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A GROUP ACTION ON HIGHER CHOW CYCLES ON A
FAMILY OF KUMMER SURFACES

KEN SATO

ABSTRACT. We construct a family of Kummer surfaces X° — T° from the
Legendre family of elliptic curves. Then we construct a family of higher Chow
cycles on X° — T° and calculate their values under the transcendental reg-
ulator map. For the calculation, we use a finite group action on X° — T°
and show that the rank of the space of the indecomposable cycles of X; is
greater than or equal to 18 for very general t € T°(C). To show the linearly
independence of indecomposable higher Chow cycles, we use a Picard-Fuchs
differential operator.
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1. INTRODUCTION

1.1. Contents of this paper. In the celebrated paper [BIo86], Bloch defined
higher Chow groups CH? (X, q) for a variety X over a field k. Higher Chow groups
are a natural generalization of Chow groups. For a closed subvariety Z C X of
codimension ¢, the localization exact sequence of Chow groups

CHP™¢(Z) - CHP(X) - CHP(X = Z) =0
fits into the localization exact sequence of higher Chow groups
---—= CHP(X,1) - CH’(X — Z,1) - CHP"¢(Z) —» CH?(X) - CH’(X — Z) — 0.
(1)
Thus higher Chow groups are an analogue of the singular cohomologies for algebraic
varieties. Furthermore, there exists a canonical isomorphism

CHP(X,q) ®z Q ~ H (X, Q(p)) (2)

where Hiﬁ_q(X ,Q(p)) is the motivic cohomology of X. Motivic cohomologies and
higher Chow groups appear in many aspects of algebraic geometry and number
theory. However, its structure is still mysterious for many varieties.

In this paper, we study higher Chow cycles in CH? (X, 1) for a certain type of K3
surfaces, which are regarded as 2-dimensional analogues of elliptic curves. Higher
Chow groups of general K3 surfaces are studied in [CDKLTG]. We treat a special
type of Kummer surfaces and study their higher Chow groups in detail.

We consider the following map induced by the intersection product.

CH'(X,1) ®z CH'(X) — CH?*(X, 1) (3)

Since CH'(X) ~ Pic(X) and CH'(X,1) ~ I'(X, 0%), the image of (8) can be de-
scribed by the known invariants. Hence we are interested in the cokernel CH? (X, 1)ina
of (B), which is called the indecomposable part of CH?(X,1). In this paper, we give
an estimate for the rank of CH?(X, 1ind-

For the estimation, we construct elements in CH2(X , 1) explicitly, and consider
their images under the following regulator map defined by Beilinson.

H34(X,Q(2)) — HH(X,Q(2)) (4)

Here the target H3(X,Q(2)) is the Deligne cohomology of X. In the articles
[GL99],[M7197), [CDKLIG], [HANMO2],[Cold7] and [Asal6], they consider families of
varieties {X;}ter and construct families of higher Chow cycles {&; }+er. Then they
show that & does not vanish for very general® ¢t € T' by studying the behavior of
the images of these cycles under the regulator map as a function of t. We follow
this strategy.

In this paper, we consider a family of Kummer surfaces X° — 7T°, which
is constructed in Section 3. We construct a family of higher Chow subgroups
= = {E; € CH?*(X;,1)}sero and compute their images under the following tran-
scendental requlator maps r at fibers.

r: CH*(X;, 1) —— H (X Z(2)) —— (H*O(Xp™))Y /Ho (X, Z)
-
l e (5)
CHz(Xt,]-)ind - -

Here the upper left map is the regulator map. The transcendental regulator map
factors through CH2(X,5, 1)ina. Thus we can use the transcendental regulator map

1We use the word “very general” for the meaning that “outside of a countable union of proper(=
not the whole space) analytic subsets”.
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for the rank estimate for indecomposable parts. The main theorem of this paper is
as follows.

Theorem 1.1. (Theorem 820) For a very general t € T°(C),
rank r(E;) = 18. (6)
Especially, rank CH? (X, 1ina > 18.

Since X° — T° is a certain base change of the Kummer surface family treated
in Section 6 of [CDKLI6E], CH?(X;, 1)inq # 0 was already known for very general
t. Theorem [T improves the estimate for the rank of CH?*(X;,1)ina. While the
construction of a higher Chow cycle in [CDKIT6] is based on a certain elliptic
fibration structure of X}, our construction of Z; is based on the fact that X is the
minimal desingularization of a double covering of P} x; P.. Thus we give a new
way of construction of higher Chow cycles on such type of Kummer surfaces in
this paper. The merit of our construction is that the values of the transcendental
regulator maps can be represented by relatively simple integrals. e.g. (1)

For the computation of the image of the transcendental regulator map, we con-
struct topological chains on X" explicitly (Section 8) and use the formula obtained
by Levine ([Lex88]). By Levine’s formula, the following multivalued holomorphic
function appears in the image of an element of = under the transcendental regulator
map (Proposition B10).

dxdy
L(a,b) =
(e?) /A Val —z)1 —ax)/y(1 —y)(1 —by)

Here A = {(z,y) € R? : 0 <y <z < 1}. (@) is similar to the integral represen-
tation of Appell’s hypergeometric functions. A difference is that the boundary of
the domain of integral is not necessarily contained in the branching locus of the
integrand. In other words, (@) is a kind of incomplete integrals.

The Beilinson conjecture predicts that if X is defined over a number field, the
values (in a suitable sense) of the regulator map (H) are related to the special values
of L-functions of motives of X. Hence it is an interesting problem what kinds of
functions appear in the image of the regulator map.

Recently, in [AOTE], Asakura and Otsubo give examples of special varieties
(which have hypergeometric fibrations) whose values of the regulator maps are rep-
resented by the value at z = 1 of a generalized hypergeometric function 3F5. Fur-
thermore, by deforming such varieties, they give a 1-dimensional family of varieties
such that the value of the regulator map of members of such family is represented
by generalized hypergeometric function 3F ([AO21]). Hence some relations be-
tween the value of the regulator map and hypergeometric functions were known.
The object we treat in this paper can be regarded as a certain Q®'8-extension of
the exterior tensor product of two Gauss hypergeometric differential equations o F.

To compute the value of transcendental regulator for each element in =, we use
automorphisms of the Kummer surface family. We consider the following type of
automorphisms of a family of algebraic varieties.

(7)

Definition 1.2. Let X — S be a family of algebraic varieties over a field k.
The automorphism group Auty(X — S) of X — S consists of a pair (g,g) with
g € Autp(X) and g € Aut(S) such that the following diagram commutes.

x4 x

| g

S —— S
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In this paper, we construct the following finite group action explicitly on the
Kummer surface family X° — 7°. Let V be the Klein four-group and 7 be the
natural projection &4 — S4/V = &3. We set G = ({(h1,h2) € G4 x &4 : w(hy) =
7(h2)})2. We define a Z/2Z-extension G of G (Definition E17).

Proposition 1.3. (Proposition B22) The group G acts faithfully on the family
X° —T°.

Then we construct a subgroup Z** ¢ CH?*(X°,1) and define Z as the sum of
0.2 (5 € G). The author is informed of the constructions of several elements in
= by Terasoma in seminars. We generalize his idea of the constructions of higher
Chow cycles so that we can use automorphisms of X° — T°.

We compute the image of = under the regulator map by using G-action as follows:
since Z is constructed as a family over T°, we can define a “relative transcendental
regulator map” R, (Definition B-IT)

R, :Z —— Q,(T°) 9)

where Q,, is a sheaf on (7°°)*” such that restriction of Q,, at t € T°(C) is isomorphic
to (H?°(Xx))Y /Ho(X™, Q). The reason why R, is called “relative transcendental
regulator” is that the restriction of R, (Z) at t € T°(C) coincides with r(Z;) mod-
ulo torsion part. This relative transcendental regulator map associates families of
higher Chow cycles to (a generalization of) normal functions. Though this kind of
maps can be defined in more general setting (cf.[Sail2] and [CDKLIE]), we employ
an ad hoc definition since we need only the explicit description for special cases.

We define a G-action on Q,, so that R, is equivariant under this action. Thus
we reduce the computation of r(Z;) to that of R,,(E) and the G-action on Q,, L (T°).
In Section 6, we construct two subgroups I ~ (S, X&, ©4) X (Z/2Z) and Grp ~
(Z/27.)% of G which stabilize R,,(E°") C Q,,(T°). Since E is defined as the sum of
P2 we can show that the rank of R, (=) is at most 18 by examining the size of
the stablhzer of R, (M),

To show that the rank of R, (=) is exactly 18, we consider the image of R, (E) C
Q. (T°) under a Picard-Fuchs differential operator

D Qu(T°) —— O(T°)#2. (10)

Similar methods are used in [Mii97], [TAMO?] and [CDKLIG]. We define a G-
action on O(T°)®% so that Z is é—equivariant. To prove the equivariance, we
show the transformation formulae of Picard-Fuchs differential operators by G-action
(Proposition BI8). This result is interesting by itself from the point of view of
differential equations. Using a simple description of 2 o R,(Z), we show that
9 o R,(E) has 18 Q-linearly independent elements (Table B). Thus we can show
Theorem 1.

1.2. Outline of this paper. This paper is divided into 3 parts.

Part 1 consists of Section 2, Section 3 and Section 4. The purpose of Part 1
is to fix the notation and to prove Proposition 3. In Section 2, we introduce
a category (Sch®"/k), which is used to consider multiple finite group actions on
multiple schemes simultaneously. In Section 3, we construct the Kummer surface
family X — T. In Section 4, we prove Proposition 3.

Part 2 consists of Section 5 and Section 6. The purpose of Part 2 is to explain
the construction of 2 € CH2(X°,1) and consider the G-action on Z. In Section
5, we first construct a subgroup of the higher Chow group =" ¢ CH? (X°,1) and
define = as the sum of its images under G-action. In Section 6, we construct two
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subgroups I and Ggp, which stabilize the image of =" under the transcendental
regulator map.

The purpose of Part 3 is to prove Theorem 1. Part 3 consists of Section 7,
Section 8 and Section 9. In Section 7, we fix relative differential forms w on X° —
T° and examine G-action on w. Furthermore, we find a Picard-Fuchs differential
operator & which annihilates period functions of X° — T°. In Section 8, we
calculate the image of an element of Zf*" under the transcendental regulator map.
In Section 9, we define the relative transcendental regulator map R, in (4) and
prove é—equivariance of 2 and R,. Finally, we prove Theorem Il

In Appendix A, we recall the definition of decomposable cycles in higher Chow
groups and how decomposable cycles are represented by elements of the homology
group of the Gersten complex (cf. Proposition B51).

1.3. Acknowledgement. The author expresses his sincere gratitudes to his su-
pervisor Professor Tomohide Terasoma, who gave the author the idea of the con-
struction of higher Chow cycles in Section 5 and also the idea of the construction
of the topological 2-chains in Section 8 and let the author know a technique of
checking the non-triviality of higher Chow cycles as in [Miil97]. Furthermore, he
gave the author many valuable comments which simplifies the arguments in this
paper. He also thanks Professor Shuji Saito sincerely, who gave the author many
helpful comments on this paper. The author is supported by the FMSP program
by the University of Tokyo.

1.4. Conventions.

1.4.1. Conventions for algebraic geometry.

(1) For a field k, a variety over k is an integral separated scheme of finite type
over k. For a variety X, its function field of X is denoted by R(X).

(2) For a morphism X — S and s € S, we usually denote the fiber over s by
X,. For ¢ € Homg(Y,X), * denotes the morphism of sheaves of rings
ot Ox = ¢, Oy.

(3) For S-schemes Y and X, Homg (Y, X) denotes the set of S-morphisms. If
Y = Spec R, elements in Homg(Y, X) are called R-rational points and we
also use the notation X (R) for Homg (Y, X). The group of S-automorphisms
of X is denoted by Autgs(X). For any morphism S’ — S, we have a nat-
ural map Homg (Y, X) — Homg/ (Y xg 5, X xgS5’). For a subset ¥ of
Homg (Y, X), the image of ¥ under this map is called the base change of &
by S — S.

(4) For closed subschemes Y7 and Y3 of X which satisfy Y1NY, =0, YUY, € X
denotes the closed subscheme corresponding to the ideal sheaf Zy, N Zy,
where Zy, is the ideal sheaf corresponding to Y;.

1.4.2. Conventions for group theory.

(1) In this paper, we always consider left group actions. For a group G, the
opposite G-action is a (left) action of the opposite group G°P. Let G be a
group and M be an abelian group with a G-action. For a subgroup N C M,
the G-action of M stabilizes N if and only if for any g € G and n € N, we
have g-n € N.

(2) For a set ¥, G(X) denotes the symmetric group of ¥. For n € Z>q, &,
denotes the symmetric group of the set {0,1,...,n — 1}. For o € &(X),
sgn(o) € {1} denotes its image under the sign character of &().

(3) For a set A and an abelian group M, the set of maps from A to M is
denoted by M#. The set M4 has a natural structure of an abelian group.
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1.4.3. Others.

(1) For a set X, |X| denotes the cardinality of X.

(2) For a ring A, the multiplicative group of A is denoted by A*. If A is an
integral domain, its fraction field is denoted by Frac(A).

(3) For n € Z~ and a field k, u, (k) denotes the subgroup of k™ consisting of
n-th roots of unity.

(4) We use the symbol J for the fiber product as follows.

X xgY 225y

p7'1l - J (11)

X — S

2. GENERALITIES OF DISCRETE GROUP ACTIONS ON SCHEMES

In this section, we introduce a category (Sch® /k) of schemes with group actions
and prove some properties which we use in Section 4 to construct group actions on
a family of Kummer surfaces.

All results in this section are more or less formal and proofs are often straight-
forward. Hence we omit proofs or give only sketches. Throughout in this section,
we fix a field £ and assume all schemes and morphisms are over k.

2.1. Schemes with group actions.

Definition 2.1. (The definition of (Sch®”/k))

(1) A scheme with a group action (S, H,p) is a triplet consisting of a k-scheme
S, a group H and a group homomorphism ¢ : H — Autg(S). We usually
omit ¢ from the notation and write (S, H). In that case, we use the same
symbol for h € H and its image in Auty(5).

(2) A pair (f,1) of a morphism of k-schemes f : T'— S and a group homo-
morphism ¢ : G — H is called a morphism of schemes with group actions
from (T, G) to (S, H) if the following diagram commutes for any g € G.

lg lwg) (12)

Then we have a category (Sch®”/k) of schemes with group actions by the
natural composition of morphisms.

(3) Let (S, H) € (Sch®’/k). For a S-scheme X, we define Aut(X;S, H) as the
following group.

S

—

S
Aut(X; S, H) =< (p,v) € Autp(X) x H: |u ly commutes. (13)

—

b

— S
By the natural projection Aut(X;S, H) — Autg(X) and Aut(X; S, H) —
H, we have the following object and morphism in (Sch®" /k).
(X, Aut(X; 5, H)) —— (5, H) (14)
(4) For a morphism (f,¢) : (X,G) — (S, H) be a morphism in (Sch®”/k), we
have a group homomorphism?
G — Auty(X = S);9 = (9, 0(9))- (15)

~—

2See Definition 2 for the notation Auty(X — S).



8 KEN SATO

If the G-action on X is faithful, this group homomorphism is injective.
In this paper, we often use the following fiber product construction in (Sch®” /k).

Proposition 2.2. Consider the following diagram in (Sch®® /k).

(S1, Hy)
l(fl#.ﬂl) (16)
(Sa, Ha) 2% (S5, Hy)

Then the fiber product (Sy, Hy) X (s, 1, (S2, H) exists and isomorphic to (S1 X g,
Sa, Hy X, Ha). Here Hy Xy, Hs is the fiber product of groups. i.e.

H1 XH3 H2 = {(hl,hg) € Hl X H2 : (pl(hl) = (pg(hg)} (17)

Definition 2.3. (1) Let (X,G) — (S,H) be a morphism in (Sch®’/k). For
g € G, g denotes its image in H. A subset ¥ of Homg(S, X) is compatible
with (X,G) — (S, H) if and only if for any o € £ and g € G, gooog™* € .
(2) If ¥ is compatible with (X, G) — (S, H), we have a G-action on ¥ defined
by

GxX—3; (g9,0)—gooog . (18)
We can keep track this group action on X after fiber product operations.

Proposition 2.4. (1) Let (X;,G;) — (Si, H;) be a morphism in (Sch®® /k) for
1= 1,2. Put (S, H) = (517H1)X(52,H2) and (X, G) = (Xl,Gl)X(XQ,GQ),
Then we have the following morphism.

(X1,G1) <+ (X,G) 25 (X3,Go)

L] o

(Sl,Hl) (L (S,H) L (SQ,HQ)

Suppose ¥; C Homg, (S;, X;) is compatible with (X;,G;) — (Si, H;) for
1=1,2. Then
Y ={o1 X0o9:01 € X1,09 € X3} C Homg(S, X) (20)
is compatible with (X,G) — (S, H). The G-action on ¥ is given by
GxX—15; ((91,92), (01,02)) = (91 01,92 - 2). (21)
(2) Consider the following fiber product diagram in (Sch®® /k).

(X',G") —— (5", H')

Lo @

Then its

Suppose ¥ C Homg(S, X) is compatible with (X,G) — (S, H).
) = (S, H').

base change ¥’ C Homg/ (S’, X') is compatible with (X', G’
Furthermore, the natural map ¥ — ¥/ is G’ -equivariant.

2.2. Linearizations of Ox-modules. We recall the definition of G-linearizations
of Ox-modules. In some references, Ox-module with a G-linearization is called
G-equivalent sheaf.
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Definition 2.5. Let (X, G) € (Sch®”/k) and . be an O x-module. A G-linearization
of & is a collection of O x-module isomorphisms {®, : g*.¥ = £},cc such that
for any g, h € G, the following diagram commutes.

(goh)* & +—— h*¢g* &
ngh J{h*({‘)g) (23)
<z A — h*Z
The commutativity of (23) is called the cocycle condition.
Sheaves of relative differentials are fundamental examples of linearized sheaves.

Proposition 2.6. Let (f,¢) : (X,G) — (S,H) be a morphism in (Sch®’/k). We
have a canonical G-linearization {®4}qcq of the sheaf of differentials Qﬁ(/s.

Proof. For g € G, we have the following diagram.
X 2. X
! lf (24)

g v(g) S

By the universality of the sheaf of differentials, we have an Ox-module homomor-
phism ¢* Q% /s~ Q% /s~ By the universality, this satisfies the cocycle condition. [

We list constructions of new linearized sheaves from other linearized sheaves.

Proposition 2.7. Let (X,G) € (Sch®"/k) and & be an Ox-module with a G-
linearization {®g}geca.

(1) Let (f,9): (Y,H) — (X,G) be a morphism in (Sch®’/k). For h € H, put
* * (K * * * * f*(pv h *
[ @y s W (f*2L) = (foh)" L = (p(h)o )" L = [Tp(h)" L —= [ 2. (25)
Then {f*®y, ) thea is a H-linearization of f*.2.
(2) Let M be a Ox-modules with G-linearization {¥,}4ec. For g € G, put

DR
B, @V, g (L R0y M)~ gL B0y g M 2205 L o0 M (26)
Then {®y ® ¥4}geeq is a G-linearization on L @ M .
(3) Assume that &£ is invertible sheaf. For g € G, put

(71\/

)
88D . g Homo, (£, Ox) ~ Homo, (9" L, Ox) 215 Homo (£, Ox) (27)
Then {@?(71)}%@ is a G-linearization of L®1).

The group cocycles have close relations with sheaves with linearizations. In this
paper, explicit cocycle calculations play an important role for the main result.

Definition 2.8. Assume an abelian group M has an opposite G-action. An op-
posite 1-cocycle on M is a 1-cocycle of G°P? on M. In other words, an opposite
1-cocycle is a map x : G — M which satisfies the following condition: For any
g,h € G,

x(gh) = x(h) +h - (x(9))- (28)

Let (X, G) € (Sch®’/k). We have a natural opposite G-action on the k-algebra
(X, Ox) defined by

G xT(X,0x) = I'(X,0x);(g,a) — ¢*(a). (29)

We also have an opposite G-action on the abelian group I'(X,0%). If X is an
integral scheme, by the similar method, we have an opposite G-action on R(X)*.
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We can get opposite 1-cocycles from linearizations of invertible sheaves and ra-
tional sections of them

Proposition 2.9. Let (X,G) € (Sch®”/k) where X is an integral scheme. Let &
be an invertible sheaf, {®g4}gcc be a G-linearization on £ and 1 be a non-zero
rational section. For g € G, we define ¢(g) € R(X)* by

Dy(g"(m) = ¢(9)™" - m (30)
Then ¢ : G — R(X)* is an opposite G-cocycle, which is called the opposite 1-cocycle
associated with (L, {®g}gecc,n). Furthermore, if we take another rational section
n = fn(f € R(X)*), opposite 1-cocycle ¢ changes by the coboundary I-cocycle
associated with f.

2.3. Lifting of group actions by cyclic coverings and blowing-ups. Finally,
we prove the liftability of group actions by a cyclic covering and a blowing-up. We
recall the construction of cyclic coverings.

Definition 2.10. Let X be a scheme and m € Z~1. Let .Z be an invertible sheaf
on X and h € (X, £®=™)). We define a commutative Ox-algebra structure on
@:161 Z®% by the following rule: For an open subset U C X, x € £®(U) and
y € L% (U) where i,j € {0,1,...,m — 1}, we define

r@y e L20() (i4+j<m)
Toy= L
z®@y® hly € LEEH=(W) (i +j > m)

We extend this multiplication rule Ox-bilinearly. Note that commutativity and
associativity follows from that .Z is an invertible sheaf. Then m-uple covering
associated with (£, h) is defined by

(31)

Spec @' £¥ —— X. (32)
Here Spec denotes the relative spectrum of O x-algebras.

Proposition 2.11. Let (X,G) € (Sch®’/k). Let £ be an invertible sheaf with G-
linearization {®,},eq. Let n € T(X, 22" be a global section and 7 :Y — X
be a m-uple covering associated with (£,n). Suppose that

e (g% (n) = n. (33)
Then we have a G-action on'Y such that (7,idg) : (Y,G) — (X, G) is a morphism
in (Sch®” /k).
Proof. For g € GG, we define an automorphism g : Y — Y as follows.

(1) Let Y7 be the m-uple covering associated with (¢*.%,¢*(n)). Then Y} is a
fiber product of Y — X and X %5 X. Since g is an isomorphism, ¥; — Y
is so.

(2) By the isomorphism ®,, (¢*.Z,¢*(n)) is isomorphic to (£, n). Hence we
have an isomorphism Y = Y7 over X.

By composing these isomorphism, we get an automorphism g € Auty(X).

(2) 1

Y — Y, —— Y
Tl o
X—=—X-2,X

We can show that G — Autg(Y); g — g is a group homomorphism by the cocycle
condition. Hence we can construct G-action on Y and by construction, (m,idg) :
(Y,G) — (X, G) becomes a morphism in (Sch®"/k) O



A GROUP ACTION ON HIGHER CHOW CYCLES ON KUMMER SURFACES 11

Finally, we prove liftability of group actions by blowing-ups. This follows from
the universal property of the blowing-up.

Proposition 2.12. Let (X,G) € (Sch®"/k) and Y be a closed subscheme of X
which is stable under the G-action. Let b : Bly X — X be a blowing up of X along
Y. Then we have a G-action on Bly X such that b is equivariant to G-actions.

3. CONSTRUCTION OF A FAMILY OF KUMMER SURFACES

Hereafter we fix a field & whose characteristic is not 2. In this section, we
explicitly construct the family of Kummer surfaces X — T.

3.1. Construction of the Legendre family of elliptic curves.
Definition 3.1. (1) We set A =k [c, ﬁ}, which is a localization of the
polynomial ring of one variable k[c] and S = Spec A. Let PL = Proj A[Zy, Z1]
be the projective line over S.
(2) We use the notations Uy = Dy (Zy) C Pk and Uy = D, (Z1) C PL. We
define the local coordinate z = Z1/Zy on U.

(3) We define h(z) = z(1—2)(1—cz) € Alz] and h = h(2)dz®(~2?) e T(P}, (QllP}S/S)@)(_Q))‘

We construct the Legendre family £ — S of elliptic curves as a double covering
of Py

Definition-Proposition 3.2. Let & — PL be the double covering associated with®
(Q;PIS/S, fl) On the open subset Uy C Pk, € — P can be described as the following
morphism.

FEo = Spec Alu, 2] /(u? — h(z)) — Spec A[z] = Uy (35)

Definition 3.3. (Definition of X))
(1) We define a set of A-rational points ¥ on P} by

¥ =1{0,1,1/¢,00} C Homg(S,Pk). (36)

Here 0,1, 1/c, 0o denotes A-rational points corresponding to z = 0, 1,1/¢, oo.

(2) Similarly, we use the same symbol ¥ for a set of A-rational points on &
corresponding to z = 0,1,1/¢,00 and u = 0.

(3) For a morphism of schemes Z — S, we use the same symbol ¥ for its base
change by Z — S.

(4) If we would like to indicate the variety which points in ¥ are on, we use
the notation like $(PL) or $(€).

We have the description of the involution ¢ on &£ associated with the structure
of elliptic curves as follows.

Proposition 3.4. Let ¢ be an automorphism of € defined by the following A-algebra
homomorphism.

Alu, 2]/ (u* = h(2)) —— Alu, 2]/ (u? — h(2)) (37)

U, 2 b —u, z

Then ¢ is the involution with respect to the elliptic curve structure (€,0) over S
where O € X.

Since FEy is written in Weierstrass form, if O = oo, we have the result. If
0 =0,1,1/¢, we use the following lemma. The proof is standard.

3See Definition R10 for this notation.
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Lemma 3.5. Let E be a smooth projective curve of genus 1 over a field K. Let
O and O' be K-rational points of E. Morphisms v and ' are involutions on E
of taking inverses associated with the elliptic curve structure (E,O) and (E,O").
Suppose O is a 2-torsion point for the elliptic curve (E,0). Then =1

3.2. A family of Kummer surfaces associated with products of Elliptic
curves.

Definition 3.6. We use the following notations.

(1) Let B denote a k-algebra A®, A. Weset a =c® 1,b=1®c € B and
T = Spec B.

(2) Let Y = Pk x; PL. We regard Y as a scheme over T = S xj, S. For
i,j € {0,1}, Y; ; = U; x; U; are open subschemes of V.

(3) Let z,y denote local coordinates on Yj ¢ corresponding to z®1 and 1® z in
Alz] ®y Alz], respectively. Using = and y, we can write Y; o = Spec Bz, y].

(4) We define the following polynomial with coefficients in B.

f(2) = 2(1 - 2)(1 - ax)
9(y) =y(1 —y)(1 —by)
(5) Let .Z be an invertible sheaf on ) corresponding to pri‘Qéﬂs /520y prs Q]%,é /s

(38)

where pr; : Y — }P’ls denotes the i-th projection. Furthermore, we define a
global section n by n = pri(h) @ pri(h) € T(Y, £2(2).

Definition-Proposition 3.7. We define )NJH)) as the double covering associated
with® (Z,m). OnYoo CY, Y — Y is described as follows.

170’0 = Spec Blu, z,y]/(u* — f(x)g(y)) — Spec Blz,y] = Yo0 C Y (39)
We define an open subscheme 170}0 C Y as above.

The double covering )7 and & x £ are related as follows. Note that the coordinate
ring of Eg X Eg C € X £ is described as follows.

Alu, 2]/ (u? = h(2)) @k Alu, 2]/ (u® = h(2)) = Bluy, uz, z,y]/(uf = f(2),u3 - g(y))

u®L,1®u,z201,1® 2+ U, u2,,y

(40)
Proposition 3.8. We have a morphism € X € — j5 over T described as the
following B-algebra homomorphism.

Blu, z,y]/(u?* — f(x)g(y)) —— Blua,uz,z,y]/(ui — f(2),u3 — g(y)) (41)

U, T,y Y Uiz, T,y

Then € x, € — Y corresponds to the universal categorical quotient of € X € under
the Z/2Z-action induced by v X ¢ .

Proof. By the description of ¢ in Proposition B4, ¢ X ¢ acts on Ey X Fy as

Bluy, ug, x,y]/(uf — f(x),u5 — g(y)) —— Blu, ug, z,y]/(ui — f(x),u3 — g(y))

Uy, U2 * —Uy, —U2
(42)
Hence the image of (B1) generates the ring of invariants under the involution. Since
the map (1) is injective, we have the result. O

43ee Definition R10 for this notation.
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Definition 3.9. (Definition of %2)
(1) We define a set $? of B-rational points on ) by

¥2 ={o] X 09 : 01,00 € X} (43)

where 01 X 09 : T'= S x3, S — Py x; PL = Y is the direct product of oy
and os.

(2) Similarly, we define a set ¥ of B-rational points on £ x & by {0 X 09 :
01,02 € ¥}. We also use the same symbol %2 for its image under the map
Homp (T, €& xi, &) — Homr (T, ﬁ) induced by the morphism & x; £ — Y in

(3) More specifically, ¥.2 is the set of B-rational points whose x-coordinate and
y-coordinate are in {0,1,1/a,00} and {0,1,1/b, 0o} respectively. We often
identify

»? ={0,1,1/a,00} x {0,1,1/b, 00} (44)
and elements in X2 is written like (0,0), (1,1) and (1/a,1/b). Each o € 32
can be regarded as a closed subscheme. We use the same symbol ¥? for the
closed subscheme which is the disjoint union of each o € X2

(4) For a morphism of schemes Z — T, we use the same symbol 32 for its base
change by Z — T.

(5) If we would like to indicate the variety which points in ¥? are on, we use

the notation like X2()) or X2()).
Definition-Proposition 3.10. We define X — Y as the blowing up 0f)~) along
2. Then X is described locally on Yy o as follows.
Vo,0 = Spec Blv, z,y]/(v* f(z) — 9(y))
Yo,0 = Spec Blu, z,y]/ (u? — f(x)g(y))

Wo,0 = Spec Blw, x,y]/(w?g(y) — f())
(45)

These morphisms are defined by u — vf(x) and u — wg(y). The local coordinates
1

v and w are glued by the relation v = 3-. We define open subschemes Voo and Wy o

of X as above.

Definition 3.11. For ¢ € ¥2, we define Q, C X by the following fiber product.
Qe — X
|| (46)
T—25Y

See Figure [ for the configurations of @, on X.

We constructed the following T-schemes.
Ex, &

lquotient by ¢tX¢

»? by (£ ,n)
Vo0 U U

> 570,0 —— Y50 =Up x1 Uy

Wo.o

blowing—up alon =
X g—up g double cover y _ P}g Xk P_lg
U (47)
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Q(0,00) Q,00) | R1/a,00) Q(00,00)

y=o0
1 Quimy | Quam | RQujaism | Qoosn)

L
Q,1) Qa1 Qa/a,) Q(o0,1)

y=1
Q(0,0) Q1,0 Q(1/a,0) Q(c0,0)

y=0

FIGURE 1. The exceptional divisors @), on X

We can check that these constructions are all stable under any base change of T

Proposition 3.12. Let Z be any scheme over T. Let Xz,jiz, (€ xx &)z and Yz
denote the base changes of X,ﬁ, EXxp & and Y by Z — T. Then we have the
following.
(1) Vg — Yy is the double cover associated with (£,n). Here we use the same
symbol (£, n) for its pull back by Yz — V.
(2) (Ex1E)y — Yy is the quotient by (1x 1)z. Here (1x 1)z is the base change
of t X t.
(8) Xz — Yy is the blowing up along X2.

(3) is not so obvious since the blowing-up is not stable under the base change.
But in this case the result follows from the fact that Og;/Z" is flat over 1" for any
n > 0 where Z is the ideal sheaf corresponding to 2.

By the properties of the Legendre family & — S, we have the following.

Proposition 3.13. Let t € T and O € ¥?. Then the abelian surface (€ Xy, E);
whose identity element is O has the following properties.
(1) X2 is the set of 2-torsion points of this abelian surface structure.
(2) (v x )¢ is the involution of taking inverse.
(3) Let a(t),b(t) € x(t) be the images of elements a,b € Op(T) at the residue
field of t. Then (€ xy E)+ is isomorphic to the direct product of the elliptic
curves y?> = x(1 — z)(1 — a(t)x) and y?> = x(1 — z)(1 — b(t)x) over k(t).
Finally, we prove that X — T is a family of Kummer surfaces.

Proposition 3.14. Fort € T, the fiber X; is isomorphic to the Kummer surface
associated with the abelian surface (€ xy E)¢, O) where O € ¥2.

Proof. By Proposition B3, (¢ x ¢); is the involution of taking inverses on the
abelian surface (£ xj £);. By Proposition BI2 (2), (€ xj £); — V; corresponds
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to the quotient by (¢ x ¢);. Since X2 C (€ xj &)¢(k(t)) is the set of 2-torsion
points on (€ x, &)y, its image $2 C V,(k(t)) corresponds to the set of 16 singular
points on Y. By Proposition B2 (3), X; — Y, is the blowing-up of YV, along these
singular points. Hence X; is isomorphic to the Kummer surface associated with
(5 Xk E)t. [l

3.3. Construction of other smooth families of varieties over 7. In this
subsection, we define other smooth families of varieties (£ x; &)~ and X over T
and explain their relations with X'. These families of varieties are used for relating
periods of X with those of elliptic curves in the Legendre family (Section 7) and
for a construction of topological 2-chains on fibers X; (Section 8).

Definition 3.15. Let (€ x;, &) (resp. X) be the blowing-up of £ x, € (resp. ))
along ¥2. By the universal property of the blowing-up, we have unique morphisms
(€ xk )" = X and X — X such that the following diagram commutes.

(E Xk E) —mmmmmmmmmmmmeeeey > X mmmmmmmmmmmm e » X
blowing—up blowing—upl blowing—up (48)
along n2 along »? along »2
X
€ k € quotient by ¢ Xt y double cover y

The morphism X — X is described by the following B-algebra homomorphisms.

Blv, z,y]/(@f(x) — 9(y)) — Blv,z,y)/(0*f(2) —g(y)); ¥ —— 2* (49)

Blw,z,yl/(wg(y) — f(x)) — Blw,z,y]/(w?g(y) — f(2)); © —— w?
Finally, we name exceptional divisors on X. We use this notation in Section 8.

Definition 3.16. For o € ¥2, we define the exceptional divisor Q, C X by the
following fiber product.

Q, —— X
lJ i (50)
T —25Y

The morphism X — X induces the 2: 1 map Q, — Q..

4. CONSTRUCTION OF AUTOMORPHISMS OF THE FAMILY OF KUMMER SURFACES

As in Section 3, we fix a field k£ whose characteristic is not 2. Moreover, we
assume k contains v/—1. Until subsection 7.1, we assume these conditions on k.
In this section, we will construct a group G and its action to a scheme X ", which

is a base change of X in Definition BTI0. To construct G-action on X’ we construct
following objects in (Sch®"/k).

(T/7 Q) — (Tv QO)

/ pri / jl”‘i
(51)

(X,G) — (¥,G) —— (V',G) ————— (¥,Go)

J (', H) JH (S, Hy)
A

(P, H) ————— (P§, Ho)

We will construct them in the following order.
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(1) We start with H, = Autx(S) = &({0,1,00}) (Definition B). We define
a Hy ~ Gj-action on Pk so that ¥ C Homg(S,P}) is compatible® with
(PL, Ho) — (S, Hy). Then we consider their base changes by a finte étale
extension Spec A’ = S — S (Definition E6) and get (S’, H) and (P§,, H).
The group H is isomorphic to &4 (Remark E3).

(2) We define the following objects in (Sch®’ /k) (Definition EI0)

T,Q = SXkS,ﬂ Xﬂ ’ T/;Q = S/ st/aﬂxﬂ
0 0 0

52
(V,Go) = (PY x, Py, Hy x Hy), (V',G) = (Pg xp Pk, H x H) (52)

(3) To lift the G-action on )’ by the double covering YV =Y xr T — Y,
we use Proposition ETI. Since Y is constructed from (.2, 7) in Definition
B6, we will construct linearization on .Z satisfying the liftability condition
(B3). For this purpose, we consider a group G which is a 7./ 27-extension
of G (Definition B17).
(4) Since the G-action on )’ stabilizes the blowing-up locus of X’/ — f’, we
can lift G-action on )’ to X' = X xp T" (Proposition E20).
We calculate some opposite 1-cocycles in Subsection 4.4. They are important for
the description of the group action on the higher Chow subgroup =" (Section 6),
on the 2-form w € I'(X, Q?Y,/T/) (Section 7) and on the sheaf Q,, (Section 9).

4.1. Automorphisms on S and P}. In this subsection, we construct objects and
a morphism (P}, Ho) — (S, H,) in (Sch®?/k).

Definition 4.1. We define H, = Aut(S). If we regard S = P} — {0, 1, 0}, every
Ty € H, extends to an automorphism on P} which stabilizes the k-rational point
set {0,1,00}. Hence we have the following group isomorphism.

Autk(S) = ﬂ() L> 6({071700})
w

w
7o — (o= 7o(e))

(53)

We often identify H, with §({0, 1, 00}). The correspondence of H, and §({0,1, c0})
is given in Table M. Note that the composition on &({0,1,00}) is defined as the
usual order. For example, (01)(0 co) = (0 00 1). Thus H,, induces an opposite
action on the ring A.

TABLE 1. The correspondence of H, ~ &({0, 1, 00})

o, || o |z
id c (01) |1-c¢
)| =5 || (0100) 1ic

c—1

(0 o) % (00 1)

C

Next, we define a subgroup Hy of the automorphism group of Pk. Using the
notation in Definition 271, we have the following group.

Py —— S
Aut(Py; S, Hy) = ¢ (10,7,) € Autg(Py) x H : JTO JIO commutes.

P, —— S
(54)

5See Definition -3 for the definition of compatible sets.
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Since the natural projection Aut(Pk;S, H,) — Auty(P}) is injective, we iden-
tify Aut(Pk; S, H,) as a subgroup of Auty(P5). We often denote an element in
Aut(Pk; S, H,) by 79. For 19 € Aut(Pk; S, H,), the image of 7o under the natural
projection Aut(Pk; S, H,) — H, is denoted by 7.

Definition 4.2. We define Hy as the following subgroup of Aut(P; S, H).
Hy = {7’0 € Aut(Py; S, Hy) : Forany 0 € ¥, 7o o ozal € E.} (55)

Then we have a natural morphism « : (P§, Ho) — (S, H,) in (Sch®"/k). By the
construction, ¥ is compatible with a : (PY, Ho) — (S, H,). By Definition 223, Hy
has the following natural set-theoretic action on X.

Hy — 6(2) = 6({0,1,1/c, 00})
w w (56)
o (0 moooTy ")

Proposition 4.3. The group homomorphism (BB) is an isomorphism.

Proof. Let 19 € Hy. We have the following diagram.

—1
1 7o 1 _To 1
Py —— Pg -—-- » Pg

I o

where 7, : PL — P} is the morphism idp: x 1ot i Py =P xx S — P} x; S =Pk.

Then (75 ')¥(z) = 2 where 2 is the inhomogeneous coordinate on P} in Definition
BI. Since 7, o7 : P — PL is a morphism over S, we can write (75" 0 79)#(2) =

pz+q .
. Where p,g, 7, s € A. Hence we can write
# pz+q
T0(2) = ,q,r,8 € A). 58
0(2) rz+s (p,q ) (58)

First, we check (BA) is injective. Suppose 79 € Hy lies in the kernel of (Bf). Since 7y
acts trivially on X, 79(0) = 0, 70(1) = 1, 70(1/c) = 1/c and 79(00) = co. Especially
we have

p-0+q_0 p-1+q_1
r-O+s r-l4+s 5
pritg 1 p-oo+q (59)
r.l_|_8_ ?i ’ . =

e To(c) reoo+s

Hence we see that Tg(z) =z and Ig(c) =c. le. 79 =idpy,.

Next, we check that (BH) is surjective. It is enough to find elements in H
corresponding to (01),(011/co0) € &(X) since they are generators of G(X). We
use the presentation in (B8) again. For example, to find 79 € Hy corresponding to
(011/co0), it is enough to find p,q,r,s € A such that

p-O0taq pl+g_ 1
r-0+s ’ r-l+s Tg(c)

1 (60)
prgta p-ootg
—X— =00 =0

- )
it r-oo+s

From these conditions, we can find a pair of automorphisms (79, 7,) € Autg(PL) x
H, such that 7{(z) = —L_ and 7i(c) =1 — ¢, which is in Hy and its image under

the map (B6) is (011/coo) € &(X). Similarly, we can find the element of Hy such
that its image under the map (BH) is (01) € &(X). O
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Remark 4.4. By Proposition B23, we often identify Hy with &(3). The explicit
correspondence of Hy ~ G(X) is given in Table B. We can find these correspondence
by the same method we use in the proof of Proposition E23. In the table, for each
T0 € Hp, the image of ¢ under Ig : A — A and the image of the local coordinate z

under Tg : Opr = (70)+Opy, are given.

TABLE 2. The correspondence of Hy ~ &({0,1,1/¢,00})

id‘ c ‘ z
n o]l Hde || v» [Belde | o |[do]de
(01) < | 1=z |[(01/c)[1—c| =22 || (000) 1 1
(1)coo) | =55 | 8222 [ Q1oo) |1-c| 25 [[(Q1/0)| 1L cz
n  |delde| v |delde | n | #de]|He)
OD1/co) | e [E2 ][O0 | ¢ [ X% | 00a1e| ¢ | L
o h(0) | () o h(0) | 7(2)
011/c) | & |1—cz| (01/c1) | =2 | =2
(0ool) | & =1 (01oo) | <% e
(01/coo) | 12 | 10 || (000 1/0) | 55 | a=5:
(lool/e) | & | S=F || 1 1/coo) | <2 | 2=
n | Zolde | v |Zelde | n  [Zdo] e
(01/cloo) | ;5 | oy || 011/coo) [1—c | = || (0lool/e)| ¢ Lz
Oooll/e) | & | =2 | (Oool/el) | 1—c| 55 || 01/cool) | 1| S22

Remark 4.5. We have a bijection
{{{0,1}, {00, 1/¢}}, {{0, 00}, {1,1/¢}}, {{0,1/c}, {1,00}}} ~ {0,1,00}  (61)
defined by {{0,1}, {00, 1/c}} — 0,{{0,00}, {1,1/c}} > 1,{{0,1/c}, {1,00}}} -
oo. Since G(X) acts on the set on the left hand side, we have a group homomorphism
6(%) — 6({0,1,00}) (62)
The group homomorphism Hy — H,, is identified with the group homomorphism
(B62) under the identifications Hy = &(X) and H, = 6({0,1, c0}).
4.2. A finite étale covering S’ — S and lifts of group actions. To get enough
automorphisms of the family of Kummer surfaces, we have to enlarge the base

scheme S. As we will see later in Section 5, this base change is also necessary for
the construction of higher Chow cycles in ="

Definition 4.6. We define an A-algebra A" as A’ = A[J/c,v/1—¢] and &' =
Spec A’. We have a natural morphism S’ — S induced by A < A’. Furthermore,
we define H = Aut(S; S, H,). i.e.
S —— S
H =< (1,79) € Autg(S") x Hy, : lz \FO commutes. (63)

S — 8
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Then we have a natural morphism 8 : (S, H) — (S,H,) in (Sch®"/k). Since
the natural projection H — Autg(S’) is injective, we regard H as a subgroup of
Autg(S"). We often denote an element in H by 7. For 7 € H, the image of 7 under
the natural projection H — H, is denoted by 7, € H,,.

Proposition 4.7. We have the following properties about (S’, H).
(1) S’ — S is a finite étale morphism.
(2) We have the following isomorphism between k-algebras. Especially, A’ is
an integral domain.

~ +1 -1
A=kl veviTe— B E o)

(3) The group homomorphism H — H, is surjective.
(4) The kernel of H — H, is isomorphic to pa(k) x pa(k).
Especially, H fits into the following exact sequence.

1— pa(k) x po(k) — H— H, —1 (65)

Proof. We can show (1), (2) and (4) by the ring theoretic calculation. To prove (3),
we construct the lifts of 7, € H explicitly. The result is summarized in Table B. In

the table, we give the image of v € k {7, 471)} under the ring homomorphisms

f . 1
T k [’Y’ y(v*-1)
I(u) A — A O

] ~ A - A~k {’y, W] corresponding to the lifts of each

TABLE 3. The lifts of 7o € H, to H

Ol EG) B (y)

c +y, %2 1—c £V/-1y, £V

c +1 — 1 1o+l /S

c—1 :I:f; 17ijy+1 1—c + :Yy 1v:|: 1~,+1
c—1 V-1 V=1 1 / *'y+ /12

¢ +5 F’iwf E + i 7+F

Remark 4.8. More strongly, we can show that H is isomorphic to &4 as fol-
lows. By the isomorphism (64) in Proposition B2, we can regard S’ = IE”,IC —
{£1,+£y/-1,0,00}. Let N = {£1,£y/—1,0,00} C Pi(k). If we plot points of
N on the Riemann sphere P!(C), N forms an octahedron. We can check that H
acts on this octahedron and H is naturally isomorphic to the octahedral group,
which is isomorphic to Gy.

Definition 4.9. We define (P}, H) € (Sch®’/k) as a fiber product of (P§, Hy) and
(S",H) over (S, H,) in (Sch®"/k).
Py, H) —— (8", H)
l " LB (66)
(Py, Ho) —— (S, H,)
By Proposition 22, H is equal to the fiber product
Ho Xy, H ={T = (10,7) € Hy x H : a(70) = B(7)} (67)

where a and /3 are group homomorphisms corresponding to « : (Py, Ho) — (S, H)
and 3 : (S',H) — (S, H,). Since Hy ~ H ~ &, (Proposition £23 and Remark BR)
and H, ~ &3 (Definition B1), we have H ~ &4 xg, G4.
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By definition, we have the following natural group homomorphisms H — H and
H — Hy. By Remark BF and Proposition B4, they are surjective.
H—H T —
]

Hy —» H, To /> T

(68)

—— N

The images of 7 € H in Hy and H are denoted by 7y € Hy and T € H, respectively.

Definition 4.10. We define the following objects in (Sch®’/k).
(T,Gy) = (8, Hy) x (S, Hy), (Y. Go) = (P, Ho) x (Pg, Ho)
(T",G) = (S H) x ($" H), (¥,G)=(Pg,H)x (Pg,H)

By Proposition 22, G,,, Gy, G and G coincide with Hy x H,, Hy x Ho, H x H and
H x H. By considering the direct products of morphisms in (BH), we have the
following morphisms in (Sch®’ /k).

V. G) —— (1T'.G) G > pr——mp € G

| | |

(Y, Go) — (T, Gy) Go 3 po —— p, € Gy

(69)

(70)

—

By checking the universality, we see that the left diagram in (IZ0) is the fiber product.
Especially, )’ is the base change of ) by T — T. We denote the images of
p € G under the group homomorphisms in () by p € G, po € Gy and p, € G,
respectively. Furthermore, for p € G, its first and second components are denoted
by p(M) and p® respectively. i.e.

G={p=(p"M,p?):pM,p® € H} (71)

(i)@(i) for ¢ = 1, 2 similarly.

We define p("), py
Definition 4.11. We define B’ = A’ ® A’. By definition, 7" = Spec B’. For
any scheme Z over T, Z' denotes the base change of Z by 7" — T. For example,
YV =YxpT, X =X xp T and Q) = Q, xr T'. This notation is compatible
with ' = Y xp T".

Proposition 4.12. The B’-rational point set $2())") is compatible® with (V',G) —
(T',G). Especially, G has a natural action on 2.

Proof. By Definition B2, 3(P}) is compatible with (P%, Hy) — (S, H,). Then by
Proposition 24, $(PL,) is compatible with (PL,, H) — (S, H). Since (',G) —
(T",G) is the direct product of (Pk,,H) — (S’,H), ¥*()') is compatible with
(V',G) = (T",G) by Proposition 4 again. O

4.3. Linearizations on . and cocycles ¢, x. In this subsection, we define a

linearization of . which give rise to a lifting of the G-action on )’ to Y'. Since ¥ =
priQ g ®0y, Pr3Q g, we have a G-linearization {¥,},cc on . However,
s’ S/

by this natural G-linearization, \P?(_Q)(p* (n)) and n differs by

VD (" () = xo(p) " - 1. (72)
where o is an opposite 1-cocycle. The first aim of this subsection is to get the
explicit description of this yg. Then we will find an opposite 1-cocycle X such

that 2 = xo. For this purpose, we introduce opposite coboundary 1-cocycles x,
XM and x(® and take a Z/2Z-extension G of G. Finally, using Y, we modify the

6See Definition B for the definition of the B’-rational point set $2()).
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linearization {¥,},cc on . and get a new G-linearization {X5}5cq on £ which

satisfies the liftability condition (B3) in Proposition ECTTL

Definition-Proposition 4.13. We define H-linearization {®:}rcn of O /50 08
S/

the canonical one induced by Proposition Z6. By definition, {®,},cn satisfies

@, (r*(d2) = 2 (+4(2)) - d (73)

We define an opposite 1-cocycle ¢ : H — R(Pk,)* as the opposite 1-cocycle as-
sociated® with ((Q%,g//S/)®(—2), {(I)?(*?)}TeH,E), where h is the section defined in
Definition 181. By definition, ¢o(7) can be computed as follows.

2
wr) = (3D ik (74)

By the computation of ¢o(7) for each T € H, we have the following properties.

(1) ¢o(7) is determined by the image of T under H — H,.
(2) The explicit description of ¢o(T) is given by the following table.

TABLE 4. The opposite 1-cocycle ¢g

1o |0 [do(m) | 10 [T | dol)
id c 1 (01) |1—c| -1
(loo) | =55 | 1=c |[(01o0) | = | c—1
(0c0) | 1 c (0ool) | <L —c

Especially, ¢o(T) € A*.
From these properties, we regard ¢o as the opposite 1-cocycle Hy — A*.
Definition 4.14. (Definition of xo) For ¢ = 1,2, we have an G-linearization
{pr;®, o }pec of priy, /5 by pulling back (cf. Proposition 270) the H-linearization
sl
of Q%ﬂ /s in Definition B3 by pr; : )’ — PL,. Then we define a G-linearization
S/
{U,}peq of £ = pri‘ﬂllpé//s, ®0,, pr%‘Qnﬁg//S, by

U, =pri®,u) @pra®,e. (75)
Since® prg(h(z)) = f(x) and prg(h(z)) = g(y), we have
prieno) = (L)) L
(6; ) e) -
o) = () FA0

We define x¢ as the opposite 1-cocycle associated with (&, {\I/?(72)}peg,7]). By
definition, we have the following equations.

TEED (p* () = xo(p) ™' (77)

xo(p) = pri(do(p™))pri(60(p™)) € B (78)
By (Z8), we can calculate xo from Table M.

"See Proposition 29 for the definition of associated 1-cocycles.
83ee Definition B for the definition of the polynomials f(z),9(y).



22 KEN SATO

We will find an opposite 1-cocycle X such that Y2 = xo. First, we will find an
opposite coboundary 1-cocycle ¢ of H whose square coincides with ¢y up to sign.

Definition-Proposition 4.15. (Definition of ¢) For 7 € H, we define

¢(r) = 7* (fﬂ) : (f:/z>_l (79)

The explicit description of ¢ is given in Table @ in Section 9. The opposite 1-cocycle
¢ of H has the following properties.

(1) For T € H, we have
¢o(7) = sgn(z,) - ¢(1)*. (80)

where sgn : Hy ~ &({0,1,00}) — {£1} is the sign map.
(2) ForT € H, ¢(1) € (A')*.

Proof. To prove (1), it is enough to calculate

¢(r)* = 1* ((CQC(_lc_f)l)?;) : <(C2C(_16_+C)1)2)1 (81)

Since the right hand side of the above equation depends only on the image 7, € H
of € H under H — H,, and ¢o(7) also depends only on 7, by Proposition B3, it
is enough to check (BO) for each 7, € H, by using Table [l and Table B. (2) follows
from (1). O

We get an opposite 1-cocycle x of G whose square coincides with y up to sign.

Definition 4.16. (Definition of x(*), x(®) and y) For p € G, we define

X (p) = prg(¢(£(i))) € (B)* fori=1,2

(82)
x(p) =xW(p) - xP(p) € (B)*.
By Proposition B13, y satisfies the following equation® for p € G.
xo(p) = sgn(p{V)sen(p?)) - x(p)? (83)

By Definition BIH, to find an opposite l1-cocycle ¥ such that X2 = Yo, it
is enough to find a square root of the group homomorphism G — {+1};p —
sgn(g(()l))sgn(&(f)). Hence we enlarge G as follows.

Definition 4.17. (Definition of é) Let G be the following fiber product of groups.

G— s k) 3 ¢

| I -

G ——— (k) > ¢
w W
p —— sgn(p{")sgn(p?)

Then G can be written as follows.

G ={(p,¢) € G x pa(k) : sgn(p{")sgn(p{?) = ¢*} (85)

9See Definition K10 for the notation B(()l)’&()?).
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We denote an element in G by p or (p,¢). We define sgn : G — ua(k) as above.
Since /=1 € k, pa(k) — p2(k); ¢ + (2 is surjective and the kernel of this group
homomorphism is ps(k) C p4a(k). Especially, we have the following exact sequence.

1 —— pa(k) S 6 1 (86)
(P, Q) ——p

Finally, we get the desired cocycle .
Definition-Proposition 4.18. For p = (p,() € G, we define

X(p) =sgn(p) - x(p) = ¢ x(p) € (B)*. (87)

where p € G is the image of p € G under G — G. Then X defines an opposite
1-cocycle ofé on (B")*. Here G acts oppositely on (B')* through G—G—G.
Furthermore, X satisfies the following equation for any p = (p,¢) € G.

X(5)* = xo(p) (88)

Proof. Since sgn is the group homomorphism and G acts on u4(k) C B’ trivially,
sgn is an opposite 1-cocycle of G. Thus X is the product of opposite 1-cocycles and
X is also an opposite 1-cocycle. Since sgn satisfies sgn(p)? = sgn(&()l))sgn(géz)), the
equation (B8) follows from (83) in Definition B18. O

44. A é-actiorl on the family of Kummer surfaces X’. Recall that V' is the
base change of Y by T — T (Definition E1T). Using the opposite 1-cocycle X in
Definition EIR, we can lift G-action on )’ to G-action on ).

Proposition 4.19. We have a G-action on Y’ such that (j)v',é) = (V,G) is a
morphism in (Sch®®/k). For p = (p,¢) € G, p* : O3, — psOg;, is described as
follows.

1 O
v p), Yo W), ue XO) T o (@) 5 () (89)
where we use the notation in Proposition B.7.

Proof. For p € é, consider the following Oy/-module isomorphism.

Xyipt oy g XD @ (90)

where X(p)~! denotes the Oy/-module isomorphism induced by the multiplication
of X(p)~! € (B)* =T()',05,). By the cocycle condition of ¥, and the property
of the opposite 1-cocycle, {Xﬁ},‘o‘eé satisfies the cocycle condition. Hence we have
the new G-linearization {Xﬁ}ﬁeé of .Z. Then by Definition 14 and Proposition
T8, we have

X2 () = X2 WD (0" 0) = KB xol) e =n (91)

Especially {X,} g satisfies the condition (B3) in Proposition Tl Since V' is the
double covering associated with (£, n) by Proposition B2, we have a G-action on
V' such that (), G) — ()', @) is a morphism in (Sch®/k) by Proposition P,
We can calculate the local description of G-action directly from the construction
in Proposition ET1. We can confirm that this action preserves the local equation
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u? — f(x)g(y) =0 of V' as follows. For p = (p,() € G, we have
pH(u® = f(2)g(y)) = p*(u)* — p(f(2))p* (9(y))

2
=10 (o@D ) ) = AT
(D o R [ B 2

e S (D) 0 =l ()5 0)) fat)
— ol (2 2w 2 - f@ale) =0
(BR) or dy

()

(]

Recall that X’ is the base change of X by T — T (Definition ETT). We lift the
G-action on )’ to X”. Since X" — )’ is blowing-up, it is enough to show that the
blowing-up locus is stable under G-action.

Proposition 4.20. We have the following.
(1) The set $2()') of B'-rational points is compatible with (V',G) — (T", Q).
(2) There exists a G-action on X' such that (X',G) — (V',G) is a morphism
in (Sch®” /k).
(3) For p=(p,C) € G, p': Oxr — p.Oux: can be described locally as follows.

sgn(p{M) X (p) éé(p“(y))v
¢ xPp) (i)
Here we use the notation in Proposition B10.

Proof. By Proposition E12, $2()) is compatible with (J’,G) — (T",G). Since
the G-action on JNJ’ is aNIift of G-action on )’ and each g € 2 is contained in
the branching locus of )’ — )’, we can check that ¥?()) is compatible with
(V',G) — (T’,G). Hence we show (1).

By Proposition B2, X’ — ) is the blowing-up along $2 C )'. By (1), %2 C Y
is stable under the G-action. Hence by applying Proposition 2212, we have (2). (3)
follows from the local description in Proposition E19 and the definition of . [

e pf(x), Yy pMy), (93)

Recall that for o € X2, Q, C X denotes the exceptional divisor over o C y
(Definition BIT) and @/ denote the base change of @, by 77 — T (Definition
EI0). The closed subscheme @, C X’ is the same as the inverse image of o C )
by X’ — )'. Hence we have the following.

Proposition 4.21. For p = (p,() € G and o € X2, the following holds.
P(Qs) = Q)0 (94)

where p - o is the image of (p,0) € G x X under the map G X ¥ — X induced by
the G-action on X in Proposition .13

Finally, we can prove Proposition I3 as follows.

Proposition 4.22. The automorphism group of X' — T’ has a finite subgroup G
which is isomorphic to a Z/27 extension of (&4 X&, &4)°.
Proof. Tt is enough to show the following.

(1) We have an injective group homomorphism G — Auty (X — 7).
(2) The group G is isomorphic to a Z/27Z extension of (&4 xg, &4).
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By Definition B0, Proposition BET9 and Proposition B2, we have following mor-
phisms in (Sch®’/k).

(X',G)— (V,G) = (V,G) = (T',Q). (95)

By the explicit description in Proposition B20, G-action on X’ is faithful. By
Definition E-I, we have (1). By the exact sequence (B8) in Definition B17, G is
ua(k) ~ Z/2Z-extension of G. Furthermore, G = H x H (Definition BE10) and
H ~ 64 xg, 64 (Definition B9). Hence we have (2). O

For later use, we name G-actions on fibers of X’/ — T”.

Definition 4.23. For a k-rational point ¢ € T"(k), let X; denote the fiber of
X’ — T’ over t. We denote the natural inclusion X; — X’ by i;. For p = (p,() € G,
let p(t) € T'(k) denote the k-rational point p o t. We define p; : Xy — X, as a
unique isomorphism over k which makes the following diagram commute.

X’ - T’
~ i
Jﬁ X, ————— Speck
| (96)
X' i T’ p(t)
S~ v —~
2(6) X,y ——— Speck

5. CONSTRUCTION OF A SUBGROUP = OF THE HIGHER CHOW GROUP

In this section, we explain the construction of a higher Chow subgroup = C
CH?(X°, 1) where X° is an open subset of X”. First, we construct 2" ¢ CH?*(x°, 1)
and we define = as the sum of p, =" where p € G. For the construction of higher
Chow cycles, we use the following results (Corollary 5.3 in [Ml00]).

Proposition 5.1. Let X be a variety over k. The higher Chow group CH?(X,1)
of X s canonically isomorphic to the homology group of the following sequence.

KM (R(X) = @ Rz 5 P z-p (97)
ZexW peX (2

Here X X®2) qre the sets of integral closed subschemes of X codimension 1 and
2, the map div is the sum of the divisor map divy for each Z € XV and T is the
tame symbol map from the Milnor K -group K)(R(X)) of R(X).

Hence to construct higher Chow cycles, it is enough to find a collection of rational
functions which lies in the kernel of div.

5.1. A familiy of curves C on X°. We construct a family of curves C, which is
the key for our construction of higher Chow cycles. First, we define an open subset
T° C T'. Hereafter we consider all things on this open subset.

Definition 5.2. Under the G-action on B’, the orbit of a — b € B’ consists of the
following six elements up to multiplications of elements in (B’)*.

b 1 1 b—1
-——a——,a— —,0— ———
b—1’ 1-v b’ b
We define a k-algebra B° as the localization of B’ by these six elements. We define
T° = Spec B°, which is an open subscheme of T’. For a scheme Z over T, Z°
denotes its base change by T° < T”. For example, Y° = V' xp/ T°, Y° = V' xp/ T°

and X° = X' xp T°.

a—ba+b—1a (98)
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By the construction, T7° C T’ is stable under G-action. Hence we have the
following diagram in (Sch®’/k) whose vertical morphisms are open immersions.

(x°,G) — (3°,G) —— (3°,G) —— (T°,G)
l l 1 1 (99)
(X',G) — (V.G) —— (¥V.G) — (T",G)

Definition-Proposition 5.3. We define a closed subscheme D C Y° by the lo-
cal equation x = y. Furthermore, we define a closed subscheme D — Y° as the
following fiber product.

D 370
J - J (100)
D — )°

The closed immersion D — 370 is described locally on }70‘20 C Y° as follows.

Spec B°[u, 2]/ (u? = f(2)9(z)) — Spec B°[u,a,y]/(u? = f(x)g(y)) = Y5, (101)

where f(z),9(z) are polynomials in (BY) in Definition B8 and the morphism is
induced by x — z and y — 2.

y =00
_1
Y=5%
y=1
y=0
D
z=0 r=1 1 T =0
= —
a

FicUre 2. The figure of D on Y°

Definition-Proposition 5.4. We define a closed subscheme C C X° as the strict
transformation of D — Y° by the blowing-up X° — Y°. The closed immersion
C — X° is described locally on Vi, W5, C X° as follows.

Spec B°[v, 2]/ (v*(1 — az) — (1 = bz)) — Spec B°[v, 2,y]/(v* f(z) — 9(y)) = Vi

Spec B°[w, 2]/(w?(1 — bz) — (1 — az)) » Spec B°[w,z,y]/(w?g(y) — f(z)) = W5,
(102)
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These morphisms are induced by x — z and y > z.

By the description in Proposition B4 and the fact a — b is invertible on T°, we
see that C is a conic bundle on T° with a section (e.g. (z,y,v) = (0,0,1)). Hence
we have the following corollary.

Corollary 5.5. The T°-scheme C is isomorphic to Pk..

In this subsection, we constructed the following closed subschemes.

’y ” yo (103)
| I, )
strict transform pull-back D

—can

5.2. Construction of a subgroup =" of the higher Chow group. In this
section, we will construct a subgroup E" of the higher Chow group CH2(X °,1).
For the construction, we consider the closed subscheme C in the previous subsection
and exceptional divisors Q?o,o)» Q‘(’Ll) and Q?oo,oo) in Definition BZLT.

To define rational functions on them, we use the following local descriptions of
Q?O,O)’ Q?l,l) and QE’OO,OO). Since Q?o,o) and Q‘(’Ll) are contained in V) o and defined
by the equation x =y = 0 and x = y = 1, we have the following description.

Viso N Qfo.0) = Spec B°[v, x, 4]/ (v* f(x) — g(y), 2, y) = Spec B°[]
Vo N Q% 1y = Spee B°[v, x, 4]/ (v* f(x) — g(y), & — 1,y — 1) = Spec B°[v]

To get the local description of QE’OO ) We consider the following affine open sub-
scheme V°; of X°.

V1 = Spec B°[v', &) /(v')*€(€ = 1)(& — a) = n(n —1)(n — b)) (105)
Here € = %,77 = % and v’ = Z—zv. Since @
we have the following description.

VE1NQs ooy = SPeC B[V, &, 1] /((v)2€(€—1)(§—a)—n(n—1)(n—b),&,7) ~ Spec B°[v/]
(106)

(104)

is defined by the equation £ =n = 0,

(00,00)

Definition-Proposition 5.6. We define siz B°-rational points p3(e € {0,1,00},6 €
{+,—1}) on X° as follows.
(1) pa' and py correspond to B°-rational points on Vi, C X° such that (v,2,y) =
(1,0,0) and (v,z,y) = (—1,0,0) respectively.
(2) p{ andpy correspond to B°-rational points on Voo C &X° such that (v, 2,y) =

(g,l,l) and (v,z,y) = (—\/7”;:2,1,1) respectivelsy.

(3) pt, and py, correspond to B°-rational points on VP C X° such that
(v, &n) = (%70,0) and (v',&,n) = (——Z,0,0) respectively.

By the local description, we have the following relations.

CN Qo) = Py Upy, €N Q= piUpy, €N Qloo,00) = pL Ups  (107)

Definition-Proposition 5.7. We define the following non-zero rational functions
on C, Q‘(’O 0y QE’l 1) and Q‘(’OO 00) using the local description in Proposition b4 and
equation ([0H4),(IMF).

) _1

=) v = (o ) (v A
Yoo = (v+ %) - (%%)_1 € R(C)*

=l

]
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Qfo.0) Q1) ;)
e pf L C
Py PI P
| z ; 0 z ; 1 Z=00 | 1
p= — 2= —
a b

FIGURE 3. The relation between pS and C, Qfue)

X
o« po=(-1) (1) e R(Q)
—1 X
e o= (v-Y22) (v+42)  er(Qy)
-1 X
o) () n(an)
Then the rational functions s, 1, satisfy the following relations.
(1) dive(vo) = py —pg = —divgy, , (¢o)

(2) dive(yn) =p — p;r = _diVQ?Ll) (1)
(3) dive(too) = P — Pl = —divge_ _ (o)

<

Then we can construct a subgroup =" of CHQ(X °,1) at most rank 3 as follows.

Definition 5.8. (Definition of Z°*") Consider the following elements of € ;¢ (yoya) R(Z)*.

o = (C,v0) + (Q{p,0): 0)
&= (C,v1) + (Qf1 1) 1) (108)
é-oo = (Ca woo) + (Q?oo,oo)’ ()OOO)

By Proposition 672, they are in Ker (@ZG(XO)U) R(Z)* div, @pe(XO)w Z - p). Hence

these elements define elements in CH?(X°, 1) which are denoted by the same sym-
bols &y, &1, £xo respectively. We define 2" ¢ CH? (X°,1) to be the subgroup gen-
erated by &y, & and £s. For e € Z1010} ) we set

§(€) = €(0)€o + €(1)&1 + €(00)6s0 € ET. (109)

By the following pull-back map, we can regard an element ¢ € CH?*(X°,1) as
a family of higher Chow cycles {&;}tero. The existence of the following pull-back
map is given in [Lev98], Part I, Chapter II, 2.1.6.

Definition 5.9. For a k-rational point ¢t € T°(k), iy : Xy — A° in Definition 023
is a k-morphism between smooth varieties. Hence we have a pull-back map

ir : CH*(X°,1) — CH?(X;, 1). (110)
For each ¢ € CH?(X°,1), if¢ is denoted by &.
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Proposition 5.10. For a k-rational point t € T°(k) and e € ZIOL>®} ¢(e), €
CH?(X;,1) is represented by the following element in D, R(2)™.
€(0 e(1 €(oco
(C (0 )i o) ™)

+ Q.01 (#0)e ) + (Qrayes (£1)5™M) + (Q(ovseys (900) ™)

Here Ct,Q(e,0)¢ are the fibers of C and Q?.’.) at t and (Ve )1, (o)t are the pull back
of the rational function e, pe by Ci — C and Q(e,e)r — Q‘().’.).

(111)

Proof. Recall that we regard elements in € ¢ (o)1) R(Z)™ as elements in Z%(x°,1)
C Z%(X° x AY) (A = Speck[Ty, T1]/(To +T1 — 1)) by considering their graphs of
rational functions. For example, (C, 1) represents a codimension 1 integral closed
subscheme of C x;, Al defined by the local equation

<’U— H) T0+ <’U+ \/%) T1 =0. (112)
Here we use the local coordinates of C in Proposition b4. This closed subscheme
intersect properly with X; xx AL, X, xx {To = 0}, &; xi {T1 = 0}. Hence the
pull-back of the cycle corresponding to (C,%;) by X; < X° is defined. Since
the intersection of this closed subscheme with X; xj Al is integral, the pull-back
coincides with this intersection. Furthermore, this intersection is the graph of (¢1);
by definition. By considering pull-backs of (C, ) and (Q‘E.,.)7 o) for ¢ = 0,1, 00
similarly, we can show that

(Ct, (Y0)t) + (Q0,0).¢> (¥0)t)

(Ct, (Y1)e) + (Q1,1),¢ (91)1) (113)
(Cta (woo)t) + (Q(oo,oo),tv (‘poo)t)
represents £ +,&1,: and oo ¢ € CH? (X, 1). Hence we have the result. O

5.3. Definition of a subgroup = of the higher Chow group. In this section,
we define £ ¢ CH?(X°,1) and give representatives in D ze(xoy R(Z)* for cycles

in =. In Section 6, we use these expressions to show that a subgroup I of G stabilize
Zean © CH?(X°,1).
Definition 5.11. We define a subgroup = of CH?(X°,1) as

E=) pEM (114)
peG
where 2" ¢ CH?*(X°,1) is the subgroup of higher Chow group defined in Def-
inition and p, : CH?*(X°,1) — CH?*(X°,1) is the push-forward map induced
by an automorphism 5 : X° — X°. For a k-rational point ¢t € T°(k), we define
=, € CH?(X;, 1) as the image of Z under 4§ in Definition 59.

Definition 5.12. For p € G, we define a closed subscheme D, C Y° by the
schematic image p(D). Note that D, is determined by the image of p € G under
G — Gy. The local equation of D,, is given by (p~1)#(z — y) = 0.

We define 5p > 37‘3 as the pull-back of D, — )J° by )70 — Y°. Furthermore,
we define C, — X° as the strict transformation of 5,) by X° — ye.

XO yO yO
1 i 1 (115)

~ il

P strict transform P pull-back P
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Since p(D) = D,, for p € G, we have p(D) = 5p and p(C) = C,.
The following proposition follows from Proposition B21 and Definition BI2.

Proposition 5.13. By an autormorphism p = (p,() € G on X°, we have

ﬁ(C) = Cp’ ﬁ(Q(()o,o)) = QZ‘(()’O)v 5(@?1,1)) = Q;.(l,l)a 5(@?00700)) = Qz.(oc,ooy
(116)

Let e € Z19120t | Then p,&(e) € CH?(X°, 1) is represented by the following elements
in @ZE(X")(U R(Z) X .

(Cp, (/7—1)11(1/}8(0)1/};(1)2/1&(300))) + (Q;-(0,0)7 (5—1)n((p8(0)))

+(Q% 11y (DA™ + (@5 ooy (B HH (@)

where (p~1)* are the field isomorphisms R(C) — R(C,) and R(Q‘(’.7')) — R(Q;_(.).))
induced by p.

(117)

—can

Remark 5.14. As we stated in the introduction, several elements in p,=°" are at
first constructed geometrically after T. Terasoma’s idea. The keys for the geometric
construction are the following.

(1) There exists the isomorphism C, ~ P., over T°.

(2) For @« = 0,1,00, C, N Q;(o o decompose into the disjoint union of two

B°-rational points.

From these facts, we can construct higher Chow cycles in = directly by the similar
method in subsection 5.2.

6. SUBGROUPS I AND Gy, OF G

In this section, we construct two subgroups I and éﬁb of G. As we will see later
(Proposition B12), these subgroups stabilize the image of 2 ¢ CH?*(X°,1) under
the transcendental regulator maps at fibers A;.

The subgroup I consists of automorphisms in G which stabilize a subgroup of
symbols in @ ;¢ yoyn) 2(Z)* which represents cycles in Z*". Hence T stabilize
=n (Proposition G8). We describe the explicit I-action on Z¢an,

The subgroup éﬁb consists of automorphisms in G over T°. Hence elements
of éﬁb induce automorphisms of each fiber X;. Since éﬁb acts on a relative 2-
form w € T'(X°, Q%{O/To) by the multiplication +1, Gy stabilize the image of the
transcendental regulator map (Proposition B12).

6.1. Definition of I and stability of =°*" under the I-action.

Definition 6.1. By Proposition B3, we identify Hy = &({0,1,1/¢,00}). We define
a subgroup Iy C G by the image of the stabilizer of 1/¢ € {0,1,1/c, 00} under the
following diagonal embedding.

Hy —2— Hy x Hy = Go; 19 —— (70,70) (118)
Consider the following diagram.

6({0,1,1/¢,00}) = Hy —2— Hy x Hy = Gy

l(m) J (119)

S({0,1,00}) == H, —2— H, x Hy = G,

By the description of Hy — H,, