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Abstract

Hands are our primary way to interact with the world. Understanding

the interaction between human hands and the environment offers valu-

able insights into fields such as robotics, human-computer interaction,

human-robot interaction, and virtual reality. Recently, hand-object

interaction understanding from visual inputs has been gaining inter-

est due to the widespread of mobile cameras. Numerous hand-object

interaction recognition methods have been developed to recognize the

user’s short-term actions and spatial configuration of hands and in-

teracting objects. These studies have been conducted in a controlled

environment where user action is simple, the target object is evident,

and the scene is static. However, the world we live in is far more com-

plicated than we expect. People move around places and perform var-

ious actions to meet their needs. Multiple objects are simultaneously

involved in an activity and their spatial configuration and appearance

change over time by actions performed by the user. While this makes

it difficult to even figure out the right object which is in interaction,

such real-world aspects have not been taken seriously.

In this thesis, I present methods for recognizing when and for which

object the hand-object interaction occurs that generalize to unknown,

dynamic, and cluttered scenes in the real world. Specifically, I study

the problems of (1) recognizing the contact state between a hand and

an object, (2) identifying unique objects appearing in a real-world

environment, and (3) their application on assisting users in finding

lost objects. Towards developing models that work in real-world en-

vironments, they are designed through the unified concept of hand-

object interaction mining, which comprises the following properties:

(i) learning from unlabeled data, (ii) category-agnostic formulation,

and (iii) minimum user intervention. Off-the-shelf object detection,

tracking, and segmentation techniques are used as a common com-

ponent for automatically extracting useful knowledge from large-scale

unlabeled data. Extensive data collection is conducted for evaluating

and discovering unique difficulties that appear in a real-world setting.

In the first work, a method to predict contact states between hands

and objects is introduced. Specifically, a video-based method that pre-
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dicts a sequence of binary contact states (contact or no-contact) from a

video and a pair of hand and object tracks is introduced. By predicting

hand-object contacts, we can detect objects involved in interactions.

However, annotating a large number of hand-object tracks and contact

labels is costly. To overcome this difficulty, a semi-supervised frame-

work with two new techniques is introduced: (i) automatic collection

of training data with motion-based pseudo-labels and (ii) guided pro-

gressive label correction (gPLC) which corrects noisy pseudo-labels

with a small amount of trusted data. Because there are no suitable

datasets are available for evaluation in real-world environments, a new

benchmark on a popular first-person video dataset is introduced. Ex-

periments show that the learned model shows superior performance

against existing baseline methods and generalizes well against novel

objects and environments.

In the second work, the problem of category-agnostic object in-

stance identification is studied. On understanding hand-object inter-

actions across time, recognizing whether an object is the same one

that appeared before will be one of the essential abilities. Because

diverse objects appear in real-world environments, it is not realistic to

pre-define the target category, and a class-agnostic solution will be de-

manded. However, no prior works exist on this challenging task, and

fundamental difficulties in recognizing object instances in real-world

environments were unknown. To this end, a large-scale, challenging

benchmark consisting of more than 1,500 unique instances is built

on top of unscripted, large-scale first-person videos. Strong metric

learning-based baseline models, an in-depth evaluation of the dataset,

and a performance comparison against previous datasets are intro-

duced. The analysis shows that the trained model using the created

dataset shows better robustness against significant clutters in real-

world environments.

In the third work, a practical use-case of hand-object interaction

in assisting users in finding lost objects is introduced. People spend an

enormous amount of time and effort looking for lost objects. To help

remind people of the location of lost objects, various computational

systems that provide information on them have been developed. How-

ever, prior systems for assisting people in finding objects require users
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to register the target objects in advance. This requirement imposes a

cumbersome burden on the users, and the system cannot help remind

them of unexpectedly lost objects. In this study, I propose GO-Finder

(“Generic Object Finder”), a registration-free wearable camera-based

system for assisting people in finding an arbitrary number of objects

based on two key features: automatic discovery of hand-held objects

and image-based candidate selection. Given a video taken from a

wearable camera, GO-Finder automatically detects and groups hand-

held objects to form a visual timeline of the objects. Users can retrieve

the last appearance of the object by browsing the timeline through a

smartphone app. To investigate how users benefit from using GO-

Finder, two user studies are conducted. In the first study, the use-

fulness of GO-Finder is evaluated by a realistic object retrieval task.

In the second study, the system’s usability on a longer and realistic

scenario is verified, accompanied by an additional feature of context-

based candidate filtering. The usefulness of GO-Finder in realistic sce-

narios where more than one hundred objects appear is verified through

experimental results and user feedback.
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Chapter 1

Introduction

1.1 Background

Hands are one of our primary ways to interact with the world. Understand-

ing the interaction between human hands and environment offers several

important applications such as action prediction [2, 3], rehabilitation mea-

surements [4], knowledge transfer for robot manipulation [5], and virtual re-

ality [6]. Hand-object interaction understanding from visual sensors has been

gained interest because it does not require the person to wear an external

device to their hand nor attach sensors to the object of interest. To capture

hand-object interaction from visual inputs, first-person (egocentric) percep-

tion [7], which captures video footage from a body-worn camera is found

to be promising since it captures the interacting hand and object up-close

compared to the traditional third-person cameras. Because the wearable

camera moves along with the user, it can efficiently capture the user’s action

and its surrounding environment instead of placing multiple sensors in the

environment. In addition to its advantage on sensor placement, this human-

centric perspective is suitable for tracking continuous, everyday interaction

for a long-term duration. By integrating wearable cameras with an intelli-

gent recognition system, we can realize a future of people receiving useful

feedback from the system by monitoring the current status of the wearer and

environment [8–10].

Recently, numerous hand-object interaction recognition methods have
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been developed to recognize the user’s short-term actions and spatial configu-

ration of hands and interacting objects [11]. While there has been significant

progress in tasks such as 3D hand pose estimation [12], and reconstruction

of the 3D hand and its interacting objects [13–15], they have been typically

studied in controlled settings where user actions are simple, the object of in-

terest is evident, and the scene remains static [13, 16–19]. Limited numbers

of objects and actions are carefully selected for the study, and the evaluations

are conducted in similar environments as training.

However, the real world we live in is far more complicated than we expect.

Users move around places and perform various actions to meet their needs.

Their actions are unscripted, rapid, and often subtle. Many objects are

simultaneously involved in an activity, and their spatial configuration and

appearance change over time by the user’s action. While the above real-

world aspects make it difficult to even figure out the right object which is in

interaction, such aspects had not been taken seriously. In the above context,

a method generalizes to unknown and cluttered scenes in the real world is

demanded.

In this thesis, I present fundamental methods for recognizing when and

for which object the hand-object interaction occurs that generalize to un-

known, dynamic, and cluttered scenes in the real world. Specifically, I study

the problems of (1) recognizing the contact state between a hand and an

object, (2) identifying unique objects appearing in a real-world environment,

and (3) their application on assisting users in finding lost objects. Towards

developing models that work in real-world environments, I propose a unified

concept named hand-object interaction mining, consisting of three principles:

Learning from unlabeled data Hand-object interaction understanding

typically requires an extensive amount of annotation (e.g ., the spatial con-

figuration of hand and object, their interaction state, and their changes over

time). However, it is unrealistic to provide full supervision to a large num-

ber of examples because of the high annotation cost. Therefore, we utilize

the off-the-shelf object detection and tracking method to extract valuable

information from unlabeled data without manual supervision.
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Category-agnostic formulation Most visual recognition models exploit

the “closed world assumption”, i.e., the presumption that a true statement

is also known to be true. For example, in an object recognition system, the

object categories to be recognized are limited to pre-defined categories and

images other than that categories will be ignored as irrelevant or false input.

However, arbitrary types of objects will appear in the real world. As long

as it is a hand-manipulated object, it must be included in the processing

target. In addition, the objects’ form and appearance dynamically change

across time through interactions. For example, in the cooking domain, the

form of the food significantly changes by the cooking action (e.g ., chop, stir,

and heat). The appearance of a mug significantly changes by which drink to

be poured to. Under such atypical appearance change, it will be difficult to

cover enough data variation for all the object categories. Instead of designing

a model specialized for a limited number of categories, a model should be

designed to be category-agnostic—arbitrary objects should be treated equally

without filtering them.

Minimum user intervention On deploying a system to users, it is im-

portant not to give unnecessary burden to the user to use it. For example,

excessive inquiries to the user will significantly impair the user experience.

Therefore, the system should automatically collect information around the

user as possible instead of asking unnecessary inquiries.

All the methods in this thesis are developed by following the above three

principles. Instead of manually collecting data, off-the-shelf object detection,

tracking, and segmentation techniques trained by recent large-scale video

datasets [20–23] are effectively used as a common component for efficiently

extracting useful knowledge from large-scale unlabeled data. In addition,

extensive data collection is made to evaluate the proposed methods in real-

world environments.

1.2 Overview and Organization

The overview of this thesis is given as follows:
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1. Hand-Object Contact Prediction (Chapter 2)

First, I work on the task of predicting the contact state between hands and

objects. In determining which hand-objects pair are interacting, it is impor-

tant to infer when hands and objects are in contact. Despite its importance,

prior works on action recognition typically modeled action at a video clip

level and were not modeled as an interaction between a specific pair of hands

and objects. Towards more precise modeling of hand-object interaction, a

video-based method for predicting contact between a hand and an object

is introduced. Specifically, given a video and a pair of hand and object

tracks, the model predict a binary contact state (contact or no-contact) for

each frame. However, annotating a large number of hand-object tracks and

contact labels against the diverse environment is costly. To overcome this dif-

ficulty, a semi-supervised framework with two new techniques is introduced:

(i) automatic collection of training data with motion-based pseudo-labels and

(ii) guided progressive label correction (gPLC) which corrects noisy pseudo-

labels with a small amount of trusted data. Because there were not suitable

datasets available for contact prediction in real-world environments, a new

benchmark is built for evaluation. Experiments show that the learned model

shows superior performance against existing baseline methods and general-

izes well in the case of novel objects and environments.

2. Category-Agnostic Object Instance Identification (Chapter 3)

In this chapter, a further look at the object side of hand-object recognition

will be conducted. On understanding long-term hand-object interactions

across time, recognizing whether an object is the same one that appeared

before will be one of the essential abilities. This object instance identifica-

tion ability contributes to multiple applications such as object state-change

recognition, long-term action understanding, and user assistance by tracking

the presence of objects. In the real world, arbitrary types of object instances

will appear and it is not ideal to limit the object categories to be recognized in

advance. Therefore, a class-agnostic solution is demanded considering prac-

tical use. In addition, each instance should be discovered without presuming

its existence in a novel environment.
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To this end, I work on the challenging problem of category-agnostic object

instance identification. It is formulated as clustering of object image tracks

that appear in videos. Because no suitable dataset exists for evaluation, EK-

Instance, a large-scale, challenging benchmark consisting of more than 1,500

unique instances is built upon the EPIC-KITCHENS dataset [23]. To extract

fundamental difficulties in the dataset, strong metric learning-based models,

an in-depth evaluation of the dataset, and a performance comparison against

previous datasets are introduced. The analysis shows that the trained model

using the created dataset shows better robustness against significant clutters

in real-world environments.

3. Assisting Users in Finding Lost Objects (Chapter 4)

In this chapter, I present a practical use-case of hand-object interaction in

assisting users in finding lost objects. People spend an enormous amount of

time and effort looking for lost objects. To help remind people of the loca-

tion of lost objects, various computational systems that provide information

on their locations have been developed. However, prior systems for assisting

people in finding objects require users to register the target objects in ad-

vance. This requirement imposes a cumbersome burden on the users, and the

system cannot help remind them of unexpectedly lost objects. In this study,

I propose GO-Finder (“Generic Object Finder”), a registration-free wearable

camera-based system for assisting people in finding an arbitrary number of

objects based on two key features: automatic discovery of hand-held objects

and image-based candidate selection. Given a video taken from a wearable

camera, GO-Finder automatically detects and groups hand-held objects to

form a visual timeline of the objects. Users can retrieve the last appearance

of the object by browsing the timeline through a smartphone app. I con-

ducted user studies to investigate how users benefit from using GO-Finder.

In the first study, I asked participants to perform an object retrieval task

and confirmed improved accuracy and reduced mental load in the object

search task by providing clear visual cues on object locations. In the second

study, the system’s usability on a longer and realistic scenario was verified,

accompanied by an additional feature of context-based candidate filtering.
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Participant feedback suggested the usefulness of GO-Finder also in realistic

scenarios where more than one hundred objects appear.
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Chapter 2

Hand-Object Contact

Prediction

2.1 Introduction

Recognizing how hands interact with objects is crucial to understand how

we interact with the world. Hand-object interaction analysis contributes to

several fields such as action prediction [2], rehabilitation [4], robotics [24],

and virtual reality [6].

Every hand-object interaction begins with contact. In determining which

hand-object pairs are interacting, it is important to infer when hands and

objects are in contact. However, despite its importance, finding the begin-

ning and the end of hand-object interaction has not received much attention.

For instance, prior works on action recognition (e.g ., [25]) attempt to rec-

ognize different types of hand object interactions at the video clip level,

i.e., recognizing one action for each video clip given as input. Some other

works on action localization (e.g ., [26]) can be used for detecting hand ob-

ject interactions but localized action segments are not necessarily related to

the beginning and the end of contact between hands and objects. Contact

between a hand and an object has been studied in the context of 3D recon-

struction of hand object interaction [13, 14]. However, they assumed that

hands and objects are already interacting with each other. Only the moment

when hands and objects are interacting in a stable grasp was targeted for
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Figure 2.1: Overlap on Image = Contact?: Right hand (masked red

region) grabs the onion (middle). Surrounding objects (cutting board, knife)

overlaps with hand but not in contact. While it is difficult to determine con-

tact state from single image, we can ease the problem by looking at temporal

context (left and right).

analysis.

In this work, the task of predicting contact between a hand and an object

from visual input is studied. Predicting contact between a hand and an

object from visual input is not trivial. For example, even if the hand area

and the bounding box of an object overlap, it does not necessarily mean

that the hand and the object are in contact (see Figure 2.1). In determining

whether a hand and an object are in contact, it is essential to consider the

spatiotemporal relationship between them. While some methods claim that

the hand contact state can be classified by looking at hand shape [22, 27], they

did not explicitly predict the contact state between a specific pair of a hand

and an object, limiting their utility. This work aims to fill the gap between

utilization of hand presence and detailed 3D understanding by predicting

whether a hand is in contact with an object.

Specifically, a video-based method for predicting binary contact states

(contact or no-contact) between a hand and an object in every frame is pro-

posed. We assume tracks of hands and objects specified by bounding boxes

(hand-object tracks) as input, and infer the contact state between the spec-

ified hand-object pair. However, annotating a large number of hand-object

tracks and their contact states can become too costly. To overcome this diffi-

culty, a semi-supervised framework consisting of (i) automatic training data

collection with motion-based pseudo-labels and (ii) guided progressive label

correction (gPLC) which corrects noisy pseudo-labels with a small amount

of trusted data is introduced.
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Given unlabeled videos, off-the-shelf detection and tracking models are

applied to form a set of hand-object tracks. Then pseudo-contact state labels

to each track are assigned by looking at its motion pattern. Specifically, we

assign a contact label when a hand and an object are moving in the same

direction and a no-contact label when a hand is moving alone.

While generated pseudo-labels can provide valuable information on de-

termining the state of contact states with various types of objects when

training a prediction model, the pseudo-labels also contain errors that hurt

the model’s performance. To alleviate this problem, those errors are cor-

rected by the guidance of an additional model trained on a small amount

of trusted data. In gPLC, two networks each trained with noisy labels and

trusted labels are trained. During the training, noisy pseudo-labels are itera-

tively corrected based on both network’s confidence scores. A small amount

of trusted data is used to guide which label to be corrected and yield reli-

able training labels for automatically extracted hand-object tracks. A novel

contact state prediction model which combines appearance and motion in-

formation, which will be trained with gPLC is also presented.

Because there was no benchmark suitable for this task, I newly anno-

tated contact states to various types of interactions appearing in the EPIC-

KITCHENS dataset [23, 28] which includes in-the-wild cooking activities. I

show that the prediction model achieves superior performance against frame-

based models [22, 27], and the performance further boosted by using motion-

based pseudo-labels along with the proposed gPLC scheme.

The contributions include: (1) A video-based method of predicting con-

tact between a hand and an object leveraging temporal context; (2) A semi-

supervised framework of automatic pseudo-contact state label collection and

guided label correction to complement lack of annotations; (3) Evaluation on

newly collected annotation over a real-world dataset.

2.2 Related Work

Reconstructing hand-object interaction Reconstruction of the spatial

configuration of hands and their interacting objects plays a crucial role to un-

derstand hand-object interaction. 2D segmentation [29] and 3D pose/mesh
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estimation [13, 19, 30–32] of hand-object interaction were studied actively

in recent years. They aims to estimate either hand and object pose directly

or otherwise estimate the parameters of the hand model. In addition to

3D shape, richer information could be obtained from synthetic data [13, 33],

whole-body hand-object interaction capture [34], thermal sensor [17, 18], and

3D object models [14]. Brahmbhatt et al . [17] propose ContactDB, which

obtains ground-truth contact region of an object using a thermal sensor. Re-

cently, Cao et al . [14] achieved in-the-wild 3D hand-object reconstruction by

introducing depth and penetration constraint. However, they assume (1) 3D

CAD models exist for initialization (except [13]) (2) the hand is interacting

with objects, making the methods inapplicable when hand and object are not

interacting with each other. While multiple datasets appear for hand-object

interaction analysis [16, 17, 22, 29], no dataset focused on the entire process

of interaction including beginning and termination of contact. It is worth

mentioning DexYCB [35], which captured sequences of picking up an object.

However, the performed action was very simple and their analysis focused

on 3D pose estimation rather than contact modeling between hands and ob-

jects. They assumed interaction mining is done and only captured actions

where hands and objects are already in contact. We study the front stage

of the hand-object reconstruction problem—whether the hand interacts with

the object or not. To avoid erroneous mesh prediction and optimization, we

resort to 2D-level inference using appearance and motion cues.

