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Abstract

One of the central topics in graph theory is to study substructures of graphs, such as paths

and cycles. Starting with the celebrated theorem of Karl Menger, a number of variants of

problems of finding disjoint paths in a graph have been studied from both theoretical and

practical interests. The k-disjoint paths problem is, given a graph and k pairs of vertices

of it, to find k disjoint paths that link the pairs in the graph. This problem is NP-hard

if k is part of the input. On the other hand, as a byproduct of the Graph Minor project,

Robertson and Seymour proved that for any fixed k there is a polynomial time algorithm

to solve it. This algorithm involves a huge constant and it remains a challenge to devise

a practical one. The case k = 2, however, admits a simple algorithm and its structural

characterization is obtained independently by Thomassen, Seymour and Shiloach in 1980:

In a 4-connected graph G, two pairs of vertices (s1, t1), (s2, t2) are linked by two disjoint

paths of G if and only if G cannot be drawn in a disc with s1, s2, t1, t2 on the boundary

in order.

The rooted subdivision problem is a natural generalization of the k-disjoint paths

problem. This problem asks internally disjoint paths in a graph that link given pairs

of vertices. As an extension of the “two-paths theorem”, we mainly focus on rooted

subdivisions with four branch vertices. Namely, for a fixed graph H with four vertices,

we consider the following problem: Given a graph G and an injective map from V (H) to

V (G), is there a subdivision of H in G with four branch vertices specified by the map?

Hence the case H = 2K2 (two copies of K2) corresponds to the 2-disjoint paths problem.

In this dissertation, for any fixed H with four vertices, we give a complete struc-

tural characterization of 6-connected graphs G with no such subdivision of H. Roughly

speaking, such graphs G can be decomposed into a planar graph and some local areas of

non-planarity, giving us a glimpse of an extension of the two-paths theorem. As a corol-

lary, we prove that every 7-connected graph contains a subdivision of K4 with prescribed

branch vertices. This generalizes a result of McCarty, Wang and Yu, who proved that

every 7-connected graph is 4-ordered. We also prove that every triangle-free 6-connected

graph contains a subdivision of K4 with prescribed branch vertices. This solves a special

case of a conjecture of Mader.

We also consider a relaxed version of the above problem for H = K−
4 , where K−

4 is

the graph obtained from K4 by removing one edge: Given a graph G and a subset Z of

V (G) of size 4, is there a subdivision of K−
4 in G with the four branch vertices in Z? In

this problem there is no requirement about which vertex of Z works as which vertex of

K−
4 . We characterize 3-connected graphs G with no such subdivision of K−

4 . The proof

is based on Mader’s S-paths theorem.
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Chapter 1

Introduction

1.1 Background

Finding disjoint paths in a graph is one of the classical problems in graph theory. In its

simplest form, the problem is to find maximum internally vertex-disjoint paths between

given two vertices in a graph. In 1927, Karl Menger [46] gave a celebrated theorem that

offers a min-max formula for this problem: The maximum number of internally vertex-

disjoint paths between a pair of vertices equals the minimum size of a vertex-cut that

separates them. This theorem laid the foundations for research on paths in graphs, and

also makes the notion of connectivity a central topic in graph theory. A graph of order

at least k + 1 is called k-connected if there is no set of k − 1 vertices whose removal

disconnects the graph. Thus, by Menger’s theorem, a graph is k-connected if and only if

any two vertices are connected by at least k internally disjoint paths.

There is an edge-disjoint variant of Menger’s theorem. This result can be viewed as a

special case of the famous max-flow and min-cut theorem given by Ford and Fulkerson [9]

in 1956: In a network, the maximum amount of flow between given two vertices equals

the minimum capacity of edge-cuts separating them. Network flow problems are central

problems in operations research and computer science, arising in applications such as the

transportation and transshipment problems.

The work of Menger and Ford and Fulkerson leads to a more general framework

of the multi-commodity flow problem. This problem is, given several pairs of sources

and sinks in a communication or transportation network, to transmit several goods or

messages between the pairs simultaneously. One special case is a situation that requires

multi-commodity flows of integer value, which leads to another important problem in

structural graph theory, called the k-disjoint paths problem.

Mathematically, the k-disjoint problem asks the existence of k disjoint paths in a graph

that link given k pairs of distinct vertices (s1, t1), . . . , (sk, tk), respectively. In 1980s, this

problem has been intensively studied because of its applications to the design of very

large-scale integrated (VLSI) circuits. Although the algorithmic problem is NP-hard in

general, the case k = 2 turned out to be tractable because of its structural characterization

via planarity. Since the 2-disjoint paths problem specifies four “terminals” in a graph,

it is natural to extend it to a problem of finding internally disjoint paths with ends in a
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CHAPTER 1. INTRODUCTION 6

s1 s2

t1t2

Figure 1.1: A graph embedded in a disc with four vertices s1, s2, t1, t2 on the boundary
in order.

specified set of four vertices. This is called the rooted subdivision problem on four vertices,

with which we shall be concerned throughout the dissertation. For this problem, several

structural results, most of which are related to connectivity of graphs, are known. We

explain these details below.

k-Disjoint paths. A formal description of the k-disjoint paths problem is as follows:

(k-Disjoint paths problem)

Instance: A graph G and 2k vertices s1, . . . , sk, t1, . . . , tk of G.

Question: Are there k disjoint paths of G with ends si, ti for 1 ≤ i ≤ k,

respectively?

In general, the algorithmic problem is NP-hard [22] if k is part of the input of the

problem. In fact, the problem is NP-hard even if the graph is restricted to be planar [38].

On the other hand, Robertson and Seymour [50] proved that for any fixed k there is a

polynomial time algorithm to solve the problem. This is certainly one of the deepest

results in algorithmic graph theory. Indeed, the correctness of the algorithm needs the

full strength of the seminal work of their Graph Minor project in a series of over 20

long papers. The algorithm runs in O(|V (G)|3) time, but we should note that it is not

practical since it involves a huge constant. Later, the time complexity was improved to

O(|V (G)|2) by Kawarabayashi, Kobayashi and Reed [26], though it remains impractical.

The two-paths theorem. For the case k = 2, the problem is more tractable. Consider,

for example, a graph G drawn in a disc so that no two edges meet in a point other than

a common end, and that four distinct vertices s1, s2, t1, t2 occur on the boundary in this

order listed. See Figure 1.1 for intuition. As easily checked (formally by the Jordan curve

theorem), if Pi is a path of G with ends si, ti for i = 1, 2, then these two paths P1 and P2

must have a common vertex by the planarity of G. Hence G contains no two disjoint paths

with ends s1t1, s2t2, respectively. Thomassen [60], Seymour [55] and Shiloach [56] proved

that the converse holds, which gives a structural characterization for two disjoint paths:

In a 4-connected graph G, two pairs of vertices (s1, t1), (s2, t2) are linked by two disjoint

paths of G if and only if G cannot be drawn in a disc with s1, s2, t1, t2 on the boundary
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in order. This result is often called the “two-paths theorem” in the literature. From this

one can derive a simple and practical polynomial time algorithm for the 2-disjoint paths

problem.

Rooted subdivisions. The notion of k-linkage is naturally generalized to “rooted sub-

divisions” of a graph. For a fixed graph H, we consider the following problem:

(Rooted H-subdivision problem)

Instance: A graph G and an injective map φ : V (H) → V (G).

Question: Is there a map η from E(H) to the set of paths of G such that

• for every edge e = xy of H, the path η(e) has ends φ(x), φ(y), and

• the paths η(e) (e ∈ E(H)) are internally disjoint?

A subdivision of a graph H is a graph obtained from H by replacing each edge uv of

H with a path between u and v. One can see that the graph consisting of the union of the

paths η(e) (e ∈ E(H)) is nothing but a subdivision of H in G with the branch vertices

specified by the map φ. Note that the case H = kK2 (k copies of K2) corresponds to the

k-disjoint paths problem. Conversely, the rooted H-subdivision problem can be reduced

to the |E(H)|-disjoint paths problem. By the work of Robertson and Seymour again, for

any fixed graph H there is a polynomial time (but impractical) algorithm for the rooted

H-subdivision problem.

Connectivity for linkage. For a fixed graph H, we say that a graph G is H-linked if it

has a feasible solution η for any φ in the rooted H-subdivision problem. More precisely, a

graph G is called H-linked if for any injective map φ : V (H) → V (G) there is a collection

{Pe}e∈E(H) of internally disjoint paths of G such that Pe has ends φ(x), φ(y) for every

edge e = xy of H. This includes several kinds of notions of connectivity, such as being

k-connected (H = K1,k), k-ordered (H = Ck) and k-linked (H = kK2).

Clearly, every k-linked graph is k-connected. The converse is not true. However, an

approximate version is known to hold: There is a function f : N → N such that every

f(k)-connected graph is k-linked, and moreover, f can be chosen to be linear in k, as

explained below. From the existence of f we deduce that sufficiently highly connected

graphs are H-linked. More precisely, f(|E(H)|)-connected graphs are |E(H)|-linked, and
so H-linked.

The existence of f was first noticed by Jung [21] and Larman and Mani [34]. Their

crucial observation is that the existence of a subdivision of K3k in a 2k-connected graph

G ensures that G is k-linked. This, together with an earlier result of Mader [42] that

sufficiently high average degree forces a subdivision of a large complete graph, showed

the existence of f .

Although the function f(k) found by them was exponential in k, the upper bound has

been dramatically improved. Robertson and Seymour [50] proved that the existence of a

minor of K3k and 2k-connectivity suffice for a graph to be k-linked. Indeed, this observa-

tion played an important role in their algorithm for the k-disjoint paths problem. This,
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2K2 P4 C4 K2−
4 K−

4 K4

Figure 1.2: Graphs with four vertices.

together with the bound on the extremal function of complete minors by Kostochka [32]

and Thomason [59], led to that f(k) = O(k
√
log k). Later, Bollobás and Thomason [3]

showed that the existence of a minor of a sufficiently dense graph, instead of K3k, suffices

in the assumption, and consequently, achieved the first linear bound f(k) ≤ 22k. By

a different approach from these results, Thomas and Wollan [57] proved that every 2k-

connected graph of average degree at least 10k is k-linked. This implies that f(k) ≤ 10k,

which is the current best known bound. They also proved in [58] that f(3) ≤ 10. The

only known exact bound is f(2) = 6, which can be obtained from the two-paths theorem.

Rooted subdivisions on four vertices. For a graph H, let g(H) denote the smallest

positive integer which ensures that every g(H)-connected graph is H-linked. From the

result of Thomas and Wollan, we know a general linear bound g(H) ≤ f(|E(H)|) ≤
10|E(H)|. One might be interested in the following questions:

• What is a structural characterization of H-linked graphs?

• If this is hard to answer, then what is the exact value of g(H)?

Although both these questions are difficult in general, the case H = 2K2 is completely

settled by the two-paths theorem: 2K2-Linked (i.e., 2-linked) graphs are characterized by

planarity and g(2K2) = 6. This provokes a natural question: What about a graph H with

four vertices that contains 2K2 as a subgraph? See Figure 1.2. Let P4, C4, K4, K
2−
4 and

K−
4 denote the path of length 3, the cycle of length 4, the complete graph on four vertices,

the graph obtained from K4 by deleting two adjacent edges and the graph obtained from

K4 by deleting one edge, respectively. We summarize known results in Table 1.1, which

will be explained below.

One step ahead of 2-linkage is P4-linkage. By definition, a graph is P4-linked if and only

if for any four distinct vertices of the graph there is a path that contains those vertices in

the order specified. Yu [63, 64, 65] gave a complete characterization of P4-linked graphs.

The non-P4-linked graphs are not so far from the “boundary-planar graphs” that appear

in the two-paths theorem, but are already too complicated to describe precisely here.

Based on the result of Yu, it was proved by Ellingham et al. [7] that every 7-connected

graph is P4-linked. They also proved in [7] that this bound on the connectivity is sharp,

by constructing a 6-connected graph which is not P4-linked. Thus g(P4) = 7.

Although P4-linked graphs are characterized by Yu, it seems far-reaching at this mo-

ment to give an exact characterization of H-linked graphs for H ∈ {C4, K
2−
4 , K−

4 , K4}.
The only known results are about planar graphs. Goddard [10] proved that 4-connected

triangulation of the plane is 4-ordered, i.e., C4-linked. This result was extended to tri-

angulations of all surfaces by Mukae and Ozeki [47]. Goddard’s result was strengthened
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Table 1.1: Structural results about H-linked graphs for graphs H with four vertices.

H Structural characterizations g(H)

2K2

General (The two-paths theorem)

[55, 56, 61]
6

P4 General [63, 64, 65] 7 [7]

C4

Plane triangulations [10]

Surface triangulations [47]
7 [45]

K2−
4 7 [36]

K−
4 Plane triangulations [7] ≤ 50 [57]

K4 4-Connected planar graphs [62] ≤ 60 [57]

by Ellingham et al. [7], who proved that 4-connected triangulations of the plane are K−
4 -

linked. As far as we are aware, the only partial structural result for rooted subdivisions

of K4 is given by Yu [62], who characterized 4-connected planar K4-linked graphs.

As for the exact values of g(H), a noteworthy contribution was recently given by

McCarty, Wang and Yu [45], who proved that 7-connected graphs are 4-ordered. This,

together with g(P4) = 7, implies that g(C4) = 7, and so significantly improves the known

bound g(C4) ≤ 40. Based on a similar technique used in [45] it was shown in [36] that

7-connected graphs are K2−
4 -linked. Thus g(K2−

4 ) = 7. The bounds g(K−
4 ) ≤ 50 and

g(K4) ≤ 60 seem the best at the present moment.

Relevance to coloring-conjectures. The study on rooted subdivisions on four ver-

tices is motivated not only by extensions of the two-paths theorem, but also by the

coloring-conjecture of Hajós. One of the most famous theorems in graph theory is the

Four Color Theorem [1, 2], which states that every planar graph is 4-colorable. As is

well-known as Kuratowski’s theorem, a graph is planar if and only if it contains no sub-

division of K5 or K3,3 as a subgraph. In 1940s, Hajós made a conjecture that generalizes

the Four Color Theorem in terms of forbidden graphs: Every graph with no subdivision

of Kt is (t − 1)-colorable. This conjecture can be viewed as a variant of the famous

conjecture of Hadwiger [11] which states that every graph with no minor of Kt is (t− 1)-

colorable. Hajós’ conjecture is true for t ≤ 4. The case t ≥ 7, however, was disproved by

Catlin [5]. In fact, Erdös and Fajtlowicz [8] proved that the conjecture fails for almost

all graphs. Thomassen [61] exhibited many reasons why Hajós’ conjecture can fail in

general. Nevertheless, the case t = 5, 6 remains open.

One approach to the case t = 5 is to reduce the conjecture to the Four Color Theorem.

Let us call a minimum counterexample to Hajós’ conjecture for t = 5 a Hajós graph. The

goal is to show that every Hajós graph is planar. It is known that Hajós graphs are

4-connected [66]. In 1970s, Kelmans [31] and Seymour independently conjectured that
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every 5-connected non-planar graph contains a subdivision of K5. This conjecture was

recently proved by He, Wang and Yu [14, 15, 16, 17] with papers over 150 pages in total:

See also [28, 40, 41]. This implies that if there exists a non-planar Hajós graph G, it is

not 5-connected. Thus G admits a vertex-cut S of size 4 whose removal results in at least

two connected components C1, . . . , Ck. If, for example, the subgraph of G induced by S

and a component Ci contains a subdivision of K4 with the four branch vertices in S, then

one can easily extend it to a subdivision of K5 in the whole graph G, a contradiction.

Similarly, other subdivisions rooted at S may also be used to construct a subdivision of

K5. Therefore, structural characterizations for the rooted subdivision problem on four

vertices are a first step towards resolving the long-standing conjecture of Hajós.

1.2 Contribution

The two-paths theorem forms the basis for research on rooted subdivisions with pre-

scribed four vertices. The objective of this dissertation is to push forward with it in this

direction further. Our ultimate goal would be to give an explicit description of structural

characterizations for rooted subdivisions on four vertices. As noted above, however, for

any graph H ∈ {C4, K
2−
4 , K−

4 , K4} it seems difficult to determine all the structures of

non-H-linked graphs. Therefore, we set up a moderate goal.

First contribution. The first contribution in this dissertation is to determine the

structures of 6-connected non-H-linked graphs for every H ∈ {P4, C4, K
2−
4 , K−

4 , K4}.
Roughly speaking, such a graph can be decomposed into a planar graph L and “local

areas of non-planarity” that surround the “boundary” of L. We give a formal description

in Section 3.1. In the theorem, one can catch a glimpse of an extension of the two-paths

theorem and Yu’s characterization of P4-linked graphs.

This structural result leads to several corollaries. First one can show that graphs

having such structures must contain a cut of size at most 6. This implies that every

7-connected graph is K4-linked. This generalizes the results of [45, 36] that 7-connected

graphs are 4-ordered and K2−
4 -linked. By the result of Thomas and Wollan, it was known

that 60-connected graphs are K4-linked. Our result significantly improves this known

bound on the connectivity. Combined with the bound g(P4) ≥ 7 shown by [7], our result

implies that g(H) = 7 for every graph H ∈ {P4, C4, K
2−
4 , K−

4 , K4}. We add in our results

to Table 1.2.

Next one can see that graphs having such structures must contain many small dense

subgraphs, especially, triangles. This implies that every 6-connected triangle-free graph

is K4-linked. This solves a special case of a conjecture of Mader, as explained below.

The girth of a graph is the minimum length of cycles in the graph. By the result of

Thomas and Wollan, we observe that 2
(
n
2

)
-connected graphs of average degree at least

10
(
n
2

)
are

(
n
2

)
-linked, and so Kn-linked. Mader [44] proved the following, which says that

the condition on average degree can be replaced by a condition that requires sufficiently

large girth:

Every 2
(
n
2

)
-connected graph of sufficiently large girth is Kn-linked.
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Table 1.2: Structural results about H-linked graphs for graphs H with four vertices,
including our results.

H Structural characterizations g(H)

2K2

General (The two-paths theorem)

[55, 56, 61]
6

P4 General [63, 64, 65] 7 [7]

C4

Plane triangulations [10]

Surface triangulations [47]

6-Connected graphs [this work]

7 [45]

K2−
4 6-Connected graphs [this work] 7 [36]

K−
4

Plane triangulations [7]

6-Connected graphs [this work]
7 [this work]

K4

4-Connected planar graphs [62]

6-Connected graphs [this work]
7 [this work]

In fact, Kühn and Osthus [33] proved that the condition girth ≥ 250 is sufficient in this

theorem. Can we weaken the connectivity in the assumptions? As pointed out in [44], it

is easily seen that for all n ≥ 2 there are (
(
n
2

)
− 1)-connected graphs of sufficiently large

girth which are not Kn-linked. Mader conjectured that this bound on the connectivity

could be tight:

(?) Every
(
n
2

)
-connected graph of sufficiently large girth is Kn-linked. (?)

The conjecture is true for n = 3 but open for n ≥ 4. Our result solves this conjecture for

n = 4, even for graphs of girth ≥ 4.

Our proof traces the method of the recent paper of McCarty, Wang and Yu [45], who

proved that 7-connected graphs are 4-ordered. The details on how our proof is inspired by

their paper are given in Section 3.2.1. The proof of our theorems is constructive, mainly

based on Menger’s theorem and the two-paths theorem. This can be used to devise an

implementable algorithm to solve the rooted K4-subdivision problem say, if a given graph

G is 6-connected.

The first contribution is based on [12].

Second contribution. As noted before, our work is also motivated by the coloring-

conjecture of Hajós. Unfortunately, our assumption of 6-connectivity in the first contribu-

tion is too strong to apply to the conjecture directly. It would be desirable to proceed with

the work to seek a complete characterization for graphs of smaller connectivity. However,

this seems an arduous task. We slightly change a direction here and consider a relaxed
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variant of the problem. The classical problem of finding disjoint paths between two sets

of vertices, which is completely characterized by Menger’s theorem, can be viewed as a

relaxed version of the k-disjoint paths problem that permits permutations on terminals.

In analogy to this, we consider the following relaxed version of the rooted H-subdivision

problem for a fixed graph H:

(Relaxed rooted H-subdivision problem)

Instance: A graph G and a subset Z of V (G) with |Z| = |V (H)|.

Question: Are there an injective map φ : V (H) → Z and a map η from E(H)

to the set of paths of G such that

• for every edge e = xy of H, the path η(e) has ends φ(x), φ(y), and

• the paths η(e) (e ∈ E(H)) are internally disjoint?

In the problem we only specify the set Z of possible branch vertices of a subdivision of

H, and do not care which vertex in Z works as which vertex of H. If H is a cycle, for

instance, the problem is equivalent to asking a cycle of G containing all the vertices in Z,

without regard to the order. Starting with the classical result of Dirac [6], cycles through

prescribed vertices (or prescribed edges) have been widely studied [4, 18, 19, 20, 24, 25,

37].

Again we focus on the case H has exactly four vertices. The relaxed problem for

the case |V (H)| = 4 is also a natural setting for Hajós’ conjecture. If H = K4, then

the relaxed problem has no difference from the original rooted K4-subdivision problem

because of its symmetry. So we mainly consider the case H = K−
4 .

The second contribution in this dissertation is to determine the structures of 3-

connected graphs G with no such relaxed rooted K−
4 -subdivision. Roughly speaking,

such a graph G admits a “decomposition” that separates the four specified terminals into

a few smaller subsets. As we expected, the decomposition of G can be written as a hy-

pergraph in flavor of combinatorics, without any topological condition, such as planarity.

This is an interesting difference from the result in the first contribution. An overview is

given in Section 4.1.

The second contribution is based on [13].

Organaization. The remaining of the dissertation is organized as follows. In Chapter 2,

we collect notation, terminology and theorems that we use throughout the dissertation. In

Chapter 3 and Chapter 4, we deal with the first contribution and the second contribution,

respectively. In Chapter 5, we give a concluding summary of our work.



Chapter 2

Preliminaries

In this chapter, we collect notation and terminology that we use throughout the disser-

tation. We also introduce Perfect’s lemma, which allows us “paths-augmentation”. This

method plays an important role in the dissertation.

2.1 Notation and terminologies

All graphs in this dissertation are finite, undirected and without loops. By a graph we

always mean a simple graph.

Let G be a graph. We let V (G) and E(G) to denote its vertex set and edge set,

respectively. For a subset X of V (G) or E(G), let G \X denote the graph obtained from

G by deleting X. If X = {x} is a singleton, we simply write G \ x. For X ⊆ V (G),

let G|X denote the subgraph of G induced by X, i.e., G|X = G \ (V (G)−X). For two

vertices u, v, let G+uv to denote the (simple) graph obtained from G by adding an edge

uv. For a vertex v of G, we let degG(v) denote the degree of v in G.

For subgraphs of H, J of G, let H ∪ J denote the subgraph of G with vertex set

V (H) ∪ V (J) and edge set E(H) ∪ E(J). Define H ∩ J similarly. Subgraphs H and J

are disjoint if H ∩ J is null, and edge-disjoint if E(H ∩ J) = ∅. A pair (A,B) of subsets

of V (G) is called a separation of G if (G|A) ∪ (G|B) = G; equivalently, A ∪ B = V (G)

and every edge of G has ends both in A or B. It is called a k-separation if |A ∩ B| = k,

and a (≤ k)-separation if |A ∩B| ≤ k.

Paths and cycles have no repeated vertices or edges. For subsets S, T ⊆ V (G) of a

graph G, by an S−T path we mean a path with one end in S, the other end in T , and no

internal vertex in S ∪T . Paths are called internally disjoint if they are mutually disjoint

except for their ends. For a subset A of V (G) ∪E(G), we say that G is A-cyclic if there

is a cycle in G that contains all the elements of A, and A-acyclic otherwise. A vertex

subset S ⊆ V (G) is called stable if no edge has both ends in S. Two graphs G,H are

called homeomorphic if there is a graph which is isomorphic to a subdivision of G and

isomorphic to a subdivision of H. We say that two subsets X,Y ⊆ V (G) are adjacent in

G if X ∩ Y = ∅ and some vertex of X is adjacent to some vertex of Y in G. If Y = {v}
is a singleton, we often say that X and v are adjacent. We let NG(X) denote the set of

vertices adjacent to X in G. If X = {v} is a singleton, we write NG(v) = NG({v}).

13
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For a tree T and two vertices u, v of T , let T [u, v] denote the (unique) path of T

between u and v. Let T [u, v), T (u, v] and T (u, v) denote the graphs obtained from T [u, v]

by deleting {v}, {u} and {u, v}, respectively, which may be null. Let P be a path. We let

end(P ) denote the set of vertices of smallest degree of P . Define int(P ) := V (P )−end(P ).

2.2 Augmenting paths by Perfect’s lemma

We will use the following matroidal properties of (internally) disjoint paths. The following

two results are essentially due to Perfect [48].

Lemma 2.2.1 ([48]). Let G be a graph and let S, T ⊆ V (G). Let k ≥ k′ ≥ 0 be integers,

and let S ′ ⊆ S, T ′ ⊆ T with |S ′| = |T ′| = k′. Suppose that there are k′ disjoint S − T

paths of G covering S ′∪T ′. If there are k disjoint S−T paths of G, then one can choose

such paths with S ′ ∪ T ′ covered.

Lemma 2.2.2 ([48]). Let G be a graph, let S ⊆ V (G) and v be a vertex not in S. Let

k ≥ k′ ≥ 0 be integers, and let S ′ ⊆ S with |S ′| = k′. Suppose that there are k′ paths

of G from v to S, mutually disjoint except for v, all with no internal vertex in S, and

covering S ′. If there are k paths of G from v to S, mutually disjoint except for v, all with

no internal vertex in S, then one can choose such paths with S ′ covered.

We will use these lemmas to “augment” subgraphs in a graph. Let G be a graph, let

H be a subgraph of G, and let v be a vertex of G, not in V (H). Suppose that there are k

internally disjoint {v}−V (H) paths P1, . . . , Pk of G; so, some of these paths may have a

common end in V (H). For the subgraph J := H ∪P1 ∪ · · · ∪Pk of G, we consider “paths

augmentation” from v as follows. Now suppose, for example, that:

(∗) There is no (≤ k)-separation (A,B) of G such that v ∈ A−B and V (H) ⊆ B.

Then it is an immediate consequence of Perfect’s lemma that there are k + 1 internally

disjoint {v} − V (H) paths Q1, . . . , Qk+1 of G such that Qi has the same ends as Pi for

1 ≤ i ≤ k, and Qk+1 has an end in V (H) which was not covered by any of P1, . . . , Pk.

Note that H ∪Q1 ∪ · · · ∪Qk is homeomorphic to J . By abuse of notation, we will often

use the same symbol P1, . . . , Pk to denote Q1, . . . , Qk. Thus, as far as homeomorphisms

of J are concerned, we may assume that there is a path Q = Qk+1 of G with one end

v, the other end in V (J) − V (P1 ∪ · · · ∪ Pk), and no internal vertex in J . We call Q a

path of G obtained by augmenting P1, . . . , Pk from v in J , or simply, an augmented path

from v in J , as long as the paths P1, . . . , Pk of J are clear from the context. Throughout

the dissertation, we will frequently make a recourse to this augmentation method, under

assumptions of connectivity, such as (∗).



Chapter 3

Linking four vertices in 6-connected

graphs

3.1 Formal description of main theorem

To state the main result precisely, we need some definitions. Let G be a graph. A tuple

(A1, . . . , Ak) of subsets of V (G) is called a path-decomposition of G if A1∪· · ·∪Ak = V (G),

every edge of G has both ends in some Ai, and Ai ∩ Ak ⊆ Aj whenever i < j < k.

Let v1, v2, v3, v4 be distinct vertices of G. See Figure 3.1. By a K2−
4 -subdivision on

(v1; v2, v3; v4) in G we mean a subgraph of G consisting of the union of four internally

disjoint paths of G with ends v1v2, v1v3, v1v4, v2v3, respectively. By a K−
4 -subdivision on

(v1, v2; v3, v4) in G we mean a subgraph of G consisting of the union of five internally

disjoint paths of G with ends v1v2, v1v3, v1v4, v2v3, v2v4, respectively.

Definition 3.1.1 (discoid graph). Let G be a graph and v1, v2, v3, v4 be distinct vertices

of G. A tuple (L,H1, H2, H3, H4) of edge-disjoint subgraphs L,H1, H2, H3, H4 of G is

called a discoid decomposition of G for (v1, v2, v3, v4) if it satisfies the following:

• G can be written as G = L ∪H1 ∪H2 ∪H3 ∪H4;

• v1, v2, v3, v4 ∈ V (L), H1 ∩H3 and H2 ∩H4 are null and V (Hj ∩Hj+1) = {vj+1} for

1 ≤ j ≤ 4, where indices are read modulo 4;

• for some labelings V (L ∩Hj)− {vj, vj+1} = {bj1, . . . , b
j
kj
} (1 ≤ j ≤ 4), the graph L

can be drawn in a disc with v1, b
1
1, . . . , b

1
k1
, v2, b

2
1, . . . , b

2
k2
, v3, b

3
1, . . . , b

3
k3
, v4, b

4
1, . . . , b

4
k4

on the boundary in this order listed;

• for each 1 ≤ j ≤ 4, if kj ≥ 2 then there is a path-decomposition (Aj
1, . . . , A

j
kj
) of

Hj such that

– vj, b
j
1 ∈ Aj

1 − Aj
2 and vj+1, b

j
kj

∈ Aj
kj
− Aj

kj−1,

– bji ∈ Aj
i − Aj

i−1 ∪ Aj
i+1 for 1 < i < kj, and

– |Aj
i ∩ Aj

i+1| = 2 for 1 ≤ i < kj.

We say thatG is discoid for (v1, v2, v3, v4) ifG has a discoid decomposition for (v1, v2, v3, v4).

See Figure 3.2 for an illustration of a discoid graph. The structure of the graph L is

nothing but an obstruction for 2-linked graphs. Indeed, there are no two disjoint paths

15
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v3 v2

v4 v1

v2 v3

v4 v1

Figure 3.1: A K2−
4 -subdivision on (v1; v2, v3; v4) (left) and a K−

4 -subdivision on
(v1, v2; v3, v4) (right).

v1 v2

v3v4

H1

H2

H3

H4

L (planar)

b21

b11

b12

b13

b1k1

A1
1

A1
2

A1
3

A1
k1

b31b32

Figure 3.2: A discoid graph for (v1, v2, v3, v4).

of L with ends v1v3, v2v4, respectively, because L can be drawn in a disc with v1, v2, v3, v4
on the boundary in order. Furthermore, as easily checked, for 1 ≤ j ≤ 4 the graph

L ∪ Hj contains no path through vj+2, vj, vj+1, vj−1 in order. The structure of L ∪ Hj

is a canonical obstruction for P4-linked graphs, as seen in the result of Yu [63, 64, 65].

Similarly, one easily sees that the graph L∪H1∪H3 contains no cycle through v1, v2, v4, v3
in order; the graph L∪H1 ∪H2 contains no K2−

4 -subdivision on (v2; v1, v3; v4); the graph

L ∪ H1 ∪ H2 ∪ H4 contains no K−
4 -subdivision on (v1, v2; v3, v4); the discoid graph G =

L ∪H1 ∪H2 ∪H3 ∪H4 contains no subdivision of K4 with v1, v2, v3, v4 branch vertices.

Our main result is the following, which says that the obstructions are all described by

such discoid decompositions if G is 6-connected. In the theorem, one can catch a glimpse

of an extension of the two-paths theorem that characterizes 2-linked graphs.

Theorem 3.1.2. Let G be a graph and v1, v2, v3, v4 be distinct vertices of G. If G is

6-connected, then all of the following statements hold.
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(1) Either G contains a path through v1, v2, v3, v4 in this order listed, or there is a

discoid decomposition (L,H1, H2, H3, H4) of G for (v2, v3, v1, v4) such that E(H2) =

E(H3) = E(H4) = ∅.
(2) Either G contains a cycle through v1, v2, v3, v4 in this order listed, or there is a

discoid decomposition (L,H1, H2, H3, H4) of G for (v1, v2, v4, v3) or (v1, v4, v2, v3)

such that E(H2) = E(H4) = ∅.
(3) Either G contains a K2−

4 -subdivision on (v2; v1, v3; v4), or there is a discoid decom-

position (L,H1, H2, H3, H4) of G for (v1, v2, v3, v4) such that E(H3) = E(H4) = ∅.
(4) Either G contains a K−

4 -subdivision on (v1, v2; v3, v4), or there is a discoid de-

composition (L,H1, H2, H3, H4) of G for (v1, v2, v3, v4) or (v1, v2, v4, v3) such that

E(H3) = ∅.
(5) Either G contains a subdivision of K4 with v1, v2, v3, v4 branch vertices, or G is

discoid for (vi1 , vi2 , vi3 , vi4) for some ordering {vi1 , vi2 , vi3 , vi4} = {v1, v2, v3, v4}.

Theorem 3.1.2 leads to several corollaries. First one can show that discoid graphs

cannot be 7-connected, which yields the following.

Theorem 3.1.3. Every 7-connected graph contains a subdivision of K4 with prescribed

branch vertices.

As noted in Section 1.2, this generalizes the results of [45, 36] that 7-connected graphs

are 4-ordered and K2−
4 -linked.

Next one can show that 6-connected discoid graphs have many small dense subgraphs,

especially, triangles. This yields the following.

Theorem 3.1.4. Every 6-connected triangle-free graph contains a subdivision of K4 with

prescribed branch vertices.

As noted in Section 1.2, this solves the case n = 4 of a conjecture of Mader: Every(
n
2

)
-connected graph with sufficiently large girth is Kn-linked.

An outline of the proof of our results, Theorems 3.1.2, 3.1.3 and 3.1.4, including the

whole structure of Chapter 3, is given in Section 3.2.

