
博士論文

A Study on Operating System Virtualization
Optimized for Functional Requirements

(機能要件に最適化されたオペレーティングシステムの仮想化に関する研究)

味曽野 雅史

Dissertation

A Study on Operating System Virtualization
Optimized for Functional Requirements

Masanori Misono

© 2022 Masanori Misono, All Rights Reserved.
Email: misono@os.ecc.u-tokyo.ac.jp
Internal or personal use of this thesis is permitted.
This thesis contains IEEE copyrighted material with its permission.

In reference to IEEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of The University of Tokyo’s products or services. Internal or
personal use of this material is permitted. If interested in reprinting/republishing IEEE copy-
righted material for advertising or promotional purposes or for creating new collective works
for resale or redistribution, please go to http://www.ieee.org/publications_standards/

publications/rights/rights_link.html to learn how to obtain a License from RightsLink.
If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may
supply single copies of the dissertation.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Thesis Committee

Supervisor and Chair: Dr. Takahiro Shinagawa
Associate Professor of Information Technology Center, The University of Tokyo

Examiner: Dr. Shigeru Chiba
Professor of Department of Creative Informatics, Graduate School of Information Science and Technology,
The University of Tokyo

Examiner: Dr. Hiroshi Nakamura
Professor of Department of Information Physics and Computing, Graduate School of Information Science
and Technology, The University of Tokyo

Examiner: Dr. Hideki Takase
Associate Professor of Department of Information Physics and Computing, Graduate School of Information
Science and Technology, The University of Tokyo

Examiner: Dr. Yuji Sekiya
Professor of Center for Education and Research in Information Science and Technology, Graduate School of
Information Science and Technology, The University of Tokyo

The thesis is submitted to the Department of Information Physics and Computing, Graduate School of In-

formation Science and Technology, The University of Tokyo in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in the field of Information Science and Technology.

Abstract

Virtualization technology introduces a new abstraction layer between an OS and the hardware,

allowing new functionalities to be added to the OS transparently. A general-purpose hypervisor

can provide richer functions, but it also requires more overhead. We can reduce virtualization

overhead by specializing in a specific function.

In this thesis, we studied optimizing virtualization for functional requirements through sev-

eral use cases. First, we optimized nested virtualization for hypervisor device drivers testing.

Focusing on the fact that the security features required by normal virtualization are unnec-

essary for testing purposes, we improved virtualization performance by eliminating them.

Second, we presented the efficient IOMMU virtualization method for device protection. We

achieved higher performance than a regular IOMMU virtualization by only shadowing the

necessary area for protection. Third, we presented a detailed performance evaluation of the

NUMA-visible virtual machines on Linux. The evaluations revealed several problems with

vNUMA scheduling and we fixed the incorrect paravirtualization feature that caused severe

performance degradation. Finally, we proposed a method to improve the flexibility of hyper-

visors without compromising performance by using a secure and lightweight language virtual

machine. An example of the use of the language virtual machine, we presented a source-side

DDoS prevention scheme using virtualization. Through these use cases, we showed several

effective ways of optimizing virtualization for functional requirements.

1

Acknowledgement

I would like to thank my advisor, Associate Prof. Takahiro Shinagawa, for his kind and careful
guidance for six years, including the master’s course. Also, I would like to express my sincere
gratitude to the examiners, Prof. Shigeru Chiba, Prof. Hiroshi Nakamura, Associate Prof.
Hideki Takase, and Prof. Yuji Sekiya, for their detailed comments on my thesis.
As the first master’s student in Shinagawa Laboratory, I have experienced many things,

and the people in the laboratory helped me in many ways. In particular, Dr. Keiichi Mat-
suzawa and Dr. Takaaki Fukai often discussed with me and taught me many technical and
academic things. Tomoyuki Nakamura, Ryosuke Yasuoka, Satoru Takekoshi, Iori Yoneji, Ko-
hei Azuma, Yoshida Kaito, Hu Siyi, Masahiro Ogino, Suzuki Yuki, Toshiki Hatanaka, Hiromu
Yamasaki, Liao Zihao, Itta Toda, Takashi Ogino, Hidehito Yabuuchi, Ryo Hayashi, Akira
Moroo, Yosuke Ozawa, Shotaro Gotanda, Junnosuke Mizutani, Shu Anzai, Shoi Takahashi,
Rikima Mitsuhashi and Aoki Katsunori, I also would like to thank you for their valuable
discussions and supports.
In my university life, I was especially helped by my fellow transfer students from technical

colleges. Masaru Matsunaga, Kenta Watanabe, Taihei Oki, Iori Yanokura, Takuma Yoshitani,
Tan Van Vu, Haruki Ejiri, Shuhei Yoshida, Yuto Nakajima, Yuto Kondo and Hiroki Kuga,
they are much better than I am, and they are always inspiring. I would also like to thank
the people in Matsuo Labolatry, where I belong in undergraduate. Especially Prof. Yutaka
Matsuo and Assistant Prof. Yusuke Iwasawa occasionally discussed me even after graduating
from undergraduate school. Although the content of my research differed between graduate
school and undergraduate school, I am certain that the experiences I had as an undergraduate
are very useful to me today.
Outside of the university, I would like to thank Mr. Hideki Eiraku, who taught me about

many detailed things of virtualization technology of x86. They were very helpful to implement
my idea. I would also like to thank lecturers from my days of National Institute of Technology,
Gunma Collage. In those days, at first, I was thinking of starting working after graduation, but
a lecturer Dr. Keita Ushida (currently Associate Prof. at Kogakuin University), a graduate of
the Graduate School of Information Science and Technology, taught me about the University
of Tokyo. I was also influenced by Prof. Toshiaki Ohmameuda and Prof. Hideaki Ujino, who
are also graduates of the university. I was very fortunate to be able to talk to Ph.D. researchers
when I was a teenager. There is no doubt that studying under them had an impact on going
on to university. I would also like to thank Prof. Yoshiaki Hachitori (currently at Matsuyama
University) for always giving me advices and encouraging me to go on to higher education.
Last but not least, I am grateful for devoted support from my family. As the youngest of

six siblings, I have always been indebted to my brothers, sisters, and parents. They never
interfered with my career path and always supported me. During my university life, especially
graduate school, my mother and sisters provided me with financial support to obtain the
degree. I would like to express my gratitude to all of you once again.

March 2022, Masanori Misono

2

Publications

Parts of this thesis are based on the following publications. IEEE holds the copyright of the
publications [ii] and [iii], potions of which are reprinted in this thesis in accordance with its
copyright policy [179]. The authors hold the copyrights of the publications [i] and [iv].

International Conference (peer-reviewed)

[i] Masanori Misono, Toshiki Hatanaka and Takahiro Shinagawa.
DMAFV: Testing Device Drivers against DMA Faults. In Proceedings of the 37th
ACM/SIGAPP Symposium On Applied Computing (SAC 2022), Apr 2022 (To Ap-
pear). doi:10.1145/3477314.3507082

[ii] Masanori Misono, Masahiro Ogino, Takaaki Fukai and Takahiro Shinagawa.
FaultVisor2: Testing Hypervisor Device Drivers against Real Hardware Failures.
In Proceedings of the 10th IEEE International Conference on Cloud Computing
Technology and Science (CloudCom’18), pp.204-211, Dec 2018.
doi:10.1109/CloudCom2018.2018.00048

[iii] Masanori Misono, Kaito Yoshida, Juho Hwang and Takahiro Shinagawa.
Distributed Denial of Service Attack Prevention at Source Machines.
In Proceedings of the 16th IEEE International Conference on Dependable, Auto-
nomic and Secure Computing (DASC’18), pp.488-495, Aug 2018.
doi:10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00096

International Conference Poster (peer-reviewed)

[iv] Masanori Misono and Takahiro Shinagawa.
OS Independent Fuzz Testing of I/O Boundary.
In Proceedings of the 2021 ACM Conference on Computer and Communications
Security (CCS’21), Nov 2021. doi:10.1145/3460120.3485359

The authors received following awards regarding the publications.

1. Best Paper Award at IEEE CloudCom 2018 (Acceptance Ratio: 19.8%. Only one paper
is chosen.)

3

https://doi.org/10.1145/3477314.3507082
https://doi.org/10.1109/CloudCom2018.2018.00048
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00096
https://doi.org/10.1145/3460120.3485359

Contents

Title

Abstract 1

Acknowledgement 2

Publications 3

Table of Contents 7
List of Figures . 9
List of Tables . 10

1 Introduction 11
1.1 Motivation . 11

1.1.1 Virtualization Technology . 11
1.1.2 Example Use Cases of Virtualization 12
1.1.3 Overhead of Virtualization . 12

1.2 Research Objectives and Overview . 15
1.2.1 Chapter 3. Nested Virtualization for Hypervisor Device Driver Testing 16
1.2.2 Chapter 4. IOMMU Virtualization for Device Protection 16
1.2.3 Chapter 5. Investigating and Improving Scheduling Performance of

NUMA-visible Virtual Machines . 16
1.2.4 Chapter 6. Improving Hypervisor’s Flexibility with Safe and Lightweight

Language VM . 17
1.3 Contributions . 17
1.4 Thesis Organization . 17

2 Related Works 18
2.1 Optimizing Virtualization Performance . 18

2.1.1 Paravirtualization . 18
2.1.2 Device Pass-through . 18
2.1.3 Parapass-through . 19
2.1.4 On-demand Virtualization . 19

2.2 Double Scheduling Problem . 20
2.2.1 Mitigating Double Scheduling Problems 20
2.2.2 Dedicated CPU Resource Assignment 21
2.2.3 Virtual NUMA (vNUMA) . 21

2.3 Summary . 22

4

Contents

3 Nested Virtualization for Hypervisor Device Drivers Testing 23
3.1 Introduction . 23
3.2 Device Driver Testing Methods . 25

3.2.1 Static Code Analysis . 25
3.2.2 Symbolic Execution . 26
3.2.3 Software Fault Injection . 26

3.3 Design . 26
3.3.1 Overview of FaultVisor . 27
3.3.2 Proposed Method . 28
3.3.3 Advantages of Proposed Method . 28

3.4 Implementation . 29
3.4.1 Fault Injection by Nested Virtualization 29
3.4.2 Controller . 31
3.4.3 EPT Pass-through . 31

3.5 Evaluation . 32
3.5.1 VMWare ESXi . 32
3.5.2 vThrii . 35
3.5.3 Performance Evaluation . 36

3.6 Discussion . 38
3.6.1 Detected errors . 38
3.6.2 DMA support . 41

3.7 Summary . 43

4 IOMMU Virtualization for Device Protection 44
4.1 Introduction . 44
4.2 Background . 47

4.2.1 Memory Acquisition . 47
4.2.2 PCI Express (PCIe) . 50
4.2.3 IOMMU . 51

4.3 Memory Acquisition in the Presence of IOMMU 52
4.4 Assumption and Threat Model . 52

4.4.1 Assumption . 52
4.4.2 Threat Model . 53

4.5 Problems with Coprocessor-based Memory Acquisition Methods 53
4.5.1 Problem: Disabling the DMA Function of a Coprocessor 54
4.5.2 Problem: Register Values Cannot Be Acquired 54
4.5.3 Problem: Consistent Memory Acquisition Cannot Be Performed 55
4.5.4 Problem: Event-Based Memory Acquisition Cannot Be Performed . . . 55
4.5.5 Summary . 55

4.6 Proposed Method . 56
4.6.1 Overview . 56
4.6.2 Guaranteed Operation of Memory Acquisition Coprocessor 56
4.6.3 Protecting the PCI Configuration Space 58
4.6.4 Register Value Acquisition . 58
4.6.5 Consistent Memory Acquisition . 59
4.6.6 Event-Based Memory Acquisition . 59
4.6.7 Challenges . 59

5

Contents

4.7 Implementation . 61
4.7.1 IOMMU Shadowing . 61
4.7.2 VMM and PCI Configuration Space Protection 64
4.7.3 Register Value Acquisition . 64
4.7.4 Communication between VMM and Analytics Machine 64

4.8 Evaluation . 65
4.8.1 Memory Acquisition in the presence of an IOMMU 65
4.8.2 Overhead Evaluation . 66

4.9 Discussion . 68
4.9.1 SMM Monitoring . 68
4.9.2 Guest Hypervisor Support . 69
4.9.3 Hardware-Based Memory Encryption 70
4.9.4 Possible Hardware Improvement . 71

4.10 Summary . 72

5 Investigating and Improving Scheduling Performance of NUMA-visible Virtual
Machines 73
5.1 Introduction . 73
5.2 Background . 75

5.2.1 NUMA . 75
5.2.2 Reproducing NUMA in a Virtualized Environment 75
5.2.3 Scheduling in Linux . 77
5.2.4 KVM . 79
5.2.5 Research Questions . 80

5.3 Experimental Setup . 80
5.3.1 Experimental Environment . 80
5.3.2 Virtual Machines . 81
5.3.3 Benchmarks . 81

5.4 Evaluation of Paravirtual Features on a NUMA-visible Virtual Machine 83
5.4.1 Result . 84
5.4.2 False Preempted Problem . 84

5.5 Evaluation of NUMA-Visible Virtual Machines 86
5.5.1 Result . 90
5.5.2 Overload Wake-on-Bug (OWB) . 91

5.6 Related Work of Linux Scheduling . 92
5.6.1 Analyzing Linux Scheduling . 92
5.6.2 Improving (NUMA) Scheduling . 92

5.7 Summary . 94

6 Improving Hypervisor’s Elasticity with Safe and Lightweight Language VM 97
6.1 Introduction . 97
6.2 Design . 100

6.2.1 Threat Model and Assumptions . 100
6.2.2 System Objectives . 100
6.2.3 Proposed Scheme . 101
6.2.4 DDoS Attack Prevention Workflow . 103
6.2.5 Discussion of the Proposed Scheme . 104

6

Contents

6.3 Implementation . 104
6.3.1 Packet Interception . 104
6.3.2 Filtering Mechanism . 105
6.3.3 Creating BPF Programs . 106
6.3.4 Policy Server . 107

6.4 Evaluation . 107
6.4.1 Proof-of-concept Experiment . 108
6.4.2 Performance Evaluation . 109

6.5 Related Work of Source Side DDoS Protection 111
6.6 Summary . 113

7 Conclusion 114

Bibliography 115

7

List of Figures

1.1 The Degree of the Virtualization . 13
1.2 Comparison between a General Purpose Hypervisor and a Parapass-through

Hypervisor . 14

3.1 Overview of FaultVisor . 27
3.2 Proposed Method . 29
3.3 Fault Injection Process . 30
3.4 SPEC2017 Benchmark Result . 37
3.5 netperf Benchmark . 39
3.6 fio Benchmark . 40
3.7 Fault Injection to the DMA Region . 41

4.1 Examples of IOMMU Usage . 46
4.2 Example of PCI Express Structure . 50
4.3 Proposed Method: Shielded Copilot . 57
4.4 IOMMU Shadowing . 58
4.5 IOMMU Shadowing Implementation for Intel VT-d 62
4.6 NVMe fio IOPS . 68
4.7 NVMe fio Latency . 69
4.8 40GbE NIC Experiments . 70

5.1 Hierarchical Hardware Structure . 74
5.2 Virtual Machines used in the vNUMA Experiments 82
5.3 NPB Benchmark . 84
5.4 Parsec . 85
5.5 Perf Bench Sched Messaging . 86
5.6 Schbench . 87
5.7 Visualization of each Run queue Length . 88
5.8 Visualization of on vCPU Scheduling . 89
5.9 NPB Benchmark . 90
5.10 Parsec . 91
5.11 Perf Bench Sched Messaging . 92
5.12 Schbench . 93
5.13 NPB Benchmark (with OWB fix) . 94
5.14 Parsec (with OWB fix) . 95
5.15 Perf Bench Sched Messaging (with OWB fix) 95
5.16 Schbench (with OWB fix) . 96

8

List of Figures

6.1 Overview of the Proposed Scheme . 99
6.2 Proposed Scheme . 101
6.3 Filtering flow . 103
6.4 Descriptor shadowing . 106
6.5 Settings of Proof-of-concept Experiment . 108
6.6 Results of Proof-of-concept Experiment . 110
6.7 Throughput . 111
6.8 Ping Latency . 112

9

List of Tables

3.1 Setup of VMWare ESXi . 33
3.2 Target Device of VMWARE ESXi . 33
3.3 The Test Result of ESXi . 34
3.4 Detected Errors in iomemory-vsl . 34
3.5 Setup of vThrii . 35
3.6 The Test Result of vThrii . 36
3.7 VMEXIT Counts . 38

4.1 Memory Acquisition Methods from Outside the OS 48
4.2 Related Works Using Coprocessor-based Memory Acquisition 48
4.3 Comparison of CPU States which are higher than OS 56
4.4 Supported Operations . 65
4.5 Memory Acquisition Time . 66
4.6 Experiment Settings . 66
4.7 IOMMU Map and Unmap Time . 67
4.8 NPB Benchmark Result . 68

5.1 Summary of Linux Load Balancing . 79

6.1 Machine Specifications . 108

10

1 Introduction

1.1 Motivation

1.1.1 Virtualization Technology

Today, virtualization technology1 is utilized in a variety of systems. One of the typical ap-

plications that utilize the technology is cloud services. They provide virtual machines (VMs)

without being aware of physical hardware limitations. By using cloud services, users can

utilize computational resources without being aware of actual machines. On the other hand,

virtualization technology is sometimes perceived to run multiple virtual machines on a single

physical machine like cloud services, but this is a limited view.

The history of virtualization dates back to around the 1970s. The classic definition of

virtualization is that “a virtual machine is an efficient, isolated duplicate of a real machine.” [1]

A hypervisor (also called a virtual machine monitor; VMM for short) runs a virtual machine.

The hypervisor provides the virtual devices necessary for the operation of the virtual machine

and emulates specific instructions to be executed by the virtual machine if necessary. When

it comes to running multiple virtual machines on a single physical machine, virtualization

technology in the cloud follows this classical definition.

However, today’s virtualization technology is not confined to this classical definition of

virtualization. What is important about virtualization is that it introduces a new abstraction

layer between the operating system and the hardware. The hypervisor can use this abstraction

layer to add new functionality to the OS. One of the primary advantages of using hypervisors

to add functionality is their transparency. A hypervisor can transparently trap and modify OS

activities such as memory accesses and device manipulations In addition, since the hypervisor

runs in a more privileged state than OS, virtualization is suitable for security enhancement

because the hypervisor can continue processing even if the OS is attacked.

1The term “virtualization” and “virtual machine” have been used in several contexts. A language’s virtual
machine is dedicated to processing the language like Java Virtual Machine (JVM) [207]. Recently, “virtual-
ization” may also refer a container technology (lightweight virtualization), which utilize Operating System
functionalities for process isolation, such as Docker [174]. In this thesis, the term virtualization refers to
Operating System virtualization [117] unless explicitly noted.

11

1.1.2 Example Use Cases of Virtualization

The functions realized by hypervisors range from verifying the integrity of the kernel to system

maintenance functions. Here, we briefly introduce several use cases.

Operating System Monitoring: A hypervisor has a higher privilege level than a virtual

machine and can observe the virtual machine’s behavior. [10] proposed virtual machine intro-

spection (VMI), which analyzes the behavior of applications, such as malware from outside the

OS, by referring to the memory in the VM from the hypervisor. Some malware may change

its behavior when it detects that it is being monitored. VMI reduces the possibility of being

detected by the monitored target by monitoring from outside the OS. As related works, there

are also hypervisor-based forensics [42, 121, 125], intrusion detection [46], and kernel integrity

verification [25].

I/O Enhancement: The hypervisor is capable of intercepting the I/O of the VM. I/O

functions can be added transparently by modifying the whole or part of the I/O processing

using this property. Some of the exmaples include applying VPN transparently [35], back-

ground storage encryption [57, 58], malware detection [59] and rootkit detection [40] through

disk IO monitoring, and non-volatile memory write protection [119]. The parapass-through

architecture [35] reduces overall virtualization overhead by only virtualizing certain I/Os and

letting pass through others.

Maintenance: Virtualization is also used for machine maintenance. To reduce downtime

during machine maintenance, Microvisor [13] uses virtualization to launch the maintenance

OS while keeping running a OS. BMCast [94] proposes a method of transparently caching the

results of network boot to local disks to speed up the provisioning of bare-metal clouds. [89]

uses a dedeicated thin hypervisor to achieve migration in bare-metal clouds.

1.1.3 Overhead of Virtualization

As stated above, there are many use cases achieved by virtualization. However, the intro-

duction of a hypervisor inevitably imposes an operational overhead on the hypervisor. The

operational overhead of virtualization depends on how much the system is virtualized. In this

thesis, we call this concept the degree of virtualization. Figure 1.1 shows the overview of the

degree of virtualization. First, a bare-metal machine without virtualization has the lowest

degree of virtualization. On the other hand, a conventional general-purpose hypervisor, which

is designed to run multiple virtual machines, has a high degree of virtualization. The higher

the degree of virtualization, the more functions can be added by virtualization, but this also

increases the overhead. When adding function with virtualization, it does not necessarily re-

quire the rich functionality of a general-purpose hypervisor. Several studies have attempted

to achieve bare-metal like performance by limiting the virtualization functions. For example,

some studies have used the parapass-through architecture [35], which virtualizes only a portion

12

General Hypervisor

HW

VMM

OS

Parapass-through

HW

VMM

OS

Bare-metal

HW

OS

Figure 1.1: The Degree of the Virtualization

of the devices, to reduce the virtualization overhead.

Figure 1.2 shows the performance overhead comparison between a general-purpose hypervi-

sor (KVM [21]) and a parapass-through hypervisor (BitVisor [35]) in SPEC2017 benchmark2.

That experiment was performed using an Intel Core i7-4790K processor with hyper-threading

disabled and 16 GB memory. We created a single VM and allocated the same number of

CPU cores and amount of memory as the host machine to the VM. In this experiment, we

are not running any programs other than the virtual machine, so ideally, the performance on

the VM will be equivalent to that of bare metal. Here, with KVM, seven out of 19 workloads

showed greater than 10% execution time overhead compared to the baremetal, and the maxi-

mum overhead was 21%. On the other hand, as for BitVisor, only two workloads demonstrate

greater than 10% overhead, and most workloads have less than 5% overhead.

There are several reasons that a KVM has a higher overhead. One of the main reasons

is the overhead of memory virtualization. The hypervisor manages the memory used by the

VM, and the VM manages the memory used by itself. Therefore, memory management is

performed by both the hypervisor and the VM.

The same dual management also exists for CPUs. This dual management causes several

problems known as double scheduling problems. One of the typical double scheduling problems

is the lock holder preemption problem. If a vCPU running a thread that holds a lock is

preempted, other vCPUs that are waiting for the lock will wait until the vCPU with the

lock is scheduled again. In addition, cache utilization efficiency decreases when vCPUs are

scheduled on various CPUs.

Another factor that contributed to overhead was interrupts including periodic timer. When

an interrupt occurs while executing a VM, a context switch happens, and the hypervisor’s

interrupt handler is executed. Then, the hypervisor will return a VM. When returning a VM,

2The experiment result is excerpt from [138] (© 2018 IEEE). The author conducted the experiment.

13

6
4
4
.n

a
b
_s

6
2
1
.w

rf
_s

6
2
5
.x

2
6
4
_s

6
0
3
.b

w
a
v
e
s_

s

6
4
8
.e

x
ch

a
n
g
e
2
_s

6
3
8
.i
m

a
g
ic

k_
s

6
4
9
.f

o
to

n
ik

3
d
_s

6
4
1
.l
e
e
la

_s
6
5
4
.r

o
m

s_
s

6
2
8
.p

o
p
2
_s

6
1
9
.l
b
m

_s

6
0
0
.p

e
rl

b
e
n
ch

_s
6
0
2
.g

cc
_s

6
0
5
.m

cf
_s

6
0
7
.c

a
ct

u
B

S
S
N

_s

6
3
1
.d

e
e
p
sj

e
n
g
_s

6
2
0
.o

m
n
e
ta

p
p
_s

6
5
7
.x

z_
s

6
2
3
.x

a
la

n
cb

m
k_

s0.8

0.9

1.0

1.1

1.2

1.3

1.4

n
o
rm

a
liz

e
d
 o

v
e
rh

e
a
d

288

454
611

422 291 339 313 398 392 809 2967
745

1398 1625
986

1597
1131

1026 2126

SPEC CPU2017

bitvisor

kvm

Figure 1.2: Comparison between a general purpose hypervisor (KVM) and a parapass-through
hypervisor (BitVisor) in SPEC CPU2017 (CPU and memory intensive workloads).
The baseline is a baremetal machine. The numbers above bars are baseline run-
times (sec). The lower is better. (© 2018 IEEE)

14

it may insert interrupts into the VM as needed. The context switch between the VM and the

hypervisor will degrade the performance. This becomes especially a problem when using a

high-performance device such as NIC whose bandwidth is more than 10Gbps, and recent fast

storage devices like NVMe.

A parapss-through hypervisor (BitVisor) solves these problems by adopting the strategy

of supporting only one VM and making most operations pass through. This removes most

memory operations and CPU scheduling on the hypervisor side. Most interrupts are also

directly delivered into a VM without context switches. As a result, the overhead of BitVisor

is smaller than that of KVM.

1.2 Research Objectives and Overview

It is important to reduce the overhead for applying virtualization to real systems. Figure 1.2

shows that a virtual machine performance can be greatly improved by removing unnecessary

functions and optimizing virtualization for functional requirements. In this thesis, we study

optimizing virtualization for functional requirements from the following perspectives.

1. Optimizing Virtualization for Adding Functionality to a Hypervisor: Adding

functionality using virtualization can also be applied to a hypervisor itself. By running a

hypervisor on top of a hypervisor, the lower hypervisor can modify some of the processing of

the upper hypervisor. However, current CPUs do not natively support running a hypervisor

on top of a hypervisor. Nested virtualization [37] solves this problem by having the hypervisor

emulate some parts of the CPU virtualization instructions. However, normal nested virtual-

ization includes the functions of supporting multiple hypervisors and therefore is known for

its overhead. On the other hand, for some applications, only one hypervisor needs to be sup-

ported. What kind of optimization can be done when we consider nested virtualization, where

only one hypervisor support is required?

2. Virtualization for IOMMU Protection: IOMMU is a device that manages to DMA

(Direct Memory Access) address transformation. IOMMU can limit the area that devices can

DMA. Originally, IOMMU was used to pass through devices safely to virtual machines. It has

also been used to protect OS from malicious devices in recent years. On the other hand, with

the evolution of devices in recent years, methods for verifying OS consistency and forensics

using external devices have emerged. However, if the IOMMU is enabled in the environment,

an attacker may use IOMMU to disable the device’s functionality. This attack can be defended

against by virtualizing the IOMMU in the hypervisor (vIOMMU), but regular vIOMMU is

slow because it virtualizes the entire IOMMU functionality. What optimizations could be

made by specializing in IOMMU protection?

3. Efficient Virtualization on NUMA machine: NUMA (Non-Uniform Memory Ac-

15

cess) is a memory topology where the CPU and memory are divided into pairs called nodes,

and the speed of memory access from the CPU on one node differs from that on other nodes.

The host’s NUMA configuration is hidden to the guest virtual machine in a normal virtu-

alization environment. As a result, it is difficult to extract NUMA performance from the

guest. The solution to this problem is to show NUMA to the guest. This is known as a

virtual NUMA (vNUMA) or a NUMA-visible virtual machine. Although several studies have

reported the usefulness of vNUMA performance, few reports have evaluated vNUMA on a

variety of workloads. Is an existing hypervisor able to extract NUMA-like performance with

vNUMA?

4. Improving Hypervisor Flexibility while Keeping Safety and Performance:

Updating hypervisor functions usually require pausing virtual machines running on it. Suppose

some of the hypervisor’s functions were performed using a dynamic language virtual machine.

In that case, the processing of the hypervisor can be changed by modifying the script executed

by that language virtual machine. However, what kind of configuration is necessary to safely

and efficiently execute the processing by the language processor in the hypervisor?

To answer these questions, we conducted the following research.

1.2.1 Chapter 3. Nested Virtualization for Hypervisor Device Driver

Testing

We apply a device driver testing method using fault injection by a hypervisor to the hyper-

visor’s own device drivers inspection. Focusing on the fact that the security features required

by normal virtualization are unnecessary for testing purposes, we improve the performance by

removing them.

1.2.2 Chapter 4. IOMMU Virtualization for Device Protection

We presents efficient IOMMU virtualization method dedicated for device protection. It achieves

higher performance than conventional IOMMU virtualization by only virtualizing necessary

parts of IOMMU for device protection and passing through others.

1.2.3 Chapter 5. Investigating and Improving Scheduling Performance

of NUMA-visible Virtual Machines

We evaluated the scheduling performance of a NUMA-visible virtual machine on Linux using

various benchmarks. We found several problems that cause severe performance degradation

due to a paravirtualization function which is desirable for non-NUMA-visible VMs. We pro-

pose the fix and show the effectiveness of the proposed method.

16

1.2.4 Chapter 6. Improving Hypervisor’s Flexibility with Safe and

Lightweight Language VM

We propose a method to improve the flexibility of hypervisors without compromising perfor-

mance by using a secure and lightweight language virtual machine. An an example of the use

of the language virtual machine, we present DDOS prevention scheme using virtualization.

1.3 Contributions

The main contributions of this thesis are as follows.

1. We propose several methods to optimize virtualization for three use cases: (1) Nested

virtualization for hypervisor device drivers testing, (2) IOMMU virtualization for device

protection, and (3) NUMA-visibale virtualization.

2. We propose using a safe and lightweight language virtual machine in a hypervisor to

improve flexibility while keeping the performance. An an example of the use of the

language virtual machine, we present DDOS prevention scheme using virtualization.

3. We implement the proposed methods and perform detailed experiments and show the

usefulness of the proposed methods.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. First, chapter 2 summarizes the related

works to this thesis. Chapter 3 shows how we optimize nested virtualization for hypervisor

device drivers testing. Chapter 4 presents efficient IOMMU virtualization method dedicated

for device protection. In chapter 5, we evaluate the scheduling performance of NUMA-visible

virtual machines on Linux and presents the several fixes for performance improvements. Chap-

ter 6 propose a method to improve the flexibility of hypervisors without compromising per-

formance by using secure and lightweight language processing systems. Finally, Chapter 7

concludes the thesis.

17

2 Related Works

This chapter presents the prior works related to this thesis. First we present optimization

methods used in virtualization to improve performance. We also present the double scheduling

problems, which is one of the main performance problems in virtualized environments, and its

mitigation methods.

2.1 Optimizing Virtualization Performance

2.1.1 Paravirtualization

Paravirtualization optimizes virtualization processing by having a hypervisor and virtual ma-

chines work together. Originally, paravirtualization was used to realize virtualization where

CPUs provide no hardware-assisted virtualization technology [9]. In such an environment,

paravirtualization was essential to trap sensitive instructions executed by virtual machines.

Today, most CPUs support hardware-assisted virtualization technology (e.g., Intel VT-x and

AMD-v). Therefore, it is possible to run a virtual machine without paravirtualization. How-

ever, paravirtualization is still important for performance optimization. For example, vir-

tio [30] is a one of the most known paravirtualized method, which provides a simplified device

interface for a virtual device. KVM also has several paravirtualization features [208] and these

features can used with hardware-assisted virtualization. We discuss the details of KVM’s

paravirtualization features in subsection 5.2.4.

The disadvantage of paravirtualization is that it requires modification of the guest.

2.1.2 Device Pass-through

Device pass-through [12] is a method of assigning a physical devices to a virtual machine

without virtualizing it. Compared to virtual devices, device pass-through let a single virtual

machine to occupy a specific device, but on the other hand, the virtual machine can directly

manipulate the device in the same way as bare-metal. Device pass-through is useful for

maximizing device performance within a virtual machine. However, the hypervisor cannot

modify the I/O if the guest passes through a device.

18

2.1.2.1 Partition-based Hypervisor

Some hypervisors statically partition hardware resources and allocate them to a virtual ma-

chine. Such hypervisors include the jailhouse [217] and ACRN [145]. In this case, it can be

seen that the entire hardware used by the virtual machine is pass-through. In such a hypervi-

sor, the virtual machine runs directly on the non-virtualized hardware and achieve the same

performance as bare metal. Such a hypervisor is suitable for high-performance computing and

for running applications that require real-time performance.

2.1.3 Parapass-through

Device pass-through can bring out the performance, but if all the functions are passed through,

it is impossible to manipulate the virtual machine’s device operations in a hypervisor. To cope

with the problem, BitVisor [35] proposes parapass-through architecture. In parapass-through

architecture, most of the operations are pass-through, but some crucial parts are virtualized.

One of the main examples of parapass-through is descriptor shadowing. Descriptor shad-

owing only shadows descriptors used by devices. This allows the hypervisor to manipulate

device data while the device’s control plane is pass-through to the guest.

The parapass-through architecture has been used in several studies, including the applica-

tion of transparent VPN [35], background storage encryption [57, 58], malware detection [59]

and rootkit detectiojn [40] through disk IO monitoring, and non-volatile memory write pro-

tection [119]. Also, [140] proposed “device masquerade” that reduces the effort of creating

device drivers on the OS side by showing a physical device as a virtio device [30] to the OS

by appropriately converting OS I/O access.

2.1.4 On-demand Virtualization

In some cases, if the functionality provided by virtualization is only needed temporarily, then

on-demand virtualization can reduce the virtualization overhead during normal operations.

For example, Microvisor [13] uses on-demand virtualization to launch the maintenance OS

while keeping running a OS to reduce downtime during machine maintenance. After the

maintenance is completed, Microviser devirtualize the machine, thus reducing the overhead

during normal operation. BMCast [94] proposes a method of transparently caching the results

of network boot to local disks to speed up the provisioning of bare-metal clouds. In BMCast,

disk I/O is captured by the hypervisor at boot time and the untransferred data is retrieved

remotely, while data that is already local is accessed directly. After the OS is started, the

overhead of the operation is removed by devirtualization. [122] extends [89], which achieve

migration in bare-metal clouds, and uses on-demand virtualization during migration to com-

pletely eliminate overhead during normal operation.

19

On-demand virtualization cannot be used for security applications that require constant

monitoring and protection by the hypervisor.

2.2 Double Scheduling Problem

In the virtualization environment, there are two intrinsic schedules; the hypervisor performs

vCPU scheduling, and the guest performs its thread scheduling. This double scheduling causes

several performance problems.

One of the most famous is the lock holder preemption (LHP) problem, which occurs when

a vCPU holding a spinlock is preempted [16, 27]. Other vCPUs that want to acquire the lock

need to wait until the preempted vCPU is rescheduled and releases the lock. The lock waiter

preemption (LWP) problem occurs when the very next waiter for the lock is preempted [16].

The blocked-waiter wakeup (BWW) problem happens when the cost of the waking blocking

primitives is high, which is common in the virtualization environment, since sending IPIs

introduces several VMEXITs [80]. Preemption during the interrupt or RCU context also

causes performance delay or increases in the memory footprint, since the other threads need

to wait to complete these contexts [124, 134]. Even if vCPU is not preempted when the guest

is in the critical section, vCPU scheduling essentially cause I/O delays since vCPUs may not

be scheduled when interrupts occur [76]. These problems lead to performance degradation,

especially when the CPUs are heavily oversubscribed.

2.2.1 Mitigating Double Scheduling Problems

Co-scheduling tries to avoid synchronization delays between vCPUs by scheduling vCPUs

of the same VM simultaneously [36, 51, 74]. However, co-scheduling may introduce other

problems, including CPU fragmentation or priority inversion. Several studies try to increase

the I/O performance in a virtualization environment by prioritizing I/O event [53, 68, 69],

using shortend time slices [76, 113, 130], performing active vCPU-aware scheduling [133],

reserving CPU time for I/O task [126], or offloading the I/O processing to the hypervisor [80,

81, 129].