Hand-object contact prediction Contact prediction is found to be a

difficult problem because contact cannot be directly observed due to occlu-

sions. To avoid using intrusive hand-mounted sensors, contact and force

prediction from visual input was studied [34, 36–38]. For example, Pham et

al . [36] present an RNN-based force estimation method trained on force and

kinematics measurements from force transducers. Ehsani et al . [38] obtained

supervision from a simulator to infer contact and force from video. Taheri

et al . [34] collected whole-body grasps with contact annotation using high-

precision motion capture, enabling to generate realistic grasps against novel

object. Other than hand-object interaction, whole-body force [39], ground

contact [40], and foot pressure [41] prediction is studied. These methods
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require a careful setup of sensors, making it hard to apply them in an un-

constrained environment.

Instead of precise force measurement, a few methods study contact state

classification (e.g ., no contact, self contact, other people contact, object con-

tact) from an image [22, 27]. Shan et al . [22] collected a large-scale dataset

of hand-object interaction along with annotated bounding boxes of hands

and objects in contact. They train a network which detects hands and their

contact state (no contact, self contact, other person contact, portable object

contact, and static object contact) from its appearance. Narasimhaswamy

et al . [27] extends the task into multi-class prediction. While their formula-

tion is simple, they did not take the relationship between hands and objects

explicitly and were prone to false-positive prediction. To balance utility and

convenience, we take the middle way between the two approaches—binary

contact state prediction between a hand and an object specified by bounding

boxes.

Learning from noisy labels Since dense labels are often costly to collect,

methods to learn from large unlabeled data are studied. While learning fea-

tures from weak cues are studied in object recognition [42] and instance seg-

mentation [43], it was not well studied in a sequence prediction task. While

automatically-generated labels mitigates small number of labeled examples,

generated pseudo-labels typically include noise which harms the model’s per-

formance. Various approaches such as loss correction [44, 45], label correc-

tion [46, 47], sample selection [48], and co-teaching [49, 50] are proposed to

deal with noisy labels. Loss correction and sample selection aims to modify

the loss function to eliminate the effect of noisy labels by either estimating

the noise transition matrix or weighting across samples. On the other hand,

label correction explicitly identify and fixes the noisy label based on own

network’s prediction. Co-teaching propose to train two networks supervised

by each other to avoid overfitting to noisy labels. However, most methods

assume feature-independent feature noise which is over-simplified, and only

a few works study realistic feature-dependent label noise [47, 51]. Zhang et

al . [47] propose progressive label correction (PLC) which iteratively corrects

labels based on the network’s confidence score with theoretical guarantees
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against feature-dependent noise patterns. Inspired by PLC [47], we propose

gPLC which iteratively corrects noisy labels by not only the prediction model

but also with the clean model trained on small-scale trusted labels.

2.3 Proposed Method

In contrast to prior works [22, 27] we formalize the hand-object contact

prediction problem as predicting the contact states between a hand and

a specific object appearing in a image sequence. We assume video frames

X = {X1, . . . , XT}, hand instance masks H = {H1, . . . , HT}, and target

object bounding boxes O = {O1, . . . , OT} as inputs, forming a hand-object

track T = (X ,H,O).
Our goal is to predict a sequence of a binary contact state (“no contact”

or “contact”) y = {y1, . . . , yT}(y ∈ {0, 1}) given a hand-object track T .
If any physical contact between the hand and the object exists, the binary

contact state y is set to 1, otherwise 0. Although we do not explicitly model

two-hands manipulation, we consider the presence of another hand as side

information (see Section 2.3.3 for details).

However, collecting a large number of hand-object tracks and contact

states for training can become too costly. We deal with this problem by auto-

matic pseudo-label collection based on motion analysis and a semi-supervised

label correction scheme.

2.3.1 Pseudo-Label Generation from Motion Cues

We automatically detect hand-object tracks and assign pseudo-labels to them

based on two critical assumptions. (i) When a hand and an object are in

contact, they exhibit similar motion pattern. (ii) When a hand and an

object are not in contact, the hand moves while the object remains static

(see Figure 2.2 left for illustration). Because these assumptions are simple

yet applicable regardless of object appearance and motion direction, we can

use these motion-based pseudo-labels for training to achieve generalization

against novel objects.
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Hand-object track generation Given a video clip, we first use the hand-

object detection model [22] to detect bounding boxes of hands and candidate

objects appearing in each frame. Note that the detected object’s contact

state is unknown and objects which overlap with hands are detected. For

each hand detection, we further apply a hand segmentation model trained on

EGTEA dataset [20] to each hand detection to obtain segmentation masks.

Next, we associate adjacent detections using a Kalman Filter-based tracker [52].

However, since [22] does not detect objects away from the hand, we extrap-

olate object tracks one second before and after using a visual tracker [53],

producingH andO. Finally, we construct the hand-object track T by looking

for pairs of hand and object tracks which include a spatial overlap between

hand mask and object bounding box.

Contact state assignment We find contact (and no-contact) moments

by looking at the correlation between hand and object motion. First, we

estimate optical flows between adjacent frames. Since we are interested

in relative movement of hands and objects against backgrounds, we obtain

background motion-compensated optical flow and its magnitude M by ho-

mography estimation. Specifically, we sample flow vectors outside detected

bounding boxes as matches between frames and estimate the homography

using RANSAC [54].

Let F = (fij) = I(M>σ) be a binary mask of foreground moving region

its magnitude larger than a certain threshold σ. For each hand and object

binary region mask H = (hij) and O = (oij), we calculate the ratio of moving

region within each region: hr =
∑

ij(hij ·fij)∑
ij hij

, or =
∑

ij(oij ·fij)∑
ij oij

. We assign a label

to a frame if IoU(H,O) > 0 and hr and or above certain thresholds. Similarly,

we assign a no-contact label if IoU(H,O) = 0 or hr above threshold but or

below threshold. However, the above procedure may wrongly assign contact

labels if the motion direction of hand and object are different (e.g ., the object

handled by the other hand). Thus we calculate the cosine similarity between

the average motion vector of hand and object region and assign a contact

label if above threshold otherwise a no-contact label. To deal with errors

in flow estimation, we cancel the assignment if the background motion ratio

br =
∑

ij(bij ·fij)∑
ij bij

(B = (bij) denotes background mask other than H and O) is
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𝑑𝑡 𝑑𝑡+1 < 𝑑𝑡 × 1.2 d𝑡+2 > 𝑑𝑡 × 1.2

×“contact” “contact” (no label)

Distance b/w 
Hand and Object

Expand Abort

→ Assign contact → Assign no contact 
ℎ𝑟 = large, 𝑜𝑟 = large ℎ𝑟 = large, 𝑜𝑟 = small

Contact State

Figure 2.2: (Left) Pseudo-label generation from motion cues. (Right)

Pseudo-label extension based on hand-object distance.

Figure 2.3: Example of generated pseudo-labels: (Top) Gray and dark

gray bar indicates no-contact/contact labels otherwise no labels assigned.

(Bottom) Representative frames. Red, blue, and green regions denote moving

hand, object, and background regions, respectively. In rightmost frame, no

label is assigned because of abrupt background motion.

above threshold.

Pseudo-label extension Based on the above procedure, we obtain pseudo-

labels partially assigned on hand-moving frames. The above procedure as-

signs labels on hand-moving frames, but it does not assign labels when hands

are moving slowly or still. To assign labels also on those frames, we extend

the assigned contact states if the relationship between hands and objects does

not change from the timing when pseudo-labels are assigned (see Figure 2.2

right).

To track hand-object distance, we find point trajectories from hand and

object region which satisfy forward-backward consistency [55]. We then cal-

culate the distance d between each hand-object point pair and compare the

average distance of them in each frame. We extend the last contact state if

the average distance is within a certain range of that of the starting frame.
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Noisy Dataset
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𝑁p

Clean Dataset
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Noisy Model
𝑓(𝒙)

Clean Model
𝑔(𝒙)

Find confident labels

(𝑁𝑝 ≫ 𝑁𝑡)

AddRefine

Pseudo-Labels

Trusted Dataset

𝑆 = 𝒙𝑖 , 𝑦𝑖 i=1
𝑁𝑡

Trusted Labels

Figure 2.4: Overview of guided progressive label correction (gPLC).

Figure 2.3 shows an example of the generated pseudo-labels.

2.3.2 Guided Progressive Label Correction (gPLC)

While generated pseudo-labels include useful information in determining

contact states, they also include errors induced by irregular motion pat-

terns. The model may overfit to noise if we simply train it based on these

noisy labels. To utilize reliable labels from noisy pseudo-labels, we propose a

semi-supervised procedure called guided progressive label correction (gPLC),

which works with a small number of trusted labels. We summarize the pro-

cedure in Algorithm 1. We assume a small number of trusted labels for the

rescue to guide which label to correct the pseudo-labels.

We assume a noisy dataset S̃ with generated pseudo-labels and a trusted

dataset S with manually annotated trusted labels. We train two identical

networks, each called noisy model and clean model. The noisy model f is

trained on both S̃ and S while the clean model g is trained on S and a clean

dataset Ŝ which is introduced later. We perform label correction against

generated pseudo-labels in S̃ using the prediction of both models.

As training of f proceeds, it will generates input region with high confi-

dence against them. Similar to PLC [47], we try to correct labels on which
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Figure 2.5: Architecture of contact prediction model.

f gives high confidence. Note that we correct labels in a frame-wise manner,

assuming output contact probability is produced per frame. In gPLC, we

correct labels only when f has high confidence and does not contradict the

clean network g’s prediction. Because S̃ is generated from motion cues, the

decision boundary of f may be different from that of the optimal classifier.

Thus the label correction on f alone would not converge to the desired deci-

sion boundary. Therefore, we guide the correction process by using g, which

is trained on small-scale but trusted data. Starting with a strict threshold on

δ, we iteratively correct labels upon training. When the number of corrected

labels gets small enough, we increase δ to loosen the threshold and continue

the same procedure. However, since g is trained on a small-scale data, it has

the risk of overfitting to S. To prevent overfitting, we iteratively add data

that f gives high confidence to another dataset called clean dataset Ŝ and

feed them to g so that g also grows through training. Initially Ŝ will not

contain labels, but high-confident labels will be added over time. See Algo-

rithm 1 for detail. In implementation, f(x) and g(x) are trained beforehand

by S̃ and S before starting the gPLC iterations.

2.3.3 Contact Prediction Model

To capture the spatial relationship of hands and objects, we propose an RNN-

based method that takes RGB images, optical flow, and mask information

as input (see Figure 2.5). An overview of the model for a single frame of
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input is shown in Figure 2.5. For each modality, we crop the input by tak-

ing the union of the hand region and the object bounding box. The optical

flow is a three-channel image consisted of x-axis motion, y-axis motion, and

magnitude. The foreground mask is a four-channel binary mask that tells

the presence of a target hand instance mask, a target object bounding box,

other detected hand instance masks, and other detected object bounding

boxes. The former two channels specify which region to attend, the latter

two channels prevent confusion when the target hand or object interact with

other entities. RGB and flow images are fed into each encoder branch, con-

catenated at the middle, and then passed to another encoder. Both encoders

consist of several convolutional blocks, each consisted of 3×3 convolution

followed by a ReLU and a LayerNorm layer [56], and a 2×2 max-pooling

layer to reduce the spatial resolution. The foreground mask encoder con-

sists of three convolutional layers each followed by a ReLU layer, producing

a 1×1 feature map encoding the positional relationship between the target

hand, the target object, and the other hands and objects. After concatenat-

ing the features extracted from the foreground mask, contact probability is

calculated through four bi-directional LSTM layers and three layers of MLP.

Training Objective We train the network by a standard binary cross-

entropy loss weighted by the ratio of the amount of labels in the training

data. We did not propagate the error for non-labeled frames.

2.4 Experiments

Since there was no benchmark suitable for our task, we newly annotated

hand-object tracks and contact states between hands and objects against

videos in EPIC-KITCHENS dataset [28]. We collected tracks with various

objects (e.g ., container, pan, knife, sink). The amount of the annotation was

1,200 tracks (67,000 frames) in total. We split the data into a training set

(240 tracks), validation set (260 tracks), and test set (700 tracks) 1. For the

noisy dataset, we have generated 96,000 tracks with motion-based pseudo-

labels.

1We extracted frames by either 30 or 25 fps, half of the original frame rate.

17



2.4.1 Implementation Details

We used FlowNet2 [57] for optical flow estimation. We used Adam [58]

for optimization with a learning rate of 3e-4. We trained the network for

500,000 iterations with a batch size of one and selected the best model by

frame accuracy on the validation set. The hyperparameters were set to δ0 =

0.05, δend = 0.25, α = 0.01, β = 0.025,m = 2500.

2.4.2 Evaluation Metrics

We prepared several metrics to evaluate the performance. Frame Accu-

racy: Frame-wise accuracy balanced by the ground truth label ratio;

Boundary Score: F-measure of boundary detection. Performs bipartite

graph matching between ground truth and predicted boundary [59]. Count

as correct if the predicted boundary within six frames from the ground truth

boundary; Peripheral Accuracy: Frame-wise accuracy within six frames

from the ground truth boundary; Edit Score: Segmental metric using

Levenshtein distance between segments [60]. We assume both contact and

no-contact labels are foreground; Correct Track Ratio: The ratio of

tracks which gives frame accuracy above 0.9 and boundary score of 1.0.

2.4.3 Baseline Methods

We compared our method against several baseline methods. Fixed: Predicts

always as “contact”; IoU: Calculate the mask IoU between the input hand

mask and object bounding box. If the score is larger than zero predicts as

contact, otherwise no-contact; ContactHands [27]2: Predicts as a contact if

the detected hand’s contact state is “object”; Shan-Contact [22]3: Predicts

as a contact if corresponding hand’s contact state prediction is “portable”;

Shan-Bbox [22]: Predicts as contact if there is enough overlap between

the detected object bounding box and input object bounding box; Shan-

Full [22]: Combines predictions of Shan-Contact and Shan-Bbox; Super-

2We used the pre-trained model provided by the authors along with their suggested

hyperparameters.
3We used the pre-trained model provided by the authors, trained on 100DOH dataset

and egocentric datasets.
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Method Frame Acc. Boundary Peripheral Edit Correct Ratio

Fixed 0.500 0.394 0.534 0.429 0.166

IoU 0.642 0.505 0.613 0.678 0.259

ContactHands [27] 0.555 0.440 0.596 0.468 0.136

Shan-Contact [22] 0.608 0.516 0.656 0.507 0.180

Shan-Bbox [22] 0.688 0.435 0.639 0.631 0.189

Shan-Full [22] 0.746 0.477 0.687 0.583 0.193

Supervised (train) 0.770 0.563 0.649 0.718 0.394

Supervised (train+val) 0.816 0.636 0.695 0.793 0.487

Proposed 0.836 0.681 0.730 0.793 0.519

Table 2.1: Results of hand contact state prediction performance.

Method Frame Acc. Boundary Peripheral Edit Correct Ratio

Noisy Label only 0.780 0.569 0.703 0.687 0.344

Noisy + Trusted Label 0.811 0.624 0.708 0.759 0.453

Noisy + Trusted w/ PLC [47] 0.821 0.636 0.730 0.768 0.480

Pseudo-Labeling [61] 0.784 0.590 0.703 0.737 0.417

RGB 0.787 0.546 0.681 0.709 0.363

Flow 0.833 0.672 0.725 0.789 0.519

Proposed (RGB+Flow) 0.836 0.681 0.730 0.793 0.519

Table 2.2: Ablations on input modality and other robust learning methods.

vised: Our proposed prediction model, trained by trusted data alone. We

note that for the Shan-∗ baselines, the 100k+ego pre-trained model pro-

vided by the authors was used, which is trained on egocentric video datasets

including the EPIC-KITCHENS dataset.

2.4.4 Results

Quantitative results We report the performance in Table 2.1. Our pro-

posed method consistently outperforms the baseline models on all the met-

rics, achieving a double correct track ratio compared to IoU based on the

overlap between hand and object bounding boxes. The frame-based methods

(ContactHands, Shan-∗) performed equal or worse than IoU, producing
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many false positive predictions. These results suggest that previous methods

claiming contact state prediction fails to infer physical contact between hands

and objects. While Supervised performed well, gPLC further boosted the

performance by leveraging diverse motion-based cues with label correction,

especially on boundary score.

Qualitative results Figure 2.6 shows the qualitative results. As shown

in the top, our method distinguish contact and no-contact states by looking

at the interaction between hands and objects while baseline methods yield

false positive predictions by looking at box overlaps. The middle shows a

typical no-contact case of a hand floating above an object. Our proposed

model trained on motion-based pseudo-labels avoid producing false positive

prediction.

Comparison against other robust learning methods To show the

effectiveness of the proposed gPLC, we report ablations on other robust

learning/semi-supervised learning methods (see Table 2.2 top). As expected,

training using motion-based pseudo-labels performed worse due to labeling

errors. Joint training with noisy and trusted labels gives marginal gain

against the supervised model, but the boundary score remains low since

it overfits against pseudo-label noise. We also applied the existing label cor-

rection method [47] on a single network with fine-tuning on trusted labels,

but its performance was almost equal to joint training, suggesting that label

correction on a single network does not yield good correction. We also tried a

typical pseudo-labeling [61] without motion-based labels. However, it showed

only a marginal improvement over the supervised baseline, suggesting that

our motion-based pseudo-labels are necessary for better generalization.

Effect of input modality The bottom of Table 2.2 reports the ablation

results of changing the input modalities. We observed that using RGB images

alone impacts the boundary score, suggesting the difficulty of determining

the contact state change without motion information. In contrast, the optical

flow-based model achieved nearly the same performance as the full model,

suggesting that motion information is crucial for accurate prediction.

20



Error analysis While our method can better predict contact states by

utilizing the rich supervision from motion-based pseudo-labels, we observed

several failure patterns. As shown in Figure 2.6 bottom, our method of-

ten ignored contacts when a person instantly touched objects without yield-

ing apparent object motion. We also observed failures due to unfamiliar

grasps, complex in-hand motion, and failure in determining object regions

(see supplemental for more results). These errors indicate the limitation of

the motion-based pseudo-labels which assigns labels only when clear joint

motion is observed. To better deal with subtle/complex hand motions, ad-

ditional supervision or rules on such patterns may be required.

How does gPLC correct noisy labels? To understand the behavior of

gPLC, we measured how gPLC corrects labels during training. We included

the validation set into the training data with two patterns of initial labels: (i)

randomly corrupted labels from ground truth (with three different corruption

ratios cr = 0.1/0.2/0.5) (ii) motion-based pseudo-labels. We trained the full

model and measured the accuracy of the labels for every epoch.

