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Abstract

The development of digital devices makes it much more convenient for ordinary
people to create, edit, and share videos. However, many steps have to be done
manually and are time-consuming to ensure high quality when processing videos
because video understanding is necessary for many tasks. Many methods have been
proposed to extract good videos representations and applied to video understanding
tasks, such as action recognition, video retrieval, etc.

Video representation learning is the most fundamental task in video understand-
ing. Good video representations contain sufficient information and can help with
a lot of video-related downstream tasks. To obtain good representations, many
recent works have required additional calculation on hand-crafted motion features,
even though the computation of convolutional neural networks is already very
high. And large annotated videos are necessary for specific tasks. In this thesis,
we have tackled two video representation learning paradigms (i.e., supervised
learning and self-supervised learning) and proposed solutions to obtain good video
representations without increasing the complexity of models.

First, we address the task of supervised action recognition. We propose a new
data modality with 3D convolutional neural networks, which requires stacked frames
(i.e., video clips) as input data. We confirm that by simply replacing traditional RGB
video clips with stacked frame differences, the network can extract better temporal
information. Greater generalization ability can also be ensured when applying this
kind of video representation to other video-related tasks.

Second, we propose a novel learning framework in video self-supervised learning,

which can help learn good video representations without any annotations. Intra-



vi

negative samples are generated to benefit contrastive learning. We show that by
introducing negative samples by breaking the temporal relations while maintaining
the spatial similarities, the network can focus more on the temporal clues, resulting
in better performance when applied to the downstream video understanding tasks.

Third, we try to bridge the gap between contrastive learning and pretext tasks
in video self-supervised learning. We demonstrate that a simple combination of
contrastive learning and pretext tasks with proper training strategies can contribute
to better video representations than that on their own. We validate the generality of
this combination, explore the potential mechanism, and try to reach as closer to the
performance limits of traditional video self-supervised learning methods, which are

much better than corresponding baselines as reported in the original papers.
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Chapter 1

Introduction

1.1 Video Representation Learning

Video understanding is the key topic across all video-related tasks, from low-level
video tasks such as video enhancement, super-resolution, to high-level video tasks
such as action recognition, video segmentation, video retrieval, etc. Technologies to
automatically and effectively process video data boost very fast in the past decades.
Learning-based methods have proved to have outstanding performance in the image
research field and have been extended to videos. In recent years, deep learning
methods using convolutional neural networks (CNNs) have been introduced and
applied to video understanding tasks. Following the footprint in the image research
tield, these successful models in action recognition tasks can be used as feature
extractors to encode videos and extract high-quality video representations. Some
video tasks directly use these video features for further processing. To ensure that
models can capture good video representations, a combination of hand-crafted
features (e.g., optical flow), deeper network architectures, larger annotated datasets
are also necessary, greatly increasing the complexity and difficulty throughout the
workflow. We illustrate the traditional workflow for video representation learning in
Fig. 1.1. The calculation of optical flow highly increases the computation complexity,
and this training paradigm needs large-scale annotated video data, which requires a
wealth of resources.

Video representation learning can be conducted in different ways considering
the supervision signals in learning-based methods. In this thesis, we focus on both
supervised learning and self-supervised learning in video representation learning,
addressing the high cost for both computation and label annotation in Fig. 1.1.
Tran et al. [6] introduced 3D convolutional networks (3D CNNs) to supervised
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_ ’ Apply eye makeups ‘ Constraint for supervised learning

Annotation Action label
Addltlonal
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Optical flow
\ 4
Video
— — .
Samphng !‘ Model Representation
— b RGB frame
Orlgmal video frames
............... , Apply to
S i —
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RGB video clip Video understanding tasks

(i.e., action recognition, retrieval)

Figure 1.1: Traditional workflow for video representation learning. To ensure good
performance, additional computation of optical flow and large annotated video
datasets are necessary. After model optimization, the network can be used to extract
video representations, which can applied to a variety number of video understanding
tasks.

action recognition, which can process several frames at the same time by performing
convolution along the temporal axis as well as the spatial part. This learning
paradigm in action recognition tasks can constrain the model to learn good video
representations, which have been validated by classification as well as clustering
tasks. The success of 3D CNNs inspires a lot of following works [7-10], introducing
effective network backbones from image classification to videos by replacing the
2D convolutional layers with 3D ones. With better video representation learning
models, a broad range of video-related tasks enjoy the benefits and have shown
great improvements such as action detection [11-14], video assessment [15, 16], and
video summarization [17, 18]. All these methods still use 3D CNNs with RGB frames
decoded from videos, in which condition temporal features are not well extracted.
Thus, many methods [9, 19-22] pick up hand-crafted features such as optical flow
information, to compensate for the loss of temporal clues in video representations.
This kind of strategies further increases the complexity of the solution in both training
and inference periods.

Supervised learning requires a large amount of annotated data. To make use
of sufficient video data while ignoring the high cost of annotation, unsupervised
learning methods have attracted more and more attention in video representation
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learning. The network architectures can be directly from the corresponding super-
vised part, while this kind of learning paradigm can help optimize the network
without any video annotations. Supervision signals are from pre-defined trans-
formations or video sequence orders, ensuring the training is in a self-supervised
learning manner. Several temporal-related pretext tasks have been proposed and
by solving these temporal-related tasks [5, 23-30], the models are expected to have
the ability to extract good video representations for other video tasks. Contrastive
learning [2, 31-43] is another way, which try to distinguish one sample from another.
Discriminative features from videos can be extracted, which are usually treated as
effective feature representations.

In this thesis, the aim is to extract good video representations in an efficient
and effective way. Supervised learning can help extract action features and self-
supervised learning can make use of a large number of unlabeled videos, both of
which are efficient solutions for video representation. To extract better temporal
information without extra computation of hand-crafted features such as optical
flow data, based on 3D CNNs, we build our solution with a novel data modality
which is firstly introduced in a supervised manner. Taking the advantage of rich
experience in supervised learning, two different approaches in self-supervised video
representation learning are also proposed. The rest of the introduction chapter is
organized as follows. In Sec. 1.2, we discuss challenges in video representation
learning, which we should overcome. In Sec. 1.3, we present an overview of our
approach for supervised video representation learning. In Sec. 1.4, we present an
overview of our approach for self-supervised video representation learning.

1.2 Research Challenges

We first explain one of the most fundamental and successful approaches for video
models, 3D CNNs, which are widely used and applied in both supervised learning
and self-supervised learning when coping with video data. Compared to 2D
convolution, which filters and aggregates spatial features and has succeeded in
image tasks in computer vision, 3D convolution is naturally recognized to have
excellent abilities in automatically capturing rich spatiotemporal features from
videos. Videos contain T frames in resolution H X W, where the channel number C
is ignored. When stacking several frames together to form the input data, named
as video clips, these video clips are in shape T X Hx W. The 3D convolution kernels
are also in three dimensions, with shape Kt X Ky X Ky, corresponding to the video
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data. Therefore, following the success of 2D CNNs in images, 3D CNNs are widely
used in different network architectures [7-10]. However, deep learning methods
are usually black-box approaches, meaning that it is not sure whether the trained
models have captured good spatiotemporal information, except for the performance
in tasks such as action recognition tasks.

For video data, appearance information does not change too much across adjacent
frames, causing an imbalance problem if treating spatial information and temporal
information separately. Many researchers have realized these biases in video
solutions. To address this problem, different kinds of methods have been proposed,
such as increasing the depth of network architectures [7, 8, 22, 44], using larger and
larger datasets for their variety in appearance across different videos [9, 45, 46], and
introducing hand-crafted features [9, 19-22] which are specially designed for motion
extraction. All these solutions can alleviate the drawback more or less. However,
the price is high considering the computation complexity as well as the cost for data
annotation. How to efficiently learn effective, general video representations remains
a problem.

One of the solutions to this drawback is to obtain large and larger annotated
video data. For action recognition, video segmentation, as well as other video-
related tasks, the annotation formats vary from one to another. With the increasing
number of videos and various application situations, it is impossible to directly
apply action recognition models as feature extractors to other video research fields
because of the gaps between both task domains and data domains. Self-supervised
learning approaches are proposed to make use of video data without annotations.
Self-supervised learning methods do not use action labels or other video-task labels.
Many researchers have tried to follow the successful workflow from images to videos
and achieved acceptable performance, it is still far from good representations because
of the weakness in capturing temporal features. Self-supervised learning methods
need to be carefully designed. Because spatial features can be easily extracted with
high quality, our efforts in video representation learning focus on increasing the
model abilities in extracting better temporal features.

1.3 Supervised Video Representation Learning

In the first half of the thesis, we focus on supervised action recognition tasks to
explore better ways for video representation learning. Specially, we want to overcome
the drawback that capturing high-quality temporal features is expensive. A lot
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of works have been addressed on the network architectures. On the contrary, we
are interested in the data modality part, by considering these networks do have
the ability while the cause of the drawback is from the data part. We develop an
approach to generate a new data modality for 3D CNNSs in action recognition.

In Chapter 2, based on 3D CNNSs as the network backbones, we present a new
data modality in action recognition. Traditional input data (i.e., RGB video clips)
are constructed by stacking RGB video frames. To force the model to focus more on
temporal information, we reduce the appearance information by replacing RGB clips
with stacked frame differences, named residual clips. This simple transformation can
eliminate the side effects from the still background while maintaining compatibility
with 3D CNNs, which is simple and effective. Experimental results show that it is
sufficient to extract temporal features to overcome severe overfitting problems while
improving the generalization ability. We prove that the success of this solution is not
only in the action recognition task but also in the video retrieval task. Deep analyses
based on visualization and quantitative evaluation demonstrate the effectiveness
of our proposal. Because residual clips are generated from frame differences, a
natural drawback is lacking some appearance information for cases where the scenes
and objects play important roles. Thus, we also make use of a simple 2D CNN to
compensate for the spatial information, making the solution more comprehensive
without introducing complex branches.

1.4 Self-Supervised Video Representation Learning

In the latter half of the thesis, we address video representation learning in the
self-supervised paradigm, while still focusing on better temporal feature extraction.
The contrastive learning method is one kind of self-supervised learning approach
in natural language processing and image tasks and has been applied to videos.
Inspired by the design of contrastive learning, we take the advantage of temporal
clues and build an inter-intra contrastive learning framework in Chapter 3. Temporal-
related pretext tasks have also been proposed as another kind of solution in video
self-supervised learning. We bridge the gap between these two kinds of methods to
develop a joint learning framework in Chapter 4, which takes advantage of both.
In Chapter 3, we focus on the usage of contrastive learning, whose key idea
is to design a task to distinguish samples from one to another. It is easy to learn
discriminative features to meet the requirements of this constraint, while the quality
of learned video representations is not good because directly applying contrastive
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learning to videos does not take temporal information in the supervision signal.
We present inter-intra contrastive (IIC) learning framework, which makes use of
temporal information in an unsupervised learning way. Inter-samples mean samples
come from different instances (i.e., videos) while intra-samples indicate samples are
from the same instance. In addition to intra-positive and inter-negative samples
which have already been used in contrastive learning, intra-negative samples are
tirst introduced in contrastive learning. Experimental results quantitatively and
qualitatively demonstrate the effectiveness of our model, indicating that our model
can extract better video representations for different video tasks such as video
recognition and retrieval.

In Chapter 4, we focus on the combination of pretext task-based methods and
contrastive learning methods. Pretext tasks can be used to train in self-supervised
learning because pre-defined tasks usually share similar feature representations,
which are also useful for other related tasks. These methods are different from
contrastive learning methods because pretext tasks aim at exploring effective features
within samples themselves. However, good video representations should not only
represent the general spatiotemporal information, but also distinctive parts among
different videos to distinguish them. On the contrary, the focus of traditional
contrastive learning methods is opposite, just paying attention to distinguishing
videos from one to another. Inspired by the essential learning targets of these two
kinds of methods, we build a joint learning framework, pretext-contrastive learning
(PCL) framework, which constrains the network by both pretext task and contrastive
learning. We demonstrate that with PCL framework, performance can be greatly
improved over the corresponding baselines. Analyses indicate that this simple
combination can take advantage of both pretext tasks and contrastive learning.
Further, the generalization abilities of PCL are validated using different network
backbones on different datasets in both video recognition and retrieval tasks.



Chapter 2

Residual Frames with 3D ConvNets

2.1 Introduction

For video understanding tasks such as action recognition, it is an important challenge
to extract good motion representations among multiple frames. Various methods
have been designed to capture the movement. 2D ConvNet based methods used
interactions in the temporal axis to include temporal information [47-51]. 3D
ConvNet based methods improved the recognition performance by extending
2D convolution kernel to 3D, and computations among temporal axis in each
convolutional layers are believed to handle the movements [6-10, 52]. State-of-the-
art methods showed further improvements by increasing the number of frames used
in 3D ConvNets and the resolution of the input data as well as employing deeper
backbone networks [11, 22, 44].

In a typical implementation of 3D ConvNets, these methods used stacked RGB
frames as the input data. However, this kind of input is not considered enough
for motion representation because the features captured from the stacked RGB
frames may pay more attention to the appearance feature including background
and objects rather than the movement itself, as shown in the top example in Fig. 2.1.
Thus, combining with an optical flow stream is necessary to further represent the
movement and improve the performance, such as the two-stream models [21, 53, 54].
However, the processing of optical flow greatly increases computation time!. Besides,
obtaining two-stream results is possible only if the optical flow data are first extracted,
which causes high latency. Frame differences have been tried in [24, 25, 48, 55]. All
those methods just treated frame differences as an additional experimental modality

!Because there are many types of implementation of optical flow, we do not refer to any specific
type of implementation. But the calculation of optical flow is generally expensive.
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Figure 2.1: An example of our residual frames compared with normal 3D ConvNet
inputs. The residual-input model focused on the movement part while RGB-input
model paid more attention on background, which leads to lower accuracy for
prediction.

for their networks. They did not have deep analysis except for the performance on
their tasks.

Unlike most action recognition methods which focused on the network archi-
tecture, we mainly focus on the data part. In this chapter, we propose an effective
strategy based on 3D convolutional networks to pre-process RGB frames to be
set as the replacement of traditional input data. Our method retains what we
call residual frames, which contain more motion-specific features by removing
still objects and background information and leaving mainly the changes between
frames. Through this, the movement can be extracted more clearly and recognition
performance can be improved comparing to just using stacked RGB inputs as shown
in the bottom sample in Fig. 2.1. One may think that our approach is naive and
therefore cannot be applied to videos with global camera motion, but this will
also be addressed in Section 2.5.1. Experiments reveal that our approach can yield
significant improvements over top-1 accuracies when those ConvNets are trained
from scratch on UCF101 [56], HMDB51 [57], and Something-something (v1 and
v2) [58] datasets. Good performance of our proposal can also be easily achieved by
directly fine-tuning from current existing RGB pre-trained models for only a few
epochs. Models on action recognition can be directly used as a feature extractor in
other video understanding tasks such as video retrieval. Our experiments also show
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that residual-input model can have better performance for video retrieval on unseen
datasets than RGB counterpart. We also tried to apply our residual inputs to several
self-supervised learning methods [2, 3, 5], surpassing RGB baselines easily. The
scratch training results on small datasets, the video retrieval performance on unseen
datasets, and the successful application in self-supervised learning, showing that
residual-input model have better generalization ability, will be discussed in Sec. 2.6.
For larger action recognition datasets such as Something-something (v1 and
v2) [58] datasets, because they are more temporal related datasets, our residual-input
model can easily achieve better performance than those methods using traditional
RGB video clips as input. For other action recognition datasets such as Mini-
Kinetics [10] and Kinetics [45], the definitions of the actions become more complex.
For example, the category Yoga contains various combination of simple actions, and
these datasets have a large amount of compound labels, such as playing guitar and
playing ukulele, where the movement is almost the same and the difference is mainly
on the objects. In this case, it is difficult to distinguish by only motion representation
without enough appearance features. Therefore, when applied to these datasets, we
further propose a two-path solution, which combines the residual input path with a
simple 2D ConvNet to extract appearance features from a single frame in the video.
Experiments show that our proposed two-path method obtains better performance
over some two-stream models on UCF101 / HMDB51 / Mini-Kinetics datasets when
using the same input shapes and similar or even shallower network architectures.
Our contributions are summarized as follows:

e We are the first to use and deeply analyze residual frames with 3D ConvNets
for action recognition, which is simple, fast, but effective.

e Analyses including category digging, case study, network visualization, and
heatmap explanations fill the gap of this kind of modality about why and when
it functions well. These analyses also indicate that our proposal can extract
better motion representation for actions than RGB counterparts.

e Our proposal can achieve better performance than the RGB counterparts
when models are trained from scratch on four benchmark datasets with the
same settings. Our results can even achieve better performance with less
computation cost than methods using optical flow.

e The proposed residual-input model shows better performance in video retrieval
based on several self-supervised learning methods, revealing the generalization
ability and greater potential on other video understanding tasks.
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We would like to clarify that we are proposing a new solution for motion
representation. For this purpose, we do not always focus on the better performance
than other approaches based on very deep and complex DNN architectures as well
as other training / parameter settings. Instead, we discuss why and how much our
approach is reasonable as compared to optical-flow-based and RGB-only approaches
under the same settings.

2.2 Related Works

In this section, traditional action recognition networks are introduced first. Though
temporal modeling usually exists in these networks, we use another subsection to
introduce and discuss this in detail because temporal information is a key feature.
Model combination is set as another subsection to clearly show the solution route
maps for high accuracies.

2.2.1 Deep Action Recognition
2D Solution

2D ConvNet based methods mainly consist of frame-level feature representation
and temporal modeling to fuse these features. When treating each frame of a video
as a single image, 2D ConvNets which are effective for image classification task
can be directly applied to video recognition. Karpathy et al. [47] tried different
ways to fuse features from 2D ConvNet and then used fused features to classify
videos. Temporal Segment Networks (TSN) [48] was designed to extract average
features from stride sampled frames. Two-stream ConvNets [21, 53, 54] used an
additional optical flow stream. And for both RGB stream and optical flow stream,
2D ConvNets were used. Recent works such as Non-local networks [51], Temporal
Bilinear Networks (TBN) [49], Temporal Shift Module (TSM) [50], and Temporal
Excitation and Aggregation (TEA)network [59] are variants of 2D ConvNets. Com-
pared to 3D counterparts, 2D ConvNet based methods are more efficient because
fewer parameters are used, and the performance is highly related to the temporal
modeling. Our method uses a 2D network to extract appearance features considering
the high efficiency of 2D models, and the proposed appearance path uses less input
than existing 2D ConvNets, which is more efficient.
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3D Solution

3D ConvNet based methods directly use 3D convolution kernels to process input
video frames. The computation between frames is carried out when the temporal
kernel size is 2 or larger, and spatial-temporal features can be automatically learned
by network optimization. Tran et al. [6] proposed C3D, which consists of eight
directly-connected convolutional layers and two fully-connected layers. Hara et
al. [8] conducted many experiments on the 3D version of ResNet [60], including
different depths and using some variants such as ResNeXt [61]. Carreira et al. [9]
proposed I3D based on Inception network [62]. SlowFast [11] used two ResNet
pathways to capture multi-scale information in the temporal axis. Despite different
network architectures, 3D convolution kernel also has variants. One k X k X k kernel
can be separated into two parts, kx1x1 and 1xkXxk. Based on this, P3D [52],
R(2+1)D [7], and S3D [10] were proposed. The backbones of mainstream networks
are also ResNets [60] and Inception network [62]. Recently, group convolution
and channel-wise convolution have been applied in 3D ConvNets [44, 63]. Neural
architecture search (NAS) is used in [64] to get efficient network architectures. There
are many other 3D-conv based models such as X3D [63], TPN [65], and V4D [66],
which are designed to embed temporal information more effectively. However,
because the parameter number is larger than 2D counterparts, 3D models are prone
to over-fitting when trained from scratch on small datasets such as UCF101 [56]
and HMDB51 [57]. Fine-tuning models pre-trained on very large dataset such as
Kinetics [45] is one solution to acquire good performance on these small datasets.
From another point of view, our proposed method focuses more on the movement
itself and utilizes a 3D ConvNet with higher motion representation ability by using
residual frames as input. In this way, we can reduce the tendency to over-fit on
small datasets compared to standard RGB inputs when using the same network
architectures.

2.2.2 Temporal Modeling

For 2D ConvNets, some models [47, 48] have been proposed which simply averaged
frame features to represent videos. Donahue et al. [67] used 2D models to extract
features using long short-term memory (LSTM) [68]. Zhou et al. [69] proposed
Temporal Relation Network to learn temporal dependencies. Wang et al. [51]
proposed non-local block to capture corresponding information among frames.
Temporal Bilinear Networks [49] used temporal bilinear modeling to embed temporal



12 Residual Frames with 3D ConvNets

information. TSM [50] shifted 2D feature maps along temporal dimension. TEA [59]
aggregated temporal features by processing information from adjacent frames in
their motion excitation block.

For 3D ConvNets, temporal modeling is automatically processed by learning
kernels in the temporal axis. Because 3D ConvNets use stacked RGB frames as input,
the computation among frames is believed to learn motion features, while the spatial
computation is for spatial feature embedding. Therefore, most existing 3D models
do not pay much attention to this part, and trust the capabilities of network. Recently,
Crasto et al. [22] trained a student network using RGB-frame input by learning
feature representation from a teacher network, which had been trained using optical
flow data to enhance temporal modeling. Similar solutions can be found in hidden
two-stream networks [70] and D3D [71], which also used the other training step to
enhance temporal modeling. Zhang et al. [66] used a 4D convolution to ensemble
information from 3D ConvNets, which makes the model more complicated.

Our proposed two-path method consists of an appearance path using a 2D
ConvNet only to extract appearance features and a motion path using 3D ConvNet
to calculate motion features. Temporal modeling only exists in the motion path. The
use of residual clips differs from that of RGB video clips because for residual clips,
motions exist not only in the temporal dimension of residual frames, but also in the
spatial dimension because one residual frame is generated from two adjacent frames.

Besides, we also want to mention that recently, with the application of trans-
formers [72] in computer vision [73, 74], transformer based methods have also been
used in video understanding [75-79]. The temporal modeling part is conducted
by the self-attention mechanism across video patches. However, currently, the
computational complexity of this kind of technology is very high for both training

and inference part.

2.2.3 Two-Stream Modeling

Two-stream models usually stand for those methods combining 2D features / results
from RGB stream with optical flow stream [21, 53, 54]. Some researchers extended
the concept by combining the RGB-frame-input path with another path which uses
pre-computed extra motion features, such as trajectories [80] or SIFT-3D [81], as
well as optical flow. Then, many existing methods can be extended by combining
motion feature stream to further improve their performances [7, 9, 22]. To distinguish
our proposal from the aforementioned two-stream methods, we refer to our multi-
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branch solution as ‘two-path’ rather than “two-stream’ because we do not use any
pre-computed motion features.

2.3 Proposed Method

In this section, we first introduce our proposal that uses residual frames as a new form
of input data for 3D ConvNets. Because residual frames lack enough information for
objects, which are necessary for the compound phrases used for label definitions in
some video recognition datasets, we further propose a two-path solution to utilize
appearance features as an effective complement for motion features learned from
the residual inputs.

2.3.1 Residual Frames with 3D ConvNets

For 3D ConvNets, stacked frames are set as input, and the input shape for one batch
datais Tx H X W xC, where T frames are stacked together with height H and width
W, and the channel number C is 3 for RGB images. We denote the data as THW for
simplicity. The convolution kernel for each 3D convolutional layer is also in three
dimensions, being k1 X ki X kyy. Then for each 3D convolutional layer, data will be
computed among three dimensions simultaneously. However, this is based on a
strong assumption that motion features and spatial features can be learned perfectly
at the same time. To improve performance, many existing 3D models expand weights
from 2D ConvNets to initialize 3D ConvNets, and this has been proved to provide
higher accuracies. Pre-training on larger datasets will also enhance performance
when fine-tuned on small datasets.

When subtracting adjacent frames to get a residual frame, only the frame
differences are kept. In a single residual frame, movements exist in the spatial axis.
Using residual frames for 2D ConvNets have been attempted and proved to be
somewhat effective [55]. However, because actions or activities are complex with
much longer durations, stacked frames are still necessary. In stacked residual frames,
the movement does not only exist in the spatial axis, but also in the temporal axis,
which is more suitable for 3D ConvNets because 3D convolution kernels will process
data in both spatial and temporal axes. Using stacked residual frames helps 3D
convolution kernel to concentrate on capturing motion features because the network
does not need to consider the appearance information of objects or backgrounds in
videos.
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Figure 2.2: Residual frames with 3D ConvNets, which can extract better temporal
representations.

Here we use frame; to represent the iy, frame data, and Frame;.; denotes the
stacked frames from the iy, frame to the jy, frame. The process to get residual frames
can be formulated as follows,

ResFrame;.j = |Frame;.j — Framej 1~ 1. (2.1)

The computation cost! is cheap and can even be ignored when compared with
the network itself or optical flow calculation. For the computation cost of optical
flow, It takes about 48 seconds for a 6-second video (165 frames) using the TV-L1
optical flow algorithm [82] and OpenCV on CPU. Though it can be accelerated by
parallel computing, it is still time consuming compared to the inference time of our
motion path (less than 0.19 seconds/video).

With this simple change (Fig. 2.2), 3D ConvNet can extract motion features by
focusing on the movements in videos alone. However, by ignoring objects and
backgrounds, some movements in similar actions become indistinguishable. For
example, in the actions Apply Eye Makeup and Apply Lipstick, the main difference lies
in the location of the movement being around the eyes or the mouth rather than the
movement itself. In this example, 3D ConvINets may be able to distinguish them to
some extent but the loss of information does increase the difficulty. Therefore, we
further use a 2D ConvNet to process the lost appearance information and combine it
with a 3D ConvNet using residual frames as input to form a two-path network.

2.3.2 Two-Path Network

Our two-path network is formed by a motion path and an appearance path, which is
illustrated in Fig. 2.3.

!Considering the input data shape is 16 x 112112 in THW format, the cost to generate the residual
clip is only about 0.6 MFLOPs, while it is usually larger than 10 GFLOPs for 3D ConvNets.
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Figure 2.3: Framework of our two-path network. The motion path and the appearance
path are trained separately using cross-entropy loss. Action recognition is carried
out within each path. In inference period, the output probabilities from two paths
are averaged. In this way, both motion features and appearance features are utilized
for final classification. Note that the key for our motion path and appearance path is
the input modality, any kinds of network architectures are potential options.

Motion path. Because residual frames are used in this path, movements then exist
in both the spatial axis and the temporal axis. Therefore, 3D convolution layers are
used in this path. Because there are many existing 3D convolution based network
architectures which have been proved effective in many action recognition datasets,
we do not focus on designing a new network architecture. Instead, to verify the
robustness and versatility of our proposal, we conduct experiments on various
models, and discuss especially on ResNet-18-3D for its good performance, which is
a 3D version of ResNet-18 [60].

Appearance path. By using residual frames with 3D ConvNets, motion features can
be better extracted, while foreground object appearances are almost lost. The lost
part can be extracted by a 2D ConvNet, which uses one RGB frame as input. The
goal for our appearance path is to embed object and background appearances which
are mostly lost in the motion path. Therefore, to some extent, in contrast to TSN [48]
or other complex models, a simpler 2D ConvNet is sufficient. The naive 2D ConvNet
treats action recognition as a simple image classification problem. During training,

only one frame in a video is randomly selected in one epoch.

Path fusion strategy. For the combination of these two paths, we average the
predictions for the same video sample. We have experimented the late fusion
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Table 2.1: Exact numbers used in datasets. * indicates the statistical information of
the first split, and for other splits, the numbers are similar.

Dataset UCF101* HMDB51* Mini-Kinetics Kinetics Sth-sth-vl Sth-sth-v2

Classes 101 51 200 400 174 174
Train 9,537 3,570 74,262 225,231 86,017 159,742
Test 3,761 3,196 4,739 18,556 11,522 23,408

approach, which trained an additional classification layer to fuse features from
different paths. The differences are limited and we discuss it in Sec. 2.7.2. There are
other fusion methods that may be more effective, which we leave as our future work.
We also want to address that this simple appearance path is a complement of the
motion path, which can be replaced by any existing 2D solution (e.g., TSN [48]) to
enhance the performance while increasing the complexity.

2.4 Experiments

2.4.1 Datasets and Metrics

Datasets. There are several commonly used datasets for video recognition tasks.
Thanks to the large number of videos and labels in these datasets, deep learning
methods can detect a large amount of actions. We mainly focus on the following
benchmarks: UCF101 [56], HMDB51 [57], Something-something (Sth-sth) v1 and
v2 [58], and Kinetics400 [45].

UCF101 consists of 13,320 videos in 101 action categories. HMDB51 is comprised
of 7,000 videos with a total of 51 action classes. The Sth-sth datasets contain more than
100,000 videos across 174 action classes, which are highly related to human-object
interaction and the definition of different actions is about the movement itself such
as Holding [something], where the object to be held has many options. The total
video numbers are 108,499 for Sth-sth-v1 and 220,847 for Sth-sth-v2. Kinetics400
consists 400 action classes and contains around 240k videos for training, 20k videos
for validation and 40k videos for testing. For the Kinetics400 dataset, because it is
very large, we mainly perform our toy experiments on its subset, Mini-Kinetics [10],
which consists of 200 action classes with 80,000 videos for training and 5,000 videos
for validation.

The actual data used in our experiments may be a little smaller because some
videos were unavailable from the corresponding websites. And for some datasets,
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labels for testing dataset are unavailable. Therefore, following a standard procedure,
we use the validation dataset to evaluate in such cases. The exact video numbers
used for each datasets in our experiments are demonstrated in Table 2.1.

Metrics. We report top-1 and top-5 accuracies for all experiments for video action
recognition. The performance on Mini-Kinetics, Kinetics, and Sth-sth (v1 and v2)
is evaluated on the validation split. We also use correlation coefficient indexes of
per-category accuracy for deeper analysis between different models, which may
indicate the relationships between the knowledge learned from existing models.
When testing the generalization ability using video retrieval task, k-nearest-neighbor
(kNN) search is used and top-1, top-5, top-10, top-20, and top-50 performance will
be reported.

2.4.2 Training from Scratch and Fine-tuning

There are always two ways to train a network, either training from scratch or fine-
tuning from a pre-trained one. There is an obvious gap between these two training
routes. Thanks to the proposal of the Kinetics datasets, several 3D convolution based
models have been proposed with better performances using pre-trained models.
Therefore, many recent works based their results on fine-tuned models for small
datasets such as HMDB51 and UCF101, and trained from scratch for larger datasets
such as Kinetics400 and its subset (i.e., Mini-Kinetics), as well as Sth-sth datasets.

Models can benefit from larger datasets, but training on larger datasets signif-
icantly increases computation time. For example, the size of Kinetics-400 dataset
is almost 26 times of UCF101 dataset. The number of videos in the recent Kinetics-
700 [46] dataset is around 50 times of UCF101. If training on UCF101 requires 1
day on one GPU, it will take nearly two months for the same experimental devices
on Kinetics-700. Although improvements can be achieved, repeatedly increasing
the size of datasets to improve performance is not always a solution. Therefore, in
this work, in addition to the default settings discussed above, we also look into the
situation that no additional knowledge is available. Specifically, we want to explore
the limitations for 3D ConvNets on UCF101 and HMDB51 without any additional
knowledge from other datasets.

2.4.3 Implementation Details

Motion path. In this path, stacked residual frames are set as the network input data.
Residual frames are used identically to traditional RGB frame clips. For 3D ConvNets
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in action recognition, there are several input setting choices. 3D ConvNets started
from [6] which used a clip of 16 consecutive frames, with a 112 x 112 slice cropped
in the spatial axis. To achieve the state-of-the-art results, clips in size 64 X 224 x 224
were used in many recent works [10, 11]. When using such a large input data size,
improvements can be always achieved while the training time are almost 16 times
as long as before, as well as much larger memory occupations. Therefore, if not
specified, for all of our motion path, following [6], frames are resized to 171 X 128 and
16 consecutive frames are stacked to form one clip. Then, random spatial cropping
is conducted to generate an input data of size 16 x 112 x 112. Before it is fed into the
network, random horizontal flipping is performed. Jittering along the temporal axis
is applied during training. The backbone in most of our experiments is ResNet-18-3D.
R(2+1)D, I3D, and S3D are also tested to verify the robustness of our proposal. The
batch size is set to 32. When models are trained from scratch, the initial learning rate
is set to 0.1. We trained models for 100 epochs on UCF101, HMDB51, and Sth-sth
(vl and v2) datasets, and used 200 epochs for Mini-Kinetics. When fine-tuning on
UCF101 and HMDB51 using Kinetics400 pre-trained models, model weights are
taken from [8] and the network architecture remains the same. The initial learning
rate is set to 0.001, and 50 epochs are sufficient.

Appearance path. In contrast to TSN [48], our appearance path uses a simpler
model which treats action recognition as image classification because appearances
in consecutive frames change infrequently, and the goal for this path is to capture
appearance features for background and objects. Frames are first resized to 256 x 256.
Then random spatial cropping and random horizontal flipping are applied in
sequence to generate input data with a size of 224 x 224. This progress is standard
in image classification to enable the use of many pre-trained models. ResNet-18,
ResNet-34, ResNet-50, and ResNeXt-101 are used to test the impact of different model
depth. In addition, models are also trained from scratch to see the performances
when no additional knowledge is provided.

Testing and results accumulation. There are two means of testing for action
recognition using 3D ConvNets. One is to uniformly get video clips from one video,
which means a fixed number of clips is generated and set as the input of the model,
regardless of the video length. The predictions are averaged over all video clips
to generate the final result. The other method uses non-overlapping video clips,
which means longer videos will produce more video clips. The final result for one
video is also generated by averaging these video clips. We performed a small test
for these two means of testing and found the difference can be ignored because all of
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Table 2.2: Results on the UCF101 split 1, all models are trained from scratch. All
models here can be treated as the motion path.

Model residual Top-1 Top-5

ResNet-18 X 61.6 849
ResNet-18 V4 78.0 94.0
R(2+1)D [7] X 51.8 79.2
R(2+1)D [7] v 66.7 88.3
I3D [9] X 565 81.3
I3D [9] v 66.6 87.0
S3D [10] X 51.1 77.4
S3D [10] v 64.8 86.9

the clip results are averaged in both methods. Thus, we use the uniform method
in our experiments, and our appearance path uses a fixed number frames sampled
from all video frames to match the motion path.

2.5 Results and Analysis

In this section, results from single paths are introduced first. The motion path is
used to investigate the effectiveness of stacked residual frames. Second, results
from the appearance path are reported. Further analysis is conducted to explore the
connections between models, especially the RGB 2D model and the RGB / residual
3D model. Finally, we show the performance of our proposed two-path network
comparing to various existing models.

2.5.1 Single Path
Motion Path

Compared to RGB clips, stacked residual frames maintain movements in both spatial
and temporal axes, which takes greater advantage of 3D convolution. Results are
shown in Table 2.2 and the following discussion is all based on this table. By simply
replacing RGB clips with our proposed residual clips, ResNet-18-3D results can be
improved from 61.6% to 78.0%. To the best of our knowledge, this outperforms the
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Table 2.3: Top-1 results for motion path on three benchmark datasets. Only motion
path is tested. Pre-trained models are from RGB modality trained on Kinetics-400.

Model Type Pre-train UCF101 HMDB51 Mini-Kinetics

ResNet-18 RGB X 61.6 22.2 65.0
ResNet-18 Residual 78.0 34.7 64.4

X
ResNet-18 RGB v 84.4 56.4 -
ResNet-18 Residual v 89.0 547 -
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Figure 2.4: Visualization of motion path models using grad-cam [1]. The number is
the corresponding prediction probability for each sample. Residual-input model
focused more on the moving entity and the moving area while RGB-input included
more background information.

current state-of-the-art results when models are trained from scratch on UCF101.
R(2+1)D, I3D, and S3D are also experimented and improvements are achieved by
more than 10% points when replacing original RGB input with our residual frames.
Considering the training conditions that UCF101 is a small dataset and models can
obtain almost 100% accuracy on the training split, the high performance of our
residual input model indicate that residual data have better generalization ability
than RGB counterparts for 3D ConvNets.

To sum up our residual inputs, we can see that this approach is robust for
different model architectures. Because ResNet-18-3D is light-weighted and has good
performance, we used ResNet-18-3D as the default backbone in our motion path.

We also tested the performance on HMDB51 and Mini-Kinetics. Results are
shown in Table 2.3. On the HMDB51 split 1, the results can be improved from 22.2%
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Figure 2.5: Visualization of model weights for the motion path. Models are trained
from scratch on the Mini-Kinetics. Different model weights along the temporal axes
are in charge of aggregating information from different temporal positions. If 3D
convolution kernel weights are the same along the temporal axis, the convolution
process equals to that using a 2D convolution kernels to process each channel
separately, where there is no need to use 3D ConvNets. Filters in the RGB-input
model are similar among temporal axis. On the other hand, in the residual-input
model, the weights indicate that the residual-input model is more sensitive for
changes in temporal dimension.

Residual

to 34.7% when replacing the original input with residual frames. However, the
improvement cannot be observed for Mini-Kinetics because the labels are more
related to objects rather than actions, which is also the main reason of introducing
our appearance path. We would like to clarify again that the results in the table are
from our motion path only. Residual-input model can also benefit from pre-trained
models when fine-tuning, yielding 89.0% on the UCF101 split 1. The results on
HMDB51 are not as good as the RGB model because on this dataset, the range of one
variation of one action is larger. For example, the category Dive including bungee
jumping and a movement by a score keeper on the ground. And many movements
are inconsistent in one category while the samples are few, which greatly increases
the difficulty for residual inputs.

For deeper analysis, we further use grad-cam [1] for visualization. As shown
in Fig. 2.4, the residual-input model pays attention to the action entity while the
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Figure 2.6: Accuracy difference between models with residual inputs and RGB inputs
on Mini-Kinetics. Best-10 and worst-10 categories are illustrated.

RGB-input model focuses more on the background. The prediction probability is low
for BreastStroke because RGB model gives higher probability for another swimming
style FrontCrawl.

The first 16 out of 64 convolutional filters in the convl layer from the RGB-input
model and the residual-input model are illustrated in Fig. 2.5. These two models
are both trained from scratch on Mini-Kinetics, with the same hyper-parameters
in settings. We can see that the filters in the RGB-input model are similar among
different temporal axes. Notice that these similar weights are from models with
random initialization. If 3D ConvNets are initialized by duplicating 2D ConvNet
weights pre-trained on ImageNet [83], this phenomenon will also happen because
the model weights are born to be similar across the temporal axis, although better
results can be achieved in such a condition. The filters in residual input model differs
from each other among different temporal axis, indicating that this model is more
sensitive to the changes in time. The accuracy differences between our residual-input
model and the RGB-input model are illustrated in Fig. 2.6. We show the best-10 and
worst-10 classes. The positive peak belongs to the class playing bagpipes and we find
that in this category, there are global movements caused by lens shake and other
irrelevant movements by bystanders, which can be handled by our residual-input
model. We think it is because with residual inputs, the global movement or such
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Figure 2.7: Case study. Bette performance can be achieved using residual clips in
category Throwing discus while in category Yoga, RGB clips perform better. In the
presented samples, it is obvious that common movements (e.g., turning around) exist
in different samples in category Throwing discus. However, the definition Yoga is
vague and the style of clothes may play a more important role than the movements.

shaking noise has been considered during training, making the model robust for
these cases. We also illustrate case studies in Fig. 2.7. It is clear that movements in
throwing discus are highly consistent. In contrast, movements in yoga varies from
each other while the appearance information plays a more important role.

Based on our analysis, the ability of 3D ConvNets with traditional RGB video clips
as input may be limited because of the ambiguity in action labels. Additionally, more
attention is paid to appearance rather than movements for RGB 3D models because
during training, the network finds that appearance features are discriminative
enough in such datasets.

The aforementioned results and analyses are on the UCF101, HMDB51, and
Mini-Kinetics datasets. We also conduct paired experiments on the Kinetics400 and
Sth-sth (v1 and v2) datasets with RGB and our residual clips. Results are in Table 2.4.
We also list references to validate that our experimental settings are close to standard
baselines even without carefully choosing training hyper-parameters. Experiments
in each block share exactly the same hyper parameters for training. Specifically,
scratch training took 100 epochs and fine-tuning took 60 epochs. State-of-the-art
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Table 2.4: Results on Kinetics400 and Something-something datasets (v1 and v2).
Our experiments in the same block used exactly the same settings.

Pre-train Modality Inputsize Topl Topb

Kinetics400
ResNet-18 [8] - RGB  16x1122 542 -
ResNet-18 [7] - RGB  16x1122 642 -
‘ResNet-18 - RGB  16x1122 623 843
ResNet-18 - Res 16x1122 605 82.7
‘ResNet-50 [84] - RGB  32x1122 643 -
ResNet-50 - RGB 8x2242 540 786
ResNet-50 - Res 8x2242 56.1 79.4
Sth-sth-v1
ResNet-18 [85] K400 RGB  32x112%2 431 -
‘ResNet-18 K400  RGB  16x1122 298 589
ResNet-18 K400 Res 16x112%2 30.5 60.0
‘ResNet-18 - RGB  16x1122 320 59.1
ResNet-18 - Res 16x1122 35.2 63.9
‘ResNet-18 K400  RGB  32x1122 422 709
ResNet-18 K400 Res 32x1122 442 745
Sth-sth-v2
ResNet-50 [84] - RGB  32x112%2 443 -
‘ResNet-18 K400  RGB  16x1122 449 743
ResNet-18 K400 Res 16x112%2 46.2 75.8
‘ResNet-18 - RGB  16x1122 469 764
ResNet-18 - Res 16x1122 47.0 77.9
‘ResNet-50 - RGB  8x2247 369 672
ResNet-50 - Res 8x2242 39.5 70.3

methods usually used longer epochs (e.g., 200 or longer epochs for ResNet-50-3D
network) to train, while in this table, we focus more on the effectiveness of data
modality.

From Table 2.4, we can find that on Kinetics400 dataset, RGB modality performs
better than our residual clips when using ResNet-18-3D network, which is reasonable
and consistent with our findings from the Mini-Kinetics dataset. However, when
using ResNet-50-3D, our residual-input model outperforms the RGB counterpart.
We think this is because networks are trained for only 100 epochs, which are enough
to reflect that with our proposed residual input, motion features can be easier learned
than using RGB video clips. With the same network architecture, the epoch number
is 256 in [11] and 250 in [84].
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Table 2.5: Action recognition accuracies different datasets. The input is only one
single frame, which can be seen that no temporal information is used here even for
action recognition.

Dataset UCF101 HMDB51 Mini-Kinetics
Pre-train  Scratch ImNet Scratch ImNet Scratch ImNet

ResNet-18 37.7 79.6 25.0 42.6 57.7 64.4
ResNet-34 40.1 81.5 24.8 43.1 59.4 68.9
ResNet-50 33.7 83.8 21.3 43.4 58.6 69.7
ResNeXt-101 34.4 85.2 23.3 45.6 59.7 70.5

Compared to the Kinetics400 dataset, the Sth-sth-vl and Sth-sth-v2 datasets
are more temporal related datasets. On the Sth-sth datasets, with our proposed
residual clips, better performance can be achieved across different settings such as
different parameter initialization strategies (i.e., scratch training and fine-tuning),
different input sizes (i.e., 8 X224 x224,16x112x 112, and 32 x 112X 112), and different
network architectures (i.e., ResNet-18-3D and ResNet-50-3D). Through our analyses,
our residual-input model can capture more temporal related features. The better
performance of residual input in this table further proves our statement because the
Sth-sth datasets are more temporal related datasets while Kinetics-400 dataset cares
more about the appearance (scene/object) information. Another interesting finding
is that on the Sth-sth datasets, better performance can be achieved when models are
trained from scratch than those fine-tuned from Kinetics400 pre-trained weights,
which reveals that the main useful features for action recognition on these datasets
are different.

Appearance Path

For the appearance path, four ResNet architectures were used, namely ResNet-18,
ResNet-34, ResNet-50, and ResNeXt-101. Scratch training as well as fine-tuning from
ImageNet pre-trained models were both tried. The results are shown in Table 2.5.

We can clearly find that the gap is large for 2D ConvNets between these two
training ways, which is consistent with previous works on image classification tasks.
However, pre-training also needs much time if no pre-trained models are provided.
For better performance, deeper networks generally provide higher scores.
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Regarding Mini-Kinetics, ImageNet pre-trained models were directly used and
high accuracies could be achieved. Among these 2D ConvNets, the best top-1
accuracy was 70.5%, which is very high. However, in this case, the action recognition
task is treated as a simple image classification task, which does not benefit from the
use of any temporal information.