Paravirtualization (PV) is a well-known approach to reduce the semantic gap. PV spinlock

avoids unnecessary spin by cooperating with the hypervisor [71, 104, 127, 213]. PV TLB shoot-

down reduces the latency of the TLB shootdown by delaying injection of IPIs to non-active

vCPUs [61] or utilize special HW instructions to flush the guest TLB [109, 135]. eCS [134] uses

the shared memory region to share the scheduler information of the guest and the hypervisor

and avoid preemption if the guest is in the critical section. eCS needs to manually annotate

the critical section in the guest kernel.

20

2.2.2 Dedicated CPU Resource Assignment

The double scheduling problem can essentially be solved by allocating a dedicated CPU to a

virtual machine, replicating hardware configuration of the host, and avoiding overcommitment.

Song et al. [72] first proposed the idea of the vCPU ballooning (VCPU-BAL), which

dynamically adjusts the number of vCPU according to the available pCPU. By exclusively

assigning the CPU to one vCPU, we can eliminate the vCPU scheduling in the hypervisor,

thus double scheduling problem can be avoided. Understandably, light-weight vCPU tuning

mechanism is important to achieve maximum performance. VCPU-BAL is later implemented

on QEMU/KVM and Linux using Linux’s CPU hotplug/unplug mechanism [92].

Even in the virtualization environment, Linux’s CPU hotplug/unplug takes around sev-

eral tens of milliseconds [102], which is longer than both the normal scheduling time slice

(1000 HZ = 1 ms or 250 HZ = 4 ms) and the boot time of the light-weight VMs (several

milliseconds) [123]. One reason is CPU hotplug/unplug require several global oprations which

need to acuire spinlocks.

There are several studies to shorten the CPU hotplug/unplug time. Chameleon [60] use

proxy processor, which perform tasks instead of the offline CPU to enable rapid reconfigu-

ration. Bolt [96] refactor the CPU hotplug/unplug design and reduce the latency by only

performing a critical task preferentially and deferring other tasks.

vScale [102] proposed a lightweight vCPU freezing mechanism for the vCPU ballooning.

vScale carefully investigates the characteristics of user and kernel threads and shows that

by migrating the migratable threads and suppressing IPIs and interrupts by utilizing the

paravirtualized interface, effectively a vCPU become offline within several microseconds.

2.2.3 Virtual NUMA (vNUMA)

On a NUMA machine, a virtual machine whose host NUMA configuration is reproduced is

calld vNUMA (Virtual NUMA). It also called NUMA-visible virtual machine. In most cases,

when creating vNUMA, resources are exclusively assigned to a VM and therefore the VM

can avoid double scheduling A number of studies have shown the performance benefits of

vNUMA [48, 55, 79, 110, 143, 155].

One of the weaknesses of vNUMA is that it cannot handle dynamic changes in NUMA

configuration. Such changes can occur owing to overcommitment, VM consolidation, and

migration, among other issues. XPV [143] proposed a mechanism that supports dynamic

changes in NUMA configuration, and virtflex [155] put forward an OpenMP infrastructure

that supports such alterations.

21

2.3 Summary

We presented several studies that improves virtualization performance. Basically, performance

can be improved by omitting the some parts of virtualization processes. However, which

processes can be omitted depends on security and functional requirements. In the following

chapters, we present specific optimization methods for virtualization through several use cases.

We also presented the double scheduling problem and its mitigation methods. We present the

detailed perform evaluation of vNUMA in chapter 5.

22

3 Nested Virtualization for Hypervisor

Device Drivers Testing

In this chapter†, we study how nested virtualization can be optimized for hypervisor device

driver inspection. We apply a device driver testing method using fault injection by a hypervisor

to the hypervisor’s own device driver inspection. Focusing on the fact that the security

features required by normal virtualization are unnecessary for testing purposes, we improve

the performance by removing them.

3.1 Introduction

In cloud environments, typically, tens of thousands of servers are operated in a cloud and they

run hypervisors on them. Since the number of servers is very large, the probability of hardware

failures at one of the servers is not so low, even if individual servers are reliable. As an example,

Baidu reported that they encountered more than 300,000 hardware failures in their data center

in the past four years [128]. BackBlaze, a cloud storage service company, operated 116,833

hard disk drives (HDD) from 2013 to 2017 and reported that a failure occurred in 6,795 HDDs,

which was only a little less than 5% of them [193]. Therefore, it is crucial for hypervisors to

tolerate hardware failures to improve the reliability of the cloud. If hypervisors do not handle

hardware failures properly, the hypervisors could unexpectedly crash and all virtual machines

(VMs) running on it would also crash immediately. In that sense, the reliability of hypervisors

is more important than normal operating systems (OS).

Hardware failures are caused by various factors [29]. In addition to permanent failures due

to wear, aging, and deterioration, temporal failures due to electromagnetic interference or

overheating could also occur. Unfortunately, device drivers of OSs and hypervisors often do

not assume such failures and make a wrong assumption that hardware devices always work

as defined in the specifications [32, 112]. For example, Listing 3.1 shows a code fragment of

device drivers that makes such a wrong assumption. This code fragment performs a busy-wait

loop until the most significant bit of the status register becomes 0. If this bit does not become

†This chapter is based on [137] (© 2018 IEEE. Reprinted, with permission) and [159, 161] (the authors hold
the copyright).

23

1 while(ioread(STATUS_REGISTER) & 0x8000);

Listing 3.1: Example code that does not assume hardware failures.

0 due to a hardware failure, the device driver will hang up. Such code actually exists in Linux

device drivers [32, 112]. Since a hardware failure is a rare event, it is not easy to test device

drivers against such failures.

We aim at providing a testing platform for cloud vendors to test device drivers of the closed-

source hypervisors, which they are going to use for their cloud, against hardware failures that

could occur in the real hardware the vendors have before they are in operation. To this end,

the testing platform must not require source code, must be able to test against real hardware,

and must be able to be applied to hypervisors.

In order to efficiently test device drivers, several methods have been proposed. One repre-

sentative is static code analysis that examines the source code to detect inappropriate error

handling without actually executing it [19, 23, 26, 32, 33, 44]. However, it requires driver’s

source code and cannot be applied to closed-source systems. Another is symbolic execution

that detects the condition in which the device driver becomes an illegal state [41, 54, 62, 67].

However, since symbolic execution performs verification in a fully-virtualized environment, it

cannot test device drivers against real hardware. Software fault injection (SFI) inserts pseudo

faults to the target code to inspect whether device drivers handle the faults appropriately [20,

22, 49, 63, 75, 88, 101, 112, 196, 200]. Although SFI can test the driver code in a real

environment, most SFI still need to modify source code.

FaultVisor [112] takes a unique approach to perform SFI without requiring source code. It

virtualizes a part of device registers of real hardware and injects pseudo faults at the hypervisor

layer when device drivers access the registers. By doing this, FaultVisor can test real closed-

source device drivers against hardware failures. FaultVisor virtualizes only the target device

registers and access to all other hardware is pass-through, allowing device drivers to be tested

in a real environment. Additionally, FaultVisor is OS independent. Unfortunately, FaultVisor

cannot be used for testing hypervisor device drivers as it is because it cannot run a hypervisor

on it. Since hypervisors (Type I virtual machine monitors) have their own device drivers and

do not have a host OS, testing device drivers separately with their host OS is not possible.

This section proposes FaultVisor2, a small hypervisor for testing hypervisor device drivers

against hardware failures that exploits SFI and nested virtualization. To test closed-source

hypervisors and device drivers, we inject faults to the value returned from real hardware de-

vices by intercepting access to the hardware from the target hypervisor with the FaultVisor2

hypervisor. To test in a real hardware environment, we allow the target hypervisor to ac-

24

cess hardware in the pass-through manner and only intercept access to the target part of the

devices. To run the target hypervisor on FaultVisor2, we exploit the concept of nested virtual-

ization [37]. To reduce nested virtualization overhead and make our test environment close to

real, we omit some of nested virtualization functions, including nested paging virtualization,

and incorporate minimal functions that are necessary to inject faults.

We evaluated FaultVisor2 by testing two closed-source production hypervisors: the VMWare

ESXi hypervisor [228] and the vThrii hypervisor [180]. As a result of evaluation, we detected

three kinds of errors caused by improper error handling concerning the storage device driver

in the VMWare ESXi hypervisor. Moreover, based on the evaluation result of the overhead,

we confirmed that FaultVisor2 can test device drivers in close to a real environment.

The contribution of this research is as follows.

• We proposed a framework to test error handling of hypervisor device drivers against real

hardware failures by performing fault injection to hypervisor device drivers with nested

virtualization.

• We show the design and implementation of the framework.

• We evaluated our framework by testing existing production hypervisors and found several

errors which led to critical system failures.

3.2 Device Driver Testing Methods

Device drivers are written primarily by third-party developers and known to be less reliable

than the other part of the kernel. In addition, error checking of device drivers is difficult

due to their characteristics that they communicate with both the kernel and devices with

complicated interfaces. Therefore, various studies have been conducted for efficient inspection

of device drivers. The target of inspection ranges from the error handling against hardware

failures to the use of appropriate interfaces and confirmation of resource release. The purpose

of inspection differs depending on methods.

3.2.1 Static Code Analysis

Static code analysis analyzes the source code of device drivers. Several works proposed to use

theorem proving or model checking to ensure that device drivers follow the specifications [19,

23, 26, 33, 44]. Carburizer [32] analyzes the source code of Linux device drivers and finds

errors that implicitly assume that the devices never fail. In addition, it can automatically

correct a part of the errors. However, static code analysis cannot be applied to closed-source

device drivers and does not execute the driver code in real environments.

25

3.2.2 Symbolic Execution

Symbolic execution is a method of comprehensively searching paths that a program can exe-

cute. Several works proposed to use symbolic execution for inspecting device drivers without

using corresponding hardware devices [41, 54, 62, 67]. DDT [41] uses selective symbolic execu-

tion to detect resource leaks, race condition, null pointer reference, and so on. SymDrive [62]

combines static code analysis and symbolic execution to make symbolic execution more effi-

cient. Symbolic execution has high code coverage. However, since it takes time to search for

executable paths, programmer effort is necessary for an efficient path search. Also, since the

examination is performed in a virtual environment, various behaviors including side effects in

the real environment cannot be accurately reproduced. For example, it is difficult to detect

errors that are caused by subtle timing problems such as that related to interrupts and DMA.

3.2.3 Software Fault Injection

SFI verifies the operation of software by inserting pseudo faults. Several works used SFI for

device driver testing [20, 22, 49, 63, 75, 88, 101, 112, 196, 200]. In these methods, a fault is

inserted mainly to the return values of a function, and the behavior of the device driver is

observed. EH-Test [101] automatically generates test cases primarily for detecting resource

leaks in the error handling code of device drivers. However, EH-Test does not test against

hardware failures. In addition, the code tested is slightly different from the original one,

leaving the possibility that errors that occur in a real environment do not reproduce.

FaultVisor [112] uses SFI to test device drivers against hardware failures. FaultVisor uses

a small hypervisor to intercept access to a part of device registers from the device driver and

inject a pseudo fault into the value returned from the target device. Therefore, it can be

used for closed-source device drivers and OSs. FaultVisor allows pass-through access to other

part of hardware, allowing the device driver and OS to run in a real hardware environment.

Unfortunately, since FaultVisor relies on hardware-assisted virtualization functions (such as

Intel VT-x and AMD SVM) and does not virtualize them, it cannot be applied to hypervisors

that also require hardware-assisted virtualization functions and embed their own device drivers

in them without using host OSs. In this thesis, we extend FaultVisor so that it can be applied

to such hypervisors.

3.3 Design

We extend FaultVisor so that it can be used for verifying the fault tolerance of Type I hyper-

visors against hardware failures. In this section, we first describe the overview of FaultVisor

and then describe the extensions in FaultVisor2.

26

/

 /

/ /

 //

/

Figure 3.1: Overview of FaultVisor

3.3.1 Overview of FaultVisor

Figure 3.1 shows the overview of FaultVisor. The OS with the device driver to be inspected

is run on FaultVisor as a guest. When the device driver tries to read values from device

registers, FaultVisor intercepts it and performs fault injection by returning values different

from the original ones. FaultVisor can intercept programmable I/O and memory-mapped I/O

(MMIO) accesses. Faultvisor does not support intercepting fault to a DMA area.

To control the overall testing, a controller program that runs at the userland of the OS is

used. First, the controller determines the target device and the fault injection mode (described

below). The controller directs the fault injection configuration to the FaultVisor hypervisor

by an API call. FaultVisor then starts fault injection in accordance with the configuration.

After that, the controller executes the pre-defined applications that use the device, and load

/ unload the device driver. If the kernel crashes (due to, e.g., an unintentional kernel panic)

or hangs up (e.g., there is no response for a fixed time) at this time, it is judged that there is

a problem in the device driver error handling code.

FaultVisor has two modes to perform fault injection. One is “fixed,” which always returns

a predefined value, and the other is “xormask,” which applies the xor mask operation to the

value read from the device with a predefined mask value. During the inspection, the controller

determines the register number to be fault-injected and whether to use “fixed” or “xormask”

for modification. The test pattern (the mask value) to be used in injection is programmable

27

by the controller, thus the inspection becomes flexible.

To assist deciding the registers to be fault-injected, FaultVisor has a mode called “monitor

mode.” When FaultVisor is operated in this mode, fault injection is not performed but

the registers read by the device driver is recorded. By using this mode, it is possible to

investigate the device registers that is used in the workload without analyzing the source

code or device specification. To reduce virtualization overhead, FaultVisor uses the parapass-

through hypervisor [35]; it intercepts only a part of register access and allow pass-through

access to other hardware. Using the parapass-through hypervisor allows the inspection in the

situation close to the real environment.

3.3.2 Proposed Method

We propose FaultVisor2, an extended version of FaultVisor that can be used to test hypervisor

device drivers. Figure 3.2 shows the overview of the proposed framework. In this research,

we denote the FaultVisor2 hypervisor as L0, the hypervisor to be tested as L1, and the OS

operating on L1 as L2.

In this framework, we run the L1 hypervisor on the L0 hypervisor using nested virtualiza-

tion [37]. By using nested virtualization, L1 access to hardware can be intercepted by L0. As

shown in Figure 3.2, the L2 application accesses the virtual device provided by L1. The L1

hypervisor then uses its device driver to control the corresponding real hardware device. The

L0 hypervisor intercepts the access to the real device from L1 and performs fault injection.

The controller of FaultVisor2 operates on the L2 OS. The controller selects and executes

an appropriate L2 application so that fault injection is performed on the actual device to be

inspected. The reason why we do not run the controller on the L1 directly is because many

hypervisors do not support running an application on L1 itself. In addition, running workloads

on L2 allows reproducing device usages close to the real environment. Some hypervisors

support dynamic device driver loading and unloading via L1 management tools. In this case,

it is possible to verify the device driver in that part by using the tools, although this process

needs a hypervisor-dependent implementation to access the management tools.

3.3.3 Advantages of Proposed Method

Since this method does not depend on the hypervisor to be tested, it is easy to apply our

method to various hypervisors. By operating the controller on L2, inspection can be performed

on closed-source hypervisors. Furthermore, using the monitor mode allows the inspection

without source code or device register information.

28

D D

 C A

C A 0

C : C :

F D A

C D
D D1

2

/C

:
A

/C

2A

/ A AA

Figure 3.2: Proposed Method

3.4 Implementation

We implemented FaultVisor2 by adding nested virtualization support to FaultVisor and con-

structed an inspection system for nested environments. FaultVisor is based on BitVisor [35],

which supports Intel and AMD CPUs. In our current implementation, FaultVisor2 supports

only Intel CPUs.

3.4.1 Fault Injection by Nested Virtualization

Intel VT-x does not fully support native nested virtualization. To realize nested virtualiza-

tion, L0 needs to trap the VMX instructions (virtualization instructions) executed by L1 and

perform appropriate emulation [37].

Intel VT-x has two modes to operate virtualization. One is the VMX root mode and the

other is the VMX non-root mode. The former is used for the host and the latter is used for

guests. Intel VT-x manages host and guest states with a data structure called VMCS. The

29

0 1 A

0 1 A

F0 -2 AC0 1

A
A

0

- A

E A
A

Figure 3.3: Fault Injection Process

information used during the execution of the guest OS, such as CPU registers, is stored in the

guest state field of the VMCS, and information of the host hypervisor is stored in the VMCS

host state field.

To switch to the VMX non-root mode, the hypervisor first sets the VMCS appropriately

and then issues the VMLAUNCH or VMRESUME instruction. When the guest OS executes

a pre-determined instruction in the VMX non-root mode, an VMEXIT event occurs and the

mode is switched to the VMX root mode. The instructions that cause VMEXIT is defined in

the VMCS. Extended page table (EPT) is used to convert the guest physical address to the

host physical address. In the nested virtualization, L0 runs in the VMX root mode, and L1

and L2 run in the VMX non-root mode. We need to set the VMCS appropriately to switch

between L1 to L2.

Figure 3.3 shows a typical fault injection process. At the first state, L2 is running and the

VMCS guest state is for L2.

1. When an L2 application accesses a virtual device via a device driver, a VMEXIT event

occurs since the VMCS is appropriately configured to cause VMEXIT. At this time, the

control is transferred to L0, not to L1. To pass the control to L1, L0 switches the VMCS

for L2 to the VMCS for L1, and issues the VMENTRY instruction to enter L1.

2. L1 processes the virtual device and eventually accesses the target real device. This

causes an VMEXIT event due to the EPT violation, since EPT access permissions are

configured to cause EPT violation when registers to be inspected are accessed. Then,

the control is passed to L0.

3. L0 accesses the device register instead of L1. If the access operation is read and the

register is a target of fault injection, L0 modifies the read value in accordance with the

predefined settings and returns it to L1.

30

4. L1 processes the value of the register and finally tries to enter to L2. Since it is impossible

for L1 to directly switch to L2, the control is first passed to L0 and then L0 changes the

VMCS to enter L2.

This is a very simplified form of nested virtualization. Since FaultVisor2 runs only a single

hypervisor on it, it can omit virtual CPU scheduling. Therefore, FaultVisor2 needs to manage

only two VMCSs (one is for L1 and the other is for L2), and switch them in response to the

VMEXIT events.

3.4.2 Controller

The controller is implemented as an application running on L2. Communication from the

controller to the FaultVisor2 hypervisor is performed by using the VMCALL instruction,

which explicitly transfers control from the VMX non-root mode to the root mode. When

VMCALL is executed at L2, VMEXIT occurs and the control is passed to L0. Arguments can

be passed via registers. In short, VMCALL is used by the guest OS to send some messages

to the hypervisor.

A typical implementation of nested virtualization always transfers the control to L1 if the L2

issues VMCALL. To get a control message from L2, L0 intercepts the VMCALL and handle it,

then return to L2 without transitioning to L1. However, intercepting all VMCALL messages

from L2 will cause a problem since most L1 hypervisors also need to receive messages from L2

via VMCALL. It is not easy for L0 to determine whether the VMCALL is for L1 or L0, since

we need to examine the state of the L2 when VMCALL occurs. In our current implementation,

L0 only intercepts VMCALLs whose arguments contain a predefined magic value.

3.4.3 EPT Pass-through

In our implementation, L0 directly uses the EPT that L1 configured; we do not perform

EPT shadowing (nested paging virtualization). This is possible because we run only a single

guest hypervisor on FaultVisor2, and do not virtualize most of hardware and allow the OS

pass-through access to hardware. Therefore, the physical address of L1 is identical to the

physical address of L0, and there is no need for address translation. This approach reduces

the overhead of nested virtualization.

EPT pass-through has the following restrictions.

1. L1 can create an EPT mapping with which L2 can access the L0 memory region.

2. L1 can create a device pass-through setting to allow L2 direct access to a physical device.

3. L0 cannot run multiple hypervisors.

31

However, these restrictions are not a problem for testing hypervisor device drivers for the

following reasons. Regarding 1), L0 manipulates the memory map returned by BIOS so that

the memory area used by L0 becomes a reserved area. As a result, L1 will not try to use the

memory area. Furthermore, L0 configures EPT so that L1 cannot access memory regions that

L0 uses. In theory, it is possible for L1 to create an EPT that allows L2 to access the L0’s

region if L1 intentionally tries to do that. However, we assume that L1 is not malicious and

will not intentionally destroy L0.

Regarding 2), if L1 creates an EPT in which no EPT violation occurs when accessing device

registers, VMEXIT events never occur and L0 cannot capture the access from L2 to the device.

However, in device pass-through settings, no hypervisor device driver is used, and therefore,

there is nothing to check for L0. If we need to check the device driver of L2, we can use

FaultVisor (not FaultVisor2).

Regarding 3), since our purpose is to check the device drivers of a hypervisor, we do not

need to do it.

3.5 Evaluation

In this section, we first present the results of the hypervisor device driver testing. We then

present the results of the performance evaluation. We tested device drivers of the VMWare

ESXi [228] and the vThrii Seamless Provisioning (vThrii) [180], both of which are closed-source

production hypervisors.

3.5.1 VMWare ESXi

VMWare ESXi is a Type I hypervisor and widely used in cloud environments.

3.5.1.1 Setup

Table 3.1 shows hardware and software setup in this experiment. Table 3.2 shows the physical

devices we tested. We created a single VM on the target hypervisor and allocated all of the

available host memory and CPU cores to the VM. To test drivers, we assign a virtual device

to the VM which internally uses a target physical device.

3.5.1.2 Experiment Procedure

Experiments were performed through the following procedure. Details of the workload exe-

cuted are described in the next section.

1. Run workloads under the monitor mode and record register access. The recorded regis-

ters become the test targets.

32

Table 3.1: Setup of VMWare ESXi

Name Information

Motherboard ASRock Z170 Extreme4
CPU Intel Core i7-6700 (hyper-threading disabled)
RAM DDR4 2133MHz 8GB × 2
Guest OS Ubuntu 18.04 (Linux 4.15.0-23)
Hypervisor VMWare ESXi 6.5.0 (VMKernel Build 5310538)

Table 3.2: Target Device of VMWARE ESXi

Device Driver Version

Intel 82574L ne1000 0.8.0-11
Intel X540-T2 ixgbe 4.4.1
Fusion IO IoDrive2 iomemory-vsl 3.2.15
LSI MegaRAID lsi mr3 6.910.18.00

2. Perform steps 3) to 6) three times for the fixed mode and the xormask mode for each

target register to be fault injected until bugs are found.

3. Choose one target register. Determine the injection parameter with random number and

call FaultVisor2 to start the fault injection.

4. Execute the workload.

5. After executing the workloads, stop the fault injection by calling FaultVisor2.

6. If an error is detected, reboot the machine and start inspection from the next target

register.

3.5.1.3 Workload

For the workload of network devices, we ran a ping command to a machine connected via a

hub. For the workload of storage devices, we ran fio [189]. fio measures the reads and writes

performance of the target storage device.

VMWare ESXi supports dynamic device driver loading. Therefore, we also executed the

driver load and unload workload. For this workload, we first logged into the ESXi host from

the guest OS, and then ran the vmkload mod command. We separately executed a ping or fio

workload and a driver load and unload workload.

3.5.1.4 Result

Table 3.3 shows the test result. “Used” indicates the number of registers read by the driver

during the monitor mode. Note that it does not include the number of registers written by the

33

Table 3.3: The Test Result of ESXi

Drivers Workload Used Tested Error Test Time

ne1000 ping 3 3 0 9m
ixgbe ping 231 231 0 1h08m
ixgbe driver 1077 564 0 5h17m
iomemory-vsl fio 5 5 1 14m
iomemory-vsl driver 77 77 8 2h57m
lsi mr3 fio 4 4 0 12m

Table 3.4: Detected Errors in iomemory-vsl

Error type
Number of registers

fio driver load / unload

TIMEOUT 0 4
No heartbeat 1 3
VMKernel Exception 0 1

driver. “Tested” is the number of registers to which we performed the fault injection. Mainly,

we performed fault injection to each of the detected registers. As of the ixgbe driver, we

found that the driver accessed large contiguous register regions (DMA registers and multicast

table arrays) when initializing the device. To shorten the inspection time, we excluded these

registers from the test. “Error” indicates the number of registers which caused a failure during

the test. “Test Time” indicates the total test time including machine reboots due to a failure.

We did not perform the driver load and unload workload for ne1000 and lsi mr3 since we

found that once we unloaded the drivers, VMWare ESXi failed to load the driver unless the

machine was rebooted.

We confirmed three types of errors in iomemory-vsl. Table 3.4 shows the error types and

the number of registers which caused that error. Note that the register that caused the no

heartbeat error was the same in the fio and the driver load / unload workload. The detailed

status of each error type is provided below.

TIMEOUT The device driver loading process did not finish after a certain period of time.

When the process is forcibly terminated, the device driver cannot recognize the target

device. The state of the device driver still remains in use, and it can not be unloaded.

This type of error can be caused by a coding error such as shown in Listing 3.1

No heartbeat A VMware ESXi kernel panic occurred because a virtual CPU did not respond

for a certain period of time.

VMKernel Exception An exception in the VMWare ESXi kernel occurred, which led to the

VMWare ESXi kernel panic. According to the error message, a DE exception (possibly

34

Table 3.5: Setup of vThrii

Name Information

PC Macbook Pro 13-inch Late 2017
Guest OS macOS High Sieera 10.13.4
Hypervisor vThrii-P 1.5.3

Divide-by-zero Exception) occurred. This type of error can be caused by using a device

register value without verification.

When no heartbeat or VMKernel Exception occurs, the stack trace can be acquired. Since

the iofusion-vsl driver is a closed source, we could not identify the detailed cause at this time.

However, such information can be useful for locating the problem for driver developers.

3.5.2 vThrii

vThrii is a special type of hypervisor for OS provisioning. When booting, vThrii at first only

fetches the minimum disk data from a provisioning server that is enough to start booting the

OS. After the OS booted, vThrii fetches the remaining data in the background. If the OS

accesses an unfetched region, vThrii traps the access and transparently fetches the data from

the server. This enables a fast OS startup compared to fetching all the disk data in advance

while eventually all OS data are fetched and can be accessed without network access. vThrii

allows pass-through access to hardware devices except for network devices. vThrii itself is

based on BitVisor [35] and is a product version of BMcast [95].

3.5.2.1 Setup

Table 3.5 shows the setup in this experiment. We tested two device drivers of vThrii: “bnx”

for Broadcom BCM57762 which is in a Thunderbolt-to-Gigabit Ethernet adapter and “nvme”

for Apple NVMe SSD which is the built-in SSD in MacBook Pro.

3.5.2.2 Workload

We used ping and fio in the same way as the ESXi testing. vThrii does not support dynamic

device driver loading. Hence, to test device initialization codes, we also performed fault

injection when booting the machine. We boot FaultVisor2 from the UEFI shell and pass the

injection parameters as UEFI shell arguments. FaultVisor2 performed the injection from its

startup. In this experiment, we performed fault injection per target register with the fixed

and xormask mode for one each. We restarted the machine for each test.

35

Table 3.6: The Test Result of vThrii

Drivers Workload Used Tested Errors Test Time

bnx ping 0 - - -
bnx boot 36 36 11 1h55m
nvme fio 0 - - -
nvme boot 12 12 5 34m

3.5.2.3 Result

Table 3.6 shows the test result. We found that both bnx and nvme drivers only write to

device registers during the benchmark workload (ping and netperf). Therefore, no injection

is performed as of these workloads.

During the injection when booting, we observed that several fault injection patterns led to

vThrii panic. According to the log messages of vThrii, the panics can be classified into three

types. One is an initialization error (occurred during a very early stage of booting and any log

messages were not outputted), another is a connection lost error (occurred three times during

injection to bnx), and the other errors (occurred during booting with no panic message logs).

Since a hardware error can be temporal, retrying device accesses instead of causing a sudden

panic would improve the reliability of vThrii. In addition, checking the register values and

reporting error messages if it finds an fault would help diagnose problems.

3.5.3 Performance Evaluation

To measure the overhead of FaultVisor2, we performed three kinds of benchmarks on ESXi,

ESXi on KVM [21] and ESXi on FaultVisor2. We used the same hardware and software shown

in the Table 3.1. We used Ubuntu 16.04 (Linux 4.13.0-45) for the KVM host OS and used the

pass-through configuration using VFIO [197] when running ESXi on KVM. KVM allocated

all of the available host memory and CPU cores to the ESXi and the ESXi had a single VM

which had all available ESXi’s resources.

3.5.3.1 SPEC CPU2017

SPEC CPU2017 [220] is a benchmark package containing memory and CPU intensive work-

loads. Figure 3.4 shows the execution time overhead of the SPEC CPU2017 (intspeed, fp-

speed). The reported values are the median values among the three measurements. We

excluded the 627.cam4 s and 657.xz s workloads since we have a compilation problem not

related to virtualization.

As shown in Figure 3.4, 17 out of 19 workloads on the ESXi on KVM had greater execution

time overhead than ESXi on Faultvisor2, and 13 workloads had more than 10% overhead

36

6
0
0
.p

e
rl

b
e
n
ch

_s

6
0
2
.g

cc
_s

6
0
5
.m

cf
_s

6
2
0
.o

m
n
e
ta

p
p
_s

6
2
3
.x

a
la

n
cb

m
k_

s

6
2
5
.x

2
6
4
_s

6
3
1
.d

e
e
p
sj

e
n
g
_s

6
4
1
.l
e
e
la

_s

6
4
8
.e

x
ch

a
n
g
e
2
_s

6
0
3
.b

w
a
v
e
s_

s

6
0
7
.c

a
ct

u
B

S
S
N

_s

6
1
9
.l
b
m

_s

6
2
1
.w

rf
_s

6
2
8
.p

o
p
2
_s

6
3
8
.i
m

a
g
ic

k_
s

6
4
4
.n

a
b
_s

6
4
9
.f

o
to

n
ik

3
d
_s

6
5
4
.r

o
m

s_
s

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
n
o
rm

a
liz

e
d
 o

v
e
rh

e
a
d

325

456

650

448
333 394

394

516
509

2559

622
1028 1155

907

1880

982 737 1619

SPEC CPU2017
ESXi on Faultvisor2

ESXi on KVM

Figure 3.4: SPEC2017 benchmark result. The baseline is ESXi. The numbers on the bars are
baseline runtimes (sec). The lower is better.

compared to the baseline. The maximum overhead of ESXi on Faultvisor2 was only 1.035

(628.pop2 s).

3.5.3.2 Network

We connected two machines via a switch and measured network throughput and latency. The

device used was Intel 82574L. To measure throughput, we used netperf TCP STREAM test

with various MTUs. The machine running hypervisor ran the netperf server. Throughput was

measured five times and the mean values were reported. We measured the latency 30 times

using a ping command.

Figure 3.5 shows the results. In the figure, “ESXi on FaultVisor2” means that FaultVisor2

did not perform any fault injection. “ESXi on FaultVisor2*” performed xor injection to a

certain register with 0 value (therefore the register value was not altered). ESXi on KVM had

some throughput degradation whereas ESXi on FaultVisor2 (with or without injection) had

no decline. The latency of the ESXi on KVM was almost six times longer than ESXi. On

37

Table 3.7: VMEXIT Counts

spec ping fio

ESXi on KVM 9,682,183 115,452 49,163,515
(EPT Violation) 872,930 7,070 7,913,130
(VMREAD) 1,486,707 11,295 10,149,187
(VMWRITE) 72 0 0

ESXi on FaultVisor2 10,939,984 82,654 43,617,261
(EPT Violation) 18,873 281 9,577
(VMREAD) 6,570,637 47,273 26,467,241
(VMWRITE) 2,928,982 20,653 12,386,678

the other hand, the latency of ESXi on FaultVisor2 was only about 30 µs longer than ESXi.

Comparing ESXi on Faultvisor2 with ESXi on FaultVisor2*, we can see that performing fault

injection did not affect the latency.

3.5.3.3 Storage

We measured the random read-write completion latency and IOPS (input/output per second)

of a virtual disk on an ioDrive using fio. We set the block size at 4KB, iodepth at 16, a number

of jobs at 4, read ratio at 40%, and file size at 1 GB. Figure 3.6 shows the result. As shown in

the figure, we observed some performance degradation when using nested virtualization. At

90 percentile of read latency, ESXi on FaultVisor2 had 514 µs longer latency than the baseline

and had almost half the IOPS. Performing fault injection slightly affected the performance.

However, FaultVisor2 had much lower overhead compared to ESXi on KVM.

3.5.3.4 VMEXIT counts

To investigate the factor of the performance degradation, we measured the number of VMEXIT

from both L1 and L2 during workloads. Workloads are (1) SPEC (600.perlbench s), (2) ping

to an connected machine and (3) fio with filesize 256MB. Table 3.7 shows the result. As shown

in the table, KVM had a large number of EPT violation compared to FaultVisor2. We also

found that FaultVisor2 had many VMREAD/VMWRITE exits. These exists can be reduced

using VMCS shadowing technology, which currently FaultVisor2 does not utilize.

3.6 Discussion

3.6.1 Detected errors

The main purpose of FaultVisor2 is to detect device driver coding errors such as that shown

in the Listing 3.1. However, we found that errors detected by FaultVisor2 do not necessarily

38

1 2 4 8 16 32 64 128
256

512
1024

2048
4096

8192

MTU

0

200

400

600

800

1000
T
h
ro

u
g
h
p
u
t

[M
b
p
s]

Netperf throughput

ESXi

ESXi on KVM

ESXi on FaultVisor2

ESXi on FualtVisor2*

ESXi ESXi on
KVM

ESXi on
FaultVisor2

ESXi on
FualtVisor2*

0

500

1000

1500

2000

La
te

n
cy

 [
u
s]

168

999

210 203

Ping latency

Figure 3.5: netperf throughput (upper) and ping latency (lower).

39

10 20 30 40 50 60 70 80 90
0

2000

4000

6000

8000

10000

12000

14000

La
te

n
cy

 [
u
se

c]

READ completion latency

ESXi
ESXi on KVM
ESXi on FaultVisor2
ESXi on FualtVisor2*

ESXi ESXi on
KVM

ESXi on
FaultVisor2

ESXi on
FualtVisor2*

0

500

1000

1500

2000

2500

3000

IO
P
S

2469

196

1234 1177

READ mean IOPS

10 20 30 40 50 60 70 80 90
Percentile

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

La
te

n
cy

 [
u
se

c]

WRITE completion latency

ESXi ESXi on
KVM

ESXi on
FaultVisor2

ESXi on
FualtVisor2*

0

500

1000

1500

2000

IO
P
S

1651

131

825 787

WRITE mean IOPS

Figure 3.6: fio benchmark. Left: percentile plots read/write completion latency (lower is bet-
ter). Right: mean read/write IOPS with standard deviation (higher is better).

40

indicate a coding error directly. For example, error handling code may have a bug that leads

to a system crash. In vThrii, the device driver seems to check device register values, but the

error handling is not enough in some cases. In this sense, our method can detect errors that

cannot be found by static code analysis that only checks if the error handling is performed.

3.6.2 DMA support

Currently, FaultVisor2 does not support injecting faults to a DMA area. However, inspection

in the DMA is crucial. For example, NICs (network interface cards) manage the location of

packets in the queue through descriptors that are read and written by DMA. In such devices,

the device driver uses the information of the DMAed values for processing. Therefore, failure

to check for errors in DMAed values can cause serious problems. In addition, DMA attacks

from malicious devices have become a problem in recent years [146, 156], which makes error

handling of device input values by device drivers increasingly important.

We can extend FaultVisor to support inspection of the DMA area in the following ways.

Figure 3.7 shows the overview of the proposed method.

Device

Device Driver

BAR MMIO

Memory

Hypervisor Fault Injection

DMA
Base Address

①

②
③

Figure 3.7: Fault Injection to the DMA Region

First, the DMA region that will be used by the device to be inspected is first identified

using device-specific driver code (1○). Then, the hypervisor applies memory access protection

to the DMA area using the nested paging and detects memory reads from the device driver

(2○). When the hypervisor detects a memory read from the device driver, it performs fault

injection by returning a random value other than the actual value to check if the device driver

correctly handles errors in the DMA area (3○). The details of each step are described below.

41

3.6.2.1 Identifying the DMA region

The address of the DMA area used by a device does not exist in the PCI configuration space and

is device-dependent. The proposed method solves this problem by creating a device-specific

driver code that specifies the DMA area used by the device based on the device specifications.

The address of the DMA area used by the device is stored in a specific MMIO register. The

driver code obtains the address of the DMA area by referring to this register.

Specifically, if the device has already been initialized at the start of the fault injection, the

hypervisor reads the register. If the device has not yet been initialized at the start of the fault

injection (e.g., when the device driver is loaded during the fault injection), the hypervisor uses

nested paging to capture the register access and obtains the value when the OS stores it. In

addition, the driver code decides which parts of the DMA area to fault-inject (i.e., data that

the device driver does not use is excluded from the injection), which leads to more efficient

device driver testing.

3.6.2.2 Detecting accesses to the DMA area of a device driver

The hypervisor uses nested paging to detect access to the DMA area of a device driver. It

applies access protection to the area identified by the driver code. If the device driver accesses

the area, control is transferred to the hypervisor. Note that nested paging does not respond

to memory access by DMA from the device.

3.6.2.3 Inspection through fault injection

When the hypervisor traps a device driver access using the method described above, it performs

fault injection by returning a different value to the device driver if it tries to read the value.

The value returned as a fault injection can be a random value or a boundary value (0 or the

maximum value of the field). The actual flow of the test is as follows. First, we booted the

OS on the hypervisor of the proposed method. Then, we executed a specific workload and

performed fault injection to observe the behavior of the device driver. If a kernel panic or

hangup is observed, it is judged that the error handling of the device driver is inappropriate.

We also monitor kernel messages (“demsg” for Linux) and check if any error occur. We repeat

this process several times. If the OS clash, we reboot a machine and continue the inspection.

We implemented our prototype and found one bugs in Linux NVMe driver [161]. Applying

these DMA inspection method proposed to FaultVisor2 is one of the future works.

42

3.7 Summary

In this chapter, we proposed a hypervisor device driver testing framework that combines fault

injection and nested virtualization. Focusing on the fact that the security features required by

normal virtualization are unnecessary for testing purposes, we optimized nested virtualization

performance by removing them. In our experiment, we found three kinds of errors concerning

the storage device driver in the VMWare ESXi. We also found several errors in the vThrii

hypervisor’s device drivers. The performance experiments showed that the proposed method

had a much lower overhead than the traditional nested virtualization scheme and could test

the hypervisor device drivers in close to the real environment.

43

4 IOMMU Virtualization for Device

Protection

In this chapter, we presents how IOMMU virtualization can be optimized for device protection

purpose.

4.1 Introduction

While computers have become an indispensable part of our daily lives, the threat of cyber-

attacks has only increased. It is thus important to take countermeasures to protect against,

detect, and analyze the content of such attacks. Memory acquisition is one of the most valuable

techniques for detection and analysis in this regard. It is the process of storing the contents

of the main memory in another storage medium or transferring them to an analysis system.

By analyzing the contents, it is possible to verify the system’s integrity, detect malware, and

perform memory forensics.

Memory acquisition can be broadly divided into two types: software-based [42, 43, 52, 64,

86, 93, 99, 121, 125, 141, 144, 154, 160] and hardware-based [15, 56, 66, 70, 78, 105, 111,

132, 147]. In the past, it was mainly software-based. An example of software-based memory

acquisition is running memory acquisition software as a process or a kernel module on the

OS [64]. While such software-based methods have the advantage of being easy to use, they

also have a problem in that the memory acquisition function may be disabled by stopping the

process when an attacker is in control of the system.

As a way to increase the attack resistance of software-based methods, acquiring memory at

a higher privilege level than the OS has been proposed. A typical method is to use a VMM

(Virtual Machine Monitor) [42, 93, 121, 125, 144, 154, 160]. Some methods use x86 System

Management Mode (SMM) [181] or Trusted Execution Environments (TEEs) [115, 149] such

as ARM TrustZone [170] to run the memory acquisition mechanism in an environment that

operates at a higher privilege level than a VMM [43, 52, 86, 99, 141]. However, these methods

incur a significant overhead due to virtualization and/or sharing CPU time and, in the case

of the VMM method, the TCB is too large for an ordinary general-purpose VMM. Moreover,

the method using SMM requires rewriting BIOS/UEFI firmware, which is challenging to use

44

in general.

In addition to memory acquisition via software, there is also a memory acquisition method

that uses hardware [15, 56, 66, 70, 78, 105, 111, 132, 147, 150]. Among them, one promising

approach is using a coprocessor [15, 66, 105, 111, 147, 150]. The coprocessor operates inde-

pendently of the CPU and reads the memory contents using DMA (Direct Memory Access),

thus enabling high-speed memory acquisition. Furthermore, the coprocessor can be connected

to the PCIe bus and can be used transparently in existing systems. A typical disadvantage

of coprocessor-based memory acquisition is that it is more expensive and difficult to obtain

than other methods. However, recent FPGAs have made it easier to obtain coprocessors [98]

for memory acquisition. For example, the SCREAMER M.2 USB-C (R04) [216], which uses

the XC7A35T Xilinx 7 Series FPGA and can perform memory acquisition, is commercially

available for 249 Euros (at the time of writing.)

On the other hand, coprocessor-based memory acquisition methods still have several chal-

lenges. One is the possibility of an attacker disabling the DMA function of the coprocessor.

One example of such an attack involves the rewriting of the IOMMU (Input Output Memory

Management Unit) configuration. IOMMU is a mechanism that translates addresses used by

PCIe devices for DMA. IOMMU makes it possible to DMA non-contiguous regions and to

limit the range of DMA. The latter is used to minimize bugs in device drivers and protect

memory from malicious devices [146, 156, 171, 214]. IOMMU is also used to pass through a

device to to a virtual machine. Figure 4.1 shows example usage of IOMMU. IOMMUs thus im-

prove device flexibility and security; from the perspective of a memory acquisition coprocessor,

however, attackers can exploit this feature. In other words, if an attacker takes control of a

machine with an IOMMU, they can disable the DMA functionality of the memory acquisition

coprocessor by rewriting the IOMMU configuration.

One solution is to disable the IOMMU at the BIOS level, making it impossible for any

user to use it. However, from a security point of view, it is desirable to enable IOMMU as

described above. Previous studies using coprocessor-based memory acquisition [15, 66, 105,

111, 147, 150] either do not assume the existence of the IOMMU in the first place [15, 66] or

assume that the IOMMU is properly configured to work with the coprocessor [105, 147, 150]

or disabled [111].

In addition, coprocessor-based memory acquisition methods cannot do some of the things

that a VMM and SMM methods can do. One of the things that cannot be done with the

coprocessor-based method is acquiring register values that are useful for memory analysis.

Furthermore, since DMA operates asynchronously with the CPU, there is a possibility that

the guest may rewrite the memory contents during memory acquisition, therefore consistent

memory acquisition cannot be guaranteed. On top of that, event-based memory acquisi-

tion [56, 70] is not possible for a coprocessor alone. An attacker may take advantage of these

characteristics to hide their existence [24, 82, 100].

45

IO Virtual
Address

Physical
Address

mapped region

Memory

Device

IOMMU
IOTLB

(a) Intra-OS Protection

Main Memory

IOMMU
DeviceIOTLB

Guest Memory

Device

Host

Guest

Pass-through

(static mapping)

(b) Inter-OS Protection

Figure 4.1: Examples of IOMMU Usage. A device can DMA only in a mapped region. (a)
Intra-OS Protection. Protect from DMA attacks or buggy device drivers by lim-
iting DMA-able region. (b) Inter-OS Protection. Mainly used for device pass-
through. A device assigned to a guest can only DMA to guest memory region.
Note that to limit DMA-able region in a guest memory, vIOMMU is required.

46

In this study, we propose a software-based method to solve these problems of coprocessor-

based memory acquisition by cooperating with a VMM. The VMM performs shadowing of the

minimum necessary IOMMU configurations in the proposed method while letting the guest use

the IOMMU. The VMM also protects the memory space of the PCI configuration space so that

the coprocessor-based memory acquisition can work reliably even if the attacker gains control

of the OS. In addition, the VMM makes it possible to retrieve register values and enables

consistent memory acquisition by pausing the vCPUs. By cooperating with the VMM, it is

also possible to perform memory acquisition only when a specific event occurs such as memory

writing to a specific region. Using a VMM specializing in the above processing, the overall

TCB (Trusted Computing Base) and overhead is kept small, and the possibility of attacks on

the VMM is minimized.

The contributions of this research are as follows:

1. We organize and present the problems of coprocessor-based memory acquisition methods,

2. We propose a method for coprocessor-based memory acquisition to work reliably in the

IOMMU environment by cooperating with a VMM. The proposed method gives not only

enough protection from an attacker but also enables register acquisition, consistent and

event-based memory acquisition, and

3. We implement a prototype of the proposed method and conduct a detailed performance

evaluation.

4.2 Background

4.2.1 Memory Acquisition

Memory acquisition is an important technique used in, for example, software integrity veri-

fication [15, 43, 56, 70, 93, 105, 147], memory forensics [42, 52, 86, 125, 154], and malware

detection [99, 111, 141]. If the memory acquisition mechanism runs on the OS, the function

may be disabled by an attacker who has taken control of the OS. Therefore, to increase the

certainty of memory acquisition, research has been conducted on memory acquisition methods

from outside the OS[15, 42, 43, 52, 56, 66, 70, 78, 86, 93, 99, 105, 111, 121, 125, 132, 141, 144,

147, 154, 160].

Table 4.1 depicts a rough classification of such memory acquisition methods. The meaning

of the terms of each property in the table is as follows:

Tamper Resistance The memory acquisition method must continue to operate even if an

attacker gains control of OS. The vulnerability of the memory acquisition method itself

is not considered here.

47

Table 4.1: Memory Acquisition Methods from Outside the OS

Method↓ \ Property→ Tamper Resistance Consistency Performance Isolation Small TCB Availability Research

VMM 33333333333333333 33333333333333333 77777777777777777 77777777777777777† 33333333333333333 [42, 93, 121, 125, 144, 154, 160]
SMM 33333333333333333 33333333333333333 77777777777777777 33333333333333333 77777777777777777 [43, 52, 99, 141]
TEE (TrustZone) 33333333333333333 33333333333333333 77777777777777777 33333333333333333 33333333333333333 [86]
Coprocessor 77777777777777777 77777777777777777 33333333333333333 33333333333333333 33333333333333333 [15, 66, 105, 111, 147, 150]
Special HW 33333333333333333 33333333333333333 33333333333333333 33333333333333333 77777777777777777 [56, 70, 78, 132]
Coprocessor + VMM 33333333333333333 33333333333333333 33333333333333333 33333333333333333 33333333333333333 Shielded Copilot (Our Work)
† When using a general-purpose VMM.

Table 4.2: Related Works Using Coprocessor-based Memory Acquisition

Research↓ \ Property→ Tamper Register Value
Consistency

Event-based Accessible Region
Main Goal

Resistance Acquisition Acquisition OS VMM SMM

Copilot (2004) [15] 77777777777777777 77777777777777777 77777777777777777 77777777777777777 33333333333333333 33333333333333333 77777777777777777 Integrity Check
Balogh, et al. (2013) [66] 77777777777777777 77777777777777777 77777777777777777 77777777777777777 33333333333333333 77777777777777777 77777777777777777 Memory Acquisition
GRIM (2016) [105] 77777777777777777 77777777777777777 77777777777777777 77777777777777777 33333333333333333 33333333333333333 77777777777777777 Integrity Check
LO-PHI (2016) [111] 77777777777777777 77777777777777777 77777777777777777 77777777777777777 33333333333333333 33333333333333333 77777777777777777 Malware Analysis
Nighthawk† (2019) [147] 77777777777777777‡ 33333333333333333‡‡ 77777777777777777 77777777777777777 33333333333333333 33333333333333333 33333333333333333 Introspection
BMCLeech (2020) [150] 77777777777777777 77777777777777777 77777777777777777 77777777777777777 33333333333333333 33333333333333333 77777777777777777 Memory Acquisition
Shielded Copilot (Our Work) 33333333333333333 33333333333333333 33333333333333333 33333333333333333 33333333333333333 33333333333333333 77777777777777777 Memory Acquisition
† This uses Intel ME, not an external device. ‡ It is possible to check IOMMU integrity. ‡‡ By cooperating with SMM.

Consistency A property that prevents the CPU from rewriting a part of the memory during

memory acquisition.

Performance Isolation Memory acquisition is executed separately from the CPU.

Small TCB TCB is small.

Availability The availability of the method to the public.

One of the most common methods of acquiring memory from outside the OS involves using

a VMM [42, 93, 121, 125, 144, 154, 160]. Using a VMM makes it possible to keep the

memory acquisition function running even if an attacker has taken control of the OS. However,

traditional VMMs have significant overhead and TCB, making them a potential target of

attack.

The x86 CPU has a unique mode of operation called the System Management Mode

(SMM) [181]. SMM operates with higher privileges than a VMM, and all physical mem-

ory ranges can be accessed from it. Several studies use SMM for memory acquisition and

memory analytics [43, 52, 99, 141]. The advantage of the SMM over the VMM is that it is

more difficult to attack and the SMM can verify the code of the VMM. However, as with a

VMM, overhead is a problem because all CPUs stop running when switching on the SMM

mode. In addition, since the SMM code is contained in the BIOS/UEFI firmware, it must be

modified before it can be used, making it more difficult to work with for ordinary users.

Arm CPUs have a function to provide a TEE called a TrustZone [170]. The TrustZone also

operates with higher privileges than OS, so it can continue to operate even if control of the

OS is lost. TrustDump [86] utilizes TrustZone for memory acquisition. However, this method

has the same problem as the one using VMMs.

Some studies use special hardware for memory acquisition [56, 70, 78, 132]. Vigilare [56]

and KI-MON [70] achieves efficient memory acquisition using SoC to snoop bus traffics to

detect memory write events and perform memory acquisition at the time. Ziyi et al., [78]

uses programmable DRAM to perform kernel and VMM integrity checking transparently.

SnipSnap [132] proposes memory snapshot system based on on-package DRAM technologies.

These methods enable to acquire memory consistently and quickly, but these require special

hardware and are not generally available at present.

Another approach to memory acquisition involves using a coprocessor [15, 66, 105, 111, 147,

150]. Typically, coprocessors are connected as external hardware via PCIe. These methods

use DMA to acquire memory without involving the CPU. Therefore, they have the advantage

of being fast and system-transparent because their operation does not depend on the CPU.

Copilot [15] is a pioneer in memory acquisition by coprocessors, and it verifies the integrity

of the kernel at runtime. Balogh et al., [66] proposed a method of memory acquisition in

cooperation with NIC device drivers in the OS. LO-PHI [111] uses memory acquisition from

49

Root Complex

PCIe
Switch

IOMMU

PCIe
Endpoint

PCIe
Endpoint

Memory

(a)

(b)

Figure 4.2: Example of PCI Express Structure. IOMMU is in a Root Complex. Actual PCIe
structure can be more complex; e.g., Root Complex has several endpoints in it,
etc. Also it is possible to have multiple IOMMU and PCIe hierarchies. (a) DMA.
IOMMU converts address when accessing memory if necessary. (b) P2P DMA
without routing to Root Complex. In this case, address translation by IOMMU is
not performed.

a coprocessor to realize a malware analysis environment that is as close as possible to the

natural environment. GRIM [105] uses the GPU, and NightHawk [147] uses Intel ME for

memory acquisition. BMCLeech [150] proposes a method of memory acquisition from the

Baseboard Management Controller (BMC) used for server management.

However, a major problem with the coprocessor-based method is that the IOMMU may

disable the DMA function. In addition, since the coprocessor operates asynchronously with

the CPU, it is impossible to retrieve register values or acquire memory consistently, which is

possible with a VMM and SMM. This issue will be discussed in detail in section 4.5.

4.2.2 PCI Express (PCIe)

PCI Express (PCIe) is the most common interconnect for connecting peripherals in today’s

computers. A schematic diagram of PCIe is shown in Figure 4.2. PCIe has a Root Complex

(RC), which is connected to the CPU and memory. Devices (PCIe Endpoints) are connected

via PCIe switches.

In PCIe, data and messages are exchanged in units of packets called Transaction Layer

Packets (TLPs). The device sends a TLP of DMA requests for DMA, as shown in Figure 4.2

(a). The PCIe switch routes the packet to the RC. The RC retrieves the memory data by

DMA and sends back a response to the device. Also, as shown in Figure 4.2 (b), DMA can

be performed directly between devices without an RC if the devices support it. This is called

P2P DMA.

50

Each PCIe Switch or PCIe Endpoint has an area for a configuration called the PCI con-

figuration space. The PCI configuration space can be accessed via I/O instructions and also

from the MMIO area. For a device to perform DMA, the “Bus Master Enable” bit of the

command register in the PCI configuration space of the device and the PCIe switches through

which the TLP passes must be set to 1. Otherwise DMA will be aborted.

4.2.3 IOMMU

The IOMMU is a memory management unit in the PCIe RC that handles address translation

for DMA performed by devices. Using IOMMU, it is possible to translate the IO virtual

address used by the device to a specific physical address. This functionality is also known as

DMA remapping. There are several implementations of IOMMU, such as Intel VT-d [185],

AMD IOMMU [165] and ARM SMMU [169].

The IOMMU can be used to DMA to non-contiguous regions or prevent DMA to unexpected

ranges due to bugs in the device driver. IOMMU can also be used to limit the DMA range of

a device to that of the guest memory when passing through a device to a virtual machine.

The mapping settings of IOMMU are located in the memory. In addition, IOMMU can

set mapping for each PCI device. IOMMU also has several functionalities such as Interrupt

Remapping, which converts interrupt vector, and Posted Interrupts, which enables to post

interrupt to a VM without VMEXIT [165, 185]. These functionalities also important for secu-

rity. For example, interrupt remapping can block interrupts whose sender is not a legitimate

device [65, 85]. Although this research focuses on DMA remapping, disabling IOMMU means

that users cannot use not only DMA remapping but also these functionalities.

4.2.3.1 Address Translation Service (ATS)

ATS [34] provides a mechanism for devices to cache the results of IOMMU address translation.

A device that supports ATS notifies the OS of its support using the capability area of the PCI

configuration space. If the OS enables the ATS, the device can DMA using addresses without

IOMMU conversion. Specifically, the device can receive the result of address translation from

the IOMMU by sending a TLP with the Address Translation (AT) field set to 01 (Translation

Request TLP). If the device performs DMA using a TLP with 10 in the AT field (Translated

TLP) , the address is not translated by the IOMMU and is used as is. Note that a device

can send a Translated TLP without using a Translation Request. Therefore, the use of ATS

should be limited to trusted devices only. TLP with 00 in the AT field is a normal TLP and

11 is reserved.

51

4.2.3.2 Access Control Service (ACS)

ACS [18] is a mechanism to check TLPs sent by devices in RC and PCIe switches. ACS can

force P2P DMA to always go through an RC and block Translated TLPs using ATS. ACS is

essential for enforcing address translation by IOMMU.

4.3 Memory Acquisition in the Presence of IOMMU

Several works tried to acquire memory in the presence of IOMMU. IO-Trust [142] and Thun-

derClap [146] showed that because Linux unconditionally enables the PCIe ATS feature before

5.x, the device can bypass the IOMMU setting and access the memory by sending a Translated

TLP. However, this method is not reliable for memory acquisition because an attacker who

has taken control of the OS can block a Translated TLP by using ACS or disable ATS itself.

In addition, since Linux 5.x, the ATS of externally connected devices (“untrusted” devices) is

uniformly disabled [188], so memory acquisition using this method is no longer possible. This

method also cannot be used on Windows, macOS, and FreeBSD, as they do not support ATS

in the first place [146].

IOCHECK [87] proposes to use SMM to verify the integrity of the IOMMU configuration.

This can be used to detect if an attacker rewrites the IOMMU configuration; after the rewrite,

however, memory acquisition may not be possible. Also, there is a possibility of transient

attacks. In addition, it is difficult to use in general because it needs to modify SMM.

Morgan et al., [139] proposes an attack method that bypasses the IOMMU settings set by

the OS by rewriting the IOMMU settings by DMA during the short time between the creation

of the IOMMU page table in the memory and setting the base address of the page table in the

MMIO register. In principle, this method can be used to overwrite the IOMMU page table

if an attacker tries to do so. However, this method assumes that the OS always places the

IOMMU configuration at the same physical address, which is challenging to use in practice.

4.4 Assumption and Threat Model

The assumptions and threat models used in this study are described below.

4.4.1 Assumption

This study assumes that memory acquisition is performed on a machine (the monitored ma-

chine) using a coprocessor. The memory analysis is performed on the coprocessor or a different

machine (the analytics machine) than the monitored machine. The target machine uses PCIe,

52

the most standard interconnects, and the coprocessor is connected via PCIe. The target ma-

chine has several peripherals such as NICs and SSDs. The coprocessor has a function to read

memory via DMA. The coprocessor also has an out-of-band communication channel for com-

munication with the analytics machine and can send the acquired memory to the analytics

machine, receive messages from the analytics machine, and perform processing accordingly.

The target machine has an IOMMU with ACS, and the OS can freely configure IOMMU.

Each device including IOMMU is assumed to work correctly according to the specification,

and hardware bugs or misconfigurations (such as [24, 100]) are not assumed to exist. At sys-

tem boot time, we assume that the proposed method is correctly executed by using Trusted

Boot.

4.4.2 Threat Model

An attacker may gain control of the monitored OS via the network and carry out arbitrary

memory rewriting or code execution on the OS. An attacker also may gain a control of a device

other than the memory acquisition coprocessor and execute DMA to arbitrary memory region.

We do not assume attacks on a VMM or SMM, which have a higher privilege level than the OS.

As discussed in section 4.6, the VMM we use in this research is a lightweight VMM specializing

in extending the functionality of memory acquisition devices, thus its attack surface is small

and may possibly be formally verified [157, 158, 162]. As for the SMM, the attack surface

can be sufficiently reduced via existing methods, as discussed in subsection 4.9.1. We trust

boot process, and attacks during the system boot time before the proposed system runs are

out of the scope of this research. Physical attacks by attackers, DoS attacks, and side-channel

attacks are out of the scope of this research as well.

4.5 Problems with Coprocessor-based Memory Acquisition

Methods

In this chapter, we summarize the main problems with memory acquisition methods using

coprocessors:

1. An attacker could disable the DMA function of the memory acquisition coprocessor,

2. CPU register values cannot be acquired,

3. Consistent memory acquisition is not guaranteed, and

4. Event-based memory acquisition is not possible.

The details of each are described below.

53

4.5.1 Problem: Disabling the DMA Function of a Coprocessor

The DMA function of a coprocessor may be disabled within the scope of OS authority by

modifying the IOMMU or PCI settings. The IOMMU page table exists in the memory and

the IOMMU itself has MMIO registers. To prohibit DMA to the memory acquisition copro-

cessor, an attacker can simply disable IOMMU or delete the entry for the memory acquisition

coprocessor in the IOMMU page table. Even worse, by rewriting the IOMMU page table of

the memory acquisition coprocessor, the memory acquired by the coprocessor can be set to

desired values to hide an existence of an attacker.

In order to use DMA, the Bus Master feature of the device and the PCIe switch through

which the device’s TLP passes must be enabled. An attacker can also stop the DMA of a mem-

ory acquisition coprocessor by disabling the Bus Master function from the PCI configuration

space.

The problem described here can be avoided by disabling the IOMMU at the BIOS level at

system startup. However, in that case, IOMMU will not be available to legitimate system

users. IOMMU is essential for device pass-through when using virtualization and is also used

to protect against buggy device drivers. In addition, DMA attacks on devices have become a

widespread problem in recent years [146, 156, 171, 214], and it is desirable to enable IOMMU

for security reasons. An existing countermeasure is to disguise the device information reported

by the memory acquisition device via the PCI configuration space to hide its existence. This

is not a perfect solution, however. Also, it is possible to check IOMMU page tables integrity

from a coprocessor by reading page table entries via DMA. However, such page table entry

is not reliable due to the reason described above, and there is also a possibility of a transient

attack.

4.5.2 Problem: Register Values Cannot Be Acquired

The memory acquisition device alone can acquire data in the memory, but it cannot acquire

the register values of the CPU. Some register values are helpful for analysis. For example, it

is possible to know which physical address is being used by referring to the page table, but

the base address of the page table is stored in the CR3 register.

Existing studies use information from the OS or static analysis of memory to estimate the

location of page tables. However, the former method is unreliable because the attacker may

have take control of the system. The latter method is also unreliable since an attacker can

change page table structures to hide their presence [82].

54

4.5.3 Problem: Consistent Memory Acquisition Cannot Be Performed

Memory acquisition devices are fast because they acquire memory contents via DMA without

using the CPU; on the other hand, memory contents may be rewritten by the CPU or DMA

of other devices during memory acquisition. It is known that DMA can be estimated by mea-

suring the bus bandwidth using performance counters [73]. An attacker may take advantage

of this, and it is possible that they attempt to conceal their presence when they detect DMA.

4.5.4 Problem: Event-Based Memory Acquisition Cannot Be Performed

The memory acquisition method using a coprocessor is classified as a method that periodically

acquires and processes the memory contents (the snapshot-based method). Vigilare [56] and

KI-MON [70] proposed an event-based monitoring method that monitors signals flowing in

the memory bus and invokes processing in a callback when a non-specified value is written to

a memory area registered in advance. The advantage of this event-based method is that the

memory can be acquired at the time when the data is modified by the attacker, significantly

reducing the possibility of the intrusion being hidden using transient attacks. In addition, the

number of DMAs can be kept to a minimum, resulting in minimum memory bandwidth.

GRIM [105] showed that even a snapshot-based method using a coprocessor could achieve

the same detection performance as an event-based method if the memory is acquired at short

intervals. Therefore, the snapshot-based method may not be inferior to the event-based

method in terms of security, though the event-based method still has an advantage in terms

of memory bandwidth. Since [56, 70] uses special hardware to monitor the bus contents, the

coprocessor alone cannot perform this function.

4.5.5 Summary

Table 4.2 provides a summary of the research on coprocessor-based memory methods. Except

for Nighthawk [147], existing methods that use coprocessor-based memory acquisition have all

the same problems as described here. Nighthawk uses Intel ME [229], a special coprocessor

embedded in the Intel chipset with higher privileges than the SMM, to verify the integrity of

the IOMMU configuration and fetch register values in cooperation with the SMM. However,

using Intel ME requires rewriting the firmware like SMM-based methods, which is difficult in

general. In addition, even Nighthawk does not provide complete IOMMU protection, which

can lead to problems such as DMA being stopped by the OS during DMA execution.

55

Table 4.3: Comparison of CPU States which are higher than OS

Capability↓ \ CPU State→ VMM SMM Intel ME†

Higher Priviledge than OS 33333333333333333 33333333333333333 33333333333333333

Get OS’s Register Values 33333333333333333 33333333333333333 77777777777777777

Stop OS Temporary 33333333333333333 33333333333333333 77777777777777777

Trap-and-Emulate 33333333333333333 77777777777777777 77777777777777777

Availability 33333333333333333 77777777777777777‡ 77777777777777777‡

† Technically Intel ME is an coprocessor. ‡ Require firmware modifications.

4.6 Proposed Method

This research aims to solve the problems of existing coprocessor-based memory acquisition

methods in a software manner. The four problems of coprocessor-based memory acquisition

described in section 4.5, i.e., 1) the coprocessor cannot protect its IOMMU settings; 2) DMA

cannot access CPU registers; 3) The coprocessor cannot stop CPU activity; and (4) The

coprocessor cannot detect CPU events, are due to hardware limitations.

In order to deal with these problems, cooperation with the CPU side is essential. Therefore,

in this research we solve these problems by cooperatively using a VMM with the coprocessor.

The reason for using a VMM is that a VMM is the most flexible and easy to use among the

CPU states that operate with higher privileges than the OS, as shown in Table 4.3. Namely, a

VMM can get OS’s register values, stop OS temporarily, and detects OS’s event by trap-and-

emulate. Also, a VMM does not require firmware modification and can be used transparently

to OS. Traditional VMM is known for its large TCB and overhead. To use the method in

practice, the TCB and overhead of the method needs to be as small as possible. We solve this

problem by focusing the VMM on a specific purpose and narrowing down its functions.

4.6.1 Overview

Figure 4.3 shows the overview of the proposed method, which we call Shielded Copilot. In the

proposed method, a memory acquisition coprocessor and a VMM work together. The VMM

is responsible for protecting the IOMMU configuration and the PCI configuration space. In

addition, the VMM pauses the OS vCPU and detects OS memory write events in response to

requests from the coprocessor (or the analytics machine). The details of each of these functions

are described below.

4.6.2 Guaranteed Operation of Memory Acquisition Coprocessor

We use IOMMU shadowings to guarantee operation of memory acquisition coprocessor. IOMMU

shadowings ensure that a memory acquisition coprocessor always works irrespective of the

56

Coprocessor

OS

IOMMU Analytics
Machine

❌

Memory

VMM

Memory Acquisition Target Machine

① ②

: Software TCB
③

Figure 4.3: Proposed Method: Shielded Copilot. Gray parts are Software TCBs. The VMM
does several tasks that a coprocessor cannot do alone. 1○ VMM protects several
memory regions to prevent attacks against the VMM and a coprocessor. 2○ VMM
can detect several OS’s events and notify them to a coprocessor and the analytics
machine. 3○ VMM communicates with a coprocessor and the analytics machine
using ouf-of-band communication channel. The analytics machine send a request
to the coprosessor or the VMM such as memory acquisition, register value acqui-
sition, temporal vCPUs suspension, and OS’s event detection. The VMM or the
coprocessor response the request.

IOMMU settings that OS creates. Figure 4.4 shows an overview of the IOMMU shadowings.

First, when the OS does not use IOMMU, the IOMMU setting created on the VMM side is

used to ensure that the memory acquisition coprocessor always operates. Also, DMA to the

VMM area of devices other than the memory acquisition coprocessor is prohibited.

When the OS sets up the IOMMU, the VMM will shadow the IOMMU configuration as in

Figure 4.4. In this case, we must create a configuration where the memory acquisition copro-

cessor can access all memory no matter how OS configures IOMMU. The IOMMU settings

for devices other than the memory acquisition coprocessor are the same as those set by the

guest. However, if there are any mappings in the IOMMU page table created by the guest

that allow access to the VMM area, we must delete those mappings so that devices other than

the memory acquisition coprocessor cannot access the VMM. IOMMU shadowing is performed

every time when the OS invalidates IOTLB entries.

Some IOMMU has a pass-through mode [165, 185]. If a pass-through mode is enabled for a

device, IOMMU does not perform any address translation for the device. If OS tries to set a

device pass-through in IOMMU, VMM creates an identity mapping in shadow IOMMU page

tables except for the VMM memory region. This prevents IOMMU pass-through devices from

57

Memory

IOMMU あ

Other Devices

❌

Shadowing

Memory Acquisition
Coprocessor

Allow access
to all region

Prohibit access
to VMM region

IOMMU
Settings

(VMM managed)

IOMMU
Settings

(OS managed)

Figure 4.4: IOMMU Shadowing. This ensures that 1) memory acquisition coprocessor always
can DMA, and 2) other devices cannot DMA to VMM regions. Not like traditional
vIOMMU, the VMM only shadows necessary IOMMU settings and lets other part
pass-through to the OS. Users can use other IOMMU functionalities freely.

attacking the VMM.

4.6.3 Protecting the PCI Configuration Space

The PCI configuration space can be accessed by PIO or MMIO. For PIO, configure a VM so

that issuing I/O instructions cause VMEXIT. For MMIO, use nested paging to cause VMEXIT

when accessing the PCI configuration space. The VMM prohibits the modification of the set-

tings of the memory acquisition coprocessor and PCIe bus so that DMA from the coprocessor

always work. The VMM also protects from PIO and MMIO overlapping attacks [65, 85].

When OS enumerates PCI devices, the VMM hides the coprocessor from the OS by con-

cealing PCI information. This reduces the probability of an attacker detecting that a memory

acquisition coprocessor is running when the OS is hijacked.

4.6.4 Register Value Acquisition

The VMM holds the register values of the OS. When acquiring registers, the analytics machine

first sends a message to the VMM through the coprocessor. The message is written to a

queue in the VMM by DMA, and an interrupt notifies of the arrival of the message. The

VMM receives the interrupt and reads the message from the queue. If the message content

is a register value request, the register value is returned to the coprocessor as a message

response. The coprocessor returns the received message to the analytics machine and, finally,

the analytics machine obtains the register value.

58

4.6.5 Consistent Memory Acquisition

When performing an consistent memory acquisition, the VMM suspends the vCPU of the OS.

In this case, as in register value acquisition, the analytics machine first sends a message to the

VMM, ordering it to stop the vCPU. When the VMM receives the message, it sends an IPI to

all vCPUs to force VMEXIT and temporarily stop the vCPU. Then the VMM returns a reply

to the coprocessor. By performing memory acquisition while the vCPU is stopped, memory

can be acquired consistently. When the analytics machine finishes acquiring memory, it sends

a message to the VMM to restart the vCPU. The VMM receives the message and restarts the

OS vCPU.

Limitation The VMM can stop the vCPUs, but there is a possibility that DMA by devices

other than the memory acquisition coprocessor will rewrite the memory contents. Note that

this problem is not only for the proposed method, but also exist other VMM or SMM -based

approach. DMA can be stopped by using IOMMU or ACS, but it is difficult to restart the

DMA properly in such cases. If DMA should not write the data for the area to be monitored,

one possible way is deleting IOMMU table entries that point to the region when shadow

IOMMU tables. Also it may be possible to use the DMA Protected Region (the detail is

described in section 4.7), which is available for VT-d and prohibit any DMA to that region,

to protect the area from DMA.

4.6.6 Event-Based Memory Acquisition

Since the proposed method uses a VMM, it can detect any event that can be trapped by the

VMM and perform memory acquisition on it. For example, the VMM can use nested paging

to see if a value other than the pre-specified value is written to a specific memory area and

if so stop vCPUs and start memory acquisition. This significantly reduces the possibility of

transient attacks.

4.6.7 Challenges

In this section, we describe the challenges in implementing the proposed method and how to

overcome them.

4.6.7.1 Dealing with the Increased TCB and Operational Overhead Associated with

the Use of VMM

The disadvantage of using a VMM for memory acquisition is the increase in TCB and overhead

due to virtualization. When using a general-purpose VMM such as KVM or Xen, the TCB can

reach millions of lines, which increases the possibility of attacks on the VMM itself. Therefore,

in our method, we use a parapass-through VMM [35] instead of a general-purpose VMM. The

59

parapass-through VMM supports only one guest OS and passes through most of the devices

but traps some devices and memory accesses to perform necessary operations. In this way, the

parapass-through VMM can achieve a TCB several hundred times smaller than a conventional

general-purpose VMM by limiting its functions. The pass-through nature of the VMM also

reduces the overhead of the operation. From the standpoint of the VMM, the proposed method

can be regarded as offloading the primary function of memory acquisition from the VMM to

the hardware side.

4.6.7.2 Reducing IOMMU shadowing overhead

IOMMU is known for its overhead [90, 91, 97, 108, 136], let alone vIOMMU [45, 114, 116, 152,

153]. To reduce its overhead, we do not virtualize all IOMMU functionalities. Instead, we

shadow only some parts of IOMMU where necessary with parapass-through VMM. Parapass

through VMM lets OS use most of the hardware as is, thus significantly reducing the overhead

and TCB. We present the details of the implementation in the next section.

4.6.7.3 Using interrupts without interfering with the OS

The VMM or the coprocessor must use an interrupt vector that does not affect the OS when

sending interrupts. Since we assume arbitrary operation of OS, it is not easy to know which

interrupt vector will be used by the OS. Thus, we use NMI (Non-Maskable Interrupt) to cope

with this problem. In the x86, NMI has a higher priority than the normal interrupts, and we

can configure VM so that it VMEXIT when receives NMI. Furthermore, if a subsequent NMI

occurs during the NMI handler processing, the NMI is inserted after the iret instruction.

The concrete way of using NMI is as follows. First, the VMM or the coprocessor who wants

to send an interrupt writes a value to a specific memory area in the VMM before sending the

NMI and then sends the NMI. Next, a NMI handler of the VMM checks the VMM memory

area to determine if the NMI is from the VMM or the coprocessor. If so, the VMM performs

proper processing. Otherwise, the VMM inserts the NMI into the guest. In this way, the

VMM and the coprocessor can send an interrupt without affecting other devices.

4.6.7.4 Dealing with P2P DMA and Translated TLP

As shown in Figure 4.2 (b), if a device is connected to the same switch as the memory

acquisition coprocessor, an attacker may take control of the device and attack the memory

acquisition coprocessor via P2P DMA. An attacker also may take a control of a device which

has ATS capability and try to DMA using Translated TLPs to attack the VMM or the memory

acquisition coprocessor. To prevent such an attack, we use the ACS feature so that 1) TLPs

always pass through the IOMMU, and 2) PCIe switches block Translated TLPs. This setting

is protected by nested paging.

60

4.7 Implementation

We implemented the prototype of the proposed method on Intel’s IOMMU (VT-d) using

BitVisor [35], a lightweight parapass-through VMM. BitVisor only supports one guest OS,

and its main usage is enhancing security by protecting some memory regions and I/O with

nested paging. BitVisor can boot an existing OS image without any modification. Our pro-

totype supports IOMMU shadowing and basic operations including register value acquisition,

temporal vCPUs suspension, and monitor specific memory region. The core parts of BitVisor

is about 36KLOC. We added about 3KLOC for our implementation.

We use PCIe Screamer R02 [209] for a memory acquisition coprocessor. PCIe Screamer

is built on top of XC7A35T Xilinx 7 Series FPGA and has a USB3 interface that can be

used to communicate and send acquired memory data to an analytics machine. The analytics

machine use PCILeech [226] to control PCIe Screamer. We also create a controller that manage

communication between the analytics machine and the VMM in Python.

4.7.1 IOMMU Shadowing

Figure 4.5 shows an overview of the shadowing of the IOMMU configuration on Intel VT-d.

VT-d has two operation modes [185]. One is legacy mode and the other is scalable mode. The

scalable mode is not commercially available at the time of writing, so we use the legacy mode.

The basics of the shadowing would be the same for the scalable mode.

In VT-d, the base address of the IOMMU page table in memory is set in the Root Table

Address Register. ACPI DMAR tables contain information on the VT-d, including MMIO

location of the Root Table Address Register. The IOMMU page table consists of a Root

table, Context table, and Second-Level Page Table Structures. The bus, device, and function

numbers of a PCIe device uniquely determine the Root table and Context table entries, and

the Second-Level Page Table Structures define the DMA address translation for that device.

The Second-Level Page Table Structures resemble 4-level page tables for CPU but no the

same.

In VT-d, if the “Present bit (P)” of the entry in the Root Table and Context Table is 1 and

the “Translation Type (TT)” of the entry in the Context table is 10, VT-d is in pass-through

mode. In this mode, the address in a TLP which the device send is used as-is for DMA.

There are two possible IOMMU shadowing implementations, depending on whether shad-

owing the Second-Level Page Table Structures or not. Both implementations shadow the root

and context entry and create the entry for the memory acquisition coprocessor, which is set

to pass-through mode. If we shadow Second-Level Page Table Structures (Figure. 4.5a), at

the time of shadowing, we checked table entries and delete entries that point to the VMM

region, if any, to protect VMM. PCI specification disallow DMA access to PCI configuration

61

※ Delete
entries that
point to the
VMM region

Root Table

Context Table

Second-Level Page
Table Structures

Root Table Context Table

Guest Managed

VMM Managed

P=1

P=0

P=1

P=1

P=1TT=0

P=1TT=0

TT=10 P=1

Root Table
Address Register

Second-Level Page
Table Structures

Shadow

(a) Shadow All Tables (Shadow)

Root Table

Context Table

Second-Level Page
Table Structures

Root Table Context Table

Guest Managed

VMM Managed

P=1

P=0

P=1

P=1

P=1TT=0

P=1TT=0

TT=10 P=1

Root Table
Address Register

※ Protect the VMM
Region using DMA
Protected Region

Shadow

(b) Shadow Only Context and Root Tables (Shallow Shadow)

Figure 4.5: IOMMU Shadowing Implementation for Intel VT-d (legacy mode). The upper
part is a guest managed IOMMU page table and the other a VMM managed
shadow IOMMU page table. There are two possible implementations. (a) Shadow
all IOMMU tables. When shadowing, 1) add a pass-through entry (tt=10) for a
memory-acquisition coprocessor in a context table, and 2) delete entries that point
to the VMM region in second-level page tables if any. (b) Only shadow root and
context tables. In this case the VMM memory including shadowed IOMMU tables
is protected using DMA Protected Region mechanism.

62

space. However, apparently, there are chipsets that allows such DMA operation [50]. In this

case, we also delete entries that point to a PCI configuration space of a memory acquisition

coprocessor. This approach is the most straightforward and generic way and could implement

on any other architectures. If an architecture does not have pass-through mode, then we can

create an identity map for a memory acquisition coprocessor. Note that removing such mali-

cious page table entries in a guest memory (without shadowing) is insufficient because there

is a possibility of TOCTTOU (Time-Of-Check-To-Time-Of-Use) attacks, in which an attacker

rewrites configurations after the VMM rewriting the guest OS’s IOMMU page table. So, we

need to shadow Second-Level Page Table Structures.

We can eliminate shadowing of the Second-Level Page Table Structures by utilizing VT-d’s

DMA Protected Region (Figure. 4.5b). DMA Protected Region specifies region which device

cannot DMA. VT-d can have two DMA Protected Regions: one in less than 4GB memory

region and the other in above 4GB memory region. By using DMA Protected Region, we

ensure that the VMM cannot be DMA-ed by a malicious device without checking Second-

Level Page Tables.

However, there are two downsides of using DMA Protected Region. Obvious one is the

guest cannot use DMA protected region. DMA Protected Region is mainly used for protecting

IOMMU page tables before enabling IOMMU. Without DMA Protected Region, the IOMMU

page table can be modified by DMA from malicious hardware, as demonstrated in [139].

However, we assume that there is no malicious device at the boot time, and in that case,

there is no problem not having DMA Protected Region. Besides, Linux does not use DMA

Protected Region at all.

A more serious issue introduced by using DMA Protected Region is that the DMA Protected

Region prevents the VMM from communicating with the coprocessor or analytics machine via

DMA within the VMM memory. To cope with this problem, the VMM place the memory

used for communication between the VMM and the coprocessor or analytics machine outside

the DMA Protected Region. Then, the communication messages are encrypted and signed to

ensure that messages are not compromised by an attacker.

Shadowing is performed when OS invalidates IOMMU table entries. VT-d specification

does not require IOTLB invalidation if an entry is not on the IOTLB. However, without

IOTLB invalidation we need to monitor every IOMMU page tables using EPT to detect entry

changes, which is costly operation. Thus, we use VT-d’s Caching Mode (CM) to request a

OS to invalidate IOMMU tables whenever it changes an IOMMU entry even if the entry is

not on the IOTLB. CM is reported via VT-d’s capability register. The hardware IOMMU

implementation reports CM as zero. This field is for aiding vIOMMU implementation. An

attacker may ignore CM, but it is not the problem. Because IOMMU page tables are shadowed,

and an IOMMU entry for a memory acquisition coprocessor is protected, ignoring CM merely

results in incorrect IOMMU page tables for the OS.

63

Invalidations are performed via register-based interface or queue-based interface. Register-

based interface is legacy interface, so we use queue-based interface. Invalidation granularity

ranges from device-level to a global level for root and context tables. When we rewrite the root

and context table so that a memory coprocessor can DMA, we must invalidate the entry to

ensure the changes are in effect. Therefore, the VMM also shadows the invalidation queue, and

issues an invalidation when creating an IOMMU entry for a memory acquisition coprocessor.

Other than IOMMU shadowing, we let the guests use the IOMMU freely. This reduces the

overhead of IOMMU shadowing.

4.7.2 VMM and PCI Configuration Space Protection

EPT (nested paging) protects the VMM memory region including the shadowed IOMMU

configuration. This means that the IOMMU configuration of the memory acquisition device

is always in pass-through mode, regardless of the IOMMU configuration of the guest, and

the memory acquisition device can retrieve the memory contents. MMIO regions of PCI

Configuration Space is also protected by the same way so that bus mastering is always enabled.

The VMM also intercept PIO access by enabling Unconditional I/O Exiting of VMCS, and

protect the PCI Configuration Space from malicious rewritings.

4.7.3 Register Value Acquisition

Intel VT-x’s VMCS holds a guest state including register values and the VMM can read values

using the vmread instruction. The VMM reads register values and send it to the analytics

machine using the communication channel described below.

4.7.4 Communication between VMM and Analytics Machine

PCIe Screamer does not have interfaces for communication between the VMM and the analyt-

ics machine. So, we used a dedicated NIC (Intel 82574L) and a serial cable for communication

between them. The serial cable is used for asynchronous output from the VMM. In our im-

plementation, we do not use NMI for NIC interrupts. Instead, we poll NIC descriptors every

time when a vCPU VMExits. We confirmed that this approach worked practically in the

experiments. The NIC is protected in the same way as the coprocessor protection.

BitVisor has an ability to build an server using lwIP. We built a simple JSON-RPC [190]

server using it. The analytics machine uses this server to achieve several things such as

obtaining register values, requesting temporal vCPUs suspension and monitoring memory

region for event-based acquisition. The server is easy to extensible and we can add new

operations if necessary. Table 4.4 shows the supported operations.

64

Table 4.4: Supported Operations

Command Operation

stop vcpu Stop vCPUs
start vcpu Start vCPUs
get cr3 Get CR3 value of a vCPU
monitor (addr) Monitor memory address and notify if accessed

4.8 Evaluation

We use a machine with Intel Core i7 8700 (6 cores, hyper-threading disabled), 16GB memory,

and ACS supported PCIe bus as a target machine. The machine runs Linux 5.13.0 and has

PCIe-connected NVMe (OCZ RD400/400A) and 40GbE NIC (Intel XL710). PCIe Screamer

(R02) is connected to the target machine via a PCIe slot. PCIe Screamer is also connected

to an analytics machine using USB3. The analytics machine and the target machine are

connected using a 1GbE NIC for the communication with the VMM. These machines are also

connected with 40GbE NIC directly. The analytics machine has Intel Core i7 6700 (4 cores 8

threads), 16GB memory.

In Linux, we can use iommu and intel iommu kernel parameters [224] to control how OS

uses IOMMU. We uses the following three settings in the experiments.

iommu=off

Linux does not use IOMMU (Linux’s default)

iommu=nopt intel iommu=on

Linux uses IOMMU (create IOMMU page table per device)

iommu=nopt intel iommu=on,strict

Same as “on” except that every unmap single operation will result in a IOTLB flush

iommu=nopt means that Linux uses iommu for intra-memory protection. Note that to

improve performance, Linux batches IOTLB flushes by default. However, this causes several

security problems [136, 156]. “strict” option forces to flush IOTLB every time unmap region.

When using Caching Mode, “strict” option is enforced no matter if the option is specified.

4.8.1 Memory Acquisition in the presence of an IOMMU

iommu=off In this case, Linux does not use IOMMU. So we can extract memory using PCIe

Screamer as is.

iommu=nopt and intel iommu=on(,strict) In this case, Linux creates IOMMU page

65

Table 4.5: Memory Acquisition Time (1GB)

Name Time (s)

bare-metal (iommu=off) 17.018
shadow (iommu=nopt, intel iommu=on,strict) 16.728

Table 4.6: Experiment Settings

Name Dscription

noiommu bare-metal machine
on bare-metal with intel iommu=on
strict bare-metal with intel iommu=on,strict
hook run OS on a VMM w/o shadowing (iommu is strict)
shallow only shadow root and context tables
shadow shadow all IOMMU tables
qemu run OS on a KVM/QEMU with its vIOMMU [175]

tables per IOMMU group 1. The PCIe Screamer looks a ethernet controller made by Xilinx

in a Linux’s point of view2. Linux does not create IOMMU page tables for the PCIe Screamer

because there is no driver for it. As a result, all DMA request from PCIe Screamer is blocked

by IOMMU.

Next, we employed our proposed method and running OS on the VMM. We confirmed that

in this case, the PCIe screamer successfully DMA and acquire memory. As the same as the

iommu=off, Linux does not create page tables for it. We confirmed it by checking IOMMU

page tables that Linux created. However, our VMM successfully shadowed IOMMU page

tables, thus the PCIe Screamer could DMA.

Table 4.5 shows times taken to acquire 1GB of memory by our method. Since our method

uses DMA, we did not see any noticeable differences between bare-metal and our proposed

method. In our environment, PCIe Screamer fetched memory around 60MB/s.

4.8.2 Overhead Evaluation

Table 4.6 shows the experiment settings used in this evaluation. When experimenting us-

ing VMM, iommu is used with strict mode. When experimenting on QEMU/KVM, NVMe

and 40GbE NIC devices are pass-through-ed using VFIO [197]. We use “iommu=on in-

tel iommu=on,strict” for “hook”, “shallow”, “shadow”, “qemu”.

1Devices belonging to the same IOMMU group can communicate with each other without IOMMU interven-
tion. For example, a multiple-function device belongs to an IOMMU group containing each function as an
endpoint. We can configure ACS to enforce every DMA transaction going through IOMMU, and in that
case, each endpoint belongs to each IOMMU group.

2Linux see the device’s class id and vendor id in a PCI configuration space.

66

Table 4.7: IOMMU Map and Unmap Time Comparison (32MB region)

Name Map (ns) Unmap (ns)

noiommu N/A N/A
on 2,921,377 4,116,167
strict 2,926,536 4,621,587
hook 2,900,304 14,976,643
shallow 14,309,282 11,715,443
shadow 17,406,628 21,976,681
qemu† N/A N/A
† qemu’s results are omitted because we encountered VFIO errors.

4.8.2.1 Microbenchmark

To measure the shadowing overhead, we create a program that maps and unmaps IOMMU

tables using VFIO for 32MB memory region for 500 times. Table 4.5 shows the median times

of the experiments. When using IOMMU on bare-metal machine, map and unmap operation

takes about 2 to 4 milliseconds. Our proposed method takes about 10 to 20 milliseconds.

4.8.2.2 NVMe and 40GbE NIC throughput and latency

We use NVMe and 40GbE NIC to measure IOMMU shadowing overhead during normal op-

erations. When experimenting on QEMU/KVM, these devices are pass-throgh-ed, and we

assigned 6 vCPUs and 14GB memory. Figure 4.6 and Figure 4.7 shows NVM’s through-

put and latency measured by fio [189]. The fio performs random read and write with block

size 4KB, numjobs 4, and iodepth 16. 4.8a shows 40GbE NIC throughput measured by

netperf [178] with one thread and 4.8b shows latency measured by ping.

4.8.2.3 NAS Parallel Benchmark

Table 4.8 shows the normalized execution time of NAS Parallel Benchmark (NPB) [201] to

demonstrate the CPU overhead of the proposed method. “spincount” is a value of

“GOMP SPINCOUNT”, which determines how long to try to spin to get a lock.

4.8.2.4 Benchmark Summary

As shown in the graph, our implementation generally better than the QEMU/KVM’s vIOMMU.

This is because our IOMMU shadowing is parapass-through approach. Although our proposal

has a non-negligible overhead, we think our method works practically enough compared to a

traditional vIOMMU mechanism (qemu’s vIOMMU). VT-d has added new features to increase

IOMMU performance. For example, a recent VT-d has a cache-coherency for an IOMMU page

table (our VT-d does not have it.) Therefore, when creating IOMMU page tables, we do not

67

noiommu on strict hook shallow shadow qemu
17000

18000

19000

20000

21000

22000

23000

24000

25000
IO

PS
READ mean IOPS

(a) Read

noiommu on strict hook shallow shadow qemu

12000

13000

14000

15000

16000

IO
PS

WRITE mean IOPS

(b) Write

Figure 4.6: NVMe fio IOPS with error bars of standard deviation (higher is better)

Table 4.8: NPB Normalized Result (baseline: bare-metal (iommu=strict))

shadow qemu
spincount→ 0 300k 30b 0 300k 30b

bt 1.00 1.01 1.07 1.08 1.00 1.08
cg 1.02 1.02 1.00 1.02 1.01 1.00
ep 0.94 1.00 1.07 1.11 1.00 1.13
ft 0.99 0.99 1.06 1.46 1.42 1.47
is 1.00 1.00 1.00 1.00 1.00 1.00
lu 1.24 1.02 1.05 1.05 1.02 1.24
mg 1.02 1.02 1.00 1.01 1.02 1.01
sp 1.00 1.02 1.00 1.01 1.02 1.01
ua 1.03 1.03 1.00 1.05 1.01 1.01
gmean 1.02 1.01 1.03 1.08 1.05 1.10

have to flush CPU caches. We expect hardware improvement will decrease performance over-

head more and more.

4.9 Discussion

4.9.1 SMM Monitoring

Since the proposed method uses a VMM, the monitoring of SMM – i.e., states with higher

privilege levels than a VMM – is out of the scope of the proposed method. Chevalier et al.,

[118] proposes a method to monitor the integrity of the SMM from the coprocessor by using

the coprocessor and the compile-time instrumentation of the SMM program. Nighthawk [147]

propose a method to monitor the integrity of the SMM from the coprocessor by using a special

coprocessor called Intel ME [229], which has a higher privilege than the SMM. Our proposed

68

0 20 40 60 80
Percentile

75

100

125

150

175

200

225

250
La

te
nc

y
[u

se
c]

READ completion latency
noiommu
on
strict
hook
shallow
shadow
qemu

95 96 97 98 99 100
Percentile

250

500

750

1000

1250

1500

1750

2000

La
te

nc
y

[u
se

c]

READ completion latency
noiommu
on
strict
hook
shallow
shadow
qemu

(a) Read

0 20 40 60 80
Percentile

20

40

60

80

100

La
te

nc
y

[u
se

c]

WRITE completion latency
noiommu
on
strict
hook
shallow
shadow
qemu

95 96 97 98 99 100
Percentile

0

200

400

600

800

1000

1200

1400

La
te

nc
y

[u
se

c]

WRITE completion latency
noiommu
on
strict
hook
shallow
shadow
qemu

(b) Write

Figure 4.7: NVMe fio Latency (up to 99.9%-tile) (lower is better)

method is orthogonal to these methods; by combining them, we can monitor the SMM.

In recent years, the Platform Runtime Mechanism (PRM) [211] has been proposed to make

most of SMM functions implemented outside the SMM. Intel also introduced the SMI Transfer

Monitor (STM) [218], used for increasing the security of the SMM by virtualizing the SMM

and running the main processing of the SMM in VMX non-root mode. By using these methods

together, it is possible to significantly reduce the attack surface of the SMM.

4.9.2 Guest Hypervisor Support

Coprocessors can acquire VMM’s memory region. However, since the proposed method uses

virtualization, the guest cannot use the virtualization function as is. If the VMM used by the

guest is a Type-1 VMM, the proposed method can be implemented in the VMM, but the TCB

will increase. If the VMM used by the guest is a Type-2 VMM, the proposed method cannot

be implemented in the VMM because the OS itself runs outside the VMM.

69

32 64 128 256 512 1024 2048 4096 8192
MTU

0

5000

10000

15000

20000

25000

30000
Th

ro
ug

hp
ut

 [M
bp

s]
noiommu
on
strict
hook
shallow
shadow
qemu

(a) Netperf Throughput (higher is better)

noiommu on strict hook shallow shadow qemu
100

150

200

250

300

350

400

450

La
te

nc
y

[u
s]

(b) Ping Latency (lower is better)

Figure 4.8: 40GbE NIC Experiments

In order to solve this problem, we can utilize nested virtualization [38]. With nested vir-

tualization, the OS can use the virtualization function even with the proposed method while

keeping the TCB small.

4.9.3 Hardware-Based Memory Encryption

In recent years, some CPUs have been equipped with, or are scheduled to be equipped with, a

function that constantly encrypts part or all of the memory [166, 168, 182, 183, 184]. In this

case, memory can be divided into two types: DMA-able (and decryptable), and non-DMA-

able. When verifying the integrity of the memory, the data acquired from DMA can be left

encrypted, but when analyzing the contents, the acquired data must be decrypted.

Intel TME [182] and AMD SME [166] are DMA-able and have decryptable memory contents.

One of the primary applications is the encryption of non-volatile memory. This provides page-

by-page encryption functions. Specifically, the upper bits of the physical address that are

not used in the page table are used to specify whether to decrypt or encrypt data when

reading or writing to the memory. By setting the upper bits of the physical address correctly,

encrypted data can be decrypted and read from the DMA. It is possible to find out which

page is encrypted by tracing the page table from CR3 and looking at the physical address

settings in the page table. However, in the event of a timing attack, there is a possibility that

the information in the page table could be rewritten by the attacker and thus could not be

decrypted correctly. One possible countermeasure is to shorten the interval between memory

fetches or DMA by trying all possible combinations of the upper bits of the encryption setting

until the correct data can be read.

The memory encryption technologies that cannot be DMA-ed are Intel SGX [183], Intel

TDX [184], Arm CCA [168], and AMD SEV [166]. These are features that provide a TEE

70

(Trusted Execution Environment). If we want to obtain the data or code executed in these

systems, one approach is to run an agent inside the monitored system and have the agent

periodically copying the memory of the part we want to obtain to the shared memory that

can be DMA-ed, after encrypting and signing it with keys shared with the coprocessor in

advance. Then, the coprocessor can perform the desired processing by retrieving data from

the shared memory. However, in this case, if the internal agent itself is attacked, the data

copying may not be performed correctly, so it is essential to take thorough preventive measures

to protect the agent itself from attacks.

4.9.4 Possible Hardware Improvement

In this section, we discuss how to extend the hardware functions to realize the above goals.

4.9.4.1 Device-Selective DMA Protected Region

We presented how to use VT-d’s DMA Protected Region to implement our proposed method.

The DMA Protected Region is applied to all devices, so we need to place communication

massage outside of a VMM, and encrypt and sign messages when communicating between a

VMM and a coprosessor or an analytics machine. If the DMA Protected Region can be selected

for a device, the memory acquisition coprocessor can be set as DMA-able and all other devices

as DMA-disabled, allowing communication between the memory acquisition coprocessor and

the VMM while preventing DMA attacks on the VMM from other devices. Although Intel

plans to deprecate DMA Protected Region3 [185], we believe the functionality is useful for a

coprocessor cooperating with a VMM.

4.9.4.2 Hypervisor-Managed IOMMU Translation

If hardware-based nested IOMMU can be available in the same way as nested paging in CPUs,

VMMs do not need to perform software-based shadowing of IOMMU page tables as we did.

AMD has been providing a hardware-based two-stage IOMMU page table feature since Zen2,

called hardware-based vIOMMU [165]. Intel is also planning to include such a feature in its

next-generation VT-d Scalable I/O Virtualization [185]. However, these features are based

on PCIe’s PASID specification, and the structure of a first IOMMU page tables is the same

structure as the CPU’s page tables. Therefore we cannot directly use it to override IOMMU

settings that a guest creates. From the security point of view, it is handy if the first IOMMU

page table is the same as the second IOMMU page table.

3Intel plans to introduce alternative way to prevent DMA attack to IOMMU page tables when setting Root
Table Address Register by temporary disable all DMA transactions.

71

4.9.4.3 Configuration Lockdown

There are several methods available to prevent some settings from being changed in the soft-

ware in the BIOS. For example, when the Serial Peripheral Interface (SPI) Configuration

Lockdown function is enabled, the SPI settings written up to at the point cannot be changed

until the PC is rebooted [219]. In this study, we used nested paging for the memory area

that protects the configuration, such as the PCI configuration space, but if such a lockdown

mechanism exists, memory protection by a VMM can be omitted in that area.

4.9.4.4 Summary of Possible Hardware Improvements

In summary, we believe that our proposed method can be implemented most efficiently if the

following hardware features are available:

1. DMA Protected Region configurable per device and

2. Lockdown of DMA Protected Region and PCIe settings.

These features eliminate the need for shadowing the IOMMU page table and implement-

ing PCI configuration space protection. However, they do not eliminate the need for the

VMM. Communicating with the memory acquisition coprocessor, hooking specific events, and

stopping the vCPU temporary are processes that the VMM performs. Of course, it may be

possible to implement these processes in hardware, but considering their complexity, it would

be better to use a VMM.

4.10 Summary

Due to the progress of hardware technology, memory acquisition by coprocessors has become

a practical method. On the other hand, there has been little discussion of its challenges,

especially about IOMMU. In this study, we organized and presented the four problems of

coprocessor-based memory acquisition. Then we proposed Shielded Copilot, which enables

trustworthy coprosessor-based memory acquisition in the presence of an IOMMU. Our method

cooperate a coprocessor with a thin VMM, which is in charge for operating what a coprocessor

cannot achieve. We implemented the prototype of proposed method for Intel’s VT-d. Our

evaluation showed that optimizing IOMMU for device protection achieves higher performance

than traditional vIOMMU and the proposed method worked practically.

72

5 Investigating and Improving Scheduling

Performance of NUMA-visible Virtual

Machines

In this chapter, we evaluated the scheduling performance of a NUMA-visible virtual machine

on Linux using various benchmarks. To our surprise, we found several problems that cause

severe performance degradation due to a paravirtualization function which is desirable for non-

NUMA-visible VMs. We propose the fix and show the effectiveness of the proposed method.

5.1 Introduction

In modern computers, the CPU and memory are structured hierarchically, as shown in the

Figure 5.1. A CPU consists of LLC and multiple cores that each contain L1 and L2 caches1.

Machines with multiple CPUs generally use an architectural configuration called NUMA (non-

uniform memory access). In a NUMA machine, the CPU and memory are divided into pairs

called nodes, and the speed of memory access from the CPU on one node differs from that on

other nodes.

To derive the best performance on NUMA machines, the operating systems, and the sched-

uler should consider the hardware’s characteristics. For example, improving the speed of

memory access necessitates that the data used by an application be placed in memory on a

node located as close as possible to the CPU where the application runs. Scheduling threads

in the same node can also improve the efficiency of cache utilization. This hardware hierarchy

is considered in task scheduling performed by Linux’s completely fair scheduler (CFS) [172].

On the other hand, a host’s hardware configuration is typically hidden from a guest in a

virtualized environment, such as clouds. In such an environment, the guest cannot operate in

consideration of the host’s hardware configuration. This problem can be solved by revealing

the host’s hardware configuration to the guest. These virtual machines are particularly used for

requiring high-performance tasks, such as machine learning and high-performance computing.

For example, AWS EC2 [163], a leading cloud provider, rents out virtual NUMA (vNUMA)

1In some CPUs, the L2 cache is shared among cores.

73

L1, L2 Cache

Execution Resources

LLC

L1, L2 Cache

Execution Resources

Local Memory

L1, L2 Cache

Execution Resources

LLC

L1, L2 Cache

Execution Resources

Local Memory

All Resources

Core

CPU

NUMA

Figure 5.1: Hierarchical Hardware Structure

instances with 96 vCPUs, 192 GiB of memory.

Several studies have reported that VM performance improves when a guest replicates a

host’s hardware configuration [48, 55, 79, 110, 143, 155]. However, all such research evaluated

only a small number of workloads, and few studies have conducted detailed experiments.

The hardware configuration of a host can be reproduced in several ways, depending on the

extent of the intended configuration. For example, when creating a virtual machine with 24

vCPUs, it is possible to create a machine with 24 sockets, or not, a machine with 24 cores per

socket. These virtual machines may look the same, but in reality, they have different hardware

configurations, which result in different scheduling behavior. In addition, recent years have

seen the common use of paravirtualization functions in virtualized environments, but most of

these functions are designed to improve performance in an overcommitted environment. How

effective they are for virtual machines that reproduce a host configuration is not evaluated in

the previous studies.

In this study, we created several virtual machines which reproduced (parts of) the hardware

configuration of a host using Linux’s QEMU/KVM and conducted the following detailed

performance evaluations:

1. Evaluating the effectiveness of paravirtualization for vNUMA machines

2. Comparing the vNUMA performance with various virtual hardware configurations

3. Evaluating the performance of VMs that partially replicate host hardware configuration

in an overcommitted environment

Contrary to expectations, we found that some workloads cause significant performance

degradation relative to that occurring in bare-metal and virtual machines that do not replicate

a host’s hardware configuration. We analyzed these problems and found several causes.

The contributions of this research are as follows.

1. We performed the detailed performance evaluation on virtual machines with several

virtual hardware configurations on Linux, and found several performance degradation

problems.

74

2. We analyzes several problems we found and proposed solutions.

5.2 Background

5.2.1 NUMA

NUMA architecture is a type of hardware design in which the CPU and memory are divided

into multiple units called nodes. It is distinct from UMA (uniform memory access) architec-

ture, and in NUMA architecture, the distance (access speed) from the CPU to memory differs,

depending on the location of both nodes. Memory located on the same node as the CPU is

called local memory, and another type of memory is called remote memory. Access to these

is called local and remote access, respectively. Partitioning by node leads to less contention

for memory access, thereby enabling memory scaling. Today, NUMA architectures are com-

monly used on machines with sizable CPUs and memory. To ensure the best performance on

a NUMA machine, it is crucial for the CPU on which an application runs and the memory

that contains the application data to be located on the same or closely positioned nodes.

5.2.1.1 Memory Access Policies for NUMA

Two typical policies are implemented to access memory on NUMA machines: First Touch

and Interleave. The First Touch policy allocates memory from the node where the CPU that

accesses memory is located. This policy is effective for applications in which a separate thread

runs on each CPU, but it can be ineffective for applications wherein a specific thread initializes

all memory or wherein threads are often migrated across nodes because of overcommitment.

In contrast, the Interleave policy allocates memory alternately from each node when it issues

memory. It is, therefore, suitable for applications in which data are accessed from multiple

nodes.

In Linux, the First Touch policy is used by default, but it is possible to run applications

with the Interleave policy by using the numactl command [203]. Linux also has automatic

NUMA balancing (ANB), which dynamically improves NUMA memory access by periodically

and intentionally causing page faults and migrating data to local memory when necessary.

5.2.2 Reproducing NUMA in a Virtualized Environment

5.2.2.1 Motivation

In a normal virtualized environment, the hardware configuration of the host is hidden. This

makes it easy to change the virtual machine’s hardware configuration and migrate between

75

machines with different hardware configurations. However, from the performance point of

view, there are several problems.

First of all, since the guest cannot see the host hardware configuration, it is hard to exploit

NUMA architecture from the guest. In addition, in an overcommitted environment, “double

scheduling problems”, which is caused by the dual scheduling in the guest and the host,

can occur. Most common double scheduling problems is the lock holder preemption (LHP)

problem [16, 27, 127], which occurs when a vCPU that holds a spinlock is preempted. At this

stage, other vCPUs that want to acquire the spinlock must wait until the preempted vCPU

is rescheduled and the lock is released; scheduling the vCPU that is waiting for the lock first

wastes CPU time. This problem is especially significant when parallel programs with many

exclusive controls are executed.

Other issues include the lock waiter preemption (LWP) problem [16, 127], which arises from

the preemption of a vCPU that is waiting for the highest priority in an ordered lock; the

blocked-waiter wakeup (BWW) problem [80], which occurs when a vCPU waiting for a block

to be released given a slow IPI in a virtualized environment is woken up; and problems caused

by the preemption of a vCPU in an interrupt or RCU context [124, 134]. In this context, the

BWW problem can also occur. Even if a vCPU is not preempted in a critical section, failing

to schedule its I/O completion via a virtual machine causes I/O delays.

These problem can essentially be solved by allocating a dedicated pCPU to a virtual ma-

chine, replicating hardware configuration of the host, and avoiding overcommitment. Such

virtual machines are used in where performance is important.

5.2.2.2 Reproducing a host’s CPU configuration

CPU configuration information is included in the Processor Properties Topology Table of the

ACPI (Advanced Configuration and Power Interface). Therefore, a specific CPU hierarchy can

be reproduced on a guest by appropriately configuring the ACPI at the time of guest startup.

In this research, the CPU created on a guest is called a “vCPU,” whereas that located on a

host is called a “pCPU.” We explicitly refer to the CPU core as “vCore” or “pCore.”

CPU pinning is the process of narrowing down the number of host pCPUs that schedule

a guest’s vCPU to one and ensuring a host pCPU and vCPU correspondence of 1:1. CPU

pinning reproduces an environment closer to that of a host for a guest.

5.2.2.3 Reproducing a host’s NUMA configuration

NUMA configuration information is included in the ACPI Static Resource Affinity Table

(SRAT). When a virtual machine initiates, NUMA can be configured on this machine by

appropriately constructing this SRAT. A virtual machine with NUMA configured on a guest

76

is called virtual NUMA (vNUMA), or a NUMA-visible virtual machine. Major hypervisors,

such as Hyper-V, QEMU/KVM, Xen, and VMware, support vNUMA.

When vNUMA is used, the NUMA structure is normally reproduced on a guest in accordance

with a host’s NUMA configuration. In other words, vCPU pinning and memory allocation

are performed so that the NUMA reproduced on the guest corresponds to the NUMA of the

host. In this study, vNUMA refers to the correspondence between the NUMA configurations

of a guest and a host. With vNUMA, the guest can take advantage of the physical NUMA

configuration for scheduling and memory management. This process is desirable in terms of

application performance, given that the semantic gap [6] is smaller than that generated when

the NUMA configuration is hidden from a guest and when vCPU scheduling and memory

allocation are devised on a host.

5.2.3 Scheduling in Linux

In Linux, there are several scheduler classes and each thread belongs to a specific scheduler

class. Each scheduler class has a given priority, and Linux schedules threads starting from

the scheduler class with the highest priority. The scheduler searches for the next task to be

executed for each scheduler class and switches tasks when the next task is available.

5.2.3.1 Complete Fair Scheduler (CFS)

Normal threads belong to the SCHED NORMAL (also called SCHED OTHER) scheduling class. This

section describes the CFS used in this class.

The CFS [172], which is the main scheduler for Linux, was introduced in Linux 2.6.23 and

remains in use today. It uses a weighted fair queueing algorithm and does not have the concept

of a fixed time slice. Instead, it allocates execution time in accordance with the weight of each

thread so that each thread is scheduled at least once during a period called the latency target.

Note that a minimum time slice is set, thus preventing an excessively short execution time.

The weight used here is called the nice value, and the weighted execution time assigned to a

thread is called vruntime. Threads with the same weight are assigned the same amount of

execution time. Each executable thread is stored in the run queue of a CPU. The CFS selects

the thread with the smallest vruntime in the run queue as the next thread to be executed.

If a thread goes to sleep, the minimum vruntime is subtracted from the thread’s vruntime.

