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ABSTRACT

The Control Theory is a branch of applied mathematics and engineering that forces
physical dynamic systems using feedback information with specific and strict boundaries
of time and magnitude. Often, the problem is simplified to force stability on physical
problems, but most applications involve regulation and close monitoring of measurable
variables.

In this dissertation, we propose a set of control algorithms based on Deep-learning
and the concept of Inverse dynamics. Moreover, an evolutionary-based optimization
serves as a foundation for the proper tunning required by complicated problems, such
as nonlinear cases.

Beyond applying deep-learning architectures that directly learn how to control a sys-
tem, we bound such solutions and combine them with a conventional predictive control
setting. Our objective is to provide a realistically applicable intelligence-based algorithm
that solves the control problem without the black-box nature concerns typically found
in Deep-learning methods.

Model Predictive Control (MPC) is a collection of algorithm techniques designed to
regulate and manage the dynamic operation of Nonlinear Systems by using future pre-
dictions and optimization methods. Rather than a specific set of rules, MPC is a closed-
loop concept of sequential optimization in a moving horizon in the foreseeable future.
To calculate future information of a controlled system, MPC utilizes a mathematical
representation called Predictor Model. The Predictor model computes an open-loop re-
sponse, and with that information, the rest of the problem relies on optimizing a signal
to drive the system state to the desired value.

Acting based on future predictions only makes the MPC a reliable method if such
forecasted values are correct. Thus, the Predictor Model is a fundamental element in
MPC implementations. Furthermore, the Predictor Model accuracy presents a signifi-
cant problem in MPC and the Control Theory in general.

Hence, this work proposes a combination of data-based methods and conventional
predictive control schemes. The Predictor Model capabilities are enhanced by Deep-
learning models, which are proven excellent nonlinear function approximators. Moreover,
being MPC a highly computational complex algorithm, an Inverse model initialization
is employed to increase the system’s quality while reducing the convergence times.

Fast MPC implementations that comply with the strict industrial requirements are
our ultimate goal. We prove through numerical simulations that the use of optimally
evolved Inverse models dramatically reduces the necessary steps to compute optimal
control signals, creating a possible scenario of practical implementations of predictive
control systems to the previously prohibited fast dynamics systems.



要旨

制御理論は応用数学と工学の一分野であり、時間と空間に特定の境界を有するフィー
ドバック情報を使用して物理力学系の制御を試みる。多くの場合に問題は物理的な安
定性を強制するため単純化されるが、ほとんどの応用例では測定可能な変数の調整と
綿密な監視が必要とされる。

本論文では、深層学習と逆ダイナミクスの概念を統合した制御アルゴリズムを提
案する。さらに、進化計算に基づく最適化により、非線形系などの複雑な問題に必要
な調整機能を的確に実現する。

この研究では、深層学習をシステムの制御に直接適用するだけでなく、そこで得ら
れた解を従来の予測制御設定と組み合わせるフレームワークを構築する。その目的は、
一般に深層学習手法で見られるブラックボックス的な性質を回避し、制御問題を解決
するために現実的に適用可能な知的システムの基盤を提供することである。

モデル予測制御（Model Predictive Control: MPC）は、将来の予測と最適化の方法
を使用して、非線形システムの動的な動作を調整および管理するために設計されたア
ルゴリズム手法の１つである。MPC はある決まった範囲を予測するための特定のル
ールセットではなく、逐次最適化の閉ループであり、将来の可変領域を予見可能にす
るものである。

制御システムの将来情報を導出するために、MPC は予測モデルと呼ばれる数学的
表現を利用する。予測モデルは開ループ応答を計算し、その情報を使用して制御信号
を最適化し、目的とする状態に系を近づける。

将来予測に基づいて行動するので、予測値が正しい場合にのみ MPC は信頼でき
る方法となる。つまり、MPC の基本要素である予測モデルの精度は、MPC および一
般的な制御理論において非常に重要である。

したがって、本論文では、的確な訓練データベースの構築法と従来の予測制御との
統合フレームワークを提案する。予測モデルの機能は、優れた非線形関数近似器であ
る深層学習モデルによって強化される。一般に、MPC は非常に計算が複雑なアルゴ
リズムである。そのため本研究では、逆モデルの初期化を利用することで、収束時間
を短縮しつつ予測制御の品質を向上させることに成功した。

以上要するに、厳格な産業要件に準拠した高速 MPC の実現が本研究の目標であ
る。学習で進化した逆モデルを利用すると、制御信号を計算するために必要な手順が
大幅に削減され、従来は困難であった動的システムに対する予測制御の構築が可能な
ことを実験的に検証した。
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Chapter 1

Introduction

1.1 The Control Problem

To talk about the Control Problem is to discuss the broad area of dynamic sys-
tems analysis. For example, mathematical representations can describe physical
systems, which formulate the relationship between causes and effects in an input
and output setting. These models describe the overall evolution of observed vari-
ables in a dynamic system with a certain amount of detail, and as the management
motto says: ”What gets measured gets managed.”

Controlling a system requires a deep understanding of the physical problem.
Thus, the standard workflow begins with building a mathematical representa-
tion. The dynamic system analysis is the area that started the generation of
mathematical models representing physical systems, with methods ranging from
algebraic analysis, going through differential equations, to stochastic models. The
first control elements emerged with the model concept and knowledge of the causal
variables involved.

However, it was until the emergence of one of the most revolutionary ideas in
engineering that the shape and branch of Control theory commenced: The negative
feedback. Measuring observable variables and using their information to compute
the difference between the desired quantities; so a control element can correct the
system is known as a control system in the general sense.

With automatic control development, negative feedback, and closed-loop sys-
tems, instability phenomena, transitory shapes, amplified noise, and stationary
errors became the object of study, and the focus of control algorithms expanded.
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It is an ongoing research problem to modify and force the physical systems’
evolution through time in the desired manner, not only in magnitude but also in
transitory shapes and stability. The design of control algorithms directly impacts
all areas of engineering: From management systems or electrical energy generation
to space exploration and robotics. Any system requiring automatic reactions or
adjustments requires a control system setup and a control algorithm.

The general description of an automatic control system is the continuous ad-
justment of an observed variable. The algorithm calculates such adjustments in
real-time, using the negative feedback measurements from the observed variables,
redirecting the system’s internal and observable variables to desired states. Con-
versely, as systems become more complex in time, the necessity of additional
mathematical representations and increases in dimensionality generate the need
for more robust approaches rather than the usual proportional response to an
error calculation.

As artificial intelligence methods offered alternatives to conventional and an-
alytical techniques in many areas of engineering, the control of dynamic systems
became one of the first successful applications of deep learning, at least in the
theoretical context.

1.1.1 Control Theory

The following definitions simplify the understanding of the Control Theory to
continue discussing the dynamic systems we aim to manipulate with the proposed
algorithms. Additionally, they will serve as the departure point for the rest of our
contributions:

Dynamic System. The abstract representation of a physical system through
parametric realizations. Often, these systems are described by differential equa-
tions with time derivatives, able to compute future internal values or states from
their current states. In other words, they are functions that map the evolution
through time of a relationship between dependent and independent variables in
time.

State variables. The internal variables of a dynamic system, represented as a
vector in the geometric space, are known as state variables or state vectors. These
variables describe the system and are not necessarily accessible for measurement.
In some cases, especially in complex systems, these values must be estimated.
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Observable variables. All measurable variables of a dynamic system. These
values are accessible for negative feedback and constitute the source of information
from which the control algorithm will base its decisions. From these observable
variables, internal information of the dynamic system can be estimated, such as
the state vector.

Input variables. The system states and observable variables change as a
function of time, but an excitation signal starts this mechanism. Such signals are
inputs or manipulable variables since they are the direct access users have to the
system. Control algorithms compute the necessary values that will serve as inputs
to the controlled systems.

Disturbances. Input variables induce the evolution of the dynamic systems
through time, changing their internal state vector and generating observable, mea-
surable outputs. However, since interactions between a system and its environment
exist, all direct or indirect elements affecting the progression of a system are known
as disturbances. Although most disturbances are related to the dynamic system’s
interaction with its environment, measurement noise and uncertainties are also
considered disturbances in the control theory context.

Closed-loop and Open-loop. A system with a continuous comparison be-
tween desired values of the state vector and the measurable, observable variables
ultimately used to control a dynamic system is a closed-loop setup. On the con-
trary, a controlled system without measured feedback is known as an open-loop.
Closed-loop setups are the majority of control systems since the increased accu-
racy achieved greatly overcomes the stability issues. Open-loop controls are easier
to design, but since no information is measured in the system’s execution, their
reliability makes them unsuitable for most tasks. In this dissertation, we work on
closed-loop control systems exclusively.

Finally, any system within a closed-loop with continuous regulation is called a
controlled system. Some authors refer to controlled systems as plants or feedback
systems. Similarly, it is a common occurrence to use these terms interchange-
ably. Nonetheless, in this dissertation we use the conventional term: controlled
system.
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1.1.2 Intelligent Control

Most conventional control algorithms are designed based on the premise that the
dynamic system model is known and well-understood. Additionally, a simplistic
consideration of the model uncertainty is added only to selected methods, such
as the robust control. Furthermore, the more the general advances of engineering
expand, the more the complexity of automatic systems increase.

Consequently, modeling and developing control systems is an ever-increasing
task, both in complexity and difficulty. Moreover, industry requirements have
become more demanding. These reasons constitute the superficial point where
data-based methods started to gain importance. Learning the inner dynamics
buried in data and nonlinear information often overlooked by the systems designers
has proven an effective alternative to the conventional analytical approach.

One of the most successful methods is known as Fuzzy Logic. This technique is
a formalization and condensation of a set of expert rules, real-life experience, and
in some instances, common sense. Generally, linguistic variables and IF-THEN
clauses describe these points. This level of artificial intelligence can model system
dynamics and control them. The main difference between Fuzzy controls is its
task-oriented nature rather than a set-point oriented.

Fuzzy systems have a long history of successful implementations. The most
prevalent techniques are the Takagi-Sugeno[103], and Mandani [64] algorithms. As
this work studies a specific point of Intelligent Control, the Deep Learning-based,
we will not expand the Fuzzy logic knowledge. However, it is essential to note its
relevance in the field, and the reader is encouraged to consider Fuzzy-methods and
the review papers [74, 95, 18].

The evolution of data-based methods moved towards Neural Networks (NN).
Some of the first successful applications of NN were in the Control Theory field,
and physical system modeling [120]. Since this type of nonlinear model can approx-
imate complex functions, the first usages assisted in identifying complex dynamics.
The combination of tools to define and generate mathematical models from data
is known as System Identification [93].

Generating a model from data using NN is also referred to as Deep System
Identification in more contemporary settings. Nevertheless, the main components
of the learning process remain the same. The identification process is refactored
into a supervised learning approach, where the labeled data is the state vector,
and the features are the input vector.
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Beyond identifying nonlinear systems, supervised learning algorithms can also
be used to learn control signals directly. Such approaches have a powerful premise
consisting of the combination of adaptive and optimal control features. For in-
stance, a trending method at the moment of writing is Reinforcement Learning
(RL). A random exploration of a system provides an iterative method that learns
the internal dynamic states with the required control signals to drive it successfully
to desired values.

RL methods are heavily influenced by the first iterations of adaptive and opti-
mal controls [57]. In fact, these methods solve the optimal control problem online
in time-varying systems, for which there are solid arguments for the future of Con-
trol Theory and RL. However, regardless of the effectiveness of such methods in
many areas, the control of dynamic systems has specific and strict requirements
that may be prohibitive for random online explorations of in production systems.
Moreover, black-box methods have small guarantees for continuous operation in
all required ranges of physical systems. Our approach to this matter combines
techniques to exploit the ability to learn plus the certainty of well-proven control
methods.

Another powerful technique referred to as Inverse Model control proposes
perfect opposite signals to those of a dynamic system. The transition of a time
step to another would encounter the opposite value, causing a cancellation. Since
canceled variables in the algebraic context mean, in reality, a unity result, the
observable variables of the dynamic system will be the same as the input variables,
without any transitory changes. Such interaction is purely ideal; hence this kind
of method is called perfect control.

As mentioned earlier, dynamic systems have an erratic, nonlinear, and in some
instances chaotic nature. Therefore, the existence of an Inverse of a describing
nonlinear function is not guaranteed. Furthermore, even if there is an inverse
function, the causality, stability, and other factors may be beyond the reasonable
application zone. Nevertheless, considering the approximation features of Deep
NN (DNN), an Inverse model may be learned from data.
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1.2 Related works

The field of intelligent control applications is extensive and has a long history,
dating from the first solutions provided by neural networks. In addition, the
universal approximation feature of neural networks made them suitable for control
problems. As the Inverse model of a system is considered the ideal control, several
approaches have attempted to emulate an ideal control, from analytical attempts
to data-based methods.

As pointed in recent survey compendiums [32], the nonlinear MPC challenges
lie in the effectiveness and quality of the predictions for the ever-increasing re-
quirements of modern control systems, especially for the nonlinear systems. Fur-
thermore, as data-based solutions expand their limited applications to more broad
areas, opportunities and new considerations arise in the control theory [40].

The initial approach to include artificial intelligence was to substitute the an-
alytical models in the prediction stages with DL-based architectures with the ob-
jective of improving the predictions quality, mainly in complex systems, where
models were not readily available. As a result, several successful applications have
been reported [63, 29, 34] offering DL-based predictions where analytical models
have been substituted by data-based ones.

In [112], authors considered the computational load problem for fast systems
using MPC. They suggested a neural network model that mimics MPC solutions.
In other words, the time-prohibitive control calculations were simulated offline to
generate training data for the neural network. Such an approach generated a NN
that behaves as an MPC algorithm in fast systems. Although the training may
generate a good enough controller, the central characteristic of MPC is the ability
to forecast future events and unforeseen disturbances; For the method to properly
ensure a robust execution, it would require an online adaptive feature, specifically
in the Prediction model of the algorithm. Moreover, the optimization problem is
no longer solved online, meaning unforeseen system states are not considered in
future calculations.

The Inverse modeling approach as direct control has an extensive history [122,
123] because it has been widely regarded as an ideal controller. Still, research on
the matter has continued along with advancements in neural networks. Recent
applications, such as [4] trained a DL model capable of approximating the inverse
dynamics of vibrational effects in a building structure to design a compensating
mechanisms with an attenuation feature. Previously, fast dynamics and complex
systems such as vibration effects were considered off-limits for IM application due
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to the causality issues often found. However, using the approximation provided by
the DL model achieved good results, and the authors applied it as a direct method.
Nevertheless, the control signals produced by an IM have no long-term guarantees;
For instance, in an unforeseen scenario1, the DL model output is unpredictable.

Bounded methods have proven effective when employing artificial intelligence
algorithms for control. For example, in the paper, [97] the use of an inverse ap-
proximation was combined with a predictive control for a rapid attitude maneuver
system of an aircraft. The analytic derivation of that system’s inverse model is a
common practice in the area. Thus the contribution was the addition of an MPC
setting, improving the overall results and control. For particular systems where
an analytical derivation is possible, such as this case, the inverse model has been
applied successfully.

Recently, [38] implemented an inverse MPC for an autonomous driving control
system. Such a novel presentation was introduced to capture the human interaction
to the vehicle, learn it, and propose it as an initial solution to the MPC algorithm.
The benefits of having inverse dynamics data are notable, however, limited to
particular applications. Additionally, in [100] the authors proposed learning the
Inverse dynamics of systems for the implementation in MPC settings. This was
one of the first works to suggest a similar approach to the best of our knowledge.
The authors employed a radial basis neural network and analytically solved the
optimization stage to use the inverse solutions. The numeric experiments presented
were based on a linear version of the inverse pole on a cart system, with empiric-
tuning of the control parameters. Although an excellent method for linear systems,
the nonlinear cases remain an open-problem.

This dissertation details our approach to the general use of Inverse models
in MPC settings based on DL architectures and their evolutionary optimization.
We differ from previous proposals in the sense of directly learning the Inverse
model, being linear or nonlinear, without further assumptions than the physical
boundaries of the system. Moreover, we propose no linearization procedures nor
other limitations or assumptions for the systems. We aim to provide a framework
for the complete range of controllable dynamic systems.

1Common in the control of nonlinear systems, such as vibration control
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1.3 Contents and Chapters descriptions

The present dissertation is focused on the analysis and control of nonlinear sys-
tems through Deep learning approaches, specifically with the use of Inverse Model
approximations for optimal control solutions based on Predictive Control frame-
works. Our initial procedure is the model and identification of nonlinear systems
using Deep learning methods, focusing on the heuristic search of optimal param-
eters via evolutionary computation. Then we proceed to improve the predictions
and optimization of conventional MPC settings by including data-based learned
predictions and evolutionary optimization. As one of the ongoing concerns of
model-based control and MPC, in general, is the computational load, we present
the possibility and empirical approach to a feasible reduction via Inverse Models
and the subsequent implementation on relatively fast systems.

Furthermore, we provide the necessary foundations and experimental assess-
ment for the implementation of Deep learning-based predictive controllers. Finally,
Inverse Modeling will be detailed and expanded to enhance the Predictive Control
paradigm, the conventional control theory and ultimately close the gap between
research and application of artificial intelligence mechanisms in control systems.
Indeed, the main concern regarding intelligent control is the uncertainty that black-
box methods present; Therefore, we propose a classical method enhanced with the
power of an Inverse Model via Deep Learning as our main contribution.

The remaining chapters are structured and described as follows:

Chapter 2: We introduce and expand the Model Predictive Control method-
ologies set. We commence with a theoretical definition, including the algorithm
description and implementation, describing the general stages, prediction and op-
timization, and their execution in real-time. In addition, we present a numerical
simulation to show the performance and general behavior of the algorithm.

Chapter 3: The essential information regarding Deep Learning methods and their
scope in the control theory context. We detail the system identification theory
and the application framework to nonlinear systems. Moreover, the details for
generating predictor models in MPC schemes are expanded with NARX modeling.

Chapter 4: The Inverse modeling of nonlinear systems. We present detailed
analyzes regarding the Inverse approximation with means of control. The Inverse
Model Predictive Control, using the control signals produced by a Deep learning-
based Inverse model, we present a framework to reduce the computational load
while improving the overall control system execution quality.
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Chapter 5: We extensively use the heuristic search power of evolutionary op-
timization to generate optimal Inverse models in the control of dynamic systems
context. Additionally, we provide the training framework for the optimal selection
of parameters in the control of dynamic systems context.

Chapter 6: The Inverse Model Predictive Control will control nonlinear systems
in numerical simulations. We develop an assessment evaluation methodology and
present the workflow for automated testing to validate our claims. A detailed
comparison with the proposed benchmarks is highlighted in this chapter. The
evaluation metrics are displayed, and one on one comparisons with other methods,
conventional and intelligent, are presented.

Chapter 7: Comparative analysis and results. We address the impact of our
contribution to the control of nonlinear systems.





Chapter 2

Model Predictive Control of Nonlinear
Systems

2.1 Introduction

The nonlinear control problem is a generalization of the algorithm design for the
automatic regulation of dynamic systems. As most problems are considered and
reconstructed as linear systems for an analytic approach, nonlinear methods deal
with systems in their most accurate representation. Consequently, nonlinear con-
trols are precise and better than their linear counterparts. However, since the
design of linear controllers is a mature, robust, and proven toolset, the applica-
tions of nonlinear controllers are scarce. Nevertheless, the most popular method
to solve the nonlinear control problem is the Model Predictive Control (MPC), a
technique based on online optimization and forecasting.

2.2 Algorithm

The Model Predictive Control, commonly known as MPC, is an optimal, discrete
control technique. Its development started as an alternative of single control loops
for a simultaneous approach to multiple input/output systems. Moreover, since
the formulation of the control problem became closely related to optimization
techniques, MPC proposed an optimal online control. The consideration of opti-
mization constraints within the online MPC generated increasing popularity for
the method.
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MPC is better understood as an idea rather than a direct method. It is a
combination of model-based optimization and continuous execution through time
also called receding horizon. As the system’s observable variables evolve through
time, the receding optimization changes its initial parameters to solve an optimal
control problem online. The model-based optimization algorithm utilizes a Predic-
tor model. Meaning, the Predictor model evaluates the proposed solutions given
by the optimization algorithm based on an arbitrary cost function. To properly
visualize the MPC extension, let us define the dynamic system.