The performance of ResNet-18-2D using pre-trained weights is 79.6% in UCF101
dataset, which is close to the performance of scratch training using ResNet-18-3D
in Table 2.2, 78.0%, though it may be unfair to compare these two models because the
2D version utilizes image classification knowledge to initialize its parameters while
the 3D version does not. 3D convolution based models are thought to have better
ability for the extraction of spatio-temporal features than 2D convolution, the results
here indicate that spatial information may be sufficient for many cases in some video
recognition datasets. Pre-training 3D ConvNets on complex video datasets could
be a good solution. However, it is still prone to mainly using appearance features,
which is actually not in line with the original intention for video representation
because temporal information is lost.

Analysis Among Models

The difference between 2D convolution and 3D convolution is that 3D convolution has
another dimension which is aimed to process temporal information. For continuous
frames, especially those trimmed videos provided in video recognition datasets,
the difference between frames is limited. Therefore, the 3D convolution may not
process temporal information efficiently. Duplicating ImageNet pre-trained model
parameters as the initial model parameters does provide improvements, but spatial-
temporal convolution might be lazy during fine-tuning process because even for
models trained from scratch, model weights tend to be similar among temporal
axes (Fig. 2.5).

Here, we introduce the correlation coefficient index to calculate the relationships
between different models. 2D models and 3D models were tested. We also used
optical flow streams with both 2D ConvNet and 3D ConvNet as comparative models.
Correlation coefficient indexes for per-category accuracies between two different
models are reported in Table 2.6. The backbone networks are ResNeXt-101-2D and
ResNet-18-3D for 2D ConvNet and 3D ConvNet, respectively. All models were
fine-tuned from pre-trained ones to ensure the classification performance. From
the table, we can see that the correlation coefficient index for the RGB 2D and
3D models is high (Tag A), which indicates that these two approaches may make
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Table 2.6: Correlation coefficient indexes for per-category accuracy on the UCF101
split 1. Type means the type of convolution kernels used in the network.

Model Model
Input Type Input Type

RGB 2D RGB 3D 0.839
RGB 2D Residual 3D 0.663
RGB 2D Flow 2D 0.505
Flow 2D RGB 3D 0.569
Flow 2D Residual 3D 0.534
RGB 3D Residual 3D 0.791
Flow 2D Flow 3D 0.582
Flow 3D RGB 2D 0.478
Flow 3D RGB 3D 0.612
Flow 3D Res 3D 0.742

=
0

Correlation

— =T OO I N W >

judgement in a similar way while optical flow stream differs significantly. Though
our residual-input model has high correlation with the RGB 3D models (Tag F), the
correlation becomes lower with the RGB 2D models (Tag B) because using residual
frames results in more motions being used for classification rather than appearance.
From Tag G, an interesting finding is that even both use optical flow data, the 2D
model and the 3D model conduct judgement differently, which might be caused
by the training ways because 3D ConvNets use stacked optical frames while our
2D ConvNets are too naive and the prediction is from one single time spot. From
Tag H and Tag I, we can see the correlations between the RGB model and optical
flow models are not high. For the optical flow 3D model, the highest correlation
comes from a comparison with the residual 3D model, indicating that the behavior
for our motion path is similar to optical flow.

2.5.2 Two-Path Network

By combining the motion path with the appearance path, appearances and motions
can be used to get the predictions. Because we have several models, we tried different
combinations among different models. For example, in the UCF101 dataset, we tried
different combinations by selecting two models among RGB 2D model, optical flow
2D model, RGB 3D model, optical flow 3D model, and residual 3D model. The
results are listed in Table 2.7. In our implementation, the optical flow path used a
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Table 2.7: Results from different combination of different models on the UCF101
split 1. Our combination yielded the best performances.

Appearance path Motion path Top-1 Top-5

Input  Type Input Type

RGB 3D Optical flow 2D 75.7 921
RGB 3D Optical flow 3D 876 973

RGB 3D Residual 3D 874 975
RGB 2D Optical flow 2D 757 921
RGB 2D RGB 3D 86.6 97.1
RGB 2D Optical flow 3D 90.3 98.5
RGB 2D Residual 3D 90.3 98.5

ResNeXt-101 backbone, which is the same as our appearance path. However, the
combination of 2D optical flow model and other RGB models produces side effects
on the accuracies. When the 2D RGB model is set as the appearance path, the results
are the same when setting the 3D optical flow model or the 3D residual model as the
motion path. We think this is another proof of the effectiveness of our residual-input

model for motion feature extraction.

2.5.3 Comparison with Other Methods

We do not focus on developing a new network architecture. Therefore, we only
compare our method with some corresponding methods, as shown in Table 2.8.
Our single motion path can outperform TSN (RGB or RGB difference) [48] and
I3D-RGB [9] which only use RGB input data. TSN also tried a multi-path solution,
which combined RGB modality with RGB difference and it only achieved 87.3% on
UCF101 while our single motion path can obtain 89.0%. Without any additional
computation for optical flow and only using ResNet-18-3D, we can even have better
performance than the original two-stream model [54] which uses optical flow. On
the other hand, our model is not better than the state-of-the-art such as [9]. But itis
out of the scope of our proposal because many settings including the input size and
network architectures are totally different.

We also show the computation complexity in this table. The GFLOPs in Table 2.8
only represents the complexity of the networks themselves, and these methods using
the optical flow stream requires much additional computation which cannot be
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Table 2.8: Comparisons on UCF101, HMDB51 and Kinetics400. * indicates methods
using optical flow. The computational complexity for optical flow is not included.

GFLOPs UCF101 HMDB51 Kinetics400

Scratch training

ResNet-18-3D baseline [8] 16.8 424 171 54.2
STC-ResNet-101 [86] 15.6 45.6 - 64.1
NAS [64] - 58.6 - -
TSN (RGB only) [48] 41 48.7 - -
C3D [6] 38.5 51.6 24.3 55.6
ResNet-18-3D (residual clips, ours) 16.8 78.0 43.7 -
Single path (fine-tuning)
CoViAR (Residuals) [55] 4.2 79.9 44.6 -
TSN (RGB difference) [48] 4.1 83.8 - -
TSN (RGB) [48] 4.1 84.5 - -
ResNet-18-3D baseline [8] 16.8 84.4 56.4 -
C3D [6] 38.5 82.3 51.6 -
I3D (RGB, ImNet pre-train) [9] 107.8 84.5 49.8 71.1
R(2+1)D (RGB) 152.4 96.8 74.5 74.3
ResNet-18-3D (residual clips, ours) 16.8 89.0 58.1 62.9
Multi-path (fine-tuning)

Two-stream” [54] 3.3+ 86.9 58.0 65.6
Two-stream (+SVM)* [54] 33+ 88.0 59.0 -
TSN (RGB + RGB diff) [48] 8.2 87.3 - -

13D" [9] 215.6 + 98.0 80.7 74.2
CoViAR (3 nets) [55] 12.6 90.4 59.1 -
Two-path (ours) 32.8 90.6 56.6 67.7

ignored. Though single R(2+1)D can achieve good performance, the price (152.4
GFLOPs) is around 9 times larger than ours when compared with our single residual
input path. For the extraction of optical flow, according to [87], the GFLOPs for three
well-known network, FlowNet [88], FlowNet2 [89], and PWC-Net+ [90], are 66.9,
368.3, and 101.6, respectively. Even the computational complexity is only 3.3 GFLOPs
for the two-stream model [54], it will increase by at least 22 times and surpass our
two-path solution when taking the calculation of optical flow into consideration.

For the Mini-Kinetics dataset, results are shown in Table 2.9. We mainly compared
our method with TBN [49] and MARS [22], which does not use optical flow yet
achieving good performances. TBN used temporal bilinear modeling to process
temporal information, which is insufficient to extract motion features compared with
ours. The backbone network for MARS is ResNeXt-101-3D. To get the results using
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Table 2.9: Results on Mini-Kinetics. Our tow-path network outperforms MARS even
when it uses three streams. The depth of our motion path is 18 while that for MARS
is 101.

Method Optical flow Top-1 Top-5

TBN C2D [49] X 69.0 89.8

TBN C3D [49] X 67.2 883
MARS [22] X 72.3 -
MARS + RGB [22] X 72.8 -
MARS + RGB + Flow [22] v 73.5 -

Motion path X 644 864

Our two-path X 739 914

distillation methods, their networks should be trained on optical flow inputs first,
and then another network is built to learn features from optical flow stream. The
process is complex and is much more expensive than our proposed two-path method.
The backbone network for our motion path is ResNet-18-3D, which is shallower than
that used in MARS. There is much room for our proposed solution to improve by
using deeper networks and other feature fusion methods.

2.6 Generalization Abilities

In this section, we further analyze the generalization ability using residual inputs
by two video understanding tasks. The first experiment uses trained models as a
feature extractor and take video retrieval as a target task on unseen datasets. The
second experiment sets residual clips as inputs and they are applied to existing
self-supervised methods, where the baselines are all based on RGB inputs.

2.6.1 Video Retrieval on Unseen Datasets

When using a different dataset, if the trained model can capture video representations
with sufficient information, better retrieval performance can be achieved because
samples with the same label share similar movements. Here we trained two models
on Kinetics400 using RGB clips and residual clips, respectively. The retrieval task is
conducted on unseen datasets, UCF101, HMDB51, Sth-sth-v1 and Sth-sth-v2 [58].
The results are shown in Table 2.10.
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Table 2.10: Results on video retrieval. Both RGB and residual models are trained on
Kinetics400. The input size is 16 X 112 x 112.

Tag Modality Train Test Top-1 Top-5
RGB Kinetics400 UCF101 69.6 85.7
a Res Kinetics400 UCF101 72.1 87.1
b RGB Kinetics400 HMDB51 31.5 61.5
Res Kinetics400 HMDB51 42.7 68.2
RGB Kinetics400 Sth-sth-vl 4.2 13.5
¢ Res  Kinetics400 Sth-sth-vl 4.6 154
d RGB Kinetics400 Sth-sth-v2 5.3 17.1
Res Kinetics400 Sth-sth-v2 6.7 194

As we can see from the table, on the Kinetics400 dataset, the residual model can
have better performance for video retrieval when applied to unseen datasets. We can
obtain 2.5% points and 11.2% points improvements at top-1 retrieval accuracy on on
UCF101 and HMDB51 (Table 2.10 a and b), respectively. the Sth-sth datasets contain
more samples, which make it difficult to do retrieval, and spatiotemporal models
usually do not have good performances even using supervised training. We still
obtain better results on these datasets at both top-1 and top-5 accuracies (Table 2.10 c
and d). We think this is an evidence that the residual model can learn high-quality
video representation and has better generalization ability than the traditional RGB
model. And training models with RGB video clips may be prone to overfitting.

2.6.2 Video Self-Supervised Learning

Self-supervised learning has drawn much attention recently because it does not
require any labels while it can be utilized to train models to extract effective features.
We adopted three recent works, 3DRotNet [4], CMC [2], and VCP [3], as our baselines.
3DRotNet trained a network by predicting the rotated degrees of input video clips.
CMC used contrastive learning to constrain that features extracted from the same data
should be similar, even though they are generated using different data augmentation
strategies, or they belong to different color spaces such as RGB and Lab. VCP
treated different transformations as labels and trained models to distinguish which
transformation has been conducted before being fed into the network. We combine
our residual input with their methods. For CMC, we treated RGB and residual
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Table 2.11: Video retrieval performance on UCF101 and HMDB51 using self-
supervised methods.

Top-1 Top-5 Top-10 Top-20 Top-50

Dataset: UCF101

3DRotNet [4] 142 25.2 33.5 43.7 59.5
3DRotNet [4] + res 14.5 30.5 40.2 53.1 70.7
VCP [3] 18.6 336 425 53.5 68.1
VCP [3] + res 25.6 43.0 53.2 64.8 79.2
CMC [2] 262 393 468 55.6 66.8
CMC [2] + res 27.7 46.1 55.5 65.0 76.5
Dataset: HMDB51

3DRotNet [4] 6.2 187 31.0 46.6 70.5
3DRotNet [4] +res 6.0 21.6  33.8 49.1 71.8
VCP [3] 78 238 353 49.3 71.6
VCP [3] + res 11.0 31.2 43.8 58.4 78.7
CMC [2] 10.8 26.2 40.1 54.3 749
CMC [2] + res 114 27.7 42.0 55.6 76.0

inputs as two different views and for 3DRotNet and VCP, we simply replaced the
RGB input as our residual ones. Therefore, we can say that all training settings
remain the same except for the input data modality.

Models were only trained on the UCF101 split 1 and no labels were used. All
these models used 3D convolutional networks. After training was done, we first
treated the trained models as a feature extractor and conducted video retrieval on
both UCF101 and HMDB51 datasets. The results are in Table 2.11. It is obvious that
by using residual clips, better performance can be achieved. Though the models are
not trained on HMDB51, we can still find improvements on video retrieval, which
reveals that residual clips can help to train the model with better generalization
ability.

These self-supervised models were also treated as a parameter initialization
method. We fine-tuned these models on the first split of UCF101 and HMDB dataset
to check whether it is also helpful for video recognition task. The results are shown
in Table 2.12. Better performances can also be obtained by replacing RGB clips with
our proposal.

For self-supervised learning methods, the network does not use any labels to train.
Based on our findings, the network will be prone to capturing object appearance
features by using RGB video clips with annotations in supervised learning. However,
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Table 2.12: Comparison of action recognition accuracy on the UCF101 and
HMDB51 split 1 using Self-supervised methods

Method UCF101 HMDB51
3DRotNet [4] 62.9 33.7
3DRotNet [4] + res 70.8 40.0
VCP [3] 66.0 31.5
VCP [3] + res 71.3 45.0
CMC [2] 59.1 26.7
CMC [2] + res 71.6 35.6

Table 2.13: Comparisons between different sources of residual inputs using motion
path. Results are reported on the UCF101 split 1

Model Type Pre-train UCF101
ResNet-18 Gray X 65.0
ResNet-18 Gray — Res X 61.4
ResNet-18 RGB — Res X 78.0
ResNet-18 Gray — Res v 87.8
ResNet-18 RGB — Res v 89.0

without label information, RGB models cannot recognize principle objects in videos
such as “guitar” to get the “playing guitar” action category. And the advantage of
our residual input will be amplified because the similarities of movements become
the major clue. The success of our proposed residual clips in video self-supervised
learning has also been obtained in some recent works [91, 92].

2.7 Discussions

In this section, we will pose further discussions on the advantage of our residual
input model (i.e., motion path in our solution), and some additional results to hold
our statements.

2.7.1 Residual Sources: Grayscale vs RGB

We conducted experiments using grayscale frames in three ways: 1. training from
scratch; 2. generating residual frames and then training from scratch; 3. generating
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Table 2.14: Comparison of different combination of two paths. Experiments are on
the split 1 for the UCF101 and HMDB51 datasets.

Method UCF101 HMDB51 Mini-Kinetics
Simple Comb. 90.3 56.1 73.9
Use fusion layer 92.4 50.3 72.7

residual frames and then using pre-trained models to fine-tune. Results are reported
on the UCF101 split 1 in Table 2.13. For convenience, the input channel is still 3 which
are duplicated from 1 grayscale channel. From the table, we find that when using
residual clips, original RGB source frames are better. We infer that the three RGB
channels capture motions in different dimensions. The more movement information

input data contain, the better performance can be achieved.

2.7.2 Path Fusion Strategies

Experiments have been conducted over the three datasets (i.e., UCF101 split 1,
HMDBS51 split 1, and Mini-Kinetics). Results are reported in Table 2.14. For the
UCF101 split 1, using an additional fusion layer is better while for HMDB51 datasets,
simply combining prediction scores can obtain better performance. For Mini-Kinetics,
though the gap is limited, simple combination can still yield 1.2% points advantage.
Other fusion strategies might help, such as fusing mid-level features using by-pass
connections as the SlowFast network [11]. However, different fusion strategies are
not the main point of this work because the appearance path is to compensate for the
lost of some spatial information in particular cases. And from current experimental
results, we could only say that it highly depends on the datasets and usually a simple
combination of prediction scores can already obtain good performance.

2.7.3 Comparison with Optical Flow Related Works

Optical flow is a useful modality for motion representations. If we only want to
compare different modalities, regardless of the computational complexity, optical
flow might be the best modality for training from scratch, achieving 81.2% [54] on the
UCF101 split 1. However, to achieve better performance, almost all existing methods
which used optical flow combined results with one RGB stream. For 3D ConvNets,
the temporal stream in I3D [9] can achieve 85.8% accuracy using pre-trained weights,
while with our residual inputs and ResNet-18-3D, we can obtain 89.0%. It is hard to
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say which is better because of the setting differences. However, we can say that our
residual input is another effective data modality.

There are also several works which have absorbed optical flow information using
two-step training with frame reconstruction or knowledge distillation such as hidden
two-stream network [70], MARS [22], and D3D [71]. To achieve state-of-the-art
performance, in these papers, results were reported by using more frame numbers
per clip, deeper network architectures, and ensemble models. It is hard to say
which is better because of so many differences. A comparable settings advantage
for our two-path solution is listed in Table 2.9. With the same input data sizes (i.e.,
16 frames per clips and spatial resolution is 112 x 112), we can obtain 0.4% points
improvement over MARS+RGB+Flow where MARS used three ResNeXt-101-3D
models while we only use one ResNet-18-3D model for the motion path and one
ResNeXt-101-2D model for the appearance path. In addition, our main focus is the
novel data modality and its functional mechanism. There are much room to improve
for our solution with deeper network architectures, larger inputs sizes, as well as
using ensemble models.

2.74 Key Feature: Appearance vs Motion

To further explore the details, we conducted additional experiments with two subsets
of Mini-Kinetics, where the dataset size is similar to UCF101. These two subsets are
Mini-100 and Mini-200. Training and testing videos are all from Mini-Kinetics and
for Mini-100, we use the first 100 categories with 100 videos per category to train.
For Mini-200, we use a total of 200 categories with 50 videos per category to train.
Results are in Table 2.15. All training hyper-parameters are the same. The initial
learning rate is set to 0.1 with exponential decay. Apparently, residual-input model
can outperform RGB-input model. Because there are very limited cases for each
category, the consistent information among samples are motion features rather than
appearance information, revealing that residual input can help 3D ConvNet focus
on extracting motion features.

Results on Something-something datasets (Table 2.4) also imply that for large
datasets, if the definition of actions is temporal related, motion clues play an
important role, in which situation our residual-input model is more suitable and
competent.
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Table 2.15: Toy experiments on Mini-100 and Mini-200.

Dataset Epochs Modality Top-1 Top-5

Mini-100 100 RGB 419 722
Mini-100 100 Res 458 76.2

Mini-200 100 RGB 28.0 554
Mini-200 100 Res 36.2 64.7

2.7.5 Potential Applicable Settings

In this section, we show basic studies on residual inputs with 3D ConvNets, without
combining a lot of tricks. With the development of techniques in video understanding,
different techniques and strategies have been proposed and can be combined with
out proposal, which are not limited to 1) using larger data inputs (i.e., 64 X 224 x 224);
2) using deeper network architectures (i.e., 101, 152 layers); 3) using stronger data
augmentations; 4) using ensemble models; 5) combining with optical flow models;
6) using knowledge distillation; 7) designing new modules; 8) applying attention
mechanism; 9) carefully setting hyper-parameters; and 10) using larger dataset
(Sports-1M, 1G-65M, etc.) to pre-train. Most state-of-the-art methods used several
of these strategies. On the other hand, we would like to present a basic study of
residual inputs and its mechanism rather than the accuracy numbers.

Based on our findings, it is very easy to combine our proposal with many existing
works with promising performance. The great generalization ability also revealed
that it might benefit from our residual inputs for many other video understanding
tasks which directly use trained models as a feature extractor.

2.7.6 Limitations

One limitation for this solution is the computation complexity. Though we have built
a more efficient model to extract better model representations without additional
computation in optical flow, the network backbones are still 3D ConvNets. Compared
to 2D convolution, the complexity of 3D convolution is high. Replacing some 3D
convolutional layers with 2D ones and conducting temporal differences in feature
spaces might be one possible direction. Another limitation is the lack of appearance
information for the motion path. Though we propose a two-path solution to make
up for the deficiencies for this part, it is hard to say this combination is a good way,
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except for the better performance in numbers. Carefully designing a single network
to embed both spatial and temporal information should be more efficient.

2.8 Conclusions

In this section, we mainly focused on extracting good video representations without
optical flow in supervised learning paradigm. 3D ConvNets are believed to be
capable of capturing motion features when RGB frames are set as input, but we
demonstrated that it is not always true. We improved the use of 3D convolution
by using stacked residual frames as the network input. The overhead for this
computation was negligibly small. With residual frames, the results of 3D ConvNets
could be improved significantly on benchmark datasets. With a simple appearance
path compensating for the lost of some spatial information, the superior performance
could be advanced and better or comparable results could be achieved compared
with the corresponding two-stream methods. Extensive results and analysis imply
that residual frames can be a fast but effective way for a network to capture motion
features and they are a good choice for avoiding complex computation for optical
flow. The applications to video retrieval on unseen dataset and video-based self-
supervised methods show that residual input models can have better generalization
abilities than the RGB counterparts.






Chapter 3

Inter-Intra Contrastive Learning for
Self-Supervised Video Representation

3.1 Introduction

Video understanding tasks require good feature representations from videos. Tasks
such as video segmentation, video summarization, and video retrieval rely on
effective motion representation extractors, which are usually trained on the basis
of video recognition. For video recognition, many works explore different network
architectures [6-10, 48]. In addition to using RGB frames as input data, some other
works try to utilize optical flow as an additional data modality to form a two-stream
model for better motion feature extraction [21, 53, 54]. With optical flow, better
results can be achieved [7, 9, 10]. Hara et al. [8] argued that video recognition can
imitate image recognition procedures, which means that the performance can also
be significantly improved with larger datasets.

To achieve better performance, video recognition datasets become larger and
larger. And there are numerous unlabeled videos available on the Internet every
day. Creating new video datasets with annotations requires a wealth of resources.
In addition, video recognition tasks usually require properly trimmed action video
clips to ensure the performance, which makes the situation more serious. Therefore,
if unlabeled videos can be directly used to facilitate learning, numerous data could
be utilized at no annotation cost. To address this issue, self-supervised learning is
drawing more and more attention these days as it does not need any labels to train.

Self-supervised learning belongs to unsupervised learning. Many video-based
self-supervised learning techniques originate from image tasks. Several dedicatedly
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designed tasks such as solving jigsaw puzzles [93], image inpainting [94], and image
color channel prediction [95] are proposed to learn image features. For video data,
many existing works [5, 23-30] have been proposed to focus on temporal information
such as making models sensitive to the temporal differences of input data. Most of
the aforementioned methods can be classified into the pretext-task category. Here
we call them as intra-sample learning because all operations are conducted within
the sample itself. For example, transformations such as shuffling frames to change
their orders or rotating video clips are conducted without using a different video
sample.