Then, if the thread wakes up from sleep, the minimum vruntime of the run queue is added

to the vruntime. This adjustment prevents excessive CPU allocation to sleeping threads and

enables the rapid scheduling of threads that frequently sleep (interactive threads) at wake up.

In the case of multi-threaded (or multi-process) programs, simply allocating CPU time to

each thread results in excessive CPU time for a program. Using the cgroup function introduced

in Linux 2.6.38 [173] enables the combination of multiple threads (or threads) into one and

77

their treatment as a single scheduling entity, thereby preventing excessive CPU time from

being allocated to a specific program.

5.2.3.2 Load balancing

The CFS runs on each CPU. To eliminate unbalanced run queues on each CPU, the scheduler

performs load balancing as needed. The basic idea of load balancing is to balance the load

calculated from CPU utilization and thread weights on each CPU. Another essential task is

to avoid CPU resource contention to improve performance. For example, in the case of a

multi-threaded program that shares memory, load balancing on the same LLC core is more

efficient in cache utilization.

In the CFS, load balancing is performed from the lower domain of a hierarchical domain

called the scheduler domain [215] to evenly distribute loads across domains. For the architec-

ture shown in the Figure 5.1, the scheduler domain consists of three domains from the top:

Core, CPU, and NUMA.

There are four types of CFS load balancing:

Fork/exec Balancing This load balancing occurs when thread forks or execs. The scheduler

selects which CPU’s run queue to insert a thread into.

Wakeup Balancing This process involves the selection of which CPU’s run queue a thread

will be inserted into when the thread wakes up. No balancing across NUMA is performed

to improve cache efficiency.

Idle Balancing Idle balancing is performed when the run queue of a CPU becomes empty. If

there is an executable thread in the run queue of another CPU, the thread is migrated

to its own run queue. If no thread is available, the CPU becomes idle. The CPU is

eventually woken up by an iterrupt or periodic load balancing.

Periodic Balancing Periodic balancing is performed in the SOFTIRQ context in response to

periodic timer interrupts. In the case of NOHZ kernels that do not generate periodic

timer interrupts, which are the current mainstream occurrence, the kernel checks whether

there is an idle CPU when an active CPU receives a scheduler tick. If so, the kernel

sends an IPI to that CPU to request load balancing. After that, the load balancing

process is basically the same as that occurring during the idle balancing.

The fork/exec and wakeup balancing processes entail selecting a run queue to store threads.

Idle and periodic balancing are processes of fetching threads from the run queues of other CPUs

to one’s run queue. The triggers and targets of each load balancing round are summarized

in Table 5.1. To avoid unnecessary repetition, load balance() is performed by the first idle

78

Table 5.1: Summary of Linux Load Balancing

Type of Load Balance Maximum Scheduler Domain Main function

fork/exec CPU find idlest cpu()

wakeup CPU select idle sibling()

idle NUMA load balance()

periodic NUMA load balance()

CPU found when the target CPU is iterated in the domain or only by the first CPU if there

is no idle CPU.

5.2.4 KVM

KVM is the default virtualization mechanism for Linux. KVM has the following paravirtual-

ization features.

Asynchronous Page Fault Allowing the guest to run while the guest page swapping in.

PV EOI Omit accessing EOI (End of Interrupt) register (thus omitting VMEXIT) when han-

dling a virtual interrupt.

PV IPI Insert IPI when performing VMENTRY if the vCPU is not running at the time.

PV TLB Flush Flush TLB when performing VMENTRY if the vCPU is not running at the

time.

PV UNHALT Use paravitualized spinlock. Instead of doing busy loop, a vCPU waiting a

lock sleeps. When the lock holder release the lock, it wakes up the vCPU.

Stealtime The mechanism to notify the guest information on how much CPU time is spend

in a hypervisor. Combining with PV UNHALT, this feature used for dectection of vCPU

preemption, which is described in the next section.

5.2.4.1 Detection of vCPU preemption

KVM also has a paravirtualization feature to detect whether a vCPU is preempted or not. The

function available idle cpu() (Listing 5.1) is used to determine whether a CPU is idle when

load balancing is performed. This function is enabled when KVM’s paravirtualization feature

“steal time” and “PV UNHALT” are activated. For a guest to tell a host whether a vCPU

is preempted, the former sets a memory address in a dedicated MSR (MSR KVM STEAL TIME)

at boot time, after which the host writes information about whether the CPU is preempted

to this memory area. With this feature, the CFS on a virtual machine does not execute load

79

balancing for the vCPU preempted by the host, even if the vCPU is idle. This feature was

introduced in Linux 4.18.

1 int available_idle_cpu(int cpu)

2 {

3 if (!idle_cpu(cpu))

4 return 0;

5

6 if (vcpu_is_preempted(cpu))

7 return 0;

8

9 return 1;

10 }

Listing 5.1: available idle cpu() function (defined in kernel/core/sched.c)

5.2.5 Research Questions

Although intuitively it is believed that constructing a NUMA-visible virtual machine is the

best way to elicit performance on a NUMA machine in a virtual environment, few studies have

evaluated the details performance. In this study, we created several virtual machines which

reproduced (parts of) the hardware configuration of a host using Linux’s QEMU/KVM and

conducted the detailed performance experiments to evaluate the followings:

1. The effectiveness of paravirtualization for vNUMA machines

2. The vNUMA performance on various virtual hardware configurations

3. The performance of VMs that partially replicate host hardware configuration in an

overcommitted environment

5.3 Experimental Setup

In this section, we briefly summarize the experiment environment and benchmarks we used.

5.3.1 Experimental Environment

The evaluation machine has two NUMA nodes, with one node having 32 GB of memory.

The machine has two Intel Xeon Platinum 8160 CPUs. Each CPU has 24 cores, and hyper-

threading is disabled. Functions that dynamically change the CPU frequency, such as C State

80

and Turbo Boost, are also disabled. We use Linux 5.13 for both the host and the guest OSs.

We use QEMU [212] 6.1.0 and libvirt [195] 7.7.0 for creating virtual machines.

5.3.2 Virtual Machines

We use virtual machines depicted in Figure 5.2 for the main evaluation. The description of

each VM is as follows:

UMA A traditional virtual machine.

CPU Pinning (pinning) Only CPU pinning is performed.

vNUMA (non-LLC-shared) vNUMA is created. However, there is no CPU core which shares

LLC.

vNUMA (LLC-shared) vNUMA with LLC-shared among CPU cores.

5.3.3 Benchmarks

We used the following benchmarks in the experiments:

5.3.3.1 Performance Evaluation

To evaluate performance throughput, we used the OpenMP version of NAS Parallel Bench-

marks (NPB) [201] 3.4.1 and the pthread version of parsec [225] 3.0. The NPB and parsec

contains more than a dozen parallel computing programs. We executed all the programs in

NPB, except “dc,” which requires substantial disk I/O. We use data size C and GNU “li-

bomp” for the OpenMP library. We excluded some Parsec programs that failed to compile in

the experimental environment.

In OpenMP, the OMP WAIT POLICY environment variable [204] can be used to specify how

long a thread waits in a user space (i.e., whether a spin loop is performed) for a lock release.

Valid values for OMP WAIT POLICY are “active” or “passive,” and its behavior is implementation

dependent. In our experimental environment, the number of spin loops (SPINCOUNT) is 0

when OMP WAIT POLICY is passive, 300,000 when it is not set (300k), and 30,000,000,000 (30b)

when it is active. We ran the experiment for each spinlock setting. The larger the number of

spin loops, the higher the probability that a lock will be released during a spin loop; acquiring

a lock during this loop advances the fastest lock acquisition, which generally enhances software

performance. When the spin loop count reaches the upper limit, a thread sleeps until the lock

becomes available through the use of the futex [177] system call.

81

pCore0 pCore1 pCore2 pCore3

Memory Memory

Host
Node 0 Node 1

vCPU0 vCPU1 vCPU2 vCPU3

Memory

VM

pCPU0 pCPU1LLC LLC

LLC LLC LLC LLC

(a) UMA

pCore0 pCore1 pCore2 pCore3

Memory Memory

Host
Node 0 Node 1

vCPU0 vCPU1 vCPU2 vCPU3

Memory

VM

pCPU0 pCPU1LLC LLC

LLC LLC LLC LLC

(b) CPU Pinning

pCore0 pCore1 pCore2 pCore3

Memory Memory

Host
Node 0 Node 1

vCPU0 vCPU1 vCPU2 vCPU3

Memory Memory

Node 0 Node 1

VM

pCPU0 pCPU1LLC LLC

LLC LLCLLC LLC

(c) vNUMA (non-LLC-shared)

pCore0 pCore1 pCore2 pCore3

Memory Memory

Host
Node 0 Node 1

vCore0 vCore1 vCore2 vCore3

Memory Memory

Node 0 Node 1

VM

pCPU0 pCPU1

vCPU0 vCPU1

LLC LLC

LLC LLC

(d) vNUMA (LLC-shared)

Figure 5.2: Virtual Machines used in the vNUMA Experiments

82

5.3.3.2 Scheduler Evaluation

We used the perf bench sched messaging [210] to evaluate performance of scheduler and IPC.

In perf bench sched messaging, the parameter “groups” controls the total number of threads

used in the experiment. We also used schbench [191] to evaluate the latency distribution for

the scheduler wakeups. In schbench, the parameter “threads” controls the total number of

threads used in the experiment.

5.3.3.3 Measurement Methodology

Except schbench, which reports distribution, we run experiments three times and reports the

median value. We use tsc clock source in a virtual machine to measure time. We disable

automatic NUMA balancing during the experiments.

5.4 Evaluation of Paravirtual Features on a NUMA-visible

Virtual Machine

In this section, we evaluate KVM paravirtual features on a vNUMA (LLC-shared) machines to

investigate the effectiveness of paravirtualization for vNUMA machines. We use First Touch

NUMA policy for this experiment. We ran experiments on VMs each of which enables the

following each KVM paravirtual feature.

nopv No paravirtual festures.

asyncpf Enable Asynchronous Page Fault.

pv eoi Enable PV EOI.

pv ipi Enable PV IPI.

pv tlbflush Enable PV TLB Flush.

steltime Enable stealtime.

unhalt Enable PV UNHALT.

unhalt stealtime Enable both PV UNHALT and stealtime.

unhalt stealtime* Enable both PV UNHALT and stealtime with the fix presented in subsec-

tion 5.4.2.

vnuma* Enable all paravirtualization features with the fix presented in subsection 5.4.2.

We report relative values against “nopv” for NPB, parsec, and perf sched benchmarks.

Lower is better for all graphs.

83

5.4.1 Result

Figure 5.3 shows the result of NPB benchmark and Figure 5.4 shows the result of parsec.

Figure 5.5 and Figure 5.6 shows the result of perf bench sched and schbench, respectively.

From the figtures, we can observed that the “unhalt stealtime” virtual machine showed the

severe performance degradation especially for NPB SPINCOUNT 0.

bt cg ep ft is lu mg sp ua
prog

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
la

tiv
e

Ra
tio

SPINCOUNT=0

bt cg ep ft is lu mg sp ua
prog

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
la

tiv
e

Ra
tio

SPINCOUNT=300k

bt cg ep ft is lu mg sp ua
prog

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
la

tiv
e

Ra
tio

SPINCOUNT=30b

nopv
asyncpf

pv_eoi
pv_ipi

pv_tlb_flush
stealtime

unhalt
unhalt_stealtime

unhalt_stealtime*
vnuma*

Figure 5.3: NPB Benchmark

5.4.2 False Preempted Problem

We investigated the problem of the “unhalt stealtime” and found the cause.

5.4.2.1 The Cause

This problem occurs under the following conditions:

• PV SPINLOCK (KVM FEATURE PV UNHALT) is enabled.

• “steal time” (KVM FEATURE STEAL TIME) function is enabled.

• The CPU in a VM is multi-core. (This problem does not happen on a non-LLC-shared

vNUMA machine.)

84

blacksch
oles

bodytrack
dedup

fluidanimate

stre
amcluster

swaptions vips
x264

prog

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Re

la
tiv

e
Ra

tio
Parsec

nopv
asyncpf

pv_eoi
pv_ipi

pv_tlb_flush
stealtime

unhalt
unhalt_stealtime

unhalt_stealtime*
vnuma*

Figure 5.4: Parsec

As described in subsubsection 5.2.4.1, under these condition, a preempted vCPU is excluded

from candidates of wake up load balancing. This seems reasonable because a thread migrated

to a preempted vCPU needs to wait until it is scheduled on the host side. However, when a

vCPU becoming idle and doing HLT VMEXIT, the problem occur. This vCPU is marked as

preempted and will wait for a rescheduling IPI from another vCPU or an external interrupt.

However, the vCPU is flagged as preempted and is exempted from wakeup load balancing

in the CPU scheduler domain. As a result, even if nothing else is running on the host side,

the guest assumes that the vCPU is preempted and that the vCPU is not utilized, thereby

significantly degrading performance. This problem especially occurs frequently when running

parallel programs with a small OpenMP SPINCOUNT because a vCPU tend to become idle

in such an environment due to the lock contentions.

5.4.2.2 The Fix

To fix the problem, we created a per-cpu kthread. The SCHED IDLE scheduling class is assigned

to the kthread. This means that the kthread only runs when the CPU becomes idle. When

the kthread is scheduled, the kthread deactivated the preempted flags from vCPUs that sleeps

on the CPU. This way, HLT VMEXIT vCPU becomes candidates of wakeup load balancing

when the host CPU is idle.

85

1 2 4 8 16 32 64 128 256
groups

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

tiv
e

Ra
tio

Perf Bench Sched Messaging

nopv
asyncpf

pv_eoi
pv_ipi

pv_tlb_flush
stealtime

unhalt
unhalt_stealtime

unhalt_stealtime*
vnuma*

Figure 5.5: Perf Bench Sched Messaging

Figure 5.7 shows the visualization of each CPU’s run queue length when running NPB

lu program with SPINCOUNT 0. The graph is created using tracing results obtained by

ftrace [176]. The y axis is the CPU number and the x axis is time. The color depth indicates

the number of threads (nr running) in the run queue. There are 48 threads in total. As

shown in the figure, before the fix, there are several run queue contention. After the fix, these

contentions are solved. Figure 5.8 shows which CPU the threads are scheduled. From this

figure, it can be confirmed that unnecessary migration occurred due to the limited number of

available CPUs before the modification.

In Figure 5.3, Figure 5.4, Figure 5.5 and Figure 5.6, “unhalt stealtime” and “vnuma*” are

experimental results with this fix applied. As shown in the graph, the performance degrada-

tions of NPB and parsec are solved.

5.5 Evaluation of NUMA-Visible Virtual Machines

In this section, we evaluate performance of virtual machines shown in Figure 5.2 to investigate

perormance of vNUMA machines. We used First Touch policy in the experiment. We enabled

all KVM paravirtualizartion features with the fix presented in subsection 5.4.2. We report

relative values against bare-metal for NPB, parsec, and perf sched benchmarks.

86

min p50 p75 p90 p95 p99 p995 p999
percentile

0

20000

40000

60000

80000

W
ak

eu
p

La
te

nc
y

(u
s)

VM
nopv
asyncpf

pv_eoi
pv_ipi

pv_tlb_flush
stealtime

unhalt
unhalt_stealtime

unhalt_stealtime*
vnuma*

(a) threads=64

min p50 p75 p90 p95 p99 p995 p999
percentile

0

20000

40000

60000

80000

100000

120000

W
ak

eu
p

La
te

nc
y

(u
s)

VM
nopv
asyncpf

pv_eoi
pv_ipi

pv_tlb_flush
stealtime

unhalt
unhalt_stealtime

unhalt_stealtime*
vnuma*

(b) threads=128

Figure 5.6: Schbench

87

(a) Before the fix

(b) After the fix

Figure 5.7: Visualization of each Run queue Length. The vertical axis is vCPU number, and
the horizontal axis is time. The color intensity indicates the length of the run
queue.

88

0 2 4 6 8 10
time

0

10

20

30

40

cp
u

0
8
16
24
32
40

(a) Before the fix

0 2 4 6 8 10
time

0

10

20

30

40

cp
u

0
8
16
24
32
40

(b) After the fix

Figure 5.8: Visualization of on vCPU Scheduling. The vertical axis is vCPU number, and
the horizontal axis is time. This graph shows which vCPU is scheduled to which
pCPU.

89

5.5.1 Result

Figure 5.9 shows the result of NPB benchmark and Figure 5.10 shows the result of parsec.

Figure 5.11 and Figure 5.12 shows the result of perf bench sched and schbench, respectively.

From the figtures, we can observed the following things:

• As of NPB, when SPINCOUNT is higher (30b), vNUMA (shared LLC) is the closest to

the bare-metal performance in most programs.

• However, when SPINCOUNT is lower, vNUMA (LLC-shared) (and sometimes also bare-

metal) are slower than others. This is especially noticeable in “sp”, and “lu” with

SPINCOUNT 0.

• As of parsec, vNUMA (LLC-shared) is slower than UMA and vNUMA (non-LLC-shared)

on “dedup” and “streamcluster”.

• As of perf bench, the vNUMA’s execution time become larger when the number of

threads increases.

• As of schbench, the scheduler latencies of bare-metal and vNUMA (LLC-shared) become

worse than UMA when threads=128.

bt cg ep ft is lu mg sp ua
prog

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Ra
tio

SPINCOUNT=0

bt cg ep ft is lu mg sp ua
prog

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Ra
tio

SPINCOUNT=300k

bt cg ep ft is lu mg sp ua
prog

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Ra
tio

SPINCOUNT=30b

baremetal vnuma (LLC-shared) vnuma (non-LLC-shared) pinning uma

Figure 5.9: NPB Benchmark

[t]

90

blacksch
oles

bodytrack
dedup

fluidanimate

stre
amcluster

swaptions vips
x264

prog

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Re

la
tiv

e
Ra

tio
Parsec

baremetal vnuma (LLC-shared) vnuma (non-LLC-shared) pinning uma

Figure 5.10: Parsec

5.5.2 Overload Wake-on-Bug (OWB)

We investigated the performance degradation problems of NPB “lu” and “sp”. From the fact

that vNUMA (non-LLC-shared) does not have the performance problem, we presume that this

problem is caused by the wakeup load balancing. Specifically, we presume that this problem

is caused by the following procedure:

• A thread sleeps as it waits for a lock.

• Idle load balancing causes the migration of executable threads from a vCPU in another

NUMA domain.

• The first thread on this vCPU wakes up, clogging the vCPU run queue.

This problem is related not to virtualization but to the load balancing of the NUMA domain

of the CFS. [107] reports similar problems and they called it “Overload Wake-on-Bug”. [107]

improved the performance by performing wakeup load balancing among the NUMA scheduling

domains if there is no idle cores in the CPU scheduling domains. We also implemented the

same fix and re-evaluated benchmarks. Figure 5.13, Figure 5.14, Figure 5.15 and Figure 5.16

shows the results.

91

1 2 4 8 16 32 64 128 256
groups

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Re

la
tiv

e
Ra

tio
Perf Bench Sched Messaging

baremetal vnuma (LLC-shared) vnuma (non-LLC-shared) pinning uma

Figure 5.11: Perf Bench Sched Messaging

As shown in the Figure 5.13, the performance degradations of “lu” and “sp” are fixed.

However, the fix is not a panacea; some performance degradation is still observed (e.g., parsec’s

“dedup” and “fluidanimate”). Further performance improvement is one of the future works.

5.6 Related Work of Linux Scheduling

5.6.1 Analyzing Linux Scheduling

[107] reports four bugs in the Linux CFS. All four are related to NUMA, and three are

associated with NUMA load balancing. The overload wake-on-bug reported in the report was

also confirmed in this study. As shown in the evaluation, the fix proposed in [107] increases

some program throughput but does not solve all scheduler problems found in this paper. [131]

compared the performance of Linux CFS with that of FreeBSD Scheduler ULE. Both studies

did not evaluate the scheduler in a virtualized environment.

5.6.2 Improving (NUMA) Scheduling

There are several studies on improving scheduling such as [84, 110, 148, 151]. Recently, to

improve scheduler performance, [148] proposed a load balancing method that uses machine

92

min p50 p75 p90 p95 p99 p995 p999
percentile

0

10000

20000

30000

40000

50000

W
ak

eu
p

La
te

nc
y

(u
s)

VM
baremetal vnuma (LLC-shared) vnuma (non-LLC-shared) pinning uma

(a) threads=64

min p50 p75 p90 p95 p99 p995 p999
percentile

0

20000

40000

60000

80000

100000

W
ak

eu
p

La
te

nc
y

(u
s)

VM
baremetal vnuma (LLC-shared) vnuma (non-LLC-shared) pinning uma

(b) threads=128

Figure 5.12: Schbench

93

bt cg ep ft is lu mg sp ua
prog

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Ra
tio

SPINCOUNT=0

bt cg ep ft is lu mg sp ua
prog

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Ra
tio

SPINCOUNT=300k

bt cg ep ft is lu mg sp ua
prog

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Ra
tio

SPINCOUNT=30b

baremetal vnuma (LLC-shared) vnuma (non-LLC-shared) pinning uma

Figure 5.13: NPB Benchmark (with OWB fix)

learning trying to consider hardware characteristics. [151] propose a scheduler that always

preserves specific properties using formal verification. These studies did not evaluate the

performance of the scheduler in vNUMA environment. As shown in this research, there is still

room for improvement for the (v)NUMA scheduler.

5.7 Summary

In this chapter, we conducted detailed performance experiments on virtual machines in which

guests replicated the hardware configuration of the host. Contrary to our expectations, the

performance of virtual machines that replicate a host’s hardware configuration is sometimes

lower than that of VMs that do not carry out such replication. The comparison of our

experimental results with those realized using bare-metal indicated that part of the reason

for these findings is essentially the slow scheduling of NUMA. We expect our findings to help

improve the performance of the scheduler.

94

blacksch
oles

bodytrack
dedup

fluidanimate

stre
amcluster

swaptions vips
x264

prog

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Re

la
tiv

e
Ra

tio
Parsec

baremetal vnuma (LLC-shared) vnuma (non-LLC-shared) pinning uma

Figure 5.14: Parsec (with OWB fix)

1 2 4 8 16 32 64 128 256
groups

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

Ra
tio

Perf Bench Sched Messaging

baremetal vnuma (LLC-shared) vnuma (non-LLC-shared) pinning uma

Figure 5.15: Perf Bench Sched Messaging (with OWB fix)

95

min p50 p75 p90 p95 p99 p995 p999
percentile

0

10000

20000

30000

40000

50000

W
ak

eu
p

La
te

nc
y

(u
s)

VM
baremetal vnuma (LLC-shared) vnuma (non-LLC-shared) pinning uma

(a) threads=64

min p50 p75 p90 p95 p99 p995 p999
percentile

0

20000

40000

60000

80000

100000

W
ak

eu
p

La
te

nc
y

(u
s)

VM
baremetal vnuma (LLC-shared) vnuma (non-LLC-shared) pinning uma

(b) threads=128

Figure 5.16: Schbench (with OWB fix)

96

6 Improving Hypervisor’s Elasticity with

Safe and Lightweight Language VM

In this chapter†, we propose a method to improve the flexibility of hypervisors without com-

promising performance by using a secure and lightweight language virtual machine. An an

example of the use of the language virtual machine, we present source side DDoS prevention

scheme using virtualization.

6.1 Introduction

As computers and the Internet play a critical role in modern society, cyberattacks become

a significant security issue. For example, denial of service (DoS) attacks make services to

legitimate users unavailable by occupying server resources (e.g., CPU and memory resources)

or exhausting network resources (e.g., bandwidth) that provide routes to the target service [77].

Most DoS attacks come in the form of distributed DoS (DDoS) attacks. In DDoS attacks,

attackers use viruses or similar techniques to hijack a large number of personal computers

to distribute the attack [5]. According to a survey by the Kaspersky Lab, the number of

DDoS attacks per day ranged from 296 to 1508 in Q3 2017 [192]. It is important for system

administrators to protect machines they manage from being hijacked and used as attacking

machines. If an administrator detects that a managed machine is carrying out a DDoS attack,

the administrator must attempt to stop the attack immediately.

In this study, we focus on situations wherein a system administrator manages a large num-

ber of computers and individual users, e.g., in schools and companies. Our goal is to develop

a reliable, lightweight, transparent, and flexible DDoS attack prevention scheme to easily sup-

press packet transmissions from the machines involved in DDoS attacks. DDoS attacks have

been studied extensively [14]. For example, as DDoS attack detection schemes at the source

side, [47, 106, 120] proposed DDoS attack detection systems in the cloud using machine learn-

ing techniques. However, few studies have focused on DDoS attack prevention mechanisms at

source machines that are suitable for personal computers having less computing power than

servers.

†This chapter is based on [138] (© 2018 IEEE. Reprinted, with permission).

97

A firewall is a primary countermeasure against DDoS attacks. By installing a firewall on

the boundary of a managed network and configuring it properly, a system administrator can

prevent the transmission of attack packets. However, this method requires significant com-

putational power at the firewall because many packets must be handled at the network edge.

Furthermore, attack packets consume significant network resources when they traverse the

network path to the firewall. Therefore, the best solution is to suppress packet transmissions

at the attacking machines. Most operating systems (OS) have firewall functionalities. If a

system administrator can configure a firewall remotely, they can stop the transmission of at-

tack packets. However, as the machines carrying out a DDoS attack are often controlled by

the attacker, the attacker can disable the OS firewall. Therefore, we require a packet filtering

scheme that cannot be disabled by the attackers.

Several previous studies have proposed using hypervisors to ensure firewall functionality re-

liably [28, 31, 83, 103]. However, traditional hypervisors demonstrate two main disadvantages.

First, as discussed in subsection 1.1.3, virtualization incurs significant overhead. Second, users

cannot use devices that are not supported by the hypervisor. For example, there is less chance

of full functionality support of a laptop’s touchpad by hypervisors because touchpads have

diverse functionalities compared to mice and keyboards. It may be possible to use a device

pass-through technique. However, this requires additional configuration operations, which is

troublesome for non-expert users and is unsuitable for personal computers. Furthermore, addi-

tional procedures, such as booting the hypervisor and initializing virtual devices, are required

prior to booting the guest OS. In particular, if a Type II hypervisor is employed, it is difficult

to force the users to use only the guest OS because they can access the host OS as well. Using

two OSs is troublesome for ordinary users in daily use. Therefore, it is important to provide

a protection scheme that can enforce packet filtering while it is transparent from users.

We propose a reliable, lightweight, transparent, and flexible DDoS attack prevention scheme

that is suitable for managed personal computers. In this scheme, the administrator installs

a lightweight hypervisor on each managed machine to achieve reliable packet filtering. This

hypervisor does not virtualize hardware, except for network interface cards (NIC), thereby,

significantly reducing virtualization overhead and making the hypervisor transparent from

users. To make our scheme flexible, we integrate a configurable packet filtering mechanism

into the hypervisor that can be controlled by the administrator. Figure 6.1 shows an overview

of the proposed scheme. Here, the dotted line shows the network area managed by the ad-

ministrator. When one or several machines in the managed network perform a DDoS attack

on a target server (indicated by the red arrows), the administrator sends a filtering policy to

these machines. By sending the filtering policy to only the attacking machines, a legitimate

user can still send packets to the server.

To facilitate flexibility of the packet filtering mechanism, we allow the system administrator

to send a filtering policy as executable code. Therefore, the administrator has considerable flex-

98

Legitimate User

Server

access error

Managed Network

Administrator

DDos Traffic

Send filter
policy

①

③

② Detect DDoS

Figure 6.1: Overview of the Proposed Scheme

ibility to implement an arbitrary policy on the managed machines. To prevent programming

mistakes from affecting the security of the managed machines, the verifier in the hypervisor

checks the filtering behavior to guarantee security prior to execution. This mechanism gives

the administrator greater flexiblity in enforcing filtering policies without compromising the

security of the managed machines.

We implemented the proposed scheme using BitVisor [35] and the Berkeley Packet Filter

(BPF) [222]. We made BitVisor to monitor only the NIC I/Os and integrated the BPF

execution environment into BitVisor such that network packets could be filtered based on

the execution results of the BPF program. The experimental results show that the proposed

scheme can suppress the transmission of packets upon request with negligible latency and

throughput overhead compared to a bare metal machine.

We assume that DDoS attack detection is achieved using existing methods. Automatically

creating filtering code based on the detected attacks will be the focus of future work.

The contributions of this research are as follows.

• We propose a reliable, lightweight, transparent, and flexible DDoS attack prevention

scheme that can enforce a configurable packet filtering policy even if the OS is compro-

mised while the prevention scheme is lightweight and transparent from users.

• We show a specific implementation of our scheme that exploits BitVisor and BPF to

99

achieve negligible virtualization overhead and configurable packet filtering policies as

safe executable code.

• We demonstrate the feasibility and performance of our scheme using the implementation.

6.2 Design

In this section, we outline the threat model and our assumptions. We then describe the system

objectives and the proposed scheme, including its limitations and advantages.

6.2.1 Threat Model and Assumptions

We assume that malicious remote attackers can gain complete control of the target machines’

OSs via software-based attacks, e.g., through viruses and exploiting application vulnerabilities.

Since the attackers can obtain OS administrator privilege, the OS firewall functionalities can

be disabled. However, we do not assume that attackers can gain control of the underlying

hypervisor; since our hypervisor is sufficiently small, we can eliminate security vulnerabilities in

the hypervisor. We also do not assume attacks against hardware, such as exploiting the system

management mode of processors or the management engines embedded in processors. We do

assume that attackers cannot gain physical access to the managed machines and network.

In addition, we assume that the administrator is a trusted entity that can detect that

managed machines are performing a DDoS attack. Note that DDoS detection methods are

beyond the scope of this study. We also assume that the administrator’s management machine

is isolated from the managed network and is not compromised by the attackers. Therefore,

the administrator can securely send filtering code to the managed machines.

6.2.2 System Objectives

Our goal is to create a reliable, lightweight, transparent, and flexible DDoS attack prevention

scheme that allows a system administrator to easily and reliably prevent packet transmissions

from managed machines. This scheme should satisfy the following practical properties.

1. Packet filtering must be enforced regardless of the state of the OS.

2. The system administrator can control the filtering policy of managed machines remotely.

3. The scheme should not pose any other security concerns.

4. The user can use a machine in a transparent manner.

100

Hardware

Operating System

NIC

Filter

Policy Server

Managed Machine

Management Machine (1) Filtering

(2) New Policy

Hypervisor

Figure 6.2: Proposed Scheme

5. The protection scheme should not impair performance, i.e., the scheme should be lightweight.

6. The filtering rule should be sufficiently expressive to stop DDoS attacks and reconfig-

urable without requiring a machine reboot, i.e., the scheme should be flexible.

6.2.3 Proposed Scheme

We propose a DDoS attack prevention scheme that satisfies all of the abovementioned objec-

tives. Figure 6.2 shows the details of the proposed scheme. This scheme involves managed

machines controlled by an administrator. A managed machine runs a hypervisor under the

guest OS. The hypervisor has two built-in components: a filtering mechanism and a filter

policy server that receives filtering policies.

In the proposed scheme, we use a hypervisor to enforce packet filtering even if the guest OS

is compromised (Objective 1). As indicated by the black arrows in Figure 6.2 (1), network

packets sent to or received from the NIC are filtered by the hypervisor. We exploit a parapass-

through hypervisor [35] for the following reasons. First, a parapass-through hypervisor allows

a guest OS to access most hardware directly and intercepts only some I/O accesses. Using this

mechanism, we only intercept NIC accesses to filter packets, while other I/Os are performed

101

as if no hypervisor is present, which reduces overhead (Objective 5). This mechanism also

reduces boot time, and the user can use the machine in a transparent manner (Objective 4).

Second, the parapass-through hypervisor code size is much smaller than that of traditional

hypervisors, such as Xen and KVM [35], which means that the trusted computing base of the

parapass-through hypervisor is small and there is less chance that the hypervisor will contain

security vulnerabilities (Objective 3).

The filtering mechanism in the hypervisor filters network packets based on a filtering policy.

To allow the filtering policy to be altered remotely, the hypervisor has a filter policy server

that listens for new policies from the administrator. The server updates the filtering policy

accordingly when receiving a new policy. As indicated by the blue dotted lines in Figure 6.2

(2), the system administrator can change the filtering policy by sending a new policy to the

hypervisor (Objective 2).

To meet our objectives, the filtering mechanism must be safe, fast, and flexible. The fastest

and most flexible way to achieve this is to directly run a program written in machine code.

However, since such a program can comprise arbitrary code, it is difficult to guarantee the

safety of the program, such as eliminating access to external memory regions other than those

storing the given packet data and avoiding infinite loops. Another option is to define filtering

rules in the hypervisor in advance and selecting which rule to use based on the given policy.

This option is safe in the sense that the filtering will only perform predefined processing.

However, this lacks flexibility and the hypervisor would need to be restarted to update the

filtering rules.

We use a specialized language-based virtual machine aimed at fast packet filtering. The

administrator writes a filtering policy as code in the language used by the virtual machine.

The hypervisor performs packet filtering by running the code using an interpreter. Note that

security is guaranteed by the verifier prior to execution. This mechanism has the following

advantages. First, by changing the program, we can change the filtering policy, which facili-

tates greater flexibility than a static setting (Objective 6). Second, by designing simple and

restricted ISA, verifying program safety becomes easier than verifying native code (Objective

3). Optionally, by employing JIT compilation, we could generate native code and increase the

speed of filtering.

Figure 6.3 shows the flow of setting a new policy and filtering. Here, the black dotted

line represents the filtering setting flow. When setting a new filtering policy, the verifier first

checks the program’s safety. If safety is verified, the hypervisor sets the policy as the filtering

rule with optional JIT compiling. Then, the hypervisor runs filtering code (blue lines) when

it receives new packets. To increase program flexibility and performance, optionally we can

create an interface that allows the program to call predefined hypervisor functions, e.g., a

function that looks up the IP address blacklist table.

102

Verifier Filtering
Code

New Filtering
Policy (Code)

JIT
Compiler

(optional)

Native
Function

Predefined function call

Pass / Discard

New Packet

Figure 6.3: Filtering flow

6.2.4 DDoS Attack Prevention Workflow

The typical workflow of preventing DDoS attacks using the proposed scheme is as follows.

1. The system administrator introduces the proposed scheme (the hypervisor with the

filtering mechanism) to their managed machines. The default policy is no filtering.

2. The attacker takes control of some of these machines to perform DDoS attacks.

3. When the system administrator identifies that a managed machine is performing a DDoS

attack, they create a new policy to stop DDoS attack packets (e.g., to stop packets whose

destination is a specific host) and send the policy to the attacking machine(s).

4. The transmission of DDoS attack packets is suppressed by the hypervisor according to

the new policy.

5. If the DDoS attack is stopped, the system administrator can create a new policy with

no filtering and send it to the target machine. Thus, the system administrator can reset

the filtering settings without rebooting the given system.

103

6.2.5 Discussion of the Proposed Scheme

Recent CPUs have a mechanism to create a security subsystem, such as Intel SGX [183] or

ARM TrustZone [167]. By utilizing this mechanism, one can create a secure region which

cannot be accessed from untrusted regions. We may create a packet filtering mechanism

which runs in such a secure region so that attackers cannot read or modify the filtering policy.

However, we cannot enforce packet filtering with this mechanism alone. Therefore, we use a

hypervisor in the proposed scheme.

Our scheme will work with any arbitrary OS since it does not depend on any particular

OS functionalities. It is easy to install the proposed scheme because the hypervisor can be

inserted into existing machines without reinstalling the OS.

Typical DDoS attacks involve many machines spanning several networks. Hence, many

administrators would need to enforce filtering policies for each machine. To efficiently and

effectively create a policy, it is nice to have a platform where administrators can share DDoS

attack information and cooperate to create policies, which will be the future work.