Definition 2.2.1 (Dynamic System). Mathematical formalization of a descriptive
rule for the time transition between an input and output variables of a physical
system. The nonlinear relationship is defined such that:

ẋt = f(xt,ut, t), yt = h(xt,ut), t ∈ R ≥ 0 (2.1)

where x ∈ RM is the state vector, u ∈ RN is the system’s input vector, and y is
the system observable output, all time-dependent. The system states or internal
variables of size M and the input number of variables N are M,N ̸= 1 for multiple
MIMO systems. Assuming state and input vectors are bounded such that x ∈ X
and u ∈ U, both subspaces of RM and RN respectively, the nonlinear mapping
function f describes the complete evolution of x.

Here, the main goal of MPC is to minimize the difference between the state
vector x and a reference value r by finding the optimal u as:

arg min
u

e(t) = r(t)− [f(x(t),u(t), t)], t ∈ R > 0, (2.2)

for the duration of the system operation. The solution of (2.2) is calculated each
time step ti. Hence operations must be performed within a sample time.

The online optimization problem is solved considering the boundaries as follows:

uk ∈ [ul,uh]

xk ∈ [xl,xh] (2.3)
rk ∈ [rl, rh]

where all variables subscripts ul, xl, rl are the lower bounds and all uh, xh, rh are
the upper bounds for all k during the system execution. Generally, bounded opti-
mization problems are difficult to solve, especially within nonlinear or nonconvex
problems, system-dependent characteristics.

MPC has two main components: The model-based optimization algorithm and the
Predictor model.
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2.2.1 Optimization

The system input u manipulates the system. Therefore it is also known as a
manipulable or control signal depending on the application area. In this work, we
selected the term control signal. As the main objective of MPC is to minimize the
error vector, as shown in (2.2), the optimization stage is the critical element. For
the system execution at each time t, the algorithm minimizes the arbitrary cost
function with the general form:

J =

Tp∑
i=0

wxi
(ri − xi)

2 +
Tc∑
i=0

wui
(ui − ui−1)

2, (2.4)

where the cost J is simplified into a quadratic function with two cost sections,
the system’s state and the control signal. The weighting coefficients wxi

and wui

are proportional to the importance given, i.e., are problem dependent. The cost
function (2.4) contains two important MPC parameters: Prediction and Control
windows, Tp and Tc respectively.

The algorithm requires information i ∈ [i = 0, Tp] to solve the optimization
problem (2.4), which in other words would imply knowledge of the future, assuming
a starting point of zero. Instead of the actual xi ∈ [i = t, i = (t + Tp)], the
predictor model provides the remaining values within a relatively small window
[t, t+Tp]. The selection of Tp is important because it directly affects the algorithm
performance.

The second section of (2.4) involves the control signal cost. Since the calcula-
tion only considers previous control signals, there is no need to predict solutions in
the standard case. However, the selection of Tc directly affects the control quality,
meaning the amount of the signal referred to the system. Both Prediction and
Control windows have a crucial effect on MPC designs. Therefore they must be
carefully selected, especially for systems with relatively fast dynamics.

The numerical optimization is performed iteratively by the algorithm. At each
time step t, a set of future predictions x̂i ∈ [i0, i+Tp] are produced by the Predictor
model, which then complete the information required to solve (2.4). Therefore,
the computational complexity results in:

O(KTp), (2.5)

where K is the worst-case iteration number required by the algorithm times the
prediction window Tp. To summarize, the solution to the optimal control problem
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defined by (2.4) is:

u0(x) = u0(0; x), u0(1; x), ..., u0(Tp − 1; x); (2.6)

For all the given states and windows. Finally, following the implicit MPC, the first
sequence of the optimal u is transferred to the controlled system as:

UN(x) = U0(0, x), (2.7)

and the process repeats for the duration of the controlled system execution.

2.2.2 Prediction

The optimization algorithm numerically minimizes (2.4) along with the prediction
vector x̂i and the difference of previous control signals ui − ui−1. The prediction
vector is assumed precise enough, such as:

ϵ = xi − x̂i, (2.8)

where ϵ stands for the prediction error; however, in the practical case, it entirely
depends on the precision of the constructed model. Most dynamic systems have
a nonlinear nature with a relatively small range of operations where they behave
linearly. Therefore, it is common to find the linear MPC implementation where
a linear model generates the prediction vector. Predictions within the range of
linearity are considered precise and robust. Moreover, they simplify the optimiza-
tion problem and reduce it to an analytical problem with simple computational
costs. Nevertheless, outside the linear interval, the linearized version of predic-
tors does not ensure the necessary level of accuracy. As for nonlinear systems in
general, data-based solutions or carefully crafted nonlinear expressions constitute
Nonlinear MPC (NMPC) algorithms.

In this work, the primary consideration is using data-based methods for mod-
eling or identifying dynamic systems―specifically, Deep Learning (DL) architec-
tures. Since DL function approximations abilities can model dynamic systems,
these are considered excellent nonlinear predictor models. Thereby, the prediction
is defined by:

xi+1|k = f(xi|k, ui|k, i+ k, wi|k, ϵ), (2.9)
where k ∈ Z is the discrete time variable, and i|k is the i-th prediction given
a time-step. The variable ϵ describes the parametric uncertainty or prediction
quality as given by (2.8). While the true dynamics of a given system f can be
fairly complex, a DL training scheme provides a powerful approximation, thus
reducing ϵ, increasing the level of certainty of predictions (2.9).
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2.2.3 Implementation

MPC is widely used in industry in its linear, implicit version, with a more signifi-
cant presence in process control.

The practical approach is a well-understood class of control algorithms which
the reader can consult in the technical review [88] for detailed implementation. As
for the nonlinear MPC, its action area lies in complex systems, with multiple input
and output settings, time-delays, and uncertainties. The review papers [2, 85, 130]
summarize the overwhelming presence of MPC in-process controls, mainly due to
the MIMO capabilities, optimally bounded control signals.

Attempts to reduce the computational load in MPC have been suggested since
the initial formalization of the method. For instance, the works [116, 99] specifi-
cally deal with reducing iterations or complexity, aiming at the subsequent imple-
mentation to fast systems. However, as noted by the author, fast MPC remains
to be an open problem.

With the re-emergence of artificial intelligence methods, the Control Theory’s
parallel development of new approaches using DL appeared. Although the use of
neural networks for control is not a new idea [72], the ongoing research and prac-
tical attempts show the potential solutions to specific problems. Nevertheless, as
shared in nonlinear systems, there is no general solution, even with DL approaches.
As mentioned earlier in this chapter, although the concept of MPC is more of a
set of control algorithms, there is a general step format for the nominal or explicit
case. Such steps are stated as follows:

• Read xi,ui−1 from the system

• Determine the system conditions at time k

• Compute optimization of (2.4)

• Output optimal solution, UN(x) = U0(0, x) to the system.

Nominal MPC is a well-studied method for the convex and time-invariant cases,
i.e., linear dynamics. For the general case, the recursive feasibility property of
MPC [40] states that if the optimization problem of (1.3) has a solution for the
state vector xk, it is therefore feasible for all xk+1 and all future time steps.

Regarding stability, while there are carefully detailed analyses, the general ap-
proach is the Lyapunov arguments related to the optimization function (2.4) and
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the inherent nature of the solutions and predictions. In other words, the guarantee
of stability is given by the optimization decision and the recursive feasibility prop-
erty of MPC, analytically ensured at each time step. Conversely, for data-based
cases, numeric simulations and assessment evaluation methods give stability analy-
sis. This work bases our implementations on entire data-based systems; large-scale
simulations offer oversight for stability and feasibility requirements.

2.3 Control

Real-time execution is the first strict requirement of control systems since the ob-
servable variables must be regulated at each moment to avoid error and instability.
Let us consider a dynamic system in the form of definition 2.2.1, where the control
signal is denoted by ut. The control algorithm’s primary directive is to compute
the appropriate ut to drive the system state vector xt to the desired value. Since
MPC is a closed-loop setting, the feedback information collected from the observ-
able variables is used for two central purposes – to establish the Prediction model’s
initial conditions and compute the error in the function of the actual state of the
system.

The Predictor model –which is assumed to be as close as possible to the actual
system – produces a future x̂t with a length of the prediction window. The opti-
mization algorithm generates a set of possible control signals, evaluated using the
Predictor model in an embedded simulation. After several iterations depending on
the optimization algorithm, the optimal control signal –which guarantees stability
and local optimality in the finite interval of the prediction window – is driven to
the physical system. Thus, the observable variables are collected through a sensor
element and used as feedback information for the process to repeat.

Because the control objective depends on the particular requirements of the
controlled system, the essential factor is to consider the desired state vector rt
as a reference point for all calculations. Moreover, if the control problem holds
information of future desired values – i.e., rt is known in advance – it may be used
in the Prediction computation, such as:

x̂t+wp = φ(xt, rt) (2.10)

which would guarantee a more precise future output. In the other case, where the
desired values are determined during the control system execution, for example,
in wind power generation with variable demand and supply, the reference vector
rt is considered constant for the duration of the prediction window. Similarly, for
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regulation tasks where the system states must remain within the desired value
despite disturbances or the systems’ nature, rt remains constant.

2.4 Performance

As the system evolves in time, the optimal control signal is generated at each
time step k. This results in a highly complex algorithm regarding execution time,
where the minimization problem must be solved within ts, the system sampling
time. As mentioned before, the root of MPC popularity within process systems is
the relatively slow nature of some scenarios where time constraints are negligible
1. Conversely, for fast systems, time constraints are an ongoing issue.

To visualize MPC performance, let us consider the numeric simulation based
on an example nonlinear system defined as:

x[k + 1] =
x[k]

1 + x[k]2
+ u[k]3 (2.11)

Which is a discrete representation of a generic nonlinear system. System (2.11)
evolves in the discrete-time at k ∈ [0, 1, 2..., N ]. The system variable xt is consid-
ered fully observable, meaning the complete set of internal variables is known. The
control objective is to design an algorithm that drives the system state vector xk

to the desired value of an arbitrary reference signal given by rk = 0.2 sin k. Thus,
the MPC algorithm computes an optimal uk at each instant k solving the follow-
ing cost function, derived from the general form (2.4) and a constant prediction
window Wp:

J = arg min u

Wp∑
k=0

(r[k]− x[k])2 (2.12)

The figure shows the multiple components involved in the entire system execution,
highlighting the amount of predictions made for each control signal. Indeed, for
a simple nonlinear system such as (2.11) the computations amount is relatively
high.

1For instance, a reactor system time constant is on the order of hours
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Figure 2.1: MPC Simulation. The first plot shows the actual and reference signals. The
error plot shows the difference between the desired value and the real system output. Note the
error is minimum. Below, the iterations count per time-step. Note the highest amount for the
optimization algorithm takes place at the start of the simulation, wiht a steady decrease.

2.5 Summary

The MPC algorithm serves multiple purposes by producing optimal control sig-
nals in a multivariable setting. Because of the nonlinear nature of most real-life
systems, the prediction models must accurately emulate the existing conditions
to ensure an accurate MPC execution; however, as noted in the numeric simu-
lation, performance rapidly becomes an issue where a large number of functions
validations are performed.

Thus, beyond the optimization stage and prediction accuracy, the underlying
situation of a computationally high cost restricts MPC to slow systems. Therefore,
our aims go to the performance increase and the overall quality of the algorithm
output. We propose a decrease in computational complexity and overall enhance-
ment by adding some elements and including DL architectures as initial solutions
and predictor models.



Chapter 3

Deep learning based Predictive Control

3.1 Introduction

Deep Learning-based controls refer to a group of nonlinear methods based on data
that solve the control problem. DL architectures are excellent function approxi-
mators; therefore, the uses range from dynamics identification to learning control
signals. Since dynamic systems are causal phenomena in which evolution happens
through time, DL architectures must also have a dynamic execution. The training
algorithms differ in this sense to other DL applications, where problems may be
considered static. In this chapter, we will expand the notion of DL involvement
in the intelligent control field. Specifically, learning dynamics and learning to
control.

3.2 System Identification

System Identification (SI) is a compilation of tools and methods that construct
dynamic system models from measured input-output data. SI has three major
components:

1. Data

2. Model selection

3. Estimation method
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This chapter will detail the concept and application of DL-based SI methods to
construct nonlinear models from data for Prediction in MPC settings. Moreover,
such methods are the foundation of the Inverse Modeling aspect of the thesis.

Identifying linear models using measured input-output data pairs is a well-
studied field with an extensive history [60]. The first constructed models from
linear phenomena became the basis of the conventional control designs and appli-
cations. After that, however, the SI methods moved towards a nonlinear identifi-
cation philosophy because real-world problems are nonlinear and time-varying.

There are situations where linear models successfully capture the general as-
pects of problems; however, the nonlinearities cannot be ignored for other applica-
tions. For instance, in mechanical systems, the presence of multiple interconnected
components generates energy transfers, being thermal or vibrational, both unde-
sired effects with potentially damaging consequences. Also, in electrical systems,
active components have different behaviors with the temperature rise, such as re-
sistance and capacitance. Moreover, in power generation, active regions of energy
production change with time, depending on the source. Many of these aspects are
essential in the design of models and controls, and linear models are imprecise or
insufficient to provide the vast amount of information nonlinearities contain.

Beyond the dynamic systems and control, nonlinear models serve other areas of
science, such as simulations. Again, the level of detail overcomes the simplicity and
relatively low difficulty of the linear model SI. These are the primary motivations
for nonlinear identification.

The elements of the nonlinear SI toolbox go beyond the scope of this work.
However, there is extensive literature with technical approaches and general im-
plementations the reader can consult [61, 82, 35]. We focus on the use of DL
methods for the nonlinear SI of dynamic systems.

As mentioned at the beginning of this chapter, the SI consists of three main
parts, data, model selection, and estimation method. The amount and quality
of data is the most critical element. In dynamic systems, the data collection is
a non-trivial task since the underlying information lies in the magnitude of the
values and their temporal relationship. Therefore, the methods for data collection
are many and are still an ongoing research.

The model building from data involves specific requirements in the dynamic
system context. For example, from the dynamic system of Equation (1.1), where
the nonlinear function f and input vector uk map the state vector xk transition,
general response characteristics are measured and quantified. Figure 3.1 shows the
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general aspects of the dynamic response to a test signal:

uk =
n∑

k=0

αiχAk
k, (3.1)

where χAk
is 1 for all k ≥ 0, and 0 for all k ≤ 0, also known as unity step [77].

We can observe from the test input unity step that several points are relevant in
the transitory response of a dynamic system. These characteristics are applicable
in the SI process; therefore, they must be present in data. In linear systems, the
response features to a test input are the same for all k ≥ 0 due to the superposition
theorem. However, the amount of necessary data dramatically increases in the
nonlinear case, where the response features differ depending on multiple internal
or external factors. Figure 3.2 shows a comparison between intervals of testing
inputs to linear and nonlinear systems.

The main characteristics that must be present in the training data are the
transitory times and magnitudes. Essentially, the data collection must ensure that
the domain of interest brings out all relevant values of interest [93].

Figure 3.1: Dynamic System’s response to the test input Eq. (2.1). The
parameters shown are common landmarks in the analysis and design of auto-
matic controllers. These points are also relevant to the identification through
data-based models.
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In the remaining chapter, we will introduce specific methodologies for the data col-
lection in the control of dynamic systems context, with the specifics and parameter
selection that will cover the necessary information for proper training.

0 1 2 3

0.0

0.5

1.0

0 1 2 3 0 1 2 3 0 1 2 3

Figure 3.2: Nonlinear (Left) versus Linear (Right) systems with two test in-
puts: 0.5 and 1.0. Note that in nonlinear systems, the superposition theorem
is not respected, i.e., a change in the input magnitude is not proportional.
On the contrary, linear systems’ magnitude change is proportional

3.3 Nonlinear Auto Regressive
with Exogenous inputs (NARX)

As the second of the three elements in SI (data, model selection, estimation meth-
ods), the model selection is a trivial step for linear systems. In linear cases, SI
takes an approach to physical characteristics of the system, such as an energy
balance equation or input-output analytic expression.

While for the nonlinear systems, the general case must estimate a future value
xk+1 from the currently available information. Thus, past input-output values be-
come the data source as we lack information on the full range of possible dynamics.
Therefore, we define the selected model that considers previous information as in-
put as:

φt = [xt−1, xt−2, ..., xt−na , ut−1, ut−2, ..., ut−nb
]T , (3.2)

x̂i = h(φt), (3.3)

where φt is the past input-output data vector, and the nonlinear function h
describes the system’s dynamics. The lagged terms, xt ∈ RX and ut ∈ RU are the
system’s observable states and its input vectors. Lastly, constants na and nb are
delay parameters arbitrarily selected (Particular dynamics influence the selection
of these values, discussed further in this chapter). The model (3.3) is known as
NARX (Nonlinear Auto Regressive with Exogenous inputs).
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NARX models acquired the concept from signal processing and FIR models
(Finite Response Impulse); Where an impulse is used to characterize a full range
of dynamics in a frequency domain dynamic system. NARX models with na = 0
are nonlinear FIR models [31].

There are several ways to parametrize the nonlinear function h, but all in-
volve solving an optimization problem. This point made NARX models a popular
method for SI since it requires no iterative optimization procedure but the defini-
tion of h only. To formalize the objective of the SI, the cost function:

θ̂N = arg min
θ

N∑
t=1

∥xt − x̂t|θ∥2, (3.4)

where θ is the model that best describes the input-output relationship from data N ,
therefore, the learned model θ̂N serves as an accurate representation of a dynamic
system, assuming the quality and representation of the training data.

3.3.1 Polynomial NARX

The construction of θN NARX models involves the optimization of the cost function
(2.4). The conventional approach of NARX models is an optimal selection of
polynomial constants, considering (3.2) and defined as:

x̂k = Θ0 +
n∑

i=1

Θiφt, (3.5)

where Θi are learnable parameters that compose a linear combination, along with
φt (lagged values from 3.2). Although the selection of Θi is a linear problem, the
presence of the lagged components formulates (3.5) as a nonlinear approximation
framework.

The solution of (3.5) involves the selection of: na ≥ 0, nb ≥ 0 and n ≥ 1
through an optimization algorithm, minimizing cost function (2.4). The amount
and characteristics of the training data are problem dependent. The figure 3.3
summarizes the steps for the design of a polynomial NARX model.
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Figure 3.3: Polynomial NARX. The model is a linear combination of the
regressor vector φt and constant vector Θi. The activation function f is
nonlinear.

3.3.2 Deep leaning NARX

Although selecting the constant parameters in the polynomial version of the NARX
model is relatively simple, the problem becomes more complex for multiple input-
output systems. Moreover, the degree of potential numerical errors due to process
noise and the nonlinearities included in the training data may affect the final
accuracy and certainty of the model.

Another approach to model NARX expressions is to approximate the nonlinear
element h with a DL architecture. The process is equivalent to a supervised
training method, where the set of lagged information φt becomes features and the
known xt vectors become the labeled data.

Learning from data can be reformulated to an approximation problem, such
that:

y(t) = F (xt) + ϵ, t = 1, 2, ..., N (3.6)

where y(t) is the estimation, F is the function to infer, xt is the training data, and
ϵ is the process noise. Thus, learning can be summarized as adjusting F with the
difference y(t)− xt as the training evolves.
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Considering the NARX model (3.3) and constructing the nonlinear mapping
as to a Feedforward Neural Network (FNN):

x̂t = Ψ(φt), (3.7)

where the prediction x̂t is estimated by the NN Ψ using the lagged information
vector φt.

From the lagged vector φt components, the input vector uk applied to the NN
produces a hidden layer response as:

Hi(t) = fh[
na∑
n1

win1xt−n1 +

nb∑
n2

win2ut−n2 + bi], (3.8)

where fh is the layer activation function, win2 is the connection weight between
the input neuron and the i-th hidden neuron. Similarly, win1 weights the output
neuron to its i-th hidden neuron.

Subsequently, the NN output layer is defined as:

x̂j = fo[

nh∑
i=1

wjiHi + bj], (3.9)

where the output layer activation function is fo, wji is the weighting value, nh is
the number of hidden neurons and Hi is the i-th hidden neuron output.

Equations (3.7) to (3.9) formalize the NARX model using a simple NN, the
FNN. The training algorithms require to optimize the weighting values to the
difference between the actual state values xk and those predicted by the output
layer (3.9). In addition, the activation functions must provide a nonlinearity for
adequately estimating the nonlinear elements contained in the training data. An
experimental evaluation showed that the best activation function to model non-
linear dynamic systems is the hyperbolic tangent, defined as:

tanh =
ex − e−x

ex + e−x
, (3.10)

where e is the euler’s number. Different activation functions can also be employed,
however, our experimental framework showed this to be the most effective. More
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about the training and optimal NARX will be discussed in Chapter 5.

