2∏
s=t+1

e−βg
(s+1)f(x(s+1))L(s)(x(s+1) | x(s)).

(5.247)
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By Assumption 5.16,

u(t+1:t+i)(x(t+1)) (5.248)

=
∑

X(t+2:t+i−1)∈X i−2

e−βg
(t+i)(f(x(t+i−1))−η(t+i)∥∇f(x(t))∥2) (5.249)

× e
(βg

(t+i)η(t+i))2

2
∥∇f(x(t))∥2

Σ(x(t)) (5.250)

×
t+i−2∏
s=t+1

e−βg
(s+1)f(x(s+1))L(s)(x(s+1) | x(s)) (5.251)

= e
βg

(t+i)η(t+i)∥∇f(x(t))∥2+ (βg
(t+i)η(t+i))2

2
∥∇f(x(t))∥2

Σ(x(t)) (5.252)

×
∑

X(t+2:t+i−1)∈X i−2

t+i−2∏
s=t+1

e−β′
g
(s+1)f(x(s+1))L(s)(x(s+1) | x(s)) (5.253)

= e
βg

(t+i)η(t+i)∥∇f(x(t))∥2+ (βg
(t+i)η(t+i))2

2
∥∇f(x(t))∥2

Σ(x(t)) × u(t+1:t+i−1)

β′
g
(T ) (x(t+1)),

(5.254)

where β′
g
(T ) = {β′g

(s)}s satisfies that β′g
(t+i−1) = βg

(t+i−1) + βg
(t+i) and β′g

(s) =

βg
(s) otherwise. The induction hypothesis for β′

g
(T ) implies that

u
(t+1:t+i−1)

β′
g
(T ) (x(t+1)) ≤ u(t+1:t+i−1)

β′
g
(T ) (x′

(t+1)
). (5.255)

By this inequality and (5.248) for x(t+1) and x′(t+1), we have

u
(t+1:t+i)

βg
(T ) (x(t+1)) (5.256)

= e
βg

(t+i)η(t+i)∥∇f(x(t))∥2+ (βg
(t+i)η(t+i))2

2
∥∇f(x(t))∥2

Σ(x(t)) × u(t+1:t+i−1)

β′
g
(T ) (x(t+1))

(5.257)

≤ e
βg

(t+i)η(t+i)∥∇f(x(t))∥2+ (βg
(t+i)η(t+i))2

2
∥∇f(x(t))∥2

Σ(x(t)) × u(t+1:t+i−1)

β′
g
(T ) (x′

(t+1)
)

(5.258)

≤ u(t+1:t+i)

βg
(T ) (x′

(t+1)
), (5.259)

which is the induction hypothesis for i.
We next prove (5.45). By Assumption 5.18, it suffices to prove

EPR
[g[X(t+1:t+k)] | x(t+1)] ≥ EPR

[g[X(t+1:t+k)] | x′(t+1)
]. (5.260)

We prove by induction on i = 1, 2, . . . , k that

EPR
[gβw

(T ) [X(t+1:t+i)] | x(t+1)] ≥ EPR
[gβw

(T ) [X(t+1:t+i)] | x′(t+1)
], (5.261)

for any βw
(T ). We added the subscript of g to clarify the dependency on βw

(T ).
The base case i = 1 trivially holds. We consider the step case i > 1. By a direct
calculation,

EPR
[gβw

(T ) [X(t+1:t+i)] | x(t+1)] (5.262)

= EPR
[gβw

(T ) [X(t+1:t+i−1)] + βw
(t+i)f(x(t+i)) | x(t+1)] (5.263)

= EPR
[gβw

(T ) [X(t+1:t+i−1)] | x(t+1)] + EPB
[βw

(t+i)f(x(t+i)) | x(t+1)]. (5.264)
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For the second term, we have

EPR
[βw

(t+i)f(x(t+i)) | x(t+1)] (5.265)

= EPR
[EPR

[βw
(t+i)f(x(t+i)) | x(t+i−1)] | x(t+1)]. (5.266)

By Assumption 5.16,

EPR
[f(x(t+i)) | x(t+i−1)] (5.267)

= f(x(t+i−1))− η(t+i)∥∇f(x(t))∥2 − βg(t+i)(η(t+i))2∥∇f(x(t))∥2
Σ(x(t))

. (5.268)

Therefore, we have

EPR
[gβw

(T ) [X(t+1:t+i)] | x(t+1)] (5.269)

