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Chapter 1

Equivalence theorem in matching with
contracts∗

1 Introduction

A matching-with-contract model refers to a market in which there are two disjoint sets

of agents and each agent on one side is matched with another agent on the other side

through a “contract” (Hatfield and Milgrom (2005)). A typical example is the National

Resident Matching Program in the United States, wherein a medical resident is matched

with a hospital for practical training. In this example, a contract may represent a specific

medical department.

The purpose of this study is to understand the performance of the doctor-optimal sta-

ble mechanism in matching with contracts. An allocation is stable if no agent unilaterally

rejects a contract allocated to the agent and no doctor-hospital pair bilaterally blocks the

allocation. An allocation is doctor-optimal stable if it is stable and it dominates any other

stable allocation. The doctor-optimal stable mechanism maps each preference profile to

the doctor-optimal stable allocation. In this study, we assume that hospitals are just

objects to be allocated to doctors, meaning that only doctors are under efficiency and

incentive consideration.1

In the setting of matching with contracts, we investigate group strategy-proofness,

efficiency, Maskin monotonicity, and consistency of the doctor-optimal stable mechanism.

Unfortunately, the mechanism does not satisfy any of these properties in general. Hence,

∗I am grateful to Taro Kumano, NozomuMuto, and especially the Associate Editor and two anonymous
referees for comments. I would also like to thank Hidekazu Anno, Daisuke Hirata, Michihiro Kandori,
Yusuke Kasuya, Morimitsu Kurino, and Wataru Ishida as well as the seminar participants at University
of Tsukuba and at the 14th Game Theory Workshop for helpful discussions.

1Pakzad-Hurson (2020) and Sönmez and Switzer (2013) make the same assumption.
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we analyze which properties are more likely to be met by the doctor-optimal stable mecha-

nism. Our main result says that, whenever there exists a doctor-optimal stable allocation

for any doctors’ preference profile, the doctor-optimal stable mechanism is group strategy-

proof if and only if it is efficient if and only if it is Maskin monotonic.2 Moreover, we find

that the doctor-optimal stable mechanism is consistent if and only if it is efficient under

the two conditions: substitutes and the law of aggregate demand (LAD).

Related literature

Hatfield and Milgrom (2005) introduce the matching model with contracts. They

show that under substitutes and the LAD, the doctor-optimal stable allocation exists

for any doctors’ preference profile, and the doctor-optimal stable mechanism is strategy-

proof. There are mainly three follow-up studies. Sakai (2011) finds that under substi-

tutes and the LAD, the doctor-optimal stable mechanism is a unique stable rule that

satisfies strategy-proofness in the class of stable mechanisms. Moreover, Hatfield and

Kojima (2009) strengthen the result on incentives in Hatfield and Milgrom (2005) and

show that the doctor-optimal stable mechanism is weakly group strategy-proof under the

same assumptions, i.e., substitutes and the LAD. Hatfield and Kojima (2010) introduce a

sufficient condition called unilateral substitutes, which is weaker than substitutes, for the

guaranteed existence of the doctor-optimal stable allocation for any doctors’ preference

profile. While Sakai (2011) and Hatfield and Kojima (2009, 2010) focus on the doctor-

optimal stability and incentives, Hirata and Kasuya (2017) and Hatfield, Kominers, and

Westkamp (2021) consider (not necessarily doctor-optimal) stability and incentives. Hi-

rata and Kasuya (2017) show that if a stable and strategy-proof mechanism exists, then it

is unique and corresponds to the doctor-optimal stable mechanism. Hatfield, Kominers,

2In addition to the desirable properties we are considering here, there are weaker versions of properties:
weak group strategy-proofness, weak efficiency, and weak Maskin monotonicity. Since the literature has
already clarified that the doctor-optimal stable mechanism satisfies those properties under a reasonable
condition, focusing on the equivalence between the weaker properties in a general environment is left for
future research.
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and Westkamp (2021) present three novel conditions to show that these conditions are

necessary and sufficient for the existence of a stable and strategy-proof mechanism.

Concerning the equivalence of good properties of a mechanism, Ergin (2002) shows that

in matching without contracts, the Deferred Acceptance mechanism is group strategy-

proof if and only if it is efficient if and only if it is consistent. Kojima and Manea (2010)

extend the result of Ergin (2002) to a more general environment. In matching with

contracts, Pakzad-Hurson (2020) shows that under substitutes and acceptance (stronger

than the LAD), the doctor-optimal stable mechanism is group strategy-proof if and only

if it is efficient. While considering a model outside our setting, Takamiya (2001) focuses

on group strategy-proofness and Maskin monotonicity in housing markets and then shows

the equivalence between them under some conditions on preference domains. Takamiya

(2007) extends the result of Takamiya (2001) to a more general setting, which includes

our setting and shows the same equivalence. Moreover, Klaus and Bochet (2013) consider

an environment that covers not only indivisible goods but also divisible ones. Then, they

introduce two conditions on preference domains such that strategy-proofness and Maskin

monotonicity are equivalent.

2 Model

2.1 Setup

Let D and H be a finite set of doctors and a finite set of hospitals, respectively. Let X

be a finite set of contracts and each contract x ∈ X is bilateral; x ∈ X is associated with

doctor D(x) ∈ D and hospital H(x) ∈ H. In addition to X, there is a null contract ∅d

that represents having no relationship with any hospital for d ∈ D. For any X ′ ⊆ X,

define X ′
d ≡ {x ∈ X ′ | D(x) = d} for any d ∈ D and X ′

h ≡ {x ∈ X ′ | H(x) = h} for any

h ∈ H. For X ′ ⊆ X and D′ ⊆ D, let X ′
D′ ≡ ∪d∈D′X ′

d.
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Each doctor d ∈ D has a complete, transitive, and antisymmetric preference Rd over

Xd ∪ {∅d}. The strict part of Rd is denoted by Pd. For any D′ ⊆ D, we define RD′ ≡

(Rd)d∈D′ and R−D′ ≡ (Rd)d∈D\D′ .

Each hospital h ∈ H has a complete, transitive, and antisymmetric priority Rh over

the set of subsets ofXh.
3 For any h ∈ H, Rh induces the choice function CRh

: 2X → 2X ,

which satisfies the following three conditions: for any X ′ ∈ 2X , (1) CRh
(X ′) ⊆ X ′

h; (2)

for any x, x′ ∈ CRh
(X ′), x ̸= x′ implies D(x) ̸= D(x′); and (3) CRh

(X ′) is most preferred

according to Rh.
4 Throughout the study, we fix (Rh)h∈H , and for notational exposition,

we simply denote a choice function CRh
by Ch. This reflects the view that hospitals

are objects to be allocated to doctors, so only doctors are under consideration for the

purpose of welfare and incentives. For X ′ ⊆ X, let CH(X
′) ≡

∪
h∈H Ch(X

′
h). A problem

is defined as a tuple (D,H,X,RD, (Ch)h∈H).

2.2 Allocation and its property

An allocation is a set of contracts X ′ ⊆ X such that, for all x, x′ ∈ X ′, x ̸= x′ implies

D(x) ̸= D(x′). That is, an allocation is a set of contracts in which no doctor signs more

than one contract. If doctor d has no contract in an allocation X ′, then we understand

that doctor d signs a null contract ∅d and simply denote X ′
d = ∅d. An allocation X ′ ⊆ X

is individually rational for doctors at RD ifX ′
dRd∅d holds for all d ∈ D. An allocation

X ′ ⊆ X is individually rational for hospitals if Ch(X
′) = X ′

h for all h ∈ H.

We next define efficiency of allocations in this model. Here, we have to note two things.

First, since hospitals are just objects to be allocated, we focus on doctors for a welfare

3We regard a priority relation as primitive. For an alternative model, see Aygün and Sönmez (2012,
2014).

4The literature has often introduced the maximum capacity to each hospital. While such a formulation
is reasonable, there may be situations in which it is inappropriate. For instance, in Japan, the balance
of doctors among medical departments is more important than the total number of accepted doctors
(Ministry of Health, Labour and Welfare (2010)). In addition, in Japan, the number of children a nursery
teacher can care for depends on the age of the children and hence there may not be a maximum capacity.
Kamada and Kojima (2019) consider such a general constraint.
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concern. Second, since we do not explicitly make an assumption on choice functions other

than the three listed above, only the allocation such that each doctor signs the most

favorable contract increases the welfare of all doctors the most. Thus, to avoid such a

trivial case, we need to consider what allocation would be possible for hospitals. In the

current paper, we pay attention to only allocations that satisfy individual rationality for

hospitals and write simply “allocations” as long as there is no confusion.5

An allocation X ′ ⊆ X is efficient at RD if there does not exist another allocation

X ′′ ⊆ X such that X ′′
dRdX

′
d for all d ∈ D and X ′′

dPdX
′
d for some d ∈ D.

We introduce another property of allocations.

Definition 1. An allocation X ′ ⊆ X is stable at RD (and (Ch)h∈H) if

1. X ′ is individually rational for both doctors and hospitals, and

2. there exists no hospital h and a contract x ∈ X with d =D(x) and h =H(x) such

that (1) xPdX
′
d and (2) x ∈ Ch(X

′
h ∪ {x}).

That is, stability of allocations requires that neither a doctor nor a hospital rejects the

assigned contract and that the allocation cannot be blocked by a doctor and a hospital. A

doctor-optimal stable allocation is a stable allocation such that each doctor weakly

prefers it to any other stable allocation.

2.3 Mechanism and its property

A mechanism f is a function from each doctors’ preference profile to an allocation.

Since only doctors act strategically, the input of a mechanism is, say, RD. Henceforth,

we denote a preference profile for doctors as simply R. The assignments of allocation

f(R) for doctor d and hospital h are denoted by fd(R) and fh(R), respectively. The

doctor-optimal stable mechanism is a function from each doctors’ preference profile

5Ehlers and Morrill (2018) proceed their analysis by focusing on individually rational allocations as
ours.
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to the doctor-optimal stable allocation. A mechanism is efficient if, for any R, the

mechanism produces an efficient allocation at R. A mechanism f is group strategy-

proof if there exist noD′ ⊆ D, R, and R′
D′ such that fd(R

′
D′ , RD\D′)Rdfd(R) for all d ∈ D′

and fd(R
′
D′ , RD\D′)Pdfd(R) for some d ∈ D′. Doctor d’s preference R′

d is a monotonic

transformation of Rd at x ∈ X (R′
d m.t. Rd at x) if x′P ′

dx implies x′Pdx. A preference

profile R′ is a monotonic transformation of R at an allocation X ′ (R′ m.t. R at X ′) if R′
d

m.t. Rd at X ′
d for all d ∈ D. A mechanism f satisfies Maskin monotonicity if R′ m.t.

R at f(R) implies f(R′) = f(R).6 The three properties defined here are not necessarily

satisfied by the doctor-optimal stable mechanism.

3 Results

3.1 Main result

We are now ready to state the main result. The following theorem states that the three

desirable properties are equivalent to one another as for the doctor-optimal stable mech-

anism, whenever it is well-defined.

Theorem 1. Suppose that there exists a doctor-optimal stable allocation for each doctors’

preference profile. Then, the followings are all equivalent.

1. The doctor-optimal stable mechanism is group strategy-proof.

2. The doctor-optimal stable mechanism is efficient.

3. The doctor-optimal stable mechanism is Maskin monotonic.

Proof. In Appendix. 2

6Maskin monotonicity has an aspect of a technical property as it is necessary for Nash implementation
of mechanisms.
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Kojima and Manea (2010) show the same equivalence of the doctor-optimal stable

mechanism in matching without contracts under two assumptions: acceptance and substi-

tutes. Here, to obtain the equivalence in the context of matching with contracts, we do

not place any condition on (Ch)h∈H other than the assumption that the doctor-optimal

stable mechanism is well-defined.

Whenever the doctor-optimal stable mechanism is well-defined, it is a unique mecha-

nism that satisfies the same equivalence in the class of stable mechanisms. This is because,

if a stable mechanism is efficient, then it must be doctor-optimal stable.

3.2 Further result: consistency

In this subsection, we investigate consistency of a mechanism, which has been studied

in assignment problems.7 To the best of our knowledge, no study has defined the con-

sistency notion for matching with contracts. Let ε = (D,H,X,R, (Ch)h∈H) be a prob-

lem. For coalition D′ ⊆ D and allocation X ′ ⊆ X, we define the reduced problem

ε(D
′,X′) = (D′, H,XD′ , RD′ , (C

(D′,X′)
h )h∈H). Here, C

(D′,X′)
h : 2XD′ → 2XD′ is the extended

choice function for h ∈ H, and for all X ′′ ∈ 2XD′ , (1) C
(D′,X′)
h (X ′′) ⊆ X ′′

h ; (2) for any

x, x′ ∈ C
(D′,X′)
h (X ′′), x ̸= x′ implies D(x) ̸= D(x′); and (3) C

(D′,X′)
h (X ′′) is most preferred

according to Rh over the set {Y ′ ⊆ X ′′
h | Ch(Y

′ ∪ (X ′
D\D′)h) = Y ′ ∪ (X ′

D\D′)h}.

A reduced problem describes the situation wherein a group of doctors D \ D′ leaves

the problem with their assignments X ′
D\D′ . Moreover, in the reduced problem, the choice

functions for hospitals are modified in a certain way. A hospital’s choice in total (the

contracts signed with the remaining doctors and the leaving doctors) must be admissible to

the hospital from the perspective of the original choice function, that is, Ch(C
(D′,X′)
h (X ′′)∪

(X ′
D\D′)h) = C

(D′,X′)
h (X ′′)∪(X ′

D\D′)h.
8 This reflects the new definition of choice functions.

7See Thomson (2011) for a comprehensive survey.
8Ergin (2002) considers consistency in matching without contracts. He explicitly introduces a vector

of capacities for hospitals. Therefore, a reduced problem in his study includes new capacities that are
decreased by the number of seats assigned to those doctors who left the original problem.
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An allocation in the reduced problem ε(D
′,X′) is a set of contracts X ′ ⊆ XD′

such that, for all x, x′ ∈ X ′, x ̸= x′ implies D(x) ̸= D(x′). An allocation X ′ ⊆ XD′ in

the reduced problem ε(D
′,X′) is stable if it is stable at RD′ and (C

(D′,X′)
h )h∈H in ε(D

′,X′).

The doctor-optimal stable allocation in the reduced problem ε(D
′,X′) is a stable

allocation at RD′ and (C
(D′,X′)
h )h∈H in ε(D

′,X′), which is weakly preferred for doctors D′

to any other stable allocation at RD′ and (C
(D′,X′)
h )h∈H in ε(D

′,X′).

We call a function f̃ from each reduced problem to an allocation an extended

mechanism. Consistency of an extended mechanism describes the normative intu-

ition that any group of doctors will sign the same contracts in the original and reduced

problems. Formally, an extended mechanism f̃ is consistent if, for any original prob-

lem ε = (D,H,X,R, (Ch)h∈H) and any D′ ⊆ D, we have f̃(ε)D′ = f̃(ε(D
′,X′)), where

X ′ = f̃(ε). The extended doctor-optimal stable mechanism is a function from each

reduced problem to the doctor-optimal stable allocation if any.

We introduce a class of choice functions.

Definition 2. A choice function Ch satisfies substitutes if, for all X ′ ⊆ X ′′ ⊆ X and

x ∈ X, x /∈ Ch(X
′ ∪ {x}) implies x /∈ Ch(X

′′ ∪ {x}).

Definition 3. A choice function Ch satisfies the law of aggregate demand (LAD) if,

for all X ′ ⊆ X ′′ ⊆ X, we have |Ch(X
′)| ≤ |Ch(X

′′)|.

Roughly, substitutes means that once a contract is rejected, it is never chosen even when

the choice set expands (in the sense of set inclusion). Additionally, the LAD requires

that hospitals sign more contracts in number as the choice set expands (in the sense of

set inclusion). Under substitutes and the LAD, Hatfield and Milgrom [9] show that the

doctor-optimal stable allocation exists for each doctors’ preference profile.

We are now ready to state the next result, which states that consistency is equivalent

to the other properties under substitutes and the LAD.
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Theorem 2. Under substitutes and the LAD, the followings are all equivalent.