In addition to intra-sample learning, contrastive learning is also an important
branch of self-supervised learning techniques. Because contrastive learning [2,31-43]
tries to train the network by distinguishing one sample from another, we call this
kind of methods inter-sample learning methods. Inter-sample learning techniques
are also originated from images. Anchor and positive samples are different crops
from the same image while negative samples are other crops from different images.
If a model can distinguish whether these samples come from the same image or not,
it is believed that the model can extract discriminative features from images. For
video data, the procedure is almost the same, and the differences lie mainly in the
input data and the feature extraction network.

For intra-sample learning methods, tasks should be carefully designed, whereas
inter-sample learning methods focus more on the training strategies, other than the
optimization tasks. Therefore, for inter-sample learning, whether good temporal
information can be learned relies on the model itself. Furthermore, if spatial
information in certain samples is sufficient enough, then temporal information
would be ignored and the model will not be helpful if applied to other video
tasks [96]. To address this issue, we try to force the model to capture rich temporal
information. To do so, we introduce some transformations from intra-sample
learning and apply them to the anchor sample. These transformations can break
the temporal relationships of the video clip and then the intra-negative samples
are generated. The models can learn richer temporal differences as well as spatial
differences by contrastive learning with the anchor, intra-positive, inter-negative,
and intra-negative samples. And we call this learning scheme Inter-Intra Contrastive
(IIC) learning. We illustrate the general idea of our method in Fig. 3.1. Note that the
constraint between the anchor and the intra-positive sample is that they come from
the same instance, and different modalities can be utilized.
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Figure 3.1: General idea of IIC. Given video i and video j, two sampled video clips
from video i are treated as the anchor and intra-positive samples, whose features
are constrained to be similar to each other. Data sampled from video j is treated as
the negative sample. We generated intra-negative samples from the anchor sample
by breaking its temporal relations, which can be treated as hard-negatives because
they share similar spatial information but different motion features, and can force
the model to learn better more discriminative temporal information.

To the best of our knowledge, we are the first to introduce intra-negative samples
to videos in contrastive learning. Our main contribution is to make use of the
advantages of both inter-sample learning and intra-sample learning by introducing a
novel framework for self-supervised video representation learning. Several options
have also been explored towards the best practices in our framework. Further, for
two commonly used evaluation tasks (i.e., video retrieval and video recognition),
our method can surpass many existing state-of-the-arts by a notably large margin.

Our contributions are summarized as follows:

e We generate intra-negative samples by breaking temporal relations, which
can extend negative samples and encourage the model to learn rich temporal
information as well as spatial information for better video representation.
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e We propose inter-intra contrastive learning, which is the most distinctive part
that can make the most use of available data in self-supervised learning.

e We prove that many techniques such as data modality, data transformations,
and head projector are generally effective in video self-supervised learning,
which can be easily applied to other methods in this area.

e Extensive experiments show that with our IIC framework, significant im-
provements over contrastive learning baselines as well as other state-of-the-art
methods can be achieved with the same network architecture.

e Our proposed inter-intra contrastive learning framework is flexible to be
applied to other self-supervised contrastive learning methods.

3.2 Related Works

In this section, based on the learning style, we divide the existing self-supervised
learning methods into two categories, inter-sample learning and intra-sample
learning. The difference is whether the training depends on distinguishing differences
from different video samples. Because we focus on video representation, another
subsection is used to briefly introduce techniques in network backbones of video
understanding. Besides, we also used one subsection to review other works in
sampling strategy in self-supervised learning.

3.2.1 Intra-Sample Learning

For intra-sample learning methods, there is no interaction or constraints between
different instances. And usually dedicatedly designed tasks are used to constrain
input data, where different transformation functions are applied and models are
optimized to recognize which have been done.

Self-supervised learning methods are close to unsupervised representation learn-
ing, including autoencoders [97] and variational autoencoders [98], trying to learn
features by reconstructing data. Noroozi et al. [93] proposed to learn features by
solving Jigsaw puzzles. In [94], context inpainting was used to train models. In
[99], images were rotated and the models were trained by predicting the rotated
angles. Features learned from these tasks can be transferred to image tasks with
good performance. Guo et al. designed a self-correction module to co-train networks
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in previous stages for hand pose estimation [100]. Xu et al. proposed a set of pretext
tasks specifically designed for sketches [101].

Compared to images, videos contain an additional temporal axis and temporal
information lies among different video frames. Therefore, it is important to efficiently
extract temporal information by dedicatedly designed tasks. Temporal information
is highly related to temporal orders, and many existing works utilize temporal
orders to train their networks [5, 23-25]. Misra et al. [23] trained a network by
distinguishing whether several input video frames were in the correct order. Odd-
one-out network (O3N) [24] was proposed to identify unrelated or odd video clips.
An order prediction network (OPN) [25] was trained by predicting the correct order
of input frames. Xu et al. [5] used several video clips with 3D convolutional networks
to predict the order. In addition to focusing on the temporal order, Wang et al. [102]
proposed regressing motion and appearance statistics to learn video representations.
Kim et al. [103] proposed training models by completing space-time cubic puzzles.
Recognizing transformations is another solution. One of several transformations
such as spatial rotation and temporal shuffling had been conducted on input data
and the VCP [3] method was designed to recognize which action has been applied.
There are also many works trying to train the network and make it sensitive to video
playback speed [26-30, 104]. The key idea is to use different frame sampling rates
and train the network to recognize the different speeds of video clips.

Most of the aforementioned methods can be named as pretext task based-methods,
which try to train the network by recognizing transformations, especially temporal
transformations. Once the network can detect which temporal transformation has
been applied, the model is believed to have the ability for temporal representation.

3.2.2 Inter-Sample Learning

For inter-sample learning methods, features from the same sample should be close
to each other in the feature space. On the contrary, features from different samples
should be far from each other. In this way, the constraints are between different
samples.

In [105], frames from the same video were treated as the anchor and positive
samples while frames from other videos were negatives. And the network was
optimized by the triplet loss [106]. Ranking loss with the siamese network was
used in [107]. Several deep metric learning methods [108, 109] were also proposed
to help constrain. After contrastive loss [31] was proposed, contrastive learning
became the mainstream method in self-supervised learning. Contrastive Predictive



44 Inter-Intra Contrastive Learning for Self-Supervised Video Representation

Coding (CPC) [32] used sequential data to learn the future from the past. Deep
InfoMax [33] and Instance Discrimination [34] learned to maximize information
probability from the same sample. In Contrastive Multiview Coding (CMC) [2],
different views (e.g., different color space, depth image) from the same sample
are used as anchor and positives. MoCo [35] used a momentum encoder with a
momentum-updated encoder to conduct contrastive learning. And the video version
of MoCo was presented in [110]. Different data augmentation methods were proved
effective in SImCLR [38] for paired samples. Li et al. designed a self-supervised
process and used pseudo labels to expand sample pairs in the loop self-supervised
strategy [111]. Vu et al. designed Siamese architecture to train the contrastive feature
extraction network for parking space status inference by analyzing images from
parking lot [112]. There are also many recent works [37, 43, 91, 113, 114] trying to
apply contrastive learning techniques to videos, which also belongs to the inter-
sample learning category. For example, [114] is a video version of SimCLR with more
explorations in videos. CoCLR [37] used optical flow data and formed co-training
scheme. Since the main movements in videos usually exist in the foreground,
Background Erasing (BE) [115] can be used to enhance the temporal information.

Contrastive learning usually requires positive-negative sample pairs to train.
There are some very recent image-based unsupervised learning works that can obtain
good performance without negative samples, such as BYOL [39], SimSiam [116]. And
BYOL has been applied to video-based self-supervised learning in [110], together
with some other contrastive learning methods.

3.2.3 Video Representation

Previous self-supervised learning methods have mainly been applied to images.
Some video representation learning methods still use single or separate image
frames as inputs [23-25], which do not benefit from new techniques related to video
understanding.

For video representation, different network architectures have been proposed in
supervised video recognition. In Temporal Segment Networks (TSN) [48], one video
was divided into several segments, and frames from each segment are set as the
input of a 2D CNN. In addition to the RGB data, two-stream ConvNets [21, 53, 54]
have been used with an additional optical flow stream. Two-stream methods have
also been boosted using dictionary learning [20] and semantic cues with a multi-
scale strategy [117]. Recently, many 2D CNN based methods specially designed
some modules to make use of temporal information, such as temporal relation
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network [69], non-local blocks [51], temporal shift module (TSM) [50], temporal
bilinear modeling [49] as well as temporal excitation and aggregation (TEA) block [59].
Spatio-temporal convolution neural networks (3D-CNNs) were also widely used
in video recognition tasks. Tran et al. proposed C3D [6] which used several 3D
convolutional layers and achieved good performance in video recognition. 3D
convolutional versions of ResNet [60] and Inception net [62], R3D [8] and 13D [9],
were proposed and showed promising performance on benchmark datasets [9, 56, 57].
In R(2+1)D [7] and S3D [10], one 3D convolutional kernel was separated into two
steps, a spatial part and a temporal part, to save parameters and achieved better
performance. SlowFast network [11] used two pathways to jointly extract video
teatures. These trained models were proved to be effective feature extractors and
can be applied to other video-related tasks.

All the aforementioned models can be used as the network backbone in self-
supervised video representation learning. By replacing 2D CNN with 3D CNN,
[5] reported better performance than [25] while their target tasks were the same,
predicting the temporal orders of inputs. In [3, 5], C3D, R3D, and R(2+1)D were
used to prove the effectiveness as well as the generality of their methods.

3.2.4 Sample Selection

For contrastive learning, positive and negative pairs are used to calculate the loss.
The quality of sample pairs will affect the training. In most traditional contrastive
learning methods, positive samples came from the same source instance (e.g., image
or video) as the anchor while negative samples come from a different source. This
can work well because the source instance is treated as a whole, meaning features
representing scenes, objects as well as actions are similar in one source instance.
Cross-modal contrastive learning methods [40, 118] usually used video frames and
sounds together, where whether frames and sounds were correctly aligned was
used as a supervision signal. When it came to frame pairs considering the temporal
correspondence, better samples could be used in contrastive learning [119]. Positive
samples could be selected by feature mining k-nearest neighbor search [113] or
augmented from web data by filtering noises [120-122]. There are also a few works
discussing issues around the selection of negatives in contrastive self-supervised
learning, making use of feature distances [123], sample mixture [124] or other
sampling strategies [125, 126] for better selection of negative samples.
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Figure 3.2: The main framework of IIC. Intra-negative samples are generated from
the first view by breaking its temporal relationship. Video clips are transformed by
data pre-processing strategies such as converting to residual clips, applying strong
data augmentations. A two-layer MLP is applied to project features extracted from
the network backbone to the target feature space. A contrastive loss is used for the
optimization of the network.

3.3 Methods

Our goal is to learn discriminative feature representations from videos, not only
for distinguishing one action from another, but also for capturing rich temporal
information. The framework of our IIC is shown in Fig. 3.2. In this section, we start
from the novel input part and then elaborate on contrastive learning with these
inputs.

3.3.1 Inter and Intra Inputs

Considering different video clips from videos, if these video clips are from the same
video, we can treat them as intra-samples. When video clips are from different videos,
we call them inter-samples. Regarding whether they represent the same action,
both intra-samples and inter-samples can be divided into positives and negatives.
Inter-positives are not available in unsupervised learning because we do not know
action labels for each video. And intra-positives are surely positive samples since
they are from the same video instance, representing the same action. In contrastive
learning, inter-samples are usually treated as negatives together with intra-positives.
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Figure 3.3: Generating intra-negative samples from original video clips.

Our proposed method extends negatives with intra-negative samples to make the
most of the data for contrastive learning.

We denote a video set as X and two different sampled video clips (e.g., different
data modalities, different sampling locations, different augmentation transforma-
tions) of videos as x} and xf, where i is the video ID. A 3D convolutional network is
used as the backbone to extract features and feature v} and feature vl.z can be obtained
respectively. Therefore, the referred data x} and xf are in shape THWC, where T
successive frames with height H and width W are stacked together. C is the channel
number. Temporal information relies on the connections among T stacked frames.
To clarify, in the following parts, we use “view” to refer to different sampled video
clips and when we refer to view 1 and view 2, they represent positive pair samples
(ie, x] and x%, v! and 0?).

Because the source is the same video i, feature v} and feature v? should be similar
in the feature space. At the same time, feature v} should be different from features
U} (for j #1i) since they are from different videos. This kind of method is effective
enough for images. However, video data have one more dimension. When the same
person behaves in opposite ways, e.g., standing up and sitting down, the appearance
information of each frame is similar, in which condition traditional contrastive
learning methods can be easily fooled.

Here, we introduce intra-negative samples in contrastive learning for videos
by breaking the temporal relationship. For one video clip, the data x} is a set of
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frames. To simplify, we use {framey, ..., framer} to represent a set of temporally-
ordered frames. Three different intra-negative generation methods, frame repeating,
temporal shuffling, and clip rotation, are proposed to break the temporal relationship
and generate intra-negative video clips (Fig. 3.3). Though similar transformations
might have been used in other works, we first use them to generate negative samples
in video self-supervised learning.

Frame repeating. One frame that is randomly selected from the video clip is repeated
T times to generate intra-negative samples (Eq. 3.1). Then no frame changes exist
in this video clip and the corresponding temporal information should have been
broken, even though the spatial information is almost the same as its source.

Xrepeat = {frame, ..., framei}, k = random(1,T). (3.1)

Temporal shuffling. In the original video clip, frames are in the correct order. If
these frames are randomly shuffled (Eq. 3.2), the actions will be strange and the
corresponding action information should be different. Temporal shuffling does not
change the global statistical information. And temporal clues play an important role
for models to distinguish this kind of intra-negative samples from the source.

Xshuf fle = Shu f fle(x), where Xgpy 5 10 # X. (3.2)

Clip rotation. Rotation is one pretext task that is used in self-supervised learning [4,
99]. In videos, when one video clip is rotated using Eq. 3.3, where the angle 0 is large,
the movement direction is changed. In such cases, the rotated video clip should

represent a different motion from the original one.

Xyotation = rotate(x, ), where 6 # 0. (3.3)

Note that intra-negative samples can be generated for both anchor and intra-
positive, and all the generating functions can be used simultaneously. In this work,
only one generating function is used for each experiment because we found a
combination of all intra-negative generation functions might not help (details can be
found in Sec. 3.5.1). Then x"“¢ (either Xrepeat, Xshy Ffles OF Xrotation) 15 Used to represent

an intra-negative sample from x!

. We also want to address that the generated
intra-negative samples share similar pixel value distributions with the original one
(Fig. 3.4). From the figure, we can find that the pixel value distributions for the anchor

(Videol: viewl), the positive (Videol: view2), and intra-negative samples (Videol:
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Figure 3.4: Distributions of statistical information of video clips. The first frame of
the video clip is used because frame shuffling and rotation do not change global
statistical information among one video clip. Intra-negative generation functions
(i.e., frame repeating, frame shuffling, and frame rotation) maintain most or all
global statistical information, which are applied to view 2 . Frames from the same
video (Red and curves) share similar distributions while frames from videos
(Red/ , blue, and green curves) vary from each other.

repeat, Videol: shuffle, Videol: rotation) are close to each other, constraining the
model to learn more discriminative temporal information from video clips.

3.3.2 Contrastive Learning

Contrastive learning uses anchor, positive, and negative samples and aims to extract
discriminative features from the anchor and negative samples while maintaining
the similarity between the anchor and positive samples. In traditional contrastive
learning methods (e.g.,, CMC [2]), the sample pairs {xl.l,xl.z} are positives while
{x},x?}(i # j) are negatives. Because intra-negative samples are used in our approach,
the negative pairs are extended by adding {x},x;.wg }, where j can be equal to i.

A discriminative function hg(-) is used to ensure that positive pairs have high
values while the value for negative pairs should be low. The function is trained

by selecting a single positive sample from a set of data. After feature v} has been
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extracted, traditional contrastive learning methods train this function to correctly

2 2

select a positive sample out of a set S? = {v],.., 07,0 which contains one

2
k+1}’
positive sample v? and k negative samples. In our proposed method, another
set 5™¢ = {UTEg,...,UZi%} is also used that only contains negative samples. The loss
function is similar to recent works for contrastive learning [2, 32, 127]:

ol ho({v}, 7))

=-lo .
contrast & Z]](Ill hg({v},v?}) + Z]]{:ll hg({v},v’]?eg})

L

(3.4)

Here, k is the number of negative samples, which can be equal to N -1, where
N is the total number of training samples. We randomly select k samples from N
where k < N to accelerate training. Memory bank [34] is used to save and process
these features, and the sample sets S2, 58 can be treated as subsets of features
of corresponding memory banks M2, M"€. In recent works, contrastive learning
methods can use a queue [35, 108] to save previous computed features or just use
larger batch sizes [38] to get more negative samples. In our case, with the projection
head (Sec. 3.3.3), features are in 128 dimensions for every sample in the memory
bank, and the total memory consumption for the Kinetics-400 dataset is less than 120
MB, whose memory consumption is much smaller than methods that use momentum
encoder [35, 39].

The updating procedure of the memory bank is as follows,
M; = po;i+ (1 - p)M;, (3.5)

where M, is the iy, feature in the memory bank to record which sample features
belong to, and u is the momentum decay weight.

The critic hg(-) is implemented by feature representations using the non-parametric
softmax technique [34]. Then we can compute this function as in the following:

1..,2
Ui U]- 1

——, 3.6
IIU}II'IIU?II T G0

(1o}, 0%)) = exp

where 7 is a hyper-parameter that controls the range of the results. In our work, three
memory banks are used to store video features from previous iteration, and these
features can be fetched as non-parametric weights when calculating the loss [34].

Eq. 3.4 only treats view 1 as an anchor. When treating view 2 as an anchor,
symmetrically, another loss can be calculated and they are added to form the final
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(a) input —-| Backbone —>- feature

projected
feature

(b) input —-| Backbone —>-| Projector —>

Figure 3.5: (a) Contrastive learning uses features directly from the backbone. (b) An
additional projector network (two-layer MLP) is used to project features to another
feature space for contrastive learning.

loss function:
_ po! v
'E - ‘Lcontmst + Lcontmst' (37)

3.3.3 Data Strategies

Data modalities. In video recognition, the most widely used data modalities are
traditional RGB input and the optical flow. These two data modalities have also
been set as two common views in contrastive learning [128, 2]. However, optical
flow data usually require additional calculation and storage.

In video tasks, frame difference is another data modality and has also been used
in existing works [48] with 2D ConvNets. Residual frames with 3D ConvNets have
been proved to be more effective compared to original RGB video clips in Sec. 2. We
adopt residual clips because its supreme performance in this area. The calculation of
residual clips is

ResClip = {frame; 1 — frame;,--- , frame; 141 — frame;, T} (3.8)

Augmentation transformations. In previous methods in video self-supervised
learning, only a few data augmentations were conducted. Some recent works [35, 39]
started to use strong augmentations in images, which have achieved improvements
over the corresponding baselines.

Though these data augmentations are conducted on images, this kind of process-
ing can be easily applied to video frames. Another motivation is that we wonder
whether it will also boost the performance of residual clips because there will be
much less color information in residual clips.

Projection head. In some previous contrastive learning works such as CMC [2],
the features are directly from the feature encoding network without a projection
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Algorithm 1: Training with IIC framework

Require: Video data: Dataloader which contain v}, 07, i;

Network: backbone net, projection network net,;
Memory banks: M = {M1, M3, Myeq} % Can be replaced using a queue to save
features as MoCo [35]
Ensure: Optimized network parameters: net
1: Initialize network net, net, and memory banks Ms
2: for iter = 1 — max_iteration do
(a) Fetch data x},xf,i = load(Dataloader).
(b) Generate intra-negative samples x;.wg =f (x}).
(c) Apply data pre-processing strategies to x},xl.z,x?eg .
(d) Extract video features v = net(x).
(e) Project features to contrastive space v, = nety(v).
(f) Calculate loss using Eq. 3.4 and optimize net.
(g) Update memory bank M with corresponding feature v, using Eq. 3.5.
endfor
3: return net;

head. Recent works [36, 38] utilized a projection head to project features to another
feature space and conducted contrastive learning based on projected features. In our
case, the target is to make use of contrastive learning and train a network to extract
good temporal features. However, effective features vary from one task to another.
For example, the downstream task video retrieval used these features directly from
the backbone while for action recognition, results come from the classifier. The
optimization of self-supervised learning can be treated as another task, where feature
isolation using a projection head can help the network backbone focus on more
general video features, instead of particular features for the contrastive learning
only. Similar approaches can be found in multi-task learning methods [129, 130],
where different supervision signals are used from different sub-branches. Therefore,
we also used an additional projection head in this work to form the final solution

(Fig. 3.5 (b)).

To summarize this section, we write the process flow of our proposal in Algo-
rithm 1.
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3.4 Experiments

Extensive experiments were conducted to evaluate our proposed IIC framework in
different tasks and datasets. Because there are several options as well as technique
strategies in our framework, we first elaborate on the effectiveness of some settings
and then apply these settings to compare with other methods.

3.4.1 Datasets

For self-supervised video representation learning, datasets are usually come from
those for supervised video recognition, such as UCF101 [56], HMDB51 [57], and
Kinetics400 [9]. However, when using these datasets, labels are discarded to form
the unsupervised learning scheme. The UCF101 dataset contains 13,320 videos,
which consists of 101 different action categories. HMDB51 consists of 6,849 videos
containing 51 action classes. Kinetics400 is a much larger dataset, consisting of
around 240k videos.

For fair comparisons with existing works [2, 3, 5], we followed their settings
and mainly used UCF101 dataset to conduct self-supervised training part and used
UCF101 and HMDB51 datasets for evaluation. Both UCF101 and HMDB51 datasets
have three data splits. And if not specially declared, results are averaged over three
splits. Self-supervised learning part can be treated as the pre-training period. And
larger dataset can bring further improvements. Thus, we also used the Kinetics400
dataset to pre-train our network for further improvements.