= EPR
[gβw

(T ) [X(t+1:t+i−1)] | x(t+1)] (5.270)

+ βw
(t+i)EPB

[
f(x(t+i−1))− η(t+i)∥∇f(x(t))∥2 (5.271)

−βg(t+i)(η(t+i))2∥∇f(x(t))∥2
Σ(x(t))

| x(t+1)
]

(5.272)

= −βw(t+i)η(t+1)
(
∥∇f(x(t))∥2 + βg

(t+i)η(t+i)∥∇f(x(t))∥2
Σ(x(t))

)
(5.273)

+ EPR
[gβ′

w
(T ) [X(t+1:t+i−1)] | x(t+1)], (5.274)

where β′
w
(T ) := {β′w

(s)}s satisfies β′w
(t+i−1) = βw

(t+i−1)+βw
(t+i) and β′w

(s) = βw
(s)

otherwise. By the induction hypothesis for i− 1, we have

EPR
[gβ′

w
(T ) [X(t+1:t+i−1)] | x(t+1)] ≥ EPR

[gβ′
w

(T ) [X(t+1:t+i−1)] | x′(t+1)
]. (5.275)

We therefore have

EPR
[gβw

(T ) [X(t+1:t+i)] | x(t+1)] (5.276)

= −βw(t+i)η(t+1)
(
∥∇f(x(t))∥2 + βg

(t+i)η(t+i)∥∇f(x(t))∥2
Σ(x(t))

)
(5.277)

+ EPR
[gβ′

w
(T ) [X(t+1:t+i−1)] | x(t+1)] (5.278)

≥ −βw(t+i)η(t+1)
(
∥∇f(x(t))∥2 + βg

(t+i)η(t+i)∥∇f(x(t))∥2
Σ(x(t))

)
(5.279)

+ EPR
[gβ′

w
(T ) [X(t+1:t+i−1)] | x′(t+1)

] (5.280)

= EPR
[gβw

(T ) [X(t+1:t+i)] | x′(t+1)
], (5.281)

which is the induction hypothesis for i.

Proof of Theorem 5.20. Since fA is (Aα)-strongly convex and (Aγ)-smooth, The-
orem 3.10 for fA implies that

EPfA
F

[fA(x
(T ))]− fA(x∗) ≤ C

(
σ2

AαT
+
AD2(α+ γ)

T 2

)
. (5.282)

From the discussion above Theorem 5.20,

EPfA
F

[fA(x
(t))] = EPf

R
[fA(x

(t))]. (5.283)

By the definition of fA,

EPf
R
[fA(x

(T ))]− fA(x∗) = A
(
EPf

R
[f(x(T ))]− f(x∗)

)
. (5.284)

By combining these equations, we have the statement of the theorem.
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To prove Lemma 5.23, we need the following lemmas.

Lemma 5.28. For any a, b ∈ Rd,

∥a+ b∥2 ≤ 4∥a∥2 + 4∥b∥2. (5.285)

Proof. By triangle inequality, we have

∥a+ b∥2 ≤ (∥a∥+ ∥b∥)2 . (5.286)

Since

∥a∥+ ∥b∥ ≤ 2max(∥a∥, ∥b∥), (5.287)

we have

∥a+ b∥2 ≤ 4max(∥a∥2, ∥b∥2) ≤ 4
(
∥a∥2 + ∥b∥2

)
. (5.288)

Lemma 5.29. If

∥x(t) − x∗∥2 >
G2

Bκ
2

t+ 2
, (5.289)

then

EPR

[〈
g(t+1), x(t) − x∗

〉
| x(t)

]
≥ κ−1∥x(t) − x∗∥2. (5.290)

Proof. By Lemma 5.17, we have

EPR

[〈
g(t+1), x(t) − x∗

〉
| x(t)

]
(5.291)

≥
〈
∇f(x(t)) + β(t+1)η(t+1)Σ(x(t))∇f(x(t)), x(t) − x∗

〉
(5.292)

By (3.54) for α = 0 and the optimality condition ∇f(x∗) = 0,

EPR

[〈
g(t+1), x(t) − x∗

〉
| x(t)

]
(5.293)

= f(x(t))− f(x∗) +
〈
β(t+1)η(t+1)Σ(x(t))∇f(x(t)), x(t) − x∗

〉
(5.294)

≥
〈
β(t+1)η(t+1)Σ(x(t))∇f(x(t)), x(t) − x∗

〉
. (5.295)

By the definition of η(t+1) and β(t+1), we have

EPR

[〈
g(t+1), x(t) − x∗

〉
| x(t)

]
≥ (t+ 2)θ1

ακ(GBκ)2θ1

〈
Σ(x(t))∇f(x(t)), x(t) − x∗

〉
.