Remark 3.1.5. We remark that a 6-connected discoid graph exists. Indeed, the 6-

connected non-P4-linked graph constructed in [7] (see Figure 3.3) is discoid. To see

this, consider a graph G which admits a discoid decomposition (L,H1, H2, H3, H4) for

(v1, v2, v3, v4) that satisfies the following: E(Hj) = ∅ and V (Hj) = {vj, vj+1} for 2 ≤
j ≤ 4; the path-decomposition (A1

1, . . . , A
1
k1
) of H1 satisfies that |A1

1| = |A1
k1
| = 4,

|A1
2| = |A1

k1−1| = 3 and |A1
i | = 5 for 3 ≤ i ≤ k1 − 2; each part A1

i induces a clique of G

and contains no other “inner vertex”, i.e., A1
1−A1

2 = {v1, b11}, A1
k1
−A1

k1−1 = {v2, b1k1} and

A1
i −A1

i−1 ∪A1
i+1 = {b1i } for 1 < i < k1. By choosing a well-connected near-triangulation

L, one can construct a 6-connected graph G = L ∪ H1 ∪ H2 ∪ H3 ∪ H4. Note that G

contains no path through v3, v1, v2, v4 in order. See [7, Section 4.A] for an example of the

construction of L.

Remark 3.1.6. One may impose other several conditions on a discoid decomposition of

a 6-connected graph G by its connectivity: The size kj = |V (L∩Hj)−{vj, vj+1}| satisfies
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v3
v1

v4
v2

L (planar)

Figure 3.3: A 6-connected graph constructed in [7] that contains no path through
v3, v1, v2, v4 in order.

either kj = 0 or kj ≥ 4; each part Aj
i has no other “inner” vertices, i.e., A

j
1−Aj

2 = {vj, bj1},
Aj

kj
− Aj

kj−1 = {vj+1, b
j
kj
} and Aj

i − Aj
i−1 ∪ Aj

i+1 = {bji} for 1 < i < kj; it must hold that

|Aj
2| = |Aj

kj−1| = 3; one can choose L to be a 2-connected planar graph having an outer

cycle that contains all the vertices in V (L) ∩ V (H1 ∪ H2 ∪ H3 ∪ H4), etc. However,

for simplicity we adopt Definition 3.1.1 that only requires the most essential condition

that each Hj admits a path-decomposition. We also expect its smooth connection to

descriptions of possible decompositions for graphs G of smaller connectivity in our future

work.

3.2 Definitions and outline of proof

The most of the chapter is devoted to proving Theorem 3.1.2 (5). The nontrivial part is

that if a 6-connected graph contains no subdivision of K4 on prescribed four vertices then

the graph admits a discoid decomposition as in Theorem 3.1.2 (5). We first give rough

ideas derived from the paper of [45] and then describe more details of our proof.

3.2.1 Rough ideas

Before describing the outline of the proof, we first explain how our proof is inspired by

the recent paper of McCarty, Wang and Yu [45]. They showed that every 7-connected

graph G is 4-ordered. Let v1, v2, v3, v4 be vertices of G. They first showed that if G

contains no cycle through v1, v2, v3, v4 in this order specified, then G contains a subgraph

J homeomorphic to the graph as in Figure 3.4 (or the graph in Figure 3.4 with v2, v4
interchanged). The subgraph J is called a “skeleton” in [45], and its construction is based

on Menger’s theorem. The subgraph J is extremal in G in a sense that J itself contains no

cycle through v1, v2, v3, v4 in order, but a “bold jump” of a path P of G makes the graph

J∪P immediately contain such a cycle. Thus, every component of G\V (J) is adjacent to

a local part of J , respectively. This leads the whole graph G to have a structure similar to

J . More precisely, G contains a cycle C1 containing v1, v2 and a cycle C2 containing v3, v4,
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v3 v4

v1 v2

Figure 3.4: A graph used in the proof in [45].

mutually disjoint, such that H := G \ V (C1 ∪ C2) is a 3-connected planar graph whose

outer cycle contains four distinct vertices which are neighbors of v1, . . . , v4, respectively.

This part of the proof is based on the two-paths theorem. Finally, by a discharging

method applied to the planar graph H, they showed that G contains a (≤ 6)-cut or a

cycle through v1, v2, v3, v4 in order. Since G is 7-connected, one obtains the latter, as

required.

Our proof is similar to their proof. Suppose that G contains no K4-subdivision with

v1, v2, v3, v4 branch vertices. By Menger’s theorem, we first construct a “skeleton”, which

is a subgraph of G homeomorphic to the graph in the right of Figure 3.5 (or the graph

in the figure with v1, v2, v3, v4 permuted). This subgraph is extremal in G in a sense

that it contains no K4-subdivision with v1, v2, v3, v4 branch vertices, but a “bold jump”

added to it immediately results in such a subdivision of K4. Thus, the whole graph G

has a structure not so far from it. This part of the proof is also based on the two-paths

theorem. Finally, we investigate each local part of G carefully, and conclude that G has

a discoid decomposition. We give more details below.

3.2.2 Outline of proof

Let us now describe the details of our proof. Let G be a graph. For distinct four vertices

v1, v2, v3, v4 of G, a bicycle J on (v1, v2, v3, v4) in G is a subgraph C ∪ C ′ of G consisting

of the union of two cycles C,C ′ both containing v1, v2, v3, v4 in this order listed, mutually

disjoint except for {v1, v2, v3, v4}; see Figure 3.5 (left) for an illustration of a bicycle. Let

Z ⊆ V (G) with |Z| = 4. By a bicycle J on Z we mean a bicycle on (v1, v2, v3, v4) for

some ordering Z = {v1, v2, v3, v4}. A cycle of J containing exactly two vertices of Z is

called a tire of J ; there are exactly four distinct tires of J . The interior of a tire C of

J is the graph C \ Z. By a K4-subdivision on Z we mean a subdivision of K4 with the

four branch vertices in Z.

The following lemma says that a bicycle on Z is useful for constructing aK4-subdivision

on Z. For a subgraph H of a graph G, by shrinking H in G we mean deleting V (H) and

adding a new vertex and edges from it to all the vertices in NG(V (H)).

Lemma 3.2.1. Let G be a graph and v1, v2, v3, v4 be distinct vertices of G. Suppose that

there is a bicycle on (v1, v2, v3, v4) in G. Let G′ be a graph obtained from G by shrinking

the interior of each tire of the bicycle into a single vertex, respectively. If there are two

disjoint paths of G′ with ends v1v3, v2v4, respectively, then there is a K4-subdivision on

{v1, . . . , v4} in G.

Proof. Let Z := {v1, . . . , v4}. Let J be a bicycle on (v1, v2, v3, v4) in G. Let Ci denote
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v4 v3

v1 v2

v4 v3

v1 v2

Figure 3.5: A bicycle on (v1, v2, v3, v4) (left) and a skeleton on (v1, v2, v3, v4) (right).

the tire of J with vi, vi+1 ∈ V (Ci) for 1 ≤ i ≤ 4, where indices are read modulo 4. Let G′

be a graph obtained from G by shrinking each Ci \ {vi, vi+1} into a single vertex, which

we will denote by ci for 1 ≤ i ≤ 4. Since Ci \ {vi, vi+1} is non-null, ci is adjacent to vi
and vi+1 in G′ for 1 ≤ i ≤ 4. Suppose that there are two disjoint paths of G′ with ends

v1v3, v2v4, respectively. Then there are two disjoint paths of G′ such that one is a path

from {v1, c1, c4} to {v3, c2, c3} and the other is a path from {v2, c1, c2} to {v4, c3, c4}, both
with no internal vertex in Z ∪ {c1, c2, c3, c4}. This implies that there are two disjoint

paths P,Q of G such that:

• P is a path from V (C1 ∪ C4) − {v2, v4} to V (C2 ∪ C3) − {v2, v4} and Q is a path

from V (C1 ∪ C2)− {v1, v3} to V (C3 ∪ C4)− {v1, v3},
• P and Q have no internal vertex in J , and

• V (Ci)− {vi, vi+1} intersects at most one of P,Q for 1 ≤ i ≤ 4.

It is easy to see that P∪Q∪J contains aK4-subdivision on Z. This proves the lemma.

It is well-known that 2-linked graphs are characterized by planarity. The following

lemma is useful in most of the situations; see also [49, theorems (2.3) and (2.4)].

Lemma 3.2.2 ([51, theorem (2.4)]). Let v1, v2, v3, v4 be distinct vertices of a graph G.

If there is no (≤ 3)-separation (A,B) of G such that v1, v2, v3, v4 ∈ A and |B − A| ≥ 2,

then either there are two disjoint paths of G with ends v1v3, v2v4 respectively, or G can

be drawn in a disc with v1, v2, v3, v4 on the boundary in order.

By Lemma 3.2.1 one can apply the “two-paths theorem” (Lemma 3.2.2) to the shrunk

graph G′. Thus the graph G′ can be drawn in a disc, unless it contains a small cut. To

increase the connectivity of G′, we define a better bicycle as follows.

Let G be a graph. For distinct vertices v1, v2, v3, v4 of G, a skeleton on (v1, v2, v3, v4)

in G is a subgraph J ∪H ∪P1∪P2∪P3∪P4 of G consisting of the union of a bicycle J on

(v1, v2, v3, v4), a cycle H of G \ V (J) and four disjoint paths P1, P2, P3, P4 of G between

{v1, v2, v3, v4} and V (H), all with no internal vertex in J ∪ H, such that the ends of

P1, P2, P3, P4 in H occur in H in this order listed; see Figure 3.5 (right) for an illustration

of a skeleton. For Z ⊆ V (G) with |Z| = 4, by a skeleton on Z in G we mean a skeleton

on (v1, v2, v3, v4) in G for some ordering Z = {v1, v2, v3, v4}.
The first step is to show the following lemma. The proof based on the “path-

augmentation method” is given in Section 3.3.

Lemma 3.2.3. Let G be a graph and let Z ⊆ V (G) with |Z| = 4. If G is 6-connected,

then G contains a K4-subdivision on Z or a skeleton on Z.
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For a cycle C of a graph G and two vertices u1, u2 of C, we say that C is lean with

respect to u1, u2 in G if there is no cycle C ′ of G such that u1, u2 ∈ V (C ′) ⊊ V (C). Let

Z ⊆ V (G) with |Z| = 4. A bicycle on Z in G is lean in G if each tire of the bicycle is

lean in G with respect to the two vertices of Z that the tire contains. A bicycle J on Z

in G is nice if G \ V (J) is 2-connected and there is a matching of G of size 4 from Z to

V (G)− V (J).

The next step is to show the following lemma, which says that we may augment a

skeleton to obtain a nice and lean bicycle in 6-connected graphs. The proof is given in

Section 3.5. For the proof we use some lemmas in [45] on separating pairs, which we shall

introduce in Section 3.4.

Lemma 3.2.4. Let G be a 6-connected graph and let Z ⊆ V (G) with |Z| = 4. If there is

a skeleton on Z in G, then G contains a K4-subdivision on Z or a nice and lean bicycle

on Z.

Lemma 3.2.3 and Lemma 3.2.4 immediately lead to the following lemma.

Lemma 3.2.5. Let G be a 6-connected graph and let Z ⊆ V (G) with |Z| = 4. If there is

no K4-subdivision on Z in G, then there is a nice and lean bicycle on Z in G.

When a nice and lean bicycle J exists in G, the shrunk graph G′ in Lemma 3.2.1 be-

comes well-connected. Now one can apply the two-paths theorem to obtain the following

lemma. The proof is given in Section 3.6.

Lemma 3.2.6. Let G be a 6-connected graph and v1, v2, v3, v4 be distinct vertices of G.

Suppose that there is a nice and lean bicycle on (v1, v2, v3, v4) in G. Let G′ be a graph

obtained from G by shrinking the interior of each tire of the bicycle into a single vertex,

respectively. If G contains no K4 subdivision on {v1, . . . , v4}, then G′ can be drawn in a

disc with v1, v2, v3, v4 on the boundary in order.

Fix a drawing of G′ in Lemma 3.2.6, and expand the shrunk tires of the bicycle to

the original ones. Now we obtain a “near-embedding” of G in a plane as in the following

lemma; see Figure 3.6 for intuition.

Lemma 3.2.7. Let G be a 6-connected graph and v1, v2, v3, v4 be distinct vertices of G.

Let J be a nice and lean bicycle on (v1, v2, v3, v4). Let Ci denote the tire of J with

vi, vi+1 ∈ V (Ci) for 1 ≤ i ≤ 4, where indices are read modulo 4. If there is no K4-

subdivision on {v1, . . . , v4} in G, then G \ V (J) contains a cycle K such that:

• G \ V (J) can be drawn in a disc with K on the boundary, and

• there are eight distinct vertices x1, . . . , x8 occurring in K in this order listed such

that

– x2i−1, x2i ∈ NG(vi),

– NG(vi) ⊆ V (Ci ∪ Ci−1) ∪ V (K⟨x2i−1, x2i⟩), and
– NG(V (Ci)− {vi, vi+1}) ⊆ {vi, vi+1} ∪ V (K⟨x2i, x2i+1⟩)

for 1 ≤ i ≤ 4, where K⟨xj, xj+1⟩ denotes the subpath of K between xj and xj+1 with

no other vertex in {x1, . . . , x8} for 1 ≤ j ≤ 8, with indices read modulo 8.
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Figure 3.6: A near-embedding in a plane in Lemma 3.2.7.

Proof. Let H := G\V (J) and let G′ denote the graph obtained from G by shrinking each

Ci\{vi, vi+1} into a single vertex, denoted by ci for 1 ≤ i ≤ 4. By Lemma 3.2.6, the graph

G′ can be drawn in a disc with v1, v2, v3, v4 on the boundary in order. Fix a drawing of G′.

(Such a drawing of G′ is essentially unique because G′ is 3-connected, as easily checked.

But we do not use this fact.) Since J is nice, H is 2-connected. LetK be the outer cycle of

H in the drawing of G′. Since J is nice, there is a matching of G of size 4 from {v1, . . . , v4}
to V (H). By the planarity of G′, we have NG′(vi) ⊆ {vi+1, vi−1, ci, ci−1} ∪ V (K) for

1 ≤ i ≤ 4. Also there are eight vertices x1, . . . , x8 occurring in K in this order listed

such that x2i−1, x2i ∈ NG(vi) and NG(vi)∩V (K) ⊆ V (K⟨x2i−1, x2i⟩) for 1 ≤ i ≤ 4. Thus,

NG(vi) ⊆ V (Ci ∪ Ci−1) ∪ V (K⟨x2i−1, x2i⟩) for 1 ≤ i ≤ 4.

Since ci is adjacent to vi and vi+1 in G′, we have NG′(ci) ⊆ {vi, vi+1}∪V (K⟨x2i, x2i+1⟩)
for 1 ≤ i ≤ 4 by the planarity of G′; thus, NG(V (Ci) − {vi, vi+1}) ⊆ {vi, vi+1} ∪
V (K⟨x2i, x2i+1⟩).

We show that x1, . . . , x8 are distinct. Since G is 6-connected, we have |NG′(ci) ∩
V (K⟨x2i, x2i+1⟩)| = degG′(ci) − |{vi, vi+1}| ≥ 6 − 2 = 4 for 1 ≤ i ≤ 4. In particular,

x2i ̸= x2i+1 for 1 ≤ i ≤ 4. Since J is lean, there is no chord of Ci with an end in

{vi, vi+1}, and so we have |NG(vi) ∩ V (Ci)| = |NG(vi) ∩ V (Ci−1)| = 2 for 1 ≤ i ≤ 4.

Hence |NG(vi) ∩ V (K⟨x2i−1, x2i⟩)| = degG(vi)− |NG(vi) ∩ V (Ci ∪ Ci−1)| ≥ 6− 4 = 2 for

1 ≤ i ≤ 4. This implies that x2i−1 ̸= x2i for 1 ≤ i ≤ 4. Therefore, x1, . . . , x8 are distinct.

This proves the lemma.

The last step is to investigate chords of the tires Ci and edges between Ci and

K⟨x2i, x2i+1⟩. A rough sketch is as follows. Let us take a closer look at the graph

G|V (C1) ∪ V (K⟨x2, x3⟩), say. If there is no K4-subdivision on Z in G, then there is

no path of G|V (C1) ∪ V (K⟨x2, x3⟩) through x3, v1, v2, x2 in order. If v1v2 /∈ E(G), let

H1 be a graph obtained from G|V (C1) ∪ V (K⟨x2, x3⟩) by deleting edges spanned by

{v1, v2} ∪ V (K⟨x2, x3⟩). Let x2 = b1, b2, . . . , bk = x3 be the vertices of the path K⟨x2, x3⟩
from x2 to x3 in order. By applying Menger’s theorem to H1 repeatedly, one can find

a path-decomposition (A1, . . . , Ak) of H1 with v1, b1 ∈ A1 − A2, v2, bk ∈ Ak − Ak−1,

bi ∈ Ai −Ai−1 ∪Ai+1 for 1 < i < k and |Ai ∩Ai+1| = 2 for 1 ≤ i < k. Now the graph H1
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Figure 3.7: Fi-frames.

plays the role in a discoid decomposition of G for (v1, v2, v3, v4). If v1v2 ∈ E(G) then one

can show that G|V (C1) ∪ V (K⟨x2, x3⟩) is a planar graph with an outer cycle consisting

of the union of K⟨x2, x3⟩, x3v2, v2v1 and v1x2. Now the graph H1 with V (H1) = {v1, v2}
and E(H1) = ∅ plays the role in a discoid decomposition of G for (v1, v2, v3, v4). A more

precise proof is given in Section 3.8, which finishes the proof of Theorem 3.1.2 (5).

The other statements (1), (2), (3) and (4) in Theorem 3.1.2 can be proved in a similar

way, based on Lemma 3.2.7. We only give a sketch of the proof of Theorem 3.1.2 (4) in

Section 3.8.

We now turn to some corollaries of the main theorem, namely, Theorems 3.1.3 and 3.1.4.

Our goal is to show that if a 6-connected graph G is 7-connected or triangle-free then

there is a K4-subdivision on Z in G. We may apply Theorem 3.1.2, but it seems quicker

to start from Lemma 3.2.7. The main task is based on edge-counting in planar graphs.

Let K be the cycle of H := G \ V (J) as in Lemma 3.2.7. Since K separates J and

H \ V (K), every vertex in H \ V (K) has degree ≥ 6 in H (as G is 6-connected), and

moreover, has degree ≥ 7 in H if G is 7-connected. By the planarity, H has average

degree < 6, and moreover, has average degree < 4 if it is triangle-free. This implies that

if G is 7-connected or triangle-free, then some vertex in K has small degree in H, and

hence, has many neighbors in V (J). This fact can be used to find a K4-subdivision on Z

or a small cut of G, as required. A more precise proof is given in Section 3.9.

3.3 Proof of Lemma 3.2.3

The aim of this section is to prove Lemma 3.2.3. Let G be a graph and let Z ⊆ V (G)

with |Z| = 4. See Figure 3.7. For 0 ≤ i ≤ 13, an Fi-frame on Z in G (or a frame of

Fi on Z in G) is a subgraph of G homeomorphic to the multigraph Fi as in Figure 3.7,

where the four white vertices correspond to vertices of Z for some permutation, the wavy

lines represent paths of length ≥ 0 and the other (straight or bent) lines represent paths

of length > 0. Thus an F0-frame is exactly a K4-subdivision on Z and an F13-frame is

exactly a skeleton on Z. When the set Z we consider is clear from the context, we often

omit “on Z” and simply say an Fi-frame or a frame of Fi.

The first step is to construct an Fi-frame for some 0 ≤ i ≤ 12 in 5-connected graphs.

We begin with the following lemma, whose proof is based on Lemma 2.2.2. For a family
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H of subgraphs of G, let
∪

H denote the subgraph of G consisting of the union of all

members in H, i.e., V (
∪

H) =
∪

H∈H V (H) and E(
∪
H) =

∪
H∈H E(H).

Lemma 3.3.1. Let G be a graph, k and m be integers with m + 1 ≥ k ≥ 2 and let

Z ⊆ V (G) with |Z| = k. Suppose that there is no (< m)-separation (A,B) of G with

|Z ∩ (A−B)| = 1 and B −A ̸= ∅. If Z is not a clique of G, then there is a family T of

subgraphs of G satisfying the following:

(i) Each member of T is a tree of G having ≥ 2 vertices whose leaves are all in Z.

(ii) Members of T are mutually disjoint except for their leaves.

(iii) Every vertex of Z is contained in exactly m members of T .

Proof. Assume that Z is not a clique of G. We say that a tree of G having ≥ 2 ver-

tices whose leaves are all in Z is a tree on Z. A family T of subgraphs of G is called

feasible if it satisfies (i), (ii) and the condition that every vertex v of Z is contained in

at most m members of T , i.e., deg∪ T (v) ≤ m; so, T = ∅ is feasible. We call the value∑
v∈Z deg∪ T (v) =

∑
T∈T |V (T ) ∩ Z| the cost of T . Let IT denote the simple graph with

vertex set Z in which two vertices v, v′ are adjacent if and only if there is a member of T
which is a path between v and v′. Choose a feasible family T with the cost maximum,

and subject to that with |E(IT )| maximum. Let δ := minv∈Z deg∪ T (v). If δ = m, then

T satisfies (iii), and so we are done. Suppose to the contrary that δ < m.

Let x ∈ Z with deg∪ T (x) = δ. Let Tx = {T1, . . . , Tδ} be the set of members of T
containing x. For 1 ≤ i ≤ δ let Pi be the longest path of Ti that starts from x and

contains no vertex of Ti of degree ≥ 3 as an internal vertex; so, the other end of Pi, which

we shall denote by pi, is the other leaf of Ti if Ti is a path, and a vertex of degree ≥ 3

in Ti otherwise. Let H be the subgraph of G obtained from the graph
∪
T by deleting∪

1≤i≤δ V (Pi \ pi). In other words, H consists of the union of all the members in T − Tx

and the graphs Ti \ V (Pi \ pi) (1 ≤ i ≤ δ).

We show that there is a (≤ δ)-separation (A,B) of G with x ∈ A−B and (Z−{x})∪
V (H) ⊆ B. For suppose to the contrary that there is no such a separation. Then we may

assume from Lemma 2.2.2 that there is a path P of G with one end x, the other end in

(Z−{x})∪V (
∪

T )−V (P1∪· · ·∪Pδ) and no internal vertex in (Z−{x})∪V (
∪
T ). Let y

denote the other end of P . If y ∈ V (T )−Z for some T ∈ T −Tx, then (T −{T})∪{T ∪P}
is feasible and has larger cost than T , a contradiction. If y ∈ V (T )−Z for some Ti ∈ Tx,

then Ti is a tree with ≥ 3 leaves. Let Q be the longest subpath of Ti[y, pi] that starts

from y and contains no vertex of Ti of degree ≥ 3 as an internal vertex. Now the graph

obtained from Ti ∪ P by deleting internal vertices and edges of Q can be written as

the union of two trees T ′, T ′′ on Z such that V (Ti) ∩ Z = (V (T ′) ∩ Z) ∪ (V (T ′′) ∩ Z)

and {x} = V (T ′) ∩ V (T ′′). But (T − {Ti}) ∪ {T ′, T ′′} is feasible and has larger cost

than T , a contradiction. Thus y ∈ Z − {x}, and so xy /∈ E(IT ). If there is a member

T ∈ T containing y and having ≥ 3 leaves, let Q be the longest subpath of T that starts

from y and contains no vertex of T of degree ≥ 3 as an internal vertex. Now the graph

obtained from T ∪ P by deleting internal vertices and edges of Q can be written as the

union of two trees T ′, T ′′ on Z such that V (T ) ∩ Z = (V (T ′) ∩ Z) ∪ (V (T ′′) ∩ Z) and

{x} = V (T ′) ∩ V (T ′′). But (T − {T}) ∪ {T ′, T ′′} is feasible and has larger cost than T ,



CHAPTER 3. LINKING FOUR VERTICES IN 6-CONNECTED GRAPHS 25

a contradiction. Therefore, every member of T containing y is a path having the other

end in Z − {x, y}. If deg∪ T (y) < m, then T ∪ {P} is feasible and has larger cost than

T , a contradiction; hence deg∪ T (y) = m. Since |Z − {x, y}| = k − 2 < m, there are two

distinct members T, T ′ of T which are paths starting from y and ending at a common

vertex in Z − {x, y}. Now T ′ := (T − {T ′}) ∪ {P} is feasible and has the same cost

as T , while |E(IT ′)| > |E(IT )|, contrary to the choice of T . This proves that there is a

(≤ δ)-separation (A,B) of G with x ∈ A−B and (Z − {x}) ∪ V (H) ⊆ B.

Note that there are δ paths of G|A from x to A ∩ B, mutually disjoint except for x,

which are indeed subpaths of P1, . . . , Pδ; so |A∩B| = δ. Since δ < m, by our assumption

we have B − A = ∅. This implies two facts. First, since Z − {x} ⊆ A ∩ B, every vertex

of Z is covered by some member of Tx which is a path. In particular, x has degree k − 1

in IT , and so,∑
T∈Tx

|V (T ) ∩ Z| ≤ 2 degIT (x) + k(|Tx| − degIT (x)) = kδ − (k − 1)(k − 2).

Second, every member in T −Tx is a path of length 1 with both ends in Z−{x}; and so,

∑
T∈T −Tx

|V (T ) ∩ Z| ≤ 2

(
k − 1

2

)
= (k − 1)(k − 2).

Consequently,

kδ ≤
∑
v∈Z

deg∪ T (v) =
∑
T∈T

|V (T ) ∩ Z| =
∑
T∈Tx

|V (T ) ∩ Z|+
∑

T∈T −Tx

|V (T ) ∩ Z| ≤ kδ

and so we have equality throughout. This means that Z − {x} is a clique of G and

deg∪ T (v) = δ for every v ∈ Z.

Therefore, we have shown that if a vertex x ∈ Z satisfies deg∪ T (x) = δ then Z −{x}
is a clique and deg∪ T (v) = δ for every v ∈ Z. This implies that Z − {v} is a clique of

G for every v ∈ Z. Thus, Z is a clique, contrary to our assumption. This completes the

proof.

By Lemma 3.3.1 applied to k = 4 and m = 5, one obtains an Fi-frame for some

0 ≤ i ≤ 12 in 5-connected graphs.

Lemma 3.3.2. Let G be a graph and let Z ⊆ V (G) with |Z| = 4. If there is no (≤ 4)-

separation (A,B) of G with |Z ∩ (A − B)| = 1 and B − A ̸= ∅, then G contains an

Fi-frame on Z for some 0 ≤ i ≤ 12.

Proof. Suppose that there is no K4-subdivision on Z (F0-frame) in G; so Z is not a clique

of G. By Lemma 3.3.1 applied to k = 4 and m = 5, we obtain a family T of subgraphs

of G satisfying the following:

(i) Each member of T is a tree of G having ≥ 2 vertices whose leaves are all in Z.

(ii) Members of T are mutually disjoint except for their leaves.

(iii) Every vertex of Z is contained in exactly five members of T .
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Let Z = {v1, v2, v3, v4}. Let H be a complete graph on Z, and for 1 ≤ i < j ≤ 4 let

eij denote the edge of H with ends vi, vj. Construct a bipartite graph J with color classes

E(H) and T in which eij ∈ E(H) and T ∈ T are adjacent if and only if vi, vj ∈ V (T ).

Since there is no K4-subdivision on Z in G, there is no matching of size 6 in J . By Hall’s

theorem there is a subset X of E(H) with |NJ(X)| < |X|. Assume that X is chosen to

be minimal. Let us denote TX := NJ(X). Then |TX | = |X| − 1. Every member in TX is

adjacent to ≥ 2 elements of X in J by the minimality of X. Hence we have:

(1) |V (T ) ∩ Z| ≥ 3 for each T ∈ TX .

For 1 ≤ i ≤ 4, let Ti denote the family consisting of the members of T containing vi.

By (iii) we have:

(2) |Ti| = 5 for 1 ≤ i ≤ 4.

We consider all cases of X, up to isomorphisms of the graph H[X] := (Z,X).

First suppose that H[X] contains an isolated vertex, v4 say. Assume that X is either

{e12}, {e12, e13} or {e12, e13, e23}. If X = {e12}, then T1 ∩ T2 = ∅ (as TX = ∅) and so

T1 ∪ T2 ⊆ T3 ∪ T4. Now 10 = |T1| + |T2| = |T1 ∪ T2| ≤ |T3 ∪ T4| ≤ |T3| + |T4| = 10 and

we have equality throughout. Hence T3 ∩ T4 = ∅, and so, every member of T is a path

between {v1, v2} and {v3, v4}. We deduce from (2) that T consists of k, 5 − k, k, 5 − k

paths with ends v1v3, v3v2, v2v4, v4v1, respectively, for some 0 ≤ k ≤ 5. Thus the graph∪
T is a frame of F1, F3 or F10, as required. If X = {e12, e13}, then the unique member

of TX is a tree whose leaves are v1, v2, v3 by (1), while T1−TX consists of four paths with

ends v1, v4. We deduce from (2) that T − T1 consists of one tree with leaves v2, v3, v4
and three paths with ends v2, v3. Thus the graph

∪
T is a frame of F4, as required. If

X = {e12, e13, e23}, then every member in T − TX is a path with one end v4; but then

|T4| ≥ |T − TX | =
∑

1≤i≤3 |Ti − TX | ≥ 3 · 3 = 9, contrary to (2).

We next consider the case H[X] contains a vertex of degree 3. Assume that e12, e13,

e14 ∈ X, say. Then |TX | ≥ |T1| = 5, and so, |X| = 6 and |TX | = 5. Hence X = E(H) and

T = TX . Now |T | = 5, and so T = Ti for 1 ≤ i ≤ 4. Thus every member of T contains

all the vertices in Z. If some member of T contains two vertices of degree ≥ 3, then
∪
T

contains a K4-subdivision on Z, a contradiction. So each of them has exactly one vertex

of degree ≥ 3, and so,
∪

T is an F12-frame, as required.

We may thus assume that each vertex of H[X] has degree one or two. Then H[X]

contains two independent edges, e12, e34, say. Every member of T −TX is a path between

{v1, v2} and {v3, v4}. In particular, we have∑
T∈TX

|Z ∩ V (T )| =
∑
T∈T

|Z ∩ V (T )| −
∑

T∈T −TX

|Z ∩ V (T )|

=
∑
1≤i≤4

|Ti| − 2|T − TX |

= 20− 2|T − TX |.

This implies that:

(3) The number of members of TX having exactly three leaves is even.
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We may assume that X is either {e12, e34}, {e12, e23, e34} or {e12, e23, e34, e14}. If X =

{e12, e34}, then the unique member of TX is adjacent to e12, e34 in J by the minimality of

X, and so has four leaves in G. We deduce from (2) that T −TX consists of k, 4−k, k, 4−k

paths with ends v1v3, v3v2, v2v4, v4v1, respectively, for some 0 ≤ k ≤ 4. If k = 0, 4 then the

graph
∪

T is an F2-frame or contains an F3-frame. If 0 < k < 4 then the unique member

of TX contains no two disjoint paths with ends v1v2, v3v4, respectively; for otherwise,
∪

T
contains a K4-subdivision on Z, a contradiction. If k = 1, 3 then the graph

∪
T is an

F6-frame or contains an F10-frame. If k = 2 then the graph
∪
T is an F11-frame, as

required.

If X = {e12, e23, e34}, then every member of T − TX is a path with ends v1v3, v1v4 or

v2v4. Since NJ({e12, e23}) = NJ(X) = TX by the minimality of X, every member in TX

contains v2; similarly, every member in TX contains v3. Since NJ(e12) ̸= ∅ by the mini-

mality of X, some member in TX contains v1; similarly, some member in TX contains v4.

By (1) and (3), the sequence (Z ∩V (T ))T∈TX is either (Z,Z) or ({v1, v2, v3}, {v2, v3, v4}).
If the former holds, then T − TX consists of three paths with ends v1, v3 and three paths

with ends v2, v4. Thus
∪
T is an F5-frame or contains a frame of F6, F10 or F0, as re-

quired. If the latter holds, then T −TX consists of 3, 1, 3 paths with ends v1v3, v1v4, v2v4,

respectively. Thus
∪

T is an F7-frame, as required.

IfX = {e12, e23, e34, e14}, then every member of T −TX is a path with ends v1v3 or v2v4.

By (2), |T1∩TX | = |T3∩TX | and |T2∩TX | = |T4∩TX |. By (1) and (3), the sequence (Z ∩
V (T ))T∈TX is either (Z,Z, Z), (Z, {v1, v2, v3}, {v1, v3, v4}) or (Z, {v1, v2, v4}, {v2, v3, v4}).
In either case, every member of TX with four leaves contains no two disjoint paths between

{v1, v3} and {v2, v4}; for otherwise, the graph
∪
T contains a K4-subdivision on Z, a

contradiction. Thus, if the first case holds then
∪
T is an F9-frame. If the second or

third case holds then
∪
T is an F8-frame. This completes the proof.

The next task is to “augment” frames of Fi (1 ≤ i ≤ 12) in 6-connected graphs to

obtain a frame of F0 or F13. The proof is based on Lemma 2.2.1.

Lemma 3.3.3. Let G be a graph and let Z ⊆ V (G) with |Z| = 4. Suppose that there is

no (≤ 5)-separation (A,B) of G with |Z ∩ A|, |Z ∩ B| ≥ 2 and |A− B|, |B − A| ≥ 1. If

G contains an Fi-frame on Z for some 1 ≤ i ≤ 12, then G contains a frame of F0 or F13

on Z.

Proof. We shall write Fi → Fi1 , . . . , Fik to denote a claim that if there is an Fi-frame in

G then there is an Fj-frame in G for some j ∈ {i1, . . . , ik}. The result follows from the

following twelve claims (1), (2), . . ., (12): (1) F1 → F2; (2) F2 → F3, F4, F5; (3) F3 →
F6, F7; (4) F4 → F6, F7, F8; (5) F5 → F6, F7, F8, F9; (6) F6 → F0, F10; (7) F7 → F0, F10;

(8) F8 → F0; (9) F9 → F0; (10) F10 → F0, F13; (11) F11 → F0, F10; (12) F12 → F0.