1. The extended doctor-optimal stable mechanism is consistent.

2. The doctor-optimal stable mechanism is group strategy-proof.

3. The doctor-optimal stable mechanism is efficient.

4. The doctor-optimal stable mechanism is Maskin monotonic.

Proof. In Appendix. 2

Note that Ergin (2002) shows that in matching without contracts, the first three prop-

erties are equivalent under responsiveness, which is stronger than the combination of sub-

stitutes and the LAD. Moreover, Kojima and Manea (2010) find the equivalence between

the last three properties in matching without contracts under substitutes and acceptance,

where acceptance is stronger than the LAD. In matching with contracts, Pakzad-Hurson

(2020) shows that the doctor-optimal stable mechanism is group strategy-proof if and

only if it is efficient. However, there are mainly two differences between the result of

Pakzad-Hurson (2020) and that of this paper. First, Pakzad-Hurson (2020) explicitly

introduces a capacity constraint for hospitals. Second, the author proves the equivalence

under substitutes and acceptance, while our equivalence holds true under substitutes and

the LAD.

3.3 Discussion

Pakzad-Hurson (2020) gives two easily verifiable conditions on choice functions for hospi-

tals to address when the doctor-optimal stable mechanism indeed satisfies the desirable

properties. The first condition, what he calls set-Ergin acyclity, means that choice func-

tions for any two hospitals are similar to the extent that a “rejection chain” does not
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occur.9 Thus, the set-Ergin acyclicity places restrictions on how choice functions can

differ between different hospitals. The second condition, what he calls set-lexicographic,

requires that different sets of contracts involved with the same doctors must be listed

consecutively in a preference relation. Hence, the second condition focuses on how sets of

contracts are aligned within a single hospital.

Under substitutes and acceptance (which is stronger than the LAD), Pakzad-Hurson

(2020) shows that the doctor-optimal stable mechanism is efficient if and only if each

hospital’s priority-capacity pair is set-Ergin acyclic and set-lexicographic.

9There is a large body of literature that considers a kind of acyclicity. See Erdil and Kumano (2019)
for a more general condition of acyclicity.
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Appendix: Omitted proofs

Proof of Theorem 1

Takamiya (2007) proposes two conditions on preference domains for any social choice

function to show the equivalence between group strategy-proofness and Maskin mono-

tonicity in a general environment that includes ours. Since those conditions are satisfied

in our model, we have already known the equivalence between group strategy-proofness

and Maskin monotonicity. Hence, we show that 1 ⇒ 2 and 2 ⇒ 3. Let f be the doctor-

optimal stable mechanism.

(1 ⇒ 2)

By way of contraposition. Suppose that f does not satisfy efficiency at R. Then, there

exists another allocation X ′ ⊆ X such that X ′
dRdfd(R) for all d ∈ D and X ′

dPdfd(R) for

some d ∈ D. Let R′
d be a preference relation such that X ′

d is on the top and the others are

unchanged. SinceX ′ is individually rational for doctors at R′ and that there is no blocking

doctor-hospital pair at R′, X ′ is doctor-optimal stable under R′. This fact implies that

f(R′) = X ′ since f is the doctor-optimal stable mechanism, which also indicates that all

doctors deviate from R to R′ to make some doctors better off while making the others

unchanged. Thus, f is not group strategy-proof.

(2 ⇒ 3)

By way of contraposition. Suppose that f does not satisfy Maskin monotonicity. Then,

there exist preference profiles R and R′ such that R′ is a monotonic transformation of R

at f(R) and f(R′) ̸= f(R). We consider two cases.

Case 1: f(R) is stable at R′.

Since f(R′) is doctor-optimal stable at R′ and there is only one doctor-optimal stable

allocation for each doctors’ preference profile, f(R) is not doctor-optimal stable at R′.

Thus, we have fd(R
′)R′

dfd(R) for all d ∈ D. Because of strict preferences, fd(R
′) = fd(R)
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or fd(R
′)P ′

dfd(R) for all d ∈ D. Since R′ is a monotonic transformation of R at f(R), we

obtain fd(R
′)Rdfd(R) for all d ∈ D and fd(R

′)Pdfd(R) for some d ∈ D, which indicates

that f is not efficient.

Case 2: f(R) is not stable at R′.

We consider two subcases.

Case 2.1 (Individual rationality for doctors):

There exists a doctor d ∈ D such that ∅dP
′
dfd(R). Since R′

d is a monotonic transfor-

mation of Rd at fd(R), we have ∅dPdfd(R). This contradicts to stability of f at R.

Case 2.2 (No blocking via other contracts):

There exists a hospital h ∈ H and a contract x ∈ X with d =D(x) and h =H(x) such

that xP ′
dfd(R) and x ∈ Ch(fh(R) ∪ {x}). Since R′

d is a monotonic transformation of Rd

at fd(R), we have xP ′
dfd(R). This fact implies that f(R) is not stable at R, which is a

contradiction to stability of f . 2

Proof of Theorem 2

Although Theorem 2 states the equivalence between consistency and the other properties

under substitutes and the LAD, one direction of the equivalence holds without the two

conditions.

Proposition 1. Suppose that the doctor-optimal stable allocation exists for each reduced

problem. If the doctor-optimal stable mechanism is efficient, then the extended doctor-

optimal stable mechanism is consistent.

Proof. Let f̃ be the extended doctor-optimal stable mechanism. Suppose that f̃ is not

consistent. Then, there exist ε = (D,H,X,R, (Ch)h∈H) and D′ ⊆ D such that f̃(ε)D′ ̸=

f̃(ε(D
′,X′)), where X ′ = f̃(ε). Let X ′′ = f̃(ε(D

′,X′)). Since X ′ is stable in the problem ε,
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X ′
D′ is also stable in the reduced problem ε(D

′,X′). Otherwise, some doctor d ∈ D′ and some

hospital h ∈ H blocks X ′ in the problem ε. In addition, since X ′′ is the doctor-optimal

stable allocation in the reduced problem ε(D
′,X′) and X ′

D′ ̸= X ′′, X ′′ dominates X ′
D′ in

the reduced problem ε(D
′,X′). By construction of C

(D′,X′)
h , X ′′

h ∪ (X ′
D\D′)h is individually

rational for hospital h. So, X ′′ ∪ X ′
D\D′ must be an allocation in the problem ε, which

implies that X ′′∪X ′
D\D′ dominates X ′ in the problem ε. Hence, the doctor-optimal stable

mechanism is not efficient.

2

To complete the proof of Theorem 2, we show that consistency implies group strategy-

proofness under substitutes and the LAD. Note that since the restriction of a choice

function that satisfies substitutes and the LAD to any subset of contracts also satisfies

the two of them, we can guarantee that the doctor-optimal stable allocation exists for any

reduced problem.

Let f and f̃ be the doctor-optimal stable mechanism and the extended doctor-optimal

stable mechanism, respectively. Assume that f̃ is consistent for doctors. From Lemma 1

in Papai (2000), it follows that the combination of strategy-proofness and nonbossiness

implies group strategy-proofness: f is nonbossy if for all d ∈ D, R, and R′
d, fd(R) =

fd(R
′
d, R−d) implies f(R) = f(R′

d, R−d). By Hatfield and Milgrom (2005), f is strategy-

proof under substitutes and the LAD. We claim that f is nonbossy.

Let d ∈ D, R, and R′
d be such that fd(R) = fd(R

′
d, R−d). Let X ′ = f(R) and

X ′′ = f(R′
d, R−d). Note that since X ′

d = X ′′
d , by setting D′ = D \ {d}, the two reduced

problems ε(D
′,X′) and ε(D

′,X′′) are the same. Hence, f̃(ε(D
′,X′)) = f̃(ε(D

′,X′′)). On the

other hand, by consistency, X ′
D′ = f̃(ε(D

′,X′)) and X ′′
D′ = f̃(ε(D

′,X′′)). Hence, X ′
D′ = X ′′

D′ .

Therefore, f is nonbossy. 2
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Chapter 2

Nash implementation on the basis of
general priorities∗

1 Introduction

A school choice problem consists of a finite set of students, a finite set of schools, each

student’s preference over schools and herself, each school’s priority over students, and

a vector of capacities of schools.1 A matching describes which student is matched with

which school, and achieving a stable matching has been an important issue to address. A

matching is said to be stable if it is weakly preferred for all students to being unassigned,

and no student and school pair blocks it. There are in general multiple stable matchings.

Specifically, we say that a stable matching is constrained efficient if it is not Pareto

dominated by any other stable matchings in terms of students’ preferences. Since only

students are involved in efficiency, it is preferable for a market designer especially to

achieve a constrained efficient stable matching.

A stable matching can be found based on some mechanism by using students’ sub-

mitted information and schools’ pre-specified priorities and capacities. Since students are

assumed to be strategic, it is a problem whether there is a mechanism that implements a

stable sub–correspondence in some equilibrium concept. Thus, this is an implementation

problem. For a school choice problem with simple priorities, a direct mechanism associ-

ated with the student-proposing deferred acceptance algorithm is applicable (Gale and

∗This chapter is a joint work with Shoya Tsuruta and Akina Yoshimura. I grateful to Taro Kumano
for the helpful discussions. We would also like to thank Keisuke Bando, Yu Awaya, and the seminar
audience at the 25th DC Conference and Kyoto University for their comments.

1A priority is a correspondence that specifies which sets of students to choose from a given set of
students. In the model, priorities will be formally defined, where we call them admission correspondences.
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Shapley (1962)).2 That is, the student-proposing deferred acceptance algorithm is used for

an outcome function, and a message space consists of a set of students’ preference lists.

For such an environment, the direct mechanism associated with the student-proposing

deferred acceptance algorithm always finds a constrained efficient stable matching, and

truth-telling is a dominant strategy for all students (Dubins and Freedman (1982), and

Roth (1982)). Furthermore, a constrained efficient stable function is dominant strat-

egy implementable by a direct mechanism associated with the student-proposing deferred

acceptance algorithm (Kumano and Watabe (2012)).

However, priorities are much more complex in reality for several reasons, such as

an affirmative action policy and schools’ budget constraints. Unfortunately, depending

on the class of priorities, there does not exist a strategy-proof and constrained efficient

stable function. For example, when priorities allow ties among students, there are in

general multiple constrained efficient stable matchings and it is well known that there is

no strategy-proof and constrained efficient stable function (Erdil and Ergin (2008)). As

another example, under substitutable priorities without ties, which is introduced by Kelso

and Crawford (1982) and Hatfield and Milgrom (2005), there does not necessarily exist a

strategy-proof and constrained efficient stable function.3 Even worse, under these priori-

ties, Abdulkadiroǧlu (2005) shows that no stable function is dominant strategy incentive

compatible. Thus, in our general environment, not only a constrained efficient stable

matching but also a stable matching is not achievable in dominant strategy equilibria.

Therefore, we instead focus on Nash equilibria as an equilibrium concept.

This paper does not specify a class of priorities, instead treats any priorities that guar-

antee a stable matching for all students’ preference profiles. Then we ask whether a stable

sub-correspondence is implementable in Nash equilibria or not. The answer is affirmative

2Simple priorities here imply the so-called responsive priorities, which are a subclass of substitutable
priorities. This paper does not handle a specific class of priorities except for the last subsection. For this
purpose, we do not introduce a formal definition of responsive priorities.

3A formal definition of substitutability is provided in the last subsection. There it is defined in a more
general form.
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for a stable correspondence and slightly negative for a constrained efficient stable corre-

spondence. Formally, we first show that a stable correspondence is Nash implementable

whenever it is well-defined. Then, we show that, under a reasonable assumption on pri-

orities, a constrained efficient stable correspondence is Nash implementable whenever it

is well-defined if and only if it is Maskin monotonic.

Although Nash implementation of a constrained efficient stable correspondence is fully

characterized by Maskin monotonicity, it is not easy to check. The spirit of market design

is its actual use in practice. To this end, we further explore the relation between Maskin

monotonicity and priorities that can be observed in advance. Since we need a specific

structure of priorities, we assume reasonable assumptions on priorities.4 We show that a

constrained efficient stable correspondence is Maskin monotonic if and only if priorities

further satisfy the condition called strong acyclicity, which is introduced by Erdil and

Kumano (2019). In their original paper, they show that priorities are strongly acyclic if

and only if a constrained efficient stable correspondence is efficient.5 Hence, the following

are equivalent: a constrained efficient stable correspondence is Nash implementable; it is

Maskin monotonic; it is efficient; priorities are strongly acyclic.

1.1 Related literature

Our study takes a mechanism design approach. There is a large body of literature con-

cerning implementation. Danilov (1992) and Yamato (1992) find a necessary and sufficient

condition for Nash implementation of a social choice correspondence in a general setting.

In particular, Kara and Sönmez (1996, 1997), Sotomayor (2008, 2012), and Jaramillo et

al. (2013) investigate Nash implementation in matching markets where both sides of the

market behave strategically. For a restricted class of priorities, Kumano (2017) shows

4Assumptions on priorities are acceptance, consistency, and substitutability. The formal definitions
are introduced later.

5Note that since only students are under efficiency consideration, a stable matching is not necessarily
efficient. See Ergin (2002) for more detail.
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Nash implementation of stable matchings by constructing a mechanism whose message

spaces are finite.

This study begins with the conflict between (constrained efficient) stability and strategy-

proofness in a general environment. Hatfield and Milgrom (2005) introduce a condition

on priorities under which a constrained efficient stable and strategy-proof function ex-

ists. Hatfield and Kojima (2009) strengthen this result so that, under the same setting

as Hatfield and Milgrom (2005), a constrained efficient stable and weakly group strategy-

proof function exists. Further, Hirata and Kasuya (2017) investigate how a stable and

strategy-proof function works whenever the function exists in a setting without ties.

2 Model

Let N = {1, · · · , n} be a finite set of students, and X be a finite set of schools. We

assume that n ≥ 3. Let qx ∈ N be the quota of school x ∈ X. Each student i ∈ N has

a complete, transitive, and antisymmetric preference Ri over X ∪ {i}. The strict part of

Ri is written by Pi. We denote the set of all preferences of i ∈ N by Ri and the set of all

preference profiles by R ≡ ×i∈NRi.

Each school x ∈ X is equipped with an admission correspondence Ax : 2N ⇒ 2N

such that for all S ⊆ N and for all S ′ ∈ Ax(S), we have S
′ ⊆ S and |S ′| ≤ qx. Throughout

the paper, we assume that a priority structure (Ax, qx)x∈X is exogenously given so that

only the students are involved in the welfare and incentive concerns. A matching µ is

a function from N to N ∪ X such that (1) for all i ∈ N , µ(i) ∈ N ∪ {i}, and (2) for

all x ∈ X, |µ−1(x)| ≤ qx, where µ−1(x) ≡ {i ∈ N | µ(i) = x}. Let M be the set of all

matchings. A matching µ ∈ M is stable at R ∈ R if

1. (Individual rationality for students) µ(i)Rii for all i ∈ N ,

2. (Individual rationality for schools) µ−1(x) ∈ Ax(µ
−1(x)) for all x ∈ X, and
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3. (No blocking pair) there exists no (i, x) ∈ N ×X such that xPiµ(i) and µ−1(x) /∈

Ax(µ
−1(x) ∪ {i}).

Without restricting priority structures, there does not necessarily exist a stable matching

at any preference profiles. A priority structure ensures stability if there is at least one

stable matching at any preference profiles.

A matching correspondence (or social choice correspondence) is defined as a cor-

respondence F : R → 2M \{∅}. Given a priority structure, the stable correspondence,

denoted F s, maps each preference profile to the set of matchings which are stable.

2.1 Nash implementation

Let Si be a set of messages of i ∈ N and g : S ≡ ×i∈NSi → M be an outcome function.

For a message profile s ∈ S, a student i’s assignment under matching g(s) is denoted by

gi(s). A pair (S, g) constitutes a mechanism and a tuple (S, g,R) constitutes a game. A

message profile s∗ ∈ S is a Nash equilibrium of a game (S, g, R) if for all i ∈ N and for

all si ∈ Si, gi(s
∗
i , s

∗
−i)Rigi(si, s

∗
−i). Let NE(S, g, R) ⊆ S be the set of all Nash equilibria

of a game (S, g, R), and define g(NE(S, g, R)) ≡ {µ ∈ M | µ = g(s) for some s ∈

NE(S, g, R)}. For a matching correspondence F , a mechanism (S, g) implements F in

Nash equilibria if for all R ∈ R, F (R) = g(NE(S, g,R)). If there exists a mechanism

that implements F in Nash equilibria, then F is called Nash implementable.