It is possible for clients to regularly pull the filter policy from a policy server. However, in

this case, clients need to remember the server address and unnecessary traffic is generated. In

our scheme, the management machine pushes the policy to each client. This scheme may not

scale enough if there is a large number of clients. We can adopt P2P communication protocols

such as gossip protocols [2] to distribute filtering policies, which will also the future work.

Note that the proposed scheme does not utilize virtual machine introspection (VMI) [10]

to obtain information about the packet sending process. Therefore, the hypervisor cannot

perform packet filtering based on such process information. However, we consider that such

process information is not necessarily required, i.e., packet information is sufficient to stop

DDoS attacks. In addition, we can obtain a performance advantage by not employing VMI

architecture. Furthermore, since we do not need to implement a process analysis mechanism,

the implementation is independent of the guest OS.

6.3 Implementation

This section describes the implementation of the proposed scheme. First, the packet intercep-

tion method and filtering mechanism are described. Then, we describe how we create BPF

programs and how the policy server receives them.

6.3.1 Packet Interception

We implemented the proposed scheme using BitVisor [35] as the hypervisor. BitVisor employs

a parapass-through architecture wherein, in exchange for supporting only one guest OS, the

104

guest OS can essentially access hardware directly and the hypervisor can intercept some of

the I/O accesses. In our configuration, only access to a NIC is intercepted by the hypervisor,

and access to other devices is pass-through. Each interrupt is delivered directly to the guest

OS without exiting the VM, thereby improving network performance.

BitVisor intercepts network packets with shadow descriptors. Figure 6.4 illustrates how

shadow descriptors work. BitVisor shadows the NIC’s descriptor by intercepting MMIO ac-

cesses from the guest OS device driver. NIC’s descriptor base register points to a memory

region inside BitVisor. When transmitting a network packet, the guest OS first sets up its

descriptor table and buffers. Then, the guest OS attempts to write the NIC’s MMIO register

to request the NIC start transmitting packets. BitVisor intercepts this MMIO access and

copies data to its descriptor table and buffers, and then makes a transmission request to the

NIC. When receiving a packet, an interrupt is first delivered to the guest OS directly. Then,

the guest OS device driver attempts to access the NIC’s MMIO register to check the interrupt

status. BitVisor intercepts this MMIO access and copies data from the shadow buffer to the

guest OS buffer. Note that this interception method does not depend on any OS functionality

and works for any arbitrary OS. BitVisor has this mechanism for common NICs, including

the Intel Pro1000, Realtek 8169, and Broadcom 43xx NICs. We modified BitVisor such that,

when copying packet data from the guest OS buffer to the shadow buffer, BitVisor runs packet

filtering code per packet and discards a packet if the code does not allow it to be transmitted.

6.3.2 Filtering Mechanism

In the proposed scheme, we use the BPF [3] as the filtering mechanism. The BPF is a virtual

register machine that performs filtering by running a BPF program. By changing the BPF

program, we can change the filtering policy. The BPF instruction set is designed such that it

can be configured for various filtering conditions. For example, we can make a BPF program

that suppresses transmission of packets to a specific destination host and port. The filtering

method is designed to reduce packet reference times as much as possible.

In our implementation, we used the extended BPF (eBPF) [198], which is used in the Linux

kernel. Compared to the traditional BPF, the eBPF has more registers with 64-bit width,

ISA similar to the x86-64 and ARM-64 architectures, which allows easy JIT compilation, and

a mechanism to call predefined external functions.

We used a userspace implementation of the eBPF VM called ubpf [187], which has an eBPF

interpreter, a JIT compiler, and a simple verifier. The ubpf verifier can detect invalid in-

structions and infinite loops; however, its functionality is not perfect compared to the Linux

verifier [221]. For example, the current ubpf checks memory bounds dynamically when ac-

cessing memory. In the future, we will implement a verifier that is comparable to the Linux

verifier.

105

Physical Memory

Shadow Descriptor

Shadow Buffer

NIC

Ring buffer
base address

DMA Engine

DMA buffer address

Descriptor

Buffer buffer address

Copy

Figure 6.4: Descriptor shadowing

We modified some Linux-related parts of the ubpf and embedded them into BitVisor. The

BPF interpreter takes two arguments, i.e., a BPF program, which specifies the filtering policy,

and a packet data buffer that can be manipulated by the BPF program. When the hypervisor

intercepts an I/O packet, we run the BPF program with the intercepted packet data. Here,

the packet is discarded when the BPF program returns 0; otherwise, the packet is accepted

and transmitted. BPF programs can be set independently for both transmission and reception

directions.

6.3.3 Creating BPF Programs

LLVM has an eBPF backend as of version 3.8, and we can write an eBPF program in C

and compile it using clang. Listing 6.1 shows an example filtering program that uses the

BPF Compiler Collection (bcc) [186], which provides a helper function to compile an eBPF

program in a Python script. This program creates a BPF program that filters packets whose

destination IP is 192.168.20.1, and then send it to the policy server (192.168.20.51).

106

1 prog = compile_program("""// eBPF program

2 int entry(u8* pkt){

3 struct eth_t *ether_hdr = (struct eth_t*) pkt;

4 int type = bpf_ntohs(ether_hdr->type);

5 if (type == 0x0800){ // IP

6 struct ip_t *ip_hdr = (struct ip_t*)

7 ((u8*)ether_hdr + sizeof(struct eth_t));

8 if (ip_hdr->src == 0x0114A8C0) // 192.168.20.1

9 return 0; // drop

10 }

11 return 1; // accept

12 }""")

13 send_program(prog, "192.168.20.51", 11111)

Listing 6.1: Example filtering code

6.3.4 Policy Server

BitVisor has TCP/IP server functionality based on lwIP [199], and we created a policy server

using this mechanism. There are two ways to use the lwIP functionality in BitVisor. One way

is to assign a NIC to the hypervisor exclusively. The NIC used by the hypervisor is concealed

and cannot be accessed from the guest OS. The other way is to duplicate network packets

and process them using both the guest OS and lwIP in the hypervisor. Although this method

adds additional packet processing computations, it requires only a single NIC. Either method

can be employed depending on the given situation.

In the hypervisor, the policy server listens to a specific port and waits for the policy setting

packet, which comprises the filter type and the BPF program. When receiving a policy setting

packet, the filter server first verifies the BPF program using the verifier. When verification is

complete, the filter server sets the new BPF policy for transmission (if the filter type is 0) or

reception (if the filter type is 1). Otherwise, the policy setting packet is discarded. Here, JIT

compiling can be enabled depending on the configuration.

Note that the current implementation does not employ any authentication mechanism. In

addition, we require a secure connection between the policy server and the administrator’s

management machine. We can use a transport layer security connection to support both.

6.4 Evaluation

In this section, we first present the results of a proof-of-concept experiment, then the results

of a performance evaluation.

107

Server

Switch

Machine A

Machine B

Management Machine

Stop Request

DDoS Traffic

Figure 6.5: Settings of Proof-of-concept Experiment

Table 6.1: Machine Specifications

CPU Mem NIC OS
Server i7-7700 16GB Intel 82574L Linux 4.13
Machine A i7-4690K 16GB Intel I218-V Linux 3.19
Machine B i7-2600K 16GB Intel 82589V Windows 10
Management

i5-4278U 8GB BCM57766 Linux 4.13
Machine

6.4.1 Proof-of-concept Experiment

We conducted a proof-of-concept experiment to demonstrate the effectiveness of the proposed

scheme. Figure 6.5 shows the experimental settings. Here, machine A, machine B, the server

machine, and the management machine are connected via the same switch. Table 6.1 shows

the specifications of each machine. We installed the proposed scheme on machines A and B

with JIT compiling enabled. Since each machine has only a single NIC, BitVisor shares the

NIC with the guest OS and uses it as a lwIP server. The IP addresses of machine A and its

policy server are 192.168.20.10 and 192.168.20.11, respectively. The IP addresses of the

machine B and its policy server are 192.168.20.20 and 192.168.20.21, respectively. The

policy server listens to port 11111 on each machine. The server runs the Apache HTTP server,

and its IP address is 192.168.20.1.

Approximately 10 seconds after the experiment began, machines A and B generated enor-

108

mous HTTP requests using Apache Bench [223]. Approximately 30 seconds after the start

of the measurement, the management machine sent a filtering policy to machines A and B

that was designed to stop all packets whose destination IP address was 192.168.20.1 (server

machine; port 80) . Approximately 40 seconds after the start of the measurement, the man-

agement machine reset the filtering policy of machines A and B by sending a BPF program

that accepted all packets.

Figure 6.6 shows the number of HTTP requests and CPU utilization (average of all cores)

of the server. The server received approximately 10,000 requests per second when machines

A and B began generating requests. The number of HTTP requests and CPU utilization de-

creased sharply at 30 seconds, which indicates that filtering had stopped packet transmissions.

From 40 seconds to the end of the measurement period, the number of HTTP requests was ap-

proximately 10,000, which is similar to the number of request sent from 10 to 20 seconds. This

indicates that packet transmissions were enabled again by resetting the filter policy. These

results confirm that packet transmission can be suppressed by setting a new policy, which can

be reset by the proposed scheme.

6.4.2 Performance Evaluation

We measured the throughput and latency between machine A and the server to evaluate the

overhead of the proposed scheme. To compare the results, we also measured the throughput

and latency of a bare metal system and KVM. When measuring KVM, we created a single

VM and allocated the same number of cores and memory capacity to the VM.

6.4.2.1 Throughput

We used the following netperf [178] command to measure throughput.

$ netperf -l 3 -H <ipaddr> -t TCP_STREAM -- -m <MTU>

Note that machine A ran the netperf server during the measurement procedure. When mea-

suring the proposed scheme, we set the filter to stop all packets whose destination IP address

was 192.168.20.50 (port 80). This filtering setting allowed machine A to send packets to the

server.

Figure 6.7 shows the measurement results. Note that all measurements were performed

three times, and the average score is plotted in the figure. As can be seen, all throughput

measurement results were approximately 930 Mbps and the proposed scheme did not degrade

throughput.

109

0 10 20 30 40 50 60

Elapsed Time [s]

0

2000

4000

6000

8000

10000

R
e
q
u
e
st

 P
e
r

S
e
co

n
d
s

start filtering

stop filtering

rps

cpu
0

5

10

15

20

25

30

35

40

C
P
U

 U
ti

liz
a
ti

o
n
 [

%
]

Figure 6.6: Results of Proof-of-concept Experiment

6.4.2.2 Latency

We measured latency using ping command. To evaluated the impact of the filter size (number

of IP addresses to check), we measured the proposed scheme with different filtering settings.

Figure 6.8 shows a boxplot of the latency. We measured the latency 30 times in each exper-

iment. The numbers in the parentheses indicate the number of IP addresses to check. For

example, proposed (100) means that the filter checked the destination IP address of the

packets did not match any 100 addresses in the filter program.

The median latency values were 203, 241 (proposed (1)), and 312 µs for the bare metal

system, the proposed scheme, and KVM, respectively. The proposed scheme has lower latency

than KVM. As can be seen, there is little difference between the proposed schemes with

different filter settings. This implies that the overhead of the proposed scheme mainly come

from the introducing parapass-through architecture to intercept I/Os. The filtering itself

performs efficiently.

Note that we also measured the throughput of the proposed method under the same filtering

110

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

MTU

0

200

400

600

800

1000
T
h
ro

u
g
h
p
u
t

[M
b
p
s]

baremetal

proposed

kvm

Figure 6.7: Throughput

settings. The throughput did not change regarding to the number of IP addresses to check.

6.5 Related Work of Source Side DDoS Protection

AVDOS [28], VMWall [31], xFilter [83], and AL-SAFE [103] all employ a hypervisor to enforce

packet filtering in the attacking machine. These methods also propose a DDoS attack detection

mechanism. While AVDOS uses only packet information, the other three methods utilize VMI

for fine-grained filtering. In addition, these methods use the Xen [9] or KVM [21] hypervisors.

The main difference of our study from these works is that our research goal is to create

a lightweight and flexible scheme with which a system administrator can suppress packet

transmission from managed machines. In addition, AVDOS, VMWall, and xFilter do not

have a functionality to change policies externally. Note that the target of xFilter and AL-

SAFE is the IaaS cloud. While we do not perform VMI, packet-based filtering is sufficient to

stop DDoS attack packets and has a performance advantage.

111

baremetal proposed
 (0)

proposed
 (1)

proposed
 (10)

proposed
 (100)

proposed
 (1000)

kvm

160

180

200

220

240

260

280

300
T
im

e
 [

u
s]

Figure 6.8: Ping Latency

KVM has a filtering mechanism called nwfilter [194] provided by libvirt, and nwfilter uses

the Linux iptables [202] mechanism to filter packets. However, as the experimental results

show, KVM incurs high virtualization overhead and is not suitable for personal computers.

Major cloud vendors provide packet filtering services for their cloud instances. For example,

the Amazon Elastic Compute Cloud uses a hypervisor with a firewall to enhance security [164].

Here, the communication of the guest OS passes through the hypervisor and firewall before

reaching the external network. However, this method can only be used within Amazon AWS,

and its design and implementation are not open to the public. In addition, it is not available

for personal use.

Software Defined Networking (SDN) is a technology that can flexibly change network config-

urations and settings through software. Examples of such techniques include OpenFlow [205]

and VMWare NSX [227]. Many studies have explored detection and defense methods against

DDoS attacks using SDN. For example, [39] performed some pioneering research on DDoS at-

tack detection and prevention using an OpenFlow switch. By implementing OpenFlow switch

112

functionality in the hypervisor, such methods can be used as source-side DDoS attack pre-

vention systems. In fact, Open vSwitch [206] provides OpenFlow switch implementations for

KVM and Xen. However, they are too complicated and heavyweight for personal computers.

Some studies have worked on detection and dynamic filtering of DDoS attacks on the at-

tacker side. For example, to prevent spoofed packets from being transmitted, Network Ingress

Filtering [4] confirms that the IP address of the packet sender is valid in the network at the

edge router. D-WARD [11, 17] records bidirectional network traffic and compares the flow

rate to a predetermined normal flow rate model. If the flow rates differ, an attack is assumed

and filtering is performed. MULTOPS [7] and TOPS [8] use the ratio of the network flow

rate in both the transmitting and receiving directions in routers as a DDoS attack detection

method. Here, packet filtering is performed when one of flow rates is extremely large. [47] uses

confidense-based filtering method and [106, 120] uses machine learning techniques to detect

DDoS attacks in the cloud. Note that these detection mechanisms are orthogonal to and can

be used in conjunction with the proposed scheme.

6.6 Summary

In this chapter, we have proposed a reliable, lightweight, transparent, and flexible DDoS at-

tack prevention scheme that can be used by a system administrator to easily suppress packet

transmissions from managed machines. We employ a thin hypervisor that can enforce packet

filtering based on a filtering policy. The filtering policy is described as a executable code with

restricted ISA. Safe execution is achieved by statically verifying the code in advance. The

filtering policy can be dynamically changed by sending new policy to the policy server in the

hypervisor. To make the proposed scheme lightweight and transparent, it uses a parapass-

through hypervisor that intercepts only network I/Os. We implemented the proposed scheme

using BitVisor and the eBPF. The experimental results show that the proposed scheme demon-

strates negligible overhead relative to both latency and throughput.

113

7 Conclusion

In this thesis, we discussed optimizing virtualization for functional requirements through sev-

eral use cases.

First, we optimized nested virtualization for hypervisor device driver testing. Focusing on

the fact that the security features required by normal virtualization are unnecessary for test-

ing purposes, we eliminated nested page shadowing. The performance experiments showed

that the proposed method had a much lower overhead than the traditional nested virtual-

ization scheme and could test the hypervisor device drivers in close to the real environment.

Second, we presented the efficient IOMMU virtualization method for device protection. We

achieved higher performance than a regular vIOMMU by only shadowing the necessary area

for protection. These studies showed that we could gain significant performance improvements

by limiting the functions to be virtualized. On the contrary, this means that current nested

virtualization and IOMMU virtualization still have a large overhead. Improving these perfor-

mances while keeping the functionality is one of the important future works. There is a limit

to performance improvement in software alone. Research at the hardware architecture design

level will be necessary in this regard.

We also presented a detailed performance evaluation of the NUMA-visible virtual machine

on Linux. The evaluations revealed several problems with NUMA scheduling. We fixed the

incorrect paravirtualization feature that causes severe performance degradation. Experimental

results suggested that there is still room for improvement in NUMA scheduling performance.

Finally, we proposed a method to improve the flexibility of hypervisors without compromis-

ing performance by using a secure and lightweight language virtual machine. An an example

of the use of the language virtual machine, we present source side DDoS prevention scheme

using virtualization. The experimental results showed that the proposed scheme demonstrates

negligible overhead relative to both latency and throughput. Using a secure and lightweight

language virtual machine is a promising approach to increase hypervisor’s flexibility, and find-

ing other applications also would become an important work.

114

Bibliography

[1] Gerald J. Popek and Robert P. Goldberg. “Formal Requirements for Virtualizable Third
Generation Architectures”. In: Communications of the ACM 17.7 (1974), pp. 412–421.
doi: 10.1145/361011.361073.

[2] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. “Epidemic Algorithms for Replicated
Database Maintenance”. In: Proceedings of the 6th Annual ACM Symposium on Princi-
ples of Distributed Computing (PODC’87). 1987, pp. 1–12. doi: 10.1145/41840.41841.

[3] Steven McCanne and Van Jacobson. “The BSD Packet Filter: A New Architecture
for User-level Packet Capture”. In: Proceedings of the USENIX Winter 1993. Vol. 46.
USENIX Association, 1993. url: https://dl.acm.org/doi/10.5555/1267303.
1267305.

[4] Paul Ferguson and Daniel Senie. “Network Ingress Filtering: Defeating Denial of Service
Attacks which Employ IP Source Address Spoofing”. In: RFC 2827 (2000). url: https:
//tools.ietf.org/html/rfc2827.

[5] Yin Zhang and Vern Paxson. “Detecting Stepping Stones”. In: Proceedings of the 9th
USENIX Security Symposium (SEC’00). USENIX Association, 2000. url: https://
www . usenix . org / conference / 9th - usenix - security - symposium / detecting -

stepping-stones.

[6] Peter. M. Chen and Brian. D. Noble. “When Virtual is Better Than Real”. In: Proceed-
ings of the 8th Workshop on Hot Topics in Operating Systems (HotOS’01). Institute of
Electrical and Electronics Engineers, 2001, pp. 133–138. doi: 10.1109/HOTOS.2001.
990073.

[7] Thomer M Gil and Massimiliano Poletto. “MULTOPS: A Data-structure for Band-
width Attack Detection”. In: Proceedings of the 10th USENIX Security Symposium
(SEC’01). USENIX Association, 2001, pp. 23–38. url: https://www.usenix.org/
conference / 10th - usenix - security - symposium / multops - data - structure -

bandwidth-attack-detection.

[8] Samuel Abdelsayed, David Glimsholt, Christopher Leckie, Simon Ryan, and Samer
Shami. “An Efficient Filter for Denial-of-service Bandwidth Attacks”. In: Proceedings
of the 2003 IEEE Global Telecommunications Conference (GLOBECOM’03). Vol. 3.
Institute of Electrical and Electronics Engineers, 2003, pp. 1353–1357. doi: 10.1109/
GLOCOM.2003.1258459.

[9] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. “Xen and the Art of Virtualization”. In:
Proceedings of the 10th ACM Symposium on Operating Systems Principles (SOSP’03).
2003, pp. 164–177. doi: 10.1145/945445.945462.

115

https://doi.org/10.1145/361011.361073
https://doi.org/10.1145/41840.41841
https://dl.acm.org/doi/10.5555/1267303.1267305
https://dl.acm.org/doi/10.5555/1267303.1267305
https://tools.ietf.org/html/rfc2827
https://tools.ietf.org/html/rfc2827
https://www.usenix.org/conference/9th-usenix-security-symposium/detecting-stepping-stones
https://www.usenix.org/conference/9th-usenix-security-symposium/detecting-stepping-stones
https://www.usenix.org/conference/9th-usenix-security-symposium/detecting-stepping-stones
https://doi.org/10.1109/HOTOS.2001.990073
https://doi.org/10.1109/HOTOS.2001.990073
https://www.usenix.org/conference/10th-usenix-security-symposium/multops-data-structure-bandwidth-attack-detection
https://www.usenix.org/conference/10th-usenix-security-symposium/multops-data-structure-bandwidth-attack-detection
https://www.usenix.org/conference/10th-usenix-security-symposium/multops-data-structure-bandwidth-attack-detection
https://doi.org/10.1109/GLOCOM.2003.1258459
https://doi.org/10.1109/GLOCOM.2003.1258459
https://doi.org/10.1145/945445.945462

Bibliography

[10] Tal Garfinkel and Mendel Rosenblum. “A Virtual Machine Introspection Based Ar-
chitecture for Intrusion Detection”. In: Proceedings of the 2003 Network and Dis-
tributed Systems Security Symposium (NDSS’03). 2003, pp. 191–206. url: https :
//www.ndss-symposium.org/ndss2003/virtual-machine-introspection-based-

architecture-intrusion-detection/.

[11] Jelena Mirkovic, Gregory. Prier, and Peter Reiher. “Source-end DDoS Defense”. In:
Proceedings of the 2nd IEEE International Symposium on Network Computing and
Applications (NCA’03). Institute of Electrical and Electronics Engineers, 2003, pp. 171–
178. doi: 10.1109/NCA.2003.1201153.

[12] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. “Unmodified Device
Driver Reuse and Improved System Dependability via Virtual Machines”. In: Pro-
ceedings of the 6th USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI’04). USENIX association, 2004. url: https://www.usenix.org/
conference/osdi-04/unmodified-device-driver-reuse-and-improved-system-

dependability-virtual-machines.

[13] David E. Lowell, Yasushi Saito, and Eileen J. Samberg. “Devirtualizable Virtual Ma-
chines Enabling General, Single-Node, Online Maintenance”. In: Proceedings of the
11th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’04). Boston, MA, USA: Association for Computing
Machinery, 2004, pp. 211–223. doi: 10.1145/1024393.1024419.

[14] Jelena Mirkovic and Peter Reiher. “A Taxonomy of DDoS Attack and DDoS Defense
Mechanisms”. In: SIGCOMM Comput. Commun. Rev. 34.2 (2004), pp. 39–53. doi:
10.1145/997150.997156.

[15] Nick L. Petroni Jr., Timothy Fraser, Jesus Molina, and William A. Arbaugh. “Copilot
- a Coprocessor-based Kernel Runtime Integrity Monitor”. In: Proceedings of the 13th
Conference on USENIX Security Symposium (SEC’04). USENIX Association, 2004.
url: http://dl.acm.org/citation.cfm?id=1251375.1251388.

[16] Volkmar Uhlig, Joshua LeVasseur, Espen Skoglund, and Uwe Dannowski. “Towards
Scalable Multiprocessor Virtual Machines”. In: Proceedings of the 3rd Conference on
Virtual Machine Research And Technology Symposium. USENIX Association, 2004.
url: http://dl.acm.org/citation.cfm?id=1267242.1267246.

[17] Jelena Mirkovic and Peter Reiher. “D-WARD: A Source-end Defense against Flooding
Denial-of-service Attacks”. In: IEEE Transactions on Dependable and Secure Comput-
ing 2.3 (2005), pp. 216–232. doi: 10.1109/TDSC.2005.35.

[18] PCI-SIG. PCI-SIG ENGINEERING CHANGE NOTICE PCI Express Access Control
Services (ACS). 2005.

[19] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Lichtenberg, Con
McGarvey, Bohus Ondrusek, Sriram K. Rajamani, and Abdullah Ustuner. “Thorough
Static Analysis of Device Drivers”. In: Proceedings of the 1st ACM SIGOPS/EuroSys
European Conference on Computer Systems (EuroSys’06). Association for Computing
Machinery, 2006, pp. 73–85. doi: 10.1145/1217935.1217943.

116

https://www.ndss-symposium.org/ndss2003/virtual-machine-introspection-based-architecture-intrusion-detection/
https://www.ndss-symposium.org/ndss2003/virtual-machine-introspection-based-architecture-intrusion-detection/
https://www.ndss-symposium.org/ndss2003/virtual-machine-introspection-based-architecture-intrusion-detection/
https://doi.org/10.1109/NCA.2003.1201153
https://www.usenix.org/conference/osdi-04/unmodified-device-driver-reuse-and-improved-system-dependability-virtual-machines
https://www.usenix.org/conference/osdi-04/unmodified-device-driver-reuse-and-improved-system-dependability-virtual-machines
https://www.usenix.org/conference/osdi-04/unmodified-device-driver-reuse-and-improved-system-dependability-virtual-machines
https://doi.org/10.1145/1024393.1024419
https://doi.org/10.1145/997150.997156
http://dl.acm.org/citation.cfm?id=1251375.1251388
http://dl.acm.org/citation.cfm?id=1267242.1267246
https://doi.org/10.1109/TDSC.2005.35
https://doi.org/10.1145/1217935.1217943

Bibliography

[20] Andreas Johansson, Neeraj Suri, and Brendan Murphy. “On the Selection of Er-
ror Model(s) for OS Robustness Evaluation”. In: Proceedings of the 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’07).
Institute of Electrical and Electronics Engineers, 2007, pp. 502–511. doi: 10.1109/
DSN.2007.71.

[21] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. “KVM: the
Linux Virtual Machine Monitor”. In: Proceedings of the 2007 Linux Symposium. 2007,
pp. 225–230. url: https://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-
230.pdf.

[22] Manuel Mendonca and Nuno Neves. “Robustness Testing of the Windows DDK”. In:
Proceedings of the 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’07). Institute of Electrical and Electronics Engineers,
2007, pp. 554–564. doi: 10.1109/DSN.2007.85.

[23] Hendrik Post and Wolfgang Küchlin. “Integrated Static Analysis for Linux Device
Driver Verification”. In: Proceedings of the 2007 Integrated Formal Methods (IFM’07).
Springer Berlin Heidelberg, 2007.

[24] Joanna Rutkowska. “Beyond The CPU: Defeating Hardware Based RAM Acquisition”.
In: (2007).

[25] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. “SecVisor: A Tiny Hypervisor
to Provide Lifetime Kernel Code Integrity for Commodity OSes”. In: Proceedings of 21st
ACM SIGOPS Symposium on Operating Systems Principles (SOSP’07). Association for
Computing Machinery, 2007, pp. 335–350. doi: 10.1145/1294261.1294294.

[26] Thomas Witkowski, Nicolas Blanc, Daniel Kroening, and Georg Weissenbacher. “Model
Checking Concurrent Linux Device Drivers”. In: Proceedings of the 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE’07). Association
for Computing Machinery, 2007, pp. 501–504. doi: 10.1145/1321631.1321719.

[27] Thomas Friebel and Sebastian Biemueller. “How to Deal with Lock Holder Preemp-
tion”. In: Xen Summit North America. 2008.

[28] Sanjam Garg and Huzur Saran. “Anti-DDoS Virtualized Operating System”. In: Pro-
ceedings of the 3rd International Conference on Availability, Reliability and Security
(ARES’08). Institute of Electrical and Electronics Engineers, 2008, pp. 667–674. doi:
10.1109/ARES.2008.120.

[29] Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V. Adve, Vikram
S. Adve, and Yuanyuan Zhou. “Understanding the Propagation of Hard Errors to Soft-
ware and Implications for Resilient System Design”. In: Proceedings of the 13th Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’08). Association for Computing Machinery, 2008, pp. 265–276. doi:
10.1145/1346281.1346315.

[30] Rusty Russell. “virtio: Towards a De-facto Standard for Virtual I/O Devices”. In: ACM
SIGOPS Operating Systems Review 42.5 (2008), pp. 95–103. doi: 10.1145/1400097.
1400108.

117

https://doi.org/10.1109/DSN.2007.71
https://doi.org/10.1109/DSN.2007.71
https://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
https://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
https://doi.org/10.1109/DSN.2007.85
https://doi.org/10.1145/1294261.1294294
https://doi.org/10.1145/1321631.1321719
https://doi.org/10.1109/ARES.2008.120
https://doi.org/10.1145/1346281.1346315
https://doi.org/10.1145/1400097.1400108
https://doi.org/10.1145/1400097.1400108

Bibliography

[31] Abhinav Srivastava and Jonathon Giffin. “Tamper-resistant, Application-aware Block-
ing of Malicious Network Connections”. In: Proceedings of the 11th International Sym-
posium on Recent Advances in Intrusion Detection (RAID’08). Springer, 2008, pp. 39–
58. doi: 10.1007/978-3-540-87403-4_3.

[32] Asim Kadav, Matthew J. Renzelmann, and Michael M. Swift. “Tolerating Hardware
Device Failures in Software”. In: Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles (SOSP’09). Association for Computing Machinery,
2009, pp. 59–72. doi: 10.1145/1629575.1629582.

[33] Julia L. Lawall, Julien Brunel, Nicolas Palix, Rene Rydhof Hansen, Henrik Stuart,
and Gilles Muller. “WYSIWIB: A Declarative Approach to Finding API Protocols and
Bugs in Linux Code”. In: Proceedings of the 2009 IEEE/IFIP International Confer-
ence on Dependable Systems Networks (DSN’09). Institute of Electrical and Electronics
Engineers, 2009, pp. 43–52. doi: 10.1109/DSN.2009.5270354.

[34] PCI-SIG. Address Translation Services Specification Revision 1.0. 2009.

[35] Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Kazumasa Omote, Shoichi
Hasegawa, Takashi Horie, Manabu Hirano, Kenichi Kourai, Yoshihiro Oyama, Eiji
Kawai, Kenji Kono, Shigeru Chiba, Yasushi Shinjo, and Kazuhiko Kato. “BitVisor:
A Thin Hypervisor for Enforcing I/O Device Security”. In: Proceedings of the 2009
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (VEE’09). Association for Computing Machinery, 2009, pp. 121–130. doi: 10.
1145/1508293.1508311.

[36] Chuliang Weng, Zhigang Wang, Minglu Li, and Xinda Lu. “The Hybrid Schedul-
ing Framework for Virtual Machine Systems”. In: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE’09). Association for Computing Machinery, 2009. doi: 10 . 1145 / 1508293 .

1508309.

[37] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, Nadav Har’El,
Abel Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami Yassour. “The Turtles
Project: Design and Implementation of Nested Virtualization”. In: Proceedings of the
9th USENIX Conference on Operating Systems Design and Implementation (OSDI’10).
USENIX Association, 2010, pp. 423–436. url: http://dl.acm.org/citation.cfm?
id=1924943.1924973.

[38] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, Nadav Har’El,
Abel Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami Yassour. “The Turtles
Project: Design and Implementation of Nested Virtualization”. In: Proceedings of the
9th USENIX Symposium on Operating Systems Design and Implementation (OSDI’10).
USENIX Association, 2010. url: https://www.usenix.org/conference/osdi10/
turtles-project-design-and-implementation-nested-virtualization.

[39] Rodrigo Braga, Edjard Mota, and Alexandre Passito. “Lightweight DDoS Flooding At-
tack Detection using NOX/OpenFlow”. In: Proceedings of the 2010 IEEE Local Com-
puter Network Conference (LCN’10). Institute of Electrical and Electronics Engineers,
2010, pp. 408–415. doi: 10.1109/LCN.2010.5735752.

118

https://doi.org/10.1007/978-3-540-87403-4_3
https://doi.org/10.1145/1629575.1629582
https://doi.org/10.1109/DSN.2009.5270354
https://doi.org/10.1145/1508293.1508311
https://doi.org/10.1145/1508293.1508311
https://doi.org/10.1145/1508293.1508309
https://doi.org/10.1145/1508293.1508309
http://dl.acm.org/citation.cfm?id=1924943.1924973
http://dl.acm.org/citation.cfm?id=1924943.1924973
https://www.usenix.org/conference/osdi10/turtles-project-design-and-implementation-nested-virtualization
https://www.usenix.org/conference/osdi10/turtles-project-design-and-implementation-nested-virtualization
https://doi.org/10.1109/LCN.2010.5735752

Bibliography

[40] Yosuke Chubachi, Takahiro Shinagawa, and Kazuhiko Kato. “Hypervisor-based Preven-
tion of Persistent Rootkits”. In: Proceedings of the 2010 ACM Symposium on Applied
Computing (SAC’10). Association for Computing Machinery, 2010, pp. 214–220. doi:
10.1145/1774088.1774131.

[41] Volodymyr Kuznetsov, Vitaly Chipounov, and George Candea. “Testing Closed-source
Binary Device Drivers with DDT”. In: Proceedings of the 2010 USENIX Conference on
USENIX Annual Technical Conference (ATC’10). USENIX Association, 2010, pp. 1–
12. url: http://dl.acm.org/citation.cfm?id=1855840.1855852.

[42] Lorenzo Martignoni, Aristide Fattori, Roberto Paleari, and Lorenzo Cavallaro. “Live
and Trustworthy Forensic Analysis of Commodity Production Systems”. In: Proceedings
of the 13th Recent Advances in Intrusion Detection (RAID’10). Springer, 2010, pp. 297–
316. doi: 10.1007/978-3-642-15512-3_16.

[43] Jiang Wang, Angelos Stavrou, and Anup Ghosh. “HyperCheck: A Hardware-Assisted
Integrity Monitor”. In: Proceedings of the 13th Recent Advances in Intrusion Detection
(RAID’10). Springer, 2010, pp. 158–177. doi: 10.1007/978-3-642-15512-3_9.

[44] Sidney Amani, Leonid Ryzhyk, Alastair F. Donaldson, Gernot Heiser, Alexander Legg,
and Yanjin Zhu. “Static Analysis of Device Drivers: We Can Do Better!” In: Proceedings
of the 2nd Asia-Pacific Workshop on Systems (APSys’11). Association for Computing
Machinery, 2011, 8:1–8:5. doi: 10.1145/2103799.2103809.

[45] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schuster. “vIOMMU: Efficient
IOMMU Emulation”. In: Proceedings of the 2011 USENIX Annual Technical Con-
ference (ATC’11). USENIX Association, 2011. url: https : / / www . usenix . org /
conference/usenixatc11/viommu-efficient-iommu-emulation.

[46] Saketh Bharadwaja, Weiqing Sun, Mohammed Niamat, and Fangyang Shen. “Collabra:
A Xen Hypervisor Based Collaborative Intrusion Detection System”. In: Proceedings of
the 8th International Conference on Information Technology: New Generations. 2011,
pp. 695–700. doi: 10.1109/ITNG.2011.123.

[47] Qi Chen, Wenmin Lin, Wanchun Dou, and Shui Yu. “CBF: A Packet Filtering Method
for DDoS Attack Defense in Cloud Environment”. In: Proceedings of the 9th Interna-
tional Conference on Dependable, Autonomic and Secure Computing (DSN’11). Insti-
tute of Electrical and Electronics Engineers, 2011, pp. 427–434. doi: 10.1109/DASC.
2011.86.

[48] Khaled Z. Ibrahim, Steven Hofmeyr, and Costin Iancu. “Characterizing the Perfor-
mance of Parallel Applications on Multi-socket Virtual Machines”. In: Proceedings of
the 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid’11). Institute of Electrical and Electronics Engineers, 2011, pp. 1–12. doi:
10.1109/CCGrid.2011.50.

[49] Vladimir V. Rubanov and Eugene A. Shatokhin. “Runtime Verification of Linux Kernel
Modules Based on Call Interception”. In: 2011 Fourth IEEE International Conference
on Software Testing, Verification and Validation (ICST’11). Institute of Electrical and
Electronics Engineers, 2011, pp. 180–189. doi: 10.1109/ICST.2011.20.