We only show (10), based on Lemma 2.2.1. The other claims can be proved in a

similar way. Let Z = {v1, v2, v3, v4}. Suppose that there is an F10-frame in G which

consists of three paths P1, P2, P3 with ends v1, v2, three paths Q1, Q2, Q3 with ends v3, v4,

two paths R1, R2 with ends v1, v4 and two paths R3, R4 with ends v2, v3, mutually disjoint

except for Z. Let u1, u4 be neighbors of v1, v4 in R1 ∪ R2, respectively, such that u1 ̸=
v4 and u4 ̸= v1. Similarly, let u2, u3 be neighbors of v2, v3 in R3 ∪ R4, respectively,
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such that u2 ̸= v3 and u3 ̸= v2. Now one can see four disjoint paths of G between

V (P1 ∪ P2 ∪ P3) ∪ {u1, u2} and V (Q1 ∪ Q2 ∪ Q3) ∪ {u3, u4}, all with no internal vertex

in V (P1 ∪ P2 ∪ P3 ∪ Q1 ∪ Q2 ∪ Q3) ∪ {u1, u2, u3, u4}, covering vi, ui (1 ≤ i ≤ 4). By the

connectivity of G, we deduce from Lemma 2.2.1 that there are six disjoint paths of G

between V (P1∪P2∪P3)∪{u1, u2} and V (Q1∪Q2∪Q3)∪{u3, u4}, all with no internal vertex

in V (P1∪P2∪P3∪Q1∪Q2∪Q3)∪{u1, u2, u3, u4}, covering vi, ui (1 ≤ i ≤ 4). Therefore,

there are six paths R′
1, . . . , R

′
6 of G between V (P1∪P2∪P3) and V (Q1∪Q2∪Q3), mutually

disjoint except for Z, all with no internal vertex in P1 ∪ P2 ∪ P3 ∪ Q1 ∪ Q2 ∪ Q3, such

that each vertex of Z is covered by exactly two of R′
1, . . . , R

′
6. Now it is not difficult to

see that the union of these twelve paths P1, P2, P3, Q1, Q2, Q3, R
′
1, . . . , R

′
6 is an F13-frame

or contains an F0-frame. This proves (10).

Lemma 3.2.3 immediately follows from Lemma 3.3.2 and Lemma 3.3.3.

3.4 Separating pairs

Definition 3.4.1 (separating pair). Let G be a graph, C be a cycle of G and v1, v2 be

distinct vertices of C. A pair {P1, P2} of two paths P1, P2 of C is called a ({v1, v2}, C)-

separating pair of G if

• P1 is a subpath of one of the paths of C between v1 and v2 and P2 is a subpath of

the other path of C between v1 and v2;

• there is no edge of G between int(P1)∪ int(P2)∪ (V (G)−V (C)) and V (C)−V (P1∪
P2);

• {v1, v2} ∩ end(P1) = {v1, v2} ∩ end(P2).

A ({v1, v2}, C)-separating pair {P1, P2} of G is called minimum if |V (P1)| + |V (P2)| is
minimum.

The notion of separating pairs is due to [45]. Note that a ({v1, v2}, C)-separating pair

of G always exists. Indeed, if P1, P2 are the two internally disjoint paths of C between

v1 and v2, then {P1, P2} is a ({v1, v2}, C)-separating pair of G. For a technical reason,

we adopt the above definition that requires the third condition, which is slightly different

from that of [45]. For the sake of safety and completeness, we give proofs of lemmas

below, whose outline is different from [45]. The lemmas in this section will be frequently

used in the subsequent sections.

Lemma 3.4.2. Let G be a graph, C be a cycle of G and v1, v2 be distinct vertices of C. Let

{P1, P2} be a minimum ({v1, v2}, C)-separating pair of G. If G \V (C) is connected, then

for any (not necessarily distinct) two vertices x, y ∈ int(P1) ∪ int(P2) ∪ (V (G) − V (C)),

at least one of the following holds:

(a) For any i ∈ {1, 2} there is a path of G through x, vi, v3−i, y in order.

(b) G contains a path with ends x, y and a cycle containing v1, v2, mutually disjoint.

In particular, for any x ∈ int(P1) ∪ int(P2) ∪ (V (G) − V (C)) there is a cycle of G \ x

containing v1 and v2.
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Proof. We assume that v1v2 /∈ E(G); the case v1v2 ∈ E(G) is proved in a similar way.

To show the lemma, let x, y ∈ int(P1) ∪ int(P2) ∪ (V (G)− V (C)).

Suppose that there is a (≤ 2)-separation (A,B) of G with v1 ∈ A − B, x ∈ A,

v2 ∈ B −A and y ∈ B. Now A∩B ⊆ V (C). Since G \ V (C) is connected, V (G)− V (C)

is contained in A − B or B − A. Assume that V (G) − V (C) ⊆ B − A, say. Now

x ∈ int(P1)∪ int(P2) and so (int(P1)∪ int(P2))∩A ̸= ∅. This implies that A−B contains

a vertex of P1 ∪ P2. Let P ′
1 := P1|B and P ′

2 := P2|B. Now {P ′
1, P

′
2} is a ({v1, v2}, C)-

separating pair of G, while |V (P ′
1)|+ |V (P ′

2)| < |V (P1)|+ |V (P2)|, a contradiction.

Therefore, there is no such separation (A,B) of G. This implies that there are three

paths of G between {v1, x} and {v2, y}, mutually disjoint except for {v1, v2}, such that

each of v1 and v2 is covered by exactly two of them. Similarly, there are three paths of

G between {v1, y} and {v2, x}, mutually disjoint except for {v1, v2}, such that each of v1
and v2 is covered by exactly two of them. This implies that (a) or (b) holds for x, y. This

proves the lemma.

Lemma 3.4.3. Let G be a graph, C be a cycle of G and v1, v2 be distinct vertices of C.

Let {P1, P2} be a minimum ({v1, v2}, C)-separating pair of G. If C is lean with respect

to v1 and v2 in G, then for any i ∈ {1, 2} and for any x ∈ int(P1) ∪ int(P2) there is a

path of G from x to a vertex in V (G)− V (C), with no internal vertex in V (G)− V (C),

containing x, vi, v3−i in this order listed.

Proof. We assume that v1v2 /∈ E(G); the case v1v2 ∈ E(G) is proved in a similar way.

To show the lemma, let x ∈ int(P1) ∪ int(P2).

Suppose that there is a (≤ 2)-separation (A,B) of G with v1 ∈ A − B, x ∈ A,

v2 ∈ B −A and V (G)− V (C) ⊆ B. Now A ∩B ⊆ V (C) and so V (G)− V (C) ⊆ B −A.

Since x ∈ (int(P1)∪ int(P2))∩A ̸= ∅, we deduce that A−B contains a vertex of P1 ∪P2.

Let P ′
1 := P1|B and P ′

2 := P2|B. Now {P ′
1, P

′
2} is a ({v1, v2}, C)-separating pair of G,

while |V (P ′
1)|+ |V (P ′

2)| < |V (P1)|+ |V (P2)|, a contradiction.

Therefore, there is no such separation (A,B) of G. This implies that there are three

paths R1, R2, R3 of G between {v1, x} and {v2}∪(V (G)−V (C)), mutually disjoint except

for {v1, v2}, all with no internal vertex in V (G) − V (C), such that each of v1 and v2 is

covered by exactly two of them. Let y denote the vertex in V (G) − V (C) covered by

R1∪R2∪R3. If two of them, R1, R2 say, have ends v1, v2, then R1∪R2 is a cycle of G|V (C)

containing v1, v2 and avoiding x. This contradicts the assumption that C is lean with

respect to v1, v2 in G. Thus exactly one of R1, R2, R3 has ends v1, v2. Now R1 ∪R2 ∪R3

is a path of G through x, v2, v1, y in order, with no internal vertex in V (G) − V (C), as

required. Similarly, there is a path of G from x to a vertex in V (G) − V (C), with no

internal vertex in V (G)− V (C), containing x, v1, v2 in this order listed. This proves the

lemma.

3.5 Proof of Lemma 3.2.4

The aim of this section is to prove Lemma 3.2.4. The proof is based on the lemmas in

Section 3.4.
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Proof. Suppose that G contains a skeleton on Z but contains no K4-subdivision on Z.

The goal is to show that there is a nice and lean bicycle on Z in G. For a subgraph

H of G, the vertex set of each component of G \ V (H) is called an H-flap of G. A

tuple (J,H, P1, P2, P3, P4) of subgraphs of G is feasible if J is a bicycle on Z, H is a

2-connected subgraph of G \ V (J), and P1, . . . , P4 are disjoint paths from Z to V (H), all

with no internal vertex in J ∪H. Such a feasible tuple exists, since there is a skeleton on

Z in G. We call a J ∪H-flap of G trivial if it is disjoint from P1 ∪P2 ∪P3 ∪P4 and non-

trivial otherwise; note that there are at most four non-trivial J ∪H-flaps. The signature

of a feasible tuple (J,H, P1, . . . , P4) is the sequence (|D0|, |D1|, . . . , |Dn|), where D0 is the

union of non-trivial J ∪H-flaps and D1, . . . , Dn are the trivial J ∪H-flaps, ordered with

|D1| ≥ · · · ≥ |Dn|. We choose a feasible tuple (J,H, P1, . . . , P4) with H maximal, subject

to that with its signature lexicographically maximum. The goal is to show that J is a

nice and lean bicycle on Z. Let Z = {v1, v2, v3, v4} and assume that J is a bicycle on

(v1, v2, v3, v4). Let Ci denote the cycle of J with V (Ci) ∩ Z = {vi, vi+1} for 1 ≤ i ≤ 4,

where indices are read modulo 4. For 1 ≤ i ≤ 4 assume that vi ∈ end(Pi) and let ui

denote the other end of Pi in H.

(1) J is lean in G.

For if J is not lean, then for some 1 ≤ i ≤ 4 there is a cycle C ′
i of G with

vi, vi+1 ∈ V (C ′
i) ⊊ V (Ci). Let J ′ be a bicycle obtained from J by replacing Ci with

C ′
i. Now (J ′, H, P1, P2, P3, P4) is feasible. Every J ∪ H-flap is a subset of a J ′ ∪ H-

flap. Consequently, the signature of the tuple (J ′, H, P1, P2, P3, P4) is greater than that

of (J,H, P1, P2, P3, P4), contrary to our choice. This proves (1).

(2) For 1 ≤ i ≤ 4, there is no edge of G between V (Ci)− {vi, vi+1} and V (J)− V (Ci).

For if there is such an edge, we deduce from the existence of H ∪ P1 ∪ P2 ∪ P3 ∪ P4

that there is a K4-subdivision on Z in G, a contradiction. This proves (2).

(3) There is no trivial J ∪H-flap.

For suppose to the contrary that there is a trivial J ∪ H-flap D, chosen with |D|
minimum; so |D| is the last term of the signature. Since there is no K4-subdivision on Z

in G, we have NG(D)∩V (J) ⊆ V (Ci) for some 1 ≤ i ≤ 4. Assume that NG(D)∩V (J) ⊆
V (C1), say. Let {Q1, Q2} be a minimum ({v1, v2}, C1)-separating pair of G|V (C1) ∪ D.

Let S := int(Q1)∪ int(Q2)∪D. Since int(Q1)∪ int(Q2) is not adjacent to V (J)− V (C1)

by (2), we have NG(S) ∩ (V (J) − V (C1)) = ∅. No J ∪H-flap other than D is adjacent

to S. For if a vertex x in S is adjacent to a J ∪ H-flap (̸= D), then by Lemma 3.4.2

(applied to G = G|V (C1) ∪ D) we may replace C1 with a cycle of (G|V (C1) ∪ D) \ x

containing v1 and v2 to increase the signature without changing H, a contradiction.

Thus NG(S) − V (C1) ⊆ V (H). Note that NG(S) ∩ V (C1) = end(Q1) ∪ end(Q2) and so

|NG(S) ∩ V (C1)| ≤ 4. Since G is 6-connected, we have |NG(S) ∩ V (H)| ≥ 2. Let x′, y′

be distinct vertices of NG(S) ∩ V (H) and let x, y be vertices of S with xx′, yy′ ∈ E(G).

Apply Lemma 3.4.2 to G = G|V (C1) ∪ D,C = C1, x and y. If (a) holds, then for

any i ∈ {1, 2} there is a path of G|V (C1) ∪ D through x, vi, v3−i, y in order. Since H
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contains two disjoint paths between {u3, u4} and {x′, y′}, we deduce that there is a path

of G|V (P3∪P4∪H∪C1)∪D through v3, v1, v2, v4 in this order listed. This path, together

with C2, C3 and C4, yields a K4-subdivision on Z, a contradiction. If (b) holds, then

G|V (C1)∪D contains a path R with ends x, y and a cycle C ′
1 containing v1, v2, mutually

disjoint. Let J ′ be a bicycle obtained from J by replacing C1 with C ′
1 and let H ′ be the

union of H and the path consisting of x′x,R and yy′. Now (J ′, H ′, P1, P2, P3, P4) is a

feasible tuple, contrary to the maximality of H. Therefore, there is no trivial J ∪H-flap.

This proves (3).

(4) There is no non-trivial J ∪H-flap.

For let Xi denote the non-trivial J ∪ H-flap containing int(Pi) if int(Pi) ̸= ∅ and

define Xi := ∅ otherwise for 1 ≤ i ≤ 4. Note that X1, . . . , X4 are pairwise disjoint and

non-adjacent, and furthermore, NG(Xi) ∩ V (H) = {ui} for 1 ≤ i ≤ 4; for otherwise, we

may augment H, a contradiction. Suppose to the contrary that X1 ̸= ∅, say. Since G

contains no K4-subdivision on Z, there is no neighbor of X1 in V (C2 ∪ C3) − {v2, v4}.
Hence NG(X1) ⊆ {u1} ∪ V (C1 ∪ C4).

Let {Q1, Q2} be a minimum ({v1, v2}, C1)-separating pair of G|V (C1) ∪ X1 and let

{R1, R2} be a minimum ({v1, v4}, C4)-separating pair of G|V (C4) ∪ X1. Since v1 ∈
NG(X1), by the definition of separating pairs each of Q1, Q2, R1, R2 contains v1 as its

one end.

We show that NG(int(Q1) ∪ int(Q2) ∪ int(R1) ∪ int(R2) ∪ X1) ⊆ {u1} ∪ end(Q1) ∪
end(Q2)∪ end(R1)∪ end(R2). Suppose to the contrary that there is an edge of G from a

vertex a in int(Q1)∪int(Q2)∪int(R1)∪int(R2)∪X1 to a vertex b in V (G)−V (Q1∪Q2∪R1∪
R2)∪X1∪{u1}. We may assume that a ∈ int(Q1)∪ int(Q2). By (2), b ∈ (V (H)−{u1})∪
X2∪X3∪X4. By Lemma 3.4.3 (applied to G = G|V (C1)∪X1, C = C1, P1 = Q1, P2 = Q2

and x = a), we deduce that for any i ∈ {1, 2} there is a path Si of G|V (C1) ∪ X1 from

a to a vertex yi in X1, with no internal vertex in X1, containing a, vi, v3−i, yi in this

order listed. Note that there are two disjoint paths of G|V (H)∪X2 ∪X3 ∪X4 ∪ {v3, v4}
between {v3, v4} and {u1, b}. For some i ∈ {1, 2} one can concatenate these two paths,

edge ab, the path Si and a path of G|X1 ∪ {u1} between yi and u1 to obtain a path of

G|V (C1 ∪ H) ∪ X1 ∪ X2 ∪ X3 ∪ X4 ∪ {v3, v4} through v3, v1, v2, v4 in order. This path,

together with C2, C3 and C4, yields a K4-subdivision on Z, a contradiction. Therefore,

there is no such edge ab of G. This proves the claim.

Since G is 6-connected, the cut {u1} ∪ end(Q1) ∪ end(Q2) ∪ end(R1) ∪ end(R2) has

size ≥ 6. Hence | end(Q1) ∪ end(Q2) − {v1}| = | end(R1) ∪ end(R2) − {v1}| = 2, which

implies that Q1, Q2, R1, R2 have positive lengths. Since G is 6-connected, there is an edge

from v1 to a vertex x in V (G) − V (Q1 ∪ Q2 ∪ R1 ∪ R2) ∪ X1 ∪ {u1}. Since C1 is lean

with respect v1, v2 and Q1, Q2 have positive lengths, we have x /∈ V (C1) − V (Q1 ∪ Q2).

Similarly, x /∈ V (C4) − V (R1 ∪ R2). Since G contains no K4-subdivision on Z, we have

x /∈ V (C2∪C3)∪X3−{v2, v4}. Thus x ∈ (V (H)−{u1})∪X2∪X4 and so there is a path of

G|{v1, v3}∪V (H)∪X2∪X3∪X4 between v1 and v3. But, since Q1, Q2, R1, R2 have positive

lengths and are disjoint from {v2, v4}, both V (C1) − {v1, v2} and V (C4) − {v4, v1} are

adjacent to X1. Now one can see that G contains a K4-subdivision on Z, a contradiction.

This proves (4).
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By (3) and (4), H = G \ V (J) and {v1u1, . . . , v4u4} is a matching of G from Z to

V (H). Since H is 2-connected, J is a nice bicycle. Moreover, J is lean in G by (1). This

completes the proof of the lemma.

3.6 Proof of Lemma 3.2.6

The aim of this section is to prove Lemma 3.2.6. For the proof we use the following lemma

as a “two-paths theorem”, which is slightly stronger than Lemma 3.2.2. The proof is easy.

Lemma 3.6.1. Let v1, v2, v3, v4 be distinct vertices of a graph G. If there is no (≤ 3)-

separation (A,B) of G with v1, v2, v3, v4 ∈ A and B − A ̸= ∅ such that G|B cannot be

drawn in a disc with A ∩ B on the boundary, then either there are two disjoint paths of

G with ends v1v3, v2v4 respectively, or G can be drawn in a disc with v1, v2, v3, v4 on the

boundary in order.

In the proof of Lemma 3.2.6, we will encounter the following subproblem.

A graph has six distinct vertices s1, s2, s3, t1, t2, t3 and satisfies the condition

that for any three disjoint paths between {s1, s2, s3} and {t1, t2, t3}, one con-

nects s3 and t3. Then what kind of structure does the graph have?

Such a structure is characterized in [63, 64, 65], but we do no need the full strength of the

result. For our purposes, the following lemma is enough. For the sake of completeness

we give a direct proof in the next section.

Lemma 3.6.2. Let G be a graph and s1, s2, s3, t1, t2, t3 be distinct vertices of G. Suppose

that

(i) for any three disjoint paths of G between {s1, s2, s3} and {t1, t2, t3}, one of them

connects s3 to t3, and

(ii) there is no (≤ 5)-separation (A,B) of G with s1, s2, s3, t1, t2, t3 ∈ A and B−A ̸= ∅.

Let P1, P2 be two disjoint paths of G \ {s3, t3} between {s1, s2} and {t1, t2} such that

(iii) every vertex of P1∪P2 is contained in any two disjoint paths of G|V (P1∪P2) between

{s1, s2} and {t1, t2}, and
(iv) there is no (≤ 1)-separation (A,B) of G\V (P1∪P2) with s3, t3 ∈ A and B−A ̸= ∅.

Then the graph obtained from G by shrinking P1 ∪ P2 into a single vertex, denoted by p,

can be drawn in a disc with s3, t3, p on the boundary.

Based on Lemma 3.6.2, we prove Lemma 3.2.6.

Proof of Lemma 3.2.6. Let J be a nice and lean bicycle on (v1, v2, v3, v4) in G. Let Ci

denote the tire of J with vi, vi+1 ∈ V (Ci) for 1 ≤ i ≤ 4, where indices are read modulo

4. Let G′ denote the graph obtained from G by shrinking each Ci \ {vi, vi+1} into a

single vertex, which we will denote by ci for 1 ≤ i ≤ 4. Let Z := {v1, . . . , v4}. Let

H := G \ V (J) = G′ \ (Z ∪ {c1, . . . , c4}). Suppose that there is no K4-subdivision on Z

in G. By Lemma 3.2.1 we have:
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(1) There are no two disjoint paths of G′ with ends v1v3, v2v4, respectively.

We claim:

(2) NG′(ci) ⊆ V (H) ∪ {vi, vi+1} and |NG′(ci) ∩ V (H)| ≥ 4 for 1 ≤ i ≤ 4.

For H is a connected graph and adjacent to all the vertices of Z in G′ (as J is nice).

Since Ci \ {vi, vi+1} is non-null, ci is adjacent to vi and vi+1 in G′ for 1 ≤ i ≤ 4. By

(1) we have NG′(ci) ⊆ V (H) ∪ {vi, vi+1} for 1 ≤ i ≤ 4. Since G is 6-connected, we have

|NG′(ci) ∩ V (H)| ≥ degG′(ci)− |{vi, vi+1}| ≥ 6− 2 = 4 for 1 ≤ i ≤ 4. This proves (2).

To show the lemma, suppose to the contrary that G′ cannot be drawn in a disc with

v1, v2, v3, v4 on the boundary in order.

(3) There is a 2-separation (A,B) of H such that for some 1 ≤ i ≤ 4 it holds that

NG(B − A) ∩ V (J) ⊆ V (Ci)− {vi, vi+1} and G′|B ∪ {ci} cannot be drawn in a disc with

(A ∩B) ∪ {ci} on the boudanry.

For by Lemma 3.6.1 and (1) there is a (≤ 3)-separation (A,B) of G′ with Z ⊆ A and

B−A ̸= ∅ such that G′|B cannot be drawn in a disc with A∩B on the boundary. Since

Z ⊆ A and there is a matching ofG′ of size 4 from Z to V (H), we have V (H)∩(A−B) ̸= ∅.
On the other hand, V (H) ∩ (B − A) ̸= ∅; for otherwise, B − A ⊆ {c1, . . . , c4} but since

|A ∩B| ≤ 3, we deduce from (2) that B −A contains a vertex of H adjacent to some ci,

a contradiction. Since H is 2-connected (as J is nice), we have |A ∩ B ∩ V (H)| ≥ 2 and

hence A∩B contains at most one vertex in Z ∪ {c1, . . . , c4}. If some ci is in B−A, then

vi, vi+1 ∈ A ∩ B, a contradiction. Hence Z ∪ {c1, . . . , c4} ⊆ A. On the other hand, since

G is 4-connected, A ∩ B intersects {c1, . . . , c4}. Thus |A ∩ B ∩ {c1, . . . , c4}| = 1 and so

|A∩B ∩ V (H)| = 2. Let A′ := A∩ V (H) and B′ := B ∩ V (H). Now (A′, B′) is a desired

2-separation of H. This proves (3).

Let (A,B) be a 2-separation of H as in (3); assume that NG(B − A) ∩ V (J) ⊆
V (C1)− {v1, v2} and G′|B ∪ {c1} cannot be drawn in a disc with (A ∩ B) ∪ {c1} on the

boundary. Since J is nice and NG(B −A)∩Z = ∅, there are distinct vertices u3, u4 in A

with uivi ∈ E(G) for i = 3, 4. Let {P1, P2} be a minimum ({v1, v2}, C1)-separating pair

of G|V (C1) ∪ (B − A).

(4) NG(int(P1) ∪ int(P2) ∪ (B − A)) = end(P1) ∪ end(P2) ∪ (A ∩B).

For let A ∩ B = {w1, w2}. Suppose to the contrary that there is an edge of G from

a vertex a in int(P1) ∪ int(P2) ∪ (B − A) to a vertex b in V (G) − V (P1 ∪ P2) ∪ B. By

the definition of {P1, P2}, we have a ∈ int(P1) ∪ int(P2) and b /∈ V (C1) − V (P1 ∪ P2).

By (2), b ∈ V (H), and so b ∈ A−B. Note that the graph obtained from G|A by adding

a new vertex adjacent to w1, w2 is 2-connected. This implies that there are two disjoint

paths Q1, Q2 of G|A from {u3, u4} to {w1, w2, b}, with one ending at b (which may have an

internal vertex in {w1, w2}); assume that the other path ends at w1, say. By Lemma 3.4.3

(applied to G = G|V (C1) ∪ (B − A) and x = a), for any i ∈ {1, 2} there is a path Ri of

G|V (C1) ∪ (B − A) from a to a vertex yi in B − A, with no internal vertex in B − A,

containing a, vi, v3−i, yi in this order listed. For some i ∈ {1, 2} one can concatenate paths
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Figure 3.8: A graph G in the proof of Lemma 3.2.6.

Ri, Q1, Q2, a path of G|(B−A)∪{yi, w1} from yi to w1, and edges v3u3, v4u4, ab to obtain

a path of G|V (C1 ∪H)∪ {v3, v4} through v3, v1, v2, v4 in order. This path, together with

C2, C3 and C4, yields a K4-subdivision on Z, a contradiction. Therefore, there is no such

edge ab, and hence NG(int(P1) ∪ int(P2) ∪ (B − A)) = end(P1) ∪ end(P2) ∪ {w1, w2}, as
required. This proves (4).

Since G is 6-connected, the cut end(P1) ∪ end(P2) ∪ (A ∩ B) has size ≥ 6. Hence

end(P1) ∪ end(P2) has size 4, which implies that each of P1, P2 has distinct ends not in

{v1, v2}.
We want to apply Lemma 3.6.2 to G = G|V (P1∪P2)∪B. See Figure 3.8 for intuition.

For i = 1, 2 let si, ti denote the ends of Pi with si closer to v1 in C1. SinceH is 2-connected,

there are two disjoint paths R1, R2 of G from {u3, u4} to A ∩ B. Let A ∩ B = {s3, t3}
and assume that R1, R2 have ends u3t3, u4s3, respectively. Note that s1, s2, s3, t1, t2, t3
are distinct vertices. If there are three disjoint paths of G|V (P1 ∪ P2) ∪ B between

{s1, s2, s3} and {t1, t2, t3} such that none of them connects s3 and t3, then there is a path

of G|V (C1)∪B through s3, v2, v1, t3 in order. Combining this path and R1∪R2, we obtain

a path of G|{v3, v4} ∪ V (H ∪C1) through v3, v1, v2, v4 in order. This path, together with

C2, C3 and C4, yields a K4-subdivision on Z, a contradiction. Thus there are no such

three paths of G|V (P1 ∪ P2) ∪ B. Since G is 6-connected, there is no (≤ 5)-separation

(X,Y ) of G|V (P1 ∪ P2) ∪B with s1, s2, s3, t1, t2, t3 ∈ X and Y −X ≠ ∅. Since C1 is lean

with respect to v1 and v2 in G, every vertex of P1 ∪ P2 is contained in any two disjoint

paths of G|V (P1 ∪ P2) between {s1, s2} and {t1, t2}. Since H is 2-connected, there is no

(≤ 1)-separation (X,Y ) of G|B with s3, t3 ∈ X and Y −X ̸= ∅.
Therefore, by Lemma 3.6.2 applied to G = G|V (P1∪P2)∪B, the graph obtained from

G|V (P1 ∪ P2) ∪B by shrinking P1 ∪ P2 into a single vertex, denoted by p, can be drawn

in a disc with s3, t3, p on the boundary. Since there is no edge of G between B − A and

V (C1) − V (P1 ∪ P2), this implies that G′|B ∪ {c1} can be drawn in a disc with s3, t3, c1
on the boundary. But this contradicts the property of (A,B). This completes the proof

of the lemma.
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3.7 Proof of Lemma 3.6.2

This section is devoted to proving Lemma 3.6.2 that was used in the proof of Lemma 3.2.6.

A triad in a graph G is a connected subgraph T of G with no cycle, with one vertex of

degree 3 and all others of degree ≤ 2. It has precisely three vertices of degree 1, called its

feet. Let v1, v2, v3 be distinct vertices of a graph G. A tripod on v1, v2, v3 is a subgraph

T1 ∪ T2 ∪ Q1 ∪ Q2 ∪ Q3 of G consisting of three distinct vertices u1, u2, u3, two triads

T1, T2 with feet u1, u2, u3, mutually disjoint except for their feet, and three disjoint paths

Q1, Q2, Q3 of G (possibly length of 0) with ends u1v1, u2v2, u3v3, respectively, all with no

internal vertex in T1∪T2. We call Q1, Q2, Q3 the legs of the tripod. The following lemma

gives a structural characterization of tripods.

Lemma 3.7.1 ([51, theorem (3.5)]). Let v1, v2, v3 be distinct vertices of a graph G. If

there is no (≤ 2)-separation (A,B) of G such that v1, v2, v3 ∈ A and |B − A| ≥ 2, then

either G contains a tripod on v1, v2, v3 or G can be drawn in a disc with v1, v2, v3 on the

boundary.

Instead of this, we will use the following lemma, which is slightly stronger than

Lemma 3.7.1. The proof is easy.

Lemma 3.7.2. Let v1, v2, v3 be distinct vertices of a graph G. If there is no (≤ 2)-

separation (A,B) of G with v1, v2, v3 ∈ A and B−A ̸= ∅ such that G|B cannot be drawn

in a disc with A ∩ B on the boundary, then either there is a tripod on v1, v2, v3 in G or

G can be drawn in a disc with v1, v2, v3 on the boundary.

For the proof of Lemma 3.6.2, we consider the following condition for G, si, ti, Pi in

the lemma.

(v) For any 2-separation (A,B) of G \ V (P1 ∪ P2) with s3, t3 ∈ A and A− B ̸= ∅, the
graph obtained from G|B ∪ V (P1 ∪ P2) by shrinking P1 ∪ P2 into a single vertex,

denoted by p, can be drawn in a disc with (A ∩B) ∪ {p} on the boundary.

(vi) The graph (G \ V (P1 ∪ P2)) \ {s3t3} is 2-connected.

(vii) For i = 1, 2, if the end of Pi in {s1, s2} is not adjacent to V (G)−V (P1∪P2)∪{s3, t3}
then P3−i contains an internal vertex adjacent to the vertex in {s1, s2} ∩ end(P1),

and the end of P3−i in {s1, s2} is adjacent to V (G) − V (P1 ∪ P2) ∪ {s3, t3}. An

analogous result holds for the ends of P1, P2 in {t1, t2}.

The following three claims state that (v), (vi) and (vii) hold for minimum counterex-

amples to Lemma 3.6.2. The proof of Claim (v) is similar to that of Lemma 3.2.6 in

Section 3.6. The proof of Claim (vii) is similar to that of [45, Lemma 2.2].

Claim 3.7.3. If a tuple of G, si, ti, Pi is a counterexample to Lemma 3.6.2 with |V (G)|
minimum, then (v) holds.

Proof. To show (v), let (A,B) be a 2-separation of G \ V (P1 ∪ P2) with s3, t3 ∈ A and

A − B ̸= ∅. If B − A = ∅ then the claim obviously holds. So assume that B − A ̸= ∅.
Let A ∩ B = {w1, w2}. Let Q1, Q2 be subpaths of P1, P2, respectively, such that there
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is no edge of G between int(Q1) ∪ int(Q2) ∪ (B − A) and V (P1 ∪ P2) − V (Q1 ∪ Q2);

such paths exists, since Q1 = P1 and Q2 = P2 work. Choose such paths Q1, Q2 with

|V (Q1)|+ |V (Q2)| minimum.

Now NG(int(Q1) ∪ int(Q2) ∪ (B − A)) = end(Q1) ∪ end(Q2) ∪ {w1, w2}. This can be

seen by the same proof as (4) in the proof of Lemma 3.2.6. For if there is an edge from

a vertex a ∈ int(Q1) ∪ int(Q2) ∪ (B − A) to a vertex b in V (G)− V (Q1 ∪Q2) ∪ B, then

a ∈ int(Q1) ∪ int(Q2) and b ∈ A − B. By (iv) there are two disjoint paths R1, R2 of

G|A from {s3, t3} to {b, w1, w2}, with one ending at b. Assume that s3 is connected to

b by R1 ∪ R2; the case t3 is connected to b is similarly proved. Let w be the vertex in

{w1, w2} ∩ (end(R1) ∪ end(R2)). By the same proof as in Lemma 3.4.3, there is a vertex

y of B − A such that G|V (P1 ∪ P2) ∪ (B − A) contains three disjoint paths between

{s1, s2, a} and {t1, t2, y}, all with no internal vertex in B−A and none with connecting a

to y. One can concatenate these three paths, a path of G|(B−A)∪{w} between y and w,

the paths R1, R2, and edge ab to obtain three disjoint paths of G between {s1, s2, s3} and

{t1, t2, t3} such that none of them connects s3 and t3. This contradicts (i). This proves

that NG(int(Q1) ∪ int(Q2) ∪ (B − A)) = end(Q1) ∪ end(Q2) ∪ {w1, w2}, as required.
By (ii), the cut end(Q1)∪end(Q2)∪{w1, w2} has size ≥ 6, and so Q1, Q2 have positive

lengths. For i = 1, 2 let s′i, t
′
i denote the ends of Qi with s′i closer to the end of Pi in {s1, s2}

in Pi. By (iv) there are two disjoint paths of G|A from {s3, t3} to {w1, w2}. Suppose that
these paths have ends s3w1, t3w2, respectively, say. Now the assumptions (i), (ii), (iii),

(iv) of Lemma 3.6.2 are satisfied by G = G|V (Q1 ∪ Q2) ∪ B, si = s′i, ti = t′i (i = 1, 2),

s3 = w1, t3 = w2, P1 = Q1 and P2 = Q2. Since A− B ̸= ∅, the graph G|V (Q1 ∪Q2) ∪ B

has fewer vertices than G, and so is not a counterexample to Lemma 3.6.2. Thus the

graph obtained from G|V (Q1 ∪ Q2) ∪ B by shrinking Q1 ∪ Q2 into a single vertex can

be drawn in a disc with w1, w2 and the shrunk vertex on the boundary. Since there is

no edge of G between B − A and V (P1 ∪ P2) − V (Q1 ∪ Q2), the same assertion holds

for the graph obtained from G|V (P1 ∪ P2) ∪B by shrinking P1 ∪ P2 into a single vertex.