Given a matching µ and a preference Ri, let L(µ,Ri) ≡ {ν ∈ M |µ(i)Riν(i)}. Given

a set of matchings M ′ ⊆ M and a matching correspondence F , a matching µ ∈ M ′ is

essential for i ∈ N in M ′ if there exists some preference profile R ∈ R such that

L(µ,Ri) ⊆ M ′ and µ ∈ F (R).

We denote the set of all essential matchings by ESS[F, i,M ′].
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Definition 1. (Essential monotonicity)

A matching correspondence F is essentially monotonic if for all R,R′ ∈ R and µ ∈

F (R),

∀i ∈ N, ESS[F, i, L(µ,Ri)] ⊆ L(µ,R′
i) ⇒ µ ∈ F (R′).

Yamato (1992) shows that essential monotonicity is necessary and sufficient for Nash

implementation of a matching correspondence by employing the following mechanism,

which we call the “Yamato mechanism” here.

The Yamato mechanism (S, g):

• For each student i ∈ N , the set of messages, Si, is defined by

Si ≡ {(Ri, µi,mi, ni) | Ri ∈ R, µi ∈ F (Ri),mi ∈ {0, 1}, and ni ∈ N}.

• Outcome function g is defined as follows: given a message profile s ∈ S,

1. if (Ri, µi,mi) = (R, µ, 0) for all i ∈ N , then g(s) = µ.

2. if (Rj, µj,mj) = (R, µ, 0) for all j ∈ N \ {i} and (Ri, µi,mi) ̸= (R, µ, 0), then

g(s) =


µi if µi ∈ ESS[F, i, L(µ,Ri)]

µ otherwise.

3. otherwise, let k be a student such that k =
∑

i∈N ni (mod n) +1, and g(s) = µk.

♦

Proposition 1. (Yamato (1992))

The Yamato mechanism implements a matching correspondence F in Nash equilibria if

and only if F is essentially monotonic.
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3 Results

3.1 Stable correspondence

Theorem 1. For any priority structure that ensures stability, the Yamato mechanism

implements the stable correspondence F s in Nash equilibria.

Proof. Yamato (1992) proves the equivalence between essential monotonicity of a match-

ing correspondence and Nash implementation of the correspondence in a general setting

that contains ours. Thus, it suffices to show that F s is essentially monotonic.

Suppose, by contradiction, that F s is not essentially monotonic. Then, there exist

R,R′, and µ ∈ F s(R) such that

∀i ∈ N, ESS[F s, i, L(µ,Ri)] ⊆ L(µ,R′
i) and µ /∈ F s(R′).

This implies that µ is not stable at R′. There are two cases to consider.

Case 1: µ is not individually rational for students at R′.

Then, there exists i ∈ N such that iP ′
iµ(i). We consider a matching ν ∈ M and a

preference profile R̂ ∈ R such that

ν =


ν(i) = i

ν(j) = µ(j) if µ(j)Piµ(i)

ν(k) = k otherwise

and

R̂i : X
′, i, R̂j : ν(j), j, R̂k : k

where X ′ is the same part as the part above µ(i) of Ri, that is, Ri : X
′, µ(i) · · · . Since µ
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is stable at R and so µ(i)Pii, we have

L(ν, R̂i) = L(µ,Ri). (1)

It is easy to check that ν is individually rational at R̂. Moreover, from the stability of µ

at R, student i cannot make a blocking pair with x ∈ X ′ at R̂ (otherwise, she can also

make a blocking pair with x ∈ X ′ at µ). Therefore, ν is stable at R̂, and we have

ν ∈ F s(R̂).

Then, by definition of essential monotonicity, we obtain

ν ∈ ESS[F s, i, L(ν, R̂i)],

which, along with (1), implies that

ν ∈ ESS[F s, i, L(µ,Ri)].

By supposition,

ν ∈ L(µ,R′
i),

and we have µ(i)R′
iν(i) = i, which contradicts the assumption in Case 1.

Case 2: There exists a blocking pair.

Then, there exists a pair (i, x) ∈ N ×X such that

xP ′
iµ(i) and µ−1(x) /∈ Ax(µ

−1(x) ∪ {i}).

We consider a matching ν ∈ M and a preference profile R̂ ∈ R such that
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ν =


ν(i) = x

ν(j) = µ(j) if µ(j)Piµ(i)

ν(k) = k otherwise

and

R̂i : X
′, x, R̂j : ν(j), j, R̂k : k

where X ′ is the same part as the part above µ(i) of Ri, that is, Ri : X
′, µ(i) · · · . Since µ

is stable at R and so µ(i)Pix, we have

L(ν, R̂i) = L(µ,Ri). (2)

It is easy to check that ν is individually rational at R̂. Moreover, from the stability of µ

at R, student i cannot make a blocking pair with x ∈ X ′ at R̂ (otherwise, she can also

make a blocking pair with x ∈ X ′ at µ). Thus, ν is stable at R̂, and we have

ν ∈ F s(R̂).

Then, by definition of essential monotonicity, we obtain

ν ∈ ESS[F s, i, L(ν, R̂i)],

which, along with (2), implies that

ν ∈ ESS[F s, i, L(µ,Ri)].

By supposition,

ν ∈ L(µ,R′
i),
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and we have µ(i)R′
iν(i) = x, which contradicts the assumption in Case 2. 2

3.2 Constrained efficient stable correspondence

We have thus far considered Nash implementation of stable matchings. In general, there

might be a stable matching that is weakly preferred for all students to another stable

matching. Hence, we focus on the Pareto-frontier of stable matchings in this subsection.

A matching µ ∈ M Pareto dominates another matching ν ∈ M at R ∈ R if µ(i)Riν(i)

for all i ∈ N and µ(j)Pjν(j) for some j ∈ N . A matching is efficient at R ∈ R if it is not

Pareto dominated by any other matchings at R. A matching is constrained efficient

stable at R ∈ R if it is stable and not Pareto dominated by any other stable matchings

at R. Given a priority structure, the constrained efficient stable correspondence,

denoted F c, maps each preference profile to the set of matchings that are constrained

efficient stable.

To investigate Nash implementation of the constrained efficient stable correspondence,

we put an assumption on priority structures that seems to be reasonable especially in

school choice problem.

Definition 2. (Acceptant priorities)

A priority structure (Ax, qx)x∈X is acceptant if for all x ∈ X, S ⊆ N , and S ′ ∈ Ax(S),

we have |S ′| = min{|S|, qx}.

Maskin (1977) shows that Maskin monotonicity, which is defined below, is a necessary

condition for Nash implementation.

Definition 3. (Maskin monotonicity)

A matching correspondence F is Maskin monotonic if for all R,R′ ∈ R and µ ∈ F (R),

∀i ∈ N, L(µ,Ri) ⊆ L(µ,R′
i) ⇒ µ ∈ F (R′).
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Since F c does not satisfy Maskin monotonicity, it is not Nash implementable in general.

However, the following proposition states that Maskin monotonicity is not only necessary

but also sufficient for Nash implementation of F c under acceptant priority structures.

Proposition 2. For any acceptant priority structure that ensures stability, the constrained

efficient stable correspondence F c is Nash implementable if and only if it is Maskin mono-

tonic.

Proof. In Appendix A. 2

3.3 Characterization in terms of priorities

In this subsection, we explore the relation between Maskin monotonicity of F c and pri-

ority structures.6 We further put two assumptions on priority structures in addition to

acceptance.

Definition 4. (Consistent priorities)

A priority structure (Ax, qx)x∈X is consistent if the following two conditions hold:

1. If there exists S ⊆ N such that A ∪ B ⊆ S with A ∈ Ax(S) and B /∈ Ax(S), then

whenever A ∪B ⊆ S ′, we have B /∈ Ax(S
′).

2. If there exists S ⊆ N such that A,B ∈ Ax(S), then whenever A ∪B ⊆ S ′, we have

A ∈ Ax(S
′) if and only if B ∈ Ax(S

′).

The other assumption on priority structures is substitutability.7 An admission cor-

respondence Ax is monotonic if for all S, T ⊆ N with S ⊆ T and T ′ ∈ Ax(T ), we

6A growing body of literature focuses on a condition on priority structures to guarantee equivalence
results. See, for example, Ergin (2002), Kesten (2006), Haeringer and Klijn (2009), Ehlers and Erdil
(2010), Kojima (2013), Kumano (2013), and Erdil and Kumano (2019).

7See Hatfield and Milgrom (2005), Hatfield and Kojima (2008), and Hatfield and Kojima (2010) for
the connection between substitutability and stability. Moreover, see Abdulkadiroǧlu and Sönmez (2003)
that indicates the plausibility of substitutable priorities.
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have T ′ ∩ S ⊆ S ′ for some S ′ ∈ Ax(S). Given an admission correspondence Ax, let

Rx : 2N ⇒ 2N be a rejection correspondence of school x ∈ X such that for all S ⊆ N ,

Rx(S) ≡ {S ′′ ⊆ S | S ′′ = S \ S ′ for some S ′ ∈ Ax(S)}.

A rejection correspondence Rx is monotonic if for all S, T ⊆ N with S ⊆ T and S ′ ∈

Rx(S), we have S ′ ⊆ T ′ for some T ′ ∈ Rx(T ).
8 We are ready to define substitutability.9

Definition 5. (Substitutable priorities)

A priority structure (Ax, qx)x∈X is substitutable if for all x ∈ X, Ax and Rx are both

monotonic.

In the class of acceptant, consistent, and substitutable priority structures, we intro-

duce a necessary and sufficient condition on priority structures such that F c is Nash

implementable. Let CAx(S) ≡ {i ∈ N | i ∈ S ′ for all S ′ ∈ Ax(S)} for all x ∈ X and

for all S ⊆ N . The following definition is proposed in the Online Appendix of Erdil and

Kumano (2019).

Definition 6. (Strongly acyclic priorities)

Given a priority structure (Ax, qx)x∈X , a generalized weak cycle constitutes distinct

j, i0, i1, · · · , in−1 ∈ N , and distinct x0, x1, · · · , xn−1 ∈ X with n ≥ 2 such that there exist

8Note that, in general, monotonicity of Ax and monotonicity of Rx are logically independent (see
Remark 1 in Erdil and Kumano’s (2019) Online Appendix). Note also that if Ax is single-valued, then
the admission correspondence is monotonic if and only if the rejection correspondence is monotonic.

9Che et al. (2019) define weak substitutability and investigate the existence of stable matchings under
this assumption. We note here that substitutability in our study is equivalent to weak substitutability in
their study, which is discussed in more detail in Appendix B.
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mutually disjoint sets of students Sx0 , · · · , Sxn−1 ⊆ N \ {j, i0, i1, · · · , in−1} such that

j /∈ CAx0(Sx0 ∪ {i0, j}),

j ∈ CAx0(Sx0 ∪ {in−1, j}),

in−1 /∈ CAx0(Sx0 ∪ {i0, in−1}),

in−2 /∈ CAxn−1(Sxn−1 ∪ {in−1, in−2}),
...

i1 /∈ CAx2(Sx2 ∪ {i2, i1}),

i0 /∈ CAx1(Sx1 ∪ {i1, i0}),

|Sxℓ
| = qxℓ

− 1 for ℓ = 0, 1, · · · , n− 1.

If a priority structure (Ax, qx)x∈X does not contain any generalized weak cycle, then it is

called strongly acyclic.

Proposition 3. For any acceptant, consistent, and substitutable priority structure, the

constrained efficient stable correspondence F c is Maskin monotonic if and only if the

priority structure is strongly acyclic.

Proof. In Appendix A. 2

By Proposition 2 and Proposition 3, we obtain the following result.

Theorem 2. For any acceptant, consistent, and substitutable priority structure, the con-

strained efficient stable correspondence F c is Nash implementable if and only if the priority

structure is strongly acyclic.

Moreover, Erdil and Kumano (2019) show in their Online Appendix that all constraint

efficient stable matchings are efficient if and only if the priority structure is strongly

acyclic. Therefore, Theorem 2 in our study implies the following corollary.
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Corollary 1. For any acceptant, consistent, and substitutable priority structure, the fol-

lowing are equivalent:

(i) F c is Nash implementable,

(ii) F c is Maskin monotonic,

(iii) F c is efficient, and

(iv) the priority structure is strongly acyclic.
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Appendix A: Omitted proofs

Proof of Proposition 2.

Maskin (1977) shows that Maskin monotonicity is a necessary condition for Nash imple-

mentation of a matching correspondence. Thus, we show that if F c is Maskin monotonic,

then it is essentially monotonic.

Suppose, by contradiction, that F c is not essentially monotonic. Then, there exist

R,R′, and µ ∈ F c(R) such that

∀i ∈ N, ESS[F c, i, L(µ,Ri)] ⊆ L(µ,R′
i) and µ /∈ F c(R′).

This implies that µ is not constrained efficient stable at R′. There are three cases to

consider.

Case 1: µ is not individually rational for students at R′.

Then, there exists i ∈ N such that iP ′
iµ(i). We consider a matching ν ∈ M and a

preference profile R̂ ∈ R such that

ν =


ν(i) = i

ν(j) = µ(j) if µ(j)Piµ(i)

ν(k) = k otherwise

and

R̂i : X
′, i, R̂j : ν(j), j, R̂k : k,

where X ′ is the same part as the part above µ(i) of Ri, that is, Ri : X
′, µ(i) · · · . Since µ
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is stable at R and so µ(i)Pii, we have

L(ν, R̂i) = L(µ,Ri). (3)

It is easy to check that ν is individually rational at R̂. Moreover, from the stability of µ

at R, student i cannot make a blocking pair with x ∈ X ′ at R̂ (otherwise, she can also

make a blocking pair with x ∈ X ′ at µ). Therefore, ν is stable at R̂. We insist that ν is

constrained efficient stable at R̂.

Suppose that ν would not be constrained efficient stable at R̂. Then, there exists

another stable matching η that Pareto dominates ν at R̂. By construction of R̂, η−1(x) =

ν−1(x) ∪ {i} must hold for some x ∈ X ′. Since ν is stable at R̂, we have

ν−1(x) ∈ Ax(ν
−1(x) ∪ {i}). (4)

Acceptance of priority structures, together with (4), implies that |ν−1(x)| = qx. However,

this is a contradiction that η−1(x) = ν−1(x)∪{i} and η is individually rational for schools.

Therefore, ν is also constrained efficient stable at R̂, and we have

ν ∈ F c(R̂).

Then, by definition of essential monotonicity, we obtain

ν ∈ ESS[F c, i, L(ν, R̂i)],

which, along with (3), implies that

ν ∈ ESS[F c, i, L(µ,Ri)].
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By supposition,

ν ∈ L(µ,R′
i),

and we have µ(i)R′
iν(i) = i, which contradicts the assumption in Case 1.

Case 2: There exists a blocking pair.

Then, there exists a pair (i, x) ∈ N ×X such that

xP ′
iµ(i) and µ−1(x) /∈ Ax(µ

−1(x) ∪ {i}).

We consider a matching ν ∈ M and a preference profile R̂ ∈ R such that

ν =


ν(i) = x

ν(j) = µ(j) if µ(j)Piµ(i)

ν(k) = k otherwise

and

R̂i : X
′, x, R̂j : ν(j), j, R̂k : k,

where X ′ is the same part as the part above µ(i) of Ri, that is, Ri : X
′, µ(i) · · · . Since µ

is stable at R and so µ(i)Pix, we have

L(ν, R̂i) = L(µ,Ri). (5)

It is easy to check that ν is individually rational at R̂. Moreover, from the stability of µ

at R, student i cannot make a blocking pair with x ∈ X ′ at R̂ (otherwise, she can also

make a blocking pair with x ∈ X ′ at µ). Therefore, ν is stable at R̂. We insist that ν is

constrained efficient stable at R̂.