119

https://doi.org/10.1145/1774088.1774131
http://dl.acm.org/citation.cfm?id=1855840.1855852
https://doi.org/10.1007/978-3-642-15512-3_16
https://doi.org/10.1007/978-3-642-15512-3_9
https://doi.org/10.1145/2103799.2103809
https://www.usenix.org/conference/usenixatc11/viommu-efficient-iommu-emulation
https://www.usenix.org/conference/usenixatc11/viommu-efficient-iommu-emulation
https://doi.org/10.1109/ITNG.2011.123
https://doi.org/10.1109/DASC.2011.86
https://doi.org/10.1109/DASC.2011.86
https://doi.org/10.1109/CCGrid.2011.50
https://doi.org/10.1109/ICST.2011.20

Bibliography

[50] Fernand Lone Sang, Vincent Nicomette, and Yves Deswarte. “I/O Attacks in Intel PC-
based Architectures and Countermeasures”. In: Proceedings of the 2011 First SysSec
Workshop. Institute of Electrical and Electronics Engineers, 2011. doi: 10 . 1109 /
SysSec.2011.10.

[51] Orathai Sukwong and Hyong S. Kim. “Is Co-scheduling Too Expensive for SMP VMs?”
In: Proceedings of the 6th European Conference on Computer Systems (EuroSys’11).
Association for Computing Machinery, 2011. doi: 10.1145/1966445.1966469.

[52] Jiang Wang, Fengwei Zhang, Kun Sun, and Angelos Stavrou. “Firmware-Assisted Mem-
ory Acquisition and Analysis Tools for Digital Forensics”. In: Proceedings of the 2011
6th IEEE International Workshop on Systematic Approaches to Digital Forensic Engi-
neering (SADFE’11). Institute of Electrical and Electronics Engineers, 2011, pp. 1–5.
doi: 10.1109/SADFE.2011.7.

[53] Luwei Cheng and Cho-Li Wang. “vBalance: Using Interrupt Load Balance to Improve
I/O Performance for SMP Virtual Machines”. In: Proceedings of the 3rd ACM Sym-
posium on Cloud Computing (SoCC’12). Association for Computing Machinery, 2012.
doi: 10.1145/2391229.2391231.

[54] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. “The S2E Platform:
Design, Implementation, and Applications”. In: ACM Trans. Comput. Syst. 30.1 (2012),
2:1–2:49. doi: 10.1145/2110356.2110358.

[55] Alexander Kudryavtsev, Vladimir Koshelev, and Arutvun Avetisyan. “Modern HPC
Cluster Virtualization Using KVM and Palacios”. In: Proceedings of the 19th Interna-
tional Conference on High Performance Computing (HPC’12). Institute of Electrical
and Electronics Engineers, 2012, pp. 1–9. doi: 10.1109/HiPC.2012.6507495.

[56] Hyungon Moon, Hojoon Lee, Jihoon Lee, Kihwan Kim, Yunheung Paek, and Brent
Byunghoon Kang. “Vigilare: Toward Snoop-based Kernel Integrity Monitor”. In: Pro-
ceedings of the 12th ACM Conference on Computer and Communications Security
(CCS’12). Association for Computing Machinery, 2012, pp. 28–37. doi: 10.1145/
2382196.2382202.

[57] Tilo Müller, Benjamin Taubmann, and Felix C. Freiling. “OS-Independent Software-
Based Full Disk Encryption Secure against Main Memory Attacks”. In: Proceedings
of the 2012 Applied Cryptography and Network Security (ACNS’12). Springer, 2012,
pp. 66–83. doi: 10.1007/978-3-642-31284-7_5.

[58] Yushi Omote, Yosuke Chubachi, Takahiro Shinagawa, Tomohiro Kitamura, Hideki
Eiraku, and Katsuya Matsubara. “Hypervisor-based Background Encryption”. In: Pro-
ceedings of the 27th Annual ACM Symposium on Applied Computing (SAC’12). Associ-
ation for Computing Machinery, 2012, pp. 1829–1836. doi: 10.1145/2245276.2232073.

[59] Yoshihiro Oyama, Tran Truong Duc Giang, Yosuke Chubachi, Takahiro Shinagawa, and
Kazuhiko Kato. “Detecting Malware Signatures in a Thin Hypervisor”. In: Proceedings
of the 27th Annual ACM Symposium on Applied Computing (SAC’12). SAC ’12. New
York, NY, USA: Association for Computing Machinery, 2012, pp. 1807–1814. doi:
10.1145/2245276.2232070.

120

https://doi.org/10.1109/SysSec.2011.10
https://doi.org/10.1109/SysSec.2011.10
https://doi.org/10.1145/1966445.1966469
https://doi.org/10.1109/SADFE.2011.7
https://doi.org/10.1145/2391229.2391231
https://doi.org/10.1145/2110356.2110358
https://doi.org/10.1109/HiPC.2012.6507495
https://doi.org/10.1145/2382196.2382202
https://doi.org/10.1145/2382196.2382202
https://doi.org/10.1007/978-3-642-31284-7_5
https://doi.org/10.1145/2245276.2232073
https://doi.org/10.1145/2245276.2232070

Bibliography

[60] Sankaralingam Panneerselvam and Michael M. Swift. “Chameleon: Operating System
Support for Dynamic Processors”. In: Proceedings of the 17th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’12). Association for Computing Machinery, 2012. doi: 10.1145/2150976.
2150988.

[61] K. T. Raghavendra, S. Vaddagiri, N. Dadhania, and J. Fitzhardinge. “Paravirtualiza-
tion for Scalable Kernel-Based Virtual Machine (KVM)”. In: Proceedings of the 2012
IEEE International Conference on Cloud Computing in Emerging Markets (CCEM’12).
Institute of Electrical and Electronics Engineers, 2012, pp. 1–5. doi: 10.1109/CCEM.
2012.6354619.

[62] Matthew J. Renzelmann, Asim Kadav, and Michael M. Swift. “SymDrive: Testing
Drivers Without Devices”. In: Proceedings of the 10th USENIX Conference on Op-
erating Systems Design and Implementation (OSDI’12). USENIX Association, 2012,
pp. 279–292. url: http://dl.acm.org/citation.cfm?id=2387880.2387908.

[63] Varshapriya Shakti D Shekar B B Meshram. “Device Driver Fault Simulation using
KEDR”. In: International Journal. of Advanced Research in Computer Engineering &
Technology. Vol. 1. 4. 2012, pp. 580–584.

[64] Joe Sylve. “Lime – Linux Memory Extractor”. In: Proceedings of the 7th ShmooCon
Conference. 2012.

[65] Zongwei Zhou, Virgil D. Gligor, James Newsome, and Jonathan M. McCune. “Build-
ing Verifiable Trusted Path on Commodity x86 Computers”. In: Proceedings of the
32nd IEEE Symposium on Security and Privacy (S&P’12). Institute of Electrical and
Electronics Engineers, 2012. doi: 10.1109/SP.2012.42.

[66] Ŝtefan Balogh and Miroslav Mydlo. “New Possibilities for Memory Acquisition by En-
abling DMA Using Network Card”. In: 2013 IEEE 7th International Conference on
Intelligent Data Acquisition and Advanced Computing Systems (IDAACS’13). Vol. 02.
2013, pp. 635–639. doi: 10.1109/IDAACS.2013.6663002.

[67] Kai Cong, Fei Xie, and Li Lei. “Symbolic Execution of Virtual Devices”. In: Proceed-
ings of the 13th International Conference on Quality Software (QSIC’13). Institute of
Electrical and Electronics Engineers, 2013, pp. 1–10. doi: 10.1109/QSIC.2013.44.

[68] Nadav Har’El, Abel Gordon, Alex Landau, Muli Ben-Yehuda, Avishay Traeger, and
Razya Ladelsky. “Efficient and Scalable Paravirtual I/O System”. In: Presented as
part of the 2013 USENIX Annual Technical Conference (ATC’13). USENIX, 2013.
url: https : / / www . usenix . org / conference / atc13 / technical - sessions /

presentation/har%7B%5Ctextquoteright%7Del.

[69] Hwanju Kim, Sangwook Kim, Jinkyu Jeong, Joonwon Lee, and Seungryoul Maeng.
“Demand-based Coordinated Scheduling for SMP VMs”. In: Proceedings of the 18th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’13). Association for Computing Machinery, 2013. doi:
10.1145/2451116.2451156.

121

https://doi.org/10.1145/2150976.2150988
https://doi.org/10.1145/2150976.2150988
https://doi.org/10.1109/CCEM.2012.6354619
https://doi.org/10.1109/CCEM.2012.6354619
http://dl.acm.org/citation.cfm?id=2387880.2387908
https://doi.org/10.1109/SP.2012.42
https://doi.org/10.1109/IDAACS.2013.6663002
https://doi.org/10.1109/QSIC.2013.44
https://www.usenix.org/conference/atc13/technical-sessions/presentation/har%7B%5Ctextquoteright%7Del
https://www.usenix.org/conference/atc13/technical-sessions/presentation/har%7B%5Ctextquoteright%7Del
https://doi.org/10.1145/2451116.2451156

Bibliography

[70] Hojoon Lee, HyunGon Moon, DaeHee Jang, Kihwan Kim, Jihoon Lee, Yunheung Paek,
and Brent ByungHoon Kang. “KI-Mon: A Hardware-assisted Event-triggered Monitor-
ing Platform for Mutable Kernel Object”. In: Proceedings of the 22nd USENIX Security
Symposium (SEC’13). USENIX Association, 2013, pp. 511–526. url: https://www.
usenix.org/conference/usenixsecurity13/technical-sessions/presentation/

lee.

[71] Jiannan Ouyang and John R. Lange. “Preemptable Ticket Spinlocks: Improving Consol-
idated Performance in the Cloud”. In: Proceedings of the 9th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE’13). Association
for Computing Machinery, 2013. doi: 10.1145/2451512.2451549.

[72] Xiang Song, Jicheng Shi, Haibo Chen, and Binyu Zang. “Schedule Processes, Not VC-
PUs”. In: Proceedings of the 4th Asia-Pacific Workshop on Systems (APSys’13). Asso-
ciation for Computing Machinery, 2013. doi: 10.1145/2500727.2500736.

[73] Patrick Stewin. “A Primitive for Revealing Stealthy Peripheral-Based Attacks on the
Computing Platform’s Main Memory”. In: Proceedings of the 16th Research in Attacks,
Intrusions, and Defenses (RAID’13). Springer, 2013, pp. 1–20. doi: 10.1007/978-3-
642-41284-4_1.

[74] VMWare. The CPU Scheduler in VMware vSphere® 5.1. https://www.vmware.com/
content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-vsphere-

cpu-sched-performance-white-paper.pdf (Visted on 2022-3-02). 2013.

[75] Stefan Winter, Michael Tretter, Benjamin Sattler, and Neeraj Suri. “simFI: From single
to simultaneous software fault injections”. In: 2013 43rd Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN’13). Institute of Elec-
trical and Electronics Engineers, 2013, pp. 1–12. doi: 10.1109/DSN.2013.6575310.

[76] Cong Xu, Sahan Gamage, Hui Lu, Ramana Kompella, and Dongyan Xu. “vTurbo:
Accelerating Virtual Machine I/O Processing Using Designated Turbo-Sliced Core”. In:
Proceedings of the the 2013 USENIX Annual Technical Conference (ATC’13). USENIX,
2013. url: https://www.usenix.org/conference/atc13/technical-sessions/
presentation/xu.

[77] Saman Taghavi Zargar, James Joshi, and David Tipper. “A Survey of Defense Mech-
anisms against Distributed Denial of Service (DDoS) Flooding Attacks”. In: IEEE
Commun. Surveys & Tutorials 15.4 (2013), pp. 2046–2069. doi: 10.1109/SURV.2013.
031413.00127.

[78] Liu Ziyi, Lee Jong Hyuk, Zeng Junyuan, Wen Yuanfeng, Lin Zhiqiang, and Shi Wei-
dong. “CPU Transparent Protection of OS Kernel and Hypervisor Integrity with Pro-
grammable DRAM”. In: ACM SIGARCH Computer Architecture News (2013). url:
https://dl.acm.org/doi/abs/10.1145/2508148.2485956.

[79] Nuttapong Chakthranont, Phonlawat Khunphet, Ryousei Takano, and Tsutomu
Ikegami. “Exploring the Performance Impact of Virtualization on an HPC Cloud”.
In: Proceedings of the 6th IEEE International Conference on Cloud Computing Tech-
nology and Science (CloudCom’14). Institute of Electrical and Electronics Engineers,
2014, pp. 426–432. doi: 10.1109/CloudCom.2014.71.

122

https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/lee
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/lee
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/lee
https://doi.org/10.1145/2451512.2451549
https://doi.org/10.1145/2500727.2500736
https://doi.org/10.1007/978-3-642-41284-4_1
https://doi.org/10.1007/978-3-642-41284-4_1
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-vsphere-cpu-sched-performance-white-paper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-vsphere-cpu-sched-performance-white-paper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-vsphere-cpu-sched-performance-white-paper.pdf
https://doi.org/10.1109/DSN.2013.6575310
https://www.usenix.org/conference/atc13/technical-sessions/presentation/xu
https://www.usenix.org/conference/atc13/technical-sessions/presentation/xu
https://doi.org/10.1109/SURV.2013.031413.00127
https://doi.org/10.1109/SURV.2013.031413.00127
https://dl.acm.org/doi/abs/10.1145/2508148.2485956
https://doi.org/10.1109/CloudCom.2014.71

Bibliography

[80] Xiaoning Ding, Phillip B. Gibbons, Michael A. Kozuch, and Jianchen Shan. “Gleaner:
Mitigating the Blocked-Waiter Wakeup Problem for Virtualized Multicore Applica-
tions”. In: Proceedings of the 2014 USENIX Annual Technical Conference (ATC’18).
USENIX Association, 2014, pp. 73–84. url: https://www.usenix.org/conference/
atc14/technical-sessions/presentation/ding.

[81] Sahan Gamage, Cong Xu, Ramana Rao Kompella, and Dongyan Xu. “vPipe: Piped
I/O Offloading for Efficient Data Movement in Virtualized Clouds”. In: Proceedings of
the 2014 ACM Symposium on Cloud Computing (SoCC’14). Association for Computing
Machinery, 2014. doi: 10.1145/2670979.2671006.

[82] Daehee Jang, Hojoon Lee, Minsu Kim, Daehyeok Kim, Daegyeong Kim, and Brent
Byunghoon Kang. “ATRA: Address Translation Redirection Attack against Hardware-
based External Monitors”. In: Proceedings of the 21st ACM Conference on Computer
and Communications Security (CCS’14). ACM, 2014, pp. 167–178. doi: 10.1145/
2660267.2660303.

[83] Kenichi Kourai, Takeshi Azumi, and Shigeru Chiba. “Efficient and Fine-Grained VMM-
Level Packet Filtering for Self-Protection”. In: Int. J. Adapt. Resilient Auton. Syst. 5.2
(2014), pp. 83–100. doi: 10.4018/ijaras.2014040105.

[84] Ming Liu and Tao Li. “Optimizing Virtual Machine Consolidation Performance on
NUMA Server Architecture for Cloud Workloads”. In: Proceeding of the ACM/IEEE
41st International Symposium on Computer Architecture (ISCA’14). Institute of Elec-
trical and Electronics Engineers, 2014, pp. 325–336. doi: 10 . 1109 / ISCA . 2014 .

6853224.

[85] Gábor Pék, Andrea Lanzi, Abhinav Srivastava, Davide Balzarotti, Aurélien Francillon,
and Christoph Neumann. “On the Feasibility of Software Attacks on Commodity Vir-
tual Machine Monitors via Direct Device Assignment”. In: Proceedings of the 9th ACM
Symposium on Information, Computer and Communications Security (AsiaCCS’14).
Association for Computing Machinery, 2014. doi: 10.1145/2590296.2590299.

[86] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Sushil Jajodia. “TrustDump: Reliable
Memory Acquisition on Smartphones”. In: Proceedings of the 19th European Symposium
on Research in Computer Security (ESORICS’14). Springer, 2014, pp. 202–218. doi:
10.1007/978-3-319-11203-9_12.

[87] Fengwei Zhang, Haining Wang, Kevin Leach, and Angelos Stavrou. “A Framework
to Secure Peripherals at Runtime”. In: Proceedings of the 19th European Symposium
on Research in Computer Security (ESORICS’14). Springer, 2014, pp. 219–238. doi:
10.1007/978-3-319-11203-9_13.

[88] Kai Cong, Li Lei, Zhenkun Yang, and Fei Xie. “Automatic Fault Injection for Driver
Robustness Testing”. In: Proceedings of the 2015 International Symposium on Soft-
ware Testing and Analysis (ISSTA’15). Association for Computing Machinery, 2015,
pp. 361–372. doi: 10.1145/2771783.2771811.

[89] Takaaki Fukai, Yushi Omote, Takahiro Shinagawa, and Kazuhiko Kato. “OS-
Independent Live Migration Scheme for Bare-Metal Clouds”. In: Proceedings of the 2015
IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC’15).
2015, pp. 80–89. doi: 10.1109/UCC.2015.23.

123

https://www.usenix.org/conference/atc14/technical-sessions/presentation/ding
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ding
https://doi.org/10.1145/2670979.2671006
https://doi.org/10.1145/2660267.2660303
https://doi.org/10.1145/2660267.2660303
https://doi.org/10.4018/ijaras.2014040105
https://doi.org/10.1109/ISCA.2014.6853224
https://doi.org/10.1109/ISCA.2014.6853224
https://doi.org/10.1145/2590296.2590299
https://doi.org/10.1007/978-3-319-11203-9_12
https://doi.org/10.1007/978-3-319-11203-9_13
https://doi.org/10.1145/2771783.2771811
https://doi.org/10.1109/UCC.2015.23

Bibliography

[90] Moshe Malka, Nadav Amit, Muli Ben-Yehuda, and Dan Tsafrir. “rIOMMU: Efficient
IOMMU for I/O Devices That Employ Ring Buffers”. In: Proceedings of the 20th Inter-
national Conference on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS’15). Association for Computing Machinery, 2015, pp. 355–368.
doi: 10.1145/2694344.2694355.

[91] Moshe Malka, Nadav Amit, and Dan Tsafrir. “Efficient Intra-Operating System Pro-
tection Against Harmful DMAs”. In: Proceedings of the 13th USENIX Conference on
File and Storage Technologies (FAST’15). USENIX Association, 2015. url: https://
www.usenix.org/conference/fast15/technical-sessions/presentation/malka.

[92] T. Miao and H. Chen. “FlexCore: Dynamic virtual machine scheduling using VCPU
ballooning”. In: Tsinghua Science and Technology 20.1 (2015), pp. 7–16. doi: 10.1109/
TST.2015.7040515.

[93] Benôıt Morgan, Éric Alata, Vincent Nicomette, Mohamed Kâaniche, and Guillaume
Averlant. “Design and Implementation of a Hardware Assisted Security Architecture
for Software Integrity Monitoring”. In: Proceedings of 2015 IEEE 21st Pacific Rim
International Symposium on Dependable Computing (PRDC’15). Institute of Electrical
and Electronics Engineers, 2015, pp. 189–198. doi: 10.1109/PRDC.2015.46.

[94] Yushi Omote, Takahiro Shinagawa, and Kazuhiko Kato. “Improving Agility and Elas-
ticity in Bare-metal Clouds”. In: Proceedings of the 20th International Conference
on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS’15). Association for Computing Machinery, 2015, pp. 145–159. doi: 10.1145/
2694344.2694349.

[95] Yushi Omote, Takahiro Shinagawa, and Kazuhiko Kato. “Improving Agility and Elas-
ticity in Bare-metal Clouds”. In: Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS’15). 2015, pp. 145–159. doi: 10.1145/2775054.2694349.

[96] Sankaralingam Panneerselvam, Michael Swift, and Nam Sung Kim. “Bolt: Faster Re-
configuration in Operating Systems”. In: Proceedings of the 2015 USENIX Annual
Technical Conference (USENIX ATC’15). USENIX, 2015. url: https://www.usenix.
org/conference/atc15/technical-session/presentation/panneerselvam.

[97] Omer Peleg, Adam Morrison, Benjamin Serebrin, and Dan Tsafrir. “Utilizing the
IOMMU Scalably”. In: Proceedings of the 2015 USENIX Annual Technical Conference
(ATC’15). USENIX Association, 2015. url: https://www.usenix.org/conference/
atc15/technical-session/presentation/peleg.

[98] Stephen M. Trimberger. “Three Ages of FPGAs: A Retrospective on the First Thirty
Years of FPGA Technology”. In: Proceedings of the IEEE 103.3 (2015), pp. 318–331.
doi: 10.1109/JPROC.2015.2392104.

[99] Fengwei Zhang, Kevin Leach, Angelos Stavrou, Haining Wang, and Kun Sun. “Us-
ing Hardware Features for Increased Debugging Transparency”. In: Proceedings of the
36th IEEE Symposium on Security and Privacy (S&P’15). Institute of Electrical and
Electronics Engineers, 2015. doi: 10.1109/SP.2015.11.

124

https://doi.org/10.1145/2694344.2694355
https://www.usenix.org/conference/fast15/technical-sessions/presentation/malka
https://www.usenix.org/conference/fast15/technical-sessions/presentation/malka
https://doi.org/10.1109/TST.2015.7040515
https://doi.org/10.1109/TST.2015.7040515
https://doi.org/10.1109/PRDC.2015.46
https://doi.org/10.1145/2694344.2694349
https://doi.org/10.1145/2694344.2694349
https://doi.org/10.1145/2775054.2694349
https://www.usenix.org/conference/atc15/technical-session/presentation/panneerselvam
https://www.usenix.org/conference/atc15/technical-session/presentation/panneerselvam
https://www.usenix.org/conference/atc15/technical-session/presentation/peleg
https://www.usenix.org/conference/atc15/technical-session/presentation/peleg
https://doi.org/10.1109/JPROC.2015.2392104
https://doi.org/10.1109/SP.2015.11

Bibliography

[100] Ning Zhang, Kun Sun, Wenjing Lou, Y. Thomas Hou, and Sushil Jajodia. “Now You
See Me: Hide and Seek in Physical Address Space”. In: Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security (AsiaCCS’15).
ACM, 2015, pp. 321–331. doi: 10.1145/2714576.2714600.

[101] Jia-Ju Bai, Yu-Ping Wang, Jie Yin, and Shi-Min Hu. “Testing Error Handling Code
in Device Drivers Using Characteristic Fault Injection”. In: Proceedings of the 2016
USENIX Conference on Usenix Annual Technical Conference (ATC’16). USENIX As-
sociation, 2016, pp. 635–647. url: https://www.usenix.org/conference/atc16/
technical-sessions/presentation/bai.

[102] Luwei Cheng, Jia Rao, and Francis C. M. Lau. “vScale: Automatic and Efficient Proces-
sor Scaling for SMP Virtual Machines”. In: Proceedings of the 11th European Conference
on Computer Systems (EuroSys’16). Institute of Electrical and Electronics Engineers,
2016. doi: 10.1145/2901318.2901321.

[103] Anna Giannakou, Louis Rilling, Jean-Louis Pazat, and Christine Morin. “AL-SAFE:
A Secure Self-adaptable Application-level Firewall for IaaS Clouds”. In: Proceedings of
the 8th IEEE International Conference on Cloud Computing Technology and Science
(CloudCom’16). Institute of Electrical and Electronics Engineers, 2016, pp. 383–390.
doi: 10.1109/CloudCom.2016.0067.

[104] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. “Opportunistic Spinlocks:
Achieving Virtual Machine Scalability in the Clouds”. In: SIGOPS Oper. Syst. Rev.
50.1 (2016), pp. 9–16. doi: 10.1145/2903267.2903271.

[105] Lazaros Koromilas, Giorgos Vasiliadis, Elias Athanasopoulos, and Sotiris Ioannidis.
“GRIM: Leveraging GPUs for Kernel Integrity Monitoring”. In: Proceedings of the
19th Research in Attacks, Intrusions, and Defenses (RAID’16). Springer International
Publishing, 2016, pp. 3–23. url: https://link.springer.com/chapter/10.1007/
978-3-319-45719-2_1.

[106] Raneel Kumar, Sunil Pranit Lal, and Alok Sharma. “Detecting Denial of Ser-
vice Attacks in the Cloud”. In: Proceedings of the 14th International Confer-
ence on Dependable, Autonomic and Secure Computing, 14th International Con-
ference on Pervasive Intelligence and Computing, 2nd International Conference on
Big Data Intelligence and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech’16). Institute of Electrical and Electronics
Engineers, 2016, pp. 309–316. doi: 10.1109/DASC-PICom-DataCom-CyberSciTec.
2016.70.

[107] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien Quéma, and
Alexandra Fedorova. “The Linux Scheduler: a Decade of Wasted Cores”. In: Proceedings
of the 11th European Conference on Computer Systems (EuroSys’16). Association for
Computing Machinery, 2016, pp. 1–16. doi: 10.1145/2901318.2901326.

[108] Alex Markuze, Adam Morrison, and Dan Tsafrir. “True IOMMU Protection from DMA
Attacks: When Copy is Faster than Zero Copy”. In: Proceedings of the 21st Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’16). ACM, 2016. doi: 10.1145/2872362.2872379.

125

https://doi.org/10.1145/2714576.2714600
https://www.usenix.org/conference/atc16/technical-sessions/presentation/bai
https://www.usenix.org/conference/atc16/technical-sessions/presentation/bai
https://doi.org/10.1145/2901318.2901321
https://doi.org/10.1109/CloudCom.2016.0067
https://doi.org/10.1145/2903267.2903271
https://link.springer.com/chapter/10.1007/978-3-319-45719-2_1
https://link.springer.com/chapter/10.1007/978-3-319-45719-2_1
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.70
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.70
https://doi.org/10.1145/2901318.2901326
https://doi.org/10.1145/2872362.2872379

Bibliography

[109] Jiannan Ouyang, John R. Lange, and Haoqiang Zheng. “Shoot4U: Using VMM As-
sists to Optimize TLB Operations on Preempted vCPUs”. In: Proceedings of the12th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (VEE’16). Association for Computing Machinery, 2016. doi: 10.1145/2892242.
2892245.

[110] Syed Asif Raza Shah, Amol Hindurao Jaikar, Sangwook Bae, and Seo-Young Noh. “Im-
prove Performance and Throughput of VMs for Scientific Workloads in a Cloud Envi-
ronment”. In: Proceedings of the 2016 International Conference on Platform Technology
and Service (PlatCon’16). IEEE, 2016, pp. 1–6. doi: 10.1109/PlatCon.2016.7456802.

[111] Chad Spensky, Hongyi Hu, and Kevin Leach. “LO-PHI: Low-Observable Physical Host
Instrumentation for Malware Analysis”. In: Proceedings of the 2016 Network and Dis-
tributed System Security Symposium (NDSS’16). Internet Society, 2016. url: https:
/ / www . ndss - symposium . org / wp - content / uploads / 2017 / 09 / lo - phi - low -

observable-physical-host-instrumentation-malware-analysis.pdf.

[112] Satoru Takekoshi, Takahiro Shinagawa, and Kazuhiko Kato. “Testing Device Drivers
Against Hardware Failures in Real Environments”. In: Proceedings of the 31st Annual
ACM Symposium on Applied Computing (SAC’16). Association for Computing Ma-
chinery, 2016, pp. 1858–1864. doi: 10.1145/2851613.2851740.

[113] Boris Teabe, Alain Tchana, and Daniel Hagimont. “Application-specific Quantum for
Multi-core Platform Scheduler”. In: Proceedings of the 11th European Conference on
Computer Systems (EuroSys’16). Association for Computing Machinery, 2016. doi:
10.1145/2901318.2901340. url: http://doi.acm.org/10.1145/2901318.2901340.

[114] Jason Wang and Peter Xu. “Vhost and VIOMMU”. In: KVM Forum 2016. 2016.

[115] Fengwei Zhang and Hongwei Zhang. “SoK: A Study of Using Hardware-assisted Iso-
lated Execution Environments for Security”. In: Proceedings of the 2016 Hardware and
Architectural Support for Security and Privacy (HASP’16). ACM, 2016, pp. 1–8. doi:
10.1145/2948618.2948621.

[116] Eric Auger. “vIOMMU/ARM: Full Emulation and virtio-iommu Approaches”. In: KVM
Forum 2017. 2017.

[117] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. “Hardware and Software Support
for Virtualization”. In: Synthesis Lectures on Computer Architecture 12.1 (2017). doi:
10.2200/S00754ED1V01Y201701CAC038. url: https://www.morganclaypool.com/
doi/abs/10.2200/S00754ED1V01Y201701CAC038.

[118] Ronny Chevalier, Maugan Villatel, David Plaquin, and Guillaume Hiet. “Co-processor-
based Behavior Monitoring: Application to the Detection of Attacks Against the System
Management Mode”. In: Proceedings of the 33rd Annual Computer Security Applica-
tions Conference (ACSAC’17). ACM, 2017, pp. 399–411. doi: 10.1145/3134600.
3134622.

[119] Takaaki Fukai, Satoru Takekoshi, Kohei Azuma, Takahiro Shinagawa, and Kazuhiko
Kato. “BMCArmor: A Hardware Protection Scheme for Bare-Metal Clouds”. In: Pro-
ceedings of the 9th IEEE International Conference on Cloud Computing Technology
and Science (CloudCom’17). Institute of Electrical and Electronics Engineers, 2017,
pp. 322–330. doi: 10.1109/CloudCom.2017.43.

126

https://doi.org/10.1145/2892242.2892245
https://doi.org/10.1145/2892242.2892245
https://doi.org/10.1109/PlatCon.2016.7456802
https://www.ndss-symposium.org/wp-content/uploads/2017/09/lo-phi-low-observable-physical-host-instrumentation-malware-analysis.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/lo-phi-low-observable-physical-host-instrumentation-malware-analysis.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/lo-phi-low-observable-physical-host-instrumentation-malware-analysis.pdf
https://doi.org/10.1145/2851613.2851740
https://doi.org/10.1145/2901318.2901340
http://doi.acm.org/10.1145/2901318.2901340
https://doi.org/10.1145/2948618.2948621
https://doi.org/10.2200/S00754ED1V01Y201701CAC038
https://www.morganclaypool.com/doi/abs/10.2200/S00754ED1V01Y201701CAC038
https://www.morganclaypool.com/doi/abs/10.2200/S00754ED1V01Y201701CAC038
https://doi.org/10.1145/3134600.3134622
https://doi.org/10.1145/3134600.3134622
https://doi.org/10.1109/CloudCom.2017.43

Bibliography

[120] Zecheng He, Tianwei Zhang, and Ruby B. Lee. “Machine Learning Based DDoS Attack
Detection from Source Side in Cloud”. In: Proceedings of the 4th International Con-
ference on Cyber Security and Cloud Computing (CSCloud’17). Institute of Electrical
and Electronics Engineers, 2017, pp. 114–120. doi: 10.1109/CSCloud.2017.58.

[121] Manabu Hirano, Takuma Tsuzuki, Seishiro Ikeda, Naoga Taka, Kenji Fujiwara, and Ry-
otaro Kobayashi. “WaybackVisor: Hypervisor-Based Scalable Live Forensic Architec-
ture for Timeline Analysis”. In: Proceedings of 7th International Symposium on Trust,
Security and Privacy for Emerging Applications (TSP’17). Springer, 2017, pp. 219–230.
doi: 10.1007/978-3-319-72395-2_21.

[122] Jaeseong Im, Jongyul Kim, Jonguk Kim, Seongwook Jin, and Seungryoul Maeng. “On-
Demand Virtualization for Live Migration in Bare Metal Cloud”. In: Proceedings of the
2017 Symposium on Cloud Computing (SoCC’17). Association for Computing Machin-
ery, 2017, pp. 378–389. doi: 10.1145/3127479.3129254.

[123] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit Sati,
Kenichi Yasukata, Costin Raiciu, and Felipe Huici. “My VM is Lighter (and Safer)
Than Your Container”. In: Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP’17). Association for Computing Machinery, 2017. doi: 10.1145/
3132747.3132763.

[124] Aravinda Prasad, K Gopinath, and Paul E. McKenney. “The RCU-Reader Preemption
Problem in VMs”. In: Proceedings of the 2017 USENIX Annual Technical Conference
(ATC’17). USENIX Association, 2017, pp. 265–270. url: https://www.usenix.org/
conference/atc17/technical-sessions/presentation/prasad.

[125] Zhengwei Qi, Chengcheng Xiang, Ruhui Ma, Jian Li, Haibing Guan, and David S. L.
Wei. “ForenVisor: A Tool for Acquiring and Preserving Reliable Data in Cloud Live
Forensics”. In: IEEE Transactions on Cloud Computing 5.3 (2017), pp. 443–456. doi:
10.1109/TCC.2016.2535295.

[126] Kun Suo, Yong Zhao, Jia Rao, Luwei Cheng, Xiaobo Zhou, and Francis C. M. Lau.
“Preserving I/O Prioritization in Virtualized OSes”. In: Proceedings of the 2017 Sym-
posium on Cloud Computing (SoCC’17). Association for Computing Machinery, 2017.
doi: 10.1145/3127479.3127484.

[127] Boris Teabe, Vlad Nitu, Alain Tchana, and Daniel Hagimont. “The Lock Holder and the
Lock Waiter Pre-emption Problems: Nip Them in the Bud Using Informed Spinlocks
(I-Spinlock)”. In: Proceedings of the 12th European Conference on Computer Systems
(EuroSys’17). ACM, 2017, pp. 286–297. doi: 10.1145/3064176.3064180.

[128] G. Wang, L. Zhang, and W. Xu. “What Can We Learn from Four Years of Data Center
Hardware Failures?” In: 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’17). Institute of Electrical and Electronics
Engineers, 2017, pp. 25–36. doi: 10.1109/DSN.2017.26.

[129] Kenichi Yasukata, Felipe Huici, Vincenzo Maffione, Giuseppe Lettieri, and Michio
Honda. “HyperNF: Building a High Performance, High Utilization and Fair NFV Plat-
form”. In: Proceedings of the 2017 Symposium on Cloud Computing (SoCC’17). Asso-
ciation for Computing Machinery, 2017. doi: 10.1145/3127479.3127489.

127

https://doi.org/10.1109/CSCloud.2017.58
https://doi.org/10.1007/978-3-319-72395-2_21
https://doi.org/10.1145/3127479.3129254
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1145/3132747.3132763
https://www.usenix.org/conference/atc17/technical-sessions/presentation/prasad
https://www.usenix.org/conference/atc17/technical-sessions/presentation/prasad
https://doi.org/10.1109/TCC.2016.2535295
https://doi.org/10.1145/3127479.3127484
https://doi.org/10.1145/3064176.3064180
https://doi.org/10.1109/DSN.2017.26
https://doi.org/10.1145/3127479.3127489

Bibliography

[130] Jeongseob Ahn, Chang Hyun Park, Taekyung Heo, and Jaehyuk Huh. “Accelerating
Critical OS Services in Virtualized Systems with Flexible Micro-sliced Cores”. In: Pro-
ceedings of the 13th European Computing Systems Conference (EuroSys’18). Associa-
tion for Computing Machinery, 2018. doi: 10.1145/3190508.3190521.

[131] Justinien Bouron, Sebastien Chevalley, Baptiste Lepers, Willy Zwaenepoel, Redha
Gouicem, Julia Lawall, Gilles Muller, and Julien Sopena. “The Battle of the Sched-
ulers: FreeBSD ULE vs. Linux CFS”. en. In: Proceedings of the 2018 USENIX Annual
Technical Conference (ATC’18). USENIX Association, 2018, pp. 85–96. url: https:
//www.usenix.org/conference/atc18/presentation/bouron.

[132] Guilherme Cox, Zi Yan, Abhishek Bhattacharjee, and Vinod Ganapathy. “Secure, Con-
sistent, and High-Performance Memory Snapshotting”. In: Proceedings of the 8th ACM
Conference on Data and Application Security and Privacy (CODASPY’18). ACM,
2018, pp. 236–247. doi: 10.1145/3176258.3176325.