Therefore, (v) holds. This completes the proof.

Claim 3.7.4. If a tuple of G, si, ti, Pi is a counterexample to Lemma 3.6.2 and satisfies

(v), then (vi) holds.

Proof. Let G′ := (G\V (P1∪P2))\{s3t3}. Since G is a counterexample to Lemma 3.6.2, G′

contains a vertex other than s3, t3. Suppose to the contrary that G′ is not 2-connected.

By (iv) there is a 1-separation (X,Y ) of G′ with s3 ∈ X − Y and t3 ∈ Y − X. Let

X ∩ Y = {x}. By (v) applied to A := X ∪ {t3} and B := Y , the graph obtained from

G|Y ∪V (P1∪P2) by shrinking P1∪P2 into a single vertex, denoted by p, can be drawn in

a disc with t3, x, p on the boundary. Similarly, the graph obtained from G|X ∪V (P1∪P2)

by shrinking P1∪P2 into a single vertex can be drawn in a disc with s3, x and the shrunk

vertex on the boundary. Therefore, the graph obtained from G by shrinking P1 ∪ P2

into a single vertex can be drawn in a disc with s3, t3 and the shrunk vertex on the

boundary. This contradicts that G is a counterexample to Lemma 3.6.2. This completes

the proof.

Claim 3.7.5. If a tuple of G, si, ti, Pi is a counterexample to Lemma 3.6.2 with |V (G)|
minimum, then (vii) holds.
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Proof. Assume that Pi has ends si, ti for i = 1, 2. Since G is a counterexample to

Lemma 3.6.2, we have V (G)− V (P1 ∪P2)∪ {s3, t3} ̸= ∅. Suppose that s1 is not adjacent
to V (G)− V (P1 ∪ P2) ∪ {s3, t3}, say; the other cases are proved in a similar way.

IfNG(s1)∩int(P2) = ∅, then let s′1 be the neighbor of s1 in P1. By (ii), s
′
1 ̸= t1. Now the

assumptions in Lemma 3.6.2 are satisfied when replacing G, s1, P1 with G \ s1, s′1, P1 \ s1,
respectively. Since G \ s1 has fewer vertices than G, Lemma 3.6.2 holds for G \ s1. Now
one can see that the assertion of Lemma 3.6.2 also holds for G, contrary to that G is a

counterexample. This proves that NG(s1) ∩ int(P2) ̸= ∅, as required.
If s2 is not adjacent to V (G)− V (P1 ∪ P2)∪ {s3, t3}, then by the same proof we have

NG(s2) ∩ int(P1) ̸= ∅. By (iii), NG(s1) ∩ int(P2) = {s′2} and NG(s2) ∩ int(P1) = {s′1},
where s′i is the neighbor of si in Pi for i = 1, 2. Now the assumptions in Lemma 3.6.2 are

satisfied when replacing G, s1, s2, P1, P2 with G\{s1, s2}, s′1, s′2, P1\s1, P2\s2, respectively.
Thus Lemma 3.6.2 holds for G \ {s1, s2} and hence for G as well, contrary to that G is

a conterexample. This proves that s2 is adjacent to V (G) − V (P1 ∪ P2) ∪ {s3, t3}, as
required. This completes the proof.

From now on we may use assumptions (v), (vi) and (vii) to show Lemma 3.6.2. A

sketch of the remaining proof is as follows. First we show that if the lemma is false

then the graph G \ {s3t3, s1s2, t1t2} can be drawn in a disc with s2, s3, s1, t1, t3, t2 on the

boundary in this order listed (Claims 3.7.6–3.7.8). On the other hand, by edge-counting

in the planar graph we see that G contains at most one vertex other than s1, s2, s3, t1, t2, t3
(Lemma 3.7.9). This is a contradiction, because the graph G \ V (P1 ∪ P2) contains ≥ 2

vertices except but s3 and t3 by (vi). We begin with the following claim, which is slightly

weaker than Lemma 3.6.2.

Claim 3.7.6. Let G, si, ti, Pi be as in Lemma 3.6.2. If (v) and (vii) hold, then there is

no vertex p of P1 ∪ P2 such that G contains a tripod on s3, t3, p with no other vertex in

V (P1 ∪ P2).

Proof. Assume that Pi has ends si, ti for i = 1, 2. Suppose to the contrary that there is a

vertex p of P1 say, such that G contains a tripod T1 ∪ T2 ∪Q1 ∪Q2 ∪Q3 on s3, t3, p with

no other vertex in V (P1 ∪P2). Choose such a tripod with the legs Q1 ∪Q2 ∪Q3 minimal.

Let u1, u2, u3 denote the feet of the triads T1 and T2. Assume that Q1, Q2, Q3 have ends

pu1, s3u2, t3u3, respectively.

There is no path of G from V (T1 ∪ T2) to V (P1 ∪ Q1 ∪ Q2 ∪ Q3) with no vertex in

V (P2) ∪ {u1, u2, u3}. For otherwise, a minimal such path R has an end in V (P1) − {p}
by the minimality of the legs of the tripod. But the union of R,P1 and the tripod

T1 ∪ T2 ∪ Q1 ∪ Q2 ∪ Q3 contains two disjoint paths of G \ V (P2) with ends s3t1, s1t3,

respectively, contrary to (i).

Thus there is a separation (X,Y ) of G with X∩Y = V (P2)∪{u1, u2, u3}, V (T1∪T2) ⊆
X and V (P1 ∪ Q1 ∪ Q2 ∪ Q3) ⊆ Y . By choosing such a separation with X minimal, we

may assume that X − Y consists of the union of two disjoint subsets of X − Y , with

one containing V (T1) − {u1, u2, u3}, the other containing V (T2) − {u1, u2, u3} and both

inducing connected subgraphs of G|(X−Y ). This implies that for any a ∈ NG(X−Y )∩
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V (P2) one can find any 2-linkage on {u1, u2, u3, a} in G|(X − Y ) ∪ {u1, u2, u3, a}. Note

that |NG(X − Y ) ∩ V (P2)| ≥ 3 by (ii).

There are no three disjoint paths of G|Y from V (P2)∪ {s3, t3} to {u1, u2, u3} with no

vertex in V (P1). For if there are such three disjoint paths R1, R2, R3, all with no internal

vertex in V (P2), then the union of R1, R2, R3, P2 and a 2-linkage on {u1, u2, u3, a} in

G|(X − Y )∪{u1, u2, u3, a} for some a ∈ NG(X − Y )∩ V (P2)− V (R1 ∪R2 ∪R3) contains

two disjoint paths of G \ V (P1) with ends s3t2, s2t3, respectively, contrary to (i).

Thus there is a separation (Y1, Y2) of G|Y of order ≤ |V (P1)|+2 with V (P1) ⊆ Y1∩Y2,

V (P2) ∪ {s3, t3} ⊆ Y2 and u1, u2, u3 ∈ Y1. Now one can find a tripod on {p} ∪ (Y1 ∩ Y2 −
V (P1)) in G|X∪Y1, with no other vertex in V (P1∪P2), which is indeed a subgraph of the

tripod T1∪T2∪Q1∪Q2∪Q3. Thus the graph obtained from G|X∪Y1 by shrinking P1∪P2

into a single vertex cannot drawn in a disc so that the two vertices in Y1 ∩ Y2 − V (P1)

and the shrunk vertex occur in the boundary. By (v) applied to A = Y2 − V (P1 ∪ P2)

and B = Y1 ∪X − V (P1 ∪ P2), we deduce that A− B = ∅. Hence Y2 − Y1 = V (P2) and

s3, t3 ∈ Y1 ∩ Y2. This implies that NG(V (P2)) ⊆ V (P1) ∪ {s3, t3} ∪ (X − Y ).

Let a1, a2 ∈ NG(X − Y ) ∩ V (P2) with NG(X − Y ) ∩ V (P2) ⊆ V (P2[a1, a2]); assume

that s2, a1, a2, t2 occur in P2 in order. We show that NG|Y2(V (P2(a1, a2))) ⊆ {p}. Since

P2 is an induced path of G by (iii), there is no edge of G from V (P2(a1, a2)) to V (P2)−
V (P2[a1, a2]). So let there be an edge of G from a vertex a in V (P2(a1, a2)) to a vertex

b in {s3, t3} ∪ (V (P1) − {p}). If b = s3 then the union of P2, ab, Q3 and a path of

G|(X − Y ) ∪ {u3, a1} from u3 to a1 contains two disjoint paths of G \ V (P1) with ends,

s3t2, s2t3, respectively, contrary to (i); the case b = t3 is similar. If b ∈ V (P1[s1, p))

then let R1, R2 be two disjoint paths of G|(X −Y )∪{u1, u2, u3, a1} with ends u1u2, u3a1,

respectively. Now the two paths Q2 ∪ R1 ∪ Q1 ∪ P1[p, t1], P2[s2, a1] ∪ R2 ∪ Q3 and a

path consisting of the union of P1[s1, b], ba and P2[a, t2] yield three disjoint paths of G

with ends s3t1, s2t3, s1t2, respectively, a contradiction; the case b ∈ V (P1(p, t1]) is similar.

Thus there is no such edge ab of G. This proves that NG|Y2(V (P2(a1, a2)) ⊆ {p}.

Therefore, {u1, u2, u3, a1, a2, p} is a cut of G that separates (X − Y ) ∪ V (P2(a1, a2))

from the other vertices of G. By (ii) we have p ̸= u1. Also we deduce from (ii) that p is

adjacent to V (P2(a1, a2)) in G.

We show that p is the only vertex of P1 adjacent to V (G)−V (P1∪P2)∪{s3, t3}. To see
this, we first remark that there are no three disjoint paths of (G|Y1) \ p from {u1, u2, u3}
to {s3, t3} ∪ V (P1 \ p); for otherwise, we may choose such three disjoint paths, all with

no internal vertex in V (P1), and covering {s3, t3}; if the third has an end in P1(p, t1] say,

then since p is adjacent to V (P2(a1, a2)), by the same proof as above one can find three

disjoint paths of G with ends s3t1, s2t3, s1t2, respectively, contrary to (i). Thus there

are no such three paths of (G|Y1) \ p. Now there is a 3-separation (U,W ) of G|Y1 with

p ∈ U ∩W , {s3, t3} ∪ V (P1) ⊆ U and u1, u2, u3 ∈ W . By (v) applied to A = U − V (P1)

and B = (W −{p})∪ (X−V (P2)), we deduce that A−B = ∅. Hence U −W = V (P1 \p)
and s3, t3 ∈ U ∩W . This implies that P1 \p has no vertex adjacent to (W −U)∪ (X−Y ).

Since (W−U)∪(X−Y ) = (Y1−V (P1)∪{s3, t3})∪(X−Y ) = V (G)−V (P1∪P2)∪{s3, t3},
this proves that p is the only vertex of P1 adjacent to V (G)− V (P1 ∪ P2) ∪ {s3, t3}.
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Now we use (vii). We may assume from the symmetry that p ̸= s1. Since s1 is

not adjacent to V (G) − V (P1 ∪ P2) ∪ {s3, t3}, we deduce from (vii) that P2 contains an

internal vertex q adjacent to s1, and s2 is adjacent to V (G)−V (P1∪P2)∪{s3, t3}. Since
NG(V (P2)) ⊆ V (P1) ∪ {s3, t3} ∪ (X − Y ), we have s2 ∈ NG(X − Y ) and so s2 = a1.

Let R1, R2 be two disjoint paths of G|(X − Y ) ∪ {u1, u2, u3, s2} with ends u1u2, s2u3,

respectively. Now the two paths Q2 ∪ R1 ∪Q1 ∪ P1[p, t1], R2 ∪Q3 and a path consisting

of the union of s1q and P2[q, t2] yield three disjoint paths of G with ends s3t1, s2t3, s1t2,

respectively, contrary to (i). This completes the proof.

Claim 3.7.7. Let G, si, ti, Pi be as in Lemma 3.6.2. If (v) and (vi) hold, then (G\V (P1∪
P2)) \ {s3t3} can be drawn in a disc with s3, t3 on the boundary.

Proof. Note that V (G)− V (P1 ∪ P2) ∪ {s3, t3} ̸= ∅ by (vi). By (ii) we may assume that

V (G)−V (P1∪P2)∪{s3, t3} is adjacent to V (P1) in G. Let G1 denote the graph obtained

from (G \ V (P2)) \ {s3t3} by shrinking P1 into a single vertex, which we denote by p1.

We show that there is no tripod on s3, t3, p1 in G1. Suppose to the contrary that there

is a tripod T1 ∪ T2 ∪Q1 ∪Q2 ∪Q3 on s3, t3, p1 in G1; assume that Q1 is the leg incident

to p1. If Q1 has positive length, then by expanding p1 to P1, we can find a vertex p of P1

such that G contains a tripod on s3, t3, p with no other vertex in V (P1 ∪P2), contrary to

Claim 3.7.6. So E(Q1) = ∅ and T1, T2 contain p1. By expanding p1 to P1, one can obtain

from T1, T2 two triads T ′
1, T

′
2 in G\V (P2), both with exactly one vertex in V (P1). If T

′
1, T

′
2

have distinct vertices in V (P1), then the union of T ′
1 ∪ T ′

2 ∪Q2 ∪Q3 and P1 contains two

disjoint paths of G \ V (P2) with ends s3t1, s1t3, respectively, contrary to (i). So T ′
1, T

′
2

have a common vertex p in V (P1). Now T ′
1 ∪ T ′

2 ∪ Q2 ∪ Q3 is a tripod on s3, t3, p in G

with no other vertex in V (P1 ∪ P2), contrary to Claim 3.7.6.

Thus there is no tripod on s3, t3, p1 in G1. If G1 can be drawn in a disc with s3, t3, p1
on the boundary, then the claim follows. So assume that G1 does not admit such a

drawing. By Lemma 3.7.2 there is a (≤ 2)-separation (A,B) of G1 with s3, t3, p1 ∈ A

and B − A ̸= ∅ such that G|B cannot be drawn in a disc with A ∩ B on the boundary.

By (iv) we have p1 ∈ A − B and |A ∩ B| = 2. Now (A − {p1}, B) is a 2-separation of

G\V (P1∪P2) with s3, t3 ∈ A−{p1}. If (A−{p1})−B ̸= ∅, then we deduce from (v) that

the graph G|B can be drawn in a disc with A∩B on the boundary; but this contradicts

the property of (A,B). Thus A − B = {p1} and A ∩ B = {s3, t3}. This implies that

V (G)− V (P1 ∪ P2) ∪ {s3, t3} is not adjacent to V (P1) in G, contrary to our assumption.

This completes the proof.

Now we are ready to prove the planarity of G \ {s3t3, s1s2, t1t2}.

Claim 3.7.8. Let G, si, ti, Pi be a tuple contrary to Lemma 3.6.2. If (v), (vi) and (vii)

hold, then G\{s1s2, t1t2, s3t3} can be drawn in a disc with s1, s3, s2, t2, s3, t1 on the bound-

ary in this order listed.

Proof. Let G′ := (G \ (V (P1 ∪ P2)) \ {s3t3}. By Claim 3.7.7 and (vi), the graph G′ can

be drawn in a plane with an outer cycle K containing s3, t3. We choose such a drawing

of G′ with |NG(V (P1 ∪ P2)) − V (K)| minimum. Let K1, K2 be the two subpaths of K

between s3 and t3. Since s3t3 /∈ E(G′), both K1 and K2 have internal vertices.
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We show that |NG(V (P1 ∪ P2))− V (K)| = 0. For suppose to the contrary that there

is an edge of G from a vertex p ∈ V (P1 ∪ P2) to a vertex x ∈ V (G′) − V (K). Let X

be the vertex set of the component of G′ \ V (K) containing x. If X is adjacent to both

int(K1) and int(K2), then G′ contains a tripod on x, s3, t3. This implies that G contains

a tripod on p, s3, t3 with no other vertex in V (P1 ∪ P2), contrary to Claim 3.7.6. So we

may assume that NG′(X) ⊆ V (K1). Let a1, a2 denote the vertices in NG′(X) ∩ V (K1)

with NG′(X) ∩ V (K1) ⊆ V (K1[a1, a2]). Note that a1 ̸= a2 by (vi). By planarity there is

a 2-separation (A,B) of G′ with V (K)− V (K1(a1, a2)) ⊆ A and V (K1[a1, a2]) ∪X ⊆ B.

Note that s3, t3 ∈ A and A − B ̸= ∅ by int(K2) ̸= ∅. We deduce from (v) that G|B
contains a path Q between a1 and a2 such that NG(V (P1∪P2))∩B ⊆ V (Q) and G|B can

be drawn in a disc with Q on the boundary. Replace the drawing of G|B in G′ with such a

drawing, and replace K1[a1, a2] with Q. Now the new drawing of G′ has a smaller value of

|NG(V (P1∪P2))−V (K)|, a contradiction. This proves that |NG(V (P1∪P2))−V (K)| = 0.

Thus NG(V (P1 ∪ P2)) ⊆ V (K). If V (P1) has neighbors in both int(K1) and int(K2),

then G|V (K)∪V (P1) contains either two disjoint paths with ends s1t3, s3t1, respectively,

or a tripod on s3, t3, p for some p ∈ V (P1), with no other vertex in V (P1∪P2); the former

contradicts (i) and the latter contradicts Claim 3.7.6. So NG(V (P1)) ∩ V (K) ⊆ V (Ki)

for some i ∈ {1, 2}; an analogous result holds for P2. If both NG(V (P1)) ∩ V (K) and

NG(V (P2)) ∩ V (K) are contained in the same V (Ki), then the graph obtained from G

by shrinking P1 ∪ P2 into a single vertex can be drawn in disc with s3, t3 and the shrunk

vertex on the boundary, contrary to the assumption that G is a counterexample. Thus

we may assume that NG(V (Pi)) ∩ V (K) ⊆ V (Ki) for i = 1, 2.

By (i), there is no “cross” between P1 and K1. More precisely, there are no four

distinct vertices x1, x2 ∈ V (P1) and y1, y2 ∈ V (K1) with x1y2, x2y1 ∈ E(G) such that

s1, x1, x2, t1 occur in P1 in order and s3, y1, y2, t3 occur in K1 in order. Similarly, there is

no “cross” between P2 and K2. Therefore, if we let G′′ denote the graph obtained from

G by deleting edge s3t3 and all edges between V (P1) and V (P2), then G′′ can be drawn

in a disc with s1, s3, s2, t1, t3, t2 on the boundary in order.

We show that both si and ti are adjacent to int(Ki) for i = 1, 2. For suppose that

s1 is not adjacent to int(K1), say. Now s1 is not adjacent to V (G) − V (P1 ∪ P2) ∪
{s3, t3}. By (vii), P2 contains an internal vertex adjacent to s1, and s2 is adjacent

to V (G) − V (P1 ∪ P2) ∪ {s3, t3}; hence s2 is adjacent to int(K2). If V (P1) − {s1} is

adjacent to int(K1) then there are three disjoint paths in G|V (P1∪P2)∪V (K) with ends

s1t2, s2t3, s3t1, respectively, contrary to (i). Therefore, NG(V (P1))∩ V (K) ⊆ {s3, t3} and

so NG(V (P1∪P2))∩V (K) ⊆ V (K2). This implies that the graph obtained from G\{s3t3}
by shrinking P1∪P2 into a single vertex can be drawn in a disc with s3, t3 and the shrunk

vertex on the boundary, contrary to the assumption that G is a counterexample. Thus

si and ti are adjacent to int(Ki) for i = 1, 2.

Finally we show that there is no edge of G \ {s1s2, t1t2} between V (P1) and V (P2).

Suppose to the contrary that there is an edge of G between V (P1 \ t1) and V (P2 \ s2),

say. Since t1 is adjacent to int(K1) and s2 is adjacent int(K2), we deduce that there are

three disjoint paths in G|V (P1 ∪P2)∪V (K) with ends s1t2, s2t3, s3t1, respectively, which

contradicts (i). This proves that there is no edge of G \ {s1s2, t1t2} between V (P1) and

V (P2).
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Therefore, G \ {s1s2, t1t2, s3t3} can be drawn in a disc with s1, s3, s2, t2, s3, t1 on the

boundary in order, as desired. This completes the proof.

To prove Lemma 3.6.2 by using Claim 3.7.8, we need the following lemma, which can

be proved by edge-counting on planar graphs.

Lemma 3.7.9. Let G be a graph and let Z ⊆ V (G) with |Z| = 6. Suppose that there is

no (≤ 5)-separation (A,B) of G with Z ⊆ A and B−A ̸= ∅. If G can be drawn in a disc

with Z on the boundary, then |V (G)− Z| ≤ 1.

Proof. Suppose to the contrary that |V (G) − Z| ≥ 2. Let (A,B) be a 6-separation of

G with Z ⊆ A and |B − A| ≥ 2 such that G|B can be drawn in a disc with A ∩ B on

the boundary; an example is given by A = Z and B = V (G). Choose such a separation

(A,B) with B minimal. Let A∩B = {v1, . . . , v6} and assume that G|B can be drawn in

a disc with v1, . . . , v6 on the boundary in this order listed.

Let G′ be a graph obtained from G|B by adding a new vertex v and edges vivi+1 and

vvi for 1 ≤ i ≤ 6, where v7 = v1. Now G′ is planar. By the connectivity of G, each vi has

at least one neighbor in B − A, and so has degree ≥ 4 in G′. Each vertex in B − A has

degree ≥ 6 in G′, and v has degree 6 in G′. Thus we have

6 + 6 · 4 + 6(|B| − 6) ≤ degG′(v) +
∑
1≤i≤6

degG′(vi) +
∑

x∈B−A

degG′(x)

=
∑

x∈V (G′)

degG′(x) = 2|E(G′)|

≤ 2(3|V (G′)| − 6) = 6|B| − 6,

throughout which the equality holds. Thus each vi has exactly one neighbor in B − A,

which we will denote by ui. By |B − A| ≥ 2 and the connectivity of G, we deduce

that u1, . . . , u6 are distinct. Let A′ := A ∪ {u1} and B′ := B − {v1}. Now (A′, B′) is

a 6-separation of G with Z ⊆ A′ and |B′ − A′| ≥ 5 such that G|B′ can be drawn in a

disc with A′ ∩ B′ on the boundary. This contradicts the minimality of B. Therefore,

|V (G)− Z| ≤ 1. This proves the lemma.

We complete the proof of Lemma 3.6.2, based on Claim 3.7.8 and Lemma 3.7.9.

Proof of Lemma 3.6.2. Let G, si, ti, Pi be a tuple contrary to Lemma 3.6.2, with |V (G)|
minimum. Now (v), (vi) and (vii) hold by Claims 3.7.3, 3.7.4 and 3.7.5. We deduce

from (vi) that |V (G)− V (P1 ∪ P2) ∪ {s3, t3}| ≥ 2; and so |V (G)− {s1, s2, s3, t1, t2, t3}| ≥
2. By Claim 3.7.8, the graph G′ := G \ {s1s2, t1t2, s3t3} can be drawn in a disc with

s1, s3, s2, t2, s3, t1 on the boundary in this order listed. But by Lemma 3.7.9 applied to

G = G′ and Z = {s1, s2, s3, t1, t2, t3}, we have |V (G′)−{s1, s2, s3, t1, t2, t3}| ≤ 1, which is

a contradiction. This completes the proof of the lemma.

3.8 Proof of Theorem 3.1.2

In this section we complete the proof of Theorem 3.1.2. The most of this section is devoted

to proving Theorem 3.1.2 (5). The other statements of the theorem can be proved in a
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similar way; we only give a sketch of the proof of Thoerem 3.1.2 (4). We start with the

following lemma, which can be derived from Menger’s theorem.

Lemma 3.8.1. Let G be a graph and k,m be positive integers. Let S = {b1, . . . , bk} ⊆
V (G) be a stable set of G and let T, T ′ ⊆ V (G) − S with |T | = |T ′| = m. Suppose that

there are m disjoint paths of G \ S between T and T ′. If for any v ∈ V (G)− S there are

no m disjoint paths of G \ (S ∪ {v}) between T and T ′, then exactly one of the following

holds:

(a) For some 1 ≤ i < j ≤ k there are m + 1 disjoint paths of G between T ∪ {bi} and

T ′ ∪ {bj}, all with no internal vertex in S, such that none of them connects bi and

bj.

(b) There is a path-decomposition (A1, . . . , Ak) of G such that

• T ⊆ A1, T
′ ⊆ Ak,

• bi ∈ Ai − Ai−1 ∪ Ai+1 for 1 ≤ i ≤ k, where A0 = Ak+1 = ∅, and
• |Ai ∩ Ai+1| = m for 1 ≤ i < k.

Proof. It is easy to see that both (a) and (b) do not hold simultaneously. By induction

on k = |S|, we show that if (a) is false then (b) holds. Since the case k = 1 is trivial,

suppose that k ≥ 2.

There is a (≤ m)-separation (A,B) of G with T ∪ (S −{bk}) ⊆ A and T ′ ∪ {bk} ⊆ B.

For otherwise, there are m+ 1 disjoint paths P1, . . . , Pm+1 of G between T ∪ (S − {bk})
and T ′ ∪ {bk}, all with no internal vertex in T ∪ T ′ ∪ S. By the existence of m disjoint

paths of G \ S between T and T ′, we may assume from Lemma 2.2.1 that T and T ′ are

covered by P1, . . . , Pm+1; assume that P1, . . . , Pm have ends in T . Let bj ∈ S − {bk} be

the vertex covered by Pm+1. Since (a) is false, Pm must connect bj and bk. Since S is

stable, we have intPm+1 ̸= ∅. But P1, . . . , Pm are m disjoint paths of G \ (S ∪ int(Pm+1))

between T and T ′, contrary to our assumption. Thus there is such a separation (A,B).

Since there are m disjoint paths of G \ S between T and T ′, the cut set A ∩ B is

contained in the union of such m disjoint paths; and so |A ∩ B| = m. Consequently,

S − {bk} ⊆ A − B and bk ∈ B − A. By induction applied to S − {bk}, T and A ∩ B in

the graph G|A, there is a path-decomposition (A1, . . . , Ak−1) of G|A such that T ⊆ A1,

A ∩ B ⊆ Ak−1, bi ∈ Ai − Ai−1 ∪ Ai+1 for 1 ≤ i ≤ k − 1, where A0 = Ak = ∅, and
|Ai ∩ Ai+1| = m for 1 ≤ i < k − 1. Let A′

i := Ai for 1 ≤ i ≤ k − 1 and A′
k := B. Now

(A′
1, . . . , A

′
k) is a path-decomposition of G satisfying (b). This completes the induction

and proves the lemma.

Lemma 3.8.2. Let G be a graph and k be a positive integer. Let S = {b1, . . . , bk} ⊆ V (G)

and let C be a spanning cycle of G \ S containing distinct two vertices v1, v2. Suppose

that S ∪ {v1, v2} is a stable set of G. If C is lean with respect to v1, v2 in G, then exactly

one of the following holds:

(a) For some 1 ≤ i < j ≤ k there is a path of G through bi, v2, v1, bj in order, with no

other vertex in S.

(b) There is a path-decomposition (A1, . . . , Ak) of G such that

• v1, b1 ∈ A1 − A2, v2, bk ∈ Ak − Ak−1,
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• bi ∈ Ai − Ai−1 ∪ Ai+1 for 1 < i < k and

• |Ai ∩ Ai+1| = 2 for 1 ≤ i < k.

Proof. It is easy to see that (a) and (b) do not hold simultaneously. We show that at

least one of them holds. Since the case k = 1 is trivial, we assume that k ≥ 2. Let t1, t2
be the neighbors of v1 in C, and t′1, t

′
2 be the neighbors of v2 in C, with v1, t1, t

′
1, v2, t

′
2, t2

on C in order; note that t1, t2, t
′
1, t

′
2 /∈ {v1, v2}, since v1v2 /∈ E(G). Since C is lean in

G with respect to v1, v2 and {v1, v2} ∪ S is stable in G, we have NG(v1) = {t1, t2} and

NG(v2) = {t′1, t′2}. Moreover, since C is a spanning cycle of G \ S, we deduce that there

are no two disjoint paths of G \ (S ∪ {v1, v2}) between {t1, t2} and {t′1, t′2} missing some

vertex of G \ (S ∪ {v1, v2}). Apply Lemma 3.8.1 to G = G \ {v1, v2}, S, T = {t1, t2} and

T ′ = {t′1, t′2}. If Lemma 3.8.1 (a) holds, then Lemma 3.8.2 (a) follows. If Lemma 3.8.1 (b)

holds, then there is a path-decomposition (A1, . . . , Ak) of G\{v1, v2} such that t1, t2 ∈ A1,

t′1, t
′
2 ∈ Ak, bi ∈ Ai−Ai−1∪Ai+1 for 1 ≤ i ≤ k, where A0 = Ak+1 = ∅, and |Ai∩Ai+1| = 2

for 1 ≤ i < k. Now let A′
1 := A1 ∪ {v1}, A′

k := Ak ∪ {v2} and A′
i := Ai for 1 < i < k.

Since NG(v1) = {t1, t2} and NG(v2) = {t′1, t′2}, every edge of G is contained in some A′
i.

Thus (A′
1, . . . , A

′
k) is a path-decomposition of G satisfying Lemma 3.8.2 (b). This proves

the lemma.

We are now ready to complete the proof of Theorem 3.1.2 (5).

Proof of Theorem 3.1.2 (5). Let Z := {v1, v2, v3, v4}. It is easy to see that if G is dis-

coid for (vi1 , vi2 , vi3 , vi4) for some ordering Z = {vi1 , vi2 , vi3 , vi4} then G contains no K4-

subdivision on Z. To show the converse, suppose that G contains no K4-subdivision on

Z. Since G is 6-connected, there is a nice and lean bicycle J on Z in G by Lemma 3.2.5.

Assume that J is a bicycle on (v1, v2, v3, v4), say. Our goal is to show that G is discoid

for (v1, v2, v3, v4). Let Ci denote the tire of J with vi, vi+1 ∈ V (Ci) for 1 ≤ i ≤ 4, where

indices are read modulo 4. Since J is lean, Ci is lean with respect to vi, vi+1 for 1 ≤ i ≤ 4.

Let H := G \ V (J). By Lemma 3.2.7, H contains a cycle K such that:

• H can be drawn in a disc with K on the boundary, and

• there are eight distinct vertices x1, . . . , x8 occurring in K in this order listed such

that

– x2i−1, x2i ∈ NG(vi),

– NG(vi) ⊆ V (Ci ∪ Ci−1) ∪ V (K⟨x2i−1, x2i⟩), and

– NG(V (Ci)− {vi, vi+1}) ⊆ {vi, vi+1} ∪ V (K⟨x2i, x2i+1⟩)

for 1 ≤ i ≤ 4. Note that |V (K⟨x2i, x2i+1⟩)| ≥ 4 for 1 ≤ i ≤ 4, since G is 6-connected and

V (Ci \ {vi, vi+1}) ̸= ∅.

(1) For 1 ≤ i ≤ 4 there is no path of G|V (Ci)∪V (K⟨x2i, x2i+1⟩) through x2i, vi+1, vi, x2i+1

in order.

For let there be a path of G|V (C1) ∪ V (K⟨x2, x3⟩) through x2, v2, v1, x3 in order, say.

By combining it with the two disjoint paths of K with ends x2x8, x3x5, respectively, we

obtain a path of G|{v3, v4}∪V (H)∪V (C1) through v3, v1, v2, v4 in this order listed. This,
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together with C2, C3 and C4, yields a K4-subdivision on Z in G, a contradiction. This

proves (1).

(2) For 1 ≤ i ≤ 4, if vivi+1 ∈ E(G) then the graph G|V (Ci) ∪ V (K⟨x2i, x2i+1⟩) can be

drawn in a disc with vi, x2i, K⟨x2i, x2i+1⟩, x2i+1, vi+1 on the boundary in this order listed.

For if v1v2 ∈ E(G) say, then one of the subpath of C1 between v1 and v2 is the edge

v1v2, since C1 is lean with respect to v1, v2. Let P be the other subpath of C1 between

v1 and v2. Note that P is an induced path of G and that NG(int(P )) ⊆ {v1, v2} ∪
V (K⟨x2, x3⟩). Since there is no path of G|V (C1) ∪ V (K⟨x2, x3⟩) through x2, v2, v1, x3 in

order by (1), there is no “cross” between P and K⟨x2, x3⟩. More precisely, there are

no four distinct vertices p1, p2 ∈ V (P ) and q1, q2 ∈ V (K⟨x2, x3⟩) with p1q2, p2q1 ∈ E(G)

such that v1, p1, p2, v2 occur in P in order and x2, q1, q2, x3 occur in K⟨x2, x3⟩ in order.

Therefore, G|V (C1) ∪ V (K⟨x2, x3⟩) can be embedded in a plane so that the outer cycle

consists of K⟨x2, x3⟩, x3v2, v2v1 and v1x2. This proves (2).

For 1 ≤ j ≤ 4 define a subgraphHj of G as follows: If vjvj+1 ∈ E(G) then let V (Hj) =

{vj, vj+1} and E(Hj) = ∅. If vjvj+1 /∈ E(G) then let Hj be a graph obtained from

G|V (Cj) ∪ V (K⟨x2j, x2j+1⟩) by deleting edges spanned by {vj, vj+1} ∪ V (K⟨x2j, x2j+1⟩).
Let L denote the subgraph of G induced by V (H) ∪ Z ∪

∪
j:vjvj+1∈E(G) V (Cj).

We show that (L,H1, H2, H3, H4) is a discoid decomposition of G for (v1, v2, v3, v4).

First, it is easy to see that L,H1, H2, H3, H4 are five edge-disjoint subgraphs of G so that

G = L∪H1 ∪H2 ∪H3 ∪H4. By definition one can see that v1, v2, v3, v4 ∈ V (L), H1 ∩H3

and H2 ∩H4 are null and V (Hj ∩Hj+1) = {vj+1} for 1 ≤ j ≤ 4.