Suppose that ν would not be constrained efficient stable at R̂. Then, there exists
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another stable matching η that Pareto dominates ν at R̂. By construction of R̂, η−1(x) =

ν−1(x) ∪ {i} must hold for some x ∈ X ′. Since ν is stable at R̂, we have

ν−1(x) ∈ Ax(ν
−1(x) ∪ {i}). (6)

Acceptance of priority structures, together with (6), implies that |ν−1(x)| = qx. However,

this is a contradiction that η−1(x) = ν−1(x)∪{i} and η is individually rational for schools.

Therefore, ν is also constrained efficient stable at R̂, and we have

ν ∈ F c(R̂).

Then, by definition of essential monotonicity, we obtain

ν ∈ ESS[F c, i, L(ν, R̂i)],

which, along with (5), implies that

ν ∈ ESS[F c, i, L(µ,Ri)].

By supposition,

ν ∈ L(µ,R′
i),

and we have µ(i)R′
iν(i) = x, which contradicts the assumption in Case 2.

Case 3: µ is stable at R′ but there is a stable matching ν that Pareto dominates µ at R′.

Then, we have

∀i ∈ N, ν(i)R′
iµ(i) and ∃j ∈ N, ν(j)P ′

jµ(j).
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Let S ≡ {j ∈ N |ν(j)P ′
jµ(j)} be the set of students who are matched to better schools

in ν than in µ at R′. From the antisymmetry of preferences, for each j ∈ S, either

µ(j)Pjν(j) or ν(j)Pjµ(j) holds. We consider two subcases.

Case 3-1: For some j ∈ S, µ(j)Pjν(j).

Take any j ∈ S who prefers µ(j) to ν(j) according to Rj. We consider a matching η ∈ M

and a preference profile R̂ such that

η =


η(j) = ν(j)

η(k) = µ(k) if µ(k)Pjµ(j)

η(ℓ) = ℓ otherwise

and

R̂j : X
′, ν(j), R̂k : µ(k), k , R̂ℓ : ℓ,

where X ′ is the same part as the part above µ(j) of Rj, that is, Rj : X
′, µ(j) · · · . Since

µ(j)Pjν(j), we have

L(η, R̂j) = L(µ,Rj). (7)

It is easy to check that η is individually rational at R̂. Moreover, from the stability of µ

at R, student i cannot make a blocking pair with x ∈ X ′ at R̂ (otherwise, she can also

make a blocking pair with x ∈ X ′ at µ). Therefore, ν is stable at R̂. We insist that η is

constrained efficient stable at R̂.

Suppose that η would not be constrained efficient stable at R̂. Then, there exists

another stable matching η′ that Pareto dominates η at R̂. By construction of R̂, η′−1(x) =

η−1(x) ∪ {i} must hold for some x ∈ X ′. Since η is stable at R̂, we have

η−1(x) ∈ Ax(η
−1(x) ∪ {i}). (8)
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Acceptance of priority structures, together with (8), implies that |η−1(x)| = qx. However,

this is a contradiction that η′−1(x) = η−1(x) ∪ {i} and η′ is individually rational for

schools. Therefore, η is also constrained efficient stable at R̂, and we have

η ∈ F c(R̂).

Then, by definition of essential monotonicity, we obtain

η ∈ ESS[F c, j, L(η, R̂j)],

which, along with (7), implies that

η ∈ ESS[F c, j, L(µ,Rj)].

By supposition,

η ∈ L(µ,R′
j),

and we have µ(j)R′
jη(j) = ν(j), which contradicts the assumption in Case 3.

Case 3-2: For all j ∈ S, ν(j)Pjµ(j).

We consider a preference profile R̂ such that

∀j ∈ S, R̂j : ν(j), µ(j) . . .

∀k ∈ N\S, R̂k : µ(k) . . .

Because of the antisymmetry of preferences, for all k ∈ N\S, µ(k) = ν(k). Then, ν is

clearly constrained efficient stable at R̂. Moreover, for all i ∈ N , L(µ,Ri) ⊆ L(µ, R̂i)

holds. By Maskin monotonicity of F c, we have µ ∈ F c(R̂). However, ν Pareto dominates

µ at R̂, a contradiction. 2
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Proof of Proposition 3.

Before showing Proposition 3, we propose a useful result. For any acceptant priority

structure, the notion of stability is identical to the following weaker version of stability.10

Definition 7. A matching µ ∈ M is weakly stable at R ∈ R if

1. µ(i)Rii for all i ∈ N ,

2. µ−1(x) ∈ Ax(µ
−1(x)) for all x ∈ X, and

3. there exists no (i, x) ∈ N ×X such that xPiµ(i) and i ∈ CAx(µ
−1(x) ∪ {i}).

Lemma 1. For any acceptant priority structure, stability and weak stability are equivalent.

Proof of Lemma 1. Suppose that the third condition of weak stability does not hold.

Then, there exists (i, x) ∈ N × X such that xPiµ(i) and i ∈ CAx(µ
−1(x) ∪ {i}). By

definition of matchings, i /∈ µ−1(x). Moreover, by definition of CAx, i ∈ S ′ for all

S ′ ∈ Ax(µ
−1(x) ∪ {i}). This implies that µ−1(x) /∈ Ax(µ

−1(x) ∪ {i}). Hence, stability

implies weak stability.

Conversely, suppose that the third condition of stability does not hold. Then, there

exists (i, x) ∈ N ×X such that xPiµ(i) and µ−1(x) /∈ Ax(µ
−1(x) ∪ {i}).

Case 1: |µ−1(x)| < qx

Then, by acceptance of Ax, we must have Ax(µ
−1(x)∪ {i}) = {µ−1(x)∪ {i}}. Hence,

i ∈ CAx(µ
−1(x) ∪ {i}).

Case 2: |µ−1(x)| = qx

10Remind that for all x ∈ X and S ⊆ N , let CAx(S) ≡ {i ∈ N | i ∈ S′ for all S′ ∈ Ax(S)}.
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Take any S ′ ∈ Ax(µ
−1(x) ∪ {i}). If i /∈ S ′, then by acceptance of Ax, we would

have µ−1(x) ∈ Ax(µ
−1(x)∪ {i}), which contradicts the assumption. Therefore, we obtain

i ∈ S ′. Because S ′ is arbitrary, we understand that i ∈ CAx(µ
−1(x) ∪ {i}), which was

what we wanted. 2

Proof of Proposition 3.

(if part)

Suppose that a priority structure (Ax, qx)x∈X is strongly acyclic, and F c is not Maskin

monotonic. Then, there exist R,R′ ∈ R and µ ∈ F c(R) such that L(µ,Ri) ⊆ L(µ,R′
i) for

all i ∈ N and µ /∈ F c(R′). Because µ is not constrained efficient stable at R′, we consider

two cases.

Case 1: µ is not stable at R′.

If µ is not individually rational at R′, that is, iP ′
iµ(i) for some i ∈ N , then it is

also not individually rational at R since L(µ,Ri) ⊆ L(µ,R′
i) implies iPiµ(i). This is a

contradiction that µ is stable at R. If there exist a blocking pair (i, x) ∈ N ×X such that

xP ′
iµ(i) and i ∈ CAx(µ

−1(x) ∪ {i}), then this blocking pair also constitutes a blocking

pair at R because L(µ,Ri) ⊆ L(µ,R′
i) implies xPiµ(i). This is a contradiction that µ is

stable at R.

Case 2: µ is stable at R′, but there exists a stable matching ν that Pareto dominates µ

at R′.

That is,

∀i ∈ N, ν(i)R′
iµ(i) and ∃j ∈ N, ν(j)P ′

jµ(j).

Since L(µ,Ri) ⊆ L(µ,R′
i) holds for all i ∈ N , we have

∀i ∈ N, ν(i)Riµ(i) and ∃j ∈ N ν(j)Pjµ(j).
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Note that from Erdil and Kumano’s (2019) Online Appendix, we know that F c is efficient

if and only if the priority structure is strongly acyclic. By assumption, (Ax, qx)x∈X is

strongly acyclic, so F c is efficient. Then, since µ ∈ F c(R), µ is efficient at R. However, ν

Pareto dominates µ at R. This is a contradiction.

(only if part)

Now, we assume that F c is Maskin monotonic and a priority structure (Ax, qx)x∈X has

a generalized weak cycle. Then, there exist distinct j, i0, i1, · · · , in−1 ∈ N , and distinct

x0, x1, · · · , xn−1 ∈ X with n ≥ 2 such that there exist mutually disjoint sets of students

Sx0 , · · · , Sxn−1 ⊆ N \ {j, i0, i1, · · · , in−1} such that

j /∈ CAx0(Sx0 ∪ {i0, j}),

j ∈ CAx0(Sx0 ∪ {in−1, j}),

in−1 /∈ CAx0(Sx0 ∪ {i0, in−1}),

in−2 /∈ CAxn−1(Sxn−1 ∪ {in−1, in−2}),
...

i1 /∈ CAx2(Sx2 ∪ {i2, i1}),

i0 /∈ CAx1(Sx1 ∪ {i1, i0}),

|Sxℓ
| = qxℓ

− 1 for ℓ = 0, 1, · · · , n− 1.

We consider the following preference profile R,

Ri0 Rj Ri1 · · · Rin−2 Rin−1 Rk0 · · · Rkn−1 Rℓ

x1 x0 x2 xn−1 x0 x0 xn−1 ℓ
x0 j x1 · · · xn−2 xn−1 k0 · · · kn−1

i0 i1 in−2 in−1
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where kh ∈ Sxh
for all h ∈ {0, · · · , n−1} and ℓ ∈ N\

(
(∪n−1

m=0Sxm) ∪ {i0, j, i1, · · · , in−1}
)
.

Then,

µ =

 i0 j i1 · · · in−1 Sx0 · · · Sxn−1 ℓ

x0 j x1 · · · in−1 x0 · · · xn−1 ℓ


is a constrained efficient stable matching at R. That is, µ ∈ F c(R).

Let R̂ be such that student j ranks himself as first and any other students do not

change preferences, that is,

R̂−j = R−j and R̂j : j · · · .

Then, L(µ,Ri) ⊆ L(µ, R̂i) holds for all i ∈ N , and we have µ ∈ F c(R̂) since F c is Maskin

monotonic. That is, µ is constrained efficient stable at R̂. However,

ν =

 i0 j i1 · · · in−1 Sx0 · · · Sxn−1 ℓ

x1 j x2 · · · i0 x0 · · · xn−1 ℓ


is stable and Pareto dominates µ at R̂. Hence, µ could not be constrained efficient stable

at R̂, a contradiction. 2

Appendix B

Here, we show the equivalence between Che et al.’s (2019) definition of weakly substi-

tutable priorities and our definition of substitutability.

Definition 8. (Weakly substitutable priorities)

A priority structure (Ax, qx)x∈X is weakly substitutable if for all x ∈ X the following

two conditions hold:
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1. for all S, T ⊆ N with S ⊆ T and all T ′ ∈ Rx(T ), we have S ′ ⊆ T ′ for some

S ′ ∈ Rx(S).

2. for all S, T ⊆ N with S ⊆ T and all S ′ ∈ Rx(S), we have S ′ ⊆ T ′ for some

T ′ ∈ Rx(T ).

Proposition 4. The notion of weak substitutability is equivalent to that of substitutability.

Proof of Proposition 4. Since the second condition in weakly substitutable priorities

and the monotonicity of rejection correspondences are the same, we first check that the

first condition of weak substitutability implies the monotonicity of admission correspon-

dences. Then, we check the opposite.

Take any S ⊆ T ⊆ N and any T ′′ ∈ Ax(T ). Let T
′ ≡ T \ T ′′. Then, T ′ ∈ Rx(T ). By

the first condition in weakly substitutable priorities, there exists S ′ ∈ Rx(S) such that

S ′ ⊆ T ′. Let S ′′ ≡ S \ S ′. Then, S ′′ ∈ Ax(S). By S ′ ⊆ T ′ and T ′ = T \ T ′′, we have

S ′ ∩ T ′′ = ∅. Hence,

T ′′ ∩ S = T ′′ ∩ (S ′ ∪ S ′′) = (T ′′ ∩ S ′)︸ ︷︷ ︸
=∅

∪(T ′′ ∩ S ′′) = T ′′ ∩ S ′′ ⊆ S ′′.

Therefore, one direction has been proved.

Take any S ⊆ T ⊆ X and any T ′ ∈ Rx(T ). Let T ′′ ≡ T \ T ′. Then, T ′′ ∈ Ax(T ).

By the monotonicity of admission correspondences, there exists S ′′ ∈ Ax(S) such that

T ′′ ∩ S ⊆ S ′′. Let S ′ ≡ S \ S ′′. Then, S ′ ∈ Rx(S). By T ′′ ∩ S ⊆ S ′′ and S ′ = S \ S ′′, we

have S ′ ∩ T ′′ = (S ′ ∩ S) ∩ T ′′ = S ′ ∩ (S ∩ T ′′) = ∅. Hence,

S ′ ∩ T ′′ = ∅ ⇔ S ′ ∩ (T \ T ′) = ∅ ⇔ S ′ ⊆ T ′.

2
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Chapter 3

Nash implementation in matching with
contracts∗

1 Introduction

A model of matching with contracts refers to a market where a doctor is going to be

matched with a hospital based on a contract representing, say, a medical department

(Hatfield and Milgrom (2005)). The outcome of the market is an allocation that forms a

set of contracts. One of the main objective in the market is to address whether a stable

allocation is achieved in some equilibrium notion: an allocation is stable if neither doctor

nor hospital rejects the assigned contracts unilaterally, and no doctor and hospital pair

blocks the allocation bilaterally in such a way that both of them can find a contract

involving them better than what they obtain in the allocation. When hospitals have

a simple choice behavior, a direct mechanism associated with the celebrated Deferred

Acceptance (DA) algorithm works well, that is, the direct mechanism always produces a

stable allocation and truth-telling is a dominant strategy for doctors.1

Importantly, it is not uncommon in reality that a hospital cares for an affirmative ac-

tion policy or has a budget constraint. This implies that choice behavior for hospitals are

no longer represented in a simple manner, leading to a demand for the analysis under a

much more complex choice behavior for hospitals. Hence, we do not specify a class of hos-

pitals’ choice behavior but treat any choice behavior that guarantees a stable allocation.

It is well known, however, that in our general choice behavior, there does not necessarily

∗This chapter is a joint work with Wataru Ishida. I am grateful to Taro Kumano and Kyohei Marutani
for helpful discussions.

1See Gale and Shapley (1962) for the construction of the DA algorithm, and Dubins and Freedman
(1982) and Roth (1982) for the incentive compatibility.
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exist a mechanism that produces a stable allocation while preserving dominant strategy

incentive compatibility.2 So, we instead seek to analyze whether a stable allocation is

achieved in Nash equilibria.3

Given a choice behavior for hospitals, the stable correspondence is a correspondence

that produces the set of stable allocations for any input of preferences for doctors. Un-

fortunately, the stable correspondence is not Nash implementable in general. Thus, we

propose a necessary and sufficient condition on choice behavior for hospitals, called Rich-

ness, for the stable correspondence to be Nash implementable. Formally, we show that

given any choice behavior that guarantees a stable allocation, the stable correspondence

is Nash implementable if and only if the choice behavior satisfies Richness.

In the last part of the paper, we check that Richness does hold in matching without

contracts. Therefore, it is shown that the stable correspondence is Nash implementable

in matching without contracts in general.

2 Model

There are a finite set of doctorsD, a finite set of hospitalsH, and a finite set of contractual

terms C. Let X ⊆ D×H ×C be a finite set of contracts. We denote a doctor associated

with a contract x ∈ X by D(x) ∈ D and similarly a hospital associated with a contract

x ∈ X by H(x) ∈ H. Given a set of contracts X ′ ⊆ X, let D(X ′) := ∪x∈X′{D(x)} and

H(X ′) := ∪x∈X′{H(x)}. In addition to X, there is a null contract ∅d for any d ∈ D that

represents having no relationship with any hospital. For any X ′ ⊆ X, define X ′
d := {x ∈

X ′ | D(x) = d} for any d ∈ D and X ′
h := {x ∈ X ′ | H(x) = h} for any h ∈ H.4 If doctor

d has no such contract in X ′ ⊆ X, then we define X ′
d = ∅d.

2Hatfield, Kominers, and Westlamp (2021) propose a necessary and sufficient condition on choice
behavior such that there exists a stable and strategy-proof mechanism.