Despite FNN’s overwhelming capacity for learning dynamic systems, the most
difficult ones benefit from more advanced DL architectures. To summarize the
DL-NARX, the figure shows a simplified version of the mentioned equations.

Figure 3.4: Deep Learning-based NARX simulation model, based on Equa-
tions (3.7) to (3.9).

3.4 Architectures

Feedforward NN generates accurate mappings from the regression vector φt to
a single step in the future, xk+1. Using the feedback interconnections, the NN
works as a recurrent neural network. However, feedback connections may present
instability issues as the vector φt is fed back to the input layer and the process
noise element.

An additional issue is that older data is replaced in training as new regressive
information enters the feedforward network.

Remark 3.4.1. All of our DL-NARX are simulation models. Simulation models
act in real-time, meaning that new information enters the input layer as it becomes
available. For instance, φt=0 = [xt−1, xt−2, ..., ut−1, ut−2] updates at t = 1 as:
φt=1 = [xt−2, xt−3, ..., ut−2, ut−3]. Note that the regression vector changes one step
at a time, in a real-time scenario. On the opposite kind, forecasting models compute
their predictions with complete sequences of time, in a sequence-sequence fashion.
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3.4.1 LSTM

The new information supplied to the recurrent NN formed by the DL-NARX
model may create an effect of memory decay. The solution proposed to solve this
phenomenon is called Long-Short Term Memory (LSTM) [41]. The problem of
vanishing gradients is resolved by a set of activation gates that control the learn-
ing memory and pace of the internal sequences. It has two main gates, cell gate and
hidden gate, for long-term and short-term memories management, respectively.

The gate composition is called cell, and deep LSTM networks possess a fixed
number of stacked layers. LSTM outputs are often linear layers, similarly to the
feedforward architecture. To formalize the LSTM cell, we name its cell compo-
nents, such that:

it = σg(wixt + Uiht−1 + bi), (3.11)
ot = σg(woxt + Uoht−1 + bo), (3.12)
ft = σg(wfxt + Ufht−1 + bf ), (3.13)
c̃t = σc(wcxt + Ucht−1 + bc), (3.14)

where xt ∈ Rd is the cell’s input vector, ft, is the forget gate, ct is the cell activation
vector and it, ot are the input and output vectors, respectively. The trainable
weights, wx,∈ i, o, f are constant parameters affected only during training phase.

The memory control gates have activation functions σg performing the tanh
(3.10) and sigmoid as:

σb =
1

1 + e−x
, (3.15)

where e is the euler’s number. The activation functions arguments perform element-
wise operations. LSTM technical guidelines and implementations can be consulted
in [96, 36, 15].

LSTM architectures consider the memory elements of the training data; con-
sequently, successful time-series forecasting models have recently appeared in re-
search papers [117, 118, 79]. Furthermore, the use of LSTM in SI tasks has also
increased since vanishing gradients problems are common in long sequences. Fur-
thermore, for dynamic systems, changes after long sequences are common since
nonlinearities and other uncertainties can appear at any moment of the execution.
Moreover, LSTM is excellent DL architecture for producing dynamic systems sim-
ulation models, specifically NARX methods.
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Figure 3.5: LSTM-based NARX simulation model. The center block repre-
sents the LSTM cell. An LSTM NN is constituted by a number of cells. The
linear layer ly serves as output.

3.4.2 CNN

Convolutional Neural Networks are a famous DL architecture with feature ex-
traction capabilities, popular in image recognition tasks, video sequencing, and
application where structural patterns lie hidden in data. The application field is
vast, ranging from NLP problems, speech recognition and computer vision.

CNN excels in parameter sharing, sparse interactions, and equivalent represen-
tations. Moreover, CNN can process information in a multi-dimensional setting,
for example, 2D of image data. This characteristic made it suitable for the men-
tioned tasks. However, in time-series forecasting and SI, it has been utilized as a
classifier instead. Besides robust pattern recognition and classification skills, CNN
structures can also be reformed into NARX models.

The way CNN operates differs from the FFN and LSTM in some particular
ways. First, the execution follows several convolutional layers, along with subsam-
pling methods, intending to extract and analyze sectors of the data. Subsequently,
the patterns are filtered through several layers and, finally, a linear output. Input
data has the multidimensional shape m,m, r where m is the height and width of
the input vector, and r is the depth for the channels value. We formalize the CNN
as the following:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n), (3.16)
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Figure 3.6: CNN-based NARX simulation model. Note the 1D-Convolution
operations extract relevant features from the regression vector. The output
is a linear layer.

where ∗ represents the convolution operation and m,n are multidimensional data.
In other words, the convolution operation in a CNN is commutative, meaning
that several operations can be stacked. To summarize the CNN development, the
Figure 3.6 displays a NARX setting using a deep CNN.

3.4.3 Autoencoders

An autoencoder NN is an advanced DL method that combines two stages called
encoder and decoder. Initially, decoder networks attempt to map the encoder’s
result as an output. This operation performs an internal modification and extrac-
tion similar to the convolution operation but with improved outcomes for dynamic
data. Next, the primary encoder network generates a conversion of the input data,
also known as code. Finally, the subsequent decoder layer attempts to reconstruct
the code.

In this setting, the counter-intuitively learning manner is to expect a difference
in the decoder interpretation of data. Instead, it is expected a certain degree
of approximation, forcing the decoder network to optimize and focus on relevant
patterns.

The relevant part of autoencoders, particularly from the dynamic system’s
analysis, is the latent space created in the pre-decoder zone. Such hidden informa-
tion is called latent space and is used, among other applications, to learn apparent
dynamics from data. The use of autoencoder frameworks in identifying dynamic
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Figure 3.7: Autoencoder-based NARX Simulation model. The encoder-
decoder networks could be LSTM, CNN or FFN.

systems has resulted in several new ways of SI. For instance, the works [80, 66]
generate state-space models from the latent space generated by the encoder net-
work.

In the DL field, learning the most relevant information from data using encoder-
decoder setups is applicable using the under-complete form. Moreover, prioritiza-
tion is greatly improved by shaping the encoder with a larger number of parame-
ters and the decoder network with fewer. We consider this fact in optimizing this
architecture and take it as a natural constrain for the training algorithm.

The Figure 3.7 shows a generic setting of autoencoder configurations. An
encoder network is selected with more parameters to decode, i.e., with a more
significant number of outputs. In the same manner, the decoder reshapes those
inputs into the expected outcome of the network. Additionally, the autoencoder
architecture can also be formed as a NARX simulation model.

3.4.4 Attention Mechanism

The attention mechanism was introduced to autoencoder frameworks as an at-
tempt to improve machine translation tasks. The objective is to allow the decoder
network to select the most relevant features flexibly with a weight layer [8].

Different lengths in the input sequences affect the performance of the decoder
network; The attention layer allows a flexible solution to the particular cases,
where such differences forced outputs in the networks.
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The attention mechanism follows a set of steps:

Alignment scores: This step quantifies the level of alignment between input
sequences and the current position. It is defined by:

et,i = a(st−1, hi), (3.17)

where et,i is the alignment, a is a nonlinear function approximated by a FFN, st−1

is the previous decoder output and hi is the hidden states, product of the encoder.

Weights calculation: The weight level requires to be RK → [0, 1]K , which is
achieved by:

αt,i = σz(et,i), (3.18)

where αt,i is the weights vector and σz is the softmax activation function such that:

σ(z)i =
ezi∑K
j=1 e

zj
, (3.19)

that produces a probability distribution ∈ [0, 1] given the alignment scores vector,
et,i as z.

Context vector: The context generalizes the priority of the decoder network
into a set of weighted encoder hidden states as:

ct =
T∑
i=1

αt,ihi, (3.20)

thus finalizing a forward encode-decoder pass with attention.

The general attention case makes use of machine-translation concepts due to
the initial proposal of the method [111]. The concepts are namely: queries q, keys
K and values V . The queries vector q is processed in an element-wise product
with the keys K vector, as:

eq,Ki
= qi ·Ki, (3.21)

and the scores eq,Ki
are nominalized by a softmax function (3.19) to generate the

weighting coefficients, αq,Ki
.
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Figure 3.8: Attention mechanism-based NARX simulation model.

Finally, the general attention mechanism is represented such that:

att(q,K, V ) =
∑
i=0

αq,Ki
Vki . (3.22)

In the context of dynamic systems, we define the q, K, and V vectors as com-
ponents of a time-series sequence, where information follows a similar pattern with
words in machine translation, being the main difference the comparison against a
database of meanings. Attention mechanisms have performed well for NLP tasks,
and in dynamic systems as well [86, 39, 65]. Figure 3.8 summarizes the attention
mechanism as a NARX simulation model.

3.5 Performance

Designing a NARX model involves data collection that covers the relevant system
dynamics, i.e., information such as the stabilization or rise times to recreate a
supervised learning problem. The mentioned methodology is exemplified with a
numeric simulation involving the nonlinear system (2.11) shown in Chapter 2.

First, let us consider system (2.11) in its discrete form, excited by a uniformly
distributed random signal u[k]. The produced output x[k] corresponds to the
target data in our supervised learning framework, such that Ψt = φ(x, y) is the
DNN emulating the system after training.
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Figure 3.9: Training summary for the NARX model of system (2.11). The system response to
a step signal is shown in the first plot. The error between the ground truth and the model is
0.0005 on average. This model is used by the DMPC to generate future predictions. Below, the
loss over batch training (Epochs).

The NARX model Ψt design and training follows Algorithm 1. Thus the
training data pairs are formed as the regressor vector φt with empirically se-
lected delay values na = nb = 2. Therefore, the regressor vector becomes φt =
[x[t− 1], x[t− 2], u[t− 1], u[t− 2]].

The numeric simulation generates n = 1000 samples where u[k] ∈ [−2, 2]
producing n pairs (u, x) defined as features and targets in the machine learning
context. Performing Algorithm 1 results in a DNN model that closely behaves
as the study case, capturing most nonlinear components from data as well as the
general dynamics. The training is summarized in Figure 3.9.

3.6 Learning to Control

Thus far, our analysis of dynamic systems has been reduced to the conventional,
negative feedback case. The assumptions for this kind of control system are a
complete knowledge of the general dynamics. Although a data-based SI frame-
work adds detail to the system’s model, for the cases where data is not readily
available or the dynamics are entirely unknown, model-based systems do not func-
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tion with the expected correctness. Moreover, disturbance quantities may diminish
the accurate knowledge of the dynamic behavior of a control system.

Conventional control algorithms are designed offline with a heavy focus on
minimizing an arbitrary function, most commonly error. However, different con-
ditions arise as the controlled system’s state variables transition through time, not
considered in the design stage. Such time-varying conditions are the foundation of
adaptive controllers, which modify their constant parameters according to as new
information becomes available. This subfield of variable controllers is known as
adaptive control.

Because of the focus on minimizing error functions during the system’s exe-
cution, the control problem can be rephrased into an optimization problem. The
collection of analysis and tools for the design of optimal controllers is known as
optimal control.

For the time-varying, nonlinear cases, the adaptive and optimal schemes have
proposed interesting solutions, with complete stability guarantees. However, the
several assumptions made, such as the overall conditions along with the complete
dominion of the system, continuity, and general stability [5, 24, 10] are questionable
in real-life systems.

These points summarize the contemporary control problem, as methodologies
for model-based problems are powerful enough; the remaining issues lie in the
modeling and approximations. Nevertheless, beyond that, the foundation assumes
unvariant systems which data-based models, such as DL-NARX, can approximate
better. Still, in online settings, disturbances and other unforeseen events may
change the entire theatre, for which online, adaptive and optimal solutions are
required.

3.6.1 Reinforcement learning

Reinforcement Learning (RL) is a machine learning of online control and adapta-
tion by exploring an environment or system. The method can also be called an
action-based learning framework because through small excitations obtains feed-
back. The RL methods are heavily inspired by training methods conducted in
biology and behavioral studies [70].

RL basic algorithm performs a small control signal to excite an environment.
In the machine-learning context, the term environment is used conversely to the
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control theory, controlled system. Thus, when an excitation signal enters the
system, the produced output is used as feedback information by the RL agent.
Here, the tern agent corresponds to the term controller in the control theory
context. In this fashion, the RL controller is similar to the conventional closed-
loop setting. However, the main difference lies in the actor-critic formula proposed
in the field [53, 12].

The actor-critic algorithms are methods that generate solutions and evalua-
tions in a parallel manner. The actor component serves as action and the critic
component as an assessment. These terms are closely related to the Predictor
model and controller in the MPC methodology discussed earlier in this chapter.
The objective is to adapt an appropriate actor-controller based on the observations
performed by the Predictor-critic.

Nevertheless, similarities between MPC and RL methods mainly are in the
closed-loop setting only. Moreover, the methodologies to generate the control
and assessment components vary. As MPC seeks to generate bounded optimal
control signals at each step, RL aims to learn the complete range of signals for
every situation. We show in this work a detailed comparison between methods,
assessment, and suggested application zones.

Therefore, in this work, we consider RL methods purely for comparison pur-
poses. Specifically, the Deep Deterministic Policy Gradient (DDPG) for the actor-
critic set up as an online controller for the nonlinear systems. Finally, to summa-
rize our introduction to RL and its similarities with MPC, Figure 3.10 shows a
diagram with the actor-critic reward system as a closed-loop feedback controller.

Figure 3.10: Reinforcement learning general setup. The agent works as a control element,
tuned by training using a reward system. The control signals are expected to follow an optimal
sequence.
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3.7 Summary

By adding a DNN as a predictor, MPC improves its overall response quality at the
expense of an increase in the system complexity. Additionally, we observed a slight
reduction over a conventional model since the GPU performs such computations.
Nevertheless, this slight improvement is neglected due to its hardware dependency
and small magnitude. Moreover, design work has been reduced because the model
is produced from data instead of a detailed analytical approach. This may be
considered beneficial from the accuracy and production point of view, whereas less
knowledge of the system is held from the control practitioner’s stance.

Data-based learning mechanisms ensure accurate function approximation so-
lutions, therefore well-suited for the design of control algorithms. However, de-
manding requirements may be too strict for a learning mechanism to ensure, as
a degree of error and uncertainty is always present. For such a specific reason,
learning mechanisms are not widely used in practical control designs beyond re-
search and experimental cases. For instance, the RL algorithms require access to a
random exploration that has proven highly successful in simulated environments.
Conversely, results are directly proportional to the simulated environment accu-
racy for the practical implementation generating the mentioned uncertainty and
lacking reliability.

Since data-based methods provide more remarkable accuracy by considering
multiple patterns within data, its incorporation into the control field cannot be ne-
glected. Therefore, we propose a parallel action by combining the MPC paradigm
with a data-based learning mechanism with the accuracy and performance increase
as a primary goal. Furthermore, combining such tools allows taking advantage
of the multiple features available without losing the conventional control theory
bounds, generating optimal control solutions without the uncertainty of a DNN
model.





Chapter 4

Deep Inverse Predictive Control

4.1 Introduction

From the use of DNN as Predictor models, we observe an improvement in the qual-
ity of the forecasted values, making the optimization stage of the MPC algorithm
a more reliable component. Furthermore, the available data permits an increase in
the accuracy for future predictions, despite the nonlinear behavior shown by most
dynamic systems. Nevertheless, the computation complexity remains an issue,
where optimal signals are calculated within a sampling time.

This chapter details our main control algorithm and contribution, the Inverse
Model-based auxiliary computation method for the MPC scheme, the Deep In-
verse Model Predictive Control (DIMPC). An evolutionary DNN produces the IM
approximation used as a starting point for the MPC algorithm for the real-time
control of multiple input-output systems with nonlinear characteristics. The op-
timal control signals are computed by an optimization stage, tested with a DNN
Predictor model. A DNN IM provides the initial solutions for the optimization,
reducing convergence time and improving the quality of the responses.

We commence with the definition of Inverse modeling, approximation, and
subsequential use as a control method. Then, we detail a learning framework
based on DL and training data for the derivation and validation of Inverse models.
Finally, we compose the complete algorithm, showing the initialization step and
methods with the Predictive Control scheme.
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4.2 Inverse Dynamics

The dynamic systems representations provide helpful, general information about
the evolution of internal state variables through time. Still, dynamic models are
only approximations nonetheless. However, an exciting and promising character-
istic found in these realizations was the Inverse Model (IM).

IM are opposite functions to the nonlinear mapping of a dynamic system.
Consider the dynamic system of (2.2.1), rewritten here for simplicity to the reader,
ẋt = f(xt, ut, t). Internal state variables xt and input variables ut are driven by
the nonlinear function f that we assume fully describes the system’s dynamics.
The IM is an approximation of f−1. Figure 4.1 shows a block diagram of an IM
placed as a direct controller.

From Figure 4.1 we can derive the error signal as the difference between our
reference-desired value rt and the actual system output yt defined as yt = Cxt

where C is a constant matrix. The error function is:

et = rt(1− f(xt, ut, t)f
′(xt, ut, t))−Htϵt, (4.1)

where Ht is an unknown time-dependent, external disturbance signal, and ϵt is
the measurement, normally distributed noise. Then, assuming in (4.1) that the
IM is ideal, the resulting et is a function of the unknown disturbance Ht and the
measurement noise, such that:

et = Htϵt (4.2)

leaving the controlled system in closed loop affected only by external factors, ex-
cluding the internal dynamics.
Assumption 4.2.1 (Inverse existence). Nonlinear function f is not necessarily
stable. However, the inverse function f−1 is assumed to exist, to be causal, and
not necessarily stable.

For a nonlinear system, such as 2.2.1, the IM identification problem is refor-
mulated as:

Υ̂θ = arg min
θ

∥rt − xt|θt∥2, (4.3)

where θt is the model that best defines the IM using the training data given by
the regressor vector φt and the reference value rt.
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Figure 4.1: Inverse Model Υt used as Direct Inverse Control. The control
signal ut is computed using the regression vector φt.

A parametrization of the system is needed to identify the IM fully, meaning
a dynamic model is required. To put it in another way, a SI procedure must be
performed beforehand to create a simulation model from data. Therefore, the
identification for IM can be divided into two generalized approaches.

• A model f̂(x, u, t) is characterized from input-output data or analytical
methods, to be inverted analytically to generate f̂−1 [21, 108, 109]

• An IM approximation is computed directly from data [48, 14].

The first method involves an inherent error in design. In order to analytically
invert a model approximation f̂ , the selected method must be a linear, simpler
model. In other words, in this manner, we trade simplicity over accuracy. While
this may work for simpler, linear systems, it may not suit more complex problems,
as stated in Chapter 2.

The second method aligns with data-based SI. Assuming training data pairs,
that is ut, xt, measured from the controlled system, the nonlinear IM is approxi-
mated as follows:

Υt = Ψ(φt), (4.4)

where Υt is the IM of (1.1), Ψ is DL-NN, and φt is the regression vector used in
NARX models. This work is based on the data-based approximation of Υ through
the second method.
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4.3 Direct Inverse Control

The realization of IM has the potential to become a closed-loop feedback controller
on its own. However, in order to design IM controllers, special considerations have
to be analyzed beforehand: The IM of nonminimum phase dynamic systems is
considered noncausal. Therefore its direct implementation is almost unexistent.

Since IM outputs and internal variables may contain high gain elements, the
use of direct controllers may lead to instability due to the inversion step. Aside
from the previous statements, which are only formally applicable to analytical
derivations of the IM, the approximation computed by a NN is expected to perform
under strict boundaries, included in the design stage. Thus, the IM controller based
on NN is a causal and stable component under limited constraints.

To formalize the previous statements consider the nonlinear dynamic system
to be controlled and its approximated IM:

yt = f(x, u, t)Υt +Htϵt (4.5)

where yt is the system output, the observable variable combination of one or more
states xt. Since the IM Υt is an approximation to the true inverse dynamics, after
the algebraic cancellation, a residual error namely ϵΥ remains such that the system
output:

yt = ϵΥ +Htϵt, (4.6)

is a composition of the inherent disturbances, measurement errors, and the IM
approximation error.

The direct use of IM in control is known as the perfect control. However,
as noted in (4.6), the regulation achieves the dynamic cancellation only, leaving
disturbances and noise. In order to overcome this problem, IM as direct control
is used in conjunction with other conventional closed-loop methods, designed to
reject the remaining components.

IMs are popular in advanced control techniques such as feedforward control and
internal model-based control, where the IM acts to reject disturbances, assisting
a general-purpose closed-loop algorithm. It is relevant to note that due to the
intricate nature of IM dynamics, most applications are limited by the analytical
solution of such, meaning no general approach is feasible at the moment of writing.



Chapter 4.Deep Inverse Predictive Control 43

Figure 4.2: Feedforward Control scheme. The IM Υt provides
disturbance rejection while the main controller Gt regulates the sys-
tem. In this configuration, IM serves as an auxiliar control.

4.4 Inverse Models learning

The IM Υt approximation utilizing a DNN is composed as a supervised problem.
The selected architecture in this dissertation for approximating all the dynamic
structures, direct or inverse, is the NARX identification model. The process for
the SI for an IM of a given dynamic system problem with aims to control is:

1. Data collection

2. Regressor vector φt construction

3. Inverse training dataset arrangement

4. DL architecture selection

5. Training

6. Evaluation and Optimization

To detail, consider the nonlinear dynamic system (1.1) in the expanded form
that contains the observable vector yt:

ẋt = f(xt,ut, t), yt = h(xt,ut, t), t ≥ 0 (4.7)

where the nonlinear function f describes the state vector evolution through time,
and the function h maps the observable variables in function with the state vari-
ables. Usually, function h has a one to one transformation, i.e., one or more state
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variables are the system output yt. For simplicity, we assume that the transfor-
mation is such that, yt = xt.

Data collection: The specific requirements for the dynamic systems identi-
fication have the prerequisites mentioned in Chapter 2.1. To summarize it, data
must contain the full range of relevant dynamics in the system. This work uses
a uniform random distribution input with σ2 variance and mean with a normal-
ized value. In other words, our excitation signal has a probability distribution
p(x) = 1/b − a, with the interval a, b ∈ [0, 1]. The resulting observable variables
from the controlled system form the state vector xt.

Regressor vector construction: By the generation of input-output pairs
and to reshape the data into a supervised learning scheme, vectors ut and yt are
collected as: ut = p(x) and yt = xt for a sufficiently large number of iterations T ,
t ∈ [0, T ] using a simulator or a real-world system. After collection, the regressor
vector forms:

φt = [yt−i, ut−j], i ∈ [0, na], j ∈ [0, nb] (4.8)

with na and nb as arbitrarily selected constant values.

Inverse training dataset arrangement: The training data is formed by
features and labels. For the sake of simplicity and to differentiate between inputs-
outputs in the control theory context, the inputs to a DL architecture will be called
features: X ∈ Rnxm, and the outputs to a DL architecture will be called labels:
Y ∈ Rnym. The IM rearrangement is defined such that:

Xnxm = φy,u = [yt−0, yt−1, ..., yt− na, ut−1, ut−2, ..., ut−nb
] (4.9)

Y nym = φu = [ut−0] (4.10)

where nx being the features size, ny the labels size and m as the number of samples
(input-output pairs). As in most DNN cases, results are closely related to the data
availability. Such issue

DL Architecture selection: By assuming the existence of Υt, and after con-
sidering the analysis performed in this chapter, the IM is considered a complex,
nonlinear function. Therefore, it is expected that more creative DL architectures
would perform better in the mapping. However, as demonstrated by our experi-
ments in further chapters, the solution is not straightforward. Our initial attempts
were with selecting FFN as the baseline of comparisons, moving towards LSTM,
CNN, Autoencoders, and Attention mechanisms, such as the Transformer.
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Training: Training algorithms are closely related to the selected DL architec-
tures. In this work, we used for all of our models the backpropagation through time
or BPTT [121], a gradient-based method for DL architectures with feedback. The
algorithm and specifications are detailed in Chapter 5, experimental framework.

Evaluation: We utilized the direct control method and a mean squared error
(mse) cost function for the IM assessment. Placing the IM Υt as a series controller
to the controlled system, minimizing the error function (3.1), we validated the
correct results of the training. As for the residual elements, the unknown distur-
bances and the process noise were considered a random variable distribution, i.e.,
white noise.

Optimization: Our experimental setup is designed to find optimal settings
in IM with aiming to control. As mentioned earlier, parameter selection has a
profound impact on the overall execution of the controlled system. Therefore,
we applied an optimization search method to optimize DL architecture and pa-
rameters based on neuroevolution. The details regarding the algorithm will be
expanded in Chapter 4.

4.5 Adaptive Inverse Control

The offline derivation of IM generates a powerful assistant technique for more elab-
orate control schemes. When the IM is characterized by a NN, however, an addi-
tional capability can be exploited: the ability to adapt online. Online adaptation
refers to the modification of the model’s internal parameters using new production
information. Initially, since the model is trained offline, we have high expectations
regarding its control performance, but as the controlled system is expected to be
time-variant, different zones of operation may start to appear, rendering the IM
unsuitable for these new changes.

As for the online adaptation, the model must collect a set of new training data
with a minimum length nx and ny before performing a new iteration 1. In addition,
the internal weights of the NN must provide an overall better response according
to the cost function to continue with the update.

1Epoch in the machine learning context
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Assumption 4.5.1 (Stability). All controlled system of the form: x̂t = f(x, u, t),
are asymptotically stable or make stable through closed-loop even when their non-
linear functions f are unknown.

If the controlled system’s dynamics are unknown, the adaptive control makes
the assumption 4.5.1. Conversely, the system must be stabilized by empirical
methods beforehand. Thus, stability concerns constitute a considerable drawback
for the adaptive inverse control.

Assuming an adaptive execution and corresponding online updates, an error
mismatch, defined as ϵa, is present at all t during the system’s execution. The
sources for ϵa include measurement noise, unknown disturbances Ht, and the offline
training error.

Figure 4.3: Adaptive Inverse Control scheme. The Inverse Model is con-
stantly updated online using the difference between the model and the con-
trolled system. An additional controller Gt working as a filter, attenuates
measurement noise and additional disturbances.
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4.6 Design roadmap

For the successful design of control systems, some parameters must be estab-
lished, either arbitrarily or given by the system. For the cases where dynamics are
not well-understood, limitations must be set according to the limited knowledge.
Hence, at least the boundaries are required.

Assumption 4.6.1. Boundaries xt ∈ [xa, xb] and ut ∈ [ua, ub] are known. The
nonlinear dynamics f of (1.1) may not be known or stable.

The limitations of assumption 4.6.1 serve multiple purposes. Firstly, such
boundaries allow the application of the excitation signal used for training data
collection. Then, the optimization algorithm would search solutions in a limited
space on the MPC scheme, even though it is a nonconvex problem. Finally, for
the cases of unknown dynamics, the process is slower but secure and reliable.

Our objective is to design an optimal Inverse Predictive Control (IPC) to con-
trol a nonlinear dynamic system of the general form (1.1) through the toolset
defined in previous chapters.

To proceed with the design, we follow the next steps:

1. Predictor model construction

2. Optimization algorithm setup

3. Control system settings

4. IPC optimization

5. Analysis and Simulation

4.6.1 Predictor Model construction.

IPC relies on accurate predictions for the correct solutions to the online optimiza-
tion problem. Therefore, accuracy concerns are the top priority for the design
of predictive controllers, for the algorithms are solving the problem based on an
approximation model and measurements. The predictions will be generated by the
NARX model (2.3).
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Let us denote the control problem system St based on (1.1) as:

St := yt = xt, ẋt = f(xt,ut), t ≥ 0, (4.11)

with xt ∈ [xa,xb] and ut ∈ [ua,ub]. The system St is then excited by the signal
ut = R with a normal distribution over [ua,ub], to generate the training dataset
D = {xi,t, ui,t|t < m}, with size m.

Remark 4.6.1. The dataset D of size m must contain the most relevant in-
formation to approximate the nonlinear dynamics properly. This applies to the
magnitude and transitory values. On the other hand, real-world datasets are ex-
pected to improve results by adding actual conditions beyond those created with a
simulation.

Having dataset D, the regressor vector φt defined in (2.4), constituted by lagged
values of yt and ut of arbitrary size na, nb respectively, is used as an input to a
DNN Φφt,w such that, ŷt = Φ(φt, w).

The weight values w corresponding to the selected DNN are calculated using
the BPTT algorithm, with batch training. The delay length of both features and
labels is closely related to the system dynamics. The optimal values are, however,
computed by an evolutionary algorithm, described later in this chapter. Dataset
D is a matrix of m-rows and columns:

Dcolumns = na + nb + 1 (4.12)

The training aims to minimize the difference between sequences of the measured
variable yt and DNN predictions ŷt

2. Finally, to summarize the creation of the
Predictor model based on NARX architectures, Algorithm 2 describes the training
and evaluation procedures.

4.6.2 Optimization algorithm setup

The MPC computes an optimal control signal using an optimization algorithm
with a numeric approach, testing the potential solutions with a predictor model.

2Detailed numeric simulations are provided in Chapter 6.



Chapter 4.Deep Inverse Predictive Control 49

Algorithm 1 DL-NARX Predictor training
1: ▷ Initialize DL Model

m← MLP, LSTM, AutoEncoder, etc.
x→ Targets
u→ Features

2: for batch training do
3: for epochs number do
4: ▷ Construct NN input matrix from training data
5: ai,j ←

[x[k−1], ..., x[k−m], u[k−1], ..., u[k−n]]
i→ Batch size
j → (m+ n) + 1 ▷ State and Input vector Delay values

6: x̂← m(a)
7: ▷ Compute loss function
8: e← 1

i

∑i
k=1(x[k]− ˆx[k])2

9: ▷ Update Network Weights
10: end for
11: end for

Figure 4.4: Predicting xt example. The receding horizon approach can be seen in
the subsequent calculations in the future with a fixed window. The larger the window,
the more information about the future behavior of the system. With these values, the
rest of the algorithm proposes optimal control signals.

The optimization algorithm must contain specific characteristics to be helpful in a
predictive control scheme. In essence, any population-based method could suffice.
However, it is crucial to keep the computational effort in mind since calculations
are performed online, at every time-step 3.

The optimization algorithm solves cost function J (1.4) considering the MPC
parameters, prediction wp, and control wc windows, i.e., the calculations are limited
to a finite, relatively small future window. Therefore, an important consideration

3For the nominal MPC. Other methods, such as skipping, compute solutions assuming no
relevant changes in an arbitrary relatively small future.



50 Chapter 4.Deep Inverse Predictive Control

is the number of calculations performed by the algorithm, which means selecting
the most time-efficient. We considered the following algorithms:

1. Gradient-descent-based Broyden–Fletcher–Goldfarb–Shanno (BFGS)[131]

2. Differential Evolution (DE)[83]

3. Particle Swarm Optimization (PSO)[50]

The numerical approach to this problem means that in sequence form, a control
signal solves the cost function limited by the prediction and control windows. In
other words, the optimal solution is valid only in the range [t, t + wp]. Next, the
MPC algorithm uses the first element of the optimal sequence u0 to control system
St, discarding the remainder because solutions must be found at each step.

4.6.3 Control System settings

The essential parameters in MPC are the prediction and control windows. These
values directly impact the algorithm’s performance and overall quality of the re-
sponse, i.e., the control signal. Therefore, the selection must be carefully made
since too large values yield better responses but may be prohibitive for fast dy-
namics systems.

By considering such a tradeoff, popular values decide the window of potential
disturbances presence. While this requires previous knowledge of the system, ex-
perimentation and observation can also compute optimal window values. Figure
4.1 shows the difference in prediction and control windows selection, noting the
many points affecting the optimal solution convergence.

4.6.4 IPC Optimization

The optimal selection of Predictive Controllers depends on the actual system ex-
ecution in a closed-loop. However, since most disturbances are unknown before-
hand, active, online updates can be considered for an adaptive implementation,
especially for the complex systems in which dynamics are expected to change or
are unknown.
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On the offline preparation and design, window parameters can be adjusted
through simulations. Therefore, the strict requirement for a simulation benchmark
is an accurate approximation of the system and its environment. Since our designs
include a DL-NARX model, the system’s St accuracy is considered sufficient.

For the optimization of IPC parameters, we propose a heuristic search opti-
mization algorithm 4 based on evolutionary computation. Experimentation showed
an overall improvement in the offline parameters selection. However, these are
problem-dependent, and a specific implementation was required for each numeric
simulation. The precise details for each specific numeric simulation are defined in
Chapter 5.

4.6.5 Simulation

Figure 4.2 displays the DMPC simulation model based on the DL-NARX predictor
and an optimization algorithm, with optimally selected prediction and control
windows, given a cost function. The control system is expected to automatically
and optimally drive the system’s observable variables yt and internal states xt to
desired values rt despite the presence of noise and disturbances. Moreover, with
the adaptive capability of the DL-NARX model, the predictions can be updated
from new information, should the system St internal parameters vary with time.

4.7 Inverse Model seeding

The control problem solutions and adaptive mechanisms provided by the predictive
control setting require a fast computation within a time step. The system dynam-
ics, given by St (4.1), dictate the time step length, following the Nyquist-Shannon
sampling formula where the rate must be greater than 2B, such that B < fs/2,
being B the highest frequency measured in the system and fs the selected sampling
rate. Such frequencies imply that relative fast systems have less time margin of
operation, which may cause Predictive Control methods to be unsuitable.

It is under such considerations that the need for fast MPC implementations
remains an ongoing research problem. Therefore, an Inverse Model control signal
is used as the initial solution for the optimization method to overcome the problem.

4Which is different from the optimization stage of the MPC execution.
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Remark 4.7.1. The Predictive Control system has a fs sampling rate to com-
pute an optimal signal. However, the system St (4.1) disturbances are unknown;
therefore, a warm-starting5 method is impossible.

Assumption 4.7.1. The nonlinear control problem described by St is an online
optimization problem is defined as non-convex, such that,

f(y) =≤ f(x) + (∇f(x), y − x) +
β

2
∥x− y∥22, (4.13)

f(y) =≥ f(x) + (∇f(x), y − x)− β

2
∥x− y∥22, (4.14)

β = supx∈Rd∥∇2f(x) | (4.15)

where x, y ∈ Rd whereas for convex has a linear lower bound, such that:

y(t) > f(x) + (∇f(x), y − x). (4.16)

Theorem 4.7.1. The control signal ut computed by the Inverse Model approxima-
tion Υφ,t based on a DL-NARX approximation is the near-optimal solution of the
control problem.

Proof. Considering assumptions 4.7.1 and given Υφ,t is the optimal approximation

of f−1, system St output yt equals to:

yt = f(xt, ut)f
−1(φt) +Htϵt, (4.17)

whereafter the shown operations, the final output yields:

yt = Htϵt, (4.18)

as described in Chapter 2, leaving only the unknown and noise elements.

Since the dynamics are solved by the inverse model Υφ,t the cost function J
takes optimal ut as initial solution. Therefore, calculations to find the optimal

5Warm-starting method: To utilize previous solutions, skipping calculations when known
disturbances are not expected in the foreseeable future.
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ut are greatly reduced in the practical sense. Ideally, convergence is achieved in
one iteration; however, considering (4.8), the optimal control signal must contain
elements to compensate the remainders.

Assuming the iterations number is significantly reduced, the possible applica-
tions range increases. Thus far, the most relevant limitation of predictive con-
trollers, aside from the precision of the predictions, is the computational cost
derived from the optimization stage. Therefore, the predictive control mechanism
can handle faster dynamics by adding the IM as the initial solution.

Furthermore, optimization algorithms based on populations, such as the evo-
lutionary inspired, can be added into the control scheme. There are numerous
benefits from doing so; for instance, complete sequences are added as initial so-
lutions. Moreover, the search space in this method is significantly larger. At the
same time, this results in an efficiency problem; it also guarantees better overall
solutions 6. Finally, algorithm 3 summarizes the DL-NARX training for an Inverse
Model.

Algorithm 2 DL-NARX Inverse Model training
1: ▷ Initialize DL Model

m← MLP, LSTM, AutoEncoder, etc.
x→ Features
u→ Targets

2: for batch training do
3: for epochs number do
4: ▷ Construct NN input matrix from training data
5: ai,j ←

[x[k−1], ..., x[k−m], u[k−1], ..., u[k−n]]
i→ Batch size
j → (m+ n) + 1 ▷ State and Input vector Delay values

6: x̂← m(a)
7: ▷ Compute loss function
8: e← 1

i

∑i
k=1(x[k]− ˆx[k])2

9: ▷ Update Network Weights
10: end for
11: end for

6Naturally, the time-dependencies are dictated by the controlled systems, meaning slower
systems benefit the most from population-based methods. Numeric assessments on these claims
are effected in Chapter 5.
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4.8 Performance

Control systems applications are divided into two general problems, regulation,
and servomechanism. Depending on the reference signal rt, also known as desired
value, the control system acts regulating, stabilizing, and maintaining the system
output to the closest to the reference as possible, ideally with zero error. On
both problems, rejecting disturbances and maintaining stability are the priorities.
Therefore, regulation problems maintain the system output yt in a constant value
while servomechanism problems are about tracking a moving signal.

DIMPC execution happens at a frequency rate of fs, in accordance with the
mentioned time requirements. The primary source of information is the regressor
vector φt constructed with previous, lagged values of the observable yt and input
ut variables. With such vector defined, the optimization algorithm solves the
cost function J iteratively, whose solution and performance directly depends on
the prediction wp and control wc windows. The optimal control signals ut is a
sequence of length wc, and its valid only in [t, t + T ] with the current system
feedback.

At the same time, the regressor vector is used by the DL-NARX IM to compute
an ideal control signal ut, that instead of being used to drive the system, it is the
initial solution of the optimization algorithm 7. Our claim is based on improving
the overall performance and response quality, enhanced by the DL-NARX Predic-
tor model and the DL-NARX IM optimization stage. Algorithm 3 summarizes the
DIMPC methodology.

4.9 Summary

The addition of Inverse Models to the MPC paradigms serves as an initial solution
for the optimization stage. However, the existence of such IM is a particular prob-
lem addressed in this dissertation using deep learning architectures. Therefore, we
assumed an approximation rather than the analytical solution to the inverse mod-
eling and employed them as auxiliary solutions rather than direct controllers. We
discussed the use of direct inverse controllers, which produce perfect controllers
by assuming a perfect inverse. Nevertheless, we propose a realistic approach by
using it as an initial solution, with a performance improvement and overall quality

7Or initial population for population-based algorithms.
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Algorithm 3 DL-IMPC Execution
1: ▷ Initialize DL-IMPC Controller

m← DL Predictor Model
im← DL Inverse Model
OA← Optimization algorithm (BFGS, DE, PSO)

2: for K-iterations do
3: ▷ Measure current state vector, x[k]
4: ▷ Find Optimal u[k]
5: ▷ Compute Inverse Model Control signal
6: u0 ← im(x[k], u[k − n])
7: ▷ Initialize optimizer with u0 NOTE: u0 ≈ uopt
8: OA← u0

9: while uopt not found do
10: u[k] = OA( ˆx[k], u[k − 1])
11: ▷ Compute Predictions
12: x̂← m(a)
13: end while
14: ▷ Return control signal uopt

15: end for

of the control system, tested by numeric experiments.

Using DNN as a predictor model improves the quality of the predictions,
thereby producing better control signals. Moreover, the performance achieved
by adding the IM as an initial solution, assumed optimal, dramatically reduces
the average number of evaluations done by the optimization stage, thus reducing
the overall computational load.

The remaining issues for the proposed framework are the sensitivity of the
parameter selections, where different values affect the system output―in other
words, selecting the correct number of hyperparameters for the prediction and
inverse models directly impacts the general execution of the system. Furthermore,
the particular aspects of nonlinear systems make the selection a complex task,
where a random or manual search fails to find optimal values.

We addressed these uncertainties by including an evolutionary-based paradigm
for the entire selection of values. Considering the nonlinear aspects of the con-
trolled systems, the nature of DNN, the complexity of Inverse Models, and the
delicate interaction between all these elements, we reformed the problem as an op-
timization task, with a global solution search based on Evolutionary optimization.
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Figure 4.5: Complete Deep-learning based Inverse Predictive Control. On top, an overview
schematic of the internal components and its interconnection with the controlled system. Below,
an example of the execution of the algorithm with the predicted trajectory of the system and its
subsequent online optimal computation.



Chapter 5

Deep Neural Evolution

5.1 Introduction

Deep neural networks training is performed via gradient-descent variants of opti-
mization algorithms, fitting training data while minimizing a cost function. Al-
though recent results are increasingly promising in several areas, such as computer
vision and natural language processing, other fields contain substantial obstacles
for implementing such algorithms. For example, as discussed earlier, dynamic sys-
tems and control algorithms have specific and strict requirements closely related
to the training and model hyperparameters. Moreover, the nonlinear artifacts
found in some applications may alter the already stochastic nature of deep neural
networks. For instance, batch training and its relative size depend on the time
constant of the given system.

The process of learning dynamic systems response through time involves a
minimization not only of a cost error function but also on the time-dependent
information buried in the training data. Furthermore, precise hyperparameter
selection produces accurate representations, reduced training times, and general-
izations when dealing with real-time inference in simulation models.