First, gPLC succeeded to correct randomly corrupted label even in the

case of high corruption ratio of 0.5 (see Figure 2.7). However, in the case of

a small corruption ratio of 0.1, gPLC made wrong corrections which means

that both the noisy model and clean model got the prediction wrong. Im-

proved boundary scores showed that gPLC can iteratively suppress incon-

sistent boundary errors. In the more realistic case of motion-based pseudo-

labels, pseudo-labels were assigned to around 44% of the total frames, and

achieved initial mean frame accuracy of 91.4% for the labeled frames. While

gPLC reduced the error rate by 20% PLC wrongly flipped the contact state,

which may have harmed the final performance (see Figure 2.8). These results

indicate that gPLC effectively corrects noisy labels during training.

2.5 Conclusion

In this chapter, I have presented a simple yet effective video-based method

of predicting the contact state between hands and objects, using appearance

and motion information. I have introduced a semi-supervised framework of
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motion-based pseudo-label generation and guided progressive label correction

that corrects noisy pseudo-labels guided by a small amount of trusted data. I

have newly collected annotation for evaluation and showed the effectiveness

of the proposed framework against several baseline methods. The model

could be used to detect objects that are involved in interactions.
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Algorithm 1 Guided Progressive Label Correction (gPLC)

Require: Noisy dataset S̃ = {(xi, ỹi)}
Np

i=1, trusted dataset S = {(xi,yi)}Nt
i=1, clean

dataset Ŝ = ∅, noisy model f(x), clean model g(x), initial and end thresholds

(δ0, δend), correction threshold δ = δ0, flip ratio α, step size β, supervision

interval m, total round N

Ensure: Trained Model f(x)

Ŝ = {(xi, ŷi)}
Np

i=1 where ŷi is a list with empty elements same size as ỹi //

Initialize clean dataset

for n← 1, . . . , N do

for i← 1, . . . , Np do

zi ← ỹi // Keep previous labels

for t← 1, . . . , |ỹi| do
if ỹti ∈ {0, 1} and |f(xt

i)− 1
2 | ≥

1
2 − δ and I{f(xt

i)≥
1
2
} = I{g(xt

i)≥
1
2
} then

ỹti , ŷ
t
i ← I{f(xt

i)≥
1
2
} // Refine or add label by confident prediction

end if

end for

Train f(x) on (xi, ỹi) and g(x) on (xi, ŷi) // Update models

if #iterations % m = 0 then

Train f(x) and g(x) on S // Fine-tune on trusted set

end if

end for

if
∑

i,t I{ỹti=zti} ¡ α ·
∑

i,t I{ỹti∈{0,1}} then

δ ← min(δ + β, δend) // Loosen threshold if number of flipped labels are

small enough

end if

end for
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Figure 2.6: Qualitative examples. Upper chart shows ground truth contact

state and prediction of each model (gray and blue region indicates contact,

otherwise no-contact) with contact probability in black line. Lower images

correspond to blue vertical lines in chart from left to right and red and blue

boxes represents input hand and object bounding box.
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Figure 2.7: Accuracy of noisy labels when initialized by corrupted ground-

truth labels. Horizontal axis shows elapsed epochs (“0” denotes initial

labels). Vertical axis shows frame accuracy (solid) and boundary score

(dashed).
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Figure 2.8: Accuracy of noisy labels when initialized by motion-based pseudo-

labels. Horizontal axis shows elapsed epochs and vertial axis shows mean

frame accuracy per track. Note that non-labeled frames are ignored.
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Chapter 3

Category-Agnostic Object

Instance Identification

3.1 Introduction

Object instance identification is a long-standing but yet unsolved problem

in computer vision. We humans can recognize that a specific object is dif-

ferent from other objects. For example, we typically have a specific mug or

smartphone we use every day and distinguish them from other objects. We

remember the specific buildings around the neighborhood, know where all

the kitchen tools are placed in the kitchen, or find out friends from a large

crowd. The ability to visually identify unique objects is essential for intelli-

gent agents to continuously collaborate with humans in a shared space. By

recognizing that an object is the same as the one used before, a robot can

plan for a longer period of time and respond to the user’s request conditioned

on their context (e.g ., find my phone and bring it to me). The problem has

many practical applications such as surveillance [62], product search [63],

dexterous manipulation [64], and assistive technology [65, 66].

Over the last two decades, category-level object recognition, which classi-

fies objects into specific categories, has been primarily studied. On the other

hand, instance-level object identification, which discriminates specific objects

appearing in a scene, also offers unique challenges not included in category-

level recognition. First, it does not assume any pre-defined categories in na-
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Figure 3.1: Example images of EK-Instance Dataset. Each row represents

images of same instance.

ture. Arbitrary types of instances appear and the model has to differentiate

all of them. Second, the model must distinguish the fine-grained differences

between objects from similar categories. For example, similar-looking mugs

may exist but each of them usually has distinctive differences among each

other. Beyond classifying an image into a category, the model must correctly

distinguish them by looking at their details. Thirdly, instance-level recog-

nition requires generalization against unknown instances. In category-level

recognition, object categories are usually shared among training and testing

samples. However, instances are usually unique across environments, and it

is unrealistic to collect training samples for all of them.

While object instance identification in general has been studied exten-

sively in the early days [67–70], recent works have been focusing on category-
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specific settings such as recognizing specific person [62], vehicle [71], land-

marks [72], artwork [73] or faces [74]. Despite its importance, object in-

stance identification in a category-agnostic setting has not been investigated

in detail. Previous works on category-agnostic object instance recognition

were typically studied in a controlled environment, aiming to learn a clas-

sifier robust against changes in object pose, viewpoint, and illumination.

They assume objects to be distinctively captured apart from other objects

or backgrounds. Moreover, objects are assumed to be immutable—implicitly

limiting the range of instances to be recognized.

In this chapter, the problem of category-agnostic object instance recogni-

tion in a real-world setting is studied. In the real world, each object will be

used by the user for its purpose. Users actively interact with multiple objects,

for example, cutting vegetables on a cutting board with a knife. Objects ap-

pear as a constituent of a scene rather than a unit. During the user’s activity,

an object will undergo a significant appearance change to accomplish its job.

For example, a mug is used as a container for pouring coffee; food and cutlery

are placed on the plates. Manipulation by the hands may produce abrupt

motion and severe occlusion. In such a situation, the immutable assumption

breaks down and the intra-class variance of an instance will be much larger

than that in an ideal environment. The environment also changes over time,

causing changes in object pose and lighting condition on the reappearance. I

aim to build a general model of identifying unknown object instances in such

in-the-wild situations.

First-person videos are selected as a subject that reflects the above diffi-

culties. First-person videos can capture long and continuous activities over

time up-close. Therefore, it is suitable to capture the natural interaction

and appearance changes of objects appearing in daily life. To this end,

I propose the EK-Instance dataset, a challenging benchmark built on the

large-scale EPIC-KITCHENS-100 dataset [23] that contains daily cooking

activities across different time and environments. I collect 1,554 object in-

stances from 23 participants with around 90,000 frames, which could be used

to train a modern neural network-based model. Figure 3.1 shows some exam-

ples of the annotated images. As seen in the figure, the object’s appearance

significantly changes by the action made by the camera wearer. Such actions
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produce significant foreground change (first row), severe occlusion (second

row), and interplay between other objects (third row), which makes the prob-

lem more challenging. The dataset contains a significantly larger number of

instances compared to the existing datasets (from tens to 400 instances),

which enables cross-instance evaluation. Since the dataset is collected from

unscripted first-person videos, the frequency of appearance among instances

are significantly imbalanced which makes further difference among the exist-

ing datasets where the number of samples are balanced among instances.

On annotation, I find some cases that are difficult to judge whether the

images are from the same instance or not because objects are often combined

or separated during an interaction, Therefore, I establish several principles

to produce consistent annotations that could be solved by looking at appear-

ance.

As I aim to learn a general model of identifying unknown object in-

stances, I formulate the problem as a clustering problem. Compared to the

re-identification setting, Query object images are not assumed to be given.

Specifically, the problem is formulated as clustering of object instance tracks

each composed of object image tracks. Strong baseline models using off-the-

shelf metric learning algorithms and clustering algorithms are introduced.

Based on the above datasets and models, extensive analyses are performed

to extract insights needed to perform object identification in a dynamic envi-

ronment. Specifically, (i) an analysis on cross-dataset transfer and (ii) visual-

ization of learned representation are performed to assess the generalizability

and limitations of learned models.

The contributions of this work are as follows. First, I build a new EK-

Instance dataset for object identification which includes more than 1,500 ob-

jects taken from unconstrained first-person videos. Second, I show that the

models trained by the EK-Instance dataset show better robustness against

both foreground and background clutter. They show robustness against hand

occlusion, significant appearance changes, and background changes upon

movement. The cross-dataset evaluation reveals that the datasets collected

in a controlled environment do not generalize to the real-world setting while

the model trained with the EK-Instance dataset showed better cross-dataset

transferability. Finally, we show notable failure patterns to be solved, along
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with suggestions for improvement. We insist that (i) robustness against ob-

ject state-change (ii) Integration of low-level and high-level concepts (iii) an

active mechanism to determine the foreground object are required for further

development.

3.2 Related Work

3.2.1 Instance Recognition

Instance recognition is formulated to recognize a particular object of the

scene from an image instead of its category. Recognition of object instances

was mainly studied in the context of robotics to make the robot recognize

object instances to be grasped [64, 75–77]. Not only classifying the object

images but object instance detection from unlabeled images is also studied

as an important topic [78–82]. Mainly focusing on robotics application, it

was basically studied in a controlled, small-scale setting, where the number

of objects is at most several hundred.

While instance recognition methods are defined to recognize a particu-

lar object, the definition of an object instance differs across methods and

datasets. In the context of robotics, rigid household objects such as bot-

tles, cups, cellphones, books are generally used as a subject. Assuming that

the target scene is static and the spatial configuration does not change over

time, some works try to discriminate visually identical instances [83, 84].

This group also assumes that the object’s shape or appearance does not

change across moments. Robustness against different poses, viewpoints, and

background is their primary interest. In the context of product recognition,

products with the same model are considered to be the same instance even

if their entities are different (e.g ., [85]). This assumption is reasonable when

the appearance of a same product is visually indistinguishable. This situa-

tion also happens in the daily living domain because for example we often

use a set of visually identical dishes or glasses interchangeably. In a dynamic

scene where the spatial configuration of objects changes across time, it will

be often difficult to precisely identify a particular object when visually iden-

tical entities exist. Therefore, we adopt the latter assumption by limiting the
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scope to be solved within the range of vision-based techniques, which will be

further discussed at Section 3.3.

To recognize instances, traditional methods used low-level features such

as color histogram or local descriptors [78, 79] followed by keypoint matching

such as RANSAC. However, deep neural networks are shown to be effective

in recent works [75, 76]. Especially, metric learning are used to learn dis-

criminative feature of objects from a small number of examples [64, 77].

It is worth mentioning the differences in problem settings. Most works

assume that the training images of the test object instance are given [75,

77, 86], 3D models of the target instance given [81, 82], or target objects

explicitly given as query images [64, 83, 84]. However, the above assumptions

require knowledge of the target object instances to be recognized, which is

cumbersome and does not scale to unknown instances. Instead of training a

particular object classifier using explicit training examples, we aim to build

a model which can discover the concept of instances from training data apart

from testing instances. To this end, we formulate the problem as clustering

of unlabeled images into a group of object instances.

3.2.2 Instance Re-Identification

Along with recognition, instance re-identification tasks are studied mostly

in category-specific settings (e.g ., person [62], vehicle [71], landmark [72],

artwork [73], and face [74]) in the context of surveillance and retrieval. In this

setting, query images are given in advance and asked to find the same instance

from the testing images. Person/vehicle re-identification showed that metric

learning is effective to discriminate different identities by learning a feature

space where samples from the same identity are close together while samples

of different identities are far apart [87]. By utilizing domain knowledge such

as body parts, part-based model [88], viewpoint-specific representation [89],

and relation between parts [90] were proved to be effective. However, in

our category-agnostic setting, it is unrealistic to assume a fixed structure to

arbitrary types of objects. Therefore, a more general solution that does not

require knowledge on object structure is demanded.
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3.2.3 Instance-Level Dataset

Along with applications such as product recognition, scene understanding,

3D reconstruction, and robot manipulation, numbers of instance-level datasets

have been proposed. Their source are roughly divided into (i) controlled en-

vironments [86, 91–95], (ii) crawling from the Internet [85, 96], and (iii)

crowdsourcing [97, 98].

Primarily focusing on robotics application, the first group collects data

in mostly controlled settings such as turntable [92, 93] or monotonous back-

ground [94, 95, 99]. Robustness against rotation, translation is their primary

interests but they are typically collected in a small number of environments

with less background clutter. Although few works included real-world sam-

ples, they did not include instances during natural interaction. For example,

the INSTRE dataset [100] consists of 200 object instances that are a com-

bination of the Internet images and manually-captured images. Manually

captured images are taken at various places, which offers significant back-

ground variability. However, the captured images are intentionally separated

from the user’s context and do not reflect the difficulties in the actual living

space.

A notable exception is [91] which study the problem of recognizing hand-

held objects captured in first-person videos. While they are aware of the

difficulties in recognizing hand-held objects in the early days, their dataset

only contained 42 objects, which is not sufficient to train a modern neural

network-based model. Furthermore, each sequence was captured in a scripted

manner, which hid the challenges that appears in real-world activities. The

common problem of the datasets belonging to this group is that the number

of instances is limited at most to a few hundred, which is not enough for

training a general object identification model which generalizes to unknown

instances.

The second group collects data from large E-Commerce sites for the prod-

uct recognition task. Compared to the first group, it is easier to scale up the

number of instances. Therefore, datasets with more than 10k instances are

proposed in contrast to the first group. For example, Song et al . [85] col-

lected 120k images from 22,634 online product categories in eBay. Although
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it contains diverse viewpoints due to its original purpose, it tends to be only

captured in a single environment, and most of the products are shot alone,

separated from other disturbances. This makes the dataset vulnerable to

background/foreground clutter, which will be later verified in experiments.

The last group collects data for data-driven 3D reconstruction. To en-

able category-centric 3D reconstruction from a limited number of viewpoints,

crowdsourcing are used to collect a vast amount of multi-view images and its

3D point clouds. For example, the Common Objects in 3D (CO3D) dataset

comprises of around 19,000 videos capturing 50 MS-COCO categories. Al-

though the size and quality of images are useful for large-scale training, ob-

jects do not undergo any state change or manipulation nor include significant

foreground and background clutters.

Different from the above datasets, we collect a large number of object

instances that appear in real-world environments, including objects under

natural manipulation action and significant foreground/background clutters.

We choose a large-scale, unscripted egocentric video database as a source.

The obtained annotations provide unique challenges on learning an object in-

stance identification model which generalizes to unknown and unconstrained

scenes.

3.2.4 Instance-Level Image Clustering

Unsupervised image clustering has been also studied as a long-standing prob-

lem in computer vision and has been used for discovering object instances

in a bottom-up manner. Specifically, clustering of faces [101–109] and land-

marks [72] has been studied based on applications such as face recognition

and image retrieval. Because these fields process a significantly large num-

ber of clusters (e.g ., 100k), not only accuracy but also computational cost

are considered as important aspects. While general clustering methods such

as K-Means [110], Spectral Clustering (SC) [111], Hierarchical Agglomera-

tive Clustering (HAC) [112, 113], and Approximate Rand-Order (ARO) [101]

works well when optimal data density distribution is obtained through rep-

resentation learning, they do not capture the contextual, higher-order re-

lationship between data points on performing clustering. The use of hard
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constraints [102] alleviate the problem but still, they have limitation in rep-

resentational power.

In the above context, recent work aims to learn the underlying structure

of facial/landmark images in a data-driven manner. To learn higher-order

relationships beyond pairwise relation, Graph Neural Networks [103, 104,

106] and Transformers [105] are shown to be effective. Also, discovering

high-density (high-confidence) samples are found to be effective in linking

face images [104, 106, 114].

However, applying the above methods are far more challenging because

of the class-agnostic assumption, larger intra-class variation, and imbalanced

distribution. Because arbitrary types of objects appear, a typical view of

an object will not exist. Environmental clutters create larger intra-class

variations which produce multiple density peaks within a single instance.

Furthermore, the imbalanced appearance across instances makes it difficult

to determine an appropriate threshold to predict the connection between data

points. Therefore, we resort to traditional methods rather than applying the

modern unstable methods to focus on finding the difficulties in solving this

task.

3.3 EK-Instance Dataset

In this section, we introduce the EK-Instance dataset which offers a challeng-

ing benchmark on object instance identification in a dynamic and cluttered

environment (see Figure 3.1 for example). The annotation is built on nat-

ural interactions of multiple people and includes significant foreground and

background clutters which was not present in the existing datasets.

3.3.1 Data Source

The annotation is made on the EPIC-KITCHENS-100 [23] dataset which con-

tains 100 hours of natural kitchen activities captured from a head-mounted

wearable camera. We choose first-person videos as a subject because it cap-

tures continuous activities over time. Some habitual activities (e.g ., prepar-

ing a cereal for breakfast) are repeated in different scenes, posing a natural
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challenge in finding re-appearing object instances. 37 participants recorded

activities in different kitchens, which gives variation in environments, objects,

and activities.

3.3.2 Definition of Instance

Before introducing the annotation procedure, we clarify what an instance

refers to. Compared to the previous works that captured objects apart from

clutters, real-world videos include many corner cases caused by the interplay

between background and other objects. In addition, external knowledge be-

yond appearance is often required to accurately identify the same instance

appearing in a different scene. For example, tableware typically includes a

set of glasses or dishes with the same look. Food or commercial products

will be consumed and disposed of. Thus, one appearing in a different scene

may not be the same instance that has been seen before. Distinguishing

such visually identical instances is impossible and will be beyond the focus

of computer vision.

To provide well-defined and consistent annotation, we propose four prin-

ciples to be observed. Figure 3.2 shows examples of the principles we made.

(a) Identification by appearance: First, we define an instance as an ob-

ject which has a unique appearance that is distinguishable from other objects.