3For the literature concerning Nash implementation in matching markets, see, for example, Kara and
Sönmez (1996, 1997), and Kumano (2017).

4When X ′
d is a singleton, say X ′

d = {x}, we write X ′
d = x as long as there is no confusion.
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Each doctor d ∈ D has a complete, transitive, and antisymmetric preference Rd over

Xd ∪ {∅d}. The strict part of Rd is denoted by Pd. Let Rd be a set of all preferences

of d ∈ D, and let R := ×d∈DRd. For any D′ ⊆ D, we define RD′ = (Rd)d∈D′ and

R−D′ = (Rd)d∈D\D′ . For notational convenience, we denote R instead of RD as long as

there is no confusion. For any d ∈ D and X ′ ⊆ X, the chosen contract CRd
(X ′) of

doctor d is

CRd
(X ′) := max

Rd

(X ′
d ∪ {∅d}).

For X ′ ⊆ X, let CR(X
′) := {CRd

(X ′)|d ∈ D}.

Each hospital h ∈ H has a complete, transitive, and antisymmetric priority Rh over

the set of subsets ofXh.
5 For any h ∈ H, Rh induces the choice function CRh

: 2X → 2X ,

which satisfies the following three conditions: for any X ′ ⊆ X, (1) CRh
(X ′) ⊆ X ′

h; (2) for

any x, x′ ∈ CRh
(X ′), x ̸= x′ implies D(x) ̸= D(x′); and (3) CRh

(X ′)RhX
′′ for all X ′′ ⊆ X ′

h.

A choice function Ch satisfies irrelevance of rejected contracts (IRC) if for all x ∈ X

and X ′ ⊆ X, x /∈ Ch(X
′∪{x}) implies Ch(X

′∪{x}) = Ch(X
′). Throughout the paper, we

fix (Rh)h∈H , and for notational exposition, we simply denote a choice function CRh
by Ch.

This reflects the view that hospitals are just objects to be allocated to doctors; so only

the doctors are involved in incentive property. For X ′ ⊆ X, let CH(X
′) :=

∪
h∈H Ch(X

′).

An allocation is a set of contracts X ′ ⊆ X such that for all x, x′ ∈ X ′, x ̸= x′ implies

D(x) ̸= D(x′). Denote the set of all allocations by X . We denote the allocation such that

no doctor is allocated to a contract by ∅. The following is the allocation we would like

to implement.

Definition 1. An allocation X ′ ∈ X is stable at R ∈ R if

1. CR(X
′) = CH(X

′) = X ′, and

2. there is no (d, h) ∈ D ×H and x′ ∈ X such that x′PdX
′
d and x′ ∈ Ch(X

′ ∪ {x′}).
5We regard a priority relation as primitive. For an alternative model, see Aygün and Sönmez (2012,

2014).
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We say that a profile of choice functions (Ch)h∈H ensures stability if there exists at

least one stable allocation at each doctors’ preference profile.

A social choice correspondence is a correspondence F : R → 2X \ {∅}. Given

(Ch)h∈H , the stable correspondence, denoted F s, maps each doctors’ preference profile

R to the set of allocations which are stable at R.

2.1 Nash implementation

Let Sd be a set of messages of d ∈ D and g : S := ×d∈DSd → X be an outcome function.

For a message profile s ∈ S, a doctor d’s contract under allocation g(s) is written by

gd(s). A pair (S, g) constitutes a mechanism and a tuple (S, g, R) constitutes a game.

A message profile s∗ ∈ S is aNash equilibrium of a game (S, g, R) if for all d ∈ D and for

all sd ∈ Sd, gd(s
∗
d, s

∗
−d)Rdgd(sd, s

∗
−d). Let NE(S, g,R) ⊆ S be a set of all Nash equilibria

of a game (S, g, R), and define g(NE(S, g,R)) := {X ′ ∈ X | X ′ = g(s) for some s ∈

NE(S, g, R)}. For a social choice correspondence F , a mechanism (S, g) implements F

in Nash equilibria if for all R ∈ R, F (R) = g(NE(S, g,R)). If there exists a mechanism

that implements F in Nash equilibria, then F is called Nash implementable.

Yamato (1992) proposes a condition, called essential monotonicity defined below, to

show that it is necessary and sufficient for a social choice correspondence to be Nash

implementable.

For allocation X ′ ⊆ X and doctor d’s preference Rd ∈ Rd, let L(X ′, Rd) := {X ′′ ∈

X |X ′
dRdX

′′
d}. Given a set of allocations X ′ ⊆ X and a social choice correspondence F ,

an allocation X ′ ∈ X ′ is essential for d ∈ D in X ′ with respect to F if there exists some

preference profile R ∈ R such that

L(X ′, Rd) ⊆ X ′ and X ′ ∈ F (R).

We denote the set of all essential allocations by ESS[F, d,X ′].
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Definition 2. (Essential monotonicity)

A social choice correspondence F is essentially monotonic if for all R,R′ ∈ R and

X ′ ∈ F (R),

∀d ∈ D, ESS[F, d, L(X ′, Rd)] ⊆ L(X ′, R′
d) ⇒ X ′ ∈ F (R′).

3 Result

3.1 Characterization

In this section, given a profile of choice functions (Ch)h∈H that ensures stability, we propose

a necessary and sufficient condition on (Ch)h∈H such that the stable correspondence is

Nash implementable.

Given (Ch)h∈H , let XH ⊆ X be the set of allocations such that for each X ′ ∈ XH ,

CH(X
′) = X ′.

Definition 3. A profile of choice functions (Ch)h∈H satisfies Richness 1 if there exist

no doctor d ∈ D, a contract x ∈ Xd, and a set of contracts X̄ ⊆ Xd such that

(1) ∃X ′ ∈ XH with X ′
d = x, ∀x′ ∈ X̄, x′ /∈ CH(X

′ ∪ {x′}), and

(2) ∀X ′′ ∈ XH with X ′′
d = ∅d, ∃x′ ∈ X̄, x′ ∈ CH(X

′′ ∪ {x′}).

Definition 4. A profile of choice functions (Ch)h∈H satisfies Richness 2 if there exist no

doctor d ∈ D, two distinct contracts x, x′ ∈ Xd, and a set of contracts X̄ ⊆ Xd such that

(1) ∃X ′ ∈ XH with X ′
d = x, [∀x′′ ∈ X̄, x′′ /∈ CH(X

′ ∪ {x′′}), and x′ ∈ CH(X
′ ∪ {x′})]

(2) ∀X ′′ ∈ XH with X ′′
d = x′, ∃x′′ ∈ X̄, x′′ ∈ CH(X

′′ ∪ {x′′}).

Definition 5. A profile of choice functions (Ch)h∈H satisfies Richness if it satisfies both
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Richness 1 and Richness 2.6

We are ready to state the main result.

Theorem 1. For any profile of choice functions that ensures stability, the stable cor-

respondence is Nash implementable if and only if a profile of choice functions satisfies

Richness.

In words, Nash implementation of the stable correspondence is fully characterized by

Richness of choice functions of hospitals. The following lemma is useful for the proof of

Theorem 1, while it is highly similar to Richness 2.

Lemma 1. For any profile of choice functions (Ch)h∈H , there does not exist doctor d ∈ D,

a contract x′ ∈ Xd, and a set of contracts X̄ ⊆ Xd such that

(1) ∃X ′ ∈ XH with X ′
d = ∅d, [∀x′′ ∈ X̄, x′′ /∈ CH(X

′ ∪ {x′′}), and x′ ∈ CH(X
′ ∪ {x′})]

(2) ∀X ′′ ∈ XH with X ′′
d = x′, ∃x′′ ∈ X̄, x′′ ∈ CH(X

′′ ∪ {x′′}).

Proof. In Appendix A. 2

3.2 Proof of Theorem 1

Yamato (1992) proves the equivalence between essential monotonicity and Nash imple-

mentation of a social choice correspondence in a general setting that contains ours. We

show that the stable correspondence satisfies essential monotonicity if and only if a profile

of choice functions satisfies Richness.

[If part]

Assume that a profile of choice functions (Ch)h∈H satisfies Richness. We show that F s

is essentially monotonic.

6Note that Richness 1 and Richness 2 are logically independent, which are shown in the Appendix.
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Suppose by contradiction that F s is not essentially monotonic. Then, there exist

R,R′ ∈ R, and X ′ ∈ F s(R) such that

∀d ∈ D, ESS[F s, d, L(X ′, Rd)] ⊆ L(X ′, R′
d) and X ′ /∈ F s(R′).

This means that X ′ is not stable at R′. There are three cases to consider.

Case 1: X ′ is not individually rational for doctors at R′.

Let d ∈ D be a doctor such that ∅d P
′
d X

′
d. Let X̄ := {x ∈ Xd | x Pd X

′
d}.

Case 1-1: X̄ = ∅.

Let R̂ be a preference profile such that for each d′ ∈ D and each x ∈ Xd′ , it holds that

∅d′ P̂d′ x. We consider the allocation ∅. It is easy to see that ∅ ∈ S(R̂). By construction

of R̂d, we have

L(∅, R̂d) = L(X ′, Rd). (9)

Then, ∅ is essential for d in L(∅, R̂d) with respect to F s, i.e.,

∅ ∈ ESS[F s, d, L(∅, R̂d)],

which together with (1) imply that

∅ ∈ ESS[F s, d, L(X ′, Rd)].

By supposition,

∅ ∈ L(X ′, R′
d),

and we have X ′
d R

′
d ∅d, which contradicts the assumption in Case 1.
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Case 1-2: X̄ ̸= ∅.

By construction of X̄ and stability of X ′ at R, we have x′ /∈ CH(X
′ ∪ {x′}) for all

x′ ∈ X̄. Then, Richness 1 implies that there exists another allocation X ′′ ∈ XH with

X ′′
d = ∅d such that x′ /∈ CH(X

′′ ∪ {x′}) for all x′ ∈ X̄. We consider a preference profile

R̂ ∈ R such that 
R̂d : X̄d ∅d

R̂d′ : X
′′
d′ ∅d′ for each d′ ∈ D(X ′′)

R̂d′′ : ∅d′′ otherwise.

By construction of R̂d, we have

L(X ′′, R̂d) = L(X ′, Rd). (10)

We will claim that X ′′ ∈ S(R̂). First, it is easy to check that X ′′ is individually rational

for both doctors and hospitals at R̂. Suppose that there is (d̂, ĥ) ∈ D × H and x ∈ X

with D(x) = d̂ and H(x) = ĥ such that xP̂d̂X
′′
d̂
and x ∈ Cĥ(X

′′ ∪ {x}). By construction

of R̂, d̂ = d must hold. However, this contradicts to the fact that x′ /∈ CH(X
′′ ∪ {x′}) for

all x′ ∈ X̄. Therefore, X ′′ is stable at R̂, that is, we have

X ′′ ∈ F s(R̂).

Then, X ′′ is essential for d in L(X ′′, R̂d) with respect to F s, i.e.,

X ′′ ∈ ESS[F s, d, L(X ′′, R̂d)],

which together with (2) imply that

X ′′ ∈ ESS[F s, d, L(X ′, Rd)].
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By supposition,

X ′′ ∈ L(X ′, R′
d),

and we have X ′
d R

′
d X

′′
d = ∅d, which contradicts the assumption in Case 1.

Case 2: X ′ is not individually rational for hospitals at R′.

Since a profile of choice functions is the same at R and R′, the fact that X ′ is not

individually rational for hospitals at R′ implies that X ′ is not individually rational for

hospitals at R, a contradiction.

Case 3: There exists a doctor-hospital pair that blocks X ′ at R′.

Suppose that there is (d, h) ∈ D ×H and x′ ∈ X with D(x′) = d and H(x′) = h such

that x′P ′
dX

′
d and x′ ∈ Ch(X

′ ∪ {x′}). Let X̄ := {x ∈ Xd | xPdX
′
d}.

Case 3-1: X̄ = ∅.

Let X ′′ := Ch(X
′ ∪ {x}). We consider a preference profile R̂ ∈ R such that


R̂d′ : X

′′
d′ ∅d′ for all d′ ∈ D(X ′′)

R̂d′′ : ∅d′′ otherwise.

By construction of R̂d, we have

L(X ′′, R̂d) = L(X ′, Rd). (11)

It is easy to check that X ′′ is individually rational for doctors and hospitals, and that

there is no blocking pair at R̂. Therefore, X ′′ is stable at R̂, that is, we have

X ′′ ∈ F s(R̂).
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Then, X ′′ is essential for d in L(X ′′, R̂d) with respect to F s, i.e.,

X ′′ ∈ ESS[F s, d, L(X ′′, R̂d)],

which together with (3) imply that

X ′′ ∈ ESS[F s, d, L(X ′, Rd)].

By supposition,

X ′′ ∈ L(X ′, R′
d),

and we have X ′
d R

′
d X

′′
d = x′, which contradicts the assumption that x′P ′

dX
′
d.

Case 3-2: X̄ ̸= ∅.

By construction of X̄ and stability of X ′ at R, we have x′′ /∈ CH(X
′ ∪ {x′′}) for all

x′′ ∈ X̄. Then, regardless of whether X ′
d = ∅d or not, Richness 2 together Lemma 1 imply

that there exists X ′′ ∈ XH with X ′′
d = x′ such that x′′ /∈ CH(X

′′ ∪ {x′′}) for all x′′ ∈ X̄.

We consider a preference profile R̂ ∈ R such that


R̂d : X̄ X ′′

d ∅d

R̂d′ : X
′′
d′ ∅d′ for each d′ ∈ D(X ′′) \ {d}

R̂d′′ : ∅d′′ otherwise.

By construction of R̂d, we have

L(X ′′, R̂d) = L(X ′, Rd). (12)

It is easy to check that X ′′ is individually rational for both doctors and hospitals at R̂.

Suppose that there is (d̂, ĥ) ∈ D ×H and x ∈ X with D(x) = d̂ and H(x) = ĥ such that
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xP̂d̂X
′′
d̂
and x ∈ Cĥ(X

′′ ∪ {x}). By construction of R̂, d̂ = d must hold. However, this

contradicts to the fact that x′′ /∈ CH(X
′′ ∪ {x′′}) for all x′′ ∈ X̄. Therefore, X ′′ is stable

at R̂, that is, we have

X ′′ ∈ F s(R̂).

Then, X ′′ is essential for d in L(X ′′, R̂d) with respect to F s, i.e.,

X ′′ ∈ ESS[F s, d, L(X ′′, R̂d)],

which together with (4) imply that

X ′′ ∈ ESS[F s, d, L(X ′, Rd)].

By supposition,

X ′′ ∈ L(X ′, R′
d),

and we have X ′
d R

′
d X

′′
d = x′, which contradicts the assumption that x′P ′

dX
′
d.

[Only if part]

We prove the statement by contraposition. Suppose that a profile of choice functions

does not satisfy Richness. Then, we have two cases.

Case 1: Richness 1 fails.

Then, there exist d ∈ D, x ∈ Xd, and X̄ ⊆ Xd such that

(1) ∃X ′ ∈ XH with X ′
d = x, ∀x′ ∈ X̄, x′ /∈ CH(X

′ ∪ {x′}), and

(2) ∀X ′′ ∈ XH with X ′′
d = ∅d, ∃x′ ∈ X̄, x′ ∈ CH(X

′′ ∪ {x′}).
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Note that (1) implies X ′
d = x /∈ X̄ and that (2) implies X̄ ̸= ∅. We consider preference

profiles R and R′ such that


Rd : X̄d X

′
d ∅d

Rd′ : X
′
d′ ∅d′ for each d′ ∈ D(X ′) \ {d}

Rd′′ : ∅d′′ otherwise

and


R′

d : X̄d ∅d X
′
d

R′
d′ : X

′
d′ ∅d′ for each d′ ∈ D(X ′) \ {d}

R′
d′′ : ∅d′′ otherwise.

Then, by (1), we have X ′ ∈ F s(R). Moreover, X ′ /∈ F s(R′) since X ′ is not individually

rational for doctor d at R′
d.