(5.296)

By applying (α, θ1,Σ)-strong convexity, we have

EPR

[〈
g(t+1), x(t) − x∗

〉
| x(t)

]
≥ (t+ 2)θ1

ακ(GBκ)2θ1
α∥x(t) − x∗∥2(1+θ1) (5.297)

≥ κ−1∥x(t) − x∗∥2. (5.298)

In the last transformation, we used the following consequence of the assumption:

∥x(t) − x∗∥2θ1 ≥
(
G2

Bκ
2

t+ 2

)θ1

. (5.299)
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Lemma 5.30.

EPR
[∥g(t+1)∥2 | x(t)] ≤ 4G2 +

4γ2(t+ 2)2θ1

α2κ2(GBκ)4θ1
∥x(t) − x∗∥2θ2 . (5.300)

Proof. By Lemma 5.17 and the formula of the second moment of the normal
distribution [83], we have

EPF
[∥g(t+1)∥2 | x(t)] = ∥∇f(x(t))∥2 +Tr

(
Σ(x(t))

)
≤ G2, (5.301)

and

EPR
[∥g(t+1)∥2 | x(t)] ≤

∥∥∥(I + β(t+1)η(t+1)Σ(x(t))
)
∇f(x(t))

∥∥∥2 +Tr
(
Σ(x(t))

)
,

(5.302)

=

∥∥∥∥(I + (t+ 2)θ1

ακ2(GBκ)2θ1
Σ(x(t))

)
∇f(x(t))

∥∥∥∥2 +Tr
(
Σ(x(t))

)
.

(5.303)

By Lemma 5.28, we have

EPR
[∥g(t+1)∥2 | x(t)] (5.304)

≤ 4∥∇f(x(t))∥2 + 4(t+ 2)2θ1

α2κ2(GBκ)4θ1
∥Σ(x(t))∇f(x(t))∥2 +Tr

(
Σ(x(t))

)
(5.305)

≤ 4∥∇f(x(t))∥2 + 4(t+ 2)2θ1

α2κ2(GBκ)4θ1
∥Σ(x(t))∇f(x(t))∥2 + 4Tr

(
Σ(x(t))

)
(5.306)

≤ 4
(
∥∇f(x(t))∥2 +Tr

(
Σ(x(t))

))
+

4(t+ 2)2θ1

α2κ2(GBκ)4θ1
∥Σ(x(t))∇f(x(t))∥2. (5.307)

By (5.301),

EPR
[∥g(t+1)∥2 | x(t)] ≤ 4G2 +

4(t+ 2)2θ1

α2κ2(GBκ)4θ1
∥Σ(x(t))∇f(x(t))∥2. (5.308)

By using (γ, θ2,Σ)-smoothness, we have

EPR
[∥g(t+1)∥2 | x(t)] ≤ 4G2 +

4γ2(t+ 2)2θ1

α2κ2(GBκ)4θ1
∥x(t) − x∗∥2θ2 . (5.309)

Lemma 5.31. Let C > 0 and t ∈ N ∪ {0}. Suppose that Z(t), Z(t+1) ∈ R satisfy
the following inequalities:

Z(t+1) ≤
(
1− 2

t+ 2

)
Zt +

C

(t+ 2)2
, (5.310)

Z(t) ≤ C

t+ 2
. (5.311)

Then,

Z(t+1) ≤ C

t+ 3
. (5.312)
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Proof. By the assumption,

Z(t+1) ≤
(
1− 2

t+ 2

)
C

t+ 2
+

C

(t+ 2)2
(5.313)

=
C

t+ 2
− C

(t+ 2)2
. (5.314)

By a direct calculation, we have

C

t+ 3
−
(

C

t+ 2
− C

(t+ 2)2

)
=

C

(t+ 2)2(t+ 3)
≥ 0. (5.315)

Therefore, we have

Z(t+1) ≤ C

t+ 3
. (5.316)

Proof of Lemma 5.23 Theorem 5.24. This proof is an extension of [88, Lemma 1].
We prove Lemma 5.23 and Theorem 5.24 at the same time by induction on t.