Note that for 1 ≤ j ≤ 4 the set V (L ∩ Hj) − {vj, vj+1} equals V (K⟨x2j, x2j+1⟩) if

vjvj+1 /∈ E(G) and empty otherwise. For 1 ≤ j ≤ 4, if vjvj+1 /∈ E(G) then let kj :=

|V (K⟨x2j, x2j+1⟩)| (≥ 4) and let bj1, . . . , b
j
kj
denote the vertices of K⟨x2j, x2j+1⟩ from x2j to

x2j+1 in order; if vjvj+1 ∈ E(G) then let kj := 0. We deduce from the drawing ofH and (2)

that L can be drawn in a disc with v1, b
1
1, . . . , b

1
k1
, v2, b

2
1, . . . , b

2
k2
, v3, b

3
1, . . . , b

3
k3
, v4, b

4
1, . . . , b

4
k4

on the boundary in order.

The remaining task is to show that if kj ≥ 2 then Hj has a path-decomposition as

in the definition of discoid graphs. To see this, let j ∈ {1, 2, 3, 4} with kj ≥ 2. Now

vjvj+1 /∈ E(G) by definition. We deduce from (1) that for any 1 ≤ i < i′ ≤ kj there

is no path of Hj through bji , vj+1, vj, b
j
i′ in order, with no other vertex in {bj1, . . . , b

j
kj
}.

Thus, Lemma 3.8.2 (b) holds for G = Hj, S = {bj1, . . . , b
j
kj
}, C = Cj, v1 = vj and

v2 = vj+1. So there is a path-decomposition (Aj
1, . . . , A

j
kj
) of Hj such that vj, b

j
1 ∈ Aj

1−Aj
2,

vj+1, b
j
k ∈ Aj

kj
− Aj

kj−1, b
j
i ∈ Aj

i − Aj
i−1 ∪ Aj

i+1 for 1 < i < kj and |Aj
i ∩ Aj

i+1| = 2 for

1 ≤ i < kj, as required.

Therefore, (L,H1, H2, H3, H4) is a discoid decomposition of G for (v1, v2, v3, v4). This

completes the proof of Theorem 3.1.2 (5).

By a slightly modified proof of Theorem 3.1.2 (5), one can prove Theorem 3.1.2 (4).

The statements (1), (2) and (3) in Theorem 3.1.2 can be proved in a similar way.

Proof of Theorem 3.1.2 (4). We only give a sketch of the proof of the nontrivial part

of the statement: If G contains no K−
4 -subdivision on (v1, v2; v3, v4), then there is a
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discoid decomposition (L,H1, H2, H3, H4) of G for (v1, v2, v3, v4) or (v1, v2, v4, v3) such

that E(H3) = ∅.
Let Z = {v1, v2, v3, v4}. Since G obviously contains no K4-subdivision on Z, there is a

nice and lean bicycle J on Z in G by Lemma 3.2.5. Now J is a bicycle on (v1, v2, v3, v4) or

(v1, v2, v4, v3); otherwise, we obtain a K−
4 -subdivision on (v1, v2; v3, v4), a contradiction.

Assume that J is a bicycle on (v1, v2, v3, v4), say. We apply Lemma 3.2.7 and use the

same notation Ci, H,K, xi as in the proof of Theorem 3.1.2 (5).

Let us take a closer look at the graph G′ := G|V (C3) ∪ V (K⟨x6, x7⟩). In the proof of

Theorem 3.1.2 (5), the graph G′ was only required to contain no path through x6, v4, v3, x7

in order. But now G′ cannot contain any two disjoint paths with ends x6v4, x7v3, re-

spectively; for if there are such two disjoint paths, then G contains a K−
4 -subdivision on

(v1, v2; v3, v4), a contradiction. From this observation one can prove that G′ can be drawn

in a disc with v3, x6, K⟨x6, x7⟩, x7, v4 on the boundary in order, regardless of whether or

not v3v4 ∈ E(G).

Define a subgraph H3 of G by setting V (H3) = {v3, v4} and E(H3) = ∅. For

j ∈ {1, 2, 4} define a subgraph Hj of G as follows: If vjvj+1 ∈ E(G) then let V (Hj) =

{vj, vj+1} and E(Hj) = ∅. If vjvj+1 /∈ E(G) then let Hj be a graph obtained from

G|V (Cj) ∪ V (K⟨x2j, x2j+1⟩) by deleting edges spanned by {vj, vj+1} ∪ V (K⟨x2j, x2j+1⟩).
Let L denote the subgraph of G induced by V (H)∪Z∪V (C3)∪

∪
j∈{1,2,4}:vjvj+1∈E(G) V (Cj).

In a virtually identical way as the proof of Theorem 3.1.2 (5), one can show that (L,H1, H2,

H3, H4) is a discoid decomposition of G for (v1, v2, v3, v4) with E(H3) = ∅. This completes

the proof.

3.9 Corollaries

We prove corollaries of the main theorem, namely, Theorems 3.1.3 and 3.1.4. These

theorems immediately follow from the following lemma. We may use Theorem 3.1.2, but

the proof seems quicker if we start from Lemma 3.2.7.

Lemma 3.9.1. Let G be a 6-connected graph and let Z ⊆ V (G) with |Z| = 4. If G is

7-connected or triangle-free, then there is a K4-subdivision on Z in G.

Proof. Suppose to the contrary that G contains no K4-subdivision on Z. Since G is

6-connected, by Lemma 3.2.5 there is a nice and lean bicycle J on (v1, v2, v3, v4) in G for

some ordering Z = {v1, v2, v3, v4}. Let Ci denote the tire of J with vi, vi+1 ∈ V (Ci) for

1 ≤ i ≤ 4, where indices are read modulo 4. Let H := G \ V (J). By Lemma 3.2.7, H

contains a cycle K such that:

• H can be drawn in a disc with K on the boundary, and

• there are eight distinct vertices x1, . . . , x8 occurring in K in this order listed such

that

– x2i−1, x2i ∈ NG(vi),

– NG(vi) ⊆ V (Ci ∪ Ci−1) ∪ V (K⟨x2i−1, x2i⟩), and

– NG(V (Ci)− Z) ⊆ {vi, vi+1} ∪ V (K⟨x2i, x2i+1⟩)
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for 1 ≤ i ≤ 4. Note that every vertex of H \ V (K) has no neighbor in V (J). We want to

show that each vertex of K has not so many neighbors in V (J). As easily seen, it holds

that:

(1) For 1 ≤ i ≤ 4 every internal vertex of K⟨x2i−1, x2i⟩ has at most one neighbor in

V (J), namely vi.

We next consider vertices of K⟨x2i, x2i+1⟩ for 1 ≤ i ≤ 4. From the symmetry we

mainly consider vertices of K⟨x2, x3⟩. Note that each vertex x of K⟨x2, x3⟩ satisfies

that NG(x) ∩ V (J) = NG(x) ∩ V (C1). Let k := |V (K⟨x2, x3⟩)| (≥ 4) and let x2 =

b1, b2, . . . , bk = x3 denote the vertices of K⟨x2, x3⟩ from x2 to x3 in order. By the same

way as in the proof of Theroem 3.1.2 (5) in Section 3.8, we obtain the following.

(2) If v1v2 ∈ E(G), then the graph G|V (C1) ∪ V (K⟨x2, x3⟩) can be drawn in a disc with

v1, b1, b2, . . . , bk, v2 on the boundary in this order listed.

(3) If v1v2 /∈ E(G) then the graph obtained from G|V (C1) ∪ V (K⟨x2, x3⟩) by deleting

edges spanned by {v1, v2}∪V (K⟨x2, x3⟩) has a path-decomposition (A1, . . . , Ak) such that

v1, b1 ∈ A1−A2, v2, bk ∈ Ak−Ak−1, bi ∈ Ai−Ai−1∪Ai+1 for 1 < i < k and |Ai∩Ai+1| = 2

for 1 ≤ i < k.

By (2) and the 6-connectivity of G, we easily obtain the following:

(4) If v1v2 ∈ E(G), then |NG(bi) ∩ V (C1)| ≤ 2 for 1 ≤ i ≤ k.

Next we claim:

(5) If v1v2 /∈ E(G), then |NG(bi) ∩ V (C1)| ≤ 4 for 1 < i < k and |NG(bi) ∩ V (C1)| ≤ 3

for i ∈ {1, k}. If some vertex of K⟨x2, x3⟩ has ≥ 3 neighbors in V (C1), then G contains

a triangle. If G is 7-connected, then |NG(bi) ∩ V (C1)| + |NG(bi+1) ∩ V (C1)| ≤ 6 for

1 ≤ i < k.

For let (A1, . . . , Ak) be a path-decomposition as in (3). Since G is 6-connected, each

part Ai has no other “inner vertices”, i.e., A1 − A2 = {v1, b1}, Ak − Ak−1 = {v2, bk} and

Ai −Ai−1 ∪Ai+1 = {bi} for 1 < i < k. Since NG(b1)∩V (C1) ⊆ {v1}∪ (A1 ∩A2), we have

|NG(b1)∩V (C1)| ≤ |{v1}∪ (A1∩A2)| = 3. Similarly, |NG(bk)∩V (C1)| ≤ 3. For 1 < i < k

we have |NG(bi)∩V (C1)| ≤ |Ai∩(Ai−1∪Ai+1)| ≤ 4. This proves the first part of the claim.

If some bi has ≥ 3 neighbors in V (C1), then such neighbors are all in Ai, and so G|Ai

contains a triangle by the existence of C1. This proves the second part of the claim. To see

the third part of the claim, note that for 2 ≤ i ≤ k−2 the graph G|Ai∪Ai+1 is separated

from the other vertices of G by the (≤ 6)-cut (Ai ∩ Ai−1) ∪ (Ai+1 ∩ Ai+2) ∪ {bi, bi+1}. If
G is 7-connected, then the graph G|Ai ∪ Ai+1 has no “internal vertex”, i.e., Ai ∩ Ai+1 ⊆
(Ai ∩Ai−1)∪ (Ai+1 ∩Ai+2). This implies that |NG(bi)∩ V (C1)|+ |NG(bi+1)∩ V (C1)| ≤ 6

for 2 ≤ i ≤ k − 2. Similarly, the graph G|A1 ∪ A2 is separated from the other vertices

of G by the 5-cut {v1, b1, b2} ∪ (A2 ∩ A3). This implies that if G is 6-connected then

A1 ∩A2 ⊆ A2 ∩A3, and so |NG(b1)∩ V (C1)|+ |NG(b2)∩ V (C1)| ≤ 5; an analogous claim

holds for G|Ak−1 ∪ Ak. This proves the third part of the claim. This proves (5).
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From (1), (4) and the second part of (5), we deduce that if G is triangle-free then

each vertex in K has ≤ 2 neighbors in V (J). Consequently, every vertex in H has ≤ 2

neighbors in V (J), and so H has minimum degree ≥ 6− 2 = 4. But this contradicts that

H is a triangle-free planar graph. Therefore, G is not triangle-free, and so 7-connected.

From (1), (4) and the first and the third part of (5), we deduce that if G is 7-

connected then |NG(x) ∩ V (J)| + |NG(y) ∩ V (J)| ≤ 6 for every edge xy of K. On the

other hand, we have |E(H)| ≤ 3|V (H)|−6− (|V (K)|−3) = 3|V (H)|−3−|V (K)|. Since
degH(x) = degG(x) ≥ 7 for every x ∈ V (H)− V (K), we have∑

x∈V (K)

degH(x) = 2|E(H)| −
∑

x∈V (H)−V (K)

degH(x)

≤ 2(3|V (H)| − 3− |V (K)|)− 7(|V (H)| − |V (K)|)
= −|V (H)| − 6 + 5|V (K)|
< 4|V (K)|,

which implies that∑
xy∈E(K)

(degH(x) + degH(y)) = 2
∑

x∈V (K)

degH(x) < 8|V (K)| = 8|E(K)|.

Therefore, there is an edge xy of K with degH(x) + degH(y) ≤ 7. Now |NG(x)∩ V (J)|+
|NG(y)∩V (J)| ≥ degG(x)+degG(y)−(degH(x)+degH(y)) ≥ 7+7−7 = 7, a contradiction.

This completes the proof of the lemma.



Chapter 4

Relaxed rooted subdivisions on four

vertices

4.1 Overview

Let G be a graph and Z be a subset of V (G) with |Z| = 4. By a K−
4 -subdivision on Z in

G we mean a K−
4 -subdivision on (v1, v2; v3, v4) in G for some ordering Z = {v1, v2, v3, v4};

see Section 3.1 for the term “K−
4 -subdivision on (v1, v2; v3, v4)”. Therefore, the relaxed

rooted K−
4 -subdivision problem is to ask a K−

4 -subdivision on Z in G.

The second contribution in this dissertation is to determine the structures of graphs

G with no K−
4 -subdivision on Z, under the assumption that

(∗) for every vertex v of Z there are three paths of G from v to Z − {v},
mutually disjoint except for v.

Roughly speaking, such a graph G admits a “decomposition” that separates Z into a

few smaller subsets. The decomposition of G can be written as a hypergraph in flavor of

combinatorics, without any topological condition, such as planarity. This is an interesting

difference from Theorem 3.1.2 (4). A precise description of the theorem (Theorem 4.5.3)

is given in Section 4.5.

If we drop the assumption (∗), then some vertex in Z may have to be of degree 2 in

a possible K−
4 -subdivision on Z. This restricts the choice of the subdivisions and hence

the problem becomes almost the same as the usual rooted K−
4 -subdivision problem. We

shall deal with it in Chapter 3 only when G is 6-connected, and so assume (∗) here.
Unlike other results in this area, our proof is based on Mader’s “H-Wege” theorem.

For a subset S of V (G), an S-path of G is a path of G with distinct ends both in S and

no internal vertex in S. Mader [43] gave a min-max formula for the maximum number

of internally disjoint S-paths, which is a deep result generalizing Menger’s theorem and

the Tutte–Berge formula. If G contains no more than four internally disjoint Z-paths,

then clearly there is no K−
4 -subdivision on Z in G. Such a graph G can be characterized

by Mader’s theorem. We may thus start from five internally disjoint Z-paths. This is a

helpful shortcut for us. A similar method is used in the proof of Hadwiger’s conjecture for

K6-minor-free cases by Robertson, Seymour and Thomas [51] (see also [30] for a similar

proof).

48



CHAPTER 4. RELAXED ROOTED SUBDIVISIONS ON FOUR VERTICES 49

By a K2−
4 -subdivision on Z in G we mean a K2−

4 -subdivision on (v1; v2, v3; v4) in G for

some ordering Z = {v1, v2, v3, v4}. Note that K2−
4 and C4 are the graphs obtained from

K−
4 by removing one edge. Thus, if there is a vertex not in Z whose removal makes the

graph G contain neither K2−
4 -subdivision on Z nor cycle through all the vertices in Z,

then obviously G contains no K−
4 -subdivision on Z. From this observation, it is natural

to consider the following subproblem:

Characterize graphs G that contain neither K2−
4 -subdivision on Z nor cycle

through all the vertices in Z.

As we shall show in Corollary 4.5.2, such a graph G has almost the same structure as

a graph that contains no cycle through all the vertices in Z. Watkins and Mesner [67]

characterized 3-connected graphs containing no cycle through given four vertices; see

Corollary 4.10.2 for the statement. However, there seems no Watkins–Mesner-type theo-

rem for 2-connected graphs. We solve this problem in Section 4.7. Note that this result

cannot be derived from the result of [67] because the prescribed four vertices may have

degree 2 in a 2-connected graph, which makes a significant difference. We should remark

that as a similar problem, a characterization of cycles through prescribed four edges is

given in [37].

In Sections 4.3 and 4.4, we prove some lemmas which are crucial for us to prove the

main theorem, but are of independent interest.

4.2 Tools

In this section, we introduce the most important concepts, namely Mader’s S-paths

theorem. For our sake of use of this theorem, we give a few lemmas concerning the use

of Mader’s theorem. We also derive Watkins–Mesner’s theorem from Mader’s S-paths

theorem.

4.2.1 Decompositions

A tuple D = (A1, . . . , Ak) of subsets of V (G) is called a decomposition of G if (G|A1) ∪
· · · ∪ (G|Ak) = G; equivalently, A1 ∪ · · · ∪ Ak = V (G) and every edge has both ends in

one of Ai. So it is a separation of G if k = 2. Each Ai is called a part. The boundary of

a part Ai is the set Ai ∩
∪

1≤j≤k:j ̸=i Aj, which we denote by bdD Ai or simply, bdAi. The

interior of Ai is the set Ai − bdD Ai, which we denote by intD Ai or simply, intAi. We

say that a hypergraph H with vertex set
∪

1≤i≤k bdAi and edge set {bdAi}1≤i≤k is the

basic family of the decomposition D. In practice it is sometimes convenient to describe

a decomposition of G by giving its basic family. We will encounter such a situation in

Section 4.5 to state our main theorem.

4.2.2 Mader’s S-paths Theorem

A tuple (X1, . . . , Xk;Y1, . . . , Ym) of subsets of V (G) is called a bipartite-decomposition of

a graph G if it is a decomposition of G such that X1, . . . , Xk are pairwise disjoint and
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Y1, . . . , Ym are pairwise disjoint. It is called linear if |Xi ∩ Yj| = 1 for all 1 ≤ i ≤ k, 1 ≤
j ≤ m.

A tuple (W ;X1, . . . , Xk;Y1, . . . , Ym) of subsets of V (G) is called a quasi-bipartite-

decomposition of G if (X1, . . . , Xk;Y1, . . . , Ym) is a bipartite-decomposition of G \W . Its

value is defined by

|W |+
∑

1≤j≤m

⌊
1

2
|Yj ∩X|

⌋
,

where X = X1 ∪ · · · ∪ Xk. The set W is called the integral part of the quasi-bipartite-

decomposition. Note that the tuple (W,X1, . . . , Xk, Y1, . . . , Ym) is not necessarily a de-

composition of G if W ̸= ∅; but (W ∪X1, . . . ,W ∪Xk,W ∪ Y1, . . . ,W ∪ Ym) is a decom-

position of G. For S ⊆ V (G), a quasi-bipartite-decomposition of G with respect to S is

a quasi-bipartite-decomposition (W ;X1, . . . , Xk;Y1, . . . , Ym) of G such that k = |S| and
|S ∩ (Xi − Y )| = 1 for 1 ≤ i ≤ k, where Y = Y1 ∪ · · · ∪ Ym. It is permitted that m = 0

and Y = ∅. Note that the existence of a quasi-bipartite-decomposition with respect to

S implies that S is stable. It is easy to see that for a stable set S ⊆ V (G), if there are

t internally disjoint S-paths of G, then every quasi-bipartite-decomposition of G with

respect to S has value ≥ t. Mader’s “H-Wege” theorem [43] states that the converse

holds; see [54, Theorem 4], e.g., for an equivalent description of the theorem.

Theorem 4.2.1 (Mader [43]). Let G be a graph and let S ⊆ V (G) be a stable set. Then

the maximum number of internally disjoint S-paths of G is equal to the minimum value

of quasi-bipartite-decompositions of G with respect to S.

A quasi-bipartite-decomposition (W ;X1, . . . , Xk;Y1, . . . , Ym) ofG is called good if |Yj∩
X| is an odd integer and |{1 ≤ i ≤ k : Xi ∩ Yj ̸= ∅}| ≥ 3 for 1 ≤ j ≤ m. The value

of a good quasi-bipartite-decomposition is written as |W | + (|X ∩ Y | − m)/2, without

the floor function. The following lemma assures the existence of a good quasi-bipartite-

decomposition of minimum value; for its proof, just choose one with W maximal, and

subject to that with Y minimal.

Lemma 4.2.2. Let G be a graph and S ⊆ V (G) be a stable set. If there is a quasi-

bipartite-decomposition of G with respect to S of value t, then there is a good quasi-

bipartite-decomposition of G with respect to S of value ≤ t. In particular, there is a good

one of minimum value.

Proof. Wemay assume that |S| ≥ 2. Choose a quasi-bipartite-decomposition (W ;X1, . . . ,

Xk;Y1, . . . , Ym) of G with respect to S of value ≤ t, with W maximal, and subject to that

with Y = Y1 ∪ · · · ∪ Ym minimal. Let t′ (≤ t) denote its value. Let X := X1 ∪ · · · ∪Xk.

We may assume that m > 0 and each Yj is not empty. Suppose to the contrary that

Xi ∩ Y1 = ∅ for 3 ≤ i ≤ k. Assume that |X1 ∩ Y1| ≥ |X2 ∩ Y1|; and so |X2 ∩ Y1| ≤
|Y1 ∩ X|/2. Set W ′ := W ∪ (X2 ∩ Y1), X ′

1 := X1 ∪ (Y1 − X2) and X ′
2 := X2 − Y1.

Then (W ′;X ′
1, X

′
2, X3, . . . , Xk;Y2, . . . , Ym) is a quasi-bipartite-decomposition of G with

respect to S of value ≤ t′, such that W ⊆ W ′ and Y − Y1 ⊊ Y , contrary to our choice.

Hence each Yj intersects at least three Xi’s. Next suppose to the contrary that |Y1 ∩X|,
say, is a (positive) even integer. Assume X1 ∩ Y1 ̸= ∅ and let v ∈ X1 ∩ Y1 be an
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arbitrary vertex. Set W ′ := W ∪ {v}, X ′
1 := X1 − {v} and Y ′

1 := Y1 − {v}. Then

(W ′;X ′
1, X2, . . . , Xk;Y

′
1 , Y2, . . . , Ym) is a quasi-bipartite-decomposition of G with respect

to S of value t′ such that W ⊊ W ′, contrary to our choice. Hence |Yj ∩X| is odd for each

j. This completes the proof.

When |S| = 2, if (W ;X1, X2;Y1, . . . , Ym) is a good quasi-bipartite-decomposition of G

with respect to S of minimum value, then m = 0 (and Y = ∅) by definition. Hence W is

a cut (disjoint from S) of G that separates S, with |W | equal to the maximum number of

internally disjoint S-paths of G by Theorem 4.2.1. This is nothing but Menger’s theorem.

4.2.3 Watkins–Mesner’s Theorem from Mader’s S-paths Theo-

rem

For our purposes, the case |S| = 3 is particularly important. Let t ≥ 0 be an integer.

A tuple (X1, X2, X3, Y1, . . . , Yt) of subsets of V (G) is called a K3,t-decomposition of G of

integral value s ∈ {0, 1, . . . , t} if

(i) Y1, . . . , Ys are disjoint singletons,

(ii) the union W := Y1 ∪ · · · ∪ Ys is contained in Xi, Yj for 1 ≤ i ≤ 3, s < j ≤ t, and

(iii) (X1−W,X2−W,X3−W ;Ys+1−W, . . . , Yt−W ) is a linear bipartite-decomposition

of G \W .

Note that Yj (j > s) is not a singleton, since Yj − W intersects disjoint three sets

Xi − W (1 ≤ i ≤ 3). Hence W is uniquely determined. We say that W is the inte-

gral part of the K3,t-decomposition. A K3,t-decomposition arises from a quasi-bipartite-

decomposition of G of value t. To see this, let (W ;X ′
1, X

′
2, X

′
3;Y

′
1 , . . . , Y

′
m) be a quasi-

bipartite-decomposition of G such that |X ′
i ∩ Y ′

j | = 1 for all 1 ≤ i ≤ 3, 1 ≤ j ≤ m. Let

s := |W | and W = {w1, . . . , ws}. Then its value is equal to

t = |W |+
∑

1≤j≤m

⌊
1

2
|Y ′

j ∩ (X ′
1 ∪X ′

2 ∪X ′
3)|

⌋
= s+m.

Now let Xi := X ′
i ∪W for 1 ≤ i ≤ 3, Yj := {wj} for 1 ≤ j ≤ s, and Yj := Y ′

j−s ∪W for

s < j ≤ t. Then (X1, X2, X3, Y1, . . . , Yt) is a K3,t-decomposition of G of integral value s =

|W |. It is obvious that for any three vertices v1, v2, v3 with vi ∈ intXi = Xi−Y1∪· · ·∪Yt

(1 ≤ i ≤ 3), there do not exist more than t internally disjoint {v1, v2, v3}-paths of G.

Of particular importance for us is the case t = 2, 3; see Figures 4.1 and 4.2. The

case t = 2 appears in Watkins and Mesner’s results [67], which characterizes graphs that

contain no cycle through prescribed three vertices. Their theorem immediately follows

from Mader’s theorem (Theorem 4.2.1) because in a 2-connected graph there is a cycle

through three vertices v1, v2, v3 if and only if there are three internally disjoint {v1, v2, v3}-
paths.

Theorem 4.2.3 (Watkins–Mesner [67]). Let v1, v2, v3 be distinct vertices of a graph G.

Then there is no cycle through v1, v2 and v3 in G if and only if one of the following holds:
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Figure 4.1: K3,2-decomposition.
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Figure 4.2: K3,3-decomposition.

(i) There is a (≤ 1)-separation (A,B) of G such that both A − B and B − A meet

{v1, v2, v3}.
(ii) There is a K3,2-decomposition (X1, X2, X3, Y1, Y2) of G such that vi ∈ Xi − Y1 ∪ Y2

for 1 ≤ i ≤ 3.

In Section 4.3, we will see that triad-cycles (defined later) on three vertices are char-

acterized by K3,3-decompositions.

4.2.4 Matroids in S-paths

We will use the following matroidal properties of S-paths.

Lemma 4.2.4. Let G be a graph, let S ⊆ V (G), and let k ≥ k′ ≥ 0 be integers.

Suppose that P1, . . . , Pk′ are internally disjoint S-paths of G. If there are k internally

disjoint S-paths Q1, . . . , Qk of G, then one can choose such paths with degP1∪···∪Pk′
(v) ≤

degQ1∪···∪Qk
(v) for each v ∈ S.

Proof. If S is stable and the sets NG(v) (v ∈ S) are pairwise disjoint, then the lemma

follows from the usual Mader matroids; see, e.g., [53, Theorem 73.5]. The general case

can easily be reduced to this case.
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v1 v2

v3

Figure 4.3: A triad-cycle on {v1, v2, v3}.

4.3 Triad-cycles

Let v1, v2, v3 be distinct vertices of a graph G. A triad in G with feet v1, v2, v3 is a

subgraph P1∪P2∪P3 of G consisting of a vertex b of G distinct from v1, v2, v3, called the

branch, and three paths Pi with ends b, vi (1 ≤ i ≤ 3), mutually disjoint except for b. A

triad-cycle on {v1, v2, v3} in G is a subgraph C ∪ T of G consisting of a cycle C through

v1, v2, v3, and a triad T with feet v1, v2, v3, mutually disjoint except for {v1, v2, v3}. See

Figure 4.3 for an illustration of a triad-cycle. In this section we give a characterization of

graphs that contain no triad-cycle on prescribed three vertices. The result will be used in

Section 4.4 to prove another lemma and in Section 4.6 to prove our main theorem. The

proof is heavily based on Mader’s S-paths theorem because a triad-cycle on {v1, v2, v3}
is essentially equivalent to four internally disjoint {v1, v2, v3}-paths.

Theorem 4.3.1. Let G be a graph and let Z ⊆ V (G) with |Z| = 3. Then there is no

triad-cycle on Z in G if and only if one of the following holds.

(i) There is a (≤ 2)-separation (A,B) of G such that both A−B and B − A meet Z.

(ii) There is no triad with feet Z in G.

(iii) There is a vertex w ∈ V (G)− Z such that G \ w contains no cycle through all the

vertices in Z.

(iv) There is a linear bipartite-decomposition (X1, X2, X3;Y1, Y2, Y3) of G such that |Z∩
(Xi − Y1 ∪ Y2 ∪ Y3)| = 1 for 1 ≤ i ≤ 3.

Proof. Let Z = {v1, v2, v3}. The “if part” is obvious, so we only show the converse.

Suppose to the contrary that there is no triad-cycle on Z in G, but (i)–(iv) are false. By

induction on |V (G)|, say, we may assume that:

(1) G is 3-connected.

For if there is a (≤ 2)-separation (A,B) of G with A − B ̸= ∅ and B − A ̸= ∅, then
B − A, say, is disjoint from Z, since (i) is false. Then the graph G′ obtained from G|A
by adding an edge in A∩B (if |A∩B| = 2), does not satisfy (i)–(iv). Hence G′ contains

a triad-cycle on Z by induction, which yields a triad-cycle on Z in G, a contradiction.

This proves (1).

(2) There are at most three internally disjoint Z-paths in G.

For suppose not, and let there be four internally disjoint Z-paths P1, . . . , P4 of G, and

let H := P1 ∪ · · · ∪ P4. Since there is a cycle through v1, v2 and v3 in G, we may assume
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from the matroidal properties (Lemma 4.2.4) that each of v1, v2, v3 has degree ≥ 2 in

H. We have only to consider two cases: P1, . . . , P4 have ends (a) v1v2, v1v2, v1v3, v2v3, or

(b) v1v2, v1v2, v1v3, v1v3, respectively. The case (b) can be reduced to (a), by augmenting

P1, P2 from v3 in H. The case (a) yields a triad-cycle on Z in G, by augmenting P3, P4

from v3 in H, contrary to the assumption. This proves (2).

Let e := |E(G|Z)|, di := degG|Z(vi) (1 ≤ i ≤ 3), and G′ := G \ E(G|Z). Then

G′ contains at most 3 − e internally disjoint Z-paths by (2). By theorem 4.2.1 and

Lemma 4.2.2, there is a good quasi-bipartite-decomposition (W ;X1, X2, X3;Y1, . . . , Ym)

of G′ with respect to Z of value ≤ 3 − e; hence Yj intersects each of X1, X2, X3 and

|Yj ∩X| is odd (≥ 3) for 1 ≤ j ≤ m, and

|W |+m ≤ |W |+
∑

1≤j≤m

⌊
1

2
|Yj ∩X|

⌋
= |W |+ 1

2
(|X ∩ Y | −m) ≤ 3− e, (4.3.1)

where X = X1 ∪X2 ∪X3 and Y = Y1 ∪ · · · ∪ Ym. We may assume that vi ∈ Xi − Y for

1 ≤ i ≤ 3.

(3) W = ∅.

For suppose not, and let w be a vertex in W . Then (W −{w};X1, X2, X3;Y1, . . . , Ym)

is a quasi-bipartite-decomposition of G′ \ w of value ≤ 2− e. This means that there are

at most two internally disjoint Z-paths in G \w, contrary to the assumption that (iii) is

false. This proves (3).

(4) For 1 ≤ i ≤ 3, |Xi ∩ Y |+ di ≥ 3.

For let A := X1∪NG|Z(v1) and B := Y ∪X2∪X3, say. Then (A,B) is a separation of

G such that v1 ∈ A−B and v2, v3 ∈ B. If B−A ̸= ∅, then A∩B = (X1∩Y )∪NG|Z(v1) has

size ≥ 3 since G is 3-connected. Hence the result follows (for i = 1); so we may assume

that B − A = ∅, i.e., Y ∪X2 ∪X3 ⊆ X1 ∪NG|Z(v1). Then Y = ∅, X2 = {v2}, X3 = {v3},
and v2, v3 ∈ NG(v1). Hence NG(v3) ⊆ {v1, v2} and NG(v2) ⊆ {v1, v3}, contrary to (1).

This proves (4).

By (4) we have

|X ∩ Y | =
∑
1≤i≤3

|Xi ∩ Y | ≥ 9− 2e.

This, together with (4.3.1) and (3), implies that

1

2
(9− 2e−m) ≤ 1

2
(|X ∩ Y | −m) ≤ 3− e

and hence

m ≥ 3.

Thus, we have equality throughout in (4.3.1). Hence e = 0,m = 3 and |Yj ∩X| = 3 for

1 ≤ j ≤ m. SinceXi∩Yj ̸= ∅ for all i, j, it follows that |Xi∩Yj| = 1 for 1 ≤ i, j ≤ 3. Thus,

(X1, X2, X3;Y1, Y2, Y3) is a linear bipartite-decomposition of G = G′ with vi ∈ Xi − Y

(1 ≤ i ≤ 3), contrary to the assumption that (iv) is false. This completes the proof of

the theorem.
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v1 v2

v3

v4

v1 v2

v3

v4

Figure 4.4: A K2−
4 -subdivision on (v1; v2, v3; v4) (left) and a K2−

4 -subdivision on
(v2; v1, v3; v4) (right).

It is possible to integrate conditions (iii) and (iv) in Theorem 4.3.1, viaK3,3-decomposi-

tions, as follows.

Theorem 4.3.2 (Via K3,3-decompositions). Let G be a graph and let Z ⊆ V (G) with

|Z| = 3. Then there is no triad-cycle on Z in G if and only if one of the following holds.

(i) There is a (≤ 2)-separation (A,B) of G such that both A−B and B − A meet Z.

(ii) There is no triad with feet Z in G.

(iii) There is a K3,3-decomposition (X1, X2, X3, Y1, Y2, Y3) of G such that |Z ∩ (Xi−Y1∪
Y2 ∪ Y3)| = 1 for 1 ≤ i ≤ 3.

Indeed, let there be a K3,3-decomposition of G of integral value s ∈ {0, 1, 2, 3}, as
in Theorem 4.3.2 (iii). Then the case s = 0 is equivalent to Theorem 4.3.1 (iv). The

case s > 0 or condition (i) (common in Theorems 4.3.1 and 4.3.2) holds if and only if

Theorem 4.3.1 (iii) holds, by Watkins–Mesner’s theorem (Theorem 4.2.3). This implies

the equivalence between Theorem 4.3.1 and Theorem 4.3.2. One can also give a direct

proof of Theorem 4.3.2 in almost the same way as in Theorem 4.3.1.

4.4 K2−
4 -Subdivisions

Let v1, v2, v3, v4 be distinct vertices of a graph G. Recall that a K2−
4 -subdivision on

(v1; v2, v3; v4) in G is a subgraph of G consisting of the union of four internally disjoint

paths of G with ends v1v2, v1v3, v1v4, v2v3, respectively. See Figure 4.4 for an illustration.