3.4.2 Evaluation Tasks

Because it is a self-supervised learning method, models can be directly used once
training is completed without fine-tuning on other tasks. Therefore, the trained
models are used to extract video features and then the performance on video retrieval
is evaluated. UCF101 and HMDB51 are two different datasets. We trained our model
only on UCF101 split 1 and performed video retrieval on both UCF101 and HMDB51
datasets. To evaluate whether video recognition can benefit from our self-supervised
learning method, we also conducted experiments by fine-tuning trained models on
both UCF101 and HMDB51 datasets.
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3.4.3 Options in the Framework

Multiple modalities. For video representation learning, traditional RGB input and
the corresponding optical flow were set as two common views [2, 128]. Because
calculating optical flow requires additional computation, in this work we try to find
the most effective views for contrastive learning in videos without optical flow.
Backbone networks. 3D CNNs have been proved to be more powerful than 2D
CNN:s to extract motion features from videos [7-10]. Recent self-supervised video
representation methods [5, 3] used C3D [6], R3D [8], and R(2+1)D [7] as their network
backbones. For fair comparison, we follow their settings to conduct experiments. In
addition, results using R3D-18 [7] and S3D-G [10] are also reported.

Intra-negative generation. As we discussed in section 3.3.1, we introduce three
intra-negative generating methods, namely frame repeating, temporal shuffling, and
clip rotation. In our experiments, only one intra-negative generation method is used
in each experiment. We have tried different combinations of them together, but the
performance is not as good as using them alone, which will be introduced in ablation
studies.

3.4.4 Implementation Details

We mainly follow [6] for data preparation. Sixteen successive frames of size 128 x 171
are stacked together to form a video clip. Random spatial cropping is conducted to
generate input data of size 16 X112 x 112, where the channel number 3 is ignored.
For residual clips, the original RGB video clip is shifted along the temporal axis and
the difference between the original clip and the shifted clip is the corresponding
residual clip. Only one 3D ConvNet is used to cope with different views of input
data. For the S3D-G network, we also used input data in size of 64 X224 x 224 to
compare.

The feature projector is composed of two fully-connected layers. Features
extracted from the network backbone will be projected to 128 dimensions to calculate
the contrastive loss.

For frame repeating, the repeated frame is randomly chosen. For temporal
shuffling, the transformation is similar to [3]. We divide one video clip into four
sub-clips, and shuffle the sub-clips to conduct shuffling. As to clip rotation, video
clips are rotated 90 degrees.

The batch size is set to 16 and training lasts for 240 epochs for the self-supervised
learning procedure. The initial learning rate is set to 0.01 and it is updated by the
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cosine decay strategy [131]. In the non-parametric learning part, 2k negative samples
are sampled from memory banks, with k set to 1,024. Video retrieval is conducted on
the basis of video-level features, which are generated by averaging clip features from
the same video. K-nearest neighbor search is used to calculate retrieval accuracy.
When evaluating in video recognition, we use our trained models as an initialization
strategy, and the learning rate is set to 0.001 for fine-tuning. The best performance
on the validation dataset is used for testing.

3.5 Results and Analysis

In this section, we first report our ablation studies. Then, we compete with the
state-of-the-art methods in self-supervised spatio-temporal learning. In this work, we
evaluate the performance in two aspects: retrieval accuracy and recognition accuracy.
Video retrieval is conducted using video-level features, which are averaged by clip-
level features from the same video. Video recognition is conducted by fine-tuning
the self-supervised pre-trained models.

In addition to video frames, some existing works use additional modalities like
audio [41, 130, 132-134], or narrations [132], and train on much larger datasets with
larger input size. We do not include them in tables for fair comparison.

3.5.1 Ablation Studies

We conduct ablation studies in many aspects. If not specified, all the ablation studies
are based on the R3D backbone and the intra-negative generation method is clip
rotation. Results are reported on UCF101 split 1 in video retrieval and recognition.
Head projection is used to project features to contrastive space as well as reducing
feature dimensions.

Modality Choices

We try to find the most efficient way to use RGB frames, without additional compu-
tation or complexity for pre-computed features such as optical flow. Therefore, we
tried different combinations between RGB clips and residual clips. Although tradi-
tional contrastive learning in videos used two RGB video clips as positive/negative
pairs and in [91], experiments showed that setting RGB clips and residual clips as
paired samples can obtain better performance than RGB clips. Here we also tried to
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Table 3.1: Ablation studies on video modalities. R3D is used as the network backbone

and rotation is used to generate intra-negative samples. Results are reported on
UCF101 split 1.

Viewl View2 Topl Top5 Recognition

RGB RGB 404 54.0 62.0
RGB Res 528 72.0 75.4
Res Res 531 70.1 77.8

Table 3.2: Ablation studies on head projector. R3D is used as the network backbone.
Results are reported on UCF101 split 1.

Modality Intra-neg Head Topl Top5 Recognition

Res X X 435 61.1 74.2
Res shuffle X 40.7 56.3 74.0
Res repeat X 452 621 74.3
Res rotate X 464 63.9 74.9
Res X v 50.4 68.5 76.4
Res shuffle v 494 654 76.5
Res repeat v 53.0 682 77.2
Res rotate v 53.1 70.1 77.8

sample two residual clips from the same video as different views. Results are shown
in Table 3.1.

As we can see from the table, when two views are both RGB clips, the top-1
retrieval accuracy is 40.4% and the recognition accuracy is 62.0%. When using RGB
and residual clips as two different views, the performance for video retrieval is much
better, which corresponds to the conclusion from CMC [2] as well as our previous
work [91]. When using residual clips for both views, the best performance can be
achieved, reaching 53.1% at the top-1 retrieval accuracy and 77.8% for recognition.

Thus, for the rest of our experiments, we mainly use residual clips for input data.

Projection Head

As we introduced, in many works [2, 35], the projector is not used while in some
recent works [36, 38, 135], better performance can be achieved with a projection
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Table 3.3: Ablation studies on data augmentation transformations. R3D is used as
the network backbone. Results are reported on UCF101 split 1.

Modality Intra-neg Aug. Topl Top5 Recognition

RGB X x 148 255 50.6
Res X x 270 446 72.5
Res repeat x 315 496 72.8

RGB X v’ 403 557 61.7
Res X v’ 504 685 76.4
Res repeat v’ 530 682 77.2

head. These works are all image-based self-supervised methods. We here conducted
ablation studies on the effects of the projection head in video-based representation
learning.

In Table 3.2, we show four comparison pairs. With the projection head, better
retrieval performance can be achieved in all three settings. For video recognition,
which does not use any parameters in the projection head, at least 1.5% points
improvements can be achieved.

Based on these findings, in the following experiments, we adopt the projection
head as one default setting.

Data Augmentation

Data augmentation is proved to be effective in images [36, 38]. However, in self-
supervised video representation learning, previous works [3, 5, 28] did not use this
kind of strategy. Here we show some experimental results in Table 3.3.

From the table, we can see that both RGB modality and residual modality can
enjoy the benefit of strong data augmentations. With strong data augmentations,
the worst retrieval performance in these three settings is 40.3%, even better than the
best of these without strong data augmentation. The best recognition performance
is obtained by using the intra-negative strategy with residual modality, reaching
77.2%.

Therefore, in our following experiments, we use strong data augmentations as
one default setting.
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Table 3.4: Ablation studies on Intra-negative types. R3D is used as the network
backbone. Results are reported on UCF101 split 1.

Intra-neg Topl Top5 Recognition

Baseline 50.4 68.5 764
Repeat 53.0 682 77.2
Shuffle 494 654 76.5
Rotate 53.1 70.1 77.8

Repeat + Shuffle 44.6 62.7 76.8
Repeat + Rotate 43.1 61.6 76.5
Shuffle + Rotate 50.8 68.0 76.0

All neg 425 60.5 74 .4

Intra-Negative Generation

We introduced three types of intra-negative sample generation functions: frame
repeating, frame shuffling, and clip rotation. We show the performance of each in
both video retrieval and recognition in Table 3.4. Without using any intra-negative
samples, the top-1 accuracy for video retrieval is 50.4% and for recognition, the
performance is 76.4%. With frame repeating or clip rotation, the top-1 accuracy for
video retrieval can be increased by over 2.6% points and the best performance for
video recognition is achieved by using frame rotation. Frame shuffling is not as
effective as the other two intra-negative generation functions, the retrieval accuracy
is even lower than the baseline. It may depend on the experimental settings as
frame shuffling has shown effectiveness in [91]. Based on the results, among all
these three intra-negative generation functions, clip rotation is the best choice and
frame shuffling is the last one. However, the gaps are small. Therefore, we adopt
all these three settings as optional configurations in the main comparisons with
state-of-the-art methods.

We also want to mention that when combining different intra-negative generation
methods, some performances are even poorer than the baseline method for video
retrieval and recognition. We also consider that introducing different intra-negative
generation methods will greatly increase the difficulty during training because there
are too many hard-negative samples at the same time. Training for more epochs
might help. However, under the current empirical experimental settings, using
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Table 3.5: Comparison with state-of-the-art methods in video retrieval on UCF101
split 1. T indicates methods using optical flow in the training period. We highlight
the best results in each block in bold.

Methods Backbone Topl Top5 Top10 Top20 Top50

MemDPC [37] R2D3D 202 404 524 647 @ -
MemDPC-Flow' [37] R2D3D 402 632 719 786 -
CoCLR-RGB' [113] S3D 533 694 76.6 82.0 -

VCOP [5] R3D 141 303 40.0 b51.1 665
VCP [3] R3D 18.6 33.6 425 535 68.1
PRP [28] R3D 228 385 46.7 552 69.1

IIC (repeat) R3D 53.0 682 75.1 815 883
IIC (shuffle) R3D 494 654 722 79.7 87.3

IIC (rotate) R3D 531 70.1 774 84.0 914

VCOP [5] R(2+1)D 10.7 259 354 473 639
VCP [3] R(2+1)D 199 33.7 420 505 64.4
PRP [28] R(2+1)D 20.3 34.0 419 517 642

PacePred [30]  R(+1)D 256 42.7 513 613 740
IIC (repeat) RQ+1)D 51.6 67.8 748 810 885
IIC (shuffle) RQ+1)D 503 655 732 79.8 87.9
IIC (rotate) RQ2+1)D 50.6 683 76.0 829 90.5

any one of these three methods can usually perform better. For this part, further
discussions and possible explanations are in Sec. 3.6.4.

3.5.2 Comparison: Video Retrieval

For a fair comparison, we followed the settings in previous works [3, 5, 28, 91] and
trained our models on UCF101, and tested them on both UCF101 and HMDB51
datasets. Video-level retrieval performance is reported here. Clip-level features are
averaged to represent the corresponding video, and a k-nearest neighbor search is
conducted. When the retrieved video has the same action label as the target video,
one hit is confirmed.

The results on the UCF101 dataset are shown in Table 3.5 and Table 3.6. Most
compared methods require a dedicatedly designed task to train the model, which
belongs to the intra-sample learning category. MemDPC [37] and PacePred [30]
utilized contrastive learning technologies, treating every different samples as negative.
As shown in this table, the top-1 accuracy for IIC was already higher than most
other works. Except for our work, the best performance for video retrieval is 53.3%,
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Table 3.6: Comparison with state-of-the-art methods in video retrieval on UCF101
split 1 using C3D and R3D-18. We highlight the best results in each block in bold.

Methods  Backbone Topl Top5 Top10 Top20 Top50

VCOP [5] C3D 125 290 39.0 50.6 66.9
VCP [3] C3D 173 315 420 526 67.7
PRP [28] C3D 232 381 460 55.7 684

PacePred [30] C3D 319 49.7 592 689 80.2
IIC (repeat) C3D 543 693 756 81.8 895
IIC (shuffle) C3D 520 672 734 799 88.0
IIC (rotate) C3D 551 721 784 84.0 91.6

3DRotNet [4] R3D-18 14.2 252 33,5 437 59.5
VCP [3] R3D-18 221 33.8 420 513 647
RTT [29] R3D-18 26.1 485 59.1 69.6 82.8

PacePred [30] R3D-18 23.8 38.1 464 56.6 69.8

IIC (repeat) R3D-18 54.7 70.1 76.5 828 899

IIC (shuffle) R3D-18 50.8 65.1 71.6 78.8 86.5

IIC (rotate) R3D-18 56.2 713 77.5 84.6 91.6

Table 3.7: Comparison with state-of-the-art methods in video retrieval on HMDB
split 1.

Methods Backbone Topl Top5 Top10 Top20 Top50

VCOP[5] R3D 7.6 229 344 488 689
VCP [3] R3D 76 244 363 536 764
PRP[28] R3D 82 258 385 633 759
IIC (repeat) R3D  19.8 43.1 556 68.6 85.5
IIC (shuffle) R3D 18.1 365 50.5 645 815
IIC (rotate) R3D 204 431 563 705 86.3

obtained by CoCLR-RGB [113] using optical flow data in the training period. Without
optical flow, the best result is 31.9% using PacePred [30] with C3D network backbone
in Table 3.6. By using our IIC, the top-1 retrieval performance can be 56.2%, which
does not use optical flow data but 26.0% points higher than MemDPC [37], and
24.3% higher than PacePred [30]. Also, we can find that all three intra-negative
generation functions can achieve comparable results with each other, much higher
than those from other works. Rotation seems to be slightly better than the other two
intra-negative generation functions.

We test the transferability of the trained model on the HMDB51 dataset because
even though no labels are used in the training dataset (i.e., UCF101), the testing
dataset (i.e., HMDB51) is different from the training part. The results are shown in
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Table 3.8: Comparisons with the state-of-the-art self-supervised methods on UCF101
and HMDB51 dataset.

Method Date Pre-train ClipSize Network UCF HMDB
Random - 16 x 1122 R3D 54.5 234
VCOP [5] 2019 UCF 16 x 1122 R3D 64.9 29.5
VCP [3] 2020 UCF 16x 1122 R3D 66.0 315
PRP [28] 2020 UCF 16 x 1122 R3D 665  29.7
IIC [91] 2020 UCF 16 x 1122 R3D 744 383
IICv2 (repeat) UCF 16 x 1122 R3D 78.6 404
IICv2 (shuffle) UCF 16 x 1122 R3D 77.9 39.3
IICv2 (rotate) UCF 16 x 1122 R3D 78.6 43.4
Random - 16 x 1122 C3D 61.8 24.7
VCOP [5] 2019 UCF 16 x 1122 C3D 65.6 284
VCP [3] 2020 UCF 16 x 1122 C3D 68.5 325
PRP [28] 2020 UCF 16 x 1122 C3D 69.1 34.5
IIC [91] 2020 UCF 16 x 1122 C3D 700  30.8
RTT [29] 2020 K400 16 x 1122 C3D 69.9 39.6
MoCo [115] 2020 UCF 16 x 1122 C3D 60.5 27.2
MoCo + BE [115] 2021 UCF 16 x 1122 C3D 724 423
RSPNet [104] 2021 K400 16 x 1122 C3D 76.7  44.6
IICv2 (repeat) UCF  16x1122 C3D 781  39.6
IICv2 (shuffle) UCF 16 x 1122 C3D 78.2 39.4
IICv2 (rotate) UCF 16 x 1122 C3D 78.5 40.3

Table 3.7. A similar conclusion can be drawn. No matter what backbone to use, our
IIC can achieve better performance than the other methods. With the R3D network
backbone, the best performance was 20.4% at top-1 accuracy, surpassing the current
state-of-the-art results by a large margin. By using other network backbones, the

performances are similar, which we show in Appendix B.

3.5.3 Comparison: Video Recognition

Video feature representation is usually evaluated in the video recognition task.
Here we initialized models parameters with weights from self-supervised learned
model and the models were fine-tuned on two benchmark datasets, UCF101 [56]
and HMDB51 [57]. We follow the majority settings in the pre-training dataset and
video clip size, and tried four different network backbones. Because there are a lot of
optional network backbones, we use two tables to show the results, illustrated in
Table 3.8 and Table 3.9. All results are averaged over three splits.

From the table, we can see that better performances than a random initialization
strategy can be achieved, revealing that better temporal information has been
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Table 3.9: Comparisons with the state-of-the-art self-supervised methods on UCF101
and HMDB51 dataset. Results are averaged over three splits. T indicates methods
using optical flow.

Method Date Pre-train ClipSize Network UCF HMDB
OPN [25] 2017  UCF 2272 VGG 59.6  23.8
DPC [43] 2019 K400  16x224> R3D-34 757 357
CBT [42] 2019 K600+  16x1122 S3D 795 446
SpeedNet [26] 2020 K400  64x224> S3D-G 811 488
MemDPC* [37] 2020 K400  40x224> R-2D3D 861 545
PacePred [30] 2020 K400  64x224> S3D-G 871 526
CoCLR (RGB)' [113] 2020 K400  32x1282 S3D 879 546
STS [136] 2021 K400  64x224> S3D-G  89.0 620
IICv2 (rotate) K400  16x1122 S3D-G  83.6  48.0
IICv2 (rotate) K400  64x224> S3D-G 886 552
Random - 16x1122 R3D-18 424 171
3D-RotNet [4] 2018 K400  16x1122 R3D-18 629 337
ST-Puzzle [103] 2019 K400  16x1122 R3D-18 658 337
DPC [43] 2019 K400 16x128% R3D-18 682 345
RTT [29] 2020 K400  16x1122 R3D-18 793 498
RSPNet [104] 2021 K400  16x1122 R3D-18 743 418
IICv2 (repeat) UCF  16x1122 R3D-18 801  41.2
IICv2 (shuffle) UCF  16x1122 R3D-18 752 382
IICv2 (rotate) UCF  16x1122 R3D-18 800 429
Random - 16x1122 R(Q+1)D 558  22.0
VCOP [5] 2019 UCF  16x1122 RQ+1)D 724 309
VCP [3] 2020 UCF  16x1122 RQ+1)D 663 322
PRP [28] 2020 UCF  16x1122 RQ+1)D 721 350
RTT [29] 2020 UCF  16x1122 R(2+1)D 816  46.4
PacePred [30] 2020 K400  16x1122 RQ+1)D 771 366
STS [136] 2021 UCF  16x1122 RQ+1)D 778 407
IICv2 (repeat) UCF 16x1122 R@2+1)D 785  41.1
IICv2 (shuffle) UCF  16x1122 R(Q+1)D 784 409
IICv2 (rotate) UCF  16x1122 R(Q+1)D 785 425

embedded by self-supervised learning to some extent. When using R3D-18, R3D,
and C3D as the network backbone, our IIC achieves the best performance among
all these methods in the UCF101 dataset, including these methods which used the
Kinetics-400 dataset to conduct self-supervised training. The total video length of the
Kinetics-400 dataset is about 28 days while it is around 1 day for the UCF101 dataset.
Usually, pre-training on larger datasets can help methods improve performance.
With IIC, we also want to show that our methods are efficient and can even beat some
methods which were pre-trained on Kinetics-400 while the size of the pre-trained
dataset for ours is 3.6% of theirs. With R(2+1)D network, our methods also achieved
better performance than others except for RTT [29]. However, the performances of
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RTT are not stable such that its results using R3D-18 and C3D are 77.3% and 69.9%
respectively, lower than our proposed methods. There are some very recent methods
such as Background Erasing (BE) [115] and RSPNet [104]. With the same input
size, our IIC can outperform RSPNet and BE when using C3D [6] as the network
backbone.

When using Kinetics-400 dataset to pre-train, we show in Table 3.8 that our IIC
can achieve 83.6% in UCF101 dataset with input size 16 X 112 X 112 using S3D-G [10]
network. With larger input sizes (e.g., 64 X 224 x 224), the performance can be further
boosted to 88.6%, revealing that besides network backbones, the resolution is also
an important element when evaluating models. Under fair comparison, our IIC
can outperform SpeedNet [26] and PacePred [30] in the same settings. Though the
method STS [136] can obtain better performance in this setting, the performance
using R(2+1)D is worse than ours regardless of which intra-negative generation

function to use.

The transferability was again tested on the HMDB51 dataset, which is more
complicated because this is not only transferable for different tasks, but also on
different datasets. With the improved version of IIC, we can obtain 4.2% points
improvements (74.4% to 78.6%) over our previous version using R3D on the UCF101
dataset. And with our IIC, we can obtain state-of-the-art performance based on R3D
and S3D-G network architecture. When using other network backbones such as
R3D-18, C3D, and R(2+1)D, our proposed methods can also achieve better results
than others in most cases. Though the performance of RSPNet [104] and RTT [29]
can achieve better performance in particular conditions (e.g., RSPNet achieved
better performance with C3D in HMDB51, RTT achieved better performance with
R(2+1)D), their results are not stable when using a different network backbone (e.g.,
RSPNet with R3D-18, RTT with C3D). Therefore, we could say that our IIC performs
generally better than other methods in most cases.

Because we have three kinds of intra-negative generation functions in total, the
performance of each intra-negative generation function is also listed in the table.
From the recognition performance, it might be hard to say which is better among
these three methods because the gaps are very small in the UCF101 dataset. For the
results in the HMDB51 dataset, we might say clip rotation is the best intra-negative
generation function.

Therefore, generally speaking, clip rotation is the best choice among these three
intra-negative generation functions while frame shuffling is the worst one. Some
performances in video retrieval and recognition might not be consistent with this
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Figure 3.6: Feature visualization by t-SNE. Features extracted by IIC are more
semantically separable compared to directly applying contrastive learning videos [2].
Each video is visualized as a point, with videos belonging to the same action category
having the same color.

conclusion when using different backbones, and the reason might lie in the situation
that we do not explore the best training hyper-parameters for each case.

3.6 Discussions

In this section, we will pose further discussions and provide more pieces of evidences
on the advantage and the potential reasons why our proposal can help extract better
temporal clues.

3.6.1 Visualization: Feature Embedding

Before comparing our proposed method with other state-of-the-art methods, we set
the trained models as feature extractors and qualitatively evaluated video features
by visualization in order to verify whether good feature representations have been
learned. Here the first 10 categories (arranged by action names in alphabetical order)
in the UCF101 dataset were used. Features were projected to two-dimensional
space using t-SNE [137]. Fig. 3.6 visualizes the embedding of the features extracted
by traditional contrastive learning [2] and our IIC. The contrastive baseline is a
simple application of image-based contrastive learning methods to videos without
considering the particularity of temporal information. It is obvious that IIC shows
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Figure 3.7: Class activation map visualization using Grad-CAM [1]. With the
proposed intra-negative samples, the network will focus more on the moving
part/entity instead of the background.

better feature clustering ability for video data, which reveals that better video

representations can be learned by our IIC.

3.6.2 Visualization: Activation Map

To better understand the learned clues of IIC, we use the class activation map
technique Grad-CAM [1] to visualize the region of interest. As we can see from
Fig. 3.7, without intra-negative samples, though the network can still make the
right judgment, the effective clues are mainly from the still background such as the
swimming pool for category FrontCrawl or the track field for category HighJump.
With our proposed intra-negative samples, the network will focus more on the
moving part/entity, such as the moving hand for category ApplyEyeMakelUp or the
athlete for the other two samples.
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Table 3.10: Different ways to treat generated samples. Performances are reported in
video retrieval and action recognition tasks. The “baseline” has already used our
proposed strategies.