This chapter expands our idea of specific training designed to learn dynamic
systems and control algorithms. The hyperparameter and architecture selection is
based on evolutionary optimization, a methodology inspired by natural selection
and evolution. Its application to deep learning signifies a more realistic approach
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to the natural conception of learning mechanisms, focusing on a set of goals and
a population of possible solutions. The natural selection foundation generates a
specific deep neural network model optimized for the control problem and the
dynamic system learning.

5.2 Related work

The application of optimization methods for selecting deep neural networks and
their parameters has been extensively studied because of their intrinsic stochastic
nature. For example, the works [11, 43] pose the difference between the simple
selection method known as grid search and cost-based techniques, showing an
improvement over the ”brute-force” random selection or ”manual” tunning found
in several DNN applications. However, it is essential to note that implementation
requires a significant amount of experimentation and manual tunning.

Additionally to conventional optimization, it has been proposed [98] to use
evolutionary-based algorithms for several reasons. Firstly, such methods solve
nonconvex problems, finding the optimal global solution. Secondly, assuming a
sufficiently large population, the resulting DNN potentially has a better perfor-
mance in addition to the learning problem. Finally, the initial population set may
be seeded with known values or experience-based guesses.

The works [33, 110] dealt with the general state of the neuroevolution field,
designs, and encodings, highlighting with numeric experiments the excel over a
naive selection and training. The relatively simple concept of evolution holds the
potential of global optimally DNN production. However, the computational load
resulting from this methodology cannot be neglected.

Nevertheless, designing DNN using evolutionary algorithms is a more direct
approach to emulating the natural execution of intelligence. Therefore, our im-
plementation and application to dynamic systems and their controls are based on
the premise of an optimal selection associated with the specific and strict variables
found in physical problems.
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5.3 Algorithm

Learning dynamic systems through DNN training involves the following compo-
nents:

1. Response time (time constant)

2. Steady-state response time 1

3. Delay time 2

4. Response magnitude

Although such components may vary with time, a general distribution is ex-
pected to be understood beforehand. In other words, general aspects of the prob-
lem at hand must be available for the correct assumptions. However, by having
an evolutionary-based method, an appropriate cost function may override the ne-
cessity of such knowledge and instead infer it from training data.

The deep evolution-based algorithm utilizes the concept of direct encoding,
which means translating the variable parameters into a set of interpretable values.
This set is also known as chromosome for the contents resemble those of genetic
structures. Each solution within the population holds a particular chromosome
whose values are dictated by a random function that generates individuals within
constraints.Additionally, known possible solutions can be included in the initial
set, for example, those used in a grid search.

The constraints vary depending on the system, but they can be selected within
the system boundaries. Although a deep understanding of the system dynamics is
not a strict requirement for data-based approaches, the system boundaries are in-
cluded in the data collection. Therefore, such a condition is realistically applicable,
especially the limits of the system operation.

1Non-aplicable to unstable systems.
2Time for certain systems to respond to an excitation input.
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Thus, the constraints can be summarized as follows:

1. Response time tr ∈ [ts +2τ, ts +nτ ] where ts is the sample time and τ is the
system’s time constant.

2. Steady-state time tss ∈ [5τ, nτ ].

3. Delay time td ∈ [td + τ, td + nτ ].

4. Response magnitude yt ∈ [ya, yb].

Following the mentioned constraints, an initial population set of potential so-
lutions is generated via a random distribution function, with a strong focus on
diversity. Diversity states that the number of different individuals in the popu-
lation is proportional to the likelihood of achieving an optimal solution without
falling in locally optimal solutions, a common occurrence in nonconvex problems.

Nevertheless, an increase in the population length, i.e., diversity, results in a
quadratic complexity, where each potential solution must be evaluated at least once
per iteration. Although this method is employed in this dissertation in an offline
fashion, the computational load must be taken into consideration, especially for the
strongly nonlinear cases, where training takes a considerable amount of resources.
For a summary of the direct encoding, refer to Figure 5.1.

Figure 5.1: DNN hyperparameters encoding example. The sequence serves as chromosome or
individual in the evolutionary-based algorithm.

The evolutionary approach considers iterations as generations emulating the
natural process of fitness and gradual progress to a defined goal. Our method uses
this procedure to close the potential solutions to the global optima in a sequen-
tial combination fashion. Each capable solution has the ability to reproduce and
transfer its genes to a new generation of potential solutions. Given enough gen-
erations, much as in nature, an optimal global individual is found, which thrived
and adapted to the arbitrary condition of the given problem.

For dynamic system learning, each DNN represents an individual with the po-
tential to recreate the actual dynamics accurately. Based on gradient descent, the
internal elements are tuned to fit the provided data through training. Addition-
ally, the parameters are selected through evolution, meaning the DNN will fit the
training along with fitting the global goal.
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Figure 5.2: Evolution and distribution of populations of solutions though generations. The
optimal solution and the search space are closer the longer the number of generations.

The complexity of DL architectures works simultaneously as an advantage and
disadvantage because it allows approximating nonlinear systems dynamics for the
price of a complicated design. It has been suggested that the most relevant at-
tribute regarding training DNN is the amount of data; however, architecture plays
a significant role as well.

The selection of hyperparameters is crucial because an incorrect set may lead
to undesired results or slow training convergence, reducing the method’s effective-
ness and confidence. On the other hand, a proper selection involves considerable
experimentation with more extensive sessions of testing and validations.

By having a cost function, we can rephrase the training as an optimization
problem, modifying not only parameters but internal structures and interconnec-
tion between neurons to achieve the desired accuracy or performance.

Let us denote the set of candidate hyperparameters, including those related to
the system dynamics, x ∈ Rn. The objective is to minimize a cost function JT
(1.4), which is defined by the problem. In the SI case, especially for a complex
issue such as IM identification, error minimization is wanted.

Such candidate solutions to JT are evaluated multiple times due to the stochas-
tic nature of the training, and best candidates are passed to subsequent iterations
known as generations with a combination of the best elements in the set. This
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process motivates a constant adaptation to the cost function, solving the problem
as in nature and the evolution process.

Although evolution requires a considerable amount of evaluations and exper-
imentation, numeric problems such as SI greatly benefit from the optimal selec-
tion of hyperparameters. In addition, early-stopping training methods prevent
an overfitting scenario. Moreover, cost functions may be proposed to reduce the
architecture size for lower-powered hardware or the most performance-demanding
cases.

The evolution approach taken in this dissertation is based on the Differential
Evolution (DE) algorithm [76, 102]. A member xi of the candidate solutions x is
randomly selected 3 along with three others, to form a comparison subset [a, b, c]
where each member is different from each other. An operation R of recombination
is performed to the comparison subset to calculate the candidate’s new position,
randomly modifying the structure. Afterward, the comparison subset substitutes
xi if it approaches the optimal solution better. The process is repeated for all
candidate solutions, which must be ≥ 4. The number of evaluations depends on
the number of candidate solutions, also referred to as a population.

Algorithm 4 Deep Neural Evolution for NARX models.
1: ▷ Initialize NARX Architecture

na ← Input delays
nb ← Output delays

2: for K-generations do
3: ▷ Perform forward pass
4: ŷt = Ψ(φt)
5: ▷ Compute loss function
6: J ← 1

N
∥yt − ŷt∥2

7: ▷ Perform training and weights optimization
8: while J not improved do
9: ▷ Differential Evolution()

10: x ∈ [Network,Architecture, Activation,Batch, na, nb]
11: ▷ Compute Predictions
12: ŷ ← Ψ(φt)
13: ▷ Update variables
14: end while
15: ▷ Return optimal sequence x
16: end for

3A member is considered the set of hyperparameters and structures for a single DL model.
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5.4 Numeric experiments

Let us consider the identification problem by training a DNN as a NARX model to
learn the example system’s dynamics of equation 2.11. First, the data collection is
performed as shown in algorithm 1, producing a regressor vector φt being updated
each time step in the real-time execution. For the training dataset, the system was
excited, as shown in Chapter 3. Therefore, the optimal parameter selection is the
main difference between conventional training and the current evolutionary-based
algorithm.

The initial set of candidates, i.e., potential solutions, is randomly generated.
The greater the diversity, the more range is covered within the search space, with
no guarantees of a global solution. However, the boundaries selection is defined by
the dynamic nature rather than arbitrary values for the dynamic systems. Thus,
the problem becomes strictly constrained since optimal solutions exist within a

Figure 5.3: Differential Evolution algorithm. a) An initial population of random
candidate solution is proposed. b) A random selection is performed. c) Mutation
operation. d)Crossover. Steps a) to d) are repeated for every base candidate for λ
times.
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limited space.

With the initial set, the algorithm proceeds to evaluate the model using a
defined cost function, focusing on the error between the expected output and
current predictions. In order to avoid overfitting scenarios, our training parameters
have an early stop feature, capable of terminating the training in cases where no
improvements occur. Moreover, multiple training sequences are considered due to
the stochastic nature of the networks and the training algorithm.

A single step in the DNE method involves the evaluation of the trained model
with a single set of possible solutions, called the individual. The algorithm trains
and tests each individual then orders them by a score –minimal error– and proceeds
to select and reproduce, closely resembling natural selection. This process is called
generation. The algorithm is expected to converge to an optimal solution through
multiple generations.

Although a large number of generations and possible candidates increases the
chances of finding the global optimum configuration, the number of function eval-
uations increases in parallel and the training process. Moreover, the training stage
is computationally costly for the more complex cases, reducing the algorithm per-
formance. Nevertheless, this process is performed offline during the design stages;
therefore, computational concerns are more flexible.

The numeric example was performed to visualize the impact of function eval-
uations considering a randomly initialized, bounded set of an initial population of
candidate solutions. The DNN is a feedforward neural network trained using the
BPTT algorithm. A simulation procedure generated the training and evaluation
dataset. Each individual was evaluated n = 10, and the computed error was the
average.

Considering n as the arbitrary number of evaluations, and P the population
size, where the algorithm evaluates each individual, the computational complexity
is such that:

O = nP 2, (5.1)

where the larger values of n and P increase the likelihood of optimization conver-
gence, the numeric example took x seconds to converge, yielding an average error
of x.
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5.5 Summary

We observed particular results regarding the batch sizes, mainly due to the relation
between the training data and the time parameters intrinsic in the system dynam-
ics. Nonetheless, the remaining parameters serve as components for the overall
training, and the DNN size does not affect the output considerably from the error
point of view. As for the network performance, decisions depend entirely on the
intended hardware for production. For our limited experiments and the scope of
our work, more constrained hardware was not considered in our experiments but
is highly suggested for future iterations of this work.

Finally, to summarize the complete algorithm, the Figure 5.4 shows a flow
chart containing the essential elements discussed in this chapter.

Figure 5.4: DNE Algorithm summary. The DE algorithm performs multiple function evalua-
tions to decide the next generation. It is expected that the best individual contains an optimal
solution. Due to the stochastic nature of DNN models, each training session is performed mul-
tiple times. (Ex. n = 10.)





Chapter 6

Numerical Simulation Framework

6.1 Introduction

This chapter presents the framework of the numerical experiments that deal with
dynamic systems numerical and control algorithms simulations. We show the
numerical approximation of the ordinary differential equation (ODE), time dis-
cretization through specific intervals and show the approximation to the solution
of ODE through one-step numerical methods.

We then continue to simulate the MPC scheme, showing the parallel numerical
approximations involving the studied elements: The predictor model and optimiza-
tion stage, along with the controlled system. Since DL-based methods are included
in the complete simulation, we show the numeric packages and the wrapping set-
tings to achieve comprehensive results.

This chapter shows an overview of the simulation methods, software packages
and particularities regarding the numeric approaches. As complementary material,
Appendix A and B contain the systems equations, DNN hyperparameters and
numeric results.

Finally, we show the Inverse Model control signals addition as the initial solu-
tion to the optimization algorithm, detailing a method for the parallel execution
of all elements within the control system. Moreover, we describe the assessment
criteria tools selected for the fair evaluation in control theory.
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6.2 Dynamic Systems simulation

Let us define the ODE such that:

xt = f(x), x(0) = X, (6.1)

for x(t) ∈ Rp and the time discretization though the interval tn = n∆t. The
approximation to (5.1) is defined by one-step numerical methods of the form

Xt+1 = F (Xn; ∆t), X0 = U, (6.2)

where Xn ∈ Rp is considered an approximation to x(tn). The numerical algorithms
such as the Runge-kutta are characterized as (5.2) assuming the overall stability
[101].

Remark 6.2.1 (Benchmark systems). The dynamic systems considered in this
dissertation as benchmark problems are characterized as nonlinear,non-stiff based
on systems of differential equations,except when indicated otherwise.

With (5.1) and (5.2), the dynamic systems are simulated by the numerical
approximations based on one-step methods with constant time-steps n∆t. Hence,
variable-step methods are not considered since control actions computed by MPC
and IM are of constant frequency. Moreover, one-step methods are more stable yet
slower but within the boundaries of our computational capabilities, i.e., dynamic
systems numerical approximations times are negligible.

Therefore, the benchmark systems of the form (1.1) are formatted such that

ẋt = f(x, u, t), x0 = X0, (6.3)

for a 1-D computational array time t ∈ [t0, t0 + T ] evenly and monotonically
increasing, N-D computational array being with strict boundaries xt ∈ [xa, xb], M-
D computational array with strict boundaries ut ∈ [ua, ub] and initial conditions
X0 representing xt values at t0. Function f is defined by the nonlinear system
case of study.
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Figure 6.1: Numeric simulation example. The nonlinear state vector values are calculated with
a numeric approach and a detailed dynamics system of equations.

6.3 Model Predictive Control simulation

MPC components act parallel within a time step tn based on feedback data from
the regressor vector φt. The initial simulation point t0 assumes all conditions
to zero. This assumption is not strict, meaning that an execution-ready system
can also be numerically approximated. However, for the sake of simplicity, all
considered benchmark problems have initial conditions set to zero.

6.3.1 Predictor Model

The Predictor Model of the form xt = Ψ(φt) drove by the DL architecture Ψ is
simulated following the NARX models. The training and simulation stages are
performed differently as the following:

• Training algorithm 1 conducts batch learning, i.e., pieces of sequences are
fed into the DL model in a feature-label fashion.

• Simulation model (Figure 2.4) acts in one time-step fashion, with newly
produced predictions x̂t updating the regressor vector φt.
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This distinction is important because training assumes complete knowledge of
the dataset. In other words, having labeled data infers knowledge of future values
of the involved variables, whereas predictions are fed back into the system for the
simulation case, updating the simulation online. Furthermore, simulation models
can include disturbances at any point of the simulation, which is unconsidered by
our framework, therefore proving by simulation its effectiveness for the rejection.

6.3.2 Optimization algorithm

Numerical optimization algorithms are iterative methods beginning with an initial
guess of the relevant variable that minimizes or maximizes a given cost function,
generating improved estimations until a satisfactory solution is achieved [75]. The
optimization methods use current cost function values, previous values, and bound-
aries to approximate a solution. While there are methods based on derivatives,
our approach takes the pure numerical approach.

The primary considerations regarding optimization methods in the MPC con-
text are based on efficiency more than on accuracy because one of the open is-
sues remains the computational complexity. Analytically solving the optimization
problem is possible only with an infinite prediction window, i.e., linear problems.
As for our benchmark cases, the iterative approach method is applied.

To summarize the online optimization problem, given the MPC parameters:
Prediction window wc, control window wc and sampling time tn, the cost function
J (1.4) is determined by the weighting coefficients wx,i and wu,i which add or reduce
values to the output difference and control difference. In other words, the amount
of contribution of the control signal can also be used for the cost calculation for
the cases where the control effort must economize.

Table 6.1: Python 3.9.2 utilized modules for the simulations.

Module Version Application
scipy-odeint 1.7.1 Numerical integration for Dynamic System simulation
Tensorflow-Keras 2.6.0 DL-NARX Prediction training and simulation model
scipy-optimize 1.7.1 Numerical optimization algorithms
Tensorflow-Keras 2.6.0 DL-NARX Inverse Model training and simulation model
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Remark 6.3.1. Boundaries, weighting coefficients, and prediction and control
windows constitute the basis of MPC implementations. Moreover, the significant
popularity of these control schemes in industrial applications lies in the ability to
produce optimal control signals from such constrained scenarios, yielding realistic
and applicable optimal control.

6.3.3 Test cases simulation

The complete control system simulation involves four elements, the controlled
system St, the D-NARX Predictor Model, the optimization algorithm, and the
DL-IM initial solution. All of these elements are simulated in parallel following a
set of tools depicted as follows:

• Dynamic system numeric integration

• DL-NARX Prediction

• Optimization algorithm

• DL-NARX IM

The MPC scheme is numerically simulated using the programming scripting lan-
guage Python 3.9.2. Table 5.1 specifies the particular modules used in the simu-
lation. As for DL architectures, the Python-based libraries Tensorflow and Keras
are the basis of training and simulation models.

Appendix A presents the numeric simulations product of our main algorithm,
DL-IMPC. To detail the control systems utilized, we start with a description of
the case study, system model, and numerical implementation. Firstly, we pro-
ceed to generate training and validation data to create the DL-NARX Predictor
and Inverse models. Then, we continue with the overall algorithm simulation,
highlighting the necessary parameters and constraints. Moreover, we present the
comparison and evaluation with the assessment criteria presented in this Chapter.
Finally, we perform evolution-based optimization for all models and algorithms,
showing an increase in performance and response quality, specially designed to
control nonlinear systems.

The study cases shown in Table 6.2 and A.1 are nonlinear dynamic systems
with a variety of particular elements that render them difficult to control. Such
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Table 6.2: Nonlinear Benchmark systems

Dynamic System Input ut Output yt States xt Ref Particularities
DC Machine 1 1 2 [69, 126] Nonlinear
Mass spring 1 1 2 [128, 59] Nonlinear, high frequency, noise sensibility
Mass spring with Inverse Pole 1 2 4 [17, 19] Nonlinear, unstable
Cart-Pole 1 2 4 [73, 54] Nonlinear, unstable
Microgrid 1 1 4 [115, 58] Nonlinear, high frequency, noise sensibility
Lorenz Attractor 1 3 3 [62, 49] Nonlinear Chaotic, noise sensibility
Robotic Manipulator 6 6 12 [90, 67] Nonlinear, high frequency
Wind Farm 6 6 24 [78] Nonlinear, multiple elements

particularities are an additional complexity to the control problem and simulations
alike. Nevertheless, we selected such systems to validate our claims and show our
contribution’s capabilities and potential.

Furthermore, such systems are recognized benchmarks and baselines for numer-
ous control algorithms proposals, to the degree to be considered classic problems,
making our comparisons easier to visualize against previous work and also work
as a potential basis for future ideas.

6.4 Assessment criteria

Control systems regulate and actuate over the transitory components of the time
response, therefore, evaluations beyond the error are required. Conventionally,
to assess the control system performance, the transitory error and steady-state
error are considered as a mean of the squared difference (MSE). To exhibit a fairer
comparison, the metric MSE, ITAE, and IAE [94] are employed in all control
simulations. Such metrics consider the time component as well as the steady-state
error. Thus, the metrics are defined as:

MSE =
1

T

T∑
i=0

(ri − yi)
2, (6.4)

ITAE =

∫ T

i=0

t∥ri − yi∥dt, (6.5)

IAE =

∫ T

i=0

∥ri − yi∥dt, (6.6)

where the error values defined as (ri− yt) are the difference between the reference
vector and the controlled output in a simulation time T .
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6.5 Numeric experiments

The simulated systems allow the generation of training data aiming to emulate real-
world scenarios; with such, DL-NARX models are constructed to serve as predictor
elements in MPC schemes. Our aim is to approximate real-world scenarios with
the addition of noise and practical considerations regarding the benchmark systems
as much as possible.

As a complementary section to this chapter, Appendix B contains the numeric
results considering the systems of Table A.1. To perform the experiments, we train
NARX models with different DL architectures, following a process of neuroevolu-
tion, intending to find the optimal configuration that best describes the system.
Then, we follow a similar approach to train models with the Inverse of the system.
Finally, we construct the complete algorithm and conduct control experiments
with numeric simulations. The results are compared to other control techniques
as well as artificial intelligence-based methods such as a learning-to-control NN
and RL DDPG. To summarize DL-IMPC application to the benchmark systems,
the following steps are followed sequentially:

1. DL-NARX Predictor model optimal training

2. DL-NARX Inverse model optimal training

3. IMPC configuration

4. Control experiments and validation

6.6 Inverse Model initialization

DL-NARX IM simulation scheme is updated and executed at each tn. Sequences
of length wc are obtained in a mini-batch simulation. From t, t+wp, the predictor
and inverse model initial conditions are the same, based on the current output in
the regressor vector φt.