To show that F s is not essentially monotonic, we will check that for each d′ ∈ D,

ESS[F s, d′, L(X ′, Rd′)] ⊆ L(X ′, R′
d′) holds. For each d′ ̸= d, since L(X ′, R′

d′) = X , it holds

that ESS[F s, d′, L(X ′, Rd′)] ⊆ L(X ′, R′
d′). Suppose by contradiction that there exists

X ′′ ∈ ESS[F s, d, L(X ′, Rd)]\L(X ′, R′
d). Then, by the definition of ESS[F s, d, L(X ′, Rd)],

there exists R′′ ∈ R such that X ′′ ∈ F s(R′′) and L(X ′′, R′′
d) ⊆ L(X ′, Rd). We note that

L(X ′, R′
d) = X\{X̂ ∈ X : X̂d = ∅d or X̂d = x′ for some x′ ∈ X̄}.

So, X ′′ /∈ L(X ′, R′
d) means X ′′ ∈ {X̂ ∈ X | X̂d = ∅d or X̂d = x for some x ∈ X̄}.

Moreover, since X ′′ ∈ L(X ′′, R′′
d) ⊆ L(X ′, Rd), we have X ′′

d = ∅d. By the assumption of

(2), there exists x′ ∈ X̄ (which is surely guaranteed to exist because of X ′′
d = ∅d) such

that x′ ∈ CH(X
′′ ∪ {x′}). If x′ P ′′

d X ′′
d , then X ′′ is blocked at R′′ by doctor d and hospital

h =H(x′), which is a contradiction to X ′′ ∈ F s(R′′). Hence, we finally get X ′′
d P ′′

d x′.
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However, X ′′
dP

′′
d x

′ together with x′PdX
′
d contradict L(X ′′, R′′

d) ⊆ L(X ′, Rd). Thus, we

have that ESS[F s, d, L(X ′, Rd)] ⊆ L(X ′, R′
d). Therefore, if Richness 1 fails to hold, then

F s is not essentially monotonic.

Case 2: Richness 2 fails.

Then, there exist d ∈ D, x, x′ ∈ Xd, and X̄ ⊆ Xd such that

(1) ∃X ′ ∈ XH with X ′
d = x, [∀x′′ ∈ X̄, x′′ /∈ CH(X

′ ∪ {x′′}), and x′ ∈ CH(X
′ ∪ {x′})]

(2) ∀X ′′ ∈ XH with X ′′
d = x′, ∃x′′ ∈ X̄, x′′ ∈ CH(X

′′ ∪ {x′′}).

Note that (1) implies X ′
d = x /∈ X̄ and x′ /∈ X̄ and that (2) implies X̄ ̸= ∅. We consider

preference profiles R and R′ such that


Rd : X̄d X

′
d x

′∅d

Rd′ : X
′
d′ ∅d′ for each d′ ∈D(X ′) \ {d}

Rd′′ : ∅d′′ otherwise

and


R′

d : x
′ X ′

d ∅d

R′
d′ : X

′
d′ ∅d′ for each d′ ∈D(X ′) \ {d}

R′
d′′ : ∅d′′ otherwise.

Then, by (1), we have X ′ ∈ F s(R). Moreover, X ′ /∈ F s(R′) holds true since, by assump-

tion, we have x′ ∈ Ch(X
′ ∪ {x′}) for hospital h =H(x′).

To show that F s is not essentially monotonic, we will check that for each d′ ∈ D,

ESS[F s, d′, L(X ′, Rd′)] ⊆ L(X ′, R′
d′) holds. For each d′ ̸= d, since L(X ′, R′

d′) = X , it holds

that ESS[F s, d′, L(X ′, Rd′)] ⊆ L(X ′, R′
d′). Suppose by contradiction that there exists
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X ′′ ∈ ESS[F s, d, L(X ′, Rd)]\L(X ′, R′
d). Then, by the definition of ESS[F s, d, L(X ′, Rd)],

there exists R′′ ∈ R such that X ′′ ∈ F s(R′′) and L(X ′′, R′′
d) ⊆ L(X ′, Rd). We note that

L(X ′, R′
d) = X\{X̂ ∈ X : X̂d = x′}.

So, X ′′ /∈ L(X ′, R′
d) means X ′′ ∈ {X̂ ∈ X | X̂d = x′}, implying that X ′′

d = x′. By the

assumption of (2), there exists x′′ ∈ X̄ (which is surely guaranteed to exist because of

X ′′
d = x′ /∈ X̄) such that x′′ ∈ CH(X

′′ ∪ {x′′}). If x′′ P ′′
d X ′′

d , then X ′′ is blocked at R′′

by doctor d and hospital h =H(x′′), which is a contradiction to X ′′ ∈ F s(R′′). Hence, we

finally get X ′′
d P ′′

d x′′. However, X ′′
dP

′′
d x

′′ together with x′′PdX
′
d contradict L(X ′′, R′′

d) ⊆

L(X ′, Rd). Thus, we have that ESS[S, d, L(X ′, Rd)] ⊆ L(X ′, R′
d). Therefore, if Richness

2 fails to hold, then F s is not essentially monotonic. 2

3.3 Matching without contracts

We understand that Nash implementation of the stable correspondence is characterized

by Richness of choice functions of hospitals, while Richness does not necessarily hold in

matching with contracts. However, Richness does hold in matching without contracts, as

shown below, implying that the stable correspondence is in general Nash implementable

in matching without contracts.

Proposition 1. Assume |C| = 1. Then, for any profile of choice functions that ensures

stability, the stable correspondence is Nash implementable.

Proof. By Theorem 1, it suffices to show that a profile of choice functions (Ch)h∈H satisfies

both Richness 1 and Richness 2 under the assumption of |C| = 1.

Richness 1

We will check that if Richness 1 does not hold, then there must exist a doctor and a
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hospital such that there are at least two distinct contracts associated with them.

Assume that Richness 1 does not hold. Then, there exist d ∈ D, x ∈ Xd, and X̄ ⊆ Xd

such that

(1) ∃X ′ ∈ XH with X ′
d = x, ∀x′ ∈ X̄, x′ /∈ CH(X

′ ∪ {x′}), and

(2) ∀X ′′ ∈ XH with X ′′
d = ∅d, ∃x′ ∈ X̄, x′ ∈ CH(X

′′ ∪ {x′}).

Note that (1) implies x /∈ X̄. To conclude the proof, it suffices to show that H(x) ∈H(X̄).

Suppose by contradiction that H(x) /∈H(X̄). We define an allocation X ′′ ⊆ X such that

X ′′
h = X ′

h ∀h ∈ H(X̄), and

X ′′
h = ∅ ∀h ∈ H \ H(X̄).

It is easy to check that X ′′ ∈ XH and X ′′
d = ∅d. Then, by (2), there exists x′ ∈ X̄ such

that x′ ∈ CH(X
′′ ∪ {x′}). Let h′ :=H(x′). Then, the definition of X ′′ implies X ′′

h′ = X ′
h′ .

Thus,

x′ ∈ Ch′(X ′′ ∪ {x′}) = Ch′(X ′′
h′ ∪ {x′}) = Ch′(X ′

h′ ∪ {x′}) = Ch′(X ′ ∪ {x′}),

where the first and the third equalities hold by IRC. However, x′ ∈ Ch′(X ′ ∪ {x′}) con-

tradicts to (1). Therefore, we have shown that H(x) ∈H(X̄).

Richness 2

We will check that if Richness 2 does not hold, then there must exist a doctor and a

hospital such that there are at least two distinct contracts associated with them.

Assume that Richness 2 does not hold. Then, there exist d ∈ D, x, x′ ∈ Xd, and
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X̄ ⊆ Xd such that

(1) ∃X ′ ∈ XH with X ′
d = x, [∀x′′ ∈ X̄, x′′ /∈ CH(X

′ ∪ {x′′}), and x′ ∈ CH(X
′ ∪ {x′})]

(2) ∀X ′′ ∈ XH with X ′′
d = x′, ∃x′′ ∈ X̄, x′′ ∈ CH(X

′′ ∪ {x′′}).

Note that (1) implies X ′
d = x /∈ X̄ and x′ /∈ X̄. To conclude the proof, it suffices to show

that H(x) ∈H(X̄). Suppose by contradiction that H(x) /∈H(X̄). We define an allocation

X ′′ ⊆ X such that

X ′′
h = X ′

h ∀h ∈ H(X̄),

X ′′
h = Ch(X

′ ∪ {x′}) for h = H(x′), and

X ′′
h = ∅ ∀h ∈ H \ H(X̄) ∪ {H(x′)}.

It is easy to check that X ′′ ∈ XH and X ′′
d = x′. Then, by (2), there exists x′′ ∈ X̄ such

that x′′ ∈ CH(X
′′ ∪ {x′′}). Let h′ :=H(x′′). Then, the definition of X ′′ implies X ′′

h′ = X ′
h′ .

Thus,

x′′ ∈ Ch′(X ′′ ∪ {x′′}) = Ch′(X ′′
h′ ∪ {x′′}) = Ch′(X ′

h′ ∪ {x′′}) = Ch′(X ′ ∪ {x′′}),

where the first and the third equalities hold by IRC. However, x′′ ∈ Ch′(X ′ ∪ {x′′})

contradicts to (1). Therefore, we have shown that H(x) ∈H(X̄). 2

4 Conclusion

This paper has considered doctor-hospital match in the model with contracts. In the

real world, a choice function of a hospital may incorporate an affirmative action policy or

budget constraint. In such an environment, it is unknown whether stable allocations are

achievable in some equilibrium concept. We have proposed Richness of choice functions
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that characterizes Nash implementation of the stable correspondence. The key feature

different from the literature is that the current paper does not specify a class of choice

functions but treat all of them that ensures stability in matching with contracts.

There are at least two directions of research. The first one is related with the notion

of stability. In this paper, we have introduced a pair-wise version of stability. Since there

may be the case where any size of group containing doctors and hospitals can block an

allocation. Hence, it seems to be worthwhile to revise the notion of stability in a group-

wise sense and to find a condition like Richness defined in the current paper to characterize

Nash implementation of group-stable allocations. Second, in general, there are multiple

stable allocations. So, it may be reasonable to focus on the Pareto-frontier of stable

allocations in the viewpoint of doctors’ welfare. To investigate when the correspondence

producing the set of Pareto-frontier stable allocations is Nash implementable is another

future direction of research.
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Appendix A: Omitted proof

Proof of Lemma 1

Suppose that there exist a doctor d ∈ D, a contract x′ ∈ Xd, and a set of contracts

X̄ ⊆ Xd such that

∃X ′ ∈ XH with X ′
d = ∅d, [∀x′′ ∈ X̄, x′′ /∈ CH(X

′ ∪ {x′′}), and x′ ∈ CH(X
′ ∪ {x′})].

We will show that there exists X ′′ ∈ XH with X ′′
d = x′ such that x′′ /∈ CH(X

′′ ∪ {x′′}) for

all x′′ ∈ X̄.

Let h′ :=H(x′). We define a set of contracts X ′′ ⊆ X as follows:

X ′′
h = X ′

h ∀h ∈ H \ {h′}, and

X ′′
h′ = Ch′(X ′ ∪ {x′}).

Then, since X ′
d = ∅d, X

′′ is an allocation, that is, there is no doctor who is assigned more

than one contract at X ′′. Also, by construction of X ′′ and IRC, Ch(X
′′) = X ′′

h for all

h ∈ H, meaning that CH(X
′′) = X ′′. Hence, we have X ′′ ∈ XH . Moreover, it is easy to

check that X ′′
d = x′ because of x′ ∈ Ch′(X ′ ∪ {x′}) = X ′′

h′ and X ′
d = ∅d.

The remaining thing we have to show is that x′′ /∈ CH(X
′′ ∪ {x′′}) for all x′′ ∈ X̄. For

all h ∈ H \ {h′},

∀x′′ ∈ X̄, Ch(X
′′ ∪ {x′′}) = Ch(X

′′
h ∪ {x′′}) = Ch(X

′
h ∪ {x′′}) = Ch(X

′ ∪ {x′′}),

where the first and the third equalities follow by IRC while the second equation follows

by the definition of X ′′. By the assumption that x′′ /∈ CH(X
′ ∪ {x′′}) for all x′′ ∈ X̄, we

have that for all h ∈ H \ {h′} and for all x′′ ∈ X̄, x′′ /∈ Ch(X
′′ ∪ {x′′}).

Lastly, we check that x′′ /∈ Ch′(X ′′∪{x′′}) for all x′′ ∈ X̄. Since x′′ /∈ Ch′(X ′∪{x′′}) =
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Ch′(X ′
h′ ∪ {x′′}) = X ′

h′ for all x′′ ∈ X̄, where the first equality holds by IRC and the

second equality holds by X ′ ∈ XH , the definition of choice functions implies that

∀x′′ ∈ X̄, ∀S ⊆ X ′
h′ ∪ {x′′}, X ′

h′Rh′S. (13)

On the other hand, since x′ ∈ Ch′(X ′ ∪ {x′}) = Ch′(X ′
h′ ∪ {x′}), where the equality holds

by IRC, the definition of choice functions and that of X ′′ imply that

∀S ⊆ X ′
h′ ∪ {x′}, X ′′

h′ = Ch′(X ′
h′ ∪ {x′})Rh′S. (14)

Take S = X ′
h′ in (2). Strictness of Rh′ and X ′′

h′ ̸= X ′
h′ imply that

X ′′
h′Ph′X ′

h. (15)

By combining (1) and (3), we have

∀x′′ ∈ X̄, ∀S ⊆ X ′
h′ ∪ {x′′}, X ′′

h′Ph′S. (16)

If x′′ ∈ Ch′(X ′′ ∪ {x′′}) would hold for some x′′ ∈ X̄, then

x′′ ∈ Ch′(X ′′ ∪ {x′′}) = Ch′(X ′′
h′ ∪ {x′′})Rh′X ′′

h′ . (17)

Since x′ ∈ X ′′
h′ , the definition (2) of choice functions implies that

Ch′(X ′′
h′ ∪ {x′′}) ⊆ (X ′′

h′ ∪ {x′′}) \ {x′} ⊆ X ′
h′ ∪ {x′′}.

Then, the combination of Ch′(X ′′
h′ ∪ {x′′}) ⊆ X ′

h′ ∪ {x′′} with (5) contradicts to (4).

Therefore, for all x′′ ∈ X̄, x′′ /∈ Ch′(X ′′ ∪ {x′′}) must hold.

In conclusion, for all h ∈ H and for all x′′ ∈ X̄, x′′ ∈ Ch(X
′′ ∪ {x′′}) holds, which was
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what we wanted. 2

Appendix B

The following two examples indicate that Richness 1 and 2 are logically independent.

Example 1. Richness 2 but not Richness 1.

D = {d}, H = {h}, X = {x1, x
′
1}, where D(x1) =D(x′

1) = d and H(x1) =H(x′
1) = h.

Rh : x1, x
′
1, ∅.

Then, letting x = x1, X
′ = {x1}, X̄ = {x′

1}, Richness 1 is not satisfied. However, it is

easy to see that Richness 2 is satisfied.

Example 2. Richness 1 but not Richness 2.

D = {d1, d2}, H = {h1, h2}, X = {x1, x
′
1, x2, y1, y2}, where D(x1) =D(x′

1) =D(x2) =

d1, D(y1) =D(y2) = d2, H(x1) =H(x′
1) =H(y1) = h1, and H(x2) =H(y2) = h2.

Rh1 : x1, y1, x
′
1, ∅.

Rh2 : {x2, y2}, y2, ∅.

Then, letting d = d1, x = x1, x
′ = x2, X

′ = {x1, y2}, X̄ = {x′
1}, Richness 2 is not satisfied.

However, it is easy to see that Richness 1 is satisfied.
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Chapter 4

Stability in matching markets with quan-
titative constraints∗

1 Introduction

Recent developments of theory of stable matchings have helped a variety of matching

markets such as National Resident Matching Program, college admissions, public school

choice, teacher assignments and so on. In the process of application, feasibility of a

matching arises as an important concern. There are mainly two types of reasons, (1)

policy-motivated and (2) technologically restricted.

The policy-motivated reason exogenously restricts possible matchings, which can be

seen as a constraint added to an original matching problem. For example, in public school

choice, the educational authority should take care of diversity for a matching between

schools and students. For another example, as has been already pointed out by Kamada

and Kojima (2015), in the National Resident Matching Program, a matching between

hospitals and residents may take regional balance into account. Those constraints reflect

a way of interpretation of a political goal. Moreover, it just reflects a specific policy.