Also recall that for Z ⊆ V (G) with |Z| = 4, a K2−
4 -subdivision on Z in G is a K2−

4 -

subdivision on (v1; v2, v3; v4) in G for some ordering Z = {v1, v2, v3, v4}.
Suppose now that there is a cycle containing v1, v2, v3 and avoiding v4. Let us consider

a problem to construct a K2−
4 -subdivision on {v1, v2, v3, v4} in which v4 has degree 1. The

problem is difficult if only one of v1, v2, v3 is permitted to have degree 3, because it is

exactly the K2−
4 -linkage problem; a structural characterization for 6-connected graphs G

is given in Theorem 3.1.2 (3). Nevertheless, if two of v1, v2, v3 can have degree 3, then the

problem is fairly tractable, because it is reduced to a triad-cycle problem in Section 4.3.

Lemma 4.4.1. Let v1, v2, v3, v4 be distinct vertices of a graph G. Suppose that for i = 1, 2

there are three paths from vi to {v1, v2, v3, v4}−{vi}, mutually disjoint except for vi. Then

there is a K2−
4 -subdivision on (v1; v2, v3; v4) or (v2; v1, v3; v4) in G if and only if there is

a triad-cycle on {v1, v2, v3} in G+ v3v4.
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Proof. Suppose that there is aK2−
4 -subdivision on (v1; v2, v3; v4), say, inG; let P1, P2, P3, P4

be internally disjoint paths in G with ends v1v2, v2v3, v1v3, v1v4, respectively, and let

H := P1 ∪ · · · ∪ P4. By augmenting P1, P2 from v2 in H, we may assume that there is

a path Q of G with one end v2, the other end in V (P3 ∪ P4) − {v1, v3}, and no internal

vertex in H. Then Q ∪H + v3v4 is a triad-cycle on {v1, v2, v3} in G+ v3v4.

Conversely, suppose that there is a triad-cycle H on {v1, v2, v3} in G+ v3v4. There is

a path Q of G (possibly, of length 0) from v4 to V (H) disjoint from v3; for otherwise, v3 is

a cut vertex that separates {v4} and {v1, v2}, contrary to the assumption that there are

three paths from v1 to {v2, v3, v4}, mutually disjoint except for v1. Then (H ∪Q)\{v3v4}
(and hence G) contains a K2−

4 -subdivision on (v1; v2, v3; v4) or (v2; v1, v3; v4).

The above lemma, together with the results in Section 4.3, gives a characterization of

two types of K2−
4 -subdivisions, as follows. This result will play a crucial role in proving

our main theorem.

Theorem 4.4.2. Let v1, v2, v3, v4 be distinct vertices of a graph G. Suppose that for

i = 1, 2 there are three paths of G from vi to {v1, v2, v3, v4} − {vi}, mutually disjoint

except for vi. Then there is no K2−
4 -subdivision on either (v1; v2, v3; v4) or (v2; v1, v3; v4)

in G if and only if one of the following holds:

(i) There is a (≤ 2)-separation (A,B) of G such that v3 ∈ A−B, v4 ∈ A and v1, v2 ∈
B − A.

(ii) There is a K3,3-decomposition (X1, X2, X3, Y1, Y2, Y3) of G such that vi ∈ Xi − Y1 ∪
Y2 ∪ Y3 for 1 ≤ i ≤ 3 and v4 ∈ X3.

Proof. By Lemma 4.4.1 and Theorem 4.3.2, there is no K2−
4 -subdivision on either (v1; v2,

v3; v4) nor on (v2; v1, v3; v4) if and only if G′ = G + v3v4 satisfies one of (i)–(iii) in

Theorem 4.3.2, where Z = {v1, v2, v3}. It is obvious that Theorem 4.4.2 (ii) holds for G

if and only if Theorem 4.3.2 (iii) holds for G′. It is easy to see that if Theorem 4.4.2 (i)

holds for G then Theorem 4.3.2 (i) holds for G′.

To see the converse, suppose that Theorem 4.3.2 (i) holds for G′, and let (A,B) be a

(≤ 2)-separation of G′ such that both A− B and B − A contain a vertex in {v1, v2, v3}.
Then v3, v4 ∈ A or v3, v4 ∈ B. Since (A,B) is also a separation of G, the intersection of

{v1, v2, v3, v4} and A−B (or B−A) cannot be {v1} nor {v2}. Therefore, the only possible

arrangement of vi’s is: v3 ∈ A−B, v4 ∈ A and v1, v2 ∈ B−A (up to interchanging A and

B). Hence Theorem 4.4.2 (i) holds for G. Theorem 4.3.2 (ii) does not hold for G′. For if

there is no triad with feet v1, v2, v3 inG′, then each connected component ofG′\{v1, v2, v3}
is adjacent at most two of v1, v2, v3 in G. Hence there is no path of G′ \ {v2, v3} from v4
to v1, say, but this contradicts the assumption that G contains three paths from v1 to

{v2, v3, v4}, mutually disjoint except for v1. This completes the proof.

Let (X1, X2, X3, Y1, Y2, Y3) be a K3,3-decomposition of integral value 0 ≤ s ≤ 3 as in

Theorem 4.4.2 (ii). Let W := Y1 ∪ · · · ∪Ys be the integral part, and let Y := Y1 ∪Y2 ∪Y3.

We know v4 ∈ X3 but it is more helpful to distinguish the following three cases: (1)

v4 ∈ X3 − Y (the interior of X3), (2) v4 ∈ X3 ∩W (the boundary of X3 and the integral

part W ), and (3) v4 ∈ X3 ∩ (Y −W ) (the boundary of X3 and the outside of the integral



CHAPTER 4. RELAXED ROOTED SUBDIVISIONS ON FOUR VERTICES 57

part W ). If (1) holds, then there are at most three internally disjoint {v1, v2} − {v3, v4}
paths, since X3 ∩ Y is a 3-cut. If (2) holds, then G \ v4 contains no cycle through v1, v2
and v3 by Watkins–Mesner’s theorem, say; note that such a graph obviously contains no

K2−
4 -subdivision on {v1, v2, v3, v4} in which v4 has degree 1. Hence if, for example, there

is a cycle through v1, v3, v2, v4 in order and there is a cycle through v1, v2, v3 disjoint from

v4, then case (3) must occur. We will encounter such a situation in (the final step of) the

proof of our main theorem.

4.5 Main theorem

Let G be a graph and let Z ⊆ V (G) be a set of four distinct vertices. We say that a

pair (G,Z) is an obstruction if there no K−
4 -subdivision on Z in G. In this section, we

characterize obstructions (G,Z) under the assumption that for every v ∈ Z there are

three paths of G from v to Z − {v}, mutually disjoint except for v. If we drop this

assumption, some vertex v ∈ Z has to be of degree 2 in a possible K−
4 -subdivision on Z,

which is a much harder problem as we pointed out in the introduction. So we shall not

deal with such a case.

Before stating our theorem, we point out some obvious obstructions. If there is a

K−
4 -subdivision on Z in G, then for any vertex w not in Z the graph G \w still contains

a K2−
4 -subdivision on Z or a cycle through all the vertices in Z. So the first obvious

obstruction is a graph G which admits a vertex w not in Z such that G \ w contains

neither K−
4 -subdivision on Z nor cycle through all the vertices in Z. To characterize such

graphs, we have to solve the following subproblem:

Characterize Z-acyclic graphs G that contain no K−
4 -subdivision on Z.

But this is almost the same as the problem of characterizing Z-acyclic graphs G. To see

this, we need the following lemma. The proof is given in the next section.

Lemma 4.5.1. Let G be a graph and let Z = {v1, v2, v3, v4} be a set of distinct vertices

of G. Suppose that G contains a K2−
4 -subdivision on Z in which v4 has degree 3, and that

G contains a cycle through v1, v2 and v3. Then there is a cycle in G containing all the

vertices in Z.

The following is an immediate consequence of Lemma 4.5.1.

Corollary 4.5.2. Let G be a graph and let Z ⊆ V (G) with |Z| = 4. Then the following

two conditions are equivalent.

(1) G is Z-acyclic and contains no K2−
4 -subdivision on Z.

(2) Either

(i) G is Z ′-cyclic for any Z ′ ⊆ Z with |Z ′| = 3 and is Z-acyclic, or

(ii) G is Z ′-acyclic for some Z ′ ⊆ Z with |Z ′| = 3 and contains no K2−
4 -subdivision

on Z.



CHAPTER 4. RELAXED ROOTED SUBDIVISIONS ON FOUR VERTICES 58

We already understand most of the structure of graphs as in (2)(ii), with the aid of

Watkins–Mesner’s theorem. Thus, in order to study graphs as in (1) it suffices to study

graphs as in (2)(i). Therefore our subproblem is almost the same as to characterize Z-

acyclic graphs. In Section 4.7, we characterize Z-acyclic graphs. We remark here that

Lemma 4.5.1 is used a few times in the subsequent sections as well: Namely, in the proofs

of Lemma 4.6.2 and Lemma 4.8.1.

We return to other obstructions. Recall that we have assumed above that there is no

(≤ 2)-separation of G that separates Z into two subsets of size 1 and 3, respectively. We

now consider a separation of G that separates Z into two subsets of size 2. That is, let

there be a k-separation (A,B) of G such that |Z ∩ (A−B)| = 2 and |Z ∩ (B−A)| = 2. If

k ≤ 2, then G obviously contains no K−
4 -subdivision on Z, and hence is an obstruction.

What if k = 3? For this case, there is an obstruction described by bipartite decompo-

sitions. Suppose that there is a linear bipartite decomposition (X1, X2, X3;Y1, Y2, Y3) of

G such that intXi = Xi − Y1 ∪ Y2 ∪ Y3 contains exactly 1, 1, 2 vertices of Z for i = 1, 2, 3,

respectively. Then G contains no K−
4 -subdivision on Z, as easily checked. Note that

(X3, X1 ∪X2 ∪ Y1 ∪ Y2 ∪ Y3) is a 3-separation of G that separates Z into two subsets of

size 2.

What if k = 4? To consider this case, we define a certain decomposition of a graph

G. We say that a decomposition (X1, X2, Y1, Y2, A1, A2, A3, B1, B2, B3) of G is special if

its basic family satisfies the following.

• The vertex set of the basic family consists of four distinct vertices a1, a2, b1, b2,

three distinct vertices xi1, xi2, xi3 (i = 1, 2), and three distinct vertices yi1, yi2, yi3
(i = 1, 2).

• For i = 1, 2, bdXi = {xi1, xi2, xi3} and bdYi = {yi1, yi2, yi3}.
• For i = 1, 2, {x1i, x2i, ai} ⊆ bdAi ⊆ {x1i, x2i, ai, a3−i} and {y1i, y2i, bi} ⊆ bdBi ⊆
{y1i, y2i, bi, b3−i}.

• {x13, x23, b1, b2} ⊆ bdA3 ⊆ {x13, x23, a1, a2, b1, b2} and {y13, y23, a1, a2} ⊆ bdB3 ⊆
{y13, y23, a1, a2, b1, b2}.

• For i = 1, 2, ai ∈ bdA3 if and only if |Ai| = 1, and ai ∈ bdA3−i if and only if

|Ai| = 1 and |A3−i| > 1. Similarly, for i = 1, 2, bi ∈ bdB3 if and only if |Bi| = 1,

and bi ∈ bdB3−i if and only if |Bi| = 1 and |B3−i| > 1.

Note that there is symmetry between Xi, Ai, ai, xij and Yi, Bi, bi, yij. By definition it

is permitted that {a1, a2} ∩ {y13, y23} ̸= ∅ and {b1, b2} ∩ {x13, x23} ̸= ∅. Let s and

s′ be the numbers of singletons in {A1, A2} and in {B1, B2}, respectively. Then we

say that the special decomposition is of type (s, s′). From the symmetry there are six

essentially different types of special decompositions; see Figure 4.5. (For simplicity, G|Xi

and G|Yi are depicted as 3-stars with feet bdXi and bdYi, respectively, for i = 1, 2.) Let

x1, x2, y1, y2 be vertices in intX1, intX2, intY1, intY2, respectively. Let A := X1 ∪ X2 ∪
A1 ∪ A2 ∪ A3 and B := Y1 ∪ Y2 ∪ B1 ∪ B2 ∪ B3. Then, as easily checked, (A,B) is a

separation of G such that A ∩ B = {a1, a2, b1, b2}, x1, x2 ∈ A − B and y1, y2 ∈ B − A.

Hence (A,B) is a 4-separation of G that separates {x1, x2, y1, y2} into two subsets {x1, x2}
and {y1, y2}. Moreover, it is easy to see that there is no K−

4 -subdivision on {x1, x2, y1, y2}
in G. So (G, {x1, x2, y1, y2}) is an obstruction.
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Figure 4.5: Six types of special decompositions.

Our main result in this chapter is the following, which states that there is no obstruc-

tion except but the above mentioned ones.

Theorem 4.5.3. Let G be a graph and let Z ⊆ V (G) with |Z| = 4. Suppose that for

every v ∈ Z there are three paths of G from v to Z −{v}, mutually disjoint except for v.

Then there is no K−
4 -subdivision on Z in G if and only if one of the following holds.

(a) There is a vertex w ∈ V (G)− Z such that G \ w contains neither K2−
4 -subdivision

on Z nor cycle through all the vertices in Z.

(b) There is a (≤ 2)-separation (A,B) of G such that |Z∩(A−B)| = |Z∩(B−A)| = 2.

(c) There is a linear bipartite-decomposition (X1, X2, X3;Y1, Y2, Y3) of G such that Xi−
Y1 ∪ Y2 ∪ Y3 contains exactly 1, 1, 2 vertices of Z for i = 1, 2, 3, respectively.

(d) There is a special decomposition (X1, X2, Y1, Y2, A1, A2, A3, B1, B2, B3) of G such

that each of intX1, intX2, intY1, intY2 contains exactly one vertex of Z.

As seen above, the “if” part is easy to verify. The non-trivial part is the converse.

The proof is given in the next section. We should remark here that if there is a K−
4 -

subdivision on Z in G then one can find two non-homeomorphic K−
4 -subdivisions on Z.

This fact follows from the following slightly stronger result.



CHAPTER 4. RELAXED ROOTED SUBDIVISIONS ON FOUR VERTICES 60

Theorem 4.5.4. Let G be a graph and let Z ⊆ V (G) with |Z| = 4. Suppose that for

every v ∈ Z there are three paths of G from v to Z −{v}, mutually disjoint except for v.

If there is a K−
4 -subdivision on Z in G, then for every v ∈ Z there is a K−

4 -subdivision

on Z in G in which v has degree 3.

Proof. Let Z = {v1, v2, v3, v4} and suppose that G contains a K−
4 -subdivision H on

(v1, v2; v3, v4), say. Let P12, P13, P14, P23, P24 be the paths in H with ends v1v2, v1v3, v1v4,

v2v3, v2v4, respectively.

Let us construct a K−
4 -subdivision on Z in which v3 say, has degree 3. By augmenting

P13, P23 from v3 in H, we may assume that there is a path Q with one end v3, the other

end q in V (P12 ∪ P14 ∪ P24)− {v1, v2} and no internal vertex in H. If q ∈ V (P14)− {v1}
then the union of five internally disjoint paths P23, P13, P12, Q ∪ P14[q, v4] and P24 is a

K−
4 -subdivision on (v3, v2; v1, v4), as required. Similarly, if q ∈ V (P24)−{v2} then H ∪Q

contains a K−
4 -subdivision on (v3, v1; v2, v4). So assume that q ∈ V (P12)− {v1, v2}.

By augmenting P14, P24 from v4 in H ∪Q, we may assume that there is a path R of G

with one end v4, the other end r in V (P12∪P13∪P23∪Q)−{v1, v2} and no internal vertex

in H ∪ Q. If r ∈ V (P12 ∪ Q) − {v1, v2} then H ∪ P ∪ Q contains a K−
4 -subdivision on

(v3, v4; v1, v2), as required. If r ∈ V (P13)−{v1}, then the union of five internally disjoint

paths P13[v3, r]∪R, Q∪P12[q, v1], P14, P23 and P24 is a K−
4 -subdivision on (v3, v4; v1, v2),

as required. Similarly, if r ∈ V (P23)−{v2} then H ∪Q∪R contains a K−
4 -subdivision on

(v3, v4; v1, v2). Therefore, there is a K−
4 -subdivision on Z in which v3 has degree 3. The

proof is analogous for v4. This completes the proof.

4.6 Proof

In this section we prove our main theorem (Theorem 4.5.3). We first begin with a proof

of Lemma 4.5.1.

Proof of Lemma 4.5.1. Suppose to the contrary that G is Z-acyclic. We claim:

(1) There are two triads T1, T2 in G with feet v1, v2, v3, mutually disjoint except for their

feet, such that v4 is the branch of T1.

For let there be a K2−
4 -subdivision C ∪ P on (v4; v1, v2; v3) in G, where C is a cycle

through v1, v2, v4, and P is a path with ends v3, v4, disjoint from C except for v4. By the

existence of a cycle through v1, v2 and v3, one can augment P from v3 in C ∪P . Thus, we

may assume that there is a path Q with one end v3, the other end q in V (C)−{v4}, and
no internal vertex in C ∪ P . Since G is Z-acyclic, four vertices v1, q, v2, v4 are distinct

and appear in C in this order. Then C ∪ P ∪ Q is a union of two desired triads. This

proves (1).

Choose T1, T2 as in (1) and a cycle C of G through v1, v2, v3, with T1∪T2∪C minimal.

Let b denote the branch of T2. By an arc we mean a subpath of C with distinct ends both

in V (T1∪T2) and with no edge or internal vertex in T1∪T2. Since G is Z-acyclic, C does

not contain v4. Let C12 be the path of C between v1 and v2 not containing v3, and define

C23, C13 similarly. We may assume that C12 ∪ C13 does not contain b. Note that {v4, b}
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is a cut of T1 ∪T2 that separates V (T1(v4, v1]∪T2[v1, b)) from the other vertex in T1 ∪T2.

Hence there exist two distinct arcs Q,R having one end q ∈ V (T1[v1, v4)), r ∈ V (T2[v1, b)),

respectively, such that one of T1[v1, q] ∪ Q and T2[v1, r] ∪ R is a subpath of C12 and the

other is a subpath of C13. Let q
′, r′ denote the other ends of Q,R, respectively.

(2) r′ ∈ V (T1(q, v4)).

For if r′ ∈ V (T2) − {v1, v2, v3} we may reduce the union T1 ∪ T2 ∪ C by replacing

T2[r, r
′] by R; and if r′ ∈ V (T1) − V (T1[v1, v4]) the union T1 ∪ T2 ∪ R contains a cycle

through all the vertices in Z. Recall v4 /∈ V (C), and so r′ ̸= v4. Obviously, r′ is not in

T1[v1, q]. Hence r′ ∈ V (T1(q, v4)). This proves (2).

(3) q′ ∈ V (T2(r, b)).

For if q′ ∈ V (T2)− V (T2[v1, b]) the union T1 ∪ T2 ∪Q contains a cycle through all the

vertices in Z; if q′ ∈ V (T1) − V (T1[v1, v4]) the union T1 ∪ T2 ∪ Q ∪ R contains a cycle

through all the vertices in Z; if q′ ∈ V (T1(q, v4]) we may reduce the union T1 ∪ T2 ∪C by

replacing T2[q, q
′] by Q. Recall b /∈ V (C12 ∪ C23), and so q′ ̸= b. Obviously, q′ is not in

T2[v1, r]. Hence q′ ∈ V (T2(r, b)). This proves (3).

By (2) and (3) we may replace the subpaths T1[v1, r
′] and T2[v1, q

′] in T1 ∪ T2 by the

paths T2[v1, r]∪R and T1[v1, q]∪Q, respectively, thereby reducing the union T1 ∪T2 ∪C,

a contradiction. This completes the proof.

We return to the proof of Theorem 4.5.3. To prove the theorem, we may assume that

G is 3-connected (by induction on |V (G)|, say). For suppose that G is not 3-connected,

and let (A,B) be a k-separation (A,B) of G with A−B,B−A ̸= ∅ and k ≤ 2, chosen with

k minimum. If both A−B and B −A contain exactly two vertices of Z, then (b) holds.

If A−B say, contains exactly one vertex of Z, then this contradicts our assumption. So

assume that A − B say, contains no vertex in Z. Let G′ be a graph obtained from G|B
by adding an edge in A ∩ B if k = 2. Then G′ satisfies the assumption of the theorem.

By induction, either G′ contains a K−
4 -subdivision on Z or satisfies one of (a)–(d). The

truth of these propositions is “inherited” by G, and so, Theorem 4.5.3 holds for G. We

may thus assume that G is 3-connected.

To prove the “only if” part of the theorem, it suffices to show that (c) or (d) holds,

assuming that G is 3-connected, contains no K−
4 -subdivision on Z, and does not satisfy

(a); note that (b) is automatically false when G is 3-connected. So consider the following

hypotheses and lemma.

(hyp 4.6.1) G is 3-connected.

(hyp 4.6.2) There is no K−
4 -subdivision on Z in G.

(hyp 4.6.3) For every w ∈ V (G)−Z, there is a K2−
4 -subdivision on Z or a cycle through

all the vertices in Z in G \ w.

Lemma 4.6.1. Let G be a graph and let Z ⊆ V (G) with |Z| = 4. Assume (hyp 4.6.1),

(hyp 4.6.2) and (hyp 4.6.3). Then Theorem 4.5.3 (c) or (d) holds.
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The “only if” part of Theorem 4.5.3 follows from Lemma 4.6.1. The rest of this section

is devoted to proving this lemma. Let G be a graph and let Z = {v1, v2, v3, v4} be a set

of distinct four vertices of G, fixed throughout the remaining of the section until further

notice. The proof falls into six separate steps.

▶ Step 1: Strengthening hypotheses

The first step is to strengthen (hyp 4.6.3) as follows.

Lemma 4.6.2. Assume (hyp 4.6.1)–(hyp 4.6.3). Then for every w ∈ V (G)−Z, there is

a cycle of G \ w containing all the vertices in Z.

Proof. Suppose not, and let w be a vertex in V (G) − Z such that there is no cycle in

G \ w containing all the vertices in Z. By (hyp 4.6.3) there is a K2−
4 -subdivision H on

Z in G \ w with degH(v4) = 3, say. By Lemma 4.5.1 there is no cycle in G \ w through

v1, v2 and v3. Since G \ w is 2-connected, we deduce from Theorem 4.2.3 that there is a

K3,2-decomposition (X1, X2, X3, Y1, Y2) of G such that v ∈ Xi − Y1 ∪ Y2 for 1 ≤ i ≤ 3.

It follows from the existence of H that v4 ∈ Y1 ∪ Y2. Since G is 3-connected, there are

three paths of G from vi to {w} ∪ bdXi = {w} ∪ (Xi ∩ (Y1 ∪ Y2)), mutually disjoint

except for vi, for 1 ≤ i ≤ 3; we may assume that some of these paths are the original

subpaths of H. Thus, we may assume that there are three paths P1, P2, P3 of G from w

to {v1, v2, v3}, mutually disjoint except for w, all with no internal vertex in H. Then the

union H ∪ P1 ∪ P2 ∪ P3 contains a K−
4 -subdivision on Z, contrary to (hyp 4.6.2).

▶ Step 2: Excluding 3-separations

The next step is to exclude a 3-cut of G that is disjoint from Z and separates Z into

two subsets of size 2. The following lemma says that if G admits such a 3-cut then

Theorem 4.5.3 (c) holds. So we may assume from now on that there is no such 3-cut.

The proof is based on the results in Section 4.3.

Lemma 4.6.3. Assume (hyp 4.6.1)–(hyp 4.6.3). If there is a 3-separation (A,B) of G

such that |Z∩ (A−B)| = |Z∩ (B−A)| = 2, then there is a linear bipartite-decomposition

(X1, X2, X3;Y1, Y2, Y3) of G such that Xi − Y1 ∪ Y2 ∪ Y3 contains exactly 1, 1, 2 vertices of

Z for i = 1, 2, 3, respectively.

Proof. Let (A,B) be such a separation of G, and assume that v1, v2 ∈ A−B and v3, v4 ∈
B−A. Let A∩B = {x1, x2, x3} and let G′ be a graph obtained from G by adding a new

vertex x and edges xx1, xx2 and xx3. If there exist a triad-cycle on {v1, v2, x} in G′|A∪{x}
and a triad-cycle on {v3, v4, x} in G′|B ∪ {x}, then G contains a K−

4 -subdivision on Z,

a contradiction. So assume that there is no triad-cycle on {v1, v2, x} in G′|A ∪ {x}. We

shall apply Theorem 4.3.2 to G′|A ∪ {x}.

(1) There is no (≤ 2)-separation (X,Y ) of G′|A∪ {x} such that both X − Y and Y −X

meet {v1, v2, x}.
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For let (X,Y ) be such a separation. Since G is 3-connected, x cannot be contained

in the interior of X or Y ; and so x ∈ X ∩ Y . We may assume that v1 ∈ X − Y and

v2 ∈ Y − X, and from the symmetry that |{x1, x2, x3} ∩ (X − Y )| ≤ 1. Let X ′ :=

X−{x}, Y ′ := B∪ (Y −{x}). Then (X ′, Y ′) is a (≤ 2)-separation of G with v1 ∈ X ′−Y ′

and v2, v3, v4 ∈ Y ′−X ′, contrary to the assumption thatG is 3-connected. This proves (1).

(2) There is a triad in G′|A ∪ {x} with feet v1, v2, x.

For let P1, P2 be two paths of (G|A) \ v2 from v1 to {x1, x2, x3}, mutually disjoint

except for v1; we may assume that P1, P2 have ends v1x1, v1x2, respectively. Let Q be a

path of G|A from v2 to V (P1 ∪ P2) with no vertex in {v1, x3}. We may assume that Q

has an end in V (P1) − {v1}. Then the union of P1 ∪ Q and edge xx1 yields a triad in

G′|A ∪ {x} with feet v1, v2, x, as required. This proves (2).

We deduce from (1), (2) and Theorem 4.3.2 that there is aK3,3-decomposition (X1, X2,

X3, Y1, Y2, Y3) of G′|A ∪ {x} such that vi ∈ Xi − Y (i = 1, 2) and x ∈ X3 − Y , where

Y = Y1 ∪ Y2 ∪ Y3. Hence x1, x2, x3 ∈ X3. Let s ∈ {0, 1, 2, 3} be its integral value. Now

set X ′
3 := (X3 − {x}) ∪ B. Then (X1, X2, X

′
3, Y1, Y2, Y3) is a K3,3-decomposition of G of

integral value s with v3, v4 ∈ X3 − Y . If s > 0 and Y1 = {w} then there is no cycle

in G \ w that contains all the vertices in Z. This contradicts Lemma 4.6.2 in Step 1.

Hence s = 0. Therefore (X1, X2, X
′
3;Y1, Y2, Y3) is a linear bipartite-decomposition of G

such that vi ∈ X1 − Y1 ∪ Y2 ∪ Y3 (i = 1, 2) and v3, v4 ∈ X ′
3 − Y1 ∪ Y2 ∪ Y3, as required.

▶ Step 3: Five Z-paths

The next step is to find five internally disjoint Z-paths in G. If G contains no more than

four internally disjoint Z-paths, there is a decomposition of G as in Lemma 4.6.4. This

lemma is a direct consequence of Mader’s S-paths theorem. Lemma 4.6.5 says that such

a decomposition indeed yields a special decomposition of G and hence Theorem 4.5.3 (d)

holds. We may thus assume from now on that there are at least five internally disjoint

Z-paths.

Lemma 4.6.4. Assume (hyp 4.6.1)–(hyp 4.6.3). If there are no more than four internally

disjoint Z-paths in G, then there is a bipartite-decomposition (X1, . . . , X4;Y1, . . . , Y4) of

G such that |Xi ∩ Yj| equals 1 if i ̸= j and 0 otherwise for 1 ≤ i, j ≤ 4, and vi ∈
Xi − Y1 ∪ · · · ∪ Y4 for 1 ≤ i ≤ 4.

Proof. Let e := |E(G|Z)|, di := degG|Z(vi) (1 ≤ i ≤ 4), andG′ := G\E(G|Z). Since there
are at most 4 − e internally disjoint Z-paths in G′, we deduce from Theorem 4.2.1 and

Lemma 4.2.2 that there is a good quasi-bipartite-decomposition (W ;X1, . . . , X4;Y1, . . . ,

Ym) of G
′ with respect to Z of value 4−e; hence Yj intersects at least three of X1, . . . , X4

and |Yj ∩X| is odd (≥ 3) for 1 ≤ j ≤ m, and

|W |+m ≤ |W |+
∑

1≤j≤m

⌊
1

2
|Yj ∩X|

⌋
= |W |+ 1

2
(|X ∩ Y | −m) ≤ 4− e, (4.6.1)

where X = X1 ∪ · · · ∪X4 and Y = Y1 ∪ · · · ∪ Ym. We may assume that vi ∈ Xi − Y for

1 ≤ i ≤ 4.
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(1) W = ∅.

For if W contains a vertex w, then (W − {w};X1, . . . , X4;Y1, . . . , Ym) is a quasi-

bipartite-decomposition of G′ \ w of value ≤ 3 − e with respect to Z. This means that

there are at most three internally disjoint Z-paths in G\w, contrary to (hyp 4.6.3). This

proves (1).

(2) For 1 ≤ i ≤ 4, |Xi ∩ Y |+ di ≥ 3.

For let A := X1∪NG|Z(v1) and B := Y ∪ (X2∪X3∪X4)∪NG|Z(v1), say. Then (A,B)

is a separation of G such that v1 ∈ A − B and v2, v3, v4 ∈ B. Since G is 3-connected,

A∩B = (X1∩Y )∪NG|Z(v1) has size ≥ 3, yielding that |X1∩Y |+d1 ≥ 3. This proves (2).

By (4.6.1), (1) and (2), we have

12− 2e−m ≤
∑
1≤i≤4

|Xi ∩ Y | −m ≤ |X ∩ Y | −m ≤ 2(4− e)

and so

4 ≤ m.

Thus, we have equality throughout in (4.6.1) and in (2), and so e = 0,m = 4 and

|Yj ∩ X| = |Xi ∩ Y | = 3 for 1 ≤ i, j ≤ 4. Since 3-regular simple bipartite graphs on

8 vertices are exactly 3-cubes, we may assume that |Xi ∩ Yj| equals 1 if i ̸= j and 0

otherwise for 1 ≤ i, j ≤ 4. Then (X1, . . . , X4;Y1, . . . , Y4) is a bipartite-decomposition of

G = G′, and the result follows.

Lemma 4.6.5. If there is a bipartite-decomposition of G as in Lemma 4.6.4, then The-

orem 4.5.3 (d) holds.

Proof. Let (C1, . . . , C4;D1, . . . , D4) be a bipartite-decomposition of G such that |Ci∩Dj|
equals 1 if i ̸= j and 0 otherwise for 1 ≤ i, j ≤ 4, and vi ∈ Ci−D1∪· · ·∪D4 for 1 ≤ i ≤ 4;

so this is a decomposition as in Lemma 4.6.4. Let Ci ∩Dj = {cij} for 1 ≤ i, j ≤ 4 with

i ̸= j. Let a1 = c34, a2 = c43, b1 = c12, b2 = c21. Let X1 := C1, X2 := C2, Y1 := C3,

Y2 := C4, A1 := D4, A2 := D3, B1 := D2, B2 := D1, A3 := {b1, b2} and B3 := {a1, a2}.
Then (X1, X2, Y1, Y2, A1, A2, A3, B1, B2, B3) is a special decomposition of G of type (0, 0)

such that v1, v2, v3, v4 belong to intX1, intX2, intY1, intY2, respectively. Hence (d) holds.

This proves the lemma.

▶ Step 4: Building a cube+

Five internally disjoint Z-paths does not necessarily yield a K−
4 -subdivision on Z. A

cube+ on (v1, v2; v3, v4) in G is a subgraph H of G consisting of the union of:

(i) three paths P1, P2, P3 with ends v1, v2 and two paths Q1, Q2 with ends v3, v4, mu-

tually disjoint except for their ends, and

(ii) four disjoint paths Ri from V (P1∪P2∪P3) to V (Q1∪Q2) with ends pi, qi (1 ≤ i ≤ 4),

all with no internal vertex in P1 ∪ P2 ∪ P3 ∪ Q1 ∪ Q2, where p1, p2, p3, p4, q1, q2 are

internal vertices of P1, P1, P2, P3, Q1, Q2, respectively, and q3 = v3, q4 = v4.
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See Figure 4.7 for an illustration. By a cube+ on Z we mean a cube+ on (vi1 , vi2 ; vi3 , vi4)

for some ordering {i1, i2, i3, i4} = {1, 2, 3, 4}. A cube+ on Z satisfies the following: (1) It

contains five internally disjoint Z-paths, (2) admits no 3-cut that is disjoint from Z and

separates Z into two subsets of size 2, and (3) contains no K−
4 -subdivision on Z. The

next step is to show the converse: Such a graph must contain a cube+ on Z.

The proof relies on Lemma 4.6.2 in Step 1. For consider a V8-subdivision H on Z

(defined in Section 4.7) and a vertex w /∈ V (H) adjacent to all the vertices of Z. Let Pi

be the path from w to vi of length 1 for 1 ≤ i ≤ 4. Then H ′ := H ∪ P1 ∪ P2 ∪ P3 ∪ P4

satisfies (1), (2) and (3) above, but contains no cube+ on Z. This is because H ′ \w = H

is Z-acyclic. To exclude such an example, we need Lemma 4.6.2. But the proof itself is

straightforward, based on the paths-augmentation method (cf. Section 2.2).

Lemma 4.6.6. Assume (hyp 4.6.1)–(hyp 4.6.3). Suppose that there are five internally

disjoint Z-paths in G and there is no 3-separation (A,B) of G such that |Z ∩ (A−B)| =
|Z ∩ (B − A)| = 2. Then there is a cube+ on Z in G.