Method Treated as Topl Top5 Recognition

Baseline - 504 68.5 76.4
Repeat  Positive 453 61.8 76.3
Repeat Negative 53.0 68.2 78.6
Shuffle  Positive 45.0 60.2 75.3
Shuffle Negative 49.4 654 77.9
Rotate  Positive 389 55.1 75.8
Rotate = Negative 53.1 70.1 78.6

3.6.3 Potential Mechanism of Intra-Negative Samples

For the used transformation functions in our IIC, frame repeating and frame shuffling
will generate video clips with abnormal sequence orders, and clip rotation will change
the action directions. All these transformations will break temporal information
more or less. Though some information can still remain, from intuition, it should
help extract temporal features when treating these samples as negatives than as
positives. We conducted experiments to compare these situations in Table 3.10. It
is clear to get the conclusion that when treating generated samples as positives,
it violates the rule of contrastive learning because the anchor and the generated
video clip do not share similar temporal information, decreasing the performance of
the baseline. When treating them as negatives, it benefits the model and helps the
model capture more temporal information, resulting in better performances in two
downstream tasks, though frame shuffling is the only exception when it comes to
video retrieval task.

The other proof is obtained when calculating feature distances before self-
supervised learning period. The features distances are calculated from the anchor
and another feature from intra-positive, intra-negative, or inter-negative sample.
As we can see from Fig. 3.8, even though the network parameters are randomly
initialized, the overlap between traditional positive pairs (anchor and intra-positive,
the blue curve) and negative pairs (anchor and inter-negative, the orange curve) is
small, indicating that it would be very easy to distinguish positive and negative
samples. The distances between the anchor and shuffled clips (purple curve) are
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Figure 3.8: Feature distance distribution. The feature L2 distances are calculated
using samples pairs from UCF101 split 1. For each sample pairs, one is the anchor,
and the other one could be intra-positive, inter-negative, or intra-negative sample.
The parameters of the network is randomly initialized without optimization. Curves
are obtained using kernel density estimation (KDE).

even smaller than normal positive video clips. It is highly possible that these samples
do not benefit contrastive learning targets during training. For frame repeating and
frame shuffling, the overlap between them and inter-negative is larger, indicating
that if treating them as positives, the optimization period is much harder. The best
usage of intra-negative samples is to treat them (especially for frame repeating and
clip rotation) as hard-negatives.

3.6.4 Best Option for Intra-Negative Samples

In Fig. 3.8, we find that for frame shuffling, the initial feature distances are smaller
even than positive samples. Treating them as negatives makes it difficult to train
the network. For frame repeating and clip rotation, their distributions are close,
corresponding to the similar performances in both video retrieval (Table 3.5, Table 3.6
and Table 3.7) and recognition (Table 3.8 and Table 3.9) for most network backbones.
Rotation is the best intra-negative generation function based on extensive experi-
mental results. We think the reason lies in that intra-negative samples from frame
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Table 3.11: Comparison with methods (i.e., BYOL and SimSiam) which do not need
negative samples.

Method Modality Topl Top5 Recognition

BYOL RGB 15.8 326 77.9
BYOL Res 164 258 24.4
SimSiam RGB 439 57.0 64.0
SimSiam Res 35.6 52.0 74.7
[ICv2 (rotate) Res 53.1 70.1 78.6

repeating are closer to inter-negatives, indicating that if treating rotation as negative
samples, it can bring more sufficient temporal clues which are effective in feature
discrimination.

When it comes to the situation that makes use of more than one intra-negative
generation functions to get intra-negative samples, the training difficulty will greatly
increase because frame shuffling and the other two transformations vary a lot
according to Fig. 3.8. Though for the feature distance angle, it is similar between
frame repeating and clip rotation, the useful discriminative features are various.
Effective features for distinguishing the former one (generated by frame repeating)
from anchor can detect whether there is movement or not. However, for rotated
video clips, the action directions matter. These kinds of variety greatly increase the
training difficulty. Therefore, we find that these intra-negative generation functions
can contribute separately and rotation is the best intra-negative generation function
among them.

3.6.5 Necessity of Negative Samples

Contrastive learning is used to optimize the network, and contrastive loss is proved
to be a hardness-aware loss function in [138]. With intra-negative samples as hard
negatives, the performance can be further enhanced. Though some image-based un-
supervised learning works such as BYOL [39] and SimSiam [116] claimed that without
negative samples, networks can also be trained and achieve good performance. With
our findings, we should not deny the effectiveness of negative samples, especially
our proposed intra-negative samples in self-supervised contrastive learning.

We also have small experiments which apply BYOL and SimSiam to videos with
similar settings. As we can see from Table 3.11, our proposed methods can still
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outperform these frameworks which do not need negative samples to train, showing
that with proper hard-negative samples, good performances can also be obtained
using a traditional contrastive learning scheme. The performance of BYOL in video
retrieval is very low and some settings have severe overfitting problems (i.e., BYOL
with residual modality, SimSiam with RGB modality) in action recognition, which
requires careful choices in training settings in video self-supervised learning.

3.6.6 Limitations

One limitation for our IIC is that the quality of the trained model highly depends on
the intra-negative generation functions. Clip rotation is proved to be the best option
among our trials. However, clip rotation both changes the directions of movements
as well as the spatial information. Though we have provided some analyses towards
the potential explanation of the mechanism behind it, these proofs are not that solid.
Another limitation is that it is special-designed for contrastive video representation
learning, and only is compatible with methods that require negative samples in
videos.

3.7 Conclusions

On the basis of IIC, we introduce many effective techniques and propose IIC,
an improved inter-intra contrastive learning framework for self-supervised video
representation learning. The advantages of intra- and inter-sample learning are
combined by introducing intra-negative samples in contrastive learning. Three
intra-negative sample generation functions are proposed which break the temporal
relations in input video clips. Our framework is flexible and compatible with
different settings such as different network backbones, different data modalities, as
well as different intra-negative generation functions. Techniques such as strong data
augmentations as well as the projection head are also applied to further enhance
the performance. By using our framework, the trained models can extract better
video representations when evaluated in two video tasks, video retrieval and video
recognition. Extensive experiments validate the improvements brought by each part,
as well as the general effectiveness using different network backbones. Discussions
and visualizations validate that our IIC can capture better temporal clues and the
potential mechanism. With only one model handling different inputs, we could
surpass other methods by a large margin.






Chapter 4

Pretext-Contrastive Learning for
Self-Supervised Video Representation

4.1 Introduction

With the development of convolutional neural networks (CNNs) and the help of
many large-scale labeled datasets, the computer vision community has witnessed
unprecedented success in many tasks such as object classification, detection, seg-
mentation, and action recognition. For both image-level and video-level tasks,
pre-training on larger datasets such as ImageNet [139] and Kinetics [45] is important
to ensure satisfactory performance.

However, the world is abundant in images and videos, and annotating large-scale
datasets requires a wealth of resources. In particular, the action recognition task
generally requires properly trimmed action video clips to avoid unnecessary noise
to ensure the performance, which makes the situation more serious. To leverage
unlabeled data, many self-supervised learning methods have been proposed for
efficient and versatile feature representation. These methods can be broadly divided
into two categories, pretext task-based methods and contrastive learning methods.

Several tasks have been designed to constrain pretext task-based models to learn
effective and informative representations. These tasks include solving jigsaw puz-
zles [93], image inpainting [94], and detecting image rotation angles [99]. For video
data, some of these spatial tasks are also effective, together with temporal-related
tasks such as predicting frame orders [23] or video clip orders [5, 24, 25], recognizing
temporal transformations, and being sensitive to video playback speed [26-30]. A
suitable combination [130] of such different tasks can help improve the performances
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Figure 4.1: A glance at the performance of our proposals. Our results in this figure
are based on one pretext task, VCP [3], the performance of which is only 66%. Results
of other methods are from corresponding papers and results using the same input
sizes (16 X112 x 112) are used if provided, without using other data modalities such
as optical flow, audio and text.

of the methods in video retrieval and recognition tasks. However, even though
high accuracy can be achieved, it seems to be endless because there can be new and
“better” pretext tasks. Identifying which pretext task is more effective and why it is
are theoretically difficult to explain.

In contrastive learning methods [2, 32, 34, 35, 38], the solution is based on the
comparison among different samples. The key idea is to distinguish one instance
from another. Usually, different modalities and different spatial/temporal crops of
the same video are treated as positives while samples from different videos are
treated as negatives, even though they may belong to the same action category. Once
the network can distinguish one instance from another, the learned features are
discriminative and would be sufficient for downstream tasks such as video retrieval
and recognition. Unlike those for pretext tasks, these methods may not consider
sufficient temporal information because spatial features may be sufficient in some
cases.
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The combination of different pretext tasks and contrastive learning seems to
be better than each on its own. Such kind of combination using one pretext task
(pace prediction) has been firstly validated effective in video representation learning
reported in a recent work [30]. However, the reason why the combination can be
effective lacks discussion and the generality of this combination is unsure whether
this phenomenon happens only for a specific pretext task or not.

In this chapter, based on the success of pretext tasks and contrastive learning,
we want to explore what kind of combination can boost both. We propose Pretext-
Contrastive Learning (PCL), which also facilitates the advantages of some data
processing strategies such as residual clips (Sec. 2) and strong data augmentations [38].
With PCL, huge improvements over the corresponding baselines can be achieved,
as shown in Fig. 4.1. Better performance can be obtained over recent works while
even using much smaller (around 3.6%) data for pre-training. We should clarify that
we are not proposing new pretext tasks, or contrastive learning methods; instead,
we want to bridge the gaps between pretext tasks and contrastive learning with
comprehensive experimental investigation and discussion to find the best strategy
facilitating the advantages of these technologies. And this work is trying to set new
baselines in self-supervised learning in videos.

To prove the effectiveness of our PCL, three pretext task-based methods are
set as baselines, together with the contrastive learning method. Different network
backbones are tested to eliminate biases. Experimental results prove the effectiveness
and the generality of our proposal. The proposed PCL is closer to a framework or a
strategy rather than a simple method as it is flexible and can be applied to many
existing solutions. And we have lifted benchmarks to a new level by tiny changes,
setting new baselines in self-supervised video representation learning.

The contributions of this work can be summarized as:

e We propose a joint optimization framework, utilizing the advantage of both
pretext tasks and contrastive learning, together with proper training settings.

e Experiments demonstrate that huge improvements can be obtained by using
our proposal, and we can also achieve state-of-the-art performances in two
evaluation tasks on two benchmark datasets.

e Our proposal is validated based on three pretext task baselines and different
network backbones, showing the effectiveness and the generality of our PCL.
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e Analysis shows some connections between pretext tasks and contrastive
learning, helping to understand the potential mechanism behind the simple

combination.

4.2 Related Works

In this section, we divide the existing self-supervised learning methods into two
categories according to their optimization targets: pretext tasks and contrastive
learning. Because no labels are available for self-supervised learning, pretext
tasks based methods will set special tasks as the training target, such as detecting
transformations. Contrastive learning-based methods will use positive pairs and
negative pairs to train the network, and the generation of these sample pairs is based
on the sample indexes.

421 Pretext Tasks

Self-supervised learning methods were first proposed for images. Spatial pretext
tasks include solving jigsaw puzzles [93], detecting image rotations [99], image
channel prediction [95], and image inpainting [94]. Prior works also include image
reconstruction using autoencoders [97] and variational autoencoders [98].

For video data, some image-based pretext tasks can be directly applied or
extended, such as detecting rotation angles [4] and completing space-time cubic
puzzles [103]. Compared to image data, videos have an additional temporal
dimension. Therefore, to utilize temporal information, many works have designed
temporal-specific tasks. In [23], the network was trained to distinguish whether the
input frames were in the correct order. [24] trained their odd-one-out network (O3N)
to identify unrelated or odd video clips. The order prediction network (OPN) [25]
was trained by predicting the correct order of shuffled frames. The video clip order
prediction network [5] used video clips together with a spatio-temporal CNN during
training. Further, [3] utilized spatial and temporal transformations to train the
network. Many recent works [26-30] have started to utilize the playback speed of the
input video clips. SpeedNet [26] was trained to detect whether a video is playing at
a normal rate or a sped-up rate. [27] trained a network to sort video clips according
to the corresponding playback rates. The playback rate perception (PRP) [28] used
an additional reconstructing decoder branch to help train the model. [29] and [30]
also utilized additional transformations to help train the model.
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All these pretext tasks can be set as the main branch and can be combined with
our PCL for better performance.

4.2.2 Contrastive Learning

The success of contrastive learning also originated from image tasks [140]. The key
idea of contrastive learning is to minimize the distance within positive pairs in the fea-
ture space while maximizing the distance between negative pairs. After contrastive
loss was proposed [31], contrastive learning has become the mainstream method for
self-supervised learning of image data. Contrastive predictive coding (CPC) [32]
attempted to learn the future from the past by using sequential data. Deep Info-
Max [33] and Instance Discrimination [34] were proposed to maximize information
probability from the same sample. Contrastive multiview coding (CMC) [2] used
different views (e.g. different color spaces) from the same sample. Momentum
Contrast (MoCo) [35, 36] used a momentum-updated encoder to conduct contrastive
learning. In SimCLR [38], different combinations of data augmentation methods
were tested for paired samples. Bootstrap Your Own Latent (BYOL) [39] trained the
network without negative samples.

The above-mentioned methods mainly focus on image data. Some technologies
have been successfully applied to video data. The concept of CMC can be easily
adapted to videos by simply using video data as the model input. Similar to CPC,
DPC [43] and MemDPC [37] were proposed to handle video data. In Sec. 3, we
have introduced intra-negative video samples to enhance temporal representation
for contrastive learning. These methods are all based on visual data only. The
contrastive learning concept can be extended to additional modalities of video, such
as audio [40, 41], text, and descriptive data [42].

Most of these contrastive learning methods utilize a noise contrastive estimation
(NCE) loss [127] for robust and effective training. Wang et al. [141] explored the
learned features and proposed a new loss function, align-uniform loss, which
is a possible substitute for the NCE loss. In our PCL, we used the NCE loss
for optimization. Other contrastive loss functions are also compatible with our
framework.

4.2.3 Methods Combinations

A combination of several pretext tasks with proper weights can yield better per-
formances [130] than when they are used alone. Many existing pretext task-based
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methods are beyond one simple pretext task and are already a combination of some
particular tasks. We have listed many pretext tasks, and the potential combinations
among them are extensive. These pretext tasks vary widely, and determining why
one pretext task or one combination is better than another is difficult.

The combination of pretext tasks and contrastive learning has been attempted
in a recent work [30]. However, except for the reported results, few analyses have
been conducted and the combination may be only effective on a specific task. In
this section, we address this issue and show the generality of the combination
of pretext task and contrastive learning as it can boost the performance of both.
Improvements over three pretext task baselines also reveal that the effective settings
can be generalized to a lot of pretext tasks.

4.3 Methodology

4.3.1 Motivation

Pretext task methods and contrastive learning methods can have good performances
on their own. And some questions arise automatically. 1) Can a simple combination
of a pretext task-based method and a contrastive learning method boost each other
and achieve better performance? 2) Will it be effective only for a specific pretext task,
or general enough for many pretext tasks?

4.3.2 PCL: Pretext-Contrastive Learning

The goal for self-supervised video representation learning is to learn effective feature
representations from videos using a backbone network fy. The commonly used
networks are based on spatio-temporal convolutions, where the input video v; is
decoded to a sequence of frames and several frames are stacked to form video clips
Xy;. Video features can be generated by using fo(x).

Pretext Task

For pretext task-based methods, one or several tasks are used to train the network
in a supervised manner. Most pretext tasks are classification tasks. For example,
VCP [3] used different transformations on the input video clip x and trained the
network by distinguishing which transformation was conducted. 3DRotNet [4] was
trained by detecting the rotation angles of the input clip. VCOP [5] shuffled video
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Figure 4.2: (a) Learning scheme of pretext tasks; (b) Learning scheme of contrastive
learning methods).

clips and trained the network by predicting the correct order class of the inputs. All
these pretext tasks can be concluded as designing a proper classification task. The
video clip x needs to be transformed by a specific transformation function f(x, y),
where y is the label of the corresponding transformation. Then the optimization
target of these pretext tasks becomes

min\i{rg}ize Ls((fo(t(xo, ), y), (4.1)

where g(-) is the post-process network to process extracted features and L is usually
set as cross-entropy loss because the corresponding pretext tasks usually belong to
classification tasks. The learning scheme of pretext tasks is illustrated in Fig. 4.2 (a).

Contrastive Learning

For contrastive learning methods, after extracting features from the backbone, a
two-linear-layer multi-layer perceptron (MLP) is usually used to project features
fo(x) to another feature space. Let us denote the projector network as h(-). Positive
pairs and negative pairs are required to constrain the network. le,i is one video clip
from the video v;, and when another video clip x%i is from the same video, these two
video clips are treated as a positive pair. Conversely, when a video clip xy, is from
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a different video, v;. Then x,, and x,, are a negative pair. The encoded feature in
the projected feature space is h(f(xy,)), which is denoted as z,, for simplicity. Let us
define D(zvi,zvj) as the similarity distance between feature z,, and Zoj; then for video
v;, the contrastive learning target is

.. . h 2
minimize £ = L+ Lyop (4.2)
where
1.2
Ul D(Zvilzz;i
NCE = ~108 ——— T 1
D(Zvilzvi) + Zj;ti D(Zvilzvj)
i Dzl 22 4.3)
Ui _ 1 (ZUI'/ZUI'
NCE = 7108

D@, 2)+ LD, 2)

In practice, video features (i.e., z,,) are normalized in the feature space and the simi-
larity distance D(zy;,zy ;) is calculated by the inner product. In contrastive learning,
instances with different indexes can be treated as negative samples and at most
N -1 negative samples can be used, where N is the size of the dataset. To accelerate
training, memory bank [34] technologies are adopted to save extracted features
from previous epochs and k negative samples are sampled from the corresponding
memory banks. This procedure is similar to [2, 91]. This kind of learning scheme is
illustrated in Fig. 4.2 (b).

Joint Optimization Framework

As we can see from the optimization targets of pretext tasks (Eq. 4.1) and contrastive
learning (Eq. 4.2 and Eq. 4.3), pretext task-based methods focus more within the
sample while contrastive learning methods try to distinguish one instance from
another. A combination of them may take the advantage of both, ensuring the
network to have a local-global view.

There are several pretext tasks, and some tasks use only one video clip to conduct
experiments such as 3DRotNet [4], which rotated the input video clip and trained
the model by predicting the rotation angles. Some tasks use multiple video clips
during training, such as VCOP [5], which shuffled the temporal order of several
video clips, and VCP [3], which utilized spatial and temporal transformations. The
training styles for almost all pretext tasks can also be divided into two categories,
single-clip methods and multi-clip methods. For a better understanding of these
three baselines, we illustrate the training scheme in Fig. 4.3.
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Figure 4.3: The overview of three pretext task baselines, 3DRotNet[4], VCOP [5], and
VCP [3]. These three methods cover a variety settings of existing pretext tasks. In
VCP, the transformation includes several spatial-related and temporal related tasks.

In this work, we choose 3DRotNet, VCOP, and VCP as our pretext task baselines
because of the variance among these three methods. We show some features of these
pretext tasks in Table 4.1. The situation can cover almost all existing video pretext
tasks based on these points of view.

We illustrate the use of our proposal in Fig. 4.4. For single-clip methods, the
contrastive loss will use the encoded features from the backbone network. As
contrastive loss requires a positive pair and negative pairs to train, the encoding
process is duplicated. The input video clip is generated from the same video as
the original path, which can be treated as a positive pair. Negative pairs are taken

Table 4.1: Variety of the chosen pretext tasks. “trans.” is short for the word
transformation.

Pretext task  Spatial trans. Temporal trans. Clip settings

3DRotNet [4] v Single
VCOP [5] v Multiple
VCP [3] v vV Multiple
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Figure 4.4: The use of PCL in pretext task-based methods. (a) For single-clip methods,
two different clips from the same video will be processed and the contrastive loss
will be calculated among one batch of data. (b) For multi-clip methods, different
clips from the same video have been already processed and the contrastive loss
can be easily calculated. The data pre-processing procedure includes strong data
augmentation transformations and converting to residual clips.

directly from one batch of data because different samples are from different videos
in one training batch.

For multi-clip methods, different video clips are set as inputs and they are encoded
to features using a shared encoder. These features are natural positive pairs because
they are from the same video. Negative pairs are also from video clips from one
batch of data.

It can be observed that it is very simple to construct a joint optimization framework
based on any pretext task baseline method, and the final training loss becomes

Liotar = Lpretext +aLecontrasts (4.4)

where a is a weight to balance losses between pretext tasks and contrastive learning.
For Lyretext and Leontrast, they came from Eq. 4.1 and Eq. 4.3. For convenience, we
rewrite them here.

Lpretext =L (8(f9(t(xvi, y))), }/)/ (4.5)
Leontrast = ‘£I\}CE + LI\}CE (4.6)
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4.3.3 Data Processing Strategies

To further boost the performance, we mainly introduce two different kinds of pro-
cessing strategies on data, namely residual clips and augmentation transformations.

Residual clips. Most video-based self-supervised learning methods use 3D
convolutional networks to process data, and the corresponding input is video clips,
which are stacked RGB frames. Residual clips have been introduced in Sec. 2,
showing that they can function well with several pretext tasks. We introduce residual
clips here to further show its effectiveness on different methods in self-supervised
learning.

Here we use frame; to represent the iy, frame data, and Frame;.; denotes the
stacked frames from the iy, frame to the jy, frame. The process to get residual frames
can be formulated as follows,

ResClip = Frame;y1~ 1 — Frame;.;, 4.7)

where Frame;,1.j+1 can be easily obtained by shifting frames along the temporal axis
in video clips. The ResClip here will be then directly fed into the network for feature
extraction.

Augmentation transformations. It is widely acknowledged that data augmenta-
tion methods enhance performance in most cases. However, in previous methods
in video-based self-supervised learning, only a few data augmentations were con-
ducted such as random cropping in the spatial axis and temporal jittering. However,
some recent works [35, 39] started to use strong augmentations in images, such
as color distortion and Gaussian blur, and have achieved improvements over the
corresponding baselines.

Though these data augmentations are conducted on images, we adopted this
kind of processing and applied it to video frames. The motivation is that motion
features should be similar even though frames are blurred or distorted by color.
Another motivation is that we wonder whether it will also boost the performance of
residual clips because there will be much less color information in residual clips.

4.4 Experiments

To demonstrate the effectiveness of the proposed PCL framework, we used 1) three
pretext task baselines with traditional contrastive learning baseline method, 2) four
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different backbone networks including different convolution types, and 3) two

evaluation tasks (i.e., video retrieval and recognition) in our experiments.