Therefore, visually identical entities will be counted as a single instance. For

example, if there is a set of visually identical tableware, we consider them as

a single instance.

(b) Single object per bounding box: Secondly, we use bounding boxes

on determining the target object. If multiple objects are intersecting with

each other, we specify each of them by the bounding box that surrounds the

object just enough. Figure 3.3 shows a schematic example of determining a

target object from a bounding box. If an object uniquely fits with a bounding

box, we determine it as valid and include it in the dataset. However, if there

are more than or equal to two objects fit by a bounding box, we determine

them as invalid and remove them from the dataset. Also, we consider as
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(b) Single object per bounding box

(d) Priority on foreground(c) Unshared view

(a) Identification by appearance

×

Figure 3.2: General principles on annotation. Rectangle denotes target

bounding box.

invalid if multiple objects are surrounded by a bounding box (Figure 3.2

(b)).

(c) Exception on unshared view: Ideally, a model should be viewpoint-

invariant and recognize instances even its viewpoints are different. Therefore,

in principle, we consider images as the same instance even the views are not

shared among images. However, there exist cases when there is no clue on

predicting a view from the other view without external knowledge. we allow

an exception in such situations. For example, in the case of Figure 3.2 (c),

the color of the lid upside down is completely different so determined to be

a different instance.

(d) Priority on foreground: Some objects can be separated into multi-

ple parts. For example, a frying pan set can be separated into a body and a

lid. If we look at it from a top-down view, it will be impossible to distinguish

between (i) a set of body and lid and (ii) the lid. While multiple interpre-

tations are possible, we give priority to the foreground and count as same if
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Target: Circle Target: Rectangle Indistinguishable

Figure 3.3: Schematic example on determining the target object.

objects share the same foreground. In the case of Figure 3.2, we consider (i)

and (ii) as the same while considering the body alone as a different instance.

These principles help the annotators to provide consistent annotations

among irregular cases that occur in real-world environments.

3.3.3 Annotation Procedure

Based on the above principles, we annotate object bounding boxes and the

correspondence between them. Concretely, 2D bounding boxes which sur-

round the object instances are annotated to the video frames and they are

associated by marking whether a bounding box pair is from the same instance

or not. However, it turned out to be labor-intensive to thoroughly annotate

all the potential object pairs. Therefore, we adopt a semi-automatic proce-

dure to reduce the burden.

First, we apply a class-agnostic object detector [115] to obtain an object-

like region across videos. Next, we apply a motion-based object tracker [52] to

form a short track of bounding boxes. While this procedure produces a large

number of object tracks, they also include numerous irrelevant detections

such as body parts (e.g ., hand, foot, and arm), static structure (e.g ., faucet,

cooking stove, kitchen sink, and furniture), non-object (e.g ., shadow, part of

object, set of multiple objects, and background), and low-quality detections

(e.g ., blurred). These irrelevant detections are manually filtered out and

not further processed. Also, detections around the image boundary or with

severe occlusion (when more than 50% of the original object area is occluded)
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Split #participants #instances #tracks #frames

Training 16 1051 27234 64300

Validation 3 193 4647 11851

Test 4 310 6598 16225

Total 23 1554 38479 92376

Table 3.1: Dataset statistics.

are removed. After the filtering, the remaining object tracks appearing at

different times are associated with each other by the annotator if they are

from the same object instance. After the track association, we sampled

image detections every one second from each track. Because these detections

do not necessarily cover the entire object, we corrected the bounding boxes

so that each bounding box covers the object accurately. This semi-automatic

procedure allowed us to produce annotation around 20 hours of video, which

is 1/5 of the original dataset length.

3.3.4 Dataset Statistics

As a result, we collected 1,554 object instances, 38,479 tracks and 92,376

frames from 23 participants in total. The instances are collected from di-

verse categories. The majority consists of container (e.g ., storage container,

cup, mug, glass, bottle, box, and seasoning), cooking tools (e.g ., frying pan),

tableware (e.g ., knife, fork, spoon, spatula, and tongue), food (e.g ., apple,

banana, and bread), electronics (e.g ., toaster, coffee machine, mixer), and

other kitchen tools (e.g ., paper roll, sponge, detergent, and towel). However,

the object categories are not limited to the above, including objects which is

difficult to define a clear category (e.g ., fridge magnet, portafilter, and pack-

age of specific products). Based on the recommended split in the original

benchmark, the data was divided into three splits. Specifically, P33, P34,

and P36 were used for validation, and P09, P11, P18, and P32 were used for

testing. Table 3.1 summarizes the statistics of each split. Since the anno-

tations were collected from multiple participants, cross-subject evaluation is

possible while keeping enough training data for training.
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Figure 3.4: Distribution of number of frames per track.

Since the data is collected from real-world videos, it reflects the imbal-

anced frequency of appearance. Figure 3.4 and 3.5 summarize the number

of frame per track and the number of track per instance, respectively. While

the majority of the instances appear a few times for a short duration, a small

number of instances appear frequently.

3.4 Method

To evaluate the task of object instance identification, we introduce strong

baseline models based on metric learning.

3.4.1 Problem Statement

The problem is formulated as the clustering of image tracks to a group of

instances. First, we assume arbitrary types of objects detected from an

object detector. We also assume that short-term object tracks are obtained
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Figure 3.5: Distribution of number of tracks per instance.

by applying an object tracker to them. Given a set of detected image tracks

{X1, . . . , XN}, we want to assign unique cluster labels {y1, . . . , yN} (yi ∈
{1, . . . , K}), which is grouped by instance. It is reasonable to apply tracking

before clustering because we can efficiently aggregate similar feature vectors.

Also, tracking helps the model to acquire robustness against different poses

or viewpoints.

3.4.2 Image Track Encoder

Given a image track Xi = [x1, . . . ,xT ] (xj denotes an object image), we

want to obtain a low-dimensional encoding zi which will be passed to a

clustering algorithm. Throughout this study, we use ResNet-34 [116] pre-

trained with the ImageNet dataset [117] as a backbone network to extract

frame-level feature. We pass the images to the backbone layers before the

final average pooling layer and obtain a 512-dimensional feature vector for

each image. Next, they are further averaged between tracks to aggregate
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image-level features to a track-level feature vector. Finally, we pass it to a

single fully-connected layer to obtain a 256-dimensional track embedding.

3.4.3 Training

We employ three metric learning loss functions to train the image track

encoder.

Normalized softmax (N-Softmax) loss The most straightforward form

of metric learning by classification is the normalized softmax loss [118], which

is a cross entropy loss but the embeddings and the weight vector W are L2-

normalized.

Lnsoftmax = −
1

N

N∑
i=1

log
exp (WT

yi
z′i)∑K

k=1 exp (W
T
k z

′
i)
,

where z′i = zi
∥zi∥ is a L2-normalized vector of zi and τ is a temperature

parameter to balance between positive logits and negative logits.

Additive angular margin (ArcFace) loss The ArcFace loss [119] is

represented as

Larcface = −
1

N

N∑
i=1

log
exp (cos (θyi +m)/τ)

exp (cos (θyi +m)/τ) +
∑K

k=1,k ̸=yi
exp (cos θj/τ)

,

where θk is the angle between the L2-normalized weights Wk and the input

feature z′i belonging to the yi-th class, and m is the angular margin penalty

to increase the inter-class distance. Given training instances, this loss tries to

learn a embedding to have enough margin m from other instances, achieving

a compact representation for each instance.

N-pair loss The n-pair loss [120] aims to directly increase the similarity

of positive pairs (features from a same class) while decreasing the similarity

of negative pairs (features from different classes) using the softmax function.

This loss learns pairwise relation efficiently by taking all the pairs within the

batch and does not require a class prototype weight vector W on training.

Lnpair = −
1

N

N∑
i=1

log

∑N
j=1,yj=yi

exp (zTi zj/τ)∑N
j=1 exp (z

T
i zj/τ)

.
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3.4.4 Inference and Clustering

At inference, we extract the 256-dimensional track feature for each track and

apply clustering on those feature vectors. Given trained feature embeddings,

we evaluate two well-known clustering algorithms: Spherical K-means [121]

and HAC [112]. The spherical K-means algorithm takes the L2-normalized

vector as input and applies clustering in a spherical space by normalizing

the centroid vectors on each iteration. We use cosine similarity for similar-

ity measures in both algorithms. On using K-means, we assume that the

number of instances is known and set the number of clusters equal to the

ground truth. In HAC, we finetuned the hyperparameter by the AMI score

(introduced later) on the validation set.

3.5 Experiments

3.5.1 Implementation Details

All the images are resized to 224× 224. We used Adam [58] for optimization

with a learning rate of 3e-5. We set the batch size to 448, uniformly sampling

112 instances × 4 tracks per batch. Starting with the backbone network pre-

trained by the ImageNet dataset [117], we fine-tuned the network for at most

4,000 iterations with a batch size of one and selected the best model using the

validation set. The training was done within an hour using a single NVIDIA

A100 GPU.

3.5.2 Evaluation Protocol

Data Split We evaluate the model on a per-participant basis. In par-

ticular, given a split with multiple participants, we evaluate the clustering

performance for each participant and report their average score.

Metrics We employed four metrics popularly used for evaluating clustering

performance.

Adjusted Mutual Information (AMI) [122]: A metric based on mu-

tual information. Returns a value of 1 when the two partitions are identical.
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Given a ground truth cluster set C = {ci}Ni=1 and a predicted cluster set

K = {ki}Ni=1, AMI is defined by:

AMI =
I(C,K)− E[I(C,K)]

1
2
[H(C) +H(K)]− E[I(C,K)]

,

where I and H denotes the mutual information and the entropy, respectively.

Unsupervised clustering accuracy (ACC): The maximum accuracy

achieved by searching over all one-to-one mappings between clusters and

labels. Hungarian algorithm [123] are used to find the optimal assignment

m:

ACC = max
m

∑N
i=1 1{ci = m(ki)}

N
.

Paired F-score (FP ): GivenN tracks, we take all the 1
2
N(N−1) pairs in

the evaluation set and calculate the precision and recall of them, counting as

correct if the relation (in the same cluster or not) of the pair by the predicted

clusters is the same as that by the ground truth classes.

BCubed F-measure (FB) [124]: This measure defines cluster-level

precision. Given L(i) and C(i) denotes the predicted cluster and the ground

truth cluster, respectively, the correctness between two points i and j are

defined as:

Correctness (i, j) =

1 if L(i) = L(j) and C(i) = C(j)

0 otherwise.

The precision and recall are defined as:

BCubed Precision =
1

N

N∑
i

∑
j∈C(i)

Correctness (i, j)

|C(i)|
,

BCubed Recall =
1

N

N∑
i

∑
j∈L(i)

Correctness (i, j)

|L(i)|
.

Näıve baseline In addition to the three metric learning models, we also

evaluated the ImageNet pre-trained model without fine-tuning. Specifically,

we used the 512-dimensional embedding just before the last layer. We note

that the ImageNet pre-trained model is already a strong baseline model be-

cause it is trained by diverse categories of images with various backgrounds,

trying to find discriminative features useful for category-label classification.
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Model Clustering Method AMI ACC FP FB

ImageNet
Spherical K-means 0.755 0.590 0.547 0.628

HAC 0.849 0.735 0.724 0.770

N-Softmax
Spherical K-means 0.803 0.631 0.606 0.684

HAC 0.892 0.799 0.789 0.828

ArcFace
Spherical K-Means 0.794 0.631 0.606 0.670

HAC 0.892 0.796 0.784 0.827

N-pair
Spherical K-Means 0.834 0.713 0.646 0.724

HAC 0.924 0.854 0.847 0.874

Table 3.2: Results of clustering results on EK-Instance dataset.

3.5.3 Quantitative Results

Table 3.2 shows the results on EK-Instance dataset. While the ImageNet pre-

trained model showed moderate performance, the models fine-tuned by the

training set showed significant improvement. Specifically, the combination of

N-Pair loss and HAC gave the best performance. Although the true number

of classes was not given, HAC achieved better performance because K-means

assumes each cluster to have a uniform density but the actual distribution

was highly imbalanced.

3.5.4 Qualitative Results

Successful cases Figure 3.6 shows successful examples of the best per-

formed model (N-pair + HAC). As shown in the top row, the model was

able to capture the variation in pose and occlusion by hand. We also ob-

served robustness against significant foreground clutter (second row). While

ingredients are cooked on the frying pan, the model was able to absorb the

appearance change by looking at the peripheral regions. We note that the

bottom two rows of the second example are considered as a different in-

stance following the foreground-priority principle, although the body was

visible through the transparent lid. The third example also showed strong

robustness against appearance change, which shows the unique aspect of the

EK-Dataset.
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Dataset EK-Instance Online Products INSTRE CORe50

AMI FP FB AMI FP FB AMI FP FB AMI FP FB

ImageNet 0.849 0.724 0.770 0.332 0.023 0.434 0.944 0.836 0.890 0.497 0.311 0.446

EK-Instance 0.924 0.847 0.874 0.358 0.360 0.448 0.930 0.837 0.884 0.578 0.415 0.532

Online Products 0.800 0.620 0.694 0.649 0.321 0.633 0.870 0.756 0.773 0.090 0.063 0.216

INSTRE 0.795 0.634 0.703 0.304 0.047 0.445 0.984 0.963 0.972 0.667 0.440 0.599

Table 3.3: Results of cross-dataset transfer. Left column shows source dataset

and top row shows target dataset. Numbers in bold and blue text show best

and second best results across source datasets, respectively.

Failure cases Since HAC performs bottom-up iterative merging, we visu-

alized moments when tracks from different instances are merged. Figure 3.7

shows failure cases on the best-performed model. Although the model showed

high performance in general (0.847 in pairwise F-score), we have found several

distinctive failure patterns. (i) Intra-category confusion: First, the model

struggled to spot fine-grained differences in the same category (first row, first

and second column). While we found differences in color and unique symbols,

the model failed to distinguish such differences. (ii) Semantic confusion:

Secondly, we found some false merging between semantically different ob-

jects (first row, third and fourth column). They showed high similarity when

the color patterns were similar to each other. (iii) Foreground confusion:

This error reflects the notable difficulty specific in a real-world setting (second

row). While the same food is appearing in most of the tracks, its containers

are different. (iv) Missed target object: This error is closely related to

the bounding box priority principle (third row). In the first example, a knife

on a chopping board and the chopping board are wrongly merged as a single

instance. While the knife is the foreground and the chopping board is the

background in the former, the chopping board becomes the foreground in the

latter. The second example also shows the difficulty in determining which

part should be considered as a foreground. The pan and the spoon were in

confusion.
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3.5.5 Cross-Dataset Transfer

To investigate how the features trained on the EK-Instance dataset generalize

to novel examples, we conducted a zero-shot transfer from one dataset to

another. We fixed the model and clustering algorithm to ResNet-34 trained

with N-Pair loss and HAC. We used three additional datasets for the analysis.

Stanford Online Products [85]: This dataset is composed of 120,053

images from 22,634 online product categories collected from eBay. Following

the original split, we used 11,318 categories for training and 11,316 categories

for testing, while the hyperparameter was tuned by further partitioning the

training set for validation.

INSTRE [100]: This dataset includes instance-level annotations of images

taken from three domains: architectures, planar objects, and daily stereo-

scopic objects (e.g ., toys). The images are either taken from the Internet

or manual image recording that are partitioned into three subsets (INSTRE-

S1/S2/M). Notably, the manually collected images are intentionally captured

in 25 backgrounds including both indoors and outdoors to obtain adequate

distinctive backgrounds. It is composed of 23,070 images which contain one

instance per image from 200 instances (INSTRE-S1/S2) and 5,473 images

which contain two instances per image from 100 instances (INSTRE-M). We

used the 11,011 manually collected images from 100 instances (INSTRE-S1)

for our evaluation, which is further split into 50 categories for training and

the other 50 categories for testing.

CORe50 [86]: This dataset includes image sequences of 50 hand-held ob-

jects belonging to 10 class-level categories, originally proposed for continual

learning. We also evaluated this dataset because it has been collected in

11 distinct backgrounds with natural hand occlusion, which shares the chal-

lenges of our work. We sampled images in 1fps for each image sequence,

which produces 550 image tracks in total. We used this dataset for all the 50

objects only for testing due to the limited number of instances. The hyperpa-

rameter was chosen by which achieves the best AMI across the trials. Since
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the provided bounding box was taken larger than the foreground object, 24

pixels around each of the 128-pixel squares were cut out to form input.

Results Table 3.3 shows the quantitive results. The left column shows

source datasets and the top row shows target datasets. Numbers in the bold

and blue text show the best and the second-best results across the source

datasets, respectively. We first found that the model trained by Online Prod-

ucts and INSTRE did not generalize to EK-Instance. They showed degraded

performance against the ImageNet baseline. Meanwhile, the model trained

by EK-Instance showed better performance on Online Products and CORe50

compared to the ImageNet baselines while it showed slightly degraded perfor-

mance on INSTRE. Online Products and INSTRE did not generalize to each

other, both showing inferior performance against the ImageNet baselines.

We think that the difference came from the property of the data. First,

the Online Products dataset was collected from an E-Commerce website. It

contains multiple images of products per instance, but most images are ac-

companied with a very simple background (e.g ., transparent or monochrome)

with limited variation. While it contains significant variations in the view-

points, poses, and illumination, the images are not only identifiable from

their foreground appearance but also from the background appearance, which

shortcuts the true difficulty of identification by the foreground. The signif-

icantly degraded performance in CORe50 dataset supports this hypothesis

since the dataset is designed to include shared backgrounds among instances.

On the other hand, the INSTRE dataset was intentionally designed to cap-

ture diverse background images out of their natural context. Therefore, the

benchmark required models to focus only on the foreground to distinguish

objects. However, the number of objects is relatively small and they are se-

lected from apparently distinctive objects such as toy characters. Although

they are captured in various lighting conditions and poses (mostly 2D rota-

tions), the viewpoints were strictly controlled to face the frontal part of each

object, which is far from practical situations. As a result, the model trained

with INSTRE showed the best performance on the CORe50 dataset but got

the worst performance on the Online Products dataset which requires distin-

guishing fine-grained appearance changes. Although not perfect, the model
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trained with EK-Instance was able to identify instances with foreground and

background variation because it contains the natural appearance changes in

dynamic environments.