At the time t0, regressor vector φt0 is constituted by the lagged values of the
observable variables and input variables, for this case, where the previous t0−i, the
elements are considered zero.



74 Chapter 6.Numerical Simulation Framework

The inverse model Υt depends on the feedback information similarly to the
predictor model. Both models are updated with the same regressor vector at
time t but with a different procedure. While the prediction model generates fu-
ture responses provided by the optimization algorithm, the Inverse model directly
computes control signals.

As mentioned in Chapter 4, direct control signals created by Inverse models
are ideal control laws; however, since we are dealing with an approximation for
the practical cases, there is not enough guarantee for the direct use. Instead,
we propose to use such as starting point or initial solution to the optimization
algorithm.

The optimization method converges faster with a closer candidate to the ideal
solution, reducing the computational load. We propose two methods to initialize
the system with Inverse signals:

1. Use the complete sequence as a starting point. This applies to all optimiza-
tion algorithms that allow an initial guess.

2. Generate a sub-population of uniformly distributed sequences over the In-
verse model produced. This applies to population-based optimization algo-
rithms.

A simplification of this concept can be appreciated in Figure 6.2, where the IM
control signals are added to the set of candidate solutions generated by the opti-
mization algorithm.

Let us define the initial candidate solution as:

x0 = Υ(φt) (6.7)

generated by IM υt. For the first method, simply X0 = x0 suffices. Conversely,
for the second method, the initial sub-population is given by:

X0 = P (x0) ∈ N, x0 = Υ(φt) (6.8)

where P (x0) denotes a random distribution centered over x0 produced by the IM.
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6.7 Summary

The algorithm DIPC was formally introduced in this chapter. We showed the gen-
eration of predictions, the candidate solutions, the evaluations over a cost function,
and concluded with the starting points provied by the IM. In the appendix section,
several numeric simulations provide evidence of the capabilities discussed thus far.
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Chapter 7

Conclusion

7.1 Deep-learning evolution

The optimal derivation of DL models is a complex problem mainly due to the
computational complexity involved. However, the optimal architecture and pa-
rameters selected greatly improved accuracy in our experiments, especially in the
Predictor models within DL-IPC. This is a strong argument for using optimiza-
tion methods in the design and training of DL methods, particularly within the
dynamic systems field.

From the nonlinear test cases, we observe that nonlinear behaviors tend to make
more difficult the learning stage. Most evolved networks took longer convergence
times the more complex the system.

The DC Machine case is the simplest, nonlinear model. However, the model
architecture became significantly complex in several layers and sizes over its linear
counterpart.

For the mass-spring system and its inverse pole version, the case was similar
but with the additional issue of instability. Unstable systems grow faster with
time, yet the closed-loop stabilization prior to the data collection improved the
final learning stage.

The cart-pole system is a simple problem with a particularly unstable and tiny
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region of controllability. This challenge makes it popular with the reinforcement
learning field. Conversely, the evolved NARX model had no significant issues
learning its dynamics.

For the special test cases, the robot manipulator and wind farm, the accurate
simulators provided sufficient data. Therefore no significant issues were noted
in the evolutionary stage of optimal training of NARX models. However, it is
essential to note the significance of data abundance in quality and quantity.

7.2 Deep learning Predictive Control

The application of DL-MPC facilitated the satisfaction of the control requirements
at the expense of increased computation complexity. The numeric optimization
algorithm had more space to cover, with greater detail, but a small time frame to
deliver.

We can observe the increases in quality over other methods. Indeed using these
algorithms is not a novel approach for a DC Machine, but it is for a Wind Farm.
We observe that the more interconnected elements exist within a nonlinear system,
the more accuracy is required for future predictions. Our experiments showed that
model-based control algorithms are still the most trustworthy over direct-learning
methods, such as DDPG.

Moreover, the potential adaptive features of DL-based predictors make the
algorithm suitable for unknown dynamics systems. We noted in the experiments
that, although performance did not increase much over long periods, modifications
in the system simulation affected little the control scheme.

The experiments showed that DL-based predictors are suitable when sufficient
data is available. Such data can be obtained from offline simulators, such as the
robot manipulator or the wind farm cases, to supply the DL models.

7.3 Deep Inverse Predictive Control

Learning Inverse Models is a challenging topic. The resulting evolved NARX
models are notably more complex than the direct dynamics version. Moreover, the
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mse values could not get lower for any of the test cases. Indeed, the ideal Inverse
Model is still out of reach, but the approximation was proved to be sufficient to
assist the Predictive algorithm.

In the test case DC Machine, we observed an overall reduction of 59.1% in the
iterations taken. This value corresponds to the nominal predictive control version,
where the optimal solution is calculated every step. The reduction shows that a
potential practical application is feasible.

For the test case mass-spring, the overall reduction reached 70.8%. In more
complex cases, such as the Lorenz attractor, the reduction was 10.5%. We can
observe that reduction values increase with the accuracy of the Inverse Model.
Hence, we can state that Inverse models provide the optimal control solution. For
the most complex cases, Inverse Models are not accurate enough for a more signif-
icant reduction. However, the benefits are present, and the method is applicable.

7.4 Summary and Contributions

This dissertation presented an alternative scheme for controlling dynamic systems
involving a data-based learning mechanism and online optimization. Our control
algorithm works in essence as a conventional method, limited by strict boundaries
that guarantee a stable and reliable operation, but with the advantages of Deep-
learning architectures. Intelligence-based control methods have shown excellent
results in the past but lack the certainty required to be applicable in real-world
scenarios. We showed the benefits of training agents capable of suggesting optimal
control actions while maintaining confidence and stability in the control signals.

Our main contribution is the addition of Inverse models to the Predictive Con-
trol. While the inverse dynamics are considered ideal controllers, their derivation
is not possible in most cases, yet the universal approximation feature of Deep
Neural Networks provides a close estimate of the ideal control. Furthermore, as
initial intuition would be the direct use of inverse models to control, we showed
that using them as a starting point in the online optimization stage decreases the
search time and increases the system’s overall quality.

The Model Predictive Control method is a proven technique, yet its application
is limited to slow dynamic systems; Thus, reducing the computational load of the
online optimization stage, we expand the number of systems that can benefit from
this optimal control method. As technology changes, the complexity of industrial
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systems increases, and with it, more powerful control systems are needed. Nu-
merous disturbances appear, more strict requirements, noisy environments, and
overall lack of precision in complex systems are a continuous motivation for the
ongoing research of the control theory.

We introduced in Chapter 1 the basic etymology in Control Theory, giving
an overview of the conventional setting regarding the manipulation of dynamic
systems.

In Chapter 2, we introduced the concept and algorithm of Model Predictive
Control, definition, components and stages, predictions and optimization algo-
rithms.

In Chapter 3, we commented on using artificial intelligence methods as so-
lutions to the control problem, specifically Deep-Learning methods. We started
with system identification techniques and expanded to the reinforcement learn-
ing approach. Moreover, we formalized the DL use within control theory and its
combination with the Predictive Control scheme.

In Chapter 4, we introduced the Inverse Model as a concept and potential
control method. A methodology for the overview and the understanding within
the context of the dynamic system was provided.

In Chapter 4, our main contribution, the Deep Learning-based Inverse Predic-
tive Control, was introduced. Details on the execution, design, and optimization
via evolutionary computation were given.

In Chapter 5, we presented the evolutionary approach for the training and de-
velopment of optimal DNN used in the control theory setting. The offline training
concept was introduced as means of finding the optimal configuration required for
the complex systems learning, specifically, the Inverse Model.

Chapter 6 provided a detailed selection of nonlinear control systems, with nu-
meric simulations and extensive derivation for benchmarking our algorithm and
future comparisons. Moreover, we showed the results of implementing our method
against the conventional controllers. The numeric experiments are detailed in the
appendix sections, A and B.
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7.5 Future work

This dissertation expanded optimal Deep-learning methods to the dynamic systems
control aiming at practical and applicable solutions. However, there are several
challenges not addressed enough in this work and others.

Practical experimentation While simulated environments provide enough
data for a solid approach, real-world data is still a significant limitation. Be-
yond our method, most deep-learning control mechanisms are limited to numeric
implementations, lacking that final step to practical solutions.

Fast systems Although our method, significantly decreased the number of
iterations required by an online optimization solver, the reality of the faster systems
remains a big challenge. Moreover, even with the modern computational resources,
the degree of mistrust in these techniques in industrial settings is a big challenge.

Inverse model The Inverse dynamics of a system may be a noncausal rela-
tionship between the input and the output. We showed the potential of accurate
representations based on simulations, but testing involving real-world data could
expand such systems’ knowledge and proper derivation. Furthermore, our ap-
proach was based on the NARX architecture; investigation with directly learning
inverse models, deep learning mechanisms, or other data-based methods is of great
interest.

The study of Inverse dynamics is not limited sorely to its potential applications
to automatic control. It also holds a deeper understanding of the full view and
analysis of physical systems.





Appendix A

Deep Inverse Control application:

Test cases

A.1 Introduction

This appendix presents the numeric simulations product of our main algorithm,
DL-IMPC. To detail the control systems utilized, we start with a description of
the case study, system model, and numerical implementation. Firstly, we pro-
ceed to generate training and validation data to create the DL-NARX Predictor
and Inverse models. Then, we continue with the overall algorithm simulation,
highlighting the necessary parameters and constraints. Moreover, we present the
comparison and evaluation with the assessment criteria presented in the previous
Chapter. Finally, we perform evolution-based optimization for all models and
algorithms, showing an increase in performance and response quality, specially
designed to control nonlinear systems.

The study cases explained in the following lines are nonlinear dynamic systems
with a variety of particular elements that render them difficult to control. Such
particularities are an additional complexity to the control problem and simulations
alike. Nevertheless, we selected such systems to validate our claims and show our
contribution’s capabilities and potential.
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Table A.1: Nonlinear Benchmark systems

Dynamic System Input ut Output yt States xt Ref Particularities
DC Machine 1 1 2 [69, 126] Nonlinear
Mass spring 1 1 2 [128, 59] Nonlinear, high frequency, noise sensibility
Mass spring with Inverse Pole 1 2 4 [17, 19] Nonlinear, unstable
Cart-Pole 1 2 4 [73, 54] Nonlinear, unstable
Microgrid 1 1 4 [115, 58] Nonlinear, high frequency, noise sensibility
Lorenz Attractor 1 3 3 [62, 49] Nonlinear Chaotic, noise sensibility
Robotic Manipulator 6 6 12 [90, 67] Nonlinear, high frequency
Wind Farm 6 6 24 [78] Nonlinear, multiple elements

Furthermore, such systems are recognized benchmarks and baselines for numer-
ous control algorithms proposals, to the degree to be considered classic problems,
making our comparisons easier to visualize against previous work and also work
as a potential basis for future ideas.

A.2 Benchmark systems

Nonlinear benchmark problems and specifics are highlighted in this subsection.
We commence with a simple definition, description, and numeric simulation of
each one. Table A.1 contains information about the benchmark systems.

A.2.1 DC Machine

Direct Current (DC) Machines in the motor configuration are a type of electrical
machinery that transforms electrical energy into rotary mechanical energy. DC
motors actively use the force of a magnetic field (either constant or variable) and
the internal currents to regulate their speed, and torque variables [84]. These de-
vices are widely used in industrial applications as prime movers for more complex
machinery such as servo-mechanisms from automated belts to robotic manipula-
tors.

Specific requirements depend on the motor application. However, most systems
rely on torque and speed control [42]. Therefore, regulating the speed magnitude
despite the presence of undesired disturbances is a fundamental control problem
for DC Motors [119]. DC Motors have two general parts: Field and Armature.
Two separate electrical circuits establish the field, defined ast1 and t2 and another
two, the armature defined as T1 and T2. The series setting involves connecting all
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circuits with those of the armature. In other words, each terminal is connected to
the corresponding one to make all currents (armature, field) the same such that,
ia = if = i. This configuration allows that terminal voltage to control the system’s
output, being speed in this case. Therefore, to denote the series dynamics of a DC
Motor, considering the field and armature circuits connections, such that

L
di

dt
= −Ri−KmLf iω + V (A.1)

J
dω

dt
= KmLf i

2 −Dω − τl (A.2)

where L is the overall electrical inductance, R is the overall electrical resistance,
Km is the back electromagnetic force constant, Lf is the field electrical inductance,
i is the electrical current, ω is the rotor angular speed, V is the terminal voltage, J
is the rotor moment of inertia, D is the viscous friction coefficient, and τl denotes
the rotor torque.

Numeric simulation

To denote the DC Motor dynamics from equations (A.1) and (A.2) in the general
form of definition 2.2.1, we consider the following

ut = V, V ∈ [−12, 12] (A.3)
yt = ω (A.4)
xt = [i, ω]T (A.5)

Therefore, the DC Motor dynamic system St becomes:

[
i̇
ω̇

]
=

[
−Ri

L

KmLfω

L
KmLf i

J
D−τl
J

] [
i
ω

]
+

[
1
0

]
ut (A.6)

yt =
[
0 1

] [ i
ω

]
(A.7)

Finally, Figure A.1 shows a numeric simulation example.
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Figure A.1: DC Machine open-loop numeric simulation. A voltage test
signal ut of magnitude 1.0 was applied to the system producing states [i, ω]T .
The observable variables yt are the same as states in this particular case, but
we are focusing on the speed ω.
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A.2.2 Mass-spring

The presence of vibrational effects during the energy exchange in mechanical sys-
tems of industrial application is a severe problem for the control area. This type
of physical resonance exists in virtually all components. In some cases, engineers
may ignore vibrations because their bandwidth does not interfere with the regu-
lar operation. However, in other cases, active vibration rejection devices must be
included in the control loops to avoid damage and instability resulting from the
permanent presence of oscillations.

Mass-spring models were created under physical assumptions and analogies
with energy-storage components to recreate the vibration and interaction between
mechanical devices. As a result, mass-spring models have become a benchmark
in the control theory field and mechanical engineering. We selected mass-spring
systems because of their nonlinear nature, the high sensitivity to noise, and the
high frequency of operation.

Generally speaking, the mass-spring system is not a complicated system to con-
trol, but it provides meaningful insight into the frequency capacity of the designed
controllers.

A Mass-spring system is defined as the interconnection of mass elements, in-
teracting through the presence of a kinetic energy-storage element called spring in
a single linear axis. The basic system consists of one mass and one spring, but it
is not limited to those [59]. To define its dynamics, let us consider the mass m
and spring with coefficient k, with the kinetic energy as 1

2
mv2, where v stands for

velocity. The horizontal displacement result of an external force F applied to the
system is denoted by xi for each mass i. To visualize the active component in this
study case, see Figure A.2. Ultimately, Figure A.3 display the simulated response.

Figure A.2: Mass-spring diagram. The system is described as the interaction between two cars
of mass m1,m2 with displacement x1 and x2 produced by an external force u. As interconnec-
tion element, a spring with coefficient k and a damping effect c provides an attenuation effect
generating oscillations.
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Numeric simulation

Mass-spring dynamics are derived from energy balance equations [128]. Denoted
as the general case where:

ut = F (A.8)
yt = [x1, x2]

T (A.9)
xt = [x1, x2, ẋ1, ẋ2]

T = [x1, x2, x3, x4]
T (A.10)

constructed as the form of definition 2.2.1, such that:

[
i̇
ω̇

]
=


0 0 1 0
0 0 0 1
− k

m1

k
m1

− c
m1

c
m1

k
m2

− k
m2

c
m2

− c
m2



x1
x2
x3
x4

+


0
0
1
m1

0

 (ut + w1) +


0
0
0
1
m1

w2 (A.11)
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Figure A.3: Mass-spring system open-loop numeric simulation. The system is excited by a
constant external force ut of 0.01. Note the state variables instability, increasing in magnitude
with time. Observable variables yt are the cart positions, x1 and x2.
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A.2.3 Mass-spring with Inverse pole

The experimental nonlinear control problem Mass-spring with an Inverted Pen-
dulum (MSIP) [17] is considered. It is a benchmark problem that combines the
dynamics of mass-spring energy exchange with the oscillations of an inverted hang-
ing element. The model was initially developed as a simplified version of a dual-
spin aircraft to emulate the resonance capture [87], and currently, as a study for
translational motion stability [113, 19].

The system is composed of a mass-spring system connected to a cart that can
provide translational displacement. It is also constrained to have one-dimensional
movement only. The disturbance force moves the complete system, restricted in
the x-axis only, and the inverse pole with mass oscillates in response. The system
is best explained in Figure A.4.

Figure A.4: Mass-spring with Inverse pole system. The model is used in
translational motion studies that involves mechanical energy exchange and
vibrations. The disturbance force F excites the system and the pole with
mass m oscillates in consequence.

Through the analysis of motion with energy exchange, the dynamics equations
result in the following:

(M +m)q̈ + kq = −me(θ̈ cos θ − θ̇2 sin θ) + F (A.12)
(I +me2)θ̈ = −meq̈ cos θ +N (A.13)

where k is the spring coefficient, M and m are the cart and pole masses respectively,
e is the pole length, I is the moment of inertia, N is the torque control input, q is
the horizontal displacement and θ is the pole angle.
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The torque force N serves as input to manipulate the entire system where dif-
ferent objectives can be considered depending on the problem; for our test case, we
will consider the attenuation of the displacement despite the external disturbances.

Numeric simulation

The system defined in the general form of definition 2.2.1 is obtained through a
normalization step and arranges developed in [20]. All constant parameters are
equal to 1, that is M = m = e = I = 1, and the relevant vectors are:

ut = N (A.14)
yt = [q, θ]T (A.15)
xt = [q, q̇, θ, θ̇]T (A.16)

that conform the simulation system St such that:


q
q̇
θ

θ̇

 =


x2

−x1+ϵx2
4 sinx3

α

x4
ϵ cosx3(x1−ϵx2

4 sin(x3))

α

+


0

−ϵ cosx3

α

0
1
α

 ut +


0
1
α

0
−ϵ cosx3

α

F (A.17)

where α and ϵ are given by:

α = 1− ϵ2 cosx3
2, ϵ =

me√
(I +me2)(M +m)

(A.18)

Figure A.5 shows the numerical simulation of the system St.
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Figure A.5: Mass spring with Inverse pole open-loop numeric simulation. The system was
excited by the torque signal N = 0.01. Note the unstable nature of the system.
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A.2.4 Cart Pole

The benchmark problem of the inverse pendulum has an extensive history as a
baseline test method for nonlinear controls, mainly focused on stabilization criteria.
The improved problem is cart-pole, where a horizontal displacement device, limited
to one dimension, performs longitudinal movement while balancing an inverse pole
with a mass on top [73]. The gravity forces and the inertia product of the same
movement of the cart cause angular accelerations that move the pole mass to
face south in a 2-D geometric space, making the problem a challenging one. This
complexity makes the benchmark attractive, not only to the control theory field
but also to other approaches such as RL [54].

Figure A.6 displays a schematic of the cart-pole arrangement. The cart is
excited by an external force F , producing a lateral movement that accelerates the
pole with mass m and angle θ. The cart system is limited by the surface of length
L, and as a disturbance force, we have gravity g.

The control objective is to manipulate the cart position, velocity, and accel-
eration through an internal force product of the torque generated by a motor to
place the pole position in a stable state. Since the invert pole has only two stable
positions, 0o and 270o in the vertical axis, the automatic controller will place the
pole upwards.

Figure A.6: Cart-pole system. The mass on top op the inverse pole adds
an additional disturbance to the system. The horizontal displacement is used
to regulate the position upwards, to a stable state.
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The system setup is defined by the following equations describing its dynamics:

θ̈ =
1

2l −mla cos θ2{g sin θ −mlaθ̇2 cos θ sin θ − a cos θ(u− Fc)− dmẋ} (A.19)

ẍ =
2

2−ma cos θ2{mlθ̇2 − 1

2
mg cos θ sin θ + (u− Fc) +

1

2l
cos θdmẋ} (A.20)

where m is the pole mass, M is the cart mass, l is the pole length, g is the gravity
force, x the cart position, θ the pole angle, Fc = fcsgn(ẋ) is the coulomb friction
and a = 1/(M +m).