The technologically restricted reason is much more complicated since it does not nec-

essarily determine feasibility of matchings by an added constraint. This reflects firms’

technologies behind or schools’ budgets, which are the outside of a matching problem, or

not described in a matching problem. For example, some firm can physically hire two

employees for some division. However, the firm faces a technological constraint so that

one employee does not pay and only two employees make profit. In this case, a constraint

∗This chapter is a joint work with Taro Kumano. I am grateful to Kyohei Marutani for helpful
discussions. I would also like to thank Keisuke Bando and the audience at Japanese Economic Association
Spring Meeting 2021 for their comments.
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plays like a floor constraint. But if firms’ behaviors behind are more complex, then so is

a constraint for possible matching.

We study a many-to-one matching problem with a feasibility constraint including the

above all situations. Many matching markets in practice are described by a many-to-one

matching problem. In the problem, an agent in the one side, say a doctor, matches at

most one agent in the other side, say a hospital, and a hospital is able to match multiple

doctors. It is usually assumed that a hospital has an exogenously given capacity or quota

which is an upper bound to match. We describe the feasibility constraint as quantitative

distributions of matchings. Here we do not assume any more on the feasibility constraint

so that we allow any types of quantitative constraints.1 We know that in some case,

quality of an agent also affects on feasibility of a matching, but in this paper we just stick

to a quantitative constraint.

The wisdom of matching theory tells us that stability should be a central solution

concept. A matching is stable if there is no group of agents who deviates from the

matching. Without the feasibility constraint, as the prominent contribution of Gale and

Shapley (1962), there exists a stable matching for any preferences. With the feasibility

constraint, we should be careful to define stability in two points. One is that even a

coalition block in the usual sense is not necessarily feasible. If the feasibility constraint

is policy-motivated, then a blocking coalition, for instance, a doctor and a hospital, will

still make sense in that they can really match each other outside of the current matching

market, even though such a match is not allowed under the feasibility constraint. But

if the feasibility constraint is technologically restricted, then a blocking coalition in the

usual sense is indeed impossible to implement. This comes from a model formulation.

Thus when we consider a blocking coalition, we also consider the rest of agents, which

distinguish stability from the notion of core. The other is that the notion of stability

1Akin (2020) and Kamada and Kojima (2015, 2017, 2018, 2020) consider specific constraints in each
context.

75



should be independent of a specific feasibility constraint. The notion of stability in prior

works on matching with constraints sometimes includes a specific feasibility constraint in

its definition.

Hence we refine the notion of stability as follows. We first define a feasible block. A

coalition blocks a matching if rematches in the coalition make every agent in the coalition

weakly better off and some strictly. A coalition of agents feasibly blocks a matching if it is

a blocking coalition and a matching created by rematches and the rest of agents who are

not involved in members of coalition matches the same agents in the original matching

and are involved matches the same agents or nothing. Then we define our stability. A

matching is group stable if it is feasible and there is no feasible blocking coalition. Remark

that without the feasibility constraint, our notion of stability falls in stability in the usual

sense. As is noted, there exists a stable matching for any preferences without the feasibility

constraints. However, it is not the case when we further take the feasibility constraint

into consideration. This non-existence comes not from our formulation of stability, but is

essentially by the feasibility constraint.

Our main contribution is on the existence of a stable matching. We propose a neces-

sary condition on the feasibility constraint for the existence of group stable matchings. It

is useful because the feasibility constraint can be observable in advance. We say that the

feasibility constraint satisfies monotonicity if whenever the total numbers of two feasible

distributions coincide, there exists a feasible distribution in the set of distributions con-

taining the total number exceeds the two feasible distributions and does not exceed the

join of the two. We show that there exists a group stable matching for all preferences only

if the feasibility constraint satisfies monotonicity. Since our model subsumes the previous

matching models with a sort of feasibility constraints, we obtain the existing results for

the existence of stable matchings as corollaries.
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2 Model

Let D and H be a finite set of doctors and a finite set of hospitals, respectively. Each

doctor d ∈ D has a complete, transitive, and antisymmetric preference Rd over H ∪ {∅},

where ∅ denotes an outside option. Let Rd be the set of all preferences for doctor d ∈ D.

Each hospital h ∈ H has a complete, transitive, and antisymmetric preference Rh over

2D. Let Rh be the set of all preferences for hospital h ∈ H. Given i ∈ D ∪ H, Pi is a

strict part of Ri. We assume that Rh is responsive with a capacity qh ∈ N:

• for all D′ ⊆ D and d, d′ ∈ D \D′, D′ ∪ {d}RhD
′ ∪ {d′} if and only if {d}Rh{d′},

• for all D′ ⊆ D and d ∈ D \D′, D′ ∪ {d}RhD
′ if and only if {d}Rh∅, and

• for all D′ ⊆ D with |D′| > qh, ∅PhD
′.

This assumption of responsive preferences allows us to line up individual doctors one

by one for each preference of a hospital. Define the set of all preference profiles by

R ≡ ×i∈D∪HRi and denote a typical element in R by R. A matching market is a tuple

(D,H,R, (qh)h∈H).

Let f : Z|H|
+ → {0, 1} be a feasibility constraint. For any w ∈ Z|H|

+ , f(w) = 1

means that assigning wh doctors to hospital h ∈ H for all h ∈ H is possible. Conversely,

f(w) = 0 means that assigning wh doctors to hospital h ∈ H for all h ∈ H is not possible.

A matching is a function µ : D ∪ H → 2D ∪ H ∪ {∅} such that (1) µ(d) ∈ H ∪ {∅}

for all d ∈ D, (2) µ(h) ∈ 2D for all h ∈ H, and (3) µ(d) = h if and only if d ∈ µ(h)

for all d ∈ D and all h ∈ H. Given a matching µ, let Dµ = {d ∈ D | µ(d) ̸= ∅} and

Hµ = {h ∈ H | µ(h) ̸= ∅}. For a matching µ, define w(µ) ≡ (|µ(h1)|, · · · , |µ(h|H|)|), and

especially wh(µ) = |µ(h)|. We say that a matching µ is feasible if f(w(µ)) = 1, and

infeasible otherwise. A matching µ is individually rational at R ∈ R if (1) µ(d)Rd∅

for all d ∈ D and (2) {d}Ph∅ for all d ∈ µ(h) (if µ(h) ̸= ∅) and |µ(h)| ≤ qh for all h ∈ H.

The following claim is easy to check.
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Claim 1. There exists a feasible and individually rational matching for any preference

profile if and only if f(0, · · · , 0) = 1.

2.1 Group stability

We define a notion of group stability. As noted in Introduction, the key element of

deviations is that the rest of the agents outside the coalition must be matched with the

same agents as well as any size of blocking coalitions are possible.

Definition 1. A coalition S ⊆ D ∪ H blocks a feasible matching µ at R ∈ R if there

exists another feasible matching ν such that

1. for all d ∈ S ∩D, ν(d) ∈ (S ∩H) ∪ {∅} and µ′(d)Rdµ(d),

2. for all h ∈ S ∩H, ν(h) ⊆ S ∩D and µ′(h)Rhµ(h),

3. for some i ∈ S, ν(i)Piµ(i),

4. for all d ∈ D \ S such that d /∈ µ(h) for all h ∈ S ∩H, ν(d) = µ(d),

5. for all d ∈ D \ S such that d ∈ µ(h) for some h ∈ S ∩H, ν(d) = ∅,

6. for all h ∈ H \ S such that h ̸= µ(d) for all d ∈ S ∩D, ν(h) = µ(h), and

7. for all h ∈ H \S such that h = µ(d) for some d ∈ S ∩D, ν(h) = µ(h) \ {d ∈ S ∩D |

h = µ(d)}.

A matching µ is group stable at R ∈ R if it is feasible, individually rational, and there

does not exist a coalition S ⊆ D ∪H that blocks µ at R ∈ R.

Remark 1. A group stable matching might not exist for some preference profile.

Remark 2. A group stable matching does not necessarily exclude so-called “justified

envy”.
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3 Results

In this section, we investigate conditions on the feasibility constraint that should meet for

a group stable matching to exist for any preference profile.

Given two different vectors w′, w′′ ∈ Z|H|
+ with

∑
h∈H w′

h =
∑

h∈H w′′
h, define the set

of vectors W (w′, w′′) ⊆ Z|H|
+ such that w ∈ W (w′, w′′) if and only if w satisfies the two

conditions:

• max{w′
h, w

′′
h} ≥ wh for all h ∈ H, and

•
∑

h∈H wh >
∑

h∈H w′
h =

∑
h∈H w′′

h.

Definition 2. A feasibility constraint f satisfies monotonicity if for any two different

vectors w′, w′′ ∈ Z|H|
+ with

∑
h∈H w′

h =
∑

h∈H w′′
h,

f(w′) = f(w′′) = 1 =⇒ ∃w ∈ W (w′, w′′), f(w) = 1.

That is, monotonicity of the feasibility constraint requires that when two distributions

are feasible, there is also a feasible distribution “close to” the two of them. Given two

distributions w′, w′′ with
∑

h∈H w′
h =

∑
h∈H w′′

h, the possible range, W (w′, w′′), is bounded

both above and below. One is that for any hospital h ∈ H, the number of matched doctors

for h must be less than or equal to max{w′
h, w

′′
h}. On the other hand, the total number

of matched doctors must be greater than
∑

h∈H w′
h =

∑
h∈H w′′

h.

Example 3. Let H = {h1, h2, h3}. Also, let w′ = (3, 0, 2) and w′′ = (0, 3, 2). Assume

that f(w′) = f(w′′) = 1. Consider a vector w = (2, 3, 1) to check that w ∈ W (w′, w′′).

First, for h1 ∈ H, wh1 = 2 ≤ 3 = max{w′
h1
, w′′

h1
}. For h2 ∈ H, wh2 = 3 ≤ 3 =

max{w′
h2
, w′′

h2
}. For h3 ∈ H,wh3 = 1 ≤ 2 = max{w′

h3
, w′′

h3
} holds. Second, we can see

that
∑

h∈H wh = 6 > 5 =
∑

h∈H w′
h =

∑
h∈H w′′

h holds. Therefore, w ∈ W (w′, w′′). By
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checking all other vectors, we get

W (w′, w′′) = {(3, 3, 0), (2, 3, 1), (3, 2, 1), (3, 3, 1), (3, 1, 2),

(1, 3, 2), (2, 2, 2), (3, 2, 2), (2, 3, 2), (3, 3, 2)}.

2

Theorem 1. A group stable matching exists for any preference profile only if a feasibility

constraint f satisfies f(0, · · · , 0) = 1 and monotonicity.

4 Proof of Theorem 1

If f(0, · · · , 0) = 0, then, by Claim 1, there does not necessarily exist a feasible and

individually rational matching for some preference profile, which automatically implies

that there does not exist a group stable matching for such a preference profile.

Assume f(0, · · · , 0) = 1 and suppose that f does not satisfy monotonicity. Then, there

are two vectors w′, w′′ ∈ Z|H|
+ with

∑
h∈H w′

h =
∑

h∈H w′′
h such that f(w′) = f(w′′) = 1

and f(w) = 0 for all w ∈ W (w′, w′′). Define the sets of hospitals H(w′, w′′) = {h ∈

H | w′
h = w′′

h}, H ′(w′, w′′) = {h ∈ H | w′
h > w′′

h}, H ′′(w′, w′′) = {h ∈ H | w′
h < w′′

h},

and H̄(w′, w′′) = H ′(w′, w′′) ∪ H ′′(w′, w′′). Let L = |H(w′, w′′)|, M = |H ′(w′, w′′)|, and

N = |H ′′(w′, w′′)|. Ravel hospitals in H(w′, w′′) by h1, · · · , hL, hospitals in H ′(w′, w′′)

by h′
1, · · · , h′

M , and hospitals in H ′′(w′, w′′) by h′′
1, · · · , h′′

N . Define kh ∈ Z+ for hospital

h ∈ H by kh = |w′
h −w′′

h|, and k ∈ Z+ by k =
∑

h∈H′(w′,w′′) |w′
h −w′′

h|.2 Construct a set of

k-doctors
∪M

m=1

∪kh′m
i=1 {dm,i} and a function τ :

∪M
m=1

∪kh′m
i=1 {dm,i} → H ′′(w′, w′′) such that

for all n = 1, · · · , N , |{dm,i | τ(dm,i) = h′′
n}| = kh′′

n
. Also, construct a set of k-doctors∪M

m=1

∪kh′m
i=1 {d̄m,i} and a function τ̄ :

∪M
m=1

∪kh′m
i=1 {d̄m,i} → H ′′(w′, w′′) such that for all

2Note that k =
∑

h∈H′(w′,w′′) |w′
h − w′′

h| =
∑

h∈H′′(w′,w′′) |w′
h − w′′

h| holds because of
∑

h∈H w′
h =∑

h∈H w′′
h.
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n = 1, · · · , N , |{d̄m,i | τ̄(d̄m,i) = h′′
n}| = kh′′

n
and τ(dm,i) = τ̄(d̄m,i) for all i = 1, · · · , kh′

m

and for all m = 1, · · · ,M . The existence of these 2k-doctors and the two functions, τ and

τ̄ , is guaranteed because of k =
∑

h∈H′(w′,w′′) |w′
h − w′′

h| =
∑

h∈H′′(w′,w′′) |w′′
h − w′

h|. Given

h′′
n ∈ H ′′(w′, w′′), let τ−1(h′′

n) = {dm,i | τ(dm,i) = h′′
n} and τ̄−1(h′′

n) = {d̄m,i | τ̄(d̄m,i) = h′′
n}.

Let wh = min{w′
h, w

′′
h} for hospital h ∈ H.

Consider a matching market where a set of doctors D is

D =

 M∪
m=1

kh′m∪
i=1

{dm,i, d̄m,i}

∪(∪
h∈H

{dh1 , · · · , dhwh
}

)

such that dhj ̸= dh
′

k if j ̸= k or h ̸= h′. The preference profile R and a capacity profile

(qh)h∈H are as follows:

Rdm,i
Rd̄m,i

Rdhj
Rh′

m
(qh′

m
= w′

h′
m
) Rh′′

n
(qh′′

n
= w′′

h′′
n
) Rhℓ

(qhℓ
= whℓ

)

h1 h1 h d
h′
m

1 d
h′′
n

1 dhℓ
1

...
... ∅ ...

...
...

hL hL d
h′
m

wh′m
d
h′′
n

wh′′n
dhℓ
whℓ

h′
m τ̄(d̄m,i)

⟨∪kh′m
i=1 {d̄m,i}

⟩
⟨τ−1(h′′

n)⟩
⟨∪M

m=1

∪kh′m
i=1 {dm,i, d̄m,i}

⟩
τ(dm,i) h′

m

⟨∪kh′m
i=1 {dm,i}

⟩
⟨τ̄−1(h′′

n)⟩ ∅

∅ ∅ ∅ ∅

where i = 1, · · · , kh′
m
, j = 1, · · · , wh, ℓ = 1, · · · , L, m = 1, · · · ,M , and n = 1, · · · , N .

Here, an order of doctors in angle brackets is fine for anything. Since f(0, · · · , 0) = 1,

there exists at least one feasible and individually rational matching µ at R ∈ R.

Take any feasible and individually rational matching µ at R. If w(µ) ∈ W (w′, w′′)

holds, then by the supposition of necessity, f(w) = 0 for all w ∈ W (w′, w′′), which in

turn implies that µ is not feasible, a contradiction to the fact that µ is feasible. Hence,

consider the case where w(µ) /∈ W (w′, w′′). If wh(µ) > max{w′
h, w

′′
h} holds for some h ∈ H,
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then max{w′
h, w

′′
h} = qh in this matching market implies wh(µ) > qh, a contradiction to

individual rationality of µ. So, assume that wh(µ) ≤ max{w′
h, w

′′
h} for all h ∈ H and

suppose that
∑

h∈H wh(µ) ≤
∑

h∈H w′
h =

∑
h∈H w′′

h holds.