3.5.6 Visualization of Learned Representation

To better understand which area the model is focusing on, we visualized the

instance-specific activation heatmap of the model using Grad-CAM [125].

Specifically, we applied Grad-CAM to the normalized softmax model for its

simplicity. Although our main focus is to learn a generalizable representation

against unknown instances, it gives us useful insights on which region is

the model focusing on. Figure 3.8 shows the class-discriminative regions of

training images derived from the last layer of the ResNet-34 backbone. The

first and second columns are the input image and its support for the ground-

truth category. The other columns are the top-5 “hard” classes which showed

high instance classification probability and their corresponding supports.

The first finding is that the model learned to focus on the peripheral region

of objects such as dishes and mugs (first to the third row, second column).

We think the foreground clutters present in the EK-Instance dataset guided

the model to focus more on the peripheral region. Similarly, the model

avoided focusing on non-discriminative regions such as hands (fourth row).

However, in some cases, we found sharp activation heatmaps not necessarily

focusing on all the discriminative regions (fifth and sixth row). The model

showed sensitivity against relatively smaller regions rather than focusing on

all the discriminative areas. In addition, we found some classes that failed

to recognize the foreground region, which leaves room for improvement (last

row).

3.6 Discussion

Throughout the analyses, we have shown that the problem of object instance

identification is yet solved in a dynamic and realistic scenario. We summarize

the implications learned from the analyses for further development as follows:
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Appearance of objects dynamically changes across time: Prior works

implicitly assumed that the object’s appearance does not change upon re-

appearance. However, the EK-Instance dataset revealed that the appearance

of objects will significantly change by the action of the user and the inter-

action between other objects. Towards a practical identification model, a

model should learn not only invariance against viewpoint but also invariance

against object state-changes. This aspect has been studied in a few works

(e.g ., [126]) but overlooked in general. Although the latest metric learning-

based models worked well in general, further analysis on those difficult cases

should be conducted.

Both low-level and high-level features are important: In the EK-

Instance dataset, we did not include class-level labels because it was difficult

to provide a well-defined category set for it. However, the error analysis re-

vealed that confusions among completely different semantic categories were

present by giving too much focus on superficial resemblance. An explicit

mechanism to combine both low-level and high-level features in a sophisti-

cated way is demanded.

Foreground extraction matters: The main limitation of the EK-Instance

dataset was that it lacks pixel-level annotation of the target object, which

caused confusion in determining the foreground region of the target object.

While it is unrealistic to provide fine-grained annotation against arbitrary

categories, unsupervised techniques such as motion-based segmentation (e.g .,

[127]) may mitigate the problem.

3.7 Conclusion

In this chapter, I have focused on the object side of hand-object interaction,

and have studied the problem of category-agnostic object instance identifica-

tion, which will be a critical component for long-term hand-object interaction

understanding. By pointing out the limited data size and oversimplification

in the existing datasets, I have newly collected the EK-Instance dataset,
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which contains more than 1,500 open-vocabulary object instance annota-

tions from unscripted, real-world first-person videos. The collected dataset

has shown larger intra-class variability by significant foreground and back-

ground clutters primarily caused by the user’s activities. I have formulated

the category-agnostic object identification problem as a clustering problem

and provided strong baseline models based on metric learning. The exper-

imental results have shown that the learned model exhibits better robust-

ness against dynamic changes in appearance compared to the models trained

by existing datasets. The analyses have revealed the existing biases in the

trained model, and have discovered challenges for further development such

as change robustness, feature fusion, and accurate object targeting. Future

work includes (i) a new metric learning scheme that is more robust against

appearance changes and (ii) scalable knowledge extraction from unlabeled

videos.
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Figure 3.6: Example of obtained clusters. Colored frames show images in-

cluded in ground truth clusters. Purity and inverse purity [1] of each cluster

are also shown.
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Figure 3.7: Failed HAC merging examples. First and second row of each

item show tracks that are wrongly merged during HAC algorithm. Colored

frames in middle denotes tracks from different instances. Averaged distance

(1 - cosine similarity) between tracks are shown for each example (clusters

are merged if distance is below 0.7).
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Figure 3.8: Grad-CAM visualization on training set. First and second column

are input image and its support for ground-truth category. Other columns

are top-5 “hard” classes which showed high instance classification probability

and their corresponding supports, respectively.
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Chapter 4

Assisting Users for Finding

Lost Objects

4.1 Introduction

Looking for an object we do not remember leaving somewhere occurs fre-

quently and is considered as a recurring problem regardless of age [128]. We

lose objects under various reasons and situations [128–130]. One survey re-

ports that people spend 2.5 days a year looking for misplaced objects [131].

As shown in the recent emergence of AirTag [132] for example, technological

support to assist users in finding lost objects is demanded.

Ubiquitous computing tackles this problem by collecting and providing

cues on where objects are located. Placing external sensors on the target

object [133, 134], and detecting objects with visual sensors [135–137] are

proposed as major solutions to keep track of object locations on behalf of

users. Such prior systems are designed to track a small number of important

objects and ask a user to register target objects in advance to track those

objects. When looking for an object, the user searches a list of the registered

objects (e.g ., a list of object names) to select which object to look for.

However, objects we lose are not necessarily registered. We often lose

unique objects such as an important document received from the supervisor,

a book borrowed from the library, or a thing bought a week ago which is left

behind somewhere. Since such objects are not usually registered, the system
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(3) Finding location from its frame of last appearance(1) Forgot location of object (2) Query it using thumbnail image

Figure 4.1: GO-Finder assists users in finding lost objects by showing last

scene when the user handled it. User looks through list of object images to

select object of interest.

cannot help users find them. To deal with such losses, we may think of

automatically registering all the objects appearing around the user. However,

this produces an enormous amount of candidates, which makes it impossible

for the user to find an object within a reasonable amount of time. Moreover,

assigning a unique name to each object will be unrealistic as the number of

objects grows. To support finding arbitrary objects, we need not only to track

potential objects to be lost but also to eliminate the burden of registration.

In this chapter, I introduce two key ideas to overcome the above issues to

support users in finding lost objects. First, instead of tracking all the objects

appearing around the user, we limit the search range to objects handled by

hands. Since most portable objects we want to look for are handled with

our hands, we can significantly reduce the number of candidate objects by

limiting the scope to hand-held objects. A reduced number of candidates

enables users to look for the target object in a realistic amount of time.

Another key idea is to use the object image as a query to select which

objects to look for from the candidates. Instead of assigning unique names

to objects, we display to users a list of object images to select which object

to look for. Visual information of objects enables the user to identify the

target object instantly without assigning a unique name to it.

Based on these ideas, I propose GO-Finder (“Generic Object Finder”), a

registration-free wearable system for assisting users in finding arbitrary hand-

held objects. GO-Finder only requires a video captured from the wearable

camera, does not require any registration, and can handle arbitrary hand-

held objects automatically. When finding objects by GO-Finder, users first
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skim through a list of object thumbnails, called the hand-held object timeline,

to ask the system which objects to search for. Given the selected object, GO-

Finder presents an image of the last scene when it appeared (Figure 4.1).

This is achieved by a fully automatic process of hand-held object discovery,

which detects and clusters hand-held objects.

To validate the effectiveness of GO-Finder, two studies are conducted

on (i) user experience in a laboratory setting and (ii) usability study on

interface in a longer and realistic scenario. In the first study, participants

are to perform a object retrieval task in a laboratory setting, mimicking a

situation of finding an object. A user study shows that users can successfully

find objects by using the hand-held object timeline and reduce their mental

load on performing the object-search task compared to the unaided condition.

Participant feedback suggested that it is feasible to find arbitrary hand-held

objects using the hand-held object timeline, which significantly broadens the

coverage of objects to look for.

While the first study revealed GO-Finder’s effectiveness on a relatively

short sequence, the usability of GO-Finder on a much longer sequence with a

large number of discovered objects was not yet investigated. In such a situ-

ation, the hand-held object timeline was expected to be suboptimal because

the user must scroll through a very long list. To this end, we further propose

two features that help users finding out the target object from the interface

by providing the contextual information of it: (i) narrowing down by scene

and time (ii) jumping to similar-looking objects. Users can efficiently browse

the candidates by providing the context of the target object to the system.

As a second study, a usability study on the newly introduced features in

situations where a large number of objects appear, along with algorithmic

improvement, is conducted. The participants performed the task of finding

out the target objects that appeared in a pre-recorded first-person video and

how users benefit from context-based filtering was evaluated. User feedback

confirmed the usefulness of context-based filtering against longer sequences

while the simple hand-held object timeline was also shown to be more effec-

tive than expected.
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4.2 Related Work

4.2.1 Computational Systems for Finding Lost Objects

Various types of sensors, such as wireless tags [136, 138–141], Bluetooth [142–

144], stationary cameras [137, 145], and wearable cameras [135, 146, 147],

have been studied for systems to assist users in finding lost objects. Ac-

tive and passive radio-frequency identification (RFID) tags are frequently

deployed by attaching them to target objects. While RFID tags are effective

in indoor environments, they cannot locate an object when taken outside the

search range. To expend the search range, a combination of Bluetooth and

global navigation satellite system (GNSS) are adopted in some commercial

products (e.g ., Tile [148] and AirTag [132]). Although these systems can

provide the angle and distance from the tag, their guidance is less intuitive

and attaching an external tag to each object will be a major bottleneck to

track a large number of objects.

Alternatively, camera-based systems have the merit of not requiring ex-

ternal sensors attached to objects. Captured images themselves can be easily

interpreted by the user just by showing the image [147] and visual informa-

tion offer a great amount of information when remembering past events [149].

Butz et al . [145] used augmented reality (AR) markers to search for objects

in an office environment. Xie et al . [137] proposed a dual-camera system for

indoor object retrieval. Cook’s collage [150] propose a system to monitor the

progress of a cooking activity from a stationary camera. However, stationary

cameras do not solve the problem of the search range and are weak against

occlusions when objects are hidden by other entities. AR marker-based ap-

proach has the merit of target object easily recognizable by the camera but

the registration cost is still high and limited to objects where AR marker is

attachable.

Wearable camera-based systems mitigates these problems by capturing

images from the user’s viewpoint. Since the camera moves along with the

user, the system captures a close-up of the surrounding environments and

it can be carried, significantly expanding the search range. Similar to GO-

Finder, Ueoka et al . [135] developed a wearable camera based object retrieval
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system based on object detection. The system consists of head-mounted RGB

and infrared cameras for capturing pre-registered objects. It assists in object

search by showing the last scene of the target object detected. The same

strategy is adopted in this work. But unlike [135], our wearable-camera-based

system, however, automatically groups all the hand-held objects appearing

around the user, eliminating the registration operation.

Different from all the above works assuming a small number of items to

be manually registered, we tackle the challenging problem of fully-automatic

hand-held object tracking. We provide the users with how to select the

objects of interest efficiently from a list of automatically tracked objects.

Since GO-Finder automatically detects and groups all the hand-held objects

appearing around the user, it can support the user even they lose unregistered

objects.

4.2.2 Camera-based Systems for Mitigating Memory

Problem

Camera-based systems are used for mitigating memory problems other than

losing objects since visual information offers a large amount of information

better than textual information [149]. Schiele et al. [151] proposed a wearable

system to associate objects and videos taken from a body-worn camera to

recall information of objects. Tran et al . [150] proposed a system to monitor

the progress of a cooking activity. Hodges et al . [152] proposed a wearable

camera based system called SenseCam, which takes wide-angle pictures pe-

riodically (e.g ., one shot every 30 s) to remind users of past events. Li et

al . [153] proposed FMT, a wearable memory-assistance system to remember

the state of objects (e.g ., the last time the plant was watered). While their

hardware configuration is similar to ours in using neck-mounted wearable

cameras, they aim to recall past interactions of a few numbers of daily-used

objects, asking users to attach AR markers to each object. In contrast, GO-

Finder aims to expand the range of objects which could be searched for by

removing the registration operation.
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4.2.3 Objects and Hands in First-Person Videos

GO-Finder executes hand-held-object detection and grouping to discover ob-

jects appearing in first-person videos. Discovering objects in first-person

videos is a difficult problem since object categories appearing in daily life

are massive, diverse, and individual-dependent. To this end, various meth-

ods have been proposed to discover objects in first-person videos [154–157].

Lee et al . [154] developed a model to discover important object regions us-

ing multiple first-person saliency cues. Lu et al . [158] proposed an object

clustering-based method for personal-object discovery. Their system involves

object-scene distribution based on the assumption that personal objects ap-

pear in different scenes while non-personal objects typically remain in similar

scenes.

Since objects appearing in first-person videos are typically handled by

hands, hand information is used to improve object detection. Higuchi et

al. [159] propose to use hand appearance as one of the crucial cues to effi-

ciently fast-forward first-person videos, which was further extended to extract

important moments in a surgery [160]. Lee et al . [65, 161] proposed using

hands as a guide to identify an object of interest from a photo taken by peo-

ple with visual impairment. Shan et al . [22] collected a large-scale dataset

of hand-object interaction along with annotated bounding boxes of hands

and objects in contact with each other. Their proposed system can detect

hands and objects in contact with each other from an image. Our aim is

not only detecting hand-held objects but also to discover hand-held-object

instances from first-person videos, which reduces the number of candidates

to be registered.

4.2.4 Object Retrieval Behavior of Humans

When people try to find lost objects, instead of recalling the object itself

they typically start by recalling contextual information around the object to

look for. The field of Personal Information Management (PIM) [162] study

how people behave on acquiring desired items or information. Elsweiler et

al . [130] reports several recovery strategies when looking for misplaced ob-

jects revealed by a diary study. Participants reported a “spatial mental
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journey” recollecting through likely locations or events using visual and spa-

tial contextual information. They tried to recollect the spatial and temporal

contexts in which objects were used to make a guess on where to look for

the misplaced objects. Kelly et al . [163] also reports that contextual infor-

mation such as date, time, and location associated with the digital items is

well remembered over six months. Indratmo et al . [164] suggests providing

multiple visualizations as views so that the users can reach out to the target

object from various perspectives, depending on their cognitive habits. These

studies suggest that it is beneficial to access the context of the target object

when finding lost objects.

Because our system aims to discover arbitrary hand-held objects to be

searched, it produces a large number of objects to look for within the in-

terface. As the number of discovered objects grows, it will be more difficult

and inefficient to skim through a long list of candidate objects. To overcome

this problem, we make use of the above practices by incorporating a function

similar to these “filter-by-context” schemes into our interface.

4.3 System Design

4.3.1 System Overview

GO-Finder requires a wearable camera, processing server, and smartphone

for browsing the location of objects the user is looking for (see Figure 4.2).

The procedure is divided into observation and retrieval phases.

In the observation phase, a user wears a camera on their neck. The camera

continuously stores the first-person images send to the processing server. The

server processes the received images to detect and track hand-held objects.

Finally, images are clustered by their appearance to discover groups of object

instances.

In the retrieval phase, users use a smartphone-based interface (see Fig-

ure 4.3) to receive the processed results thorough a wireless connection. First,

users select which object to look for through the hand-held object timeline

(Figure 4.3 left). Then, they find the target object by viewing the pop-up

screen showing the last appearance of it (Figure 4.3 right).
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Observation Phase

Processing server

Retrieval Phase

Object information 
through Wi-Fi

Video data

Wearable
camera

Smartphone

Figure 4.2: Users wears wearable camera on their neck. During observation

phase, their first-person images are sent to processing server to discover hand-

held objects. At retrieval, processed results are sent from server, and user

retrieves last frame of objects through smartphone app.

4.3.2 Hand-Held Object Discovery

GO-Finder attempts to detect hand-held objects and discover groups of ob-

ject instances from the first-person video. By discovering object instances,

we can acquire the last appearance of the object, which is used to find the

object. Figure 4.4 shows a rough sketch of how to acquire the last appearance

of an object. An object detector detects hand-held objects from first-person

video frames. From all the detected object images, we apply tracking and

clustering (see Section 4.4 for details) to discover groups of cropped object

images, clustered by instance. Since we are interested in finding the last

location of the object, we only use the last thumbnail image and last frame

for our user interface.

4.3.3 Hand-Held Object Timeline

GO-Finder automatically discovers hand-held object instances and registers

them as candidates. In this case, searching for objects by their names be-
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Hand-Held Object Timeline Pop-up Screen

Figure 4.3: Interface of smartphone app used in first study. (Left) Hand-

held-object timeline. (Right) Pop-up screen.
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Input frames

Discovered object cluster Last thumbnail image

Frame of last appearance

Hand-held object 
detection & clustering

No detection No detection

Figure 4.4: Given first-person video frames, system detects hand-held objects

and groups them to discover cluster of cropped object images for each object.

Since we are interested in providing last location where the object appeared,

we use last thumbnail image and last frame in which the object appeared to

help user find specific object.

comes unrealistic since it requires an association between the object name

and its appearance. We propose the hand-held object timeline, which selects

the target object by browsing the thumbnail images of the objects placed

over a grid (see Figure 4.3 left). Thumbnail images of the objects are sorted

by the last time they appeared in descending order. By skimming through

the timeline, users select a thumbnail of the target object to retrieve its last

appearance. We adopt the image timeline as a metaphor for a photo album,

which is widely accepted in existing smartphone-based interfaces.

Note that the obtained object timeline can be used as a trigger to remind

the user of the object location. The timeline acts as a concise history of what

the user has handled in the past. Even before arriving at the target object,

the user can be reminded of past actions by looking back at the timeline.

4.3.4 Pop-Up Screen

By clicking on a thumbnail of the object timeline, a pop-up screen will appear

to show the appearance of the object and time (see Figure 4.3 right). Since

the pop-up screen shows the critical moment of leaving an object, the user

can instantly be reminded of the location of the object by looking at the

surrounding environments. The “basic” version with minimum functionality

that combines the hand-held object timeline and the pop-up screen was used
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(Filtered List) (Filtered List)

Figure 4.5: Extended interface with candidate object filtering and recom-

mendation, used in second study.

in the first study.

4.3.5 Candidate Filtering by Context

While the hand-held object timeline is simple and intuitive, the browsing

cost linearly increases to the number of objects. As the number of objects

grows, scrolling through a very long list will be more difficult. Based on the

typical object retrieval strategies reported in PIM, we explore the possibility

of providing users options to filter the candidate objects from the contextual

information (e.g ., time, location, and co-occuring objects) they remember.