Numeric simulation

Let us denote the general form vectors from definition 2.2.1 as the following

ut = u, u ∈ [−1, 1] (A.21)
yt = [x, θ]T (A.22)
xt = [x, ẋ, θ, θ̇]T (A.23)

Therefore, the general form of the cart-pole system is rearranged such that,


q̇
q̈

θ̇

θ̈

 =


0 1 0 0

0 −(I+ml2)b
α

m2gl2

α
0

0 0 0 1

0 −mlb
α

mgl(M+m)
α

0



q
q̇
θ

θ̇

+


0

I+ml2

α

0
ml
α

 ut, (A.24)

where α is given by:
α = I(M +m) +Mml2 (A.25)

Figure A.7 displays the numeric simulation.
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Figure A.7: Cart-pole numeric open-loop simulation. The system is excited by an external
force ut producing an horizontal displacement. The system states are unstable, meaning that
slight changes causes divergence.
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A.2.5 Microgrid

Electric power generation is a complex system of several interconnected energy
sources that contribute to all systems on the planet. Therefore, the execution of
the power network is critical in every situation, mainly to fulfill the load demands of
quality and reliability. It is a complex situation where not robust enough souces,
such as renewable generation, find a complex operation, with constant risks of
instability due to their intermittent nature. Consequently, subsystems are created
in an attempt to isolate the operation of different energy sources while providing
their power production. These subsystems are known as microgrids [56].

Microgrids have the advantage of isolating their operation; with this, several
issues are solved locally, for instance, stability. On the other hand, the power
systems control is a large area of the control theory, with regulation systems at
every variable, such as current, voltage, frequency, and power flow [9]. Therefore,
locally solving these issues is a powerful idea.

Furthermore, microgrids can contemplate the contribution of different en-
ergy sources, for instance, receive and manage energy production from wind-solar
plants, fossil-based generators, and more. Additionally, as in power systems con-
trol in general, locally tuned algorithms participate in the overall regulation and
output of the grid.

The microgrid is modeled as a small-scale power network to define its dynamics.
A popular small-scale network model is the IEEE-4 bus test [45, 13] constituted
by four power generation branches. Let us consider the benchmark microgrid [115]
such that:

∆̇f = − 1

Tp

∆f +
kp
Tp

∆Pd (A.26)

˙∆Pd = −
1

Tt

∆Pd +
1

Tt

∆Pg (A.27)

˙∆Pg = −
1

ksTg

∆f − 1

Tg

∆Pg −
1

Tg

∆E +
1

Tg

ut (A.28)

∆̇E = ke∆f (A.29)

where ∆f is the frequency deviation, ∆Pd is the power output change of diesel-
nature, ∆Pg is the governor deviation, ∆E change in the integral parameter,
Tp, Tt, Tg are time constants denoting generator, turbine and governor dynamics;
kp, kt, kg are the system, speed, and regulation gains. For the sake of simplicity,
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as in [58] we consider Tp = Tt = Tg = kp = kt = kg = 1 as our interest is the
stabilization of the changes, i.e., controlling their convergence to zero.

Numeric simulation

Considering equations (6.27)-(6.30) and the values of the parameters set to the
unity, we construct the general system form of definition 2.2.1, given that:

ut = u, ∈ [−1, 1] (A.30)
yt = [∆f,∆Pd,∆Pg,∆E]T (A.31)
xt = [∆f,∆Pd,∆Pg,∆E]T = [x1, x2, x3, x4]

T , (A.32)

the system model St is:


ẋ1

ẋ2

ẋ3

ẋ4

 =


− 1

Tp

kp
Tp

0 0

0 − 1
Tt

1
Tt

0

− 1
ksTg

0 − 1
Tg
− 1

Tg

ke 0 0 0



x1

x2

x3

x4

+


0
0
1
Tg

0

 ut (A.33)

where Tp = Tt = Tg = kp = kt = kg = 1.

Finally, Figure A.8 displays a numeric simulation of the deviation effects in a
microgrid subjected to disturbances.
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Figure A.8: Microgrid power system open-loop numeric simulation. The system states xt tend
to converge to zero after and event occurred (disturbance). The control objective is to ensure
the convergence is done in timely and stable manner.

A.2.6 Lorenz Attractor

The Lorenz attractor is a system of differential equations with the particularity
of being oversensitive to initial conditions, where even a minimal change produces
significant changes in the magnitude of the variable, to the point of being un-
predictable [62]. The Lorenz attractor is a famous characterization of the chaotic
systems and their exciting behavior, for being an utterly causal system yet ex-
hibiting a chaotic nature.

The Lorenz attractor has become a benchmark problem for nonlinear control
algorithms for the dynamic system’s field and the control theory. The controllable
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version contains an input signal ut that affects the entire system [89, 49]. The
nonlinear nature of the system and the oversensitivity to changes and noise make
it suitable for testing nonlinear control algorithms.

The system dynamics are based on the Lorenz equations[62], defined as:

ẋ = σ(y − x) (A.34)
ẏ = x(ρ− z)− y (A.35)
ż = xy − βz (A.36)

based on the simplified model of atmospheric convection.

The Lorenz attractor system describes chaotic responses when the parameters
σ = 10, β = 8

3
and ρ = 28 are selected. Although the dynamics exhibit such an

erratic response, their geometry is simple enough to be regulated by an arbitrary
input ut, specifically the x variable.

Numeric simulation

The notation for the general form as definition 2.2.1 as described as:

ut = u, u ∈ [−1, 1] (A.37)
yt = [x, y, z]T (A.38)
xt = [x, y, z]T = [x1, x2, x3]

T (A.39)

composing the system St such that:ẋ1

ẋ2

ẋ3

 =

−σ σ 0
ρ −1 −x1

x2 0 −βx3

x1

x2

x3

+

10
0

 ut (A.40)

where σ = 10, β = 8
3

and ρ = 28.
Figure A.9 shows the numeric simulation.
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Figure A.9: Lorenz Attractor system of equations open-loop simulation. The system is excited
by an input xt to the x variable description. Note that initial conditions in this simulation are
set to zero, however, any change produces a different form. The four figure (row=2, column=2)
shows the 3D version of the system.
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A.3 Benchmark systems: Special cases

Our dissertation algorithms are also proven to be effective with dealing with more
advanced numeric simulations. Two systems following this fashion are included in
this subsection with a general overview and details about the numerical simulator
employed.

A.3.1 Robotic arm

Robot manipulators are a set of actuation mechanisms for general-purposes tasks,
with automatic translation movements referenced to an end-effector device, such as
a robot hand or tools. The main application area lies in industrial and automated
production tasks due to their precision and overall low costs. The control of these
devices has extensive literature, ranging from conventional algorithms to intelligent
learning-based methods [91, 7, 47].

The control problem related to robot manipulators is present in many appli-
cations that require precision and exactitude. The main control variables are the
so-called joint-angles, since the position of the end-effector can be estimated using
the matrix of angles in a process called direct-kinematics[71]. However, in the op-
posite case, computing the required angles to move the end-effector to an arbitrary
position known as the inverse-kinematics problem is very challenging. As a result,
several attempts to solve the problem have been proposed for decades [105] with
only numeric approximations available today[30].

To define the robot dynamics, in this particular case, we resorted to a numeric
simulator. The main motivations are the degree of fidelity a professional simulator
provides additionally to the general complexity of the system to emulate with
differential equations. Therefore, we selected the open-source simulator based on
the ROBOTIS open-hardware robot manipulator and MATLAB Simulink [90, 67].

The robotic manipulator is divided into several components by the simulator.
Specifically, the direct and inverse kinematics are coded as subsystems, while the
robot manipulator sections are composed of mechanical models of the library sim-
scape. The reader is encouraged to visit the simulator online documentation for
specific details. Our focus deals with the optimal control and computation of the
joint-angles for a specific yet complex task.
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Figure A.10: Robot manipulator closed-loop DIPC. The six joint angles are optimally com-
puted by our proposed method. The feedback angles are calculated by a function f known as
forward kinematics provided by the MATLAB simulator.

The control problem is summarized as computing the optimal joint angles
accurately and within the time constraints to move the end effector and meet a
payload. Figure A.10 displays the general schematic with the control algorithm
actuating over the robot manipulator system.

A.3.2 Wind Farm

The electric power demand has been steadily increasing in recent decades, causing
the already complex power network to face additional issues [107]. Moreover, the
dangerous emissions produced by the fossil-based power generation facilities pose
a direct threat to all human aspects. To overcome such difficulties, recent interests
have reemerged regarding renewable energy sources, specifically solar and wind-
based [125]. Nevertheless, including these sources is a challenging task since their
intermittent nature limits their robustness and reliability. Fortunately, there are
several proposals to increase the quality and amount of power from these sources
[55].

Wind farms are arrays of wind-based turbine generation devices placed on high-
speed wind zones to satisfy the power demand [127]. The very nature of the wind,
which is erratic and difficult to predict, makes the primary source the variable of
concern. Moreover, the interaction between several wind turbines produces differ-
ent phenomena related to fluid dynamics, such as the wake-effect [37]. The wake
effect is created by the cooperative interaction between the numerous blades and
the wind flow. Frontline turbine receives a relatively unaffected wind source, but
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Figure A.11: Farm layout simulation (Top view) with wake effects. The wind velocity is shown
with the intensity scale. Note the resulting wake effects of the wind contact with each turbine.

subsequent devices must deal with ripples, and residual phenomena [3]. However,
by adjusting the face of wind turbines, the average power output of the complete
wind farm may be optimized. This method is known as yaw control.

The analysis of wind farms is a complex, multidimensional problem. From the
control theory perspective, along with the standard controllers found in power fa-
cilities, the additional yaw and pitch control poses a challenging issue. In addition,
the nature of the wind makes the control designs complex, but more so the testing
phases. Nevertheless, the study of wind nature is a mature field that has produced
numeric tools that assist with the design and testing controls [129].

We based our numeric simulations and control algorithms on the wake-effect
and optimal yaw control for this particular study case. Wake effects are complex
phenomena addressed in numerous research contributions, with particular atten-
tion to the emulation of wind farm facilities design.

The selected simulator is FLORIS [78], a tool designed by NREL to study
wake effects employing multiple models. The tool is based on Python and provides
multiple study variables, mainly for our research, the mean and individual power
outputs, yaw angles, and emulated environment. Individual wind turbines are off
the scope of this dissertation but should it interest the reader, refer to the review
papers [25, 114, 16].
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A.3.3 Wake Effect

The wake effect is a phenomenon generated from fluid dynamics, i.e., swirl effects
produced at the contact with the blades. In turn, subsequent turbines receive wind
with less speed and more turbulence; Such increases are undesired due to the
notable reduction of power produced under more turbulent, low-speed conditions.

As the wind stream touches the frontline turbines, an angle adjustment may
change the course of the wake effects, resulting in a controlled degree of disturbance
to the subsequent generators. The adjustment of the axial position of a turbine is
known as yaw control, and its application is a convenient solution in wind-based
production facilities.

Figure A.12 displays a wind stream touching the wind farm from a longitudi-
nal axis. The effect is shown as a modified stream, highlighting that subsequent
generators do not receive an ideal input.

Figure A.12: Wind downstream. The wind components, direction, and speed touch the front
line turbines, producing the wake effect and altering the subsequent generators’ wind input.

A.3.4 Yaw Control

The axial adjustment, known as yaw control, adjusts the wind components’ posi-
tion. Such ability permits a fine adjustment allowing an utterly closed-loop system,
using the generated power as feedback data. On the other hand, the real-time cor-
rection using yaw-controls requires precise information about the generated power
and, more importantly, the wind components, which depend on forecasting mod-
els. Nevertheless, closed-loop control dramatically improves the power generation
being the greedy control the most popular method.
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Greedy control stands for maximum production from an individual point of
view, i.e., each turbine generator seeks an appropriate yaw angle to capture the
most input to produce maximum power. However, although this method success-
fully overcomes wake effects, it does not consider the collective work of all elements.
Therefore, optimal production is not achieved. Nevertheless, the maximum power
output is reached at the individual level, as shown in Figure A.13.

Figure A.13: Maximum power generation at zero degrees (Facing the wind direction) at dif-
ferent speeds.

A.3.5 Control experiments

In order to simulate a real-time control employing the numerical simulator for wake
effects, we designed a set of control algorithms, as mentioned in Chapters 3 and
4. The reinforcement learning approach is based on the DDPG algorithm, shown
in Figure A.14, where a random exploration with a reward system of maximizing
the power output interacts with the simulation in an offline environment. After
that, the trained agent regulates the angles of each turbine element in a real-time
simulation.

The DIPC algorithm discussed in Chapter 4 and the main topic of this disser-
tation was used as a closed-loop controller. The Prediction model is based on an
AutoEncoder DNN trained offline, forecasting the behavior of the complete wind
farm. The Inverse model is based on an AutoEncoder DNN trained offline, em-
ulating the inverse dynamics of individual generators. The optimization method
selected is a gradient-based numeric approach to maximize power production. The
prediction window is fixed to 20 seconds in the future, which is an arbitrary value
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Figure A.14: DDPG algorithm as yaw controller. The agent learns the control signals (action)
as the yaw angles, aiming to maximize the power production.

based on experimentation of the turbine dynamics. In other words, the algorithms
generate a control signal every 20 seconds. The DIPC algorithm is shown in Figure
A.15.
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Appendix B

Numeric simulations

B.1 Control simulation

B.1.1 DC Machine control

The control objective for the DC Machine system is to regulate the speed defined
as yt = x1, despite the presence of unknown disturbances and measurement noise
with terminal voltage ut. Following our sequential steps, the DL-NARX is defined
as:

Ψ(φt) = f [ut, ut−1, ..., ut−ua , xt−1, xt−2, ..., xt−xa ] (B.1)

where f ∈ [FNN, LSTM, CNN, Autoencoder, Attention], ua ∈ [2, 10] and xa ∈
[2, 10] selected by the evolution-based optimization algorithm. The training data is
generated by ut being the terminal voltage ∈ [−1, 1] normally distributed random
signal. The observable variable yt is the motor speed, and the feedback states are
x1 and x1.

After the neuroevolution algorithm execution, the optimal sequence found is
described as:

gopt = [Network, {Architecture}, {Activation}, Batchsize, ua, xa]

Mopt = [LSTM, 221, 120, {”relu”, ”tanh”}, 56, 2, 2] (B.2)
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Thus constructing DL-NARX Predictor simulation model Ψ(φt) as (7.2) with re-
gressor vector as φt = [ut, ut−1, ut−2, xt−1, xt−2].

Following the similar NARX (7.1) with inverted features and labels, the optimal
sequence for the Inverse models is such that:

Iopt = [Autoencoder, {136, 62}, {”tanh”, ”tanh”}, 56, 2, 4] (B.3)

with regressor vector as φt = [ut, ut−1, ut−2, xt−1, xt−2, xt−3, xt−4].

The table B.1 summarizes the DL-NARX Predictor and Inverse models param-
eters. Note such values were optimally computed by the evolutionary approach
described in Chapter 5.

Table B.1: DL-NARX DC Motor models hyperparameters and training details.

DL-NARX Predictor
Parameter Values
Architecture LSTM
Layers 2
Cells 221, 120
Activation relu, tanh
Epochs 111 (Early stopping)
Cost mse

DL-NARX Inverse
Parameter Values
Architecture Autoencoder
Layers 2 LSTM
Cells 136, 62
Activation relu, tanh
Epochs 198 (Early stopping)
Cost mse

DC Machine controls configuration

The DL-IMPC algorithm performance and execution are compared to conventional
controls and with the RL DDPG. The particular control requirements for the DC
Machine are the regulation of speed with minimal error, minimal time response,
and minimal overshoot, ideally zero. Table B.2 summarizes the control algorithms
involved in this experiment.

Table B.2: DC Machine Control algorithms

Algorithm Type Description Parameters Reference
PID Conventional Proportional Integral Derivative of the error kp = 10 ki = 1 kd = 0.1 [6]
LQR Conventional Linear Quadratic Regulator Q=I R=[100 10] [23]
MPC Conventional Model Predictive Control wp = 10wc = 10 [104]
RL DDPG Intelligent Deep Deterministic Policy Gradient γ = 0.9 τ = 0.005, E=100 [106]
DL-MPC Intelligent Deep Learning Model Predictive Control wp = 10, wc = 10 This work
DL-IMPC Intelligent Deep Learning Inverse Predictive Control wp = 10, wc = 10 This work
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DC Machine control simulation

The control simulations run for 10 seconds with ts = 0.01 or 10 sample times per
second. Random disturbances Ht and measurement noise ϵt are emulated at each
time instant. The regulation point is the unity step, meaning the speed must be
maintained within the interval. The performance and accuracy are validated with
the assessment criteria metrics.

B.1.2 Mass-spring control

The control objective for the Mass spring system is to regulate the position defined
as yt = x2, despite the presence of unknown disturbances and measurement noise
with the external force ut = F . Following our sequential steps, the DL-NARX is
defined as:

Ψ(φt) = f [ut, ut−1, ..., ut−ua , xt−1, xt−2, ..., xt−xa ] (B.4)

where f ∈ [FNN, LSTM, CNN, Autoencoder, Attention], ua ∈ [2, 10] and xa ∈
[2, 10] selected by the evolution-based optimization algorithm. The training data
is generated by ut being the external force ∈ [0, 1] normally distributed random
signal. The observable variable yt is the mass position, and the feedback states
are positions x1, x2 and velocities x3, x4.

After the neuroevolution algorithm execution, the optimal sequence found is
described as:

gopt = [Network, {Architecture}, {Activation}, Batchsize, ua, xa]

Mopt = [FNN, 343, {”tanh”}, 24, 2, 3] (B.5)

Thus constructing DL-NARX Predictor simulation model Ψ(φt) as (7.2) with re-
gressor vector as φt = [ut, ut−1, ut−2, xt−1, xt−2, xt−3].

Following the similar NARX (7.1) with inverted features and labels, the optimal
sequence for the Inverse models is such that:

Iopt = [LSTM, {128, 62}, {”tanh”, ”tanh”}, 30, 3, 3] (B.6)

with regressor vector as φt = [ut, ut−1, ut−2, ut−3, xt−1, xt−2, xt−3].
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The table B.3 summarizes the DL-NARX Predictor and Inverse models pa-
rameters.

Table B.3: DL-NARX Mass-spring models hyperparameters and training details.

DL-NARX Predictor
Parameter Values
Architecture FNN
Layers 2
Cells 343
Activation tanh
Epochs 23(Early stopping)
Cost mse

DL-NARX Inverse
Parameter Values
Architecture LSTM
Layers 2 2
Cells 128,62
Activation relu, tanh
Epochs 198 (Early stopping)
Cost mse

Mass-spring controls configuration

The DL-IMPC algorithm performance and execution are compared to conventional
controls and with the RL DDPG. The particular control requirements for the Mass-
spring are the regulation of the mass position with minimal error, minimal time
response, and minimal overshoot, ideally zero. Table B.4 summarizes the control
algorithms involved in this experiment.

Table B.4: Mass-spring Control algorithms

Algorithm Type Description Parameters Reference
PID Conventional Proportional Integral Derivative of the error kp = 23 ki = 100 kd = 0.01 [1]
LQR Conventional Linear Quadratic Regulator Q=I R=[1000, 0] [92]
MPC Conventional Model Predictive Control wp = 10wc = 10 [22]
RL DDPG Intelligent Deep Deterministic Policy Gradient γ = 0.9 τ = 0.005, E=100 [52]
DL-MPC Intelligent Deep Learning Model Predictive Control wp = 10, wc = 10 This work
DL-IMPC Intelligent Deep Learning Inverse Predictive Control wp = 10, wc = 10 This work

Mass-spring control simulation

The control simulations run for 60 seconds with ts = 0.02 or 5 sample times per
second. Random disturbances Ht and measurement noise ϵt are emulated at each
time instant. The regulation point is the unity step, meaning the speed must be
maintained within the interval. The performance and accuracy are validated with
the assessment criteria metrics.



Appendix B.Numeric simulations 111

B.1.3 Mass-spring with Inverse pole control

The control objective for the Mass spring system is to regulate the position defined
as yt = x2, despite the presence of unknown disturbances and measurement noise
with the external force ut = F . Following our sequential steps, the DL-NARX is
defined as:

Ψ(φt) = f [ut, ut−1, ..., ut−ua , xt−1, xt−2, ..., xt−xa ] (B.7)

where f ∈ [FNN, LSTM, CNN, Autoencoder, Attention], ua ∈ [2, 10] and xa ∈
[2, 10] selected by the evolution-based optimization algorithm. The training data
is generated by ut being the external force ∈ [0, 1] normally distributed random
signal. The observable variable yt is the mass position, and the feedback states
are positions x1, x2 and velocities x3, x4.

After the neuroevolution algorithm execution, the optimal sequence found is
described as:

gopt = [Network, {Architecture}, {Activation}, Batchsize, ua, xa]

Mopt = [LSTM, 33, 12, {”tanh”}, 12, 2, 2] (B.8)

Thus constructing DL-NARX Predictor simulation model Ψ(φt) as (7.2) with re-
gressor vector as φt = [ut, ut−1, ut−2, xt−1, xt−2, xt−3].