For the base case t = 0, Theorem 5.24 holds by the definition of GB.
We next consider the step case. We assume that Theorem (5.24) holds for t

and prove (5.112) and (5.113) holds for t+ 1. We first prove Lemma (5.112). By
Lemma 5.30,

EPR
[∥g(t+1)∥2] ≤ 4G2 +

4γ2(t+ 2)2θ1

α2κ2(GBκ)4θ1
EPR

[∥x(t) − x∗∥2θ2 ]. (5.317)

Since 0 < θ2 ≤ 1, the function h(x) = xθ2 is concave. Therefore, Jensen’s
inequality implies that

EPR
[∥x(t) − x∗∥2θ2 ] ≤

(
EPR

[∥x(t) − x∗∥2]
)θ2

. (5.318)

By this inequality,

EPR
[∥g(t+1)∥2] ≤ 4G2 +

4γ2(t+ 2)2θ1

α2κ2(GBκ)4θ1

(
EPR

[∥x(t) − x∗∥2]
)θ2

. (5.319)

By the induction hypothesis,

EPR
[∥g(t+1)∥2] ≤ 4G2 +

4γ2(t+ 2)2θ1

α2κ2(GBκ)4θ1

(
3G2

Bκ
2

t+ 2

)θ2

(5.320)

= 4G2 + 4
3θ2γ2

α2κ2
(GBκ)

2θ2−4θ1(t+ 2)2θ1−θ2 . (5.321)

Since t+ 2 ≥ 1 and θ2 − 2θ1 ≥ 0, we have

EPR
[∥g(t+1)∥2] ≤ 4G2 + 4

3θ2γ2

α2κ2
(GBκ)

2θ2−4θ1 ≤ G2
B. (5.322)

In the last transformation, we used the definition of GB.
We next prove (5.113) for t+1 by case analysis. We first treat the case where

∥x(t) − x∗∥2 ≤ G2
Bκ

2/(t + 2). In this case, by the triangle inequality and the
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contracting property of ΠX , we have

EPR
[∥x(t+1) − x∗∥2 | x(t)] (5.323)

≤ EPR
[∥ΠX

(
x(t) − η(t+1)g(t+1)

)
− x∗∥2 | x(t)] (5.324)

≤ EPR
[∥x(t) − η(t+1)g(t+1) − x∗∥2 | x(t)] (5.325)

≤ ∥x(t) − x∗∥2 + EPR
[(η(t+1))2∥g(t+1)∥2] | x(t)] (5.326)

≤
(
1− 2

t+ 2

)
∥x(t) − x∗∥2 +

(
η(t+1)

)2
EPR

[∥g(t+1)∥ | x(t)] +
2G2

Bκ
2

(t+ 2)2
. (5.327)

We next treat the other case where ∥x(t) − x∗∥2 > G2
Bκ

2/(t + 1). By a similar
argument, we have

EPR
[∥x(t+1) − x∗∥2 | x(t)] (5.328)

≤ EPR
[∥x(t) − η(t+1)g(t+1) − x∗∥2 | x(t)] (5.329)

= ∥x(t) − x∗∥2 − 2η(t+1)EPR

[〈
g(t+1), x(t) − x∗

〉
| x(t)

]
(5.330)

+
(
η(t+1)

)2
EPR

[∥g(t+1)∥2 | x(t)]. (5.331)

By Lemma 5.29, we have

EPR
[∥x(t+1) − x∗∥2 | x(t)] (5.332)

≤ ∥x(t) − x∗∥2 − 2η(t+1)

κ
∥x(t) − x∗∥2 +

(
η(t+1)

)2
EPR

[∥g(t+1)∥2 | x(t)] (5.333)

=

(
1− 2

t+ 2

)
∥x(t) − x∗∥2 +

(
η(t+1)

)2
EPR

[∥g(t+1)∥2 | x(t)]. (5.334)

Therefore, for all cases, we have

EPR
[∥x(t+1) − x∗∥2 | x(t)] ≤

(
1− 2

t+ 2

)
∥x(t) − x∗∥2 (5.335)

+
(
η(t+1)

)2
EPR

[∥g(t+1)∥2 | x(t)] +
2G2

Bκ
2

(t+ 2)2
.