Specifically, three additional features (scene view, time view, and similar

object recommendation) are introduced as an extension to the basic version

(see Figure 4.5), that are used in the second study. In this “extended” version,

the user can select how to find the objects from three views. Furthermore, a

recommendation function that allows the user to search the target object by

its appearance is introduced.

Object View

This view is identical to the hand-held object timeline. All the thumbnail

images of the appeared objects are sorted by the last time they appeared in

descending order.
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Scene View

In the scene view, discovered objects are grouped by scenes where the objects

appeared. Scenes are automatically discovered by a way similar to hand-held

object discovery. Several frames which represent the scene are displayed per

scene, and by pressing one of them, a filtered list of objects which appeared

in that scene will be displayed the same as the interface of the object view.

If the user partially remembers the location the target object appeared, they

can filter a large number of candidates by the selected scene. We note that

if an object appears in a scene at least once, the object will be included in

the scene. Therefore, even when the user does not know the last appeared

location, they can find the object from the past locations the object appeared.

Time View

Similar to the scene view, discovered objects are divided by a set of fixed

length time windows. Several object thumbnail images which represent the

time window are displayed per window, and by pressing one of them, a filtered

list of objects which appeared within the time window will be displayed the

same as the interface of the object view. The time view is effective when the

user remembers the time or the activity when they handled the object. The

difference appears when the user arrives at the same scene at a different time.

By using the time view, the user can narrow down the objects associated with

that specific moment.

Similar Object Recommendation

This feature is implemented upon the pop-up screen. A list of object thumb-

nails that show high visual similarity to the selected object is displayed bot-

tom of the screen. The user can jump to the pop-up screen of similar-looking

objects, which allows the user to navigate to the desired object even they

cannot find it from the hand-held object timeline. This process could be

repeatedly applied thus the user can jump to other objects more than once.

Similarity scores are computed by the same model used for the hand-held

object discovery.
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(a) Input Frames (c) Frame-wise Tracking (d) Local & Global Matching (e) Discovered Objects
(b) Hand-held 

Object Detection

...
...
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Figure 4.6: Overview of hand-held-object-discovery algorithm. (a) Input

frames. (b) Example of hand-held object detection. Yellow and red boxes

denote detected objects and hands, respectively. (c) Tracked detections.

Typically, they are segmented due to tracking failure or re-appearance. (d)

Local matching between latest detection and existing cluster (top). Global

matching between two existing clusters (bottom). (e) Segments are clustered

by instance. Last appeared scenes (images with red frame) will be displayed

in user interface.

4.4 Algorithm and Implementation

In this section, we introduce the details on the hand-held object discovery

algorithm used in GO-Finder.

4.4.1 Hand-Held Object Detection

We use the state-of-the-art algorithm on hand-held object detection [22]

trained on a large-scale image dataset of hand-object interaction collected

from first-person video datasets [20, 21, 28]. Given a video frame, it pro-

duces bounding boxes of the hand, contact state (self-contact, other people,

portable object, and static object), and its manipulating objects (see Fig-

ure 4.6 (a)). Since various types of objects under a hand contact are an-

notated, the model can detect arbitrary types of objects in contact, while

rejecting other objects not handled by hands. Therefore, we can significantly

reduce the number of candidates to be searched compared to detecting all
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the objects that appear in a scene. Since we are interested only in portable

objects, we extract detections that are predicted as a portable object in the

contact state prediction. Furthermore, detections that occupy more than

half the side length of the frame are considered noise and are excluded from

prediction.

4.4.2 Object Instance Discovery

Using the detected bounding boxes, we cluster them into a set of instances

based on their appearance features. Every detection should be assigned to

a single cluster, and re-appearing objects should be merged into existing

clusters. To this end, we adopt a combination of local and global matching,

which consists of three stages.

Stage 1: Frame-wise Tracking

We first apply a visual tracker to the detected hand-held objects. If the

tracker successfully associates between consecutive detections, we assign the

detection to the same cluster as the previous one (Figure 4.6 (c)). Since

first-person videos include large camera motion, we use an appearance-based

tracker [165], which performs similarity matching. The cost assignment ma-

trix is calculated by the intersection-of-union between all the tracker’s pre-

dictions and actual detections. Optimal assignment is achieved by using the

Hungarian algorithm [123].

Stage 2: Local Feature Matching

When the tracking fails, we apply local matching between the latest detection

and existing clusters based on the object’s appearance. We use pre-trained

convolutional neural network (CNN) features to find similar objects in the

existing clusters. For every detection, a 2048-dimensional feature vector is

first extracted from the layer before the final layer of ImageNet-pretrained

ResNet-50 [116]. We then calculate the cosine similarity between the new

detection and all the detections in the cluster (see Figure 4.6 (d), top). Next,

for each cluster, if the maximum and median of the similarity scores are above
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certain thresholds, the new detection is merged with that cluster. We check

the median score to avoid false associations. If none of the clusters meets the

condition, then a new cluster is created.

Stage 3: Global Cluster-wise Merging

Since the previous stage matches against a single detection, it tends to form

a new cluster if the viewpoint or boundary of the latest detection fluctuates

even it should be merged. To deal with such incorrectly segmented clusters,

we try to merge clusters by global cluster-wise merging. Given a pair of clus-

ters, we calculate sample-wise cosine similarity between clusters, forming a

similarity matrix (see Figure 4.6 (d), bottom). Note that the scores calcu-

lated at stage 2 can be reused in this stage. The two clusters are merged if

the maximum and median of all elements of the similarity matrix were above

certain thresholds. Concretely, the maximum and median thresholds are set

to 0.8 and 0.7, respectively.

However, this merging process is time-consuming, and should not be re-

peated every time. To reduce the number of trials, we re-try merging only if

the number of similarity matrix elements is more than two times that of the

last trial.

Determining Similarity Thresholds

Changing the hyperparameters (maximum and median similarity threshold)

may affect user experience. Stricter thresholds produce oversegmented and

increased number of clusters while achieving higher recall on discovered target

objects. This makes it more difficult for the user to select the object of

interest from the candidates. In contrast, looser thresholds result in a smaller

number of clusters with the risk of missing objects due to wrong associations.

A reduced number of clusters may make it easier for the user to select the

target object, but it may be impossible to find it if it is incorrectly merged

with other objects. While we empirically selected these parameters during

the study, we further introduce additional heuristics to explicitly suppress

false associations.
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Constrained Clustering using First-Person Cues

During similarity calculation, the hand-held object discovery algorithm some-

times shows a high similarity to a different object due to the appearance of

the hand and similar textures, producing false associations. Therefore, we

introduce several heuristics to suppress such false associations. If a detected

bounding box or a pair of them satisfies the following conditions, the simi-

larity of that pair is set to zero.

• Aspect ratio between two boxes: if the ratio of the two bounding

box aspect ratios is larger than 1.5

• Ratio of skin color: if the ratio of the skin-colored region (calculated

using color histogram) is larger than 0.3

• Area ratio of the object to the corresponding hand: if the ratio

of the two area ratios (area of the object bounding box to that of the

hand bounding box) is larger than 1.5

The above detection-and-discovery algorithm was used in the first study.

4.4.3 Dealing with Real-World Environments

While the pre-trained CNN model introduced in 4.4.2 works reasonably well

in discovering object instances, its performance is not enough when many

similar-looking objects appear in a cluttered environment. To further reduce

under/over-segmentation in real-world environments, a metric learning model

is introduced along with modifications on the previous algorithm.

Metric Learning by Tracking

The training data is automatically generated by hand-held object detection

and tracking. Given a video clip, we first use the hand-object detection

model [22] to detect hand-held objects in each frame. Next, we associate

adjacent detections using a Kalman Filter-based tracker [52]. We further

extrapolate object tracks one second before and after using another visual

tracker [53].
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Since the generated hand-held object tracks include pose change and oc-

clusion during the interaction, we can learn an embedding robust against

pose change and occlusion by using them as a training data. Specifically,

we employ the well-known triplet loss [166] which is popularly used in re-

identification tasks. Given a projection model fθ parametrized by θ, a dis-

tance metric function D, an anchor point xa, a positive point xp sampled

from the same track, and a negative point xn sampled from other tracks,

the objective is to make the distance between projections of xa and xp closer

than the distance between projections of xa and xn by at least a pre-defined

margin m.

Ltriplet(θ) = [m+D(fθ(xa), fθ(xp))−D(fθ(xa), fθ(xn))]+.

We select positive points from the same track the anchor point belongs to

while selecting negative points from the other tracks.

We generated the training data using the EPIC-KITCHENS dataset [23,

28] which contains cooking activities from various environments. Because

diverse objects appear in the kitchen environment, we found the network

learns generalizable features for instance re-identification. Because videos

are divided by participants, we collected negative points from videos of a

different participants.

In this version, we use an ImageNet [167] pretrained BN-Inception [168]

CNN followed by a linear projection layer (128 dims) and an L2 normaliza-

tion layer as a projection model. BatchNorm parameters are fixed during

training to prevent overfitting. The Euclidean distance is used as a distance

metric function, which is equivalent to cosine similarity for L2-normalized

embedding.

Rejection by Semantic Information

While the metric learning-based model generally produces better similarity

measures, it suffers from wrongly associating objects of completely differ-

ent categories by emphasizing color and texture information. To eliminate

such false associations, we introduce another CNN model which performs

matching by semantics. Specifically, we calculate the class probability of the

detected object image using an ImageNet [167] pretrained BN-Inception [168]
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CNN network. Kullback–Leibler divergence is used to calculate the semantic

similarity between detections. We expect that the same instance will pro-

duce a similar class probability. At local and global matching, we reject the

merging regardless of the appearance similarity if the mean Kullback–Leibler

divergence between clusters is above a certain threshold. In this study, we

set the threshold to 0.004.

Cluster Size Limitation

In real-world scenarios, few objects appear frequently and their object cluster

size grows quickly. This results in increased feature matching cost and large

memory consumption, making real-time clustering impossible. We found

that setting a maximum size on each cluster significantly reduces the compu-

tational cost without damaging the performance. When we found a cluster

its size exceeding a certain threshold, we uniformly re-sample the feature

vectors sorted by the corresponding detection’s time. In this study, we set

the maximum cluster size to 500.

Improved Thresholding

The original algorithm tends to oversegment temporally adjacent detections

due to pose and background change. We add a heuristic of increasing the

similarity of two samples with a predetermined offset when the samples are

detected within a certain temporal range (e.g ., 10 sec).

4.4.4 Scene Discovery

To provide users the ability to filter candidate objects by scene, we also auto-

matically extract a “scene” defined as a set of frames that their appearance is

similar. We follow a similar strategy to the hand-held object discovery algo-

rithm. We aim to extract scenes based on the workspace in which each action

was performed (e.g ., kitchen sink, desk, and bookshelf) because appearing

objects may completely change across workspaces even their spatial distance

is small. Based on these demands, we introduce a local descriptor-based

scene representation and clustering for scene discovery.
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Scene Descriptor

We use Vector of Locally Aggregated Descriptors (VLAD) [169] to repre-

sent a scene. First, keypoints are extracted and described by Scale-Invariant

Feature Transform (SIFT) descriptor [170]. Each descriptor is assigned to a

pre-calculated cluster and its residuals between descriptors and cluster cen-

ters are accumulated and summed to form a single VLAD descriptor. We

follow [169] to form a normalized VLAD descriptor of a vocabulary size of

128, which was further projected down to 4096 dims via principal compo-

nent analysis. We extracted the SIFT descriptors from a 640×480 image,

setting a very small Difference-of-Gaussian (DoG) threshold to extract many

descriptors from the entire image.

To adapt to first-person videos, we made two modifications in the local

descriptor calculation. First, local descriptors within the lower 15% of each

image are omitted because the lower region often contains the lower body of

the user and the floor region, which do not characterize the scene well. The

local descriptors within the hand region are also removed due to the same

reason. We extract a binary hand region mask using a hand segmentation

model trained on a first-person video dataset [20] and removed the local

descriptor within and around the predicted hand regions.

Scene Clustering

Then we group the calculated features by their similarity. An ideal scene

should preserve the temporal locality while separating the cluster when a

large appearance change occurs. We apply Spectral Clustering [111] by con-

structing an affinity matrix based on the VLAD descriptors. We calculate

the L2 distance between the descriptors to determine the similarity. Different

thresholds were used to connect temporally adjacent nodes and to connect

the other nodes.

4.4.5 Implementation Details

We sampled video frames at 10 fps, and further resized them into VGA res-

olution before processing. While a smaller frame rate is enough to capture

73



Camera

Target object

Location tag

← Latest

Oldest →

Figure 4.7: (Left) Object arrangement: participants hide objects at specified

locations while wearing camera around their neck. (Middle) Objects used in

study. (Right) Example of timeline of frame-based system.

the timing of leaving an object, we find that a higher frame rate is better to

track objects stably.

4.5 Evaluation Studies

To validate the effectiveness of GO-Finder, we conducted two studies on (i)

user experience evaluation in a laboratory setting and (ii) usability study on

the interface in a longer and realistic scenario.

4.5.1 Study I: Finding Objects with GO-Finder

As a first study, we conducted an in-lab experiment to determine (i) whether

GO-Finder can correctly discover hand-held objects from the video and (ii)

whether users can use the system to find target objects. We hypothesized

that by using GO-Finder, users can find objects correctly and quickly with

less mental load.
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Procedure

We recruited 12 volunteers1 (10 males and 2 females) with ages ranging from

18 to 28. They were all familiar with using smartphones. The experiment

was conducted in a room in our lab. The task was a hide-and-seek task per-

formed by the participants. The procedure was divided into three phases:

arrangement phase, forgettng phase, and retrieval phase. First, participants

filled out a pre-study questionnaire on their past experience of looking for

lost objects. After an introduction to the task, each participant was asked

to hide a set of objects inside a room (arrangement phase), conduct a surro-

gate task to forget the locations of the objects (forgetting phase), and later

asked to correctly retrieve a subset of them (retrieval phase). The trial was

repeated three times, changing the experimental conditions. Conditions were

randomly shuffled to eliminate order effects. After all the trials, participants

filled out a post-study questionnaire on the usability of the interface. Finally,

we conducted a semi-structured interview to find further insights.

Arrangement phase First, the participant went to the room and asked

to hide a set of objects prepared by the experimenter. The locations to hide

the objects were specified with pink tags and the participants were informed

about them in advance (see Figure 4.7 left). The participants carried a basket

along with the objects. During the experiment, participants wore a GoPro

HERO 7 camera (150◦ diagonal field-of-view) to record first-person videos.

Forgetting phase The participants moved to another room and took a

15-minute interval to forget the arrangements. During the interval, the par-

ticipant was asked to solve as many of a series of simple calculation problems

as possible.

Retrieval phase The participants came back to the room and were asked

to bring back a subset of the hidden objects. The list of objects to bring

back was shown in a photo. In addition to the neck-mounted camera, the

1One participant (P05) was excluded from the analysis due to a misunderstanding of

instruction.
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participants wore smartphones around their necks to use the system. Under

each condition, participants were given instructions on how to use the system

and become familiarized with the interface by browsing the result of a sample

video carrying a few objects. They were not forced to use the system; they

used the system only when they needed to use it. All the experiment was

completed on a Google Pixel 4 smartphone with a 5.7-inch, 1080×2280 pixel

display.

Experimental Conditions

We compared three conditions:

• No aid: The participant search for objects themselves without any

assistance.

• Frame-based aid: The participant is shown a timeline of images ex-

tracted every 5 sec.

• Object-based aid (GO-Finder): Our proposed system with hand-

held object timeline and pop-up screen.

The frame-based aid condition resembled automatic image capture devices

such as SenseCam [152]. We hypothesized that past images would help the

participants remember their arrangement of objects. Regarding the duration

of the task, we showed images taken every 5 sec (see Figure 4.7 right), which

is denser than typical devices (e.g ., 30 sec).

We used a laptop PC to run the object discovery algorithm. The connec-

tion between the laptop PC and smartphone was established via Wi-Fi as

shown in Figure 4.2. At every trial, participants hid 16 objects in a choice of

20 locations and asked to retrieve 6 objects from them. We used different ob-

ject sets for each trial, resulting in 48 objects in total (see Figure 4.7 right).

The objects differed in color and shape, and sometimes included multiple

instances of the same category.

System Evaluation Measures

Detection recall rate To measure how well the hand-held object discov-

ery algorithm can detect target objects, we counted the number of objects
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that are successfully detected at their last appeared timings. The detection

recall rate is defined as a ratio of the number of detected objects to the total

number of target objects. It was manually calculated this metric by looking

at the raw detection results. We counted as a success when there exist a

bounding box well covering the object at least one frame. In combination

with the localization rate (defined later), this metric can be used to measure

whether the error exists in the detection phase or the clustering phase.

Localization rate To measure how well the hand-held object discovery

algorithm can discover target objects, we counted the number of objects in

which their locations are identifiable by a third person, who did not have

any memory of arrangement; only using our system. The localization rate

is defined as a ratio of the number of identifiable objects to the total num-

ber of target objects. It was manually calculated this metric by using the

system. We counted as a success only if a close-up of an object is visible

in the thumbnail of the timeline and the object location could be correctly

determined from the pop-up screen without difficulty. This metric acts as an

expected recall of the system.

Number of clusters We also measured the number of clusters formed

with the hand-held object discovery algorithm and analyzed the contents of

the timeline. We ran the algorithm for all 36 trials (12 participants × 3

conditions).

Objective Evaluation Measures

Correctness of retrieval We calculated the mean precision of each trial.

We counted as correct when the user found an object listed on the target

list and incorrect when the user opened a location with the incorrect or no

objects. We compared three combinations of two of the conditions by using

the paired t-test on the difference of mean scores.

Task completion time We expected shorter task completion time by us-

ing the system. We compared three combinations of two conditions by using
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the Wilcoxon signed-rank test on the difference in mean task completion

times.

System usage time Since GO-Finder can search for objects directly through

the hand-held object timeline, we expected to have a shorter usage time us-

ing GO-Finder to the frame-based aid condition. We measured the number

of times participants used the system2 and usage time per trial from the

recorded videos.

Subjective Evaluation Measures

Questionnaire After all the trials, participants answered questions on each

condition. First, participants were given the question, “How do you rate the

difficulty of completing the task?” on a seven-point scale (easy=1, diffi-

cult= 7). We used the Wilcoxon signed-rank test in the difference of means.