Proof. See Figure 4.6. By an Hi-subdivision (or a subdivision of Hi) in G we mean a

subgraph of G which is homeomorphic to the multigraph Hi as in Figure 4.6 (left), where

the white vertices correspond to vertices of Z for some ordering. By definition an H0-

subdivision is a K−
4 -subdivision on Z and an H9-subdivision is a cube+ on Z. Note that

an H5-subdivision contains a vertex of degree 4. We shall write Hi → Hi1 , . . . , Hik to

denote a claim that if there is an Hi-subdivision in G, then there is an Hj-subdivision in

G for some j ∈ {i1, . . . , ik}. The result follows from the following nine claims (∗), (1), (2),
. . ., (8); see Figure 4.6 (right) for an outline of the proof, where implications towards an

H0-subdivision are omitted. (∗) There is anHi-subdivision inG for some i ∈ {0, 1, 2, 3, 4}.
(1) H1 → H2. (2) H2 → H0, H3, H4, H5, H6. (3) H3 → H0, H4. (4) H4 → H0, H7, H8. (5)

H5 → H0, H4, H6. (6) H6 → H7, H8. (7) H7 → H0. (8) H8 → H0, H9.

We show (∗). By Lemma 4.6.2, there is a cycle in G containing all the vertices in Z.

We deduce from Lemma 4.2.4 that there are five internally disjoint Z-paths in G such

that each of v1, v2, v3, v4 has degree ≥ 2 in the union of these paths. The only possible

degree sequence of vi’s is (2, 2, 3, 3) or (2, 2, 2, 4). Now it is easy to see that the five paths

form an Hi-subdivision for some i ∈ {0, 1, 2, 3, 4}. This proves (∗).

It is not difficult to show (1), (2), (3), (4) by augmenting (a few times) from a vertex

of Z of degree 2 in an (augmented) Hi-subdivision (1 ≤ i ≤ 4).

We show (5) by using Lemma 4.6.2. Suppose that there is an H5-subdivision H in G

such that one may take two paths P1, P2 of H with ends v1, v2, two paths Q1, Q2 of H

with ends v3, v4, and four paths Ri of H with ends b, vi (1 ≤ i ≤ 4), mutually disjoint

except for their ends, where b is the vertex of degree 4 in H. If there is no 2-separation

(A,B) of G \ b such that v1 ∈ A−B and V (Q1 ∪Q2 ∪R2 ∪R3 ∪R4)−{b} ⊆ B, then by

augmenting P1, P2 from v1 in (P1∪P2∪Q1∪Q2∪R2∪R3∪R4)\b, we obtain a subdivision

of H4 or H6, as required. So we may assume that there is a 3-separation (A1, B1) of G

with v1 ∈ A1 − B1, v2, v3, v4 ∈ B1 and b ∈ A1 ∩ B1. Similarly, there is a 3-separation

(Ai, Bi) of G with vi ∈ Ai − Bi, Z − {vi} ⊆ Bi − Ai and b ∈ Ai ∩ Bi for i = 2, 3, 4. On

the other hand, by Lemma 4.6.2 there is a cycle C in G \ b containing v1, v2, v3, v4. Since
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H0 H1 H2 H3 H4

H5 H6 H7 H8 H9

H1 H2 H3

H4H5H6

H7 H8 H9

Figure 4.6: Hi-subdivisions (left) and an outline of the proof of Lemma 4.6.6 (right).

G is 3-connected, there are three paths of G from vi to Ai ∩Bi, mutually disjoint except

for vi, for 1 ≤ i ≤ 4; we may assume that two of these paths are the original subpaths of

C. Therefore, we may assume that there are internally disjoint paths Si of G with ends

b, vi (1 ≤ i ≤ 4), all with no internal vertex in C. Then C ∪ S1 ∪ · · · ∪ S4 contains an

H0-subdivision (a K−
4 -subdivision on Z), as required. This proves (5).

We show (6). Suppose that there are three paths P1, P2, P3 of G with ends v1, v2 and

three paths of Q1, Q2, Q3 of G with ends v3, v4, mutually disjoint except for their ends;

so, the union of these six paths is an H6-subdivision. By Menger’s theorem, there are

three disjoint paths R1, R2, R3 of G from V (P1∪P2∪P3) to V (Q1∪Q2∪Q3), all with no

internal vertex in P1, P2, P3, Q1, Q2, Q3. If both R1 and R2 have ends in V (P1), say, then

we obtain a subdivision of H7 or H8, as required. So we may assume that Ri connects

internal vertices of Pi, Qi (1 ≤ i ≤ 3). We deduce from the same reason that there are no

more than three disjoint paths of G from V (P1∪P2∪P3) to V (Q1∪Q2∪Q3). Hence there

is a 3-separation (A,B) of G such that V (P1 ∪ P2 ∪ P3) ⊆ A and V (Q1 ∪Q2 ∪Q3) ⊆ B.

Then A ∩ B intersects each Ri exactly once (1 ≤ i ≤ 3); and so, v1, v2 ∈ A − B and

v3, v4 ∈ B − A, which contradicts the assumption. This proves (6).

We show (7). Suppose that there are two disjoint cycles C,C ′ of G with v1, v2 ∈
V (C), v3, v4 ∈ V (C ′), and two disjoint paths ofG from V (C) to V (C ′) with ends v1v3, v2v4,

respectively, both with no internal vertex in C ∪ C ′; so, the union of these two paths,

C, and C ′ is an H7-subdivision. Since G is 3-connected, there are three disjoint paths

R1, R2, R3 of G from V (C) to V (C ′) covering v1, v2, v3, v4, all with no internal vertex in

C ∪ C ′. Then C ∪ C ′ ∪R1 ∪R2 ∪R3 contains a K−
4 -subdivision on Z, as required. This

proves (7).

We show (8). Suppose that there are two paths P1, P2 of G with ends v1, v2, three

paths Q1, Q2, Q3 of G with ends v3, v4, mutually disjoint except for their ends, and two

paths of G from V (P1 ∪ P2) to V (Q1 ∪ Q2 ∪ Q3) with ends v1q1, v2q2, respectively, both

with no internal vertex in P1 ∪ P2 ∪ Q1 ∪ Q2 ∪ Q3, where qi is an internal vertex of Qi

(i = 1, 2); so, the union of these seven paths is an H8-subdivision. Since G is 3-connected,

there are three disjoint paths R1, R2, R3 of G from V (P1∪P2) to V (Q1∪Q2∪Q3) covering

v1, v2, q1, q2, all with no internal vertex in P1∪P2∪P3∪Q1∪Q2. Let p3, q3 be the vertices

in V (P1∪P2)−{v1, v2}, V (Q1∪Q2∪Q3)−{q1, q2}, respectively, that are “newly” covered
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by R1 ∪R2 ∪R3; assume from the symmetry that p3 ∈ V (P1).

If q3 ∈ V (Q1 ∪ Q2) − {p1, p2}, then P1 ∪ Q1 ∪ Q2 ∪ R1 ∪ R2 ∪ R3 contains a path J

through vi1 , vi2 , vi3 , vi4 in order, where {i1, i3} = {1, 2} and {i2, i4} = {3, 4}; since J is

disjoint from P2, Q3 except for v1, v2, v3, v4, there is a K−
4 -subdivision on Z in P2∪Q3∪J ,

as required. Thus, we may assume that q3 is an internal vertex of Q3, and from the

symmetry that R1, R2, R3 have ends v1q1, v2q2, p3q3, respectively.

For i = 1, 2, let ui be the neighbor of vi in Ri, which might be qi. There is no 3-

separation (A,B) of G such that V (P1 ∪ P2) ∪ {u1, u2} ⊆ A and V (Q1 ∪ Q2) ⊆ B; for

otherwise, it follows from the existence of R1, R1, R3 that v1, v2 ∈ A − B and v3, v4 ∈
B − A, contrary to the assumption. Thus, we deduce that there are four paths of G

from V (P1 ∪P2) to V (Q1 ∪Q2 ∪Q3) covering v1, v2, p3, q1, q2, q3, mutually disjoint except

for v1, v2, and all with no internal vertex in P1 ∪ P2 ∪ Q1 ∪ Q2 ∪ Q3. One may claim,

by the same proof as in the preceding paragraph, that the three of these four paths

that start from v1, v2, p3 in V (P1 ∪ P2 ∪ P3) must end in V (Qi) − {v3, v4} (1 ≤ i ≤ 3),

respectively; for otherwise, we obtain a K−
4 -subdivision on Z. We may as well denote

these three paths by R1, R2, R3 with ends v1q1, v2q2, p3q3, respectively. Therefore, we

may assume that there is a “fourth” path R4 of G with ends p4, q4 and no internal vertex

in P1 ∪ P2 ∪ P3 ∪ Q1 ∪ Q2 ∪ Q3 ∪ R1 ∪ R2 ∪ R3, where p4 ∈ V (P1 ∪ P2) − {p3} and

q4 ∈ V (Q1 ∪Q2 ∪Q3)− {q1, q2, q3}.
Let H be the union of P1, P2, P3, Q1, Q2, Q3, R1, R2, R3, R4. It is easy to see that if

p4 ∈ V (P1)−{p3}, then H contains a K−
4 -subdivision on Z, as required; so, assume that

p4 ∈ V (P2) − {v1, v2}. It is also easy to see that if q4 ∈ V (Q1 ∪ Q2) − {q1, q2}, then H

contains a K−
4 -subdivision on Z, as required; so assume that q4 ∈ V (Q3) − {v3, v4, q3}.

Then H is an H9-subdivision (a cube+ on Z), as required. This proves (8) and completes

the proof.

▶ Step 5: Applying the K2−
4 -subdivision lemma

A cube+ H on Z contains noK−
4 -subdivision on Z, but one may say that it is an “extremal

frame” in that if we add a bold “jump” J to H, there is a K−
4 -subdivision on Z in H ∪J .

The final step is to conclude that possible structures of G containing H would yield either

a K−
4 -subdivision on Z or obstructions, and hence Theorem 4.5.3 (d) follows.

Roughly speaking, our plan is as follows. Suppose that there is a cube+ on (v1, v2; v3, v4)

in G with notation as in Step 4; see Figure 4.7. Then one can find a 4-separation

(A,B) of G with V (P1 ∪ P2 ∪ P3) ⊆ A and V (Q1 ∪ Q2) ⊆ B, such that the 4-cut

A ∩ B = {x1, x2, x3, x4} is disjoint from {v3, v4}. We may assume that each xi lies in

Ri (1 ≤ i ≤ 4). Now assume for simplicity that x1 ̸= q1 and x2 ̸= q2. Let G′ be a

graph obtained from G by adding new vertices x, y and edges xx1, xx2, yx3, yx4. Then

G′|A ∪ {x, y} contains no K2−
4 -subdivision on {v1, v2, x, y} in which x has degree 1 and

v1 or v2 has degree 3; for otherwise, such a K2−
4 -subdivision and the half fragment of

the cube+ in G|B yields a K−
4 -subdivision on Z. Similarly, G′|B ∪ {x, y} contains no

K2−
4 -subdivision on {v3, v4, x, y} in which y has degree 1 and v3 or v4 has degree 3. Hence

we can apply the “K2−
4 -subdivision lemma” (Theorem 4.4.2) to both G′|A ∪ {x, y} and

G′|B ∪ {x, y}. This determines the structure of G, leading to Theorem 4.5.3 (d).
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Figure 4.7: A cube+ on (v1, v2; v3, v4).

First we show the existence of a 4-separation.

Lemma 4.6.7. Assume (hyp 4.6.1)–(hyp 4.6.3). Let H be a cube+ on (v1, v2; v3, v4)

in G with notation as in Step 4. Then there is a 4-separation (A,B) of G such that

V (P1 ∪ P2 ∪ P3) ⊆ A, V (Q1 ∪Q2) ⊆ B and A ∩B ∩ {v3, v4} = ∅.

Proof. Suppose to the contrary that there is no such separation. For i = 3, 4 let ui be

the neighbor of vi in Ri, which might be pi. Then there is no 4-separation (A,B) of

G such that V (P1 ∪ P2 ∪ P3) ⊆ A and V (Q1 ∪ Q2) ∪ {u3, u4} ⊆ B; for otherwise, it

follows from the existence of R1, . . . , R4 that A ∩ B ∩ {v3, v4} = ∅, and so the result

follows. Thus, we deduce that there are five paths S1, . . . , S5 of G from V (P1∪P2∪P3) to

V (Q1 ∪Q2) covering p1, p2, p3, p4, q1, q2, v3, v4, mutually disjoint except for v3, v4, and all

with no internal vertex in P1 ∪P2 ∪P3 ∪Q1 ∪Q2. For i = 1, 2 let Si denote the subset of

{S1, . . . , S5} consisting of members that have ends in V (Qi). Assume from the symmetry

that |S2| = 4. At least two members in S2 have ends in V (Pi) for some 1 ≤ i ≤ 3. On

the other hand, not all of members in S2 have ends in the same V (Pi), since p1, p2, p3, p4
are covered by S1 ∪ · · · ∪ S5. Hence for some ordering {i1, i2, i3} = {1, 2, 3} there exist

three distinct members S, S ′, S ′′ in S2 such that S and S ′ have ends in V (Pi1) and S ′′ has

an end in V (Pi2) − {v1, v2}. Note that some of S, S ′, S ′′ contains v3 or v4 as its end. It

is easy to see that Pi1 ∪ Pi2 ∪Q2 ∪ S ∪ S ′ ∪ S ′′ contains a path J through vj1 , vj2 , vj3 , vj4
in order, where {j1, j3} = {1, 2} and {j2, j4} = {3, 4}. Since J is disjoint from Q1, Pi3

except for v1, v2, v3, v4, there is a K−
4 -subdivision on Z in Q1 ∪ Pi3 ∪ J , contrary to (hyp

4.6.2). This proves the lemma.

Before applying the K2−
4 -subdivision lemma to cube+, we define a certain decomposi-

tion of a graph G. We say that a decomposition (X1, X2, A1, A2, B) of G is intermediate

if its basic family satisfies the following.

• The vertex set of the basic family is {a1, a2, x11, x12, x13, x21, x22, x23}, where a1, a2,
x13, x23 are distinct and xi1, xi2, xi3 are distinct for i = 1, 2.

• bdB = {a1, a2, x13, x23}.
• For i = 1, 2, bdXi = {xi1, xi2, xi3}.
• For i = 1, 2, {x1i, x2i, ai} ⊆ bdAi ⊆ {x1i, x2i, ai, a3−i}.
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Figure 4.8: Three types of intermediate decompositions in Lemma 4.6.8.

• For i = 1, 2, ai ∈ bdA3−i if and only if |Ai| = 1 and |A3−i| > 1.

Let s be the numbers of singletons in {A1, A2}. We say that the intermediate decompo-

sition is of type s. Note that (X1 ∪ X2 ∪ A1 ∪ A2, B) is a 4-separation of G. The next

lemma is a consequence of the K2−
4 -subdivision lemma applied to cube+; see Figure 4.8.

For simplicity, G|Xi is depicted as 3-stars with feet bdXi for i = 1, 2.

Lemma 4.6.8. Assume (hyp 4.6.1)–(hyp 4.6.3). Suppose that there is a cube+ on

(v1, v2; v3, v4) in G. Then there is an intermediate decomposition (X1, X2, A1, A2, B) of

G such that vi ∈ intXi for i = 1, 2 and v3, v4 ∈ intB.

Proof. Let H be a cube+ on (v1, v2; v3, v4) in G with notation as in Step 4; see Figure 4.7.

Then there is a 4-separation (A,B) of G as in Lemma 4.6.7. Let A∩B = {x1, x2, x3, x4}.
We may assume that xi ∈ V (Ri) for 1 ≤ i ≤ 4. Let α := |{x1, x2}∩ {q1, q2}|. Let G′ be a

graph obtained from G|A by adding a new vertex y and edges yx3, yx4 and furthermore

doing the following, depending on α: If α = 0, add a new vertex x and edges xx1, xx2; if

α = 1, add an edge x1x2 and let x be the vertex in {x1, x2} ∩ {q1, q2}; if α = 2, identify

x1 and x2 and denote by x the resulting vertex. Then there is no K2−
4 -subdivision on

either (v1; v2, y;x) or on (v2; v1, y;x) in G′; for otherwise, G contains a K−
4 -subdivision

on Z, a contradiction. We shall apply Theorem 4.4.2 to G′. Note that from the existence

of cube+ H we already have a subgraph in G′ which is homeomorphic to a graph as in

Figure 4.9 (left). By Theorem 4.4.2 there is a K3,3-decomposition (X1, X2, X3, Y1, Y2, Y3)

of G′ such that vi ∈ Xi − Y (i = 1, 2), y ∈ X3 − Y and x ∈ X3, where Y = Y1 ∪ Y2 ∪ Y3.

Let s ∈ {0, 1, 2, 3} be its integral value and let W := Y1∪ · · · ∪Ys. Note that x3, x4 ∈ X3.

Let Xi ∩ Yj − Y1 ∪ · · · ∪ Yj−1 = {xij} for i = 1, 2 and 1 ≤ j ≤ 3. Let X3 ∩ Yj − Y1 ∪
· · ·∪Yj−1 = {aj} for 1 ≤ j ≤ 3. Note that x1j = x2j = aj for every positive integer j ≤ s.

Since there is a cycle in G′ through v1, x, v2, y in order, we have x ∈ X3 ∩ Y . Since

there is a cycle in G′ \x through v1, v2, y, we have x /∈ W ; and so, s ≤ 2. We may assume

that a3 = x. Note that x, x13, x23 are distinct vertices in Y3.

If α = 0, set X ′
3 := X3 − {x, y}, Y ′

3 := Y3 − {x}; if α = 1, set X ′
3 := X3 − {y}, Y ′

3 :=

Y3; if α = 2, set X ′
3 := (X3 − {x, y}) ∪ {x1, x2}, Y ′

3 := (Y3 − {x}) ∪ {x1, x2}. Then

(X1, X2, X
′
3, Y1, Y2, Y

′
3) is a decomposition of G|A such that x1, . . . , x4 ∈ X ′

3 ∪ Y ′
3 . Let

B′ := B ∪ X ′
3 ∪ Y ′

3 . Then (X1, X2, Y1, Y2, B
′) is an intermediate decomposition of G of
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Figure 4.9: Subgraphs in the proofs of Lemma 4.6.8 (left) and Lemma 4.6.9 (right).

type s such that vi ∈ intXi for i = 1, 2 and v3, v4 ∈ intB′, as required. This completes

the proof.

The next task is to apply again the K2−
4 -subdivision lemma to the intermediate struc-

ture of G in Lemma 4.6.8 to conclude that G is in fact admits a special separation and

hence Theorem 4.5.3 (d) holds.

Lemma 4.6.9. Assume (hyp 4.6.1)–(hyp 4.6.3). Suppose that there is a cube+ on

(v1, v2; v3, v4) in G. Then Theorem 4.5.3 (d) holds.

Proof. By Lemma 4.6.8 there is an intermediate decomposition (X1, X2, A1, A2, B) of G

of type s ∈ {0, 1, 2} such that vi ∈ intXi for i = 1, 2 and v3, v4 ∈ intB. We choose such

a decomposition with s maximum. Let a1, a2, x11, x12, x13, x21, x22, x23 denote the vertices

of the basic family, as usual.

(1) For i = 1, 2, if |Ai| > 1 then there is a path of G|Ai from x1i to x2i with no vertex in

{a1, a2}.

For suppose not for i = 1, say. Then there is a separation (C,D) of G|A1 such that

x11 ∈ C−D, x21 ∈ D−C, and moreover, C ∩D = {a1} if |A2| > 1 and C ∩D = {a1, a2}
otherwise. Let X ′

1 := X1∪C, X ′
2 := X2∪D. Let A′

1 := {a1}, A′
2 := A2∪{a1} if |A2| > 1,

and let A′
1 := {a1}, A′

2 := A2 otherwise. Then (X ′
1, X

′
2, A

′
1, A

′
2, B) is an intermediate

decomposition of G of type s + 1 such that vi ∈ intX ′
i for i = 1, 2 and v3, v4 ∈ intB,

contrary to the maximality of s. The proof is analogous for i = 2. This proves (1).

We assume that |A1| = 1 if s = 1. Let G′ be a graph obtained from G|B by adding

a new vertex y and edges yx13, yx23 and furthermore doing the following, depending on

s: If s = 0, add a new vertex x and edges xa1, xa2; if s = 1, add an edge a1a2 and set

x := a1; if s = 2, identify a1 and a2 and denote by x the resulting vertex. Then there

is no K2−
4 -subdivision on either (v3; v4, y;x) or on (v4; v3, y;x) in G′; for otherwise, G

contains a K−
4 -subdivision on Z by (1), a contradiction. We shall apply Theorem 4.4.2

to G′. Note that from the existence of the cube+ we already have a subgraph in G′ which

is homeomorphic to a graph as in Figure 4.9 (right).

(2) If s ∈ {1, 2}, there is a cycle in G′ \ x through v3, v4, y.

For suppose that s ≥ 1 (and so |A1| = 1). We deduce from Lemma 4.6.2 that there is

a cycle C in G\a1 that contains all the vertices in Z. There is a subpath C ′ of C between

x13 and x23 containing v3, v4 and not containing v1, v2, which is a path of (G|B)\a1. Note
that a2 /∈ V (C ′) if s = 2 (that is, if A2 = {a2}). This proves (2).
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By Theorem 4.4.2 there is a K3,3-decomposition (U1, U2, U3, V1, V2, V3) of G
′ such that

vi+2 ∈ Ui−V (i = 1, 2), y ∈ U3−V and x ∈ U3, where V = V1∪V2∪V3. Let s
′ ∈ {0, 1, 2, 3}

be its integral value and let W := V1 ∪ · · · ∪ Vs′ . Note that x13, x23 ∈ U3. Since there is a

cycle in G′ through v3, x, v4, y in order, we have x ∈ U3∩V . If s ∈ {1, 2}, we have x /∈ W

(and hence s′ ≤ 2) by (2).

Let Ui−2 ∩ Vj − V1 ∪ · · · ∪ Vj−1 = {xij} for i = 3, 4 and 1 ≤ j ≤ 3. Let U3 ∩ Vj −
V1 ∪ · · · ∪ Vj−1 = {bj} for 1 ≤ j ≤ 3. Note that x3j = x4j = bj for every positive integer

j ≤ s′. We consider three cases, depending on s.

Case 1: s = 2. We may assume that b3 = x, since x ∈ U3 ∩ V − W . Note

that x /∈ U1 ∪ U2. Set U ′
3 := (U3 − {x, y}) ∪ {a1, a2}, V ′

3 := (V3 − {x}) ∪ {a1, a2}.
Then (U1, U2, U

′
3, V1, V2, V

′
3) is a decomposition of G|B with a1, a2, x13, x23 ∈ U ′

3. Now

(X1, X2, U1, U2, A1, A2, U
′
3, V1, V2, V

′
3) is a special decomposition of G of type (s, s′) such

that v1, v2, v3, v4 belong to intX1, intX2, intU1, intU2, respectively. So (d) holds, as re-

quired.

Case 2: s = 1. We may assume that b3 = x (= a1), since x ∈ U3 ∩ V − W .

From the existence of cube+, we have a2 ∈ V3 − U3. Set U ′
3 := U3 − {y}. Then

(U1, U2, U
′
3, V1, V2, V3) is a decomposition of G|B with x13, x23, a1 ∈ U ′

3, a2 ∈ V3. Now

(X1, X2, U1, U2, A1, A2, U
′
3, V1, V2, V3) is a special decomposition of G of type (s, s′) such

that v1, v2, v3, v4 belong to intX1, intX2, intU1, intU2, respectively. So (d) holds, as re-

quired.

Case 3: s = 0. First we consider the case x /∈ W ; and so, s′ ≤ 2. We may assume

that b3 = x. Note that a1, a2 ∈ V3 − U3. Set U ′
3 := U3 − {x, y}, V ′

3 := V3 − {x}.
Then (U1, U2, U

′
3, V1, V2, V

′
3) is a decomposition of G|B with x13, x23 ∈ U ′

3, a1, a2 ∈ V ′
3 .

Now (X1, X2, U1, U2, A1, A2, U
′
3, V1, V2, V

′
3) is a special decomposition of G of type (s, s′)

such that v1, v2, v3, v4 belong to intX1, intX2, intU1, intU2, respectively. So (d) holds, as

required.

Next we consider the case x ∈ W ; and so, s′ ≥ 1. Assume that V1 = {x}. Then

{a1, a2} meets both U1 − V and U2 − V ; assume that ai ∈ Ui − V for i = 1, 2. Set

U ′
1 := U1 − {x}, U ′

2 := U2 − {x}, U ′
3 := U3 − {x, y}, V ′

2 := V2 − {x}, V ′
3 := V3 − {x}.

Then (U ′
1, U

′
2, U

′
3, V

′
2 , V

′
3) is a decomposition of G|B with x13, x23 ∈ U ′

3, a1 ∈ U ′
1, a2 ∈ U ′

2.

Now (X1, X2, U
′
1, U

′
2, A1, A2, U

′
3, V

′
2 , V

′
3 , {a1, a2}) is a special decomposition of G of type

(s, s′−1) such that v1, v2, v3, v4 belong to intX1, intX2, intU
′
1, intU

′
2, respectively. So (d)

holds, as required. This completes the proof.

▶ Step 6: Completing the proof of Lemma 4.6.1

We are now ready to prove Lemma 4.6.1, which completes the proof of the main theorem.

Proof of Lemma 4.6.1. Let Z = {v1, v2, v3, v4} and assume (hyp 4.6.1)–(hyp 4.6.3). By

Lemma 4.6.3, we may assume that there is no 3-separation (A,B) of G with |Z ∩ (A −
B)| = |Z ∩ (B − A)| = 2; for otherwise, (c) follows, as required. By Lemma 4.6.4 and

Lemma 4.6.5, we may assume that there are five internally disjoint Z-paths in G; for

otherwise, (d) follows, as required. By Lemma 4.6.6 there is a cube+ H on (v1, v2; v3, v4),

say, in G. Then (d) follows by Lemma 4.6.9, as required. This completes the proof.
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4.7 Cycles through four vertices

As noted in Section 4.5, in order to give a complete characterization of obstructions, we

need to characterize graphs that contain no cycle through prescribed four vertices. We

solve this problem in this section.

Let G be a graph and let Z be a set of distinct four vertices of G. We want to

investigate what kind of structure G has if G is Z-acyclic. First we may assume that G

is 2-connected. We say that (G,Z) is irreducible if it satisfies the following: (i) There is

no 2-separation (A,B) of G with Z ⊆ A and B − A ̸= ∅; (ii) if there is a 2-separation

(A,B) of G with |Z ∩ (A−B)| = 1 (and B −A ̸= ∅), then |A−B| = 1; (iii) if there is a

3-separation (A,B) of G with |Z ∩ (A− B)| = 1, |Z ∩ (B − A)| = 3 and if the vertex in

Z∩(A−B) has degree ≥ 3, then |A−B| = 1. We are interested in only irreducible graphs,

because if (G,Z) is not irreducible, we can obtain a graph G′ with |V (G′)| < |V (G)|,
such that G′ is Z-cyclic if and only if G is. To exclude obvious obstructions, we may also

assume the following.

(hyp 4.7.1) G is Z ′-cyclic for any Z ′ ⊆ Z with |Z ′| = 3.

(hyp 4.7.2) For any w ∈ V (G)−Z, there is a path of G\w that contains all the vertices

in Z.

Indeed, if (hyp 4.7.1) is false, the structure of G is determined by Watkins–Mesner’s

theorem. For (hyp 4.7.2), we have to characterize paths through four vertices. But this

is an easy problem which is reduced to Watkins–Mesner’s theorem, as we shall discuss in

Appendix 4.9.

Assuming the above hypotheses, one immediately notices the following.

Lemma 4.7.1. Let G be a graph and let Z ⊆ V (G) with |Z| = 4. Suppose that G is 2-

connected, (G,Z) is irreducible, and G is Z-acyclic. Assume (hyp 4.7.1) and (hyp 4.7.2).

Then:

(i) Any two vertices in Z of degree 2 have no common neighbor, and

(ii) G admits no 2-cut except but the set of neighbors of a vertex in Z of degree 2.

Proof. To see (i), suppose to the contrary that v1, v2 ∈ Z have degree 2 and have a

common neighbor x. By (hyp 4.7.2) there is a path of G \ x containing all the vertices in

Z. A minimal such path P has ends v1, v2. Then P and edges v1x, v2x yield a cycle in G

that contains all the vertices in Z, a contradiction. This proves (i).

To see (ii), let (A,B) be a 2-separation of G such that A−B,B −A ̸= ∅. Since G is

irreducible, both A−B and B−A meet Z. If both A−B and B−A contain exactly two

vertices in Z, then from (hyp 4.7.1) we easily obtain a cycle of G that contains all the

vertices in Z, a contradiction. Thus, one of them, A−B say, contains exactly one vertex

v in Z; and so, we have A ∩B = NG(v), since G is irreducible. This proves (ii).

Before stating our result, we need some definition. We say that a decomposition

(X1, X2, A,B) of a graph G is nice if its basic family has a vertex set consisting of five

distinct vertices a1, a2, b1, b2, b3 such that bdXi = {ai, bi} for i = 1, 2, bdA = {a1, a2, b3}
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Figure 4.10: A nice decomposition (left) and a V8-subdivision on {v1, v2, v3, v4} (right).

and bdB = {b1, b2, b3}; see Figure 4.10 (left). Note that (X1∪X2∪A,B) is a 3-separation

of G.

Let v1, . . . , v4 be distinct four vertices of G. A V8-subdivision on {v1, v2, v3, v4} is a

subgraph H of G consisting of the union of a cycle C of G through distinct eight vertices

u1, . . . , u8 ∈ V (G) in this order listed and four disjoint paths Pi of G with ends ui, ui+4

(1 ≤ i ≤ 4), all with no internal vertex in C, such that vi is an internal vertex of Pi for

1 ≤ i ≤ 4; see Figure 4.10 (right). Note that H contains no cycle through all the vertices

in {v1, . . . , v4}.
The main result in this section is the following theorem. It states that every Z-acyclic

graph contains a V8-subdivision on Z or admits a 3-separation that separates Z into two

subsets of size 2. If there is a 3-separation (A,B) of G with |Z∩(A−B)| = |Z∩(B−A)| =
2, one can apply Watkins–Mesner’s theorem to both sides G|A and G|B to determine the

structure of G. Theorem 4.7.2 chooses a nice decomposition so that it suffices to apply

Watkins–Mesner’s theorem only once.

Theorem 4.7.2. Let G be a graph and let Z ⊆ V (G) with |Z| = 4. Suppose that G

is 2-connected, (G,Z) is irreducible, and G is Z-acyclic. Assume (hyp 4.7.1) and (hyp

4.7.2). Then one of the following holds.

(a) There is a nice decomposition (X1, X2, A,B) of G such that intX1, intX2, intB

contains exactly 1, 1, 2 vertices of Z, respectively.

(b) All the vertices of Z have degree 2 and there is a V8-subdivision on Z in G.

Let us see that the theorem characterizes Z-acyclic graphs. Let Z = {v1, v2, v3, v4}.
Suppose that (a) holds. Assume that vi ∈ intXi for i = 1, 2 and v3, v4 ∈ intB. Let

a1, a2, b1, b2, b3 denote the vertices of the basic family as usual. Then there is a path of

G|A between a1 and a2 avoiding b3. For otherwise, b3 becomes a common neighbor of

v1, v2 by the irreducibility of G, contrary to Lemma 4.7.1 (i). Hence there is a path of

G|A ∪X1 ∪X2 with ends b1, b2 containing v1, v2 and avoiding b3. On the other hand, it

is clear that for i = 1, 2 there is no path of G|A ∪ X1 ∪ X2 from b3 to bi that contains

v1, v2. Therefore, G is Z-acyclic if and only if there is no path of G|B with ends b1, b2
containing v3, v4. By applying Watkins–Mesner’s theorem to G|B (with a dummy vertex

adjacent to b1, b2), we finally understand the whole structure of G, as desired, though we

omit the explicit description here.

If (b) holds, the problem is reduced to the results in [37]. Delete vertices in Z and

add an edge ei in NG(vi) for 1 ≤ i ≤ 4. Then the resulting graph is 3-connected by
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Lemma 4.7.1 (ii). Now our problem is reduced to a problem of characterizing {e1, e2, e3, e4}-
acyclic 3-connected graphs. This problem has been already solved by Lomonosov [37]

(private communication with N. Robertson). A V8-subdivision H on four vertices Z (or

four edges) are surely Z-acyclic, but it is an “extremal frame” in that if H has a bold

“jump” J the union J∪H becomes immediately Z-cyclic. Consequently, the whole struc-

ture of G is “similar” to H. See Section 4.7.1 for more details. Therefore, Theorem 4.7.2

completes the task of characterizing graphs that contain no cycle through given four

vertices, as desired.

4.7.1 Cycles through four edges

Let G be a graph and let e1, e2, e3, e4 be four independent edges of G. We define a

V8-subdivision on four edges in the same way as above. Namely, a V8-subdivision on

{e1, e2, e3, e4} is a subgraph H of G consisting of the union of a cycle C of G through

distinct eight vertices u1, . . . , u8 ∈ V (G) in this order listed and four disjoint paths Pi of

G with ends ui, ui+4 (1 ≤ i ≤ 4), all with no internal vertex in C, such that ei lies in Pi for

1 ≤ i ≤ 4. In this subsection, we state the result in [37]: If G contains a V8-subdivision

H on {e1, e2, e3, e4} but no cycle through all of these edges, then the structure of G is

“similar” to H.

For a graph G with four independent edges ei = uiui+4 (1 ≤ i ≤ 4), we say that

(G, {e1, e2, e3, e4}) is a basic obstruction if it satisfies the following.