Assume that
∑

h∈H′(w′,w′′)(wh(µ) − w′′
h) ≥

∑
h∈H′′(w′,w′′)(wh(µ) − w′

h), without loss of

generality. Let p =
∑

h∈H′′(w′,w′′)(wh(µ) − w′
h). Also, let r =

∑
h∈H′(w′,w′′)(w

′
h − wh(µ))

and u =
∑

h∈H(w′,w′′)(w
′
h −wh(µ)). By using the assumption of

∑
h∈H wh(µ) ≤

∑
h∈H w′

h,

we can calculate

∑
h∈H

wh(µ) ≤
∑
h∈H

w′
h

⇔
∑

h∈H′(w′,w′′)

wh(µ) +
∑

h∈H′′(w′,w′′)

wh(µ) +
∑

h∈H(w′,w′′)

wh(µ)

≤
∑

h∈H′(w′,w′′)

w′
h +

∑
h∈H′′(w′,w′′)

w′
h +

∑
h∈H(w′,w′′)

w′
h

⇔
∑

h∈H′′(w′,w′′)

(wh(µ)− w′
h) ≤

∑
h∈H′(w′,w′′)

(w′
h − wh(µ)) +

∑
h∈H(w′,w′′)

(w′
h − wh(µ))

⇔ p ≤ r + u.

We will show throughout two parts that the feasible and individually rational matching

µ induces a blocking coalition at R.

[First part]

This section will show that in order for µ to be group stable, (1) d /∈ µ(h) must hold

for all d ∈
∪M

m=1

∪kh′m
i=1 {dm,i, d̄m,i} and for all h ∈ H(w′, w′′), and (2) dhj ∈ µ(h) must hold

for all h ∈ H̄(w′, w′′) and for all j = 1, · · · , wh.

⋆ Step 1: no doctor d ∈
∪M

m=1

∪kh′m
i=1 {dm,i, d̄m,i} is matched with h ∈ H(w′, w′′) at µ.

Suppose that some doctor d ∈
∪M

m=1

∪kh′m
i=1 {dm,i, d̄m,i} is matched with some h ∈

H(w′, w′′) at µ. Then, since qh = wh, there is at least one dhj such that µ(dhj ) = ∅.
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Consider a set of doctors and hospitals S = (Dµ ∪Hµ) \ {d}, and a matching ν such that

ν(dhj ) = h

ν(d) = ∅

ν(h) = (µ(h) \ {d}) ∪ {dhj }

ν(i) = µ(i), ∀i ∈ (D ∪H) \ {dhj , h, d},

that is, the matching ν simply swaps the matches of dhj and d. Note that ν is feasible

since w(ν) = w(µ) and f(w(µ)) = 1. Then, it is easy to check that S blocks µ via ν at R.

⋆ Step 2: µ(dhj ) = h for all h ∈ H̄(w′, w′′) and for all j = 1, · · · , wh.

Assume Step 1. Suppose that µ(dhj ) ̸= h for some h ∈ H̄(w′, w′′) and for some

j = 1, · · · , wh. Let Ĥ ⊆ H̄(w′, w′′) be a set of hospitals such that µ(dhj ) ̸= h for some

j = 1, · · · , wh. Then, for any hospital h ∈ Ĥ, we have either d ∈ µ(h) for some d ∈

D \ ∪wh
j=1{dhj } or d /∈ µ(h) for all d ∈ D \ ∪wh

j=1{dhj }.

Case 1 d ∈ µ(h) for some h ∈ Ĥ and for some d ∈ D \ ∪wh
j=1{dhj }.

Consider a set of doctors and hospitals S = (Dµ ∪Hµ) \ {d}, and a matching ν such

that

ν(d) = ∅

ν(dhj ) = h

ν(h) = (µ(h) \ {d}) ∪ {dhj }

ν(i) = µ(i), ∀i ∈ (D ∪H) \ {dhj , h, d},

that is, the matching ν simply swaps the matches of dhj and d. Note that ν is feasible

since w(ν) = w(µ) and f(w(µ)) = 1. Then, it is easy to check that S blocks µ via ν at R.
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Case 2 d /∈ µ(h) for all h ∈ Ĥ and for all d ∈ D \ ∪wh
j=1{dhj }.

Consider a set of doctors and hospitals S = (D ∪ H) \ (
∪M

m=1

∪kh′m
i=1 {dm,i}), and a

matching ν such that

ν(dm,i) = ∅ ∀i = 1, · · · , kh′
m
, ∀m = 1, · · · ,M

ν(d̄m,i) = h′
m ∀i = 1, · · · , kh′

m
∀m = 1, · · · ,M

ν(dhj ) = h ∀h ∈ H, ∀j = 1, · · · , wh

ν(h′
m) = (∪

kh′m
i=1 {d̄m,i}) ∪ (∪

wh′m
j=1 {d

h′
m

j }) ∀m = 1, · · · ,M

ν(h′′
n) = ∪

wh′′n
j=1 {d

h′′
n

j } ∀n = 1, · · · , N

ν(hℓ) = ∪whℓ
j=1{d

hℓ
j } ∀ℓ = 1, · · · , L

Note that ν is feasible since w(ν) = w′. It is easy to check that S blocks µ at R.

[Second part]

So far, we have shown that in order for µ to be group stable, (1) d /∈ µ(h) must hold

for all d ∈
∪M

m=1

∪kh′m
i=1 {dm,i, d̄m,i} and for all h ∈ H(w′, w′′), and (2) dhj ∈ µ(h) must hold

for all h ∈ H̄(w′, w′′) and for all j = 1, · · · , wh. This part shows that such a µ is blocked

by a coalition at R.

Case 1 µ(d) = ∅ for all d ∈
∪M

m=1

∪kh′m
i=1 {dm,i, d̄m,i}.

In this case, consider a set of doctors and hospitals S = (D∪H)\ (
∪M

m=1

∪kh′m
i=1 {d̄m,i}),
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and a matching ν such that

ν(dm,i) = h′
m ∀i = 1, · · · , kh′

m
, ∀m = 1, · · · ,M

ν(d̄m,i) = ∅ ∀i = 1, · · · , kh′
m
, ∀m = 1, · · · ,M

ν(dhj ) = h ∀h ∈ H, ∀j = 1, · · · , wh

ν(h′
m) = (∪

kh′m
i=1 {dm,i}) ∪ (∪

wh′m
j=1 {d

h′
m

j }) ∀m = 1, · · · ,M

ν(h′′
n) = ∪

wh′′n
j=1 {d

h′′
n

j } ∀n = 1, · · · , N

ν(hℓ) = ∪whℓ
j=1{d

hℓ
j } ∀ℓ = 1, · · · , L

Note that ν is feasible since w(ν) = w′. Then, it is easy to check that S blocks µ via ν at

R. So, µ is not group stable at R.

Case 2 µ(d) ̸= ∅ for some d ∈
∪M

m=1

∪kh′m
i=1 {dm,i, d̄m,i}.

Case 2-1: either w(µ) ≤ w′ or w(µ) ≤ w′′.

Assume, without loss of generality, that w(µ) ≤ w′.

Case 2-1-1: d /∈ µ(h′
m) for all d ∈ ∪

kh′m
i=1 {dm,i} for all m = 1, · · · ,M .

Then, consider a set of doctors and hospitals S = (D ∪H) \ (
∪M

m=1

∪kh′m
i=1 {dm,i}), and
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a matching ν such that

ν(dm,i) = ∅ ∀i = 1, · · · , kh′
m
, ∀m = 1, · · · ,M

ν(d̄m,i) = τ̄(d̄m,i) ∀i = 1, · · · , kh′
m
, ∀m = 1, · · · ,M

ν(dhj ) = h ∀h ∈ H, ∀j = 1, · · · , wh

ν(h′
m) = ∪

wh′m
j=1 {d

h′
m

j } ∀m = 1, · · · ,M

ν(h′′
n) = τ̄−1(h′′

n) ∪ (∪
wh′′n
j=1 {d

h′′
n

j }) ∀n = 1, · · · , N

ν(hℓ) = ∪whℓ
j=1{d

hℓ
j } ∀ℓ = 1, · · · , L

Note that ν is feasible since w(ν) = w′′. Then, it is easy to check that S blocks µ via ν

at R.

Case 2-1-2: d ∈ µ(h′
m) for some d ∈ ∪

kh′m
i=1 {dm,i} for some m = 1, · · · ,M .

Then, consider a set of doctors and hospitals S = (D ∪H) \ (
∪M

m=1

∪kh′m
i=1 {dm,i}), and

a matching ν such that

ν(dm,i) = ∅ ∀i = 1, · · · , kh′
m
, ∀m = 1, · · · ,M

ν(d̄m,i) = h′
m ∀i = 1, · · · , kh′

m
, ∀m = 1, · · · ,M

ν(dhj ) = h ∀h ∈ H, ∀j = 1, · · · , wh

ν(h′
m) = (∪

kh′m
i=1 {d̄m,i}) ∪ (∪

wh′m
j=1 {d

h′
m

j }) ∀m = 1, · · · ,M

ν(h′′
n) = ∪

wh′′n
j=1 {d

h′′
n

j } ∀n = 1, · · · , N

ν(hℓ) = ∪whℓ
j=1{d

hℓ
j } ∀ℓ = 1, · · · , L

Note that ν is feasible since w(ν) = w′. Then, it is easy to check that S blocks µ via ν at

R.
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Case 2-2: neither w(µ) ≤ w′ nor w(µ) ≤ w′′.

Then, there exists at least one hospital h ∈ H ′′(w′, w′′) such that wh(µ) > w′
h. Step 2

implies that for each h ∈ H ′′(w′, w′′) with wh(µ) > w′
h, there exists a doctor d ∈ D with

d ∈ τ−1(h) ∪ τ̄−1(h).

Case 2-2-1: d ∈ µ(h) for some h ∈ H ′′(w′, w′′) with wh(µ) > w′
h and for some d ∈ τ̄−1(h).

Then, since wh(µ) ≤ qh(= w′′
h = max{w′

h, w
′′
h}) and the construction of the matching

market, there exists a doctor d′ ∈ τ−1(h) such that µ(d′) = ∅.

Consider a set of doctors and hospitals S = (Dµ ∪Hµ) \ {d}, and a matching ν such

that

ν(d) = ∅

ν(d′) = h

ν(h) = (µ(h) \ {d}) ∪ {d′}

ν(i) = µ(i), ∀i ∈ (D ∪H) \ {d′, h, d},

that is, the matching ν simply swaps the matches of d′ and d. Note that ν is feasible since

w(ν) = w(µ) and f(w(µ)) = 1. Then, it is easy to check that S blocks µ via ν at R.

Case 2-2-2: d /∈ µ(h) for all h ∈ H ′′(w′, w′′) with wh(µ) > w′
h and for all d ∈ τ̄−1(h).

Then, for all h ∈ H ′′(w′, w′′) with wh(µ) > w′
h, µ(h) ⊆ τ−1(h) ∪ (∪wh

j=1{dhj }). Let

D̄ be a set of doctors such that for any d ∈ D̄, there exists a hospital h ∈ H ′′(w′, w′′)

such that d ∈ τ−1(h) and µ(d) = h. Note that |D̄| = p(> 0). Also, let D̄1 and D̄2 be

two subsets of D̄ such that (1) D̄1 ∩ D̄2 = ∅, (2) D̄1 ∪ D̄2 = D̄, and (3) |D̄1| ≤ r and

|D̄2| ≤ u. This devision is possible since |D̄| = p and p ≤ r + u. Note that when r = 0,

D̄1 = ∅. The assumption of Case 2-2 and the construction of the matching market imply

that D̄1 ∪ D̄2 = D̄ ⊆ ∪M
m=1 ∪

kh′m
i=1 {dm,i}. We will reach a conclusion by identifying τ and
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τ̄ more specifically.

When D̄1 ̸= ∅, construct a function s1 : D̄1 → H ′(w′, w′′) such that for all h ∈

H ′(w′, w′′), |{d ∈ D̄1 | s1(d) = h}| + wh(µ) ≤ qh(= w′
h). Also, construct a function

s2 : D̄2 → H(w′, w′′) such that for all h ∈ H(w′, w′′), |{d ∈ D̄2 | s2(d) = h}| + wh(µ) ≤

qh(= w′
h = w′′

h). The existence of the two functions, s1 and s2, is guaranteed since

|D̄1| ≤ r, |D̄2| ≤ u, r =
∑

h∈H′(w′,w′′)(w
′
h − wh(µ)) =

∑
h∈H′(w′,w′′)(qh − wh(µ)), and

u =
∑

h∈H(w′,w′′)(w
′
h − wh(µ)) =

∑
h∈H(w′,w′′)(qh − wh(µ)). When D̄1 ̸= ∅, let s−1

1 :

H ′(w′, w′′) → D̄1 be a function such that for all h ∈ H ′(w′, w′′), s−1
1 (h) = {d ∈ D̄1 |

s1(d) = h}. Also, let s−1
2 : H(w′, w′′) → D̄2 be a function such that for all h ∈ H(w′, w′′),

s−1
2 (h) = {d ∈ D̄2 | s2(d) = h}.

Given the two functions, s1 and s2, reconstruct the function τ : ∪M
m=1 ∪

kh′m
i=1 {dm,i} →

H ′′(w′, w′′) such that for all h′
m ∈ H ′(w′, w′′) and for all d ∈ D̄1 with s1(d) = h′

m,

τ(d) = µ(d). So, we just reconstruct the image of D̄1 at τ , and an image of any other

doctor d ∈ D \ D̄1 at τ is arbitrary.

For h ∈ H ′(w′, w′′), let s̃h = qh − |s−1
1 (h)|, and arbitrarily take s̃h-doctors, each of

whom is not matched with hospital h at µ. Denote a set of such doctors by D̃h for

h ∈ H ′(w′, w′′). For h ∈ H(w′, w′′), let s̃h = qh−|s−1
2 (h)|, and arbitrarily take s̃h-doctors,

each of whom is not matched with hospital h at µ. Denote a set of such doctors by D̃h

for h ∈ H(w′, w′′). Let D̃ = ∪h∈H′(w′,w′′)∪H(w′,w′′)D̃h.
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Consider a set of doctors and hospitals S = (Dµ∪ D̃)∪H, and a matching ν such that

ν(d) = s1(d) ∀d ∈ D̄1

ν(d) = s2(d) ∀d ∈ D̄2

ν(d) = µ(d) ∀d ∈ Dµ \ D̄

ν(d) = h ∀d ∈ D̃h, ∀h ∈ H ′(w′, w′′) ∪H(w′, w′′)

ν(d) = ∅ ∀d ∈ D \ (Dµ ∪ D̃)

ν(h′
m) = µ(h′

m) ∪ s−1
1 (h′

m) ∪ D̃h′
m

∀m = 1, · · · ,M

ν(h′′
n) = ∪

wh′′n
j=1 {d

h′′
n

j } ∀n = 1, · · · , N

ν(hℓ) = µ(hℓ) ∪ s−1
2 (hℓ) ∪ D̃hℓ

∀ℓ = 1, · · · , L

Note that ν is feasible since w(ν) = w′. Then, it is easy to check that S blocks µ via ν at

R.

In conclusion, since µ is arbitrary other than being feasible and individually rational,

there does not exist a group stable matching at R. 2

5 Conclusion and discussion

Many matching markets are subject to complex constraints. In this paper, we have focused

on a general constraint on quantitative distributions brought from policy-motivated reason

or technologically restricted reason. We have then defined a new solution concept, group

stability. Our main result is concerned with the existence of group stable matchings. We

have shown that a group stable matching is guaranteed for any preference profile only if

the feasibility constraint satisfies monotonicity.

The literature on matching markets with feasibility constraints has introduced a wide
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variety of stability notions. In particular, Kamada and Kojima (2017) propose a strongly

stable matching in a class of feasibility constraints. They assume that feasibility con-

straints are monotonic in their sense, i.e., if a distribution is feasible, then any distribution

less than the original one must be also feasible. In such a class of feasibility constraints,

they propose a necessary and sufficient condition, called independence across hospitals,

on feasibility constraints such that a strongly stable matching exists for any preference

profile. It is easy to check that in the environment of Kamada and Kojima (2017), our

monotonicity of feasibility constraints implies independence across hospitals as well as in-

dependence across hospitals implies the existence of group stable matchings. Hence, the

following four statements are equivalent: a group stable matching exists for any preference

profile; a strongly stable matching exists for any preference profile; a feasibility constraint

satisfies monotonicity in our sense; a feasibility constraint satisfies independence across

hospitals.
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