Regarding the features of the interface, we asked whether they agreed to the

following questions on a five-point scale: Q1) The timeline is easy to view.

Q2) The timeline is intuitive to use. Q3) The timeline helped me look for

objects. Q4) The pop-up screen is easy to view. Q5) The pop-up screen

helped me look for objects. Q6) The timeline (under each condition) gave

me a clue on the location of the target object. Q7) I could be reminded of

the locations of the objects by using the system (under each condition). We

also asked to answer the System usability scale (SUS) test [171]. Finally, we

asked the question, “How comfortable was the neck-mounted camera?” on a

seven-point scale (unpleasant=1, comfortable= 7).

Observation and interview We observed how the participants searched

for objects. During the interviews, we asked what they thought during the

retrieval task. To collect insights on using this system in daily life, we also

asked “What do you recommend to improve the interface?”, and “How do

you feel about wearing a camera in private/public places?”.

2We counted as one time when the user attempted to search a location after using the

system.
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Figure 4.8: Example frames of video used in second study.

4.5.2 Study II: Usability Evaluation on Real-World Se-

quence

As a second study, we conducted a usability study on the extended interface

in better realistic situations where a larger number of hand-held objects ap-

pear in a much longer sequence. As explained in 4.3.5, users can select which

feature to use by their preference and can efficiently browse the candidates

by providing the context of the target object.

In this study, we focused on collecting implications on the usefulness of

each feature and the system’s usability as a whole on selecting the desired

items from a longer list. Because it is difficult to control participant’s be-

havior for a long time, the participants are asked to watch a pre-recorded

first-person video instead of performing an object arrangement task and then

find out the target objects that appeared in the video using the system. We

hypothesize that

• Users benefit from filtering the object candidates by the place or the

specific moment they remember used the objects.

• Users benefit from the proactive recommendation of similar-looking

items so that they can reach out to the desired items without scrolling

the timeline.

Data and Implementation

We recorded a first-person video consisted of multiple scenes using a neck-

mounted GoPro HERO 7 camera (see Figure 4.8). The video includes natural

daily activities such as cooking a meal, making a drink, arranging objects,

etc. The total length of the video was around 75 minutes (45,000 frames)
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Figure 4.9: (Left) Example of query. (Right) All used objects in second

study.

and 145 unique hand-held objects appeared in total, significantly larger in

terms of both video length and the number of objects.

We discovered objects using the improved algorithm and found 406 object

clusters, about four times larger than that of the previous study. For the

scene view, we calculated the dense VLAD descriptor every two seconds and

obtained 30 clusters. Scenes such as in front of a sink, a desk, a table, and

a vending machine were extracted. For the time view, we split the video by

ten minutes, producing eight windows in total.

Procedure

We recruited 6 volunteers (4 males and 2 females) with ages ranging from 21

to 27. They were all familiar with using smartphones. First, the participant

watched the recorded first-person video. They watched the video only once

and re-watching was not allowed. After a ten-minute interval, the participant

was asked to find the items that appeared in the video from the interface.

Figure 4.9 left shows an example of queries shown to the participant. At each

trial, the name and the appearance of an object are displayed as a query. The

participant was instructed how to use each feature (e.g ., the scene view can

filter the object candidates by which scene they appeared) on a short sample

video recording and took a practice session on the sample data to get used

to the interface.

We selected 32 items from the video as queries and the participant was

asked to find them from the interface (see Figure 4.9 right for all the queries
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used in the study). The participants either used the “full” interface with all

the features and the “baseline” interface identical to the basic version used

in the first study. The order of the queries is fixed and the participants are

grouped into two groups. The first group was asked to use the full interface

on the odd numbered questions and to use the object-view only interface on

the even numbered questions, and vice versa for the second group. After the

task, the participants answered a questionnaire followed by a semi-structured

interview on the usability of both interfaces.

Evaluation Metrics

Retrieval time For each trial, we measured how long does it take to reach

the pop-up screen of the target object. Because of the oversegmentation,

some objects are divided into multiple clusters. In such cases, a trial was

considered successful if the user reached one of the correct clusters. We

expected a shorter retrieval time using the full interface.

Questionnaire After all the trials, participants answered questions on how

they used the interface under each condition and the usability of the features

(object/scene/time view and recommendation). For each feature, partici-

pants were asked whether they agreed to the following questions on a five-

point scale (Q8-19): (i) (Feature) is easy to view (ii) (feature) is intuitive to

use (iii) (feature) helped me looking for objects.

Observation and interview We observed how the participants used the

interface. In the interview, we asked what they thought during the task.

4.6 Results

4.6.1 Results of Study I

System Evaluation

Detection recall rate Table 4.1 shows the detection recall rate of the

hand-held object detection algorithm. The average score was 94.3, 94.8, and
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Table 4.1: Detection recall rate of each object set (%).

Mean ± SD Min Max

Set 1 94.3 ± 5.6 81.2 100

Set 2 94.8 ± 7.5 75.0 100

Set 3 95.9 ± 4.9 87.5 100

All sets 95.0 ± 5.9 75.0 100

Table 4.2: Localization rate of each object set (%).

Mean ± SD Min Max

Set 1 84.9 ± 7.8 68.8 93.8

Set 2 83.3 ± 9.7 68.8 100

Set 3 88.5 ± 10.9 62.5 100

All sets 85.6 ± 9.6 62.5 100

95.9% for each object set, and the overall average was 95.0%. These results

indicate that around one object was missed per session and failed to produce

the correct location. We observed small variance between the object sets on

detection.

Figure 4.10 shows example frames when the target objects are missed.

The detection algorithm failed to detect the target objects shown in the ma-

genta boxes. We found few notable patterns in missed detections. Although

the hand-held object detection algorithm stably worked when objects are

grabbed by hand, there were few errors when the hand movement is rapid or

the hand exhibit irregular poses (see Figure 4.10 left). Also, the algorithm

failed to detect objects when they were not handled by hand (see Figure 4.10

middle and right). In these cases, the participants hid the object by not

placing the object but by moving the basket. The detection algorithm failed

because it required the object to be touched by hand.

Localization rate Table 4.2 shows the localization rate of the hand-held

object discovery algorithm. The average score was 84.9, 83.3, and 88.5% for
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Figure 4.10: Examples of failed object detection. Cyan and magenta bound-

ing boxes denotes detected object bounding boxes and missed object bound-

ing boxes, respectively.

← Latest

Oldest →

Figure 4.11: Example results of hand-held object timeline (localization

rate=0.9375, #clusters=110). Yellow boxes denote clusters that contain tar-

get objects. Some clusters were over-segmented into few clusters per object.

each object set, and the overall average was 85.6%. These results indicate

that GO-Finder can correctly display 13.6/16 objects per session on average.

The minimum rate across the participants were 62.5%.

We found differences in performance among objects. While several objects

were discovered in all 12 trials (green cup, wood glue, electric bulb, futon

pincher, green cloth, and teddy bear), some objects were difficult to discover

(waiter’s corkscrew: 16.7%, medicine bottle: 58.3%, black wallet, and spray

bottle: 66.7%). We found that small and black objects were difficult to

correctly discover due to occlusion and texture-less regions.

We can analyze where errors occurred by looking at the difference between

the detection recall rate and the localization rate. The results show that

around 1/3 and 2/3 of the objects are missed at the detection and clustering

phase, respectively.
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Table 4.3: Retrieval performance (precision).

Mean 95% CI

No aid 0.728 0.553–0.902

Frame-based aid 0.736 0.612–0.860

Object-based aid 0.922 0.838–1.006

Number of clusters The number of clusters (objects) that appeared in the

hand-held object timeline was 108.6 (SD = 24.0) on average. Although it is

not trivial to count the number of valid objects which should be discovered,

the estimated number of valid objects (including furniture, drawers, and

baskets) was expected to be about 20 to 30, including the 16 target objects.

Thus, we can conclude that the algorithm over-segments an object into four

to five clusters on average.

Qualitative analysis Figure 4.11 shows an example of the obtained hand-

held object timeline from one trial. We annotated the thumbnail images that

contain close-ups of the target objects in green boxes. Forty out of 110 clus-

ters contained 15 of the target objects, one missed. In addition of the target

objects, GO-Finder discovered various valid objects and false positives. Ex-

amples of valid objects were chairs, baskets, and drawers while untouched

furniture, participant’s body, and other people were discovered as false posi-

tives. While most objects were easily identifiable from the thumbnail images,

some thumbnails were difficult to identify due to occlusion, shadow, and ir-

regular views (e.g ., the green cup in Figure 4.11 left-bottom).

Object Retrieval Performance

Tables 4.3 and 4.4 show the results of the object retrieval task under each

condition. We report the average precision and its 95% confidence interval

(CI) under each condition. As expected, GO-Finder showed better preci-

sion with less variance than the other two conditions. The paired t-test

revealed significance only between the frame-based aid and object-based aid

conditions (p = 0.918, p = 0.069, and p = 0.039, respectively). However,
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Table 4.4: Results of paired t-tests on difference in mean precisions.

95% CI Effect size

t p LB UB d

No aid/frame-based aid -0.104 0.918 -0.193 0.175 0.04

No aid/object based-aid -2.012 0.069 -0.407 0.018 0.95

Frame-based aid/object-based aid -2.339 0.039 -0.360 -0.011 1.17

Table 4.5: Task completion time (sec).

Mean 95% CI

No aid 216 74–358

Frame-based aid 238 163–313

Object-based aid 178 126–230

both no aid/object-based aid and frame-based aid/object-based aid condi-

tions showed large effect sizes (d = 0.95 and d = 1.17, respectively), indicat-

ing a positive effect by using the proposed system. In contrast, we did not

observe a marked difference between no aid and frame-based aid conditions

(d = 0.04).

Table 4.5 and 4.6 shows the result of the task completion time in each

condition. We did not observe improvement in task completion time by

using GO-Finder. The paired t-test did not show any significant difference

(p = 0.379, p = 0.309, and p = 0.077). The average time and 95% confidence

interval of the arrangement phase was 223 ± 16 sec.

Usage time During the 12 sessions under the frame-based aid and object-

based aid conditions, participants used the interface 32 and 35 times, respec-

tively. The mean (median) usage times were 28.1 sec (23.0 sec) and 16.1 sec

(12.5 sec), respectively. The paired t-test revealed a significant difference with

medium effect size in the mean times (p = 0.005, d = 0.71). This suggests

that participants were able to browse the timeline more efficiently under the

object-based aid condition than under the frame-based aid condition.
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Table 4.6: Results of paired t-tests on difference in mean task completion

times.

95% CI Effect size

t p LB UB d

No aid/frame-based aid -0.316 0.379 -173 130 0.12

No aid/object-based aid 0.513 0.309 -128 206 0.23

Frame-based aid/object-based aid 1.530 0.077 -27 148 0.60

Questionnaire

Ease of task Figure 4.12 and Table 4.7 show the results on ease of the

task. Surprisingly, the participants evaluated the frame-based aid condition

the most difficult. They evaluated the object-based aid condition the easiest

among the three conditions. Based on the Wilcoxon signed-rank test, we

found a significant difference in the mean scores between the frame-based

aid and object-based aid conditions (p = 0.063, p = 0.133, and p = 0.043).

However, we observed medium effect size in all the combinations (r = 0.38,

r = 0.30, and r = 0.41). This suggests that the participant’s subjective

mental load have decreased by using GO-Finder.

Functionality of interface Figure 4.13 shows the results of questions Q1–

Q7. In Q1–Q5, participants reported positive impressions with the proposed

system. The Wilcoxon signed-rank test revealed a significant difference be-

tween the frame-based aid and object-based aid conditions in Q6 (p = 0.007)

but not in Q7 (p = 0.065). However, Q6 and Q7 showed large and medium

effect sizes (r = 0.55, and r = 0.38), respectively, suggesting that GO-Finder

was more useful in finding object locations compared to under the frame-

based aid condition.

Comfort on neck-mounted camera The participants reported slightly

positive feedback on average regarding comfort of camera (mean and 95% CI:

4.6 ± 1.2). Some preferred attaching cameras their glasses instead of their

necks.
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No aid

Frame-based aid

Object-based aid

Rating

※Error bar denotes 95% confidence interval

Figure 4.12: Ease of task (easy=1, difficult=7).

Table 4.7: Result of Wilcoxon signed-rank tests on ease of task.
95% CI Effect size

Z p LB UB r

No aid/frame-based aid -1.857 0.063 -2.581 0.081 0.38

No aid/object-based aid -1.501 0.133 -0.596 2.263 0.30

Frame-based aid/object-based aid -2.027 0.043 0.540 3.627 0.41

4.6.2 Usability Test

In addition to the main result, we asked the participants to answer the System

usability scale (SUS) test [171]. Table 4.8 summarizes the SUS scores of each

participant. The average score and its 95% confidence interval among all the

participants were 75.4 ± 8.6. Based on acceptable ranges [172], 8 out of 12

participants evaluated GO-Finder as acceptable while one participant (P04)

evaluated it as unacceptable. Low-scored participants mainly pointed out

the difficulty in browsing the object timeline (see 4.6.2).

Observation and Feedback

Video observation In general, participants first looked for objects that

they remembered and used the system when they were not confident with the

location. When using the system, they looked for thumbnails showing the
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1 2 3 4 5

Q1: Timeline is easy to view

Q2: Timeline is intuitive

Q3: Timeline is useful

Q4: Pop-up screen is easy to view

Q5: Pop-up screen is useful

Q6: Timeline acts as a clue

Q7: System helped me to remember

Rating

Frame-based aid Object-based aid

※Error bar denotes 95% confidence interval

Figure 4.13: Results of questionnaire.

target object, inferred the location from the pop-up screen, and successfully

retrieved the object. Two users persist using GO-Finder even when the

system failed to discover the target objects (P06 and P10).

Usefulness of object-based aid Eleven out of the 12 participants said

that GO-Finder was convenient to use. Only with a brief instruction, they

were able to retrieve the forgotten locations with GO-Finder. They preferred

the intuitiveness of the hand-held object timeline:

A01: The stuffs I wanted was displayed on the timeline. The

system helped me because once pushed the icon it also displayed

the location of them. (P07)

A02: The function which I want most was there. Because the

objects were highlighted and zoomed in, I could notice the target

objects and retrieve the last moment by tapping the thumbnail.

(P08)

They felt more secure and confident at retrieval:
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Table 4.8: Result of SUS test.

ID Gender SUS score (rank)

P01 Female 60 (D)

P02 Male 65 (C)

P03 Female 80 (A)

P04 Male 47.5 (F)

P06 Male 85 (C)

P07 Male 77.5 (B+)

P08 Male 77.5 (B+)

P09 Male 77.5 (B+)

P10 Male 87.5 (A+)

P11 Male 100 (A+)

P12 Male 70 (C)

P13 Male 77.5 (B+)

A03: Since I don’t have to rely on my intuition, I looked at the

smartphone once I felt lost. By using the system, I often felt

confident about the location. (P10)

A few participants trusted the system’s output rather than their memory:

A04: I arrived at the wrong location since I relied on the system.

I didn’t remember my memory but inferred the location from the

pop-up screen and got wrong. (P13)

Comparison to frame-based aid In contrast, nine participants gave neg-

ative feedback regarding the frame-based aid condition. They mainly com-

plained that the timeline often did not capture the exact moment of leaving

objects. Difficulty in finding critical scenes from large field-of-view images

was also reported:

A05: Since the images often don’t capture the scene when holding

objects, I found myself zooming into the image but found nothing

for several times. (P10)
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A06: At a glance, all the thumbnails looked almost the same. I

found difference when I looked into their details. (P04)

The user has to additionally remember how they left the objects during the

arrangement, sometimes being confused by their behavior:

A07: I was deluded by myself attempting to leave the object once

but actually done it afterward. (P03)

A08: I didn’t find difference between searching without any aid

and using the frame-based aid. I opened all the thumbnails because

I had no idea. (P02)

One participant preferred the frame-based timeline because thumbnails

were evenly sampled in chronological order:

A09: I preferred that (the frame-based timeline) because the entire

timeline was available and I could infer how I searched by looking

at an image and the image next to it. (P06)

On interface of system Participants preferred thumbnail images given

from their point of view:

A10: The objects were shown by image, and were taken when I

lost the object. The system was convenient since critical moments

were captured in the timeline. (P09)

While participants gave positive feedback for every component of the inter-

face (Q1–Q7), they gave lower scores on the ease of using the hand-held

object timeline (Q1). First, over-segmentation of the objects confused some

participants:

A11: I found about four thumbnails showing a tennis ball. I had

no idea which one to press[...]. (P01)

The quality of thumbnail images (brightness, occlusion, contrast, and view-

point) also made it difficult for the participants to find the object of interest:

A12: [...]the thumbnail image of the last scene was difficult to

identify. For example, I had to zoom in (to the thumbnail) when

I looked for the pouch. (P02)
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Privacy concerns While we expected to have negative feedback on cap-

turing images, six participants reported that they were not concerned with

recording videos while three participants raised specific concerns:

A13: I don’t feel any discomfort since I know what the system

does; maybe because I know the system only collects information

on objects. It might be different if the system captures people’s

faces. (P12)

A14: I hesitate to wear this camera because I don’t like myself

being kept under surveillance. It’s just my feeling, not a logical

consequence. (P09)

Some participants changed their behavior since they were aware of being

recorded even though we did not give them any warning:

A15: I thought it was better not to hide the camera. (P02)

Suggestions on improvement Two participants suggested playing a video

snippet instead of a static image on the pop-up screen:

A16: I think it’ll be easier to remind if I can view the before and

after of the last scene. I don’t think people can remind only from

a static image. (P09)

Regarding real-world use, participants suggested querying by background

(P01, 04) and time (P12). They stated that the object itself is not a key to

remember a scene and requested a functionality to filter the candidates by

their own.

4.6.3 Results of Study II

We collected 16 trials per interface for each user, 96 trials per interface as a

total.
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Table 4.9: Retrieval time per item (sec).