4.4.1 Data Preparation

We mainly used two benchmark datasets, UCF101 [56] and HMDB51 [57] in our
experiments, as our baselines did [4, 5, 3]. The UCF101 dataset consists of 13,320
videos in 101 action categories. HMDB51 is comprised of 7,000 videos with a total
of 51 action classes. The official splits only contain training sets and testing sets.
We randomly selected 800 and 400 videos from the training splits for UCF101 and
HMDB51 datasets, respectively, to form the validation set. The best performance on
the validation set will be saved and evaluated in video retrieval and recognition. To
further evaluate the effectiveness of our PCL, we also utilized Kinetics-400 dataset [9]
to train. Kinetics-400 consists 400 action classes and contains around 240k videos for
training, 20k videos for validation, and 40k videos for testing. Kinetics-400 dataset is
only used in the pre-training process.

Because spatio-temporal convolutions were used to train our models, we fol-
lowed [6] and resized videos in size 128 X 171. Sixteen successive frames are sampled
to form a video clip. Random spatial/temporal cropping was conducted to generate
an input video clip of size 16 x 112 x 112, where the channel number 3 was ignored.
In addition to random cropping, other augmentation transformations we used in
our experiments include random color jittering, randomly converting to grayscale,

Gaussian blur, and random flipping.

4.4.2 Baselines

Because our PCL is a combination of pretext tasks and contrastive learning, the
baselines should be set as the pretext task or contrastive learning.

There are several pretext task-based methods in self-supervised video repre-
sentation learning. We chose three works: 3DRotNet [4], VCOP [5], and VCP [3].
3DRotNet is trained by recognizing the rotated angles (degrees are from [0, 90, 180,
270]) of the input video clip. VCOP aims to detect the correct orders of several input
video clips. For example, for three video clips with original order “1, 2, 3”, there
are totally six possible options after order shuffling, such as “1, 2, 3”7, “2, 3,17, “3,
2,1”. VCP conducts different types of transformations and the network is trained
to distinguish which transformation has been performed. These pretext tasks, as
well as the training styles, are different. For example, 3DRotNet is a one-clip method
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while VCOP and VCP use several video clips as input data. The other reason is that
these three pretext tasks are from three different categories. 3DRotNet uses rotation,
which is more related to spatial information. VCOP cares about temporal orders
of input clips, which only uses temporal information. The processing which VCP
chooses from is a mixture of temporal and spatial transformations. There exist many
pretext tasks in video-based self-supervised learning and we cannot conduct all
experiments. However, other pretext tasks can be easily classified into one of these
three categories and we think the effectiveness of our proposal on these three pretext
tasks can prove the generality of our PCL.

Contrastive learning is widely used in image-based self-supervised learning and
has been explored in videos in [91, 37, 43]. For a fair comparison, our contrastive
learning baseline will use the same framework as our PCL while the network will be
optimized only by Leontrast in Eq. 4.4, without using Lpretext-

4.4.3 Network Backbones

For the network backbone, there are several 3D CNNs such as C3D [6], R3D,
ResNet-18-3D [8], and R(2+1)D [7]. Different network backbones were used in our
experiments to eliminate model biases. R3D and ResNet-18-3D are composed of 3D
convolution instead of 2D convolution in the original ResNet [60] while the numbers
of convolutional layers in each residual block vary. To compare with the baselines,
we used the same network architectures as them. It is possible to use other network
architectures such as I3D [9], S3D [10], or other deeper networks, but we simply
follow the baselines for fair comparisons.

A two-linear-layer multi-layer perceptron (MLP) is used to process features from
the same backbone. Therefore, this part can be treated as the post-processing for the
contrastive learning part, paralleling with the post-processing of pretext tasks. The
MLP is in an fc-relu-fc style. After projection, feature dimensions are reduced to 128

in our experiments.

4.4.4 Evaluation Tasks

To evaluate the performance of the trained models, two evaluation tasks were
used: video retrieval and video recognition. After self-supervised training, the
trained models can be evaluated directly in video retrieval tasks on both UCF101
and HMDB51. Note that the self-supervised learning part was only conducted on
UCF101 split 1. Therefore, when conducting video retrieval on UCF101, the task-level
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generalization ability was tested. When conducting video retrieval on HMDB51
using the same model, both task-level and dataset-level generalization abilities were
tested.

Video retrieval is conducted based on video-level features. 3D ConvNets can
extract features from video clips, and features of video clips are averaged if they are
from the same video. Thus, video-level features can be generated and the k-nearest
neighbors (kNN) algorithm is used to check whether the retrieved video has the
same action category as the query video.

Action recognition is a fundamental task in video representation learning. Follow-
ing previous works, we also conducted experiments by fine-tuning trained models
on both UCF101 and HMDB51 datasets to check the transfer learning ability of the
models.

4.4.5 Experimental Details

In all of our experiments, the batch size is set to 16 and the training lasts for 200
epochs. The initial learning rate is 0.01 for self-supervised learning. Models with
the best performance on the validation datasets are saved then used to test the
performance in the video retrieval task. For video recognition tasks, the same
models are fine-tuned for 150 epochs and the initial learning rate is set to 0.001. The
best performance on the validation dataset is evaluated on the corresponding test
splits. Stochastic Gradient Descent (SGD) is used for optimization for both training
periods. The hyper-parameter in Eq. 4.4, a is set to 0.5 to balance pretext task loss
and contrastive loss.

4.5 Results and Analyses

In this section, we first compare our proposed method with baseline methods. To
turther prove the effectiveness of our PCL framework, we also compare our results
with current state-of-the-art methods. We mainly used VCP as the baseline pretext
task and used C3D, R3D, or R(2+1)D as the network backbone. For the other two
methods, 3DRotNet and VCOP, we used the same mainstream backbones reported
in the corresponding papers: ResNet-18-3D for 3DRotNet and C3D for VCOP.
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Table 4.2: Comparisons with baselines on split 1 of UCF101. Best results in each
block are in bold.

Video retrieval

Method Backbone Recog.
Topl Top5 Topl0 Top20 Top50

VCP (baseline) [3] C3D 173 315 420 526 67.7 685
Contrastive only [2] C3D 389 569 657 744 843 78.0
PCL C3D 503 67.3 75.7 834 912 79.8

VCP (baseline) [3] R3D  18.6 33.6 425 535 681 66.0
Contrastive only [2] R3D 447 624 716 796 888 793
PCL R3D  48.1 64.7 739 820 90.6 79.9

VCP (baseline) [3] R(@2+1)D 199 337 420 505 644 66.3
PCL R(2+1)D 42.8 599 69.5 78.0 87.6 79.9
3DRotNet (baseline) [4] R3D-18 142 252 335 437 595 629
PCL R3D-18 33.7 53,5 64.1 734 850 815

VCOP (baseline) [5] C3D 125 290 390 50.6 669 656
PCL C3D 39.0 59.1 675 76.8 874 79.2

4.5.1 Comparison with Baselines

All models were pre-trained on UCF101 split 1 and tested on both UCF101 and
HMDB51 datasets. Results are presented in Table 4.2 and Table 4.3, respectively.

For the pretext task VCP with the C3D backbone, the baseline is only 17.3% in
video retrieval and 68.5% in recognition on the UCF101 dataset. When maintaining
the main training architecture and using contrastive loss only, the performance can
reach 38.9% in retrieval and 78.0% in video recognition. This performance is much
higher than the pretext task. One reason is that it already benefits from our data
processing strategies. Our PCL yielded 50.3% at top 1 retrieval accuracy on the
UCF101 dataset, which is 33.0% points above the C3D baseline for pretext task and
also 11.4% points higher than our strong contrastive learning baseline. In video
recognition, our PCL can also yield the best performance.

Similar results can be found when we used different network backbones on
the basis of VCP. Our PCL can achieve more than double the performance of the
corresponding baseline at top 1 retrieval accuracy and over 10% points improvement
when we use R3D and R(2+1)D as the network backbone. These results show that
our PCL can boost the performance of both VCP and contrastive learning.
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Table 4.3: Comparisons with baselines. Results are evaluated on split 1 of HMDB51.
Best results in each block are in bold.

Video retrieval

Method Backbone Recog.
Topl Topd Topl0 Top20 Topd0

VCP (baseline) [3] C3D 78 238 353 493 716 325
Contrastive only C3D 151 349 472 615 821 455
PCL C3D 19.6 415 448 70.2 859 46.1
VCP (baseline) [3] R3D 76 244 363 536 764 315
Contrastive only R3D 173 386 512 653 834 463
PCL R3D  19.2 42.0 553 69.1 86.7 46.1
VCP (baseline) [3] R2+1)D 6.7 213 327 492 733 322
PCL R2+1)D 19.6 411 56.2 711 865 459
3DRotNet (baseline) [4] R3D-18 6.2 18.7 31.0 466 705 337
PCL R3D-18 124 344 484 654 83.6 474
VCOP (baseline) [5] C3D 74 226 344 485 701 284
PCL C3D 149 359 489 63.6 828 422

When we look at other pretext baselines in Table 4.2 and Table 4.3, the same trend
can be found. Our PCL can outperform the corresponding pretext task baselines,
3DRotNet and VCOP, by a large margin. These results reveal that the effectiveness
of our PCL is not limited to only one pretext task, but general enough to other
methods. Also, we want to mention that VCP cares much about spatial and temporal
transformations, VCOP uses temporal information only and 3DRotNet uses rotation
which is much more related to spatial information. The effectiveness of PCL on
these three baselines reveals the potential that our PCL can boost the performance of
other existing pretext task-based methods in self-supervised video representation

learning.

4.5.2 Comparison with State-of-the-art Methods

There are too many pretext tasks in video self-supervised learning and it is impossible
for us to embed our proposal to all these methods. The baselines we used in our study
are not currently state-of-the-art methods. Some very recent works have used new
pretext tasks such as pace prediction [30] or more complex temporal transformation
recognition [29] and achieved better performances. Here we compared our methods
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Table 4.4: Comparison with state-of-the-art methods in video retrieval on UCF101.
Most results are from the corresponding papers.

Methods Backbone Top1 Top5 Top10 Top20 Top50

MemDPC [37] R2D3D 20.2 404 524 64.7 -
MemDPC-Flow [37] R2D3D 40.2 63.2 719 78.6 -

PRP [28] C3D 232 38.1 46.0 55.7 68.4
PacePred [30] C3D 319 49.7 59.2 689 80.2
IIc C3D 551 721 784 84.0 91.6
PCL (VCOP) C3D 39.0 591 675 76.8 87.4
PCL (VCP) C3D 503 673 757 834 912
PRP [28] R3D 228 385 46.7 552 69.1
Inc R3D 53.1 701 774 84.0 914
PCL (VCOP) R3D 389 578 66.6 76.1 86.0
PCL (VCP) R3D 481 64.7 739 820 90.6
PRP [28] R2+1)D 20.3 34.0 419 517 642
PacePred [30] R(2+1)D 25.6 427 513 613 740
Inc R(2+1)D 50.6 68.3 76.0 82.9 90.5

PCL (VCOP) R(2+1)D 16.6 333 43.1 555 726
PCL (VCP) R(2+1)D 428 599 69.5 78.0 87.6

RTT [29] R3D-18 26.1 485 59.1 69.6 82.8
PacePred [30] R3D-18 23.8 38.1 464 56.6 69.8
Inc R3D-18 56.2 71.3 77.5 84.6 91.6

PCL (3DRotNet) R3D-18 33.7 535 64.1 734 85.0
PCL (VCP) R3D-18 551 712 789 855 923

with state-of-the-art methods to demonstrate the effectiveness of our PCL. We want to
clarify that there are some other works that used larger pre-trained datasets together
with audio or text information of videos and achieved even higher performance [40-
42]. Here, we did not include them and only referred to these methods using similar
settings for fair comparisons.

The results for video retrieval in UCF101 and HMDB51 datasets are shown in
Table 4.4 and Table 4.5, respectively. Note that we have proved the improvements
over the corresponding baselines in Table 4.2 and Table 4.3, we do not include them
in these tables. From these tables, we can see that by using the proposed PCL, we
can easily outperform other state-of-the-art methods except for our IIC (Sec. 3), no
matter which backbone is used. Here we use the best settings of IIC, which uses
rotation as an intra-negative generation function. The solution of PacePred [30]
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Table 4.5: Comparison with state-of-the-art methods in video retrieval on HMDB5I1.
Most results are from the corresponding papers.

Methods Backbone Top1 Top5 Top10 Top20 Top50

MemDPC [37] R2D3D 7.7 25.7 40.6 57.7 -
MemDPC-Flow [37] R2D3D 15.6 37.6 52.0 65.3 -

PRP [28] C3D 105 272 404 56.2 759
PacePred [30] C3D 125 322 454 61.0 80.7
IIcC C3D 195 44.7 58.7 731 89.3
PCL (VCOP) C3D 149 359 489 63.6 8238
PCL (VCP) C3D 19.6 415 448 702 859
PRP [28] R3D 82 258 385 633 759
Inc R3D 204 43.1 563 70.5 86.3
PCL (VCOP) R3D 143 340 483 621 819
PCL (VCP) R3D 19.2 420 553 69.1 86.7
PRP [28] R(2+1)D 8.2 253 36.2 51.0 73.0
PacePred [30] R(2+1)D 129 31.6 432 58.0 77.1
nc R(2+1)D 20.0 434 560 70.3 86.5

PCL (VCOP) R2+1)D 79 238 359 51.0 747
PCL (VCP) R2+1)D 19.6 41.1 56.2 711 86.5

PacePred [30] R3D-18 9.6 269 411 56.1 765
Inc R3D-18 20.7 45.0 57.6 71.6 86.1

PCL 3DRotNet) R3D-18 124 344 484 654 83.6
PCL (VCP) R3D-18 20.2 43.6 59.1 725 86.6

is already a combination of one pretext task (i.e., video speed recognition) and
contrastive learning. We can still outperform their results by a large margin based on
three network backbones. The best top-1 video retrieval performance in the UCF101
dataset is 55.1%, achieved by our PCL using ResNet-18-3D network backbone and
the corresponding pretext task is VCP [3]. Similar trend can be found in HMDB51
dataset in Table 4.5. We can lift the corresponding pretext baselines by a large margin.

The results for video recognition are shown in Table 4.6. We can observe that
without our proposal, the performances of the corresponding baseline methods are
lower than those of recent state-of-the-art methods. However, with the proposed
PCL, which only has minor changes in the baselines, the performances can be
significantly improved. In most settings, PCL performs better than state-of-the-art
methods. From this table, we can also see that the settings of existing methods
vary from one to another, such as using different sizes of input data, different
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Table 4.6: Comparisons with the state-of-the-art self-supervised methods.

Method Date Pre-train ClipSize Network UCF HMDB
OPN [25] 2017 UCF 2272 VGG  59.6 238
DPC [43] 2019 K400 16x224*> R3D-34 757 35.7
CBT [42] 2019 K600+ 16x112>2 S3D  79.5 446

SpeedNet [26] 2020 K400 64x224% S3D-G 81.1 488
MemDPC [37] 2020 K400 40x2242 R-2D3D 78.1 41.2

VCOP [5] 2019 UCF 16x1122 C3D 656 284
VCP [3] 2020 UCF 16x1122 (C3D 685 325
PRP [28] 2020 UCF 16x1122 C3D 69.1 345
RTT [29] 2020 K400 16x1122 C3D 699 39.6
PCL (VCOP) UCF 16x1122 (C3D 79.8 418
PCL (VCP) UCF 16x1122 (C3D 814 45.2
VCOP [5] 2019 UCF 16x1122 R3D 649 295
VCP [3] 2020 UCF 16x1122 R3D 66.0 315
PRP [28] 2020 UCF 16x1122 R3D 66.5 29.7
i@ 2020 UCF 16x1122 R3D 786 434
PCL (VCOP) UCF 16x1122 R3D 782 405
PCL (VCP) UCF 16x1122 R3D 81.1 45.0
VCOP [5] 2019 UCF 16x1122 R(2+1)D 72.4 309
VCP [3] 2020 UCF 16x1122 R(2+1)D 66.3 32.2
PRP [28] 2020 UCF 16x1122 R(2+1)D 72.1 35.0
RTT [29] 2020 UCF 16x112%2 R(2+1)D 81.6 46.4

PacePred [30] 2020 UCF 16x1122 RQ+1)D 759 359
PacePred [30] 2020 K400 16x1122 RQ+1)D 77.1 36.6

PCL (VCOP) UCF 16x112%2 RQ2+1)D 79.2 41.6
PCL (VCP) UCF 16x112%> RQ2+1)D 79.9 45.6
PCL (VCP) K400 16x112%> RQ2+1)D 85.7 47.4

3D-RotNet [4] 2018 K400 16x112> R3D-18 62.9 33.7
ST-Puzzle [103] 2019 K400 16x112> R3D-18 65.8 33.7

DPC [43] 2019 K400 16x128> R3D-18 682 34.5
RTT [29] 2020 UCF 16x112> R3D-18 773 475
RTT [29] 2020 K400 16x112%> R3D-18 79.3 49.8
PCL (3DRotNet) UCF 16x112> R3D-18 82.8 47.2
PCL (VCP) UCF 16x112%> R3D-18 834 488
PCL (VCP) K400 16x112?> R3D-18 85.6 48.0

network architectures, and different pre-trained datasets. The total duration of
Kinetics-400 dataset is around 28 days while it is about one day for UCF101 datasets.
Larger datasets, as well as input sizes, will usually boost the performance. In our
experiments, we only set the input size of 16 X 112 x 112 while we can achieve even
better performance than methods such as SpeedNet [26] and MemDPC [37] when
our PCL is pre-trained on UCF101 while they used larger pre-trained datasets, larger
input size, and deeper networks. The best video recognition performance on the
UCF101 dataset is achieved when our PCL is pre-trained on Kinetics-400, reaching
85.7%. On HMDB51, our best performance (48.8%) is obtained by using VCP as the
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Table 4.7: Ablation studies on different kinds of combinations. Network architecture
is based on R3D. Results are reported on UCF101 split 1. Res means using residual
clip as input and Aug represents methods using strong data augmentations.

Exp. Pretext Contrastive Res Aug Retrieval Recog.

1 VCP X X X 18.6 66.0
2 VCP X v X 25.6 77.0
3 X v X X 34.0 61.2
4 X v v v 447 79.3
5 VCP v X X 35.0 65.9
6 VCP v X v 40.3 68.9
7 VCP v v X 40.5 78.9
8 VCP vV vV vV 48.1 79.9

pretext task baseline and ResNet-18-3D network backbone, outperforming all other
methods except for RTT [29].

It may be claimed that in some papers, their proposed pretext task or contrastive
learning methods were novel and could achieve state-of-the-art performance at that
time. However, based on our experiments, we find there is much room for previous
methods. Exploring the limits of each method and then conducting comparison may
be a fair way.

4.5.3 Ablation Study: Effectiveness of Each Part

Because we have a lot of changes based on pretext tasks such as combining with
contrastive learning, using residual clips, and data augmentation transformations,
we want to find out how much impact each part contributes. We choose VCP as the
pretext task baseline and R3D as the network backbone. Experiments are conducted
on UCF101 split 1. Results are reported in Table 4.7. Because there are a lot of
combination settings, we use the experiment ID to refer to for convenience. There
are a total of 16 kinds of settings for all possible situations. Here, eight out of 16 are
conducted because we think it is enough to show the effectiveness of each part in
our proposal.

Residual clips. As we can see from the comparison pair, Exp. 1 and Exp. 2,
by using residual clips instead of original RGB video clips, improvements can be
obtained in both video retrieval and recognition. Similar performance can be found
between Exp. 5 and Exp. 7, or Exp. 6 and Exp. 8.
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Table 4.8: Ablation studies on the hyper-parameter « in Eq. 4.4. Network architecture
is based on R3D and the pretext task is VCP. Results are reported on UCF101 split 1.

a Topl Top5 Topl0 Top20 Top50 Recognition

0.1 432 631 727 80.9 89.8 80.1
0.5 481 o647 739 82.0 90.6 79.9
1.0 481 658 73.6 82.1 90.0 79.3
10 459 650 727 81.1 89.6 73.5

Data augmentation. We can see from Exp. 7 and Exp. 8, with strong data
augmentation transformations, the top-1 performance in video retrieval can be
lifted from 40.5% to 48.1%. And 1% point improvement can be obtained in video
recognition. From Exp. 5 and Exp. 6, we can also find that strong data augmentation
is effective.

Methods combination. We can see a comparison set {Exp. 1, Exp. 3, Exp. 5},
whose experimental settings do not use our data processing strategies, a combination
of VCP and contrastive learning can boost the performance of each. For comparison
pair, Exp. 4 and Exp. 8, improvements can be also obtained when contrastive learning
is combined with VCP in both video retrieval and recognition.

4.5.4 Ablation Study: Loss Weight Balancing

We conducted several experiments on loss weight balancing to explore the impact
of @ in Eq. 4.4. Experiments are conducted on the basis of pretext task VCP and
the network backbone is R3D. Results are reported on UCF101 split 1 in both video
retrieval and recognition.

We can see from Table 4.8, the retrieval performances are comparable when « is
set to 0.5 or 1.0, higher than others. However, the best recognition result is achieved
when «a is set to 0.1. Compared with the setting @ = 0.1, the top-1 retrieval accuracy
is 4.9% points higher for @ = 0.5 while its corresponding recognition accuracy is 0.2%
points lower. To balance the performance in both video retrieval and recognition,
we choose to set a to 0.5 for all of our experiments.

4.6 Discussions

In addition to the improvements on numbers, we would like to pose discussions
on how a combination of pretext tasks and contrastive learning can yield better
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performance. In this section, we show some evidence and analyses towards the
combination and try to explore the potential mechanism behind it.

4.6.1 General Analysis

The mechanism of pretext tasks is not well explained in theory. Researchers aim
to design tasks related to their final target tasks. For example, action retrieval and
action recognition require temporal information to distinguish between samples.
Thus, temporal-related tasks have been proposed. However, for individual pretext
tasks, it is not clear which is the best, except based on particular performance metrics.

For contrastive learning, the basic idea is to distinguish one sample from another.
However, determining why it functions well for motion representation extraction is
difficult because spatial information may sometimes be enough. And same action
clips in different instances will be treated as negatives during training.

Owing to many unclear issues, it is difficult to model the training target in a
clear way. However, from the optimization target, we know that pretext tasks focus
within the sample while contrastive learning methods try to distinguish one
instance from another. By combining them together, the model can not only capture
temporal information constrained by pretext tasks but also learn discriminative
features from samples constrained by contrastive learning.