(5.336)

By taking the expectation with respect to x(t), we have

EPR
[∥x(t+1) − x∗∥2] (5.337)

≤
(
1− 2

t+ 2

)
E
[
∥x(t) − x∗∥2

]
+
(
η(t+1)

)2
EPR

[∥g(t+1)∥2] +
2G2

Bκ
2

(t+ 2)2
. (5.338)

By (5.112) and the definition of η(t+1), we have

EPR
[∥x(t+1) − x∗∥2] ≤

(
1− 2

t+ 2

)
EPR

[∥x(t) − x∗∥2] +
3G2

Bκ
2

(t+ 2)2
. (5.339)

By Lemma 5.31 for Z(t) := EPR
[∥x(t) − x∗∥2], we have (5.113) for t+ 1.

Proof of Theorem 5.25. By Theorem 3.11, it suffices to prove (3.75) for P := PR

and C := 3κG2
B. By Lemma 5.17, we have

EPR

[〈
g(t+1), x(t) − x∗

〉]
(5.340)

= EPR

[〈
∇f(x(t)), x(t) − x∗

〉
+
β(t+1)η(t+1)

2

〈
Σ(x(t))∇f(x(t)), x(t) − x∗

〉]
.

(5.341)
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We evaluate two terms in the right hand side. For the first term, the convexity of
f implies that 〈

∇f(x(t)), x(t) − x∗
〉
≥ f(x(t))− f(x∗), (5.342)

since ∇f(x∗) = 0. For the second term, the (α, θ1,Σ)-strong convexity implies
that 〈

Σ(x(t))∇f(x(t)), x(t) − x∗
〉
≥ α∥x(t) − x∗∥2(1+θ1) ≥ 0. (5.343)

Theorem 5.24 implies that

1

κ
EPR

[∥x(t) − x∗∥2] ≤
3κG2

B

t+ 2
. (5.344)

By these three inequalities, we know that (3.75) holds for the probability measure
PR and C = 3κG2

B.
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Chapter 6

Conclusion

In this thesis, we solved the problem about the coordination between individual
learning and populational evolution in each field from a unified point of view.
In Chapter 4, we showed that individual learning from experience can accelerate
populational evolution in biological evolution. We also quantified the accelera-
tion by extending FF-thm. In Chapter 5, we consider the converse: We showed
populational evolution of the BA can accelerate individual learning. Concretely,
we proved that iterative optimization algorithms are accelerated by incorporating
populational evolution in the form of the BA.

What played an important role in our thesis is the bridging of the concepts and
techniques in each field. For example, we observed that the perspective of HMM
was useful to analyze population dynamics in Chapter 4. Moreover, concepts
from population dynamics like FF-thm and retrospective process was useful to
analyze the performance of the BA in Chapter 5. Background of the bridging
is the Feynman-Kac formula [68]: All population dynamics (3.11), the BA (5.7),
HMM (3.46) considered the measure transformation from PF[X(T )] to PB[X(T ) |
Y(t)] by a multiplicative factor ek[X(T ),Y(t)]; This type of measure transformation
is called the Feynman-Kac formula and appears in various fields beyond what we
have considered in this thesis. Therefore, our analysis of the coordination between
individual learning and populational evolution has a potential to further apply
to different fields. Moreover, importing ideas from other fields might advance the
results in this thesis.

A possible application of our analysis is parameter estimation by SMC meth-
ods. As discussed in Chapter 1, we can propose a new SMC method to estimate
parameters of HMM by considering coordination between individual learning and
populational evolution. To theoretically analyze the performance of this method,
the techniques we developed in Chapter 4 might be useful. For example, the
extended FF-thm of ancestral learning might have some implications on the per-
formance since the population fitness corresponds to log-likelihood.

Another possible application is the acceleration of individual learning by pop-
ulational evolution in biology. When individual learning of an organism is at
the same time scale as replication, the individual learning might be accelerated
by populational evolution. Indeed, some fraction of the organism that happens
to learn more successfully has more daughters and thus such events are empha-
sized by the survivorship bias caused by populational evolution. Analyzing the
acceleration is equivalent to quantify the performance of the memetic algorithms.
Therefore, the results in Chapter 5 might be useful for this analysis.

Since the remaining problems of the thesis in each field might are related to
each other due to the bridging, a unified view like this thesis might be useful
to solve. For example, the dependency of the agents in the population is a dif-
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ficult problem in each field. In biology, we can consider communication among
agents, which might improve the acceleration of evolutionary process by learning
as indicated in Section 4.10. However, the analysis in this situation is difficult
due to the dependency of agents caused by communication. In information sys-
tems, recombination induces the correlation between solutions, which makes the
theoretical analysis of the performance difficult. A unified analysis based on new
techniques, like mean-field approximation and perturbation theory, might advance
the analysis of both topics.
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