Condition Mean 95% CI Min Max

Baseline (object view only) 26.9 21.4–32.3 5.3 176.1

Full (object + scene + time + rec.) 35.7 28.5–43.0 5.1 281.5

Retrieval Time

Table 4.9 reports the mean retrieval time per item across all the participants

and items. The unpaired t-test did not reveal a significant difference between

the two conditions (p = 0.084). Considering the small effect size (d = 0.25)

and the large variance among objects, the difference was not clear under this

condition. We observed high variance among objects—some objects were

easily identified in around 15 seconds while some other objects were difficult

to find and took more than one minute on average. In the worst case, the

participants took nearly five minutes to find an object, scrolling back and

forth but cannot find it for a long time. While objects with a distinctive

color (e.g ., blue stapler) were easy to find, less-textured, common (e.g ., mug

and towel), or very unique (e.g ., thermometer) objects were more difficult to

find.

We think that the increased retrieval time was brought about by addi-

tional page transition between different views and hierarchies. Practically,

the ten-second difference on average might have affected the entire user ex-

perience negatively using the full interface.

Questionnaire

We observed a clear preference in which features they frequently used. Ta-

ble 4.10 and Figure 4.14 report the most frequently used features and the

usability ratings of each feature. We resorted to subjective evaluation since

multiple features are sometimes used in one trial. We omitted six responses

from P15 from the rating since they did not use the time view and similar

object recommendation.

First of all, even in a longer list length, the object view got a positive
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Table 4.10: Most frequently used features among participants.

Participant Most used Second most Third most

P14 Object Scene Recommendation

P15 Object Scene (Unused)

P16 Object Scene Recommendation

P17 Scene Object Recommendation

P18 Object Time Recommendation

P19 Object Recommendation Time

rating. Five out of six participants used this functionality as a primary way

to search the target objects. On the other hand, the rating of other features

varied among participants. The scene view got a positive rating on usefulness

by four out of six participants while one complained about the visibility and

intuitiveness of the interface. The time view was less frequently used com-

pared to the scene view but got a positive impression on usefulness by three

participants. The recommendation was relatively used by two participants

both reporting positive results on usefulness while the other participants did

not use it or got a negative impression on using it. Among those three fea-

tures other than object view, four participants used the scene view, one used

the time view, and one used the recommendation most often.

Participant Feedback

We received mixed feedback on how they used the newly introduced features.

Retrieval strategy

In the baseline condition (object view only), the participants were allowed to

do only one thing: they simply searched by scrolling down the object view.

The participants reported using their own memory on locations and time to

navigate through the timeline although no support was provided from the

interface.

A17: If I remembered the place and time I saw the object, I

searched the object using those cues. Otherwise, I scrolled through
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1 2 3 4 5

Q8: Object view is easy to view

Q9: Object view is intuitive

Q10: Object view is useful

Q11: Scene view is easy to view

Q12: Scene view is intuitive

Q13: Scene view is useful

Q14: Time view is easy to view

Q15: Time view is intuitive

Q16: Time view is useful

Q17: Recommendation is easy to view

Q18: Recommendation is intuitive

Q19: Recommendation is useful

Rating

P14 P15 P16 P17 P18 P19

Figure 4.14: Results of questionnaire.

the list looking for the color of the object as a cue. (P16)

Two participants reported that they relied on a simple visual search.

A18: I reflectively looked for the images (using the object view).

(P14)

A19: I looked for objects from a distance. It was easy to find the

ones with distinctive colors. (P19)

In the full condition, the participants used the newly introduced features

as a supplement of the object view.

A20: Since there are many types of objects and it seems that

it will take time to search in the object view, I mainly used the

scene view based on the memory of the background of the object

and the place when I saw the object. When I didn’t remember the

background, I searched for a similar-looking item using the object

view and then used the recommendation screen (to jump to the

target). (P17)
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A21: I searched for objects that I remembered in association with

the event in the time view. For objects with a distinctive color, I

used the object view. (P18)

Scene view

The scene view was used as we expected.

A22: (By using the scene view,) I basically looked at the place

where the object I was looking for was likely to appear. (P17)

Some participants complained about the uncertainty on which scene to select.

A23: I was annoyed when I made a memory mistake in the scene

I was counting on (and couldn’t find the object). (P14)

A24: The scene view was quite difficult to use. It was further

divided into several scenes in the place I want to look for, so I

couldn’t decide which scene to look in. (P18)

Time view

Although the time view was less frequently used, one participant used the

time view rather than the scene view:

A25: I was looking for it [the object] by guessing the event when

it appeared. (P18)

However, similar to the scene view, it was harmful if the participant’s guess

was wrong:

A26: There were several times when I thought it [the object] was

within in this time (window) but actually it wasn’t. (P18)

Recommendation

Two participants reported successful attempts using the recommendation.

A27: (When I wanted to find the oyster sauce) I found a seasoning

in the object view, so I tapped on it. Then chili oil or something

came up on the recommendation screen, so I tapped again then

the thing I wanted has appeared. (P17)
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However, the current implementation could not accommodate if the user

wanted to recommend a similar type of object.

A28: For example, when I had two mugs, I thought if I chose the

first one, the system would offer me the other one, but it didn’t

recommend it. (P14)

A29: When I was looking for white scissors, I was disappointed

that the system didn’t recommend it from the green scissors. (P16)

Comparison between baseline and full interface

Three participants preferred using the full interface overall despite the worse

retrieval time observed in this study. The participants were able to found

their useful situations using the additional features. They expected the newly

introduced features to be more effective in everyday situations.

A30: Considering that the number of images will dramatically

increase when it comes to real-world situations, it would be great

if the images could be separated by scene or by time, and in such

cases, I would like to use the full interface. (P18)

The other participants pointed out the additional cost to decide which feature

to use:

A31: I wasn’t sure which features to use in the full interface con-

dition. (P15)

On the other hand, the baseline interface was basically preferred of its

simplicity. Three participants felt the object view is enough because what to

do is clear.

A32: (The baseline system was) relatively simple because you can

intuitively go down the list and find the one you want. (P14)

One participant preferred the baseline interface because they are used to

browse a large number of images using smartphones:
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Figure 4.15: System failure under severe occlusion.

A33: I think it’s fine for the generation that has a habit of scrolling

through photos on their smartphones. On the other hand, if my

parents’ generation were to look at their smartphones together and

scroll, they would ask me to stop. (P16)

However, it was also clear that the object view alone is helpless when the

participant has no idea when the desired item appeared:

A34: I was stressed when I looked (the list) from top to bottom

but can’t find what I was looking for. (P19)

Suggestions on improvement

Four participants suggested that showing textual information such as event

(P14 and P16), time (P14 and P17), and location name (P16) would help

the retrieval.

A35: I think using speech is quicker if the system can recognize

the object type. (P14)

4.7 Discussion

4.7.1 Usefulness of GO-Finder

In the first user study, we confirmed that GO-Finder enabled the participants

to retrieve hidden objects with less mental load. Quantitative and qualitative

feedback suggests that the users gained confidence by immediately accessing

the last moment of when the objects were seen. The frame-based timeline

showing uniformly sampled video frames was not effective in this task. Since

the object retrieval task should be solved as quickly as possible, users re-

quested direct access to the location rather than having to keep relying on

their memory.
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System evaluation showed that the hand-held object discovery algorithm

of GO-Finder successfully extracted hand-held object instances while effi-

ciently excluding other unrelated objects. GO-Finder worked without ex-

plicit registration, making it easy for users to start using it.

Regarding the idea of using object images as a query, participants adapted

quickly to browsing objects using the hand-held object timeline (Q3). The

timeline shown as a list of images was evaluated as intuitive and participants

were able to access the object of interest immediately (A01, A02, and A10).

Since the thumbnail images are captured from almost the same view as the

participant’s one, this timeline also worked as a clue to remembering (Q6).

4.7.2 Interface Design

In the second user study, we conducted a usability study on the GO-Finder’s

smartphone interface on a longer video sequence of 75 minutes. Based on the

quantitative result and user feedback, we summarize the findings as follows:

Scrolling the image timeline was more positively accepted than ex-

pected: As shown in the mean retrieval time and user feedback (A18, A19,

A32, and A33), it turned out that scrolling a long list was better accepted

without difficulty than we expect. Our result matches the observation that

people using smartphones preferred to browse and scroll their way directly

to the desired information [173]. Their work also reported participants using

visual reminders such as screenshots to navigate to the desired item, also

confirmed in our study (A19). However, several participants admitted that

the situation may change if more objects appeared, or used the interface af-

ter enough time has passed since the last time they saw the objects. User

evaluation in a more realistic situation is required to further support this

finding.

Filtering by scene or time is a double-edged sword: We confirmed

that users prefer filtering by scene or time when they can recollect the rough

location or time where they once saw the object (A17, A22, and A25). How-

ever, due to the additional page transition introduced, it did not show im-
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provement in the retrieval time. Since we aim to create a fully automatic

system, we did not include any textual information in the interface. Taking

feedback (P14, P16, and P17) into account, adding the side information of

place names, time, and object types to the interface, using external informa-

tion from GPS, electronic map, or user input, may help users rapidly filter

the context.

Proactive recommendations may reduce the scrolling effort: Al-

though not fully accepted by the participants, we found that recommendation

could be used as a better efficient way instead of scrolling since the user does

not need to remind the context but only find similar-looking items (A27-29).

By providing multiple options on similarity metrics (e.g., color, shape, and

object type) followed by enough training, we may be able to provide a better

efficient retrieval interface.

4.7.3 Privacy Issues

The use of wearable cameras raises privacy concerns in real-world use [174,

175]. Although GO-Finder’s contents are not shared among other users, the

privacy and comfort of bystanders must be secured. One way out of the

difficulty is to filter out sensitive contents while storing only the information

relevant to hand-held objects. Since GO-Finder only requires the last scene

of an object, other frames are no longer needed as we store the feature vector

of object detections. Last scenes will be updated as objects re-appears so

images would not be kept stored permanently. Additionally, we can remove

identity information by running an off-the-shelf face detector since we do

not need bystander’s information. Supported by the positive comments, we

believe that GO-Finder can be used with minimal interference.

4.7.4 Sensitivity against Hyperparameters

Changing the hyperparameters (similarity thresholds) of the object (scene)

discovery algorithm may affect the user experience while we fixed them

throughout the study. As the algorithm will not achieve 100% accuracy,
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a proactive mechanism to ask whether the association is correct or not—

something similar to facial recognition confirmation introduced in Google

Photos—could be one solution.

4.7.5 Limitations

Object Re-identification

The proposed system failed to discover objects under severe occlusion by

hands (e.g ., waiter’s corkscrew, see Figure 4.15). In this example, the par-

ticipant gripped the corkscrew so that it was severely occluded by the hand.

This confused both the detector and clustering algorithm in determining the

correct bounding box and appearance feature to identify the object, resulting

in over or under segmentation. As reported in the system evaluation, small

objects tend to be occluded and would be problematic regarding real-world

use. One potential solution is to use the object’s unoccluded appearance

outside the interaction. In addition, when an object is occluded by hands

during manipulation, it is natural to expect that the object would not disap-

pear during the occlusion thus we can track the occluded object by tracking

the hands. Although this problem was mitigated by metric learning (Subsec-

tion 4.4.3), a more sophisticated occlusion-aware re-identification mechanism

also robust to viewpoint change is demanded for further improvement.

Evaluation in Everyday Life

In the second study, we investigated the usability of GO-Finder on much

longer sequences with around 400 object clusters. Although we confirmed

that users can browse through many objects with the help of filtering and

recommendation, the usability in the daily field is not yet investigated. In

practice, we often misplace objects after few days or months after their last

appearance. Since this situation is almost impossible to reproduce in a con-

trolled setting, a long-term study connected with the user’s daily context is

demanded. Towards this direction, additional challenges such as removal of

uninterested items and usability on a dynamically updated timeline would

appear and must be resolved.
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Multi-User Scenarios

We assume each object is manipulated by a single user. However, in multi-

user scenarios, we cannot track objects if they are moved by other people.

One plausible solution is to share object information among users, which

would be a trade-off between privacy protection.

4.8 Conclusion

In this chapter, I have presented GO-Finder, a registration-free wearable

camera-based system for assisting users in finding lost objects. It supports

the finding of an arbitrary number of objects based on two key ideas: hand-

held object discovery and image-based candidate selection. Hand-held ob-

ject detection and identification techniques were utilized to implement an

automatic system that does not require any request from users. Further-

more, additional features of context-based candidate filtering are introduced

to support efficient object retrieval in a realistic situation of a large number

of objects appears. The first user study of performing a controlled object

retrieval task revealed that by using GO-Finder users can find the location

of lost objects correctly with a reduced mental load. Even the objects were

registered automatically without user intervention, the participants were able

to identify the target object using the image-based hand-held object time-

line. The second user study of searching for objects that appeared in a

longer video suggested the usefulness of the context-based candidate filtering

against longer sequences while the simple hand-held object timeline was also

shown to be more effective than expected. Going beyond tracking only a

small number of selected objects, GO-Finder could be used as a practical

tool to help find various unexpectedly lost objects in daily life. Future work

includes long-term (e.g., few weeks) evaluations on naturalistic situations of

losing objects.

101



102



Chapter 5

Conclusion and Future Work

5.1 Summary

In this thesis, I have presented methods for recognizing when and for which

object the hand-object interaction occurs that can be generalized to un-

known, dynamic, and cluttered scenes in the real world. In addition, I have

applied the above techniques to assistive technologies and have proposed a

practical system for assisting users in finding lost objects. In Chapter 2,

a video-based method to predict contact states between hands and objects

was introduced. The semi-supervised method based on motion-based pseudo-

labeling and guided label correction enabled the model to predict contacts

between hands and objects from a small amount of training data. In Chap-

ter 3, a large-scale and challenging benchmark on identifying object instances

appearing in in-the-wild videos was proposed. It was shown that the model

trained by our dataset exhibits better robustness against dynamic changes in

appearance compared to the model trained by product images and large-scale

image databases. As a result, a practical scheme to associate re-appearing

object instances in real-world, dynamic environments was established. In

Chapter 4, a system that assists users in finding lost hand-held objects by

automatically detecting and tracking hand-held objects appearing in first-

person videos was introduced. User studies showed that the fully-automatic

hand-held object discovery algorithm enables users to find various unexpect-

edly lost objects in daily life.
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These works were systematically designed through the unified concept of

hand-object interaction mining, which aims to develop methods that gener-

alize to novel scenes without assuming target environments or objects, in an

unsupervised and scalable manner. Taken as a whole, the methods, datasets,

and systems proposed in this thesis offer a scalable and practical scheme for

recognizing and understanding long-term hand-object interactions in the real

world.

This work’s contributions are summarized as follows:

• Contributed a scalable approach of predicting contacts between hands

and objects, which actively extracts useful knowledge from motion-

based pseudo-labels through label correction.

• Contributed a new dataset and benchmark on category-agnostic object

identification in dynamic real-world environments, whereas previous

work studied object instance identification is mostly static scenes.

• Contributed the first registration-free system of assisting users in find-

ing arbitrary lost hand-held objects through a wearable camera.

5.2 Future Directions

5.2.1 State-Aware Modeling of Objects

In this thesis, the fundamental problems in recognizing object contact state

change (Chapter 2) and object instance identification in dynamic environ-

ments (Chapter 3) were studied. The above works can be interpreted as

parts of the problem of recognizing current object states from visual input.

Humans perform actions to cause changes to the attributes of an object

or person. Therefore, recognizing what kinds of attributes exist and their

current state can be a powerful clue to correctly recognize the intent of hu-

man activities. Although this object state recognition task has been studied

in simple manipulation tasks [126, 176, 177], the object’s state-space was

defined in advance and typically limited to binary states. However, object

states will be not limited to simple binary states (e.g ., open/close, on/off)
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and their state space would also change by the user’s context. For example,

when serving several cups of coffee from a pot, the states of a pot should be

defined more than a binary state (filled or empty) to serve coffee fairly to the

cups. Beyond recognizing the object’s location, discovering and recognizing

its internal states will be one promising direction to realize a fine-grained un-

derstanding of human activities. For this task as well, since it is unrealistic to

define and annotate all the patterns in advance, a data-driven, unsupervised

approach (e.g ., [178]) will be promising.

5.2.2 Learning from Narrative

This thesis has contributed to the smallest fundamental elements for under-

standing hand-object interaction, that is, the methods for recognizing spatial

and temporal relationships between hands and objects. Low-level cues such

as motion direction and image intensity were used for supervision. However,

the semantic aspect (what objects/actions are occurring) of hand-object in-

teraction was completely ignored. Each human action will be equipped with

his or her intent. Towards a practical application, it is also important to

recognize its semantic aspects such as manipulation action, object categories

and their goal (e.g ., pour water from a pitcher to fill the cup and drink) in

understanding hand-object interactions.

While these semantic understanding tasks have been studied by providing

discrete labels for supervision, it is clear that the amount of annotation will

reach a plateau as the actions become more complicated. To overcome this

issue, natural language data was found to be used as a rich knowledge base

in connecting video and language. For example, audio transcripts included

in instructional videos are used to learn a joint text-video embedding [179].

Audio transcripts describing the actions in videos are efficiently collected in

recent first-person vision datasets [23, 180] and used for action retrieval [181].

Notably, the Ego4D benchmark [180] composed of 3,400 hours of first-person

videos with various activities was recently released with temporally dense

narrations for all the videos, producing 3.85 million sentences in total. These

natural language resources have the potential to further understand hand-

object interactions from video. At the moment, the above resources are used
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mostly to acquire video-level representation [179, 181, 182] and only a few

works aim to learn object-level embeddings [183, 184]. Learning a hand and

object-centric embedding for understanding hand manipulation and object

state change will be a promising direction.

5.2.3 Environment-Aware Interactive System for As-

sisting User Activities

The GO-Finder system proposed in Chapter 4 was designed to automati-

cally collect users’ surrounding context on their manipulated objects. This

idea can be further extended to collect a broader range of information on

the user’s context in real-time to assist users in assembly task [9, 185] and

assistive livings [10]. For example, we may think of a system of discovering

on/off switches in the room and tracking their state using a wearable camera,

instead of placing external markers in advance [153]. Such systems can be

naturally combined with augmented reality, which directly overlays necessary

information to the user’s workspace.

In addition, GO-Finder was intentionally designed not to ask any inquiry

on using the system to not impose any burden on the user. However, it also

has the disadvantage that it cannot always provide information in the form

desired by the user. Towards an intelligent system to assist one’s life, an

interactive system that gives users the option to correct the system’s wrong

or undesirable information will be also a promising direction.
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