Following the similar NARX (7.1) with inverted features and labels, the optimal
sequence for the Inverse models is such that:

Iopt = [LSTM, {512, 587}, {”tanh”, ”tanh”}, 8, 2, 2] (B.9)

with regressor vector as φt = [ut, ut−1, ut−2, ut−3, xt−1, xt−2, xt−3].

The table B.5 summarizes the DL-NARX Predictor and Inverse models.

Mass-spring with Inverse pole controls configuration

The DL-IMPC algorithm performance and execution are compared to conventional
controls and with the RL DDPG. The particular control requirements for the Mass-
spring are the regulation of the mass position with minimal error, minimal time
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Table B.5: DL-NARX Mass-spring with Inverse Pole models hyperparameters and training
details.

DL-NARX Predictor
Parameter Values
Architecture LSTM
Layers 2
Cells 33, 12
Activation tanh
Epochs 89 (Early stopping)
Cost mse

DL-NARX Inverse
Parameter Values
Architecture LSTM
Layers 2
Cells 512, 587
Activation relu, tanh
Epochs 485 (Early stopping)
Cost mse

response, and minimal overshoot, ideally zero. Table B.6 summarizes the control
algorithms involved in this experiment.

Table B.6: Mass-spring with Inverse Pole Control algorithms

Algorithm Type Description Parameters Reference
PID Conventional Proportional Integral Derivative of the error kp = 2.5 ki = 0.25 kd = 0 [6]
LQR Conventional Linear Quadratic Regulator Q=I R=[32 10] [23]
MPC Conventional Model Predictive Control wp = 10wc = 10 [22]
RL DDPG Intelligent Deep Deterministic Policy Gradient γ = 0.9 τ = 0.005, E=100 [52]
DL-MPC Intelligent Deep Learning Model Predictive Control wp = 10, wc = 10 This work
DL-IMPC Intelligent Deep Learning Inverse Predictive Control wp = 10, wc = 10 This work

Mass-spring with Inverse pole control simulation

The control simulations run for 60 seconds with ts = 0.02 or 5 sample times per
second. Random disturbances Ht and measurement noise ϵt are emulated at each
time instant. The regulation point is the unity step, meaning the speed must be
maintained within the interval. The performance and accuracy are validated with
the assessment criteria metrics.
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B.1.4 Cart-Pole control

The control objective for the Mass spring system is to regulate the position defined
as yt = x2, despite the presence of unknown disturbances and measurement noise
with the external force ut = F . Following our sequential steps, the DL-NARX is
defined as:

Ψ(φt) = f [ut, ut−1, ..., ut−ua , xt−1, xt−2, ..., xt−xa ] (B.10)

where f ∈ [FNN, LSTM, CNN, Autoencoder, Attention], ua ∈ [2, 10] and xa ∈
[2, 10] selected by the evolution-based optimization algorithm. The training data
is generated by ut being the external force ∈ [0, 1] normally distributed random
signal. The observable variable yt is the mass position, and the feedback states
are positions x1, x2 and velocities x3, x4.

After the neuroevolution algorithm execution, the optimal sequence found is
described as:

gopt = [Network, {Architecture}, {Activation}, Batchsize, ua, xa]

Mopt = [CNN, 8, 4, 2, {”tanh”}, 8, 2, 2] (B.11)

Thus constructing DL-NARX Predictor simulation model Ψ(φt) as (7.2) with re-
gressor vector as φt = [ut, ut−1, ut−2, xt−1, xt−2, xt−3].

Following the similar NARX (7.1) with inverted features and labels, the optimal
sequence for the Inverse models is such that:

Iopt = [Autoencoder, {512, 512}, {”tanh”, ”tanh”}, 8, 2, 2] (B.12)

with regressor vector as φt = [ut, ut−1, ut−2, ut−3, xt−1, xt−2, xt−3].

The table B.7 summarizes the DL-NARX Predictor and Inverse models pa-
rameters.

Cart-Pole controls configuration

The DL-IMPC algorithm performance and execution are compared to conventional
controls and with the RL DDPG. The particular control requirements for the Mass-
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Table B.7: DL-NARX Cart Pole models hyperparameters and training details.

DL-NARX Predictor
Parameter Values
Architecture CNN
Operations 4
Values 8, 4, 2
Activation tanh
Epochs 786 (Early stopping)
Cost mse

DL-NARX Inverse
Parameter Values
Architecture Autoencoder
Layers 2
Cells 512, 512
Activation tanh, tanh
Epochs 762 (Early stopping)
Cost mse

Table B.8: Cart Pole Control algorithms

Algorithm Type Description Parameters Reference
PID Conventional Proportional Integral Derivative of the error kp = 100 ki = 1 kd = 20 [81]
LQR Conventional Linear Quadratic Regulator Q=I R=[32 10] [81]
MPC Conventional Model Predictive Control wp = 10wc = 10 [46]
RL DDPG Intelligent Deep Deterministic Policy Gradient γ = 0.9 τ = 0.005, E=100 [52]
DL-MPC Intelligent Deep Learning Model Predictive Control wp = 10, wc = 10 This work
DL-IMPC Intelligent Deep Learning Inverse Predictive Control wp = 10, wc = 10 This work

spring are the regulation of the mass position with minimal error, minimal time
response, and minimal overshoot, ideally zero. Table B.8 summarizes the control
algorithms involved in this experiment.

Cart-Pole control simulation

The control simulations run for 60 seconds with ts = 0.02 or 5 sample times per
second. Random disturbances Ht and measurement noise ϵt are emulated at each
time instant. The regulation point is the unity step, meaning the speed must be
maintained within the interval. The performance and accuracy are validated with
the assessment criteria metrics.
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B.1.5 Microgrid control

The control objective for the Mass spring system is to regulate the position defined
as yt = x2, despite the presence of unknown disturbances and measurement noise
with the external force ut = F . Following our sequential steps, the DL-NARX is
defined as:

Ψ(φt) = f [ut, ut−1, ..., ut−ua , xt−1, xt−2, ..., xt−xa ] (B.13)

where f ∈ [FNN, LSTM, CNN, Autoencoder, Attention], ua ∈ [2, 10] and xa ∈
[2, 10] selected by the evolution-based optimization algorithm. The training data
is generated by ut being the external force ∈ [0, 1] normally distributed random
signal. The observable variable yt is the mass position, and the feedback states
are positions x1, x2 and velocities x3, x4.

After the neuroevolution algorithm execution, the optimal sequence found is
described as:

gopt = [Network, {Architecture}, {Activation}, Batchsize, ua, xa]

Mopt = [FNN, 24, 48, {”tanh”}, 64, 8, 8] (B.14)

Thus constructing DL-NARX Predictor simulation model Ψ(φt) as (7.2) with re-
gressor vector as φt = [ut, ut−1, ut−2, xt−1, xt−2, xt−3].

Following the similar NARX (7.1) with inverted features and labels, the optimal
sequence for the Inverse models is such that:

Iopt = [FNN, {74, 28}, {”tanh”, ”tanh”}, 64, 8, 8] (B.15)

with regressor vector as φt = [ut, ut−1, ut−2, ut−3, xt−1, xt−2, xt−3].

The table B.9 summarizes the DL-NARX Predictor and Inverse models.

Microgrid controls configuration

The DL-IMPC algorithm performance and execution are compared to conventional
controls and with the RL DDPG. The particular control requirements for the Mass-
spring are the regulation of the mass position with minimal error, minimal time
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Table B.9: DL-NARX Microgrid models hyperparameters and training details.

DL-NARX Predictor
Parameter Values
Architecture FNN
Layers 2
Neurons 24, 48
Activation tanh
Epochs 65 (Early stopping)
Cost mse

DL-NARX Inverse
Parameter Values
Architecture FNN
Layers 2
Neurons 74, 28
Activation tanh, tanh
Epochs 125 (Early stopping)
Cost mse

response, and minimal overshoot, ideally zero. The Table B.10 summarizes the
control algorithms involved in this experiment.

Table B.10: Mass-spring with Inverse Pole Control algorithms

Algorithm Type Description Parameters Reference
PID Conventional Proportional Integral Derivative of the error kp = 2.5 ki = 0.25 kd = 0 [6]
LQR Conventional Linear Quadratic Regulator Q=I R=[32 10] [23]
MPC Conventional Model Predictive Control wp = 10wc = 10 [22]
RL DDPG Intelligent Deep Deterministic Policy Gradient γ = 0.9 τ = 0.005, E=100 [52]
DL-MPC Intelligent Deep Learning Model Predictive Control wp = 10, wc = 10 This work
DL-IMPC Intelligent Deep Learning Inverse Predictive Control wp = 10, wc = 10 This work

Microgrid control simulation

The control simulations run for 60 seconds with ts = 0.02 or 5 sample times per
second. Random disturbances Ht and measurement noise ϵt are emulated at each
time instant. The regulation point is the unity step, meaning the speed must be
maintained within the interval. The performance and accuracy are validated with
the assessment criteria metrics.
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B.1.6 Lorenz Attractor control

The control objective for the Mass spring system is to regulate the position defined
as yt = x2, despite the presence of unknown disturbances and measurement noise
with the external force ut = F . Following our sequential steps, the DL-NARX is
defined as:

Ψ(φt) = f [ut, ut−1, ..., ut−ua , xt−1, xt−2, ..., xt−xa ] (B.16)

where f ∈ [FNN, LSTM, CNN, Autoencoder, Attention], ua ∈ [2, 10] and xa ∈
[2, 10] selected by the evolution-based optimization algorithm. The training data
is generated by ut being the external force ∈ [0, 1] normally distributed random
signal. The observable variable yt is the mass position, and the feedback states
are positions x1, x2 and velocities x3, x4.

After the neuroevolution algorithm execution, the optimal sequence found is
described as:

gopt = [Network, {Architecture}, {Activation}, Batchsize, ua, xa]

Mopt = [Autoencoder, 543, 523, {”tanh”}, 256, 8, 8] (B.17)

Thus constructing DL-NARX Predictor simulation model Ψ(φt) as (7.2) with re-
gressor vector as φt = [ut, ut−1, ut−2, xt−1, xt−2, xt−3].

Following the similar NARX (7.1) with inverted features and labels, the optimal
sequence for the Inverse models is such that:

Iopt = [Autoencoder, {745, 945}, {”tanh”, ”tanh”}, 256, 8, 8] (B.18)

with regressor vector as φt = [ut, ut−1, ut−2, ut−3, xt−1, xt−2, xt−3].

The table B.11 summarizes the DL-NARX Predictor and Inverse models.

Lorenz Attractor controls configuration

The DL-IMPC algorithm performance and execution are compared to conventional
controls and with the RL DDPG. The particular control requirements for the Mass-
spring are the regulation of the mass position with minimal error, minimal time
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Table B.11: DL-NARX Lorenz Attractor system models hyperparameters and training details.

DL-NARX Predictor
Parameter Values
Architecture Autoencoder
Layers 2 LSTM
Cells 543, 523
Activation relu, tanh
Epochs 1258 (Early stopping)
Cost mse

DL-NARX Inverse
Parameter Values
Architecture Autoencoder
Layers 2 LSTM
Cells 745, 945
Activation relu, tanh
Epochs 3590 (Early stopping)
Cost mse

response, and minimal overshoot, ideally zero. Table B.12 summarizes the control
algorithms involved in this experiment.

Table B.12: Lorenz Attractor system Control algorithms

Algorithm Type Description Parameters Reference
PID Conventional Proportional Integral Derivative of the error kp = 1 ki = 0.1 kd = 0.001 [26]
LQR Conventional Linear Quadratic Regulator Q= R= [68]
MPC Conventional Model Predictive Control wp = 10wc = 10 [124]
RL DDPG Intelligent Deep Deterministic Policy Gradient γ = 0.9 τ = 0.005, E=100 [44]
DL-MPC Intelligent Deep Learning Model Predictive Control wp = 10, wc = 10 This work
DL-IMPC Intelligent Deep Learning Inverse Predictive Control wp = 10, wc = 10 This work

Lorenz Attractor control simulation

The control simulations run for 60 seconds with ts = 0.02 or 5 sample times per
second. Random disturbances Ht and measurement noise ϵt are emulated at each
time instant. The regulation point is the unity step, meaning the speed must be
maintained within the interval. The performance and accuracy are validated with
the assessment criteria metrics.
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B.1.7 Robot manipulator control

The control objective for the Mass spring system is to regulate the position defined
as yt = x2, despite the presence of unknown disturbances and measurement noise
with the external force ut = F . Following our sequential steps, the DL-NARX is
defined as:

Ψ(φt) = f [ut, ut−1, ..., ut−ua , xt−1, xt−2, ..., xt−xa ] (B.19)

where f ∈ [FNN, LSTM, CNN, Autoencoder, Attention], ua ∈ [2, 10] and xa ∈
[2, 10] selected by the evolution-based optimization algorithm. The training data
is generated by ut being the external force ∈ [0, 1] normally distributed random
signal. The observable variable yt is the mass position, and the feedback states
are positions x1, x2 and velocities x3, x4.

After the neuroevolution algorithm execution, the optimal sequence found is
described as:

gopt = [Network, {Architecture}, {Activation}, Batchsize, ua, xa]

Mopt = [LSTM, 256, {”tanh”}, 12, 2, 2] (B.20)

Thus constructing DL-NARX Predictor simulation model Ψ(φt) as (7.2) with re-
gressor vector as φt = [ut, ut−1, ut−2, xt−1, xt−2, xt−3].

Following the similar NARX (7.1) with inverted features and labels, the optimal
sequence for the Inverse models is such that:

Iopt = [LSTM, {256}, {”tanh”, ”tanh”}, 12, 2, 2] (B.21)

with regressor vector as φt = [ut, ut−1, ut−2, ut−3, xt−1, xt−2, xt−3].

The table B.13 summarizes the DL-NARX Predictor and Inverse models.

Robot manipulator controls configuration

The DL-IMPC algorithm performance and execution are compared to conventional
controls and with the RL DDPG. The particular control requirements for the Mass-
spring are the regulation of the mass position with minimal error, minimal time
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Table B.13: DL-NARX Robot manipulator system models hyperparameters and training de-
tails.

DL-NARX Predictor
Parameter Values
Architecture LSTM
Layers 1
Cells 256
Activation tanh
Epochs 22 (Early stopping)
Cost mse

DL-NARX Inverse
Parameter Values
Architecture LSTM
Layers 1
Cells 256
Activation tanh
Epochs 213 (Early stopping)
Cost mse

response, and minimal overshoot, ideally zero. Table B.14 summarizes the control
algorithms involved in this experiment.

Table B.14: Robot manipulator system Control algorithms

Algorithm Type Description Parameters Reference
PID Conventional Proportional Integral Derivative of the error kp = 10 ki = 1 kd = 0.1 [27]
LQR Conventional Linear Quadratic Regulator Q= R= [51]
MPC Conventional Model Predictive Control wp = 10wc = 10 [104]
RL DDPG Intelligent Deep Deterministic Policy Gradient γ = 0.9 τ = 0.005, E=100 This work
DL-MPC Intelligent Deep Learning Model Predictive Control wp = 10, wc = 10 This work
DL-IMPC Intelligent Deep Learning Inverse Predictive Control wp = 10, wc = 10 This work

Robot manipulator control simulation

The control simulations run for 60 seconds with ts = 0.02 or 5 sample times per
second. Random disturbances Ht and measurement noise ϵt are emulated at each
time instant. The regulation point is the unity step, meaning the speed must be
maintained within the interval. The performance and accuracy are validated with
the assessment criteria metrics.
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B.1.8 Wind Farm control

The control objective for the Mass spring system is to regulate the position defined
as yt = x2, despite the presence of unknown disturbances and measurement noise
with the external force ut = F . Following our sequential steps, the DL-NARX is
defined as:

Ψ(φt) = f [ut, ut−1, ..., ut−ua , xt−1, xt−2, ..., xt−xa ] (B.22)

where f ∈ [FNN, LSTM, CNN, Autoencoder, Attention], ua ∈ [2, 10] and xa ∈
[2, 10] selected by the evolution-based optimization algorithm. The training data
is generated by ut being the external force ∈ [0, 1] normally distributed random
signal. The observable variable yt is the mass position, and the feedback states
are positions x1, x2 and velocities x3, x4.

After the neuroevolution algorithm execution, the optimal sequence found is
described as:

gopt = [Network, {Architecture}, {Activation}, Batchsize, ua, xa]

Mopt = [LSTM, {256, 256}, {”tanh”}, 24, 2, 3] (B.23)

Thus constructing DL-NARX Predictor simulation model Ψ(φt) as (7.2) with re-
gressor vector as φt = [ut, ut−1, ut−2, xt−1, xt−2, xt−3].

Following the similar NARX (7.1) with inverted features and labels, the optimal
sequence for the Inverse models is such that:

Iopt = [Autoencoder, {720, 64}, {”tanh”, ”tanh”}, 30, 3, 3] (B.24)

with regressor vector as φt = [ut, ut−1, ut−2, ut−3, xt−1, xt−2, xt−3].

The table B.15 summarizes the DL-NARX Predictor and Inverse models.

Wind Farm controls configuration

The DL-IMPC algorithm performance and execution are compared to conventional
controls and with the RL DDPG. The particular control requirements for the Mass-
spring are the regulation of the mass position with minimal error, minimal time
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Table B.15: DL-NARX Wind Farm system models hyperparameters and training details.

DL-NARX Predictor
Parameter Values
Architecture LSTM
Layers 2
Cells 256, 256
Activation relu, tanh
Epochs 321 (Early stopping)
Cost mse

DL-NARX Inverse
Parameter Values
Architecture Autoencoder
Layers 2 LSTM
Cells 720, 64
Activation relu, tanh
Epochs 652 (Early stopping)
Cost mse

response, and minimal overshoot, ideally zero. Table B.16 summarizes the control
algorithms involved in this experiment.

Table B.16: Wind Farm system Control algorithms

Algorithm Type Description Parameters Reference
PID Conventional Proportional Integral Derivative of the error NA
LQR Conventional Linear Quadratic Regulator NA
MPC Conventional Model Predictive Control wp = 10wc = 10 This work
RL DDPG Intelligent Deep Deterministic Policy Gradient γ = 1.0 τ = 0.001, E=1000 [28]
DL-MPC Intelligent Deep Learning Model Predictive Control wp = 10, wc = 10 This work
DL-IMPC Intelligent Deep Learning Inverse Predictive Control wp = 10, wc = 10 This work

Wind Farm control simulation

The control simulations run for 60 seconds with ts = 0.02 or 5 sample times per
second. Random disturbances Ht and measurement noise ϵt are emulated at each
time instant. The regulation point is the unity step, meaning the speed must be
maintained within the interval. The performance and accuracy are validated with
the assessment criteria metrics.
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Table B.17: Experimental results summary

Experiment ITAE IAE MSE Worst Control Best Control
DC Machine 12.484 12.5 0.045 PID DIPC
Mass spring 11.548 11.5 0.012 PID DIPC
Mass spring with Inverse Pole 13.842 10.98 0.048 MPC DIPC
Cart Pole 15.484 15.81 0.135 MPC DIPC
Microgrid 9.841 9.002 0.002 PID DIPC
Lorenz Attractor 24.485 22.84 0.457 PID DIPC
Robotic Manipulator 10.985 10.25 0.281 PID DDPG
Wind Farm NA NA NA NA DIPC

Figure B.1: Detailed performance comparison. The decrease in iterations utilized to find
the optimal control sequence is shown for the tested nonlinear benchmarks (DC Machine, Mass
Spring, Cart Pole, High dimension) using MPC, DMPC and DIPC.
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Figure B.2: Detailed performance comparison. The decrease in iterations utilized to find the
optimal control sequence is shown for the tested nonlinear benchmarks (Mass Spring + Pole, A.
Maneuver, Lorenz Attractor) using MPC, DMPC and DIPC.

a)

b) c) d)

Figure B.3: Performance comparison, as presented in the publication [1]. The decrease
observed in the average iterations used to compute a control signal is significant. Moreover,
a slight increase in the response quality was achieved, as pointed by the assessment criteria
considered. For more complex systems, the reduction was not as drastic as with simpler
ones, yet considerable.
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Figure B.4: Greedy yaw control results. The average power produced by each turbine element
is shown. The first column, Total, represents the average production of the complete wind farm.

Figure B.5: Power output comparison between the used methods. The first column of each
plot, Total, represents the average production of the complete wind farm. Note that DIPC
generates more power in average against the other control algorithms.
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