4.6.2 Feature Visualizations

To better understand learned features, we visualize them using t-SNE [142] in Fig. 4.5.
Four different methods are used here: 1) random initialization, 2) one pretext task
method, 3) one contrastive learning method, and 4) our proposed PCL. All models are
trained in a self-supervised manner, except for the random initialization because it is
initialized without training. The first ten categories in UCF101 split 1 are visualized
and each point represents one video.

As we can see from Fig. 4.5, without any training, features are randomly dis-
tributed in the space. In the visualization of VCP and contrastive learning, features
of the same class (in the same color) distribute more concentrated. With our PCL, it
appears that the number of points is fewer because features of the same class are
more close to each other and can be better clustered than the other three methods.
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Figure 4.5: Visualizations using t-SNE. The point number for PCL appears smaller
because points with the same color (i.e., the same action labels) are more concentrated.
The first ten categories (in alphabetical order) in UCF101 are visualized.

4.6.3 Case Studies

To evaluate the advantage of pretext task, contrastive learning, and our PCL re-
spectively, we use self-supervised trained models without changing parameters by
fine-tuning. Therefore, video retrieval is used as the evaluation task. And all models
are based on the R3D network backbone.

One combination of action categories in the UCF101 dataset is Playing Musical
Instruments, where many similar actions are classified into different classes because
of the different instruments. Therefore, contrastive learning should have better
performance because it is constrained by distinguishing one sample from another,
mainly based on spatial differences. Fig. 4.6 illustrates this trend that contrastive
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Figure 4.6: Video retrieval performance on each class. All classes here belong to the
Playing Musical Instruments category. Our PCL can take the advantage of contrastive
learning and compensate for pretext task baseline.

learning performs better than single pretext task, VCP. Though VCP utilized temporal
transformations, the movements in many cases in this category are highly similar.
Because our PCL is a combination of pretext tasks and contrastive learning, we
can see that PCL can avoid the disadvantage of pretext tasks and even have
better performance than the contrastive learning method. Note that in Fig. 4.6, for
category Playing Tabla and Playing Cello, the contrastive learning method has better
performance than our PCL. We find that for category Playing Tabla, the total number
of testing cases is only 31, where 3 cases can cause around 10% points decrease. For
category Playing Cello, 13.6% testing cases for our PCL are confused with category
Nunchuncks, whose videos share similar composition with Playing Tabla. Though it is
hard to say our PCL is the best for all cases, we can still say that our combination is
generally better than pretext task or contrastive learning methods when they stand

alone.
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Figure 4.7: Video retrieval performance on each class. The classes here are those
where pretext task method perform better than contrastive learning method.Our
PCL can take the advantage of pretext task baseline and compensate for contrastive
learning baseline.

Though from Table 4.7, we can see that the contrastive learning method can have
much better performance than the pretext task VCP (44.7% vs 25.6%), there are still
some advantages that pretext task has over contrastive learning. We visualize these
classes where the pretext task method performs better than contrastive learning. As
we can see from Fig. 4.7, some of these categories are much more temporal related.
For example, the action Clean and Jerk represents a series of movements (Fig. 4.8).
Because the pretext task VCP contains temporal transformations, it enables the
model to capture more temporal-related features. And we can also see from the
histogram that our PCL can achieve better or comparable performance.

In the tiny experiments, our PCL can achieve the best performance in 72 out of
101 classes, and the best averaging results, revealing that a combination of pretext
task and contrastive learning can take the advantage of both.
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Figure 4.8: Sample frames for action category Clean and Jerk, extracted from
v_CleanAndJerk_g11_c03.avi in UCF101 dataset.

Table 4.9: Correlation coefficient based on pre-category video retrieval accuracies.
Network backbone is R3D and models are all trained on UCF101 split 1 in the
self-supervised way.

Order Rotation Speed Contrast
Order 1 0.5759  0.7678  0.5389

Rotation - 1 0.6731 0.8307
Speed - - 1 0.6171
Contrast - - - 1

4.6.4 Task Relation Exploration

For the baseline methods we used in our PCL, namely contrastive learning, video
clip order prediction (VCOP [5]), video clip rotation detection (3DRotNet [4]), and
video cloze procedure (VCP [3]), pretext tasks contain several transformations such
as temporal order shuffling, rotation, permutation. As we introduced in Sec. ??,
another widely used pretext task is video playback rate recognition, though it has
been combined with contrastive learning in [102]. Here, we want to explore the
relations between these typical task solutions in video self-supervised learning. The
connections between different tasks may help us understand the mechanism behind
PCL.

We trained single models based on these typical self-supervised learning tasks in
videos: order classification, rotation detection, speed recognition, and contrastive
learning. To simplify, we denote them as Order, Rotation, Speed, and Contrast for
short. For these trained models, we treated them as feature extractors and applied
them to the video retrieval task. The correlation coefficient indexes are calculated
across the per-category accuracies. In this way, model parameters are not changed,
which can reflect the task relations to some extent.

Results are reported in Table 4.9. As we can see from the table, the correlation
between Order and Speed is very high, indicating that with these two pretext tasks,
model behaviors are similar. According to their definitions, they care more about
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Table 4.10: Treat IIC as the contrastive learning method in PCL. Results are reported
on UCF101 split 1 in video retrieval and recognition task.

Method Backbone Topl Top5 Recognition
PCL (VCP + contrast)  R3D 48.1 64.7 79.9
IIC (rotate) R3D 53.1 70.1 77.8
PCL (VCP +IIC) R3D 482 658 80.5

temporal-related features. On the contrary, the correlation between Rotation and
Contrast is high, implying they may help capture spatial-related features. A combi-
nation of different pretext tasks and contrastive learning can yield good performance
because with additional constraints, the model has to learn more general video
representations, ensuring higher performance when applied to downstream tasks.
The VCP baseline is a combination of spatial and temporal transformations, making
it the most effective among our pretext baselines. With additional supervision from
contrastive learning, video representations should also become more discrimina-
tive. Thus, better video representations can be achieved via this kind of simple
combination in our PCL.

4.6.5 Combination with Inter-Intra Contrastive Learning

In this chapter, we focus on video self-supervised learning, which is the same topic
like that in Chapter 3 while we address different points. Both methods have made
use of our solution in Chapter 2. Because PCL is a framework which combines
contrastive learning with pretext tasks, and our IIC is one kind of contrastive learning,
here we make use of them together. Results are reported in Table 4.10.

As we analyzed in Chapter 3, IIC is better than traditional contrastive learning for
video self-supervised learning. Therefore, when replacing the contrastive learning
method in PCL with IIC, 0.1% point and 0.6% point improvements can be obtained
in video retrieval and action recognition tasks, respectively. Although the retrieval
performance is not as good as using IIC only, much better performance can also be
observed in action recognition (80.5% vs 77.8%). The conclusion can not be simply
drawn about which is better between IIC and PCL (VCP + IIC). However, we can
generally say that IIC is a better solution than traditional contrastive learning and in
our PCL, stronger components will result in higher accuracies in downstream tasks
in video self-supervised learning. Both are good solutions for video representation
learning.
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4.6.6 Limitations

One limitation of this work is the lack of solid explanations about the mechanism.
Usually, a combination of multi-task learning can boost the performance, and
different combinations of pretext tasks may also have effects. However, we would
like to argue that one of our baselines is already a combination of several pretext tasks,
and the performance will be further improved when combined with contrastive
learning. Another limitation is the novelty because we do not propose any new
pretext tasks. It is more like empirical studies in settings for video self-supervised
learning. We hope this work paves the way for future work as stronger baseline
settings in this direction. We have conducted experiments to try to find relations
between typical pretext tasks. However, we think it is still far from clear and requires
deeper exploration, which is one of the limitations for almost all existing works.

4,7 Conclusions

In this section, we proposed Pretext-Contrastive Learning (PCL), a joint optimization
framework facilitating both pretext tasks and contrastive learning, which is beyond
a simple combination. Data processing strategies such as residual clips and strong
data augmentations are used in our framework. Extensive ablation studies showed
the effectiveness of each component in our proposal. Experiments using different
pretext task baselines with different network backbones in different evaluation tasks
on two benchmark datasets revealed the effectiveness and the generality of our
proposal. With our PCL framework and the empirical settings, pretext tasks and
contrastive learning can boost each other, and old benchmarking baselines can be
lifted to a new level, which could provide a guideline for the self-supervised video
representation community. Our proposed PCL is sufficiently flexible enough and
can be easily applied to almost any existing pretext task or contrastive method.



Chapter 5

Conclusions, Limitations, and Future
Directions

5.1 Conclusions

To obtain video representations in an efficient and effective way, we had a deep
exploration of the extraction of spatio-temporal information in this thesis. Supervised
and self-supervised video are two promising learning paradigms, and on the basis
of the fact that current models will ignore some important temporal information,
we proposed our solutions for more general and robust video representation.
Our proposed methods tackled three different aspects: 1) a novel input modality
compatible with various 3D CNNSs, 2) a temporal constraint in contrastive learning,
and 3) a joint optimization framework in self-supervised video representation
learning. Two video understanding tasks (i.e., video recognition and retrieval) are
used to evaluate the quality of extracted features.

In Chapter 2, we presented residual frames which is a better replacement of
traditional input using 3D CNNss for temporal feature extraction. Traditional 3D
CNN-based methods used RGB video clips (i.e., stacked RGB frames) to train, where
spatial information played an important role. Instead of traditional input data, we
stacked frame differences as the new input modality. This simple change on the
input data can force the model to focus more on temporal information, with less
loss on the appearance part. Extensive experiments and pieces of evidence showed
that our model can capture better temporal clues, without introducing additional
computation on optical flow. We also demonstrate the generalization ability of our
proposal by applying it to other tasks. For some videos which require more spatial
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information, we used an additional appearance path to form the two-path solution.
The usage of our proposed solution can be abroad and we also used it in the other
two works of the thesis.

In Chapter 3, we presented IIC, an inter-intra contrastive learning framework
in video self-supervised learning by introducing intra-negative samples. Our
framework is based on the contrastive learning method, while enhancing its ability in
video representation learning in two points: generate intra-negative samples from the
anchor and set them as negative data; apply strategies for better temporal clue caption.
We showed that our framework can help the model extract discriminative temporal
information without any changes in the network architecture. The visualizations, as
well as analyses, showed remarkable improvements over the traditional contrastive
learning baseline in self-supervised video representation learning.

In Chapter 4, we presented pretext-contrastive learning (PCL), a joint optimization
framework to extract video representations in a self-supervised manner, by a well-
designed combination between pretext tasks and contrastive learning. This was
inspired by analyzing the key concern behind pretext tasks and contrastive learning.
We showed that a simple combination is very useful, even surpassing very recent
works while the baseline methods we used are from a few years ago. We showed
interesting findings of the behaviors for pretext tasks, contrastive learning methods,
and our combination. The outstanding performance based on different pretext tasks
in video recognition and retrieval tasks proves that this combination is generally
effective. And a stronger component in our PCL can result in better performance
such as using IIC instead of traditional contrastive learning in PCL. We hope this
kind of finding as well as our analyses pave the way for further works in video
self-supervised learning, benefiting from different supervision signals.

5.2 Limitations

In this thesis, we focus on supervised learning and self-supervised learning for video
representation and propose one solution in supervised learning and two solutions
in self-supervised learning. We have discussed the limitations one by one in each
chapter. Here, we will discuss the limitations that exist throughout all of our works.

One limitation is the computation complexity. We use 3D ConvNets for all of our
work, with good performances in two video understanding tasks. Though we have
reduced the computation complexity by taking advantage of frame transformations
and can extract good performances without optical flow, as we have discussed in
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Chapter 2, for better performances, an additional appearance path might also be
necessary for self-supervised learning solutions. Also, the computational cost is
high for 3D ConvNets when compared with 2D ConvNet-based methods.

Another limitation is the mechanism behind them. We would like to argue that
this might be one of the limitations for all existing works because it is far from
clear for deep learning-based methods. We have shown pieces of evidence that can
support our statement more or less, and we hope our analyses can help for a better
and deeper understanding in this research area to some extent.

Video representation learning is a wide-range topic for video understanding.
We tackle two main tasks (i.e., action recognition and video retrieval). There are a
variety of video understanding tasks such as video segmentation, video temporal
localization, and action detection. Considering the situation, we have not validated
the effectiveness of our proposals in other video understanding tasks, or different
learning schemes. Hopefully, we have found some works [143, 144] that have made
use of our proposals and applied them to other video understanding tasks such as
domain adaptation [143]. We hope our work can pave the way for future work in
many other video understanding research topics.

5.3 Future Directions

In video representation learning, there are many interesting topics for future research.
We focus on some trends, list advantages and disadvantages, and discuss some

directions.

Video processing backbones Owing to the weakness of temporal modeling in
current network backbones in videos, there are many recent developments in
network architecture designs, such as 2D CNN variants and 3D CNN variants.
Compared to hand-crafted network architectures, network architecture search (NAS)
technologies [145-147, 64, 63] have developed very quickly for more compact but
effective and efficient networks. However, NAS requires pre-defined module space
for exploration and the performance seems not to be that appealing. Transformers [72,
148, 149] have brought high attention not only for its attention mechanism but also the
transformer encoder and decoder blocks. After applying successful solutions from
NLP to computer vision, vision transformer as well as its follow-ups show remarkable
performance in image tasks [73, 150-152] as well as video representation [75, 76, 78,
79]. Directly applying transformers to videos request a large amount of computation,
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large datasets, and long-time training are necessary to ensure the performance.
Efficiently making use of transformers in videos is a promising direction.

Multi-modality learning Videos contain not only frames, but also sounds and
even texts or other metadata. Video representation should not be limited to visual
features only. Although some multi-modality models [153, 154, 42, 155] have been
proposed with a combination of visual data and sounds/texts. The combination
of these kinds of representations is simple, which has not been well studied. A
joint learning framework which utilizes all possible information of videos should be
explored, coping with all possibilities that some videos have rich information while
others may not, representing variant video in one feature space. However, current
approaches cannot handle different videos well when the variety is large, especially
when transferring to a different domain (dataset or tasks).

Efficient Models for Deployment An enormous number of research papers have
been published with better performance in different benchmark datasets. However,
some methods are proposed without considering the model complexity and far from
deployment for real products due to the high computational costs. To increase effi-
ciency in the inference period, in addition to the network design, some technologies
can be used such as quantization [156-158], knowledge distillation [159-161], as well
as weight pruning [162-164]. There are a lot of works in natural language processing
and computer vision tasks for images, while few address video approaches. Com-
pared to images, this demand is more urgent for video representation for deployment
because videos are naturally more complex than texts and images.
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Appendix A

Supplementary Materials on Residual
Frames with 3D ConvNets

A.1 Code Sample to Generate Residual Frames

Here we show a simple usage to generate residual frames in our solution. Residual
frames are stacked frame differences, and we can easily obtain frame differences by
shifting video clips along temporal axis. In traditional 3D ConvNet-based methods,
all we need is just to add one line code to transform RGB video clips to Residual
ones. We show a code sample here. Our method can be easily embedded into any
3D ConvNet-based solutions in video understanding tasks to extract better video
reprensentations.

# PyTorch style

args:
X - one batch of videp clip data, in shape [B, C, T, H, W]
model - the pre-defined 3D ConvNet
y - output of the model

## One additional line to generate residual clips for 3D ConvNets
## Comment the following line for traditional RGB-input model

x = abs(x - torch.roll(x, 1, 2)) # Optional: x = x - torch.roll(x, 1, 2)

y = model (x)
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Table A.1: Results on the UCF101 split 1. The network backbone is ResNet-18-3D.

Sampling rate  Modality Pre-train Clip acc Top-1 Top-5

1 RGB X 69.6 774 937
5 RGB X 67.9 71.0 910
1 Res X 72.3 79.5 942
5 Res X 75.5 780 940
1 RGB v 81.2 884 979
5 RGB v 87.6 89.5 982
1 Res v 81.4 88.8 983
5 Res v 88.0 89.0 98.2

A.2 Ablation Study on Frame Sampling Rate

If the frames per second (FPS) shooting speed for videos is 30, then when decoding
videos to raw video frames, one-second length video contain 30 frames. We call the
sampling rate is 1 because one decoded frame is sampled from one raw frame. When
we set the sampling rate to 5, it means that one decoded frame is sampled from every
five frames. For our solution which use residual video clips in shape 16 x112x 112,
if the sampling rate is 1, this video clip covers around 0.5-second video. When the
sampling rate is 5, one video clip will cover around 2.7-second video, containing
more temporal movements. This is also an important factor because for some actions
such as shooting, the movements are very fast while for some actions such as yoga,
the movements are much slower.

In Sec. 2, we follow a standard data processing procedure as [8] to conduct all the
experiments, while we further explore the effects made by the frame sampling rate
here. Results are illustrated in Table A.1. Both traditional input modality and our
proposed data modality are tested.

As we can see from the table, for different training settings (i.e., scratch training
or fine-tuning, different data modalities), the performance differences exist. For
example, for traditional RGB video clips, with dense sampling strategy (i.e., sample
rate is 1), the top1 accuracy is 6.4% higher than that with sample rate 5 when models
are trained from scratch. However, when models are fine-tuned from a pre-trained
model weights, the performance of dense sampling strategy is 1.1% worse. A
possible explanation is that appearance information is sufficient for a large amount
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of cases because spatial information does not change too much in 0.5-second video.
With knowledge from pre-trained model weights, additional temporal information
can benefit. For our residual input model, the trend is similar but the gap becomes
smaller.

An interesting finding is that when setting sampling rate to 5, the clip accuracy is
much better for all cases except for RGB modality when the model is trained from
scratch. Therefore, using clip representation might be a possible option to represent
the whole video when models are obtained by fine-tuning. Because top-1 video
action recognition accuracies are very similar for different sampling rate for our
residual model, we choose to set sampling rate to 5 in all of our experiments.
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Inter-Intra Contrastive Learning
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B.1 Number of Negative Samples

We rewrite the contrastive learning loss function here,

. ho((0],0%))

contrast — Zk+1h6(v U )+zk+1h ( Ui]wg})

(B.1)

where k is the number of negative samples used in the calculation of contrastive
learning. We have conducted experiments using different k. Results are illustrated
in Table B.1.

Table B.1: Ablation studies on the number of k. R3D is used as the network backbone
and frame repeating is used to generate intra-negative samples.

k  Topl Top5 Recognition

512 519 67.7 76.6
1024 53.0 68.2 77.2
2048 520 67.6 76.6

4096 53.8 69.3 77.3
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As we can see in Table B.1, the trend is not clear for the performance with different
settings of k. In common sense in contrastive learning [38, 35], larger k indicating
more negative samples in the constraint, and usually it will increase the variety in
samples. However, when k is large enough, the differences become limited. In our
case, we have extended negative samples with intra-negative video clips, and these
intra-negative samples are high-quality negative samples compared to traditional
negative samples. Thus, the improvements are limited when k is larger than 1024,
even though the best setting for k is 4096.

B.2 Data Structure to Save Negative Samples

In Chapter 3, we use memory bank [34] technology to save negative features
calculated in previous iterations during training. And when calculating contrastive
loss, features are from the corresponding memory bank. The drawback is that the
storage size for the memory bank will increase with larger and larger the dataset.
SimCLR [38] did not make use of any additional memory. Instead, the negative
samples are from the same batch because the batch size is very large. It is not
acceptable for single GPU or even small clusters. In MoCo [35], a memory queue is
used to save previous features, reaching a balance in memory occupation.

Our IIC is also compatible with all these settings, and we have also conducted
experiments using a memory queue as MoCo. Results are in Table B.2.

Table B.2: Memory bank or memory queue. Network backbone is R3D and results
are reported in UCF101 split 1 in video retrieval and recognition tasks.

Type Intra-neg Topl Top5 Recognition
Memory bank  Repeat 53.0 68.2 77.2
Memory bank  Shuffle 494 654 76.5
Memory bank  Rotate  53.1 70.1 77.8
Memory queue Repeat 43.0 60.9 754
Memory queue Shuffle 49.1 67.0 77.6
Memory queue  Rotate  51.8 69.7 78.1

As we can see from the table, with memory bank, IIC can obtain better video
retrieval performance for all three intra-negative generation options. For video
recognition, it is interesting that the best performance is achieved by using a memory
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Table B.3: Comparison with state-of-the-art methods in video retrieval on HMDB
split 1. T indicates methods using optical flow in the training period. We highlight
the best results in each block in bold.

Methods Backbone Topl Top5 Top10 Top20 Top50

MemDPC [37] R2D3D 7.7 257 406 577 @ -
MemDPC-Flow' [37] R2D3D 156 37.6 52.0 653 -
CoCLR-RGB' [113] S3D 232 432 535 655 @ -

VCOP [5] C3D 74 226 344 485 701
VCP [3] C3D 78 238 353 493 71.6
PRP [28] C3D 105 272 404 562 759

PacePred [30] C3D 125 322 454 61.0 807
IIC (repeat) C3D  20.0 43.0 56.6 70.5 86.1
IIC (shutffle) C3D 193 392 524 658 83.0

IIC (rotate) C3D 195 447 587 731 893

VCOP [5] R(2+1)D 57 195 30.7 456 67.0
VCP [3] R2+1)D 6.7 213 327 492 733
PRP [28] R(2+1)D 82 253 362 51.0 73.0

PacePred [30]  R(+1)D 129 31.6 432 580 77.1
IIC (repeat) RQ+1)D 186 41.0 554 69.0 85.2
TIC (shuffle) RQ+1)D 186 39.7 543 672 85.0

IIC (rotate) R(2+1)D 20.0 43.4 56.0 703 86.5
3DRotNet R3D-18 6.2 187 31.0 46.6 705
VCP [3] R3D-18 109 252 368 515 718
PacePred [30] R3D-18 9.6 269 411 56.1 765
IIC (repeat) R3D-18 194 424 56.0 700 83.2
IIC (shuffle) R3D-18 18.1 400 519 64.1 81.0
IIC (rotate) R3D-18 20.7 45.0 57.6 71.6 86.1

queue. Taking different tasks into consideration, we can say that these two kinds of
settings are comparable, revealing that IIC is compatible for MoCo training style.

B.3 Additional Retrieval Results on HMDB Dataset

We have shown retrieval results using R3D [8] as the network backbone. To
validate the generalization ability for different network architectures, we show the
performance using C3D [6], R(2+1)D [7], and R3D-18 [8] in Table B.3. CoCLR-
RGB [113] can obtain the best performance in the table. However, it requires optical
flow information during the training period, and the frame resolution is large than
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ours (128 vs 112). It is clear that IIC is effective and can outperform other methods
by a large margin.
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