[133] Weiwei Jia, Cheng Wang, Xusheng Chen, Jianchen Shan, Xiaowei Shang, Heming Cui,
Xiaoning Ding, Luwei Cheng, Francis C. M. Lau, Yuexuan Wang, and Yuangang Wang.
“Effectively Mitigating I/O Inactivity in vCPU Scheduling”. In: Proceedings of the
2018 USENIX Annual Technical Conference (ATC’18). USENIX, 2018. url: https:
//www.usenix.org/conference/atc18/presentation/jia.

[134] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. “Scaling Guest OS Critical Sec-
tions with eCS”. In: Proceedings of the 2018 USENIX Annual Technical Conference
(ATC’18). USENIX Association, 2018, pp. 159–172. url: https://www.usenix.org/
conference/atc18/presentation/kashyap.

[135] O. Kilic, S. Doddamani, A. Bhat, H. Bagdi, and K. Gopalan. “Overcoming Virtual-
ization Overheads for Large-vCPU Virtual Machines”. In: Proceedings of the IEEE
26th International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS’18). Institute of Electrical and Electron-
ics Engineers, 2018. doi: 10.1109/MASCOTS.2018.00042.

[136] Alex Markuze, Igor Smolyar, Adam Morrison, and Dan Tsafrir. “DAMN: Overhead–
Free IOMMU Protection for Networking”. In: Proceedings of the 23rd International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS’18). ACM, 2018, pp. 301–315. doi: 10.1145/3173162.3173175.

[137] Masanori Misono, Masahiro Ogino, Takaaki Fukai, and Takahiro Shinagawa. “FaultVi-
sor2: Testing Hypervisor Device Drivers Against Real Hardware Failures”. In: Proceed-
ings of the 10th International Conference on Cloud Computing Technology and Science
(CloudCom’18). Institute of Electrical and Electronics Engineers, 2018, pp. 204–211.
doi: 10.1109/CloudCom2018.2018.00048.

[138] Masanori Misono, Kaito Yoshida, Juho Hwang, and Takahiro Shinagawa. “Distributed
Denial of Service Attack Prevention at Source Machines”. In: Proceedings of the 16th In-
ternational Conference on Dependable, Autonomic and Secure Computing (DASC’18).
Institute of Electrical and Electronics Engineers, 2018, pp. 488–495. doi: 10.1109/
DASC/PiCom/DataCom/CyberSciTec.2018.00096.

[139] Benôıt Morgan, Éric Alata, Vincent Nicomette, and Mohamed Kaâniche. “IOMMU
Protection against I/O Attacks: a Vulnerability and a Proof of Concept”. In: Journal
of the Brazilian Computer Society 24.1 (2018). doi: 10.1186/s13173-017-0066-7.

128

https://doi.org/10.1145/3190508.3190521
https://www.usenix.org/conference/atc18/presentation/bouron
https://www.usenix.org/conference/atc18/presentation/bouron
https://doi.org/10.1145/3176258.3176325
https://www.usenix.org/conference/atc18/presentation/jia
https://www.usenix.org/conference/atc18/presentation/jia
https://www.usenix.org/conference/atc18/presentation/kashyap
https://www.usenix.org/conference/atc18/presentation/kashyap
https://doi.org/10.1109/MASCOTS.2018.00042
https://doi.org/10.1145/3173162.3173175
https://doi.org/10.1109/CloudCom2018.2018.00048
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00096
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00096
https://doi.org/10.1186/s13173-017-0066-7

Bibliography

[140] Iori Yoneji, Takaaki Fukai, Takahiro Shinagawa, and Kazuhiko Kato. “Unified Hardware
Abstraction Layer with Device Masquerade”. In: Proceedings of the 33rd Annual ACM
Symposium on Applied Computing (SAC’18). New York, NY, USA: Association for
Computing Machinery, 2018, pp. 1102–1108. doi: 10.1145/3167132.3167250.

[141] Fengwei Zhang, Kevin Leach, Angelos Stavrou, and Haining Wang. “Towards Trans-
parent Debugging”. In: IEEE Transactions on Dependable and Secure Computing 15.2
(2018), pp. 321–335. doi: 10.1109/TDSC.2016.2545671.

[142] Ahmad Atamli, Giuseppe Petracca, and Jon Crowcroft. “IO-Trust: An Out-of-band
Trusted Memory Acquisition for Intrusion Detection and Forensics Investigations in
Cloud IOMMU Based Systems”. In: Proceedings of the 14th International Conference
on Availability, Reliability and Security (ARES’19). ACM, 2019, 45:1–45:6. doi: 10.
1145/3339252.3340511.

[143] Bao Bui, Djob Mvondo, Boris Teabe, Kevin Jiokeng, Lavoisier Wapet, Alain Tchana,
Gaël Thomas, Daniel Hagimont, Gilles Muller, and Noel DePalma. “When eXtended
Para - Virtualization (XPV) Meets NUMA”. In: Proceedings of the 14th European
Conference on Computer Systems (EuroSys’19). Association for Computing Machinery,
2019, pp. 1–15. doi: 10.1145/3302424.3303960.

[144] Michael Kiperberg, Roee Leon, Amit Resh, Asaf Algawi, and Nezer Zaidenberg.
“Hypervisor-assisted Atomic Memory Acquisition in Modern Systems”. In: Proceed-
ings of the 5th International Conference on Information Systems Security and Privacy
(ICISSP’19). SCITEPRESS Science and Technology Publications, 2019. doi: 10.5220/
0007566101550162.

[145] Hao Li, Xuefei Xu, Jinkui Ren, and Yaozu Dong. “ACRN: A Big Little Hypervisor for
IoT Development”. In: Proceedings of the 15th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE’19). Association for Computing
Machinery, 2019, pp. 31–44. doi: 10.1145/3313808.3313816.

[146] A. Theodore Markettos, Colin Rothwell, Brett F. Gutstein, Allison Pearce, Peter G.
Neumann, Simon W. Moore, and Robert N. M. Watson. “Thunderclap: Exploring Vul-
nerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Pe-
ripherals”. In: Proceedings of the 2019 Network and Distributed Systems Security Sym-
posium (NDSS’19). Internet Society, 2019. url: https://www.ndss-symposium.org/
ndss-paper/thunderclap-exploring-vulnerabilities-in-operating-system-

iommu-protection-via-dma-from-untrustworthy-peripherals/.

[147] Lei Zhou, Jidong Xiao, Kevin Leach, Westley Weimer, Fengwei Zhang, and Guojun
Wang. “Nighthawk: Transparent System Introspection from Ring -3”. In: Proceedings
of the 24th European Symposium on Research in Computer Security (ESORICS’19).
Springer, 2019, pp. 217–238. doi: 10.1007/978-3-030-29962-0_11.

[148] Jingde Chen, Subho S. Banerjee, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer.
“Machine Learning for Load Balancing in the Linux Kernel”. In: Proceedings of the
11th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys’20). Association for
Computing Machinery, 2020, pp. 67–74. doi: 10.1145/3409963.3410492.

[149] Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel Stapf. “Trusted Execution En-
vironments: Properties, Applications, and Challenges”. In: IEEE Security Privacy 18.2
(2020), pp. 56–60. doi: 10.1109/MSEC.2019.2947124.

129

https://doi.org/10.1145/3167132.3167250
https://doi.org/10.1109/TDSC.2016.2545671
https://doi.org/10.1145/3339252.3340511
https://doi.org/10.1145/3339252.3340511
https://doi.org/10.1145/3302424.3303960
https://doi.org/10.5220/0007566101550162
https://doi.org/10.5220/0007566101550162
https://doi.org/10.1145/3313808.3313816
https://www.ndss-symposium.org/ndss-paper/thunderclap-exploring-vulnerabilities-in-operating-system-iommu-protection-via-dma-from-untrustworthy-peripherals/
https://www.ndss-symposium.org/ndss-paper/thunderclap-exploring-vulnerabilities-in-operating-system-iommu-protection-via-dma-from-untrustworthy-peripherals/
https://www.ndss-symposium.org/ndss-paper/thunderclap-exploring-vulnerabilities-in-operating-system-iommu-protection-via-dma-from-untrustworthy-peripherals/
https://doi.org/10.1007/978-3-030-29962-0_11
https://doi.org/10.1145/3409963.3410492
https://doi.org/10.1109/MSEC.2019.2947124

Bibliography

[150] Tobias Latzo, Julian Brost, and Felix Freiling. “BMCLeech: Introducing Stealthy Mem-
ory Forensics to BMC”. In: Forensic Science International: Digital Investigation 32
(2020), p. 300919. doi: 10.1016/j.fsidi.2020.300919.

[151] Baptiste Lepers, Redha Gouicem, Damien Carver, Jean-Pierre Lozi, Nicolas Palix,
Maria-Virginia Aponte, Willy Zwaenepoel, Julien Sopena, Julia Lawall, and Gilles
Muller. “Provable Multicore Schedulers with Ipanema: Application to Work Con-
servation”. In: Proceedings of the 15th European Conference on Computer Systems
(EuroSys’20). Association for Computing Machinery, 2020. doi: 10.1145/3342195.
3387544.

[152] Suravee Suthikulpanit and Wei Huang. “AMD-vIOMMU: A Hardware-assisted Virtual
IOMMU Technology”. In: KVM Forum 2020. 2020.

[153] Kun Tian, Yu Zhang, Luwei Kang, Yan Zhao, and Yaozu Dong. “coIOMMU: A Virtual
IOMMU with Cooperative DMA Buffer Tracking for Efficient Memory Management
in Direct I/O”. In: Proceedings of the 2020 USENIX Annual Technical Conference
(ATC’20). USENIX Association, 2020. url: https://www.usenix.org/conference/
atc20/presentation/tian.

[154] Nezer Jacob Zaidenberg, Michael Kiperberg, Raz Ben Yehuda, Roee Leon, Asaf Al-
gawi, and Amit Resh. “Hypervisor Memory Introspection and Hypervisor Based Mal-
ware Honeypot”. In: Proceedings of the 5th Information Systems Security and Privacy
(ICISSP’20). Springer, 2020, pp. 317–334. doi: 10.1007/978-3-030-49443-8_15.

[155] Runhua Zhang, Alan L. Cox, and Scott Rixner. “Virtflex: Automatic Adaptation to
NUMA Topology Change for OpenMP Applications”. en. In: Proceedings of 16th In-
ternational Workshop on OpenMP. Springer, 2020, pp. 212–227. doi: 10.1007/978-
3-030-58144-2_14.

[156] Markuze Alex, Shay Vargaftik, Gil Kupfer, Boris Pismeny, Nadav Amit, Adam Mor-
rison, and Dan Tsafrir. “Characterizing, Exploiting, and Detecting DMA Code Injec-
tion Vulnerabilities in the Presence of an IOMMU”. In: Proceedings of the 16th Euro-
pean Conference on Computer Systems (EuroSys’21). ACM, 2021, pp. 395–409. doi:
10.1145/3447786.3456249.

[157] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui. “Formally
Verified Memory Protection for a Commodity Multiprocessor Hypervisor”. In: Proceed-
ings of the 30th USENIX Security Symposium (SEC’21). USENIX Association, 2021.
url: https://www.usenix.org/conference/usenixsecurity21/presentation/li-
shih-wei.

[158] Shih-Wei Li, Xupeng Li, John Zhuang Huiand Jason Nieh, and Ronghui Gu. “A Secure
and Formally Verified Linux KVM Hypervisor”. In: Proceedings of the 42nd IEEE
Symposium on Security and Privacy (S&P’21). Institute of Electrical and Electronics
Engineers, 2021. doi: 10.1109/SP40001.2021.00049.

[159] Masanori Misono and Takahiro Shinagawa. “POSTER: OS Independent Fuzz Testing
of I/O Boundary”. In: Proceedings of the 2021 ACM Conference on Computer and
Communications Security (CCS’21). Association for Computing Machinery, 2021. doi:
10.1145/3460120.3485359.

130

https://doi.org/10.1016/j.fsidi.2020.300919
https://doi.org/10.1145/3342195.3387544
https://doi.org/10.1145/3342195.3387544
https://www.usenix.org/conference/atc20/presentation/tian
https://www.usenix.org/conference/atc20/presentation/tian
https://doi.org/10.1007/978-3-030-49443-8_15
https://doi.org/10.1007/978-3-030-58144-2_14
https://doi.org/10.1007/978-3-030-58144-2_14
https://doi.org/10.1145/3447786.3456249
https://www.usenix.org/conference/usenixsecurity21/presentation/li-shih-wei
https://www.usenix.org/conference/usenixsecurity21/presentation/li-shih-wei
https://doi.org/10.1109/SP40001.2021.00049
https://doi.org/10.1145/3460120.3485359

Bibliography

[160] Raz Ben Yehuda, Erez Shlingbaum, Yuval Gershfeld, Shaked Tayouri, and Nezer Jacob
Zaidenberg. “Hypervisor Memory Acquisition for ARM”. In: Forensic Science Inter-
national: Digital Investigation 37 (2021), p. 301106. doi: 10.1016/j.fsidi.2020.
301106.

[161] Masanori Misono, Toshiki Hatanaka, and Takahiro Shinagawa. “DMAFV: Testing De-
vice Drivers against DMA Faults”. In: Proceedings of the 37th ACM/SIGAPP Sympo-
sium On Applied Computing (SAC 2022). Association for Computing Machinery, 2022.
doi: 10.1145/3477314.3507082.

[162] Thomas Van Strydonck, Aı̈na Linn Georges, Armaël Guéneau, Alix Trieu, Amin
Timany, Frank Piessens, Lars Birkedal, and Dominique Devriese. “Proving Full-System
Security Properties Under Multiple Attacker Models on Capability Machines”. In: Pro-
ceedings of the 35th IEEE Computer Security Foundations Symposium (CSF’22). In-
stitute of Electrical and Electronics Engineers, 2022.

[163] Amazon EC2 Instance Types. url: https://aws.amazon.com/ec2/instance-types/
(visited on 11/13/2021).

[164] Amazon Web Service. Introduction to AWS security processes revision June 2016. url:
https://d0.awsstatic.com/whitepapers/Security/Intro_Security_Practices.

pdf (visited on 11/13/2021).

[165] AMD I/O Virtualization Technology (IOMMU) Specification. url: https: / / www.
amd.com/en/support/tech-docs/amd-io-virtualization-technology-iommu-

specification (visited on 11/13/2021).

[166] AMD Secure Encrypted Virtualization (SEV). url: https://developer.amd.com/
sev/ (visited on 11/13/2021).

[167] ARM. TrustZone. url: https : / / www . arm . com / products / security - on - arm /
trustzone (visited on 11/13/2021).

[168] Arm Confidential Compute Architecture. url: https://www.arm.com/why- arm/
architecture/security- features/arm- confidential- compute- architecture

(visited on 11/13/2021).

[169] Arm System Memory Management Unit Architecture Specification, SMMU Architecture
Version 3. url: https://developer.arm.com/documentation/ihi0070/latest
(visited on 11/13/2021).

[170] Arm TrustZone Technology. url: https : / / developer . arm . com / ip - products /
security-ip/trustzone (visited on 11/13/2021).

[171] Gal Beniamini. Over The Air - Vol. 2, Pt. 1: Exploiting The Wi-Fi Stack on Apple
Devices. url: https://googleprojectzero.blogspot.com/2017/09/over-air-
vol-2-pt-1-exploiting-wi-fi.html (visited on 11/13/2021).

[172] CFS Scheduler - The Linux Kernel documentaion. url: https://www.kernel.org/
doc/html/latest/scheduler/sched-design-CFS.html (visited on 11/13/2021).

[173] Cgroups - The Linux Kernel documentaion. url: https://www.kernel.org/doc/
Documentation/cgroup-v1/cgroups.txt (visited on 11/13/2021).

[174] Docker. Empowering App Development for Developers — Docker. url: https://www.
docker.com/ (visited on 03/02/2022).

131

https://doi.org/10.1016/j.fsidi.2020.301106
https://doi.org/10.1016/j.fsidi.2020.301106
https://doi.org/10.1145/3477314.3507082
https://aws.amazon.com/ec2/instance-types/
https://d0.awsstatic.com/whitepapers/Security/Intro_Security_Practices.pdf
https://d0.awsstatic.com/whitepapers/Security/Intro_Security_Practices.pdf
https://www.amd.com/en/support/tech-docs/amd-io-virtualization-technology-iommu-specification
https://www.amd.com/en/support/tech-docs/amd-io-virtualization-technology-iommu-specification
https://www.amd.com/en/support/tech-docs/amd-io-virtualization-technology-iommu-specification
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://developer.arm.com/documentation/ihi0070/latest
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://googleprojectzero.blogspot.com/2017/09/over-air-vol-2-pt-1-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/09/over-air-vol-2-pt-1-exploiting-wi-fi.html
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.docker.com/
https://www.docker.com/

Bibliography

[175] Features/VT-d – QEMU. url: https://wiki.qemu.org/Features/VT-d (visited on
11/13/2021).

[176] ftrace – Function Tracer. url: https://www.kernel.org/doc/Documentation/
trace/ftrace.txt (visited on 11/13/2021).

[177] futex(2) – Linux manual page. url: https://man7.org/linux/man-pages/man2/
futex.2.html (visited on 11/13/2021).

[178] HewlettPackard. Netperf. url: https://github.com/HewlettPackard/netperf (vis-
ited on 11/13/2021).

[179] IEEE. IEEE Copyright Policy. url: https://www.ieee.org/publications/rights/
copyright-policy.html (visited on 11/13/2021).

[180] igel. vThrii Seamless Provisioning. url: https://www.igel.co.jp/en/solution/
(visited on 11/13/2021).

[181] Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3 System Man-
agement Mode. url: https://software.intel.com/content/www/us/en/develop/
articles/intel-sdm.html (visited on 11/13/2021).

[182] Intel Architecture Memory Encryption Technologies Specification Revision 1.3. url:
https : / / software . intel . com / content / dam / develop / external / us / en /

documents - tps / multi - key - total - memory - encryption - spec . pdf (visited on
11/13/2021).

[183] Intel Software Guard Extensions. url: https://software.intel.com/content/www/
us/en/develop/topics/software-guard-extensions.html (visited on 11/13/2021).

[184] Intel Trust Domain Extensions (Intel TDX). url: https://software.intel.com/
content/www/us/en/develop/articles/intel-trust-domain-extensions.html

(visited on 11/13/2021).

[185] Intel Virtualization Technology for Directed I/O Architecture Specification. url: https:
/ / software . intel . com / content / www / us / en / develop / download / intel -

virtualization-technology-for-directed-io-architecture-specification.

html (visited on 11/13/2021).

[186] IO Visor. BCC BPF compiler collection. url: https : / / www . iovisor . org /

technology/bcc (visited on 11/13/2021).

[187] IO Visor. iovisor/ubpf: Userspace eBPF VM. url: https://github.com/iovisor/
ubpf (visited on 11/13/2021).

[188] iommu/vt-d: Do not Enable ATS for Untrusted Devices. url: https : / / git .

kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=

fb58fdcd295b914ece1d829b24df00a17a9624bc (visited on 11/13/2021).

[189] J. Axboe. fio. url: https://github.com/axboe/fio (visited on 11/13/2021).

[190] JSON-RPC 2.0 Specification. url: https://www.jsonrpc.org/specification (vis-
ited on 11/13/2021).

[191] kernel/git/mason/schbench.git. url: https://git.kernel.org/pub/scm/linux/
kernel/git/mason/schbench.git/ (visited on 11/13/2021).

132

https://wiki.qemu.org/Features/VT-d
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://man7.org/linux/man-pages/man2/futex.2.html
https://man7.org/linux/man-pages/man2/futex.2.html
https://github.com/HewlettPackard/netperf
https://www.ieee.org/publications/rights/copyright-policy.html
https://www.ieee.org/publications/rights/copyright-policy.html
https://www.igel.co.jp/en/solution/
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/multi-key-total-memory-encryption-spec.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/multi-key-total-memory-encryption-spec.pdf
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://software.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://software.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://software.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://www.iovisor.org/technology/bcc
https://www.iovisor.org/technology/bcc
https://github.com/iovisor/ubpf
https://github.com/iovisor/ubpf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=fb58fdcd295b914ece1d829b24df00a17a9624bc
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=fb58fdcd295b914ece1d829b24df00a17a9624bc
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=fb58fdcd295b914ece1d829b24df00a17a9624bc
https://github.com/axboe/fio
https://www.jsonrpc.org/specification
https://git.kernel.org/pub/scm/linux/kernel/git/mason/schbench.git/
https://git.kernel.org/pub/scm/linux/kernel/git/mason/schbench.git/

Bibliography

[192] Alexander Khalimonenko, Oleg Kupreev, and Kirill Ilganaev. DDoS Atacks in Q3 2017.
url: https://securelist.com/ddos-attacks-in-q3-2017/83041/ (visited on
11/13/2021).

[193] Andy Klein. Backblaze Hard Drive Stats for 2017. url: https://www.backblaze.
com/blog/hard-drive-stats-for-2017/ (visited on 11/13/2021).

[194] libvirt: Network filters. url: https://libvirt.org/formatnwfilter.html (visited
on 11/13/2021).

[195] libvirt: The virtualization API. url: https://libvirt.org/ (visited on 11/13/2021).

[196] Linux Kernel Documentation. Fault Injection Capabilities Infrastructure. url: https:
//www.kernel.org/doc/Documentation/fault-injection/fault-injection.txt

(visited on 11/13/2021).

[197] Linux Kernel Documentation. VFIO - “Virtual Function I/O”. url: https://www.
kernel.org/doc/Documentation/vfio.txt (visited on 11/13/2021).

[198] Linux socket filtering aka Berkeley packet filter (BPF). url: https://www.kernel.
org/doc/Documentation/networking/filter.txt (visited on 11/13/2021).

[199] lwIP - a lightweight TCP/IP stack - summary. url: http://savannah.nongnu.org/
projects/lwip (visited on 11/13/2021).

[200] Microsoft. Driver Verifier. url: https://docs.microsoft.com/en-us/windows-
hardware/drivers/devtest/driver-verifier (visited on 11/13/2021).

[201] NAS Parallel Benchmarks. url: https://www.nas.nasa.gov/publications/npb.
html (visited on 11/13/2021).

[202] netfilter. url: http://www.netfilter.org/ (visited on 11/13/2021).

[203] numactl/numactl: NUMA support for Linux. url: https://github.com/numactl/
numactl (visited on 11/13/2021).

[204] OMP WAIT POLICY. url: https : / / www . openmp . org / spec - html / 5 . 1 /

openmpse64.html (visited on 11/13/2021).

[205] Open Networking Foundation. OpenFlow. url: https://www.opennetworking.org/
sdn-resources/openflow (visited on 11/13/2021).

[206] Open vSwitch. url: http://openvswitch.org (visited on 11/13/2021).

[207] Oracle. Java. url: https://www.java.com/en/ (visited on 03/02/2022).

[208] Paravirtualized KVM features. url: https://www.qemu.org/docs/master/system/
i386/kvm-pv.html (visited on 03/02/2022).

[209] PCIe Screamer R02. url: https://docs.lambdaconcept.com/screamer/older_
versions.html (visited on 11/13/2021).

[210] perf-bench(1) – Linux manual page. url: https://man7.org/linux/man-pages/
man1/perf-bench.1.html (visited on 11/13/2021).

[211] Platform Runtime Mechanism Specification Version: 1.0. url: https://uefi.org/
sites/default/files/resources/Platform%5C%20Runtime%5C%20Mechanism%5C%

20-%5C%20with%5C%20legal%5C%20notice.pdf (visited on 11/13/2021).

[212] QEMU. url: https://www.qemu.org/ (visited on 11/13/2021).

133

https://securelist.com/ddos-attacks-in-q3-2017/83041/
https://www.backblaze.com/blog/hard-drive-stats-for-2017/
https://www.backblaze.com/blog/hard-drive-stats-for-2017/
https://libvirt.org/formatnwfilter.html
https://libvirt.org/
https://www.kernel.org/doc/Documentation/fault-injection/fault-injection.txt
https://www.kernel.org/doc/Documentation/fault-injection/fault-injection.txt
https://www.kernel.org/doc/Documentation/vfio.txt
https://www.kernel.org/doc/Documentation/vfio.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
http://savannah.nongnu.org/projects/lwip
http://savannah.nongnu.org/projects/lwip
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/driver-verifier
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/driver-verifier
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
http://www.netfilter.org/
https://github.com/numactl/numactl
https://github.com/numactl/numactl
https://www.openmp.org/spec-html/5.1/openmpse64.html
https://www.openmp.org/spec-html/5.1/openmpse64.html
https://www.opennetworking.org/sdn-resources/openflow
https://www.opennetworking.org/sdn-resources/openflow
http://openvswitch.org
https://www.java.com/en/
https://www.qemu.org/docs/master/system/i386/kvm-pv.html
https://www.qemu.org/docs/master/system/i386/kvm-pv.html
https://docs.lambdaconcept.com/screamer/older_versions.html
https://docs.lambdaconcept.com/screamer/older_versions.html
https://man7.org/linux/man-pages/man1/perf-bench.1.html
https://man7.org/linux/man-pages/man1/perf-bench.1.html
https://uefi.org/sites/default/files/resources/Platform%5C%20Runtime%5C%20Mechanism%5C%20-%5C%20with%5C%20legal%5C%20notice.pdf
https://uefi.org/sites/default/files/resources/Platform%5C%20Runtime%5C%20Mechanism%5C%20-%5C%20with%5C%20legal%5C%20notice.pdf
https://uefi.org/sites/default/files/resources/Platform%5C%20Runtime%5C%20Mechanism%5C%20-%5C%20with%5C%20legal%5C%20notice.pdf
https://www.qemu.org/

Bibliography

[213] K. T. Raghavendra. Paravirtualized ticket spinlocks. url: https : / / lwn . net /

Articles/552696/ (visited on 11/13/2021).

[214] Björn Ruytenberg. Breaking Thunderbolt Protocol Security: Vulnerability Report. url:
https://thunderspy.io/assets/reports/breaking- thunderbolt- security-

bjorn-ruytenberg-20200417.pdf (visited on 11/13/2021).

[215] Scheduler Domains - The Linux Kernel documentaion. url: https://www.kernel.
org/doc/Documentation/scheduler/sched-domains.txt (visited on 11/13/2021).

[216] SCREAMER M.2 USB-C (R04). url: https://shop.lambdaconcept.com/home/43-
screamer-m2.html (visited on 11/13/2021).

[217] siemens/jailhouse: Linux-based partitioning hypervisor. url: https://github.com/
siemens/jailhouse (visited on 05/06/2021).

[218] SMI Transfer Monitor (STM). url: https : / / software . intel . com / content /

www/us/en/develop/articles/smi- transfer- monitor- stm.html (visited on
11/13/2021).

[219] src/southbridge/intel/common/finalize.c – coreboot – Gitile. url: https://review.
coreboot.org/plugins/gitiles/coreboot/+/refs/heads/4.12_branch/src/

southbridge/intel/common/finalize.c (visited on 11/13/2021).

[220] Standard Performance Evaluation Corporation. SPEC CPU2017. url: https://www.
spec.org/cpu2017/ (visited on 11/13/2021).

[221] Alexei Starovoitov. [RFC,net-next,08/14] bpf: add eBPF verifier. url: https : / /

patchwork.kernel.org/patch/4438881/ (visited on 11/13/2021).

[222] TCPDUMP&LIBPCAP public repository. url: http://www.tcpdump.org (visited on
11/13/2021).

[223] The Apache Software Foundation. ab - Apache HTTP server benchmarking tool. url:
https://httpd.apache.org/docs/2.4/programs/ab.html (visited on 11/13/2021).

[224] The Kernel’s Command-line Parameters. url: https://www.kernel.org/doc/html/
v5.13/admin-guide/kernel-parameters.html (visited on 11/13/2021).

[225] The PARSEC Benchmark Suite. url: https://parsec.cs.princeton.edu/ (visited
on 11/13/2021).

[226] ufrisk/pcileech: Direct Memory Access (DMA) Attack Software. url: https://github.
com/ufrisk/pcileech (visited on 11/13/2021).

[227] VMWare. VMware NSX. url: http://www.vmware.com/products/nsx.html (visited
on 11/13/2021).

[228] VMWare. vSphere Hypervisor. url: https://www.vmware.com/products/vsphere-
hypervisor.html (visited on 11/13/2021).

[229] What is Intel Management Engine? url: https://www.intel.com/content/www/
us/en/support/articles/000008927/software/chipset-software.html (visited
on 11/13/2021).

134

https://lwn.net/Articles/552696/
https://lwn.net/Articles/552696/
https://thunderspy.io/assets/reports/breaking-thunderbolt-security-bjorn-ruytenberg-20200417.pdf
https://thunderspy.io/assets/reports/breaking-thunderbolt-security-bjorn-ruytenberg-20200417.pdf
https://www.kernel.org/doc/Documentation/scheduler/sched-domains.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-domains.txt
https://shop.lambdaconcept.com/home/43-screamer-m2.html
https://shop.lambdaconcept.com/home/43-screamer-m2.html
https://github.com/siemens/jailhouse
https://github.com/siemens/jailhouse
https://software.intel.com/content/www/us/en/develop/articles/smi-transfer-monitor-stm.html
https://software.intel.com/content/www/us/en/develop/articles/smi-transfer-monitor-stm.html
https://review.coreboot.org/plugins/gitiles/coreboot/+/refs/heads/4.12_branch/src/southbridge/intel/common/finalize.c
https://review.coreboot.org/plugins/gitiles/coreboot/+/refs/heads/4.12_branch/src/southbridge/intel/common/finalize.c
https://review.coreboot.org/plugins/gitiles/coreboot/+/refs/heads/4.12_branch/src/southbridge/intel/common/finalize.c
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://patchwork.kernel.org/patch/4438881/
https://patchwork.kernel.org/patch/4438881/
http://www.tcpdump.org
https://httpd.apache.org/docs/2.4/programs/ab.html
https://www.kernel.org/doc/html/v5.13/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/v5.13/admin-guide/kernel-parameters.html
https://parsec.cs.princeton.edu/
https://github.com/ufrisk/pcileech
https://github.com/ufrisk/pcileech
http://www.vmware.com/products/nsx.html
https://www.vmware.com/products/vsphere-hypervisor.html
https://www.vmware.com/products/vsphere-hypervisor.html
https://www.intel.com/content/www/us/en/support/articles/000008927/software/chipset-software.html
https://www.intel.com/content/www/us/en/support/articles/000008927/software/chipset-software.html

	 Title
	Abstract
	Acknowledgement
	Publications
	Table of Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Motivation
	1.1.1 Virtualization Technology
	1.1.2 Example Use Cases of Virtualization
	1.1.3 Overhead of Virtualization

	1.2 Research Objectives and Overview
	1.2.1 chap:nested. Nested Virtualization for Hypervisor Device Driver Testing
	1.2.2 chap:iommu. IOMMU Virtualization for Device Protection
	1.2.3 chap:vnuma. Investigating and Improving Scheduling Performance of NUMA-visible Virtual Machines
	1.2.4 chap:ddos. Improving Hypervisor's Flexibility with Safe and Lightweight Language VM

	1.3 Contributions
	1.4 Thesis Organization

	2 Related Works
	2.1 Optimizing Virtualization Performance
	2.1.1 Paravirtualization
	2.1.2 Device Pass-through
	2.1.3 Parapass-through
	2.1.4 On-demand Virtualization

	2.2 Double Scheduling Problem
	2.2.1 Mitigating Double Scheduling Problems
	2.2.2 Dedicated CPU Resource Assignment
	2.2.3 Virtual NUMA (vNUMA)

	2.3 Summary

	3 Nested Virtualization for Hypervisor Device Drivers Testing
	3.1 Introduction
	3.2 Device Driver Testing Methods
	3.2.1 Static Code Analysis
	3.2.2 Symbolic Execution
	3.2.3 Software Fault Injection

	3.3 Design
	3.3.1 Overview of FaultVisor
	3.3.2 Proposed Method
	3.3.3 Advantages of Proposed Method

	3.4 Implementation
	3.4.1 Fault Injection by Nested Virtualization
	3.4.2 Controller
	3.4.3 EPT Pass-through

	3.5 Evaluation
	3.5.1 VMWare ESXi
	3.5.2 vThrii
	3.5.3 Performance Evaluation

	3.6 Discussion
	3.6.1 Detected errors
	3.6.2 DMA support

	3.7 Summary

	4 IOMMU Virtualization for Device Protection
	4.1 Introduction
	4.2 Background
	4.2.1 Memory Acquisition
	4.2.2 PCI Express (PCIe)
	4.2.3 IOMMU

	4.3 Memory Acquisition in the Presence of IOMMU
	4.4 Assumption and Threat Model
	4.4.1 Assumption
	4.4.2 Threat Model

	4.5 Problems with Coprocessor-based Memory Acquisition Methods
	4.5.1 Problem: Disabling the DMA Function of a Coprocessor
	4.5.2 Problem: Register Values Cannot Be Acquired
	4.5.3 Problem: Consistent Memory Acquisition Cannot Be Performed
	4.5.4 Problem: Event-Based Memory Acquisition Cannot Be Performed
	4.5.5 Summary

	4.6 Proposed Method
	4.6.1 Overview
	4.6.2 Guaranteed Operation of Memory Acquisition Coprocessor
	4.6.3 Protecting the PCI Configuration Space
	4.6.4 Register Value Acquisition
	4.6.5 Consistent Memory Acquisition
	4.6.6 Event-Based Memory Acquisition
	4.6.7 Challenges

	4.7 Implementation
	4.7.1 IOMMU Shadowing
	4.7.2 VMM and PCI Configuration Space Protection
	4.7.3 Register Value Acquisition
	4.7.4 Communication between VMM and Analytics Machine

	4.8 Evaluation
	4.8.1 Memory Acquisition in the presence of an IOMMU
	4.8.2 Overhead Evaluation

	4.9 Discussion
	4.9.1 SMM Monitoring
	4.9.2 Guest Hypervisor Support
	4.9.3 Hardware-Based Memory Encryption
	4.9.4 Possible Hardware Improvement

	4.10 Summary

	5 Investigating and Improving Scheduling Performance of NUMA-visible Virtual Machines
	5.1 Introduction
	5.2 Background
	5.2.1 NUMA
	5.2.2 Reproducing NUMA in a Virtualized Environment
	5.2.3 Scheduling in Linux
	5.2.4 KVM
	5.2.5 Research Questions

	5.3 Experimental Setup
	5.3.1 Experimental Environment
	5.3.2 Virtual Machines
	5.3.3 Benchmarks

	5.4 Evaluation of Paravirtual Features on a NUMA-visible Virtual Machine
	5.4.1 Result
	5.4.2 False Preempted Problem

	5.5 Evaluation of NUMA-Visible Virtual Machines
	5.5.1 Result
	5.5.2 Overload Wake-on-Bug (OWB)

	5.6 Related Work of Linux Scheduling
	5.6.1 Analyzing Linux Scheduling
	5.6.2 Improving (NUMA) Scheduling

	5.7 Summary

	6 Improving Hypervisor's Elasticity with Safe and Lightweight Language VM
	6.1 Introduction
	6.2 Design
	6.2.1 Threat Model and Assumptions
	6.2.2 System Objectives
	6.2.3 Proposed Scheme
	6.2.4 DDoS Attack Prevention Workflow
	6.2.5 Discussion of the Proposed Scheme

	6.3 Implementation
	6.3.1 Packet Interception
	6.3.2 Filtering Mechanism
	6.3.3 Creating BPF Programs
	6.3.4 Policy Server

	6.4 Evaluation
	6.4.1 Proof-of-concept Experiment
	6.4.2 Performance Evaluation

	6.5 Related Work of Source Side DDoS Protection
	6.6 Summary

	7 Conclusion
	Bibliography