• V (G) = {ui, xi, yi : 1 ≤ i ≤ 8}.
• For 1 ≤ i ≤ 8, Ai := {ui, xi, yi} is a clique of size 1 or 3.

• For 1 ≤ i ≤ 8, yixi+1 ∈ E(G) if |Ai| = |Ai+1| = 1 and yi = xi+1 otherwise, where

indices are read modulo 8.

• G has no other edges.

Note that cliques ofG have size≤ 4. A 4-clique appears in {u1, u3, u5, u7} or {u2, u4, u6, u8}
if and only if 1 and 3 appear alternately in the sequence (|A1|, |A2|, . . . , |A8|). As

easily checked, every basic obstruction (G, {e1, . . . , e4}) contains a V8-subdivision on

{e1, e2, e3, e4} but no cycle through these four edges. In fact, this property is maintained

even when we paste complete graphs of size ≥ 2 in a basic obstruction along cliques. The

following theorem, implied by [37], says that the converse holds.

Theorem 4.7.3. Let G be a graph with four independent edges e1, e2, e3, e4. Suppose that

G contains a V8-subdivision on {e1, e2, e3, e4} but no cycle through these four edges, and

subject to that with G edge-maximal. Then G can be constructed, by pasting along cliques,

from complete graphs of size ≥ 2 and a basic obstruction (G′, {e1, e2, e3, e4}).

4.8 Proof of Theorem 4.7.2

In this section we prove Theorem 4.7.2. Let G be a graph and let Z = {v1, v2, v3, v4}
be a set of distinct four vertices of G, which we call terminals. Throughout the section,



CHAPTER 4. RELAXED ROOTED SUBDIVISIONS ON FOUR VERTICES 75

we assume that G is 2-connected, (G,Z) is irreducible, and G is Z-acyclic. Also assume

(hyp 4.7.1) and (hyp 4.7.2). The goal is to show that (a) or (b) holds.

The proof traces the method in the proof of Theorem 4.5.3. First we find four in-

ternally disjoint Z-paths, by Mader’s S-paths theorem. Next we make these four paths

into a certain subgraph H, which we call a prism on Z (Figure 4.11). Then we find a

3-separation (A,B) of G such that A−B,B−A contain two terminals, respectively; other-

wise, we may augment H to obtain a V8-subdivision. Finally we apply Watkins–Mesner’s

theorem to both sides G|A and G|B to obtain a nice decomposition of G as in (a). One

may consider starting from such a 3-separation before constructing the “frame” H. But

the proof seems more simple if we use the half fragments of the frame H in G|A and G|B,

when applying Watkins–Mesner’s theorem. This idea corresponds to Step 5 in the proof

of Theorem 4.5.3: Applying the K2−
4 -subdivision lemma to both sides of a separation,

with the aid of the “frame” cube+.

Let us begin with a few easy lemmas below.

Lemma 4.8.1. The set Z is stable.

Proof. By (hyp 4.7.1) there is a cycle of G that contains v1, v2, v3 and avoids v4. Since

there is no K2−
4 -subdivision on Z in G by Lemma 4.5.1, v4 is not adjacent to any other

terminals. Similarly, no two terminals are adjacent. This proves the lemma.

Lemma 4.8.2. Every terminal has degree ≤ 3 in G.

Proof. Suppose that v4 has degree ≥ 3, say. By (hyp 4.7.1) there is a cycle C of G

that contains v1, v2, v3 and avoids v4. Let C12 be the path of C between v1 and v2 not

containing v3, and define C23, C13 similarly. Since G is irreducible, there are three paths

P1, P2, P3 of G from v4 to V (C), mutually disjoint except for v4. Since G is Z-acyclic, we

may assume that P1, P2, P3 have ends in the interior of C23, C13, C12, respectively. If there

are four paths of G from v4 to V (C), mutually disjoint except for v4, then the union of

those four paths and C yields a cycle containing all the terminals, a contradiction. Thus,

there is a 3-separation (A,B) of G such that v4 ∈ A − B and V (C) ⊆ B. We deduce

from the existence of P1, P2, P3 that v1, v2, v3 ∈ B −A. Hence v4 has degree 3, since G is

irreducible. This proves the lemma.

The next step is to find four internally disjoint Z-paths in G. If there are no more

than three, G is obviously Z-acyclic. The following lemma, based on Mader’s S-paths

theorem, says that such a graph has a nice decomposition as in (a). We may thus assume

from now on that there are at least four internally disjoint Z-paths.

Lemma 4.8.3. If there are no more than three internally disjoint Z-paths in G, then (a)

holds.

Proof. For suppose not. Since Z is stable by Lemma 4.8.1, we deduce from Theorem 4.2.1

that there is a good quasi-bipartite-decomposition (W ;X1, X2, X3, X4;Y1, . . . , Ym) of G

with respect to Z of value ≤ 3; hence Yj intersects at least three ofX1, . . . , X4 and |Yj∩X|
is odd (≥ 3) for 1 ≤ j ≤ m, and

|W |+m ≤ |W |+
∑

1≤j≤m

⌊
1

2
|Yj ∩X|

⌋
= |W |+ |X ∩ Y | −m

2
≤ 3, (4.8.1)
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Figure 4.11: A prism on (v1, v2, v3, v4).

where X = X1 ∪ · · · ∪X4 and Y = Y1 ∪ · · · ∪ Ym. We may assume that vi ∈ Xi − Y for

1 ≤ i ≤ 4. It follows from (hyp 4.7.2) that |W | = 0. We have |Xi ∩ Y | ≥ 2 (1 ≤ i ≤ 4)

because Xi ∩ Y is a cut of G that separates vi from Z − {vi} while G is 2-connected.

Hence

|X ∩ Y | =
∑
1≤i≤4

|Xi ∩ Y | ≥ 2 · 4 = 8, (4.8.2)

which, together with (4.8.1), implies that m ≥ 2.

Now consider a bipartite multigraph H with vertex set {X1, . . . , X4, Y1, . . . .Ym}, hav-
ing |Xi∩Yj| edges betweenXi and Yj; assume degH(Y1) ≤ · · · ≤ degH(Ym) and degH(X1) ≤
· · · ≤ degH(X4). If m = 2, then degH(Y1) = 3, degH(Y2) = 5 and degH(Xi) = 2

(1 ≤ i ≤ 4). Assuming NH(Y1) = {X1, X2, X3}, we have |X4 ∩ Y2| = 2 and |Xi ∩ Y2| = 1

(1 ≤ i ≤ 3). Then there is no cycle of G through v1, v2, v3, since (X1, X2, X3, Y1, Y2∪X4) is

aK3,2-decomposition of G (of integral value 0); this contradicts (hyp 4.7.1). Thus, m = 3,

degH(Yj) = 3 (1 ≤ j ≤ 3), H is simple, degH(Xi) = 2 (1 ≤ i ≤ 3) and degH(X4) = 3. We

may assume that NH(Xi) = {Y1, Y2, Y3} − {Yi} (1 ≤ i ≤ 3). Let B := X3 ∪X4 ∪ Y1 ∪ Y2.

Then (X1, X2, Y3, B) is a nice decomposition of G such that vi ∈ intXi for i = 1, 2 and

v3, v4 ∈ intB, and so, (a) holds, as required. This proves the lemma.

A prism on (v1, v2, v3, v4) is a subgraph H of G consisting of the union of:

(i) two paths P1, P2 of G with ends v1, v2 and two paths Q1, Q2 of G with ends v3, v4,

mutually disjoint except for their ends, and

(ii) three disjoint paths R1, R2, R3 of G from V (P1 ∪P2) to V (Q1 ∪Q2) with ends pi, qi
(1 ≤ i ≤ 3), all with no internal vertex in P1 ∪ P2 ∪ Q1 ∪ Q2, such that p1, p2 ∈
V (P1)−{v1, v2} (with p1 closer to v1), p3 ∈ V (P2)−{v1, v2}, q1 ∈ V (Q1)−{v3, v4}
and q2, q3 ∈ V (Q2)− {v3} (with q2 closer to v3).

See Figure 4.11 for an illustration. It is permitted that q3 = v4. We call the length of

Q2[v4, q3] the cost of H. Note that there is symmetry between R1, v1, v2 and R3, v4, v3
if H has positive cost. By a prism on Z we mean a prism on (vi1 , vi2 , vi3 , vi4) for some

ordering {i1, i2, i3, i4} = {1, 2, 3, 4}. The next step is to build a prism on Z.
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Lemma 4.8.4. Suppose that there are four internally disjoint Z-paths in G. Then there

is a prism on Z. Moreover, for every terminal v of degree ≥ 3 there is a prism on Z

(with cost 0) in which v has degree 3.

Proof. Suppose first that v4 say, has degree ≥ 3 in G. Let us build a prism on Z in which

v4 has degree 3. By the similar proof as in Lemma 4.8.2, there are three triads Ti in G

with feet Z − {vi} for 1 ≤ i ≤ 3, respectively, mutually disjoint except for their feet; so

T1∪T2∪T3 corresponds to C∪P1∪P2∪P3 in the proof of Lemma 4.8.2. Let P1, . . . , P4 be

four internally disjoint Z-paths of G. We choose P1, P2, P3, P4, T1, T2, T3 with their union

(denoted by H) minimal. Let bi denote the branch of Ti for 1 ≤ i ≤ 3. We may assume

that P1 has no vertex in {b1, b2, b3}. Since one of v1, v2, v3 is an end of P1, we assume that

v1 is so. Note that {b2, b3} is a 2-cut of T1∪T2∪T3 that separates V (T3(b3, v1]∪T2[v1, b2))

and {v2, v3, v4}. Hence we may assume that there is a subpath Q of P1 having one end q

in V (T2[v1, b2)) and the other end q′ in V (T1 ∪ T2 ∪ T3)− V (T3[b3, v1] ∪ T2[v1, b2]) ∪ {b1},
with no edge or internal vertex in T1 ∪ T2 ∪ T3. If q = v1 then H ∪ Q is Z-cyclic

wherever q′ lie, as easily checked, which is a contradiction. So q ∈ V (T2(v1, b2)). If

q′ ∈ V (T2) − V (T2[v1, b2]) then we may reduce the union H by replacing T2[q, q
′] with

Q, a contradiction. If q′ ∈ V (T3[v2, v4] ∪ T1[v4, v3]) − {b1, b3} then H ∪ Q is Z-cyclic, a

contradiction. Thus, q′ ∈ V (T1(b1, v2)), and so, H ∪ Q is a prism on (v1, v2, v3, v4) with

cost 0, as required.

Next suppose that every terminal has degree 2 in G. Since G is Z-acyclic and contains

four internally disjoint Z-paths, we may assume that there are two disjoint cycles C,C ′

of G containing two terminals, respectively. By 4.7.1 (ii), there are three disjoint paths

of G between V (C) and V (C ′). As easily verified, minimal such paths and C,C ′ yield a

prism on Z; for otherwise G becomes Z-cyclic. This proves the lemma.

The next step is to show that G admits a V8-subdivision on Z or a 3-cut separating

Z into two subsets of size 2.

Lemma 4.8.5. Let H be a prism on (v1, v2, v3, v4) in G with notation as above. Then

either (b) holds or there is a 3-separation (A,B) of G with V (P1∪P2) ⊆ A, V (Q1∪Q2) ⊆
B.

Proof. If there is no 3-separation (A,B) of G with V (P1∪P2) ⊆ A and V (Q1∪Q2) ⊆ B,

then there are four disjoint paths of G from V (P1∪P2) to V (Q1∪Q2), all with no internal

vertex in P1 ∪ P2 ∪ Q1 ∪ Q2. Since G is Z-acyclic, the union of P1, P2, Q1, Q2 and these

four paths yields a V8-subdivision J on Z. If some terminal v has degree ≥ 3 in G, then

we may augment paths of J from v in J , obtaining a cycle thorough all the terminals;

but this is a contradiction. Hence every terminal has degree 2 in G, and so (b) holds, as

required. This proves the lemma.

Now let us complete the proof of the theorem, based on Watkins–Mesner’s theorem.

Proof of Theorem 4.7.2. Suppose to the contrary that (a) and (b) are false. Then by

Lemmas 4.8.3 and 4.8.4, there is a prism on Z in G. Let H be a prism on (v1, v2, v3, v4)

in G, say, with the usual notation as above. By Lemma 4.8.5, there is a 3-separation
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(A,B) of G with V (P1 ∪ P2) ⊆ A and V (Q1 ∪ Q2) ⊆ B. Let A ∩ B = {x1, x2, x3} and

assume that xi ∈ V (Ri) for 1 ≤ i ≤ 3. We may assume that x3 ̸= v4. For if q3 = v4 = x3,

we take the neighbor x′
3 of v4 in R3 and set A′ := A − {v4}, B′ := B ∪ {x′

3}. Then

(A′, B′) is a 3-separation of G (as degG(v4) = 3 by Lemma 4.8.2) such that V (P1 ∪P2) ⊆
A′, V (Q1 ∪Q2) ⊆ B′ and v4 ∈ B′ − A′, as desired.

For distinct i, j ∈ {1, 2, 3}, we say that G|A is (i, j)-feasible if there is a path of G|A
with ends xi, xj containing v1, v2, and strongly (i, j)-feasible if such a path can be chosen

to avoid the vertex in A ∩ B − {xi, xj}; we define similarly for G|B (with respect to

v3, v4). We know from the existence of the prism H that G|A is (1, 2)-feasible and G|B
is (2, 3)-feasible.

(1) G|A is (1, 3)-feasible and moreover, if x2 ̸= p2 then G|A is strongly (1, 3)-feasible.

For suppose to the contrary that G|A is not (1, 3)-feasible if x2 = p2 and that G|A
is not strongly (1, 3)-feasible if x2 ̸= p2. Note that G|B is (2, 3)-feasible and moreover

strongly (2, 3)-feasible if x1 ̸= q1. Hence G|A is not (2, 3)-feasible if x1 ̸= q1 and not

strongly (2, 3)-feasible if x1 = q1. Let α := |{x1, x2} ∩ ({q1} ∪ (V (R2) − {p2}))|, and let

G′ be a graph obtained from G|A by doing the following operations, depending on α: If

α = 0, add a new vertex x and edges xx1, xx2; if α = 1, add an edge x1x2 and let x be

the vertex in {x1, x2} ∩ ({q1} ∪ (V (R2)− {p2})); if α = 2, identify x1 and x2 and denote

by x the resulting vertex. Then there is no path of G′ with ends x, x3 that contains v1, v2.

We deduce from Theorem 4.2.3 that there is a K3,2-decomposition (X1, X2, X3, Y1, Y2) of

G′ such that vi ∈ Xi − Y1 ∪ Y2 (i = 1, 2) and x, x3 ∈ X3 (Consider a graph obtained

from G′ by adding a new vertex adjacent to x, x3). Let s ∈ {0, 1, 2} be its integral value

and let W := Y1 ∪ · · · ∪ Ys. Since there is a cycle of G′ through v1, v2, x (with the aid of

subpaths of P1, P2, R1, R2), we have x ∈ X3 ∩ (Y1 ∪ Y2). On the other hand, since there

are internally disjoint two {v1, v2}-paths of G′ \ x (consider P1 ∪ P2), we have x /∈ W ;

and so, s ≤ 1. We may assume that x ∈ X3 ∩ Y2 −W . Let us write Xi ∩ Y1 = {ai} and

Xi ∩ Y2 −W = {bi} for i = 1, 2; note that b1, b2, x are pairwise distinct, and that if s = 1

then Y1 = {a1} = {a2}. If α = 0, set X ′
3 := X3 − {x}, Y ′

2 := Y2 − {x}; if α = 1, set

X ′
3 := X3, Y

′
2 := Y2; if α = 2, set X ′

3 := (X3−{x})∪{x1, x2}, Y ′
2 := (Y2−{x})∪{x1, x2}.

Then (X1, X2, X
′
3, Y1, Y

′
2) is a decomposition of G|A such that x1, x2, x3 ∈ X ′

3∪Y ′
2 and the

boundary of Xi is still {ai, bi} for i = 1, 2. Let B′ := B ∪X ′
3 ∪ Y ′

2 . Then (X1, X2, Y1, B
′)

is a decomposition of G such that vi intXi for i = 1, 2 and v3, v4 ∈ intB′. If s = 1, then

v1, v2 have degree 2 and have a common neighbor a1 = a2 from the irreducibility of G,

contrary to Lemma 4.7.1 (i). Hence s = 0 and |Y1| ≥ 3. Therefore, (X1, X2, Y1, B
′) is

a nice decomposition of G, and so (a) holds, which contradicts our assumption. This

proves (1).

(2) G|B is (1, 3)-feasible and moreover, if x2 ̸= q2 then G|B is strongly (1, 3)-feasible.

For if H has cost 0, the claim follows (concatenate four paths R1[x1, q1], Q1[q1, v3], Q2

and R3[v4, x3]). So assume that q3 ̸= v4. Then we see the symmetry between R1, v1, v2
and R3, v4, v3. Thus, the claim follows from the same proof as in (1). This proves (2).

Since p2 ̸= q2, it follows from (1) and (2) that G is Z-cyclic, a contradiction. This

completes the proof.
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4.9 Paths through four vertices

As noted in Section 4.7, the problem of characterizing graphs that contain no path through

given four vertices is easily reduced to Watkins–Mesner’s theorem. This section gives a

rough sketch.

Let G be a graph and let Z be a set of distinct four vertices v1, v2, v3, v4 of G, called

terminals. We want to investigate what kind of structure G has if there is no path of

G containing all the terminals. First we may assume that G is connected and (G,Z) is

irreducible. Here, we say that (G,Z) is irreducible if it satisfies the following: (i) If there

is a 1-separation (A,B) of G with |Z ∩ (A− B)| = 1, then |A− B| = 1; (ii) if there is a

2-separation (A,B) of G with |Z ∩ (A−B)| = 1 and if the terminal in Z ∩ (A−B) has

degree ≥ 2, then |A − B| = 1. We may assume that at most 2 terminals have degree 1

in G; for otherwise, G is a trivial obstruction. If exactly two terminals, v1, v2, say, have

degree 1, then the problem is reduced to Watkins–Mesner’s theorem (consider a graph

obtained from G by adding a new vertex x adjacent to v1, v2). Thus, we may assume that

at least three terminals have degree ≥ 2 in G. Then, as easily checked, there is a path

of G containing all the terminals if and only if there are three internally disjoint Z-paths

in G; the proof is straightforward based on the augmentation method (cf. Section 2.2).

So assume that there are at most two internally disjoint Z-paths in G. In particular,

each terminal has degree ≤ 2, and so the only possible degree sequence is (1, 2, 2, 2) or

(2, 2, 2, 2). Now Z is stable; for otherwise, G contains three internally disjoint Z-paths.

We deduce from Mader’s theorem (Theorem 4.2.1) that there is a good quasi-bipartite-

decomposition (W ;X1, X2, X3, X4;Y1, . . . , Ym) of G with respect to Z of value 2; hence

Yj intersects at least three of X1, . . . , X4 and |Yj ∩X| is odd ≥ 3 for 1 ≤ j ≤ 3, and

|W |+m ≤ |W |+
∑

1≤j≤m

|Yj ∩X| − 1

2
= 2,

where X = X1 ∪ · · · ∪X4 and Y = Y1 ∪ · · · ∪ Ym. We may assume that vi ∈ Xi − Y for

1 ≤ i ≤ 4. If |W | = 2, then m = 0 and Y = ∅; and so, there is no path in G \W that

connects two terminals. If |W | = 1 then, m = 1 and |Y1 ∩X| = 3; and so, one terminal

v1, say, has degree 1 in G, the vertex w in W is a common neighbor of all the terminals,

and moreover, there are at most one {v2, v3, v4}-paths in G \ w. The case |W | = 0 does

not occur. For if |W | = 0, then either m = 2 and |Y1 ∩ X| = |Y2 ∩ X| = 3, or m = 1

and |Y1 ∩ X| = 5. But in either case at least two terminals have to be of degree 2, a

contradiction. This completes the description of G.

4.10 Some Corollary

From the results in Sections 4.5, 4.7 and 4.9, we have now determined the structures

of graphs with no K−
4 -subdivision on prescribed four vertices. The description is purely

combinatorial. The results in Sections 4.7 and 4.9 imply the following two well-known

facts.
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Corollary 4.10.1. Let G be a 2-connected graph and let Z ⊆ V (G) with |Z| = 4.

Then there is no path of G containing all the vertices in Z if and only if there is a set

W ⊆ V (G)− Z of size 2 such that G \W contains no path between two vertices of Z.

Corollary 4.10.2 ([67]). Let G be a 3-connected graph and let Z ⊆ V (G) with |Z| = 4.

Then there is no cycle of G containing all the vertices in Z if and only if there is a set

W ⊆ V (G)− Z of size 3 such that G \W contains no path between two vertices of Z.

We end this chapter with the following corollary, which states that 4-connected ob-

structions for K−
4 -subdivisions are also “the most” trivial ones.

Corollary 4.10.3. Let G be a 4-connected graph and let Z ⊆ V (G) with |Z| = 4. Then

there is no K−
4 -subdivision on Z in G if and only if there is a set W ⊆ V (G)−Z of size

4 such that G \W contains no path between two vertices of Z.

Proof. The “if” part is trivial, so we only show the converse. Suppose that G contains

no K−
4 -subdivision on Z. Then Theorem 4.5.3 (a) holds: There is a vertex w ∈ V (G)−Z

such that G \w contains neither K2−
4 -subdivision on Z nor cycle through all the vertices

in Z. Since G \ w is 3-connected, G \ w is Z ′-cyclic for any Z ′ ⊆ Z with |Z ′| = 3. It

follows from Corollary 4.5.2 that G \ w is Z-acyclic. By Corollary 4.10.2, there is a set

W ⊆ V (G \ w) − Z of size 3 such that (G \ w) \ W contains no Z-path. The result

follows.



Chapter 5

Conclusion

5.1 Summary

The two-paths theorem forms the basis for research on rooted subdivisions with pre-

scribed four vertices. In Chapter 3, as an extension of the theorem we have determined

the structure of 6-connected non-H-linked graphs for each H ∈ {P4, C4, K
2−
4 , K−

4 , K4}.
The structure, which we call a “discoid graph”, can be described as a planar graph

whose “boundary” is surrounded by possibly many dense subgraphs of non-planarity.

In our result, one can catch a glimpse of an extension of the two-paths theorem and

Yu’s characterization of P4-linked graphs. In other words, when restricted to 6-connected

graphs, non-H-linked graphs have structures similar to non-P4-linked graphs for each

H ∈ {C4, K
2−
4 , K−

4 , K4}. This phenomenon for the case H = C4 was implicitly observed

in the recent paper of McCarty, Wang and Yu [45] that proved that 7-connected graphs

are 4-ordered. We anticipated that this observation can be pushed further to the case

H = K4 all at once, and actually succeeded in proving it.

As a direct consequences of the characterization, we proved that 7-connected graphs

are K4-linked. This generalizes the results of [45, 36] that 7-connected graphs are 4-

ordered andK2−
4 -linked. As for connectivity, the only known result was that 60-connected

graphs are K4-linked [57]. Our result significantly improves this known bound on the

connectivity.

We also proved the case n = 4 of a conjecture of Mader: Every
(
n
2

)
-connected graph

with sufficiently large girth is Kn-linked. However, our method cannot be applied to the

case n ≥ 5 immediately.

As noted in the introduction, the work is also motivated by the coloring-conjecture

of Hajós. Unfortunately, our assumption of 6-connectivity is too strong to apply to the

conjecture directly. It would be desirable to proceed with the work in Chapter 3 to seek

a complete characterization, but this is an arduous task. Motivated by this, we have

considered a relaxed variant of the problem in Chapter 4. As for the relaxed rooted

K−
4 -subdivision problem, we determined the 3-connected obstructions. The description

using hypergrpahs is purely combinatorial, without any planarity conditions, which is an

interesting difference from Theorem 3.1.2 (4). This phenomenon is largely due to Mader’s

S-paths theorem. We may say that our result is one of the few successful uses of Mader’s

81
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S-paths theorem in pure graph theory. As noted in Theorem 4.5.4, in our setting we can

find two types of K−
4 -subdivisions if one exists. We hope this will be helpful in many

situations, especially for the conjecture of Hajós.

5.2 Future work

The main concern of this dissertation was the structures of non-H-linked graphs for a

fixed simple graph H with four vertices. One possible direction of future work is to

consider the case H has at least five vertices. The first problem to be settled in this case

is to characterize (K2 + P3)-linked graphs, where K2 + P3 is the graph consisting of the

disjoint union of K2 and the path of length 2. However, one immediately notices that this

is already a difficult question. Indeed, it entails a solution to the famous (2, 3)-linkage

problem: Given five vertices x1, x2, y1, y2, y3 of a graph G, find two disjoint connected

subgraphs G1, G2 of G with x1, x2 ∈ V (G1) and y1, y2, y3 ∈ V (G2). The (2, 3)-linkage

problem is a fundamental problem as an extension of 2-linkage and related to other

important problems such as Jørgensen’s conjecture about K6-minor-free graphs, but only

a few structural results are known.

Although the rooted H-subdivision problem seems difficult for |V (H)| ≥ 5 as we have

seen above, one may target a relaxed version of the problem for H = C5, say: Given

five vertices v1, . . . , v5 of a graph G, find a cycle of G containing these vertices (without

regard to the order). For this problem, it might be helpful to use the result of Sanders [52],

who characterized 5-connected graphs with no cycle containing specified five independent

edges, solving a special case of Lovász–Woodall’s conjecture.

Another possible direction of future work is to proceed with the work in Chapter 3,

i.e., to determine all the structures of non-K4-linked graphs. But again we should note

that this direction is strenuous. Let v1, . . . , v4 be distinct vertices of a graph G. An

“extremal” subgraph of G as in Figure 3.5 (right), called a skeleton, played the crucial

role in our proof. If G is not 6-connected, we may not be able to construct it and so have

to seek other approaches. One possible difficulty could arise in the case G has a 4-cut

that separates the set of terminals {v1, . . . , v4} into two subsets of size 2. In this case,

in order to construct a K4-subdivision with v1, . . . , v4 branch vertices, we have to solve

the following subproblem: If H is a tree with six vertices, two of which are adjacent and

of degree 3 (so H has the shape of the letter “H”), then what is the characterization of

H-linked graphs? This problem seems difficult, though a relaxed version of the problem

that permits permutations on the terminals is solved in [39].

Another direction is to consider the case H has parallel edges. If H is a graph with

three vertices containing parallel edges, then the H-linkage problem can be rephrased

as follows: Given three vertices v1, v2, v3 of a graph G and integers k1, k2, k3 ≥ 0, find

internally disjoint k1, k2, k3 paths of G with ends v1v2, v2v3, v3v1, respectively. As observed

in [35], this problem can easily be reduced to finding k1 + k2 + k3 internally disjoint

{v1, v2, v3}-paths in G. Thus, the case |V (H)| = 3 is solved by Mader’s S-paths theorem.

A non-trivial and important problem arises when H has four vertices. Let H be a

multigraph as in Figure 5.1. What is a structural characterization of H-linked graphs?
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Figure 5.1: A multigraph with four vertices.

This is equivalent to the following problem.

Problem 5.2.1. Let G be a graph and let v1, v2, v3, v4 be distinct vertices of G. What

kind of structure does the graph G have if there are no cycle of G containing v1 and v2
and a path of G between v3 and v4, mutually disjoint?

Problem 5.2.1 is a special case of the following more general problem defined for

positive integers n1, . . . , nk, c1, . . . , ck:

((n1, . . . , nk; c1, . . . , ck)-Linkage problem)

Instance: A graph G and disjoint subsets X1, . . . , Xk of V (G) with |Xi| = ni

for 1 ≤ i ≤ k.

Question: Are there k disjoint ci-connected subgraphs Gi of G with Xi ⊆
V (Gi) for 1 ≤ i ≤ k?

When ci = 1 for 1 ≤ i ≤ k, this problem is simply called the (n1, . . . , nk)-linkage

problem. If, moreover, ni = 2 for 1 ≤ i ≤ k, then it is equivalent to the k-disjoint paths

problem. Problem 5.2.1 is nothing but the (2, 2; 2, 1)-linkage problem. As easily checked,

if ci ≤ 2 for 1 ≤ i ≤ k, then sufficiently highly connected (more specifically, (
∑

1≤i≤k ni)-

linked) graphs G always have a feasible solution for the (n1, . . . , nk; c1, . . . , ck)-linkage

problem. When ci > 2 for some i, it is not known whether there is such a bound on

the connectivity. Indeed, if one can show that every sufficiently highly connected graph

has a feasible solution for the (2, 1; 1, 3)-linkage problem, then it resolves Lovász’s path

removal conjecture affirmatively; see [27, Conjecture 3.1].

One can verify the importance of Problem 5.2.1 in connection with Hajós’ conjecture.

Let G be a graph and v1, v2, v3, v4 be distinct vertices of G. A fan+ on (v1, v2; v3, v4) is

a subgraph of G homeomorphic to a graph as in Figure 5.2. Note that a fan+ appears

as a substructure of a subdivision of K5. For example, if there is a K−
4 -subdivision on

(v1, v2; v3, v4) and a fan+ on (v1, v2; v3, v4) in G, mutually disjoint except for {v1, v2, v3, v4},
then there is a subdivision of K5 in G. This observation is helpful for Hajós’ conjecture

because every Hajós graph (a minimum counterexample to Hajós’ conjecture) admits a

4-separation. Unfortunately, it seems hard to give an exact characterization of a fan+

because of its vertex of degree 4. However, if there are a path between v1 and v2 and a

cycle containing v3 and v4 which are mutually disjoint, then the construction of a fan+ on

(v1, v2; v3, v4) becomes much easier with the aid of Watkins–Mesner’s theorem. Therefore,

Problem 5.2.1 is a first step towards constructing fan+s and thus an important clue to

resolving Hajós’ conjecture.

Problem 5.2.1 is also closely related to the 3-disjoint paths problem. To see this, let

G be a graph with distinct vertices s1, s2, s3, t1, t2, t3. Let S3 be the set of all bijections
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v1 v2

v3 v4

Figure 5.2: A fan+ on (v1, v2; v3, v4).

from the set {1, 2, 3} to itself. We say that a subset X of S3 is feasible in G if for some

σ ∈ X there are three disjoint paths of G with ends si, tσ(i) for 1 ≤ i ≤ 3, respectively.

If |X| = 1, then the problem of asking the feasibility of X is equivalent to the 3-disjoint

paths problem. Its structural characterization is far-reaching at this moment. A famous

long-standing conjecture in the literature is that: Every 8-connected graph is 3-linked.

The only known result is that 10-connected graphs are 3-linked [58], as noted in the

introduction.

One can obtain relaxed versions of the 3-disjoint paths problem by changing X. The

larger X gets, the easier the problem becomes. If X = S3, then its structural charac-

terization is given by Menger’s theorem. If X = {σ ∈ S3 : σ(3) ̸= 3}, then asking the

feasibility of X is equivalent to the following question: Are there three disjoint paths of G

between {s1, s2, s3} and {t1, t2, t3} such that none of them connects s3 and t3? As noted

in Section 3.6, this problem is completely settled by Yu [63, 64, 65]. Indeed, this result

yields the characterization of P4-linked graphs by a simple construction.

One nontrivial case is when X = {σ ∈ S3 : σ(3) = 3}. Now asking the feasibility of

X is equivalent to the following question: Are there three disjoint paths of G between

{s1, s2, s3} and {t1, t2, t3} such that one of them connects s3 and t3? This is essentially

equivalent to Problem 5.2.1. To see this, let G be a graph with four vertices v1, v2, v3, v4
and assume that v1v2 /∈ E(G). Let G′ be the graph obtained from G by replacing v1
with two vertices s1, s2 and joining s1, s2 to all neighbors of v1, and replacing v2 with

two vertices t1, t2 and joining t1, t2 to all neighbors of v2. Now there are a cycle of G

containing v1 and v2 and a path of G between v3, v4, mutually disjoint, if and only if G′

contains three disjoint paths between {s1, s2, v3} and {t1, t2, v4} such that one of them

connects v3 and v4. Note that if v1v2 ∈ E(G) then Problem 5.2.1 can be solved by

the two-paths theorem applied to G \ {v1v2}. Therefore, Problem 5.2.1 is reduced to

asking the feasibility of X = {σ ∈ S3 : σ(3) = 3}, which is a slightly relaxed version of

the 3-disjoint paths problem. Since 10-connected graphs are 3-linked, obstructions for

Problem 5.2.1 cannot be 10-connected. As far as we are aware, no other structural result

is known for Problem 5.2.1.

As future work, it may also be interesting to study the gap between H-linkage and

|E(H)|-linkage. Recall that g(H) means the smallest positive integer which ensures

that every g(H)-connected graph is H-linked. In this dissertation, we have proved that

g(K4) = 7. As is well-known, the graph K3k−1 with k independent edges removed shows

g(kK2) ≥ 3k − 2. Hence g(6K2) − g(K4) ≥ 9 by our result. In general, for a graph H

with k edges, one may ask how large the gap g(kK2)− g(H) (≥ 0) can be. This problem

seems open.
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and VLSI Layout (Korte, Lovász, Prömel, and Schrijver, Eds.), Springer-Verlag,

Berlin, 1990, pp. 215–234.

[38] J. F. Lynch: The equivalence of theorem proving and the interconnection problem.

ACM SIGDA Newslett., 5, 1975, pp. 31–65.

[39] J. Ma, Q. Xie and X. Yu: Graphs containing topological H. J. Graph Theory, 82,

2016, pp. 121–153.

[40] J. Ma and X. Yu: Independent paths and K5-subdivisions. J. Combin. Theory Ser.

B, 100, 2010, pp. 600–616.

[41] J. Ma and X. Yu: K5-subdivisions in graphs containing K−
4 . J. Combin. Theory Ser.

B, 103, 2013, pp. 713–732.

[42] W. Mader: Homomorphieeigenschaften und mittlere Kantendichte von Graphen.

Math. Ann., 174, 1967, pp. 265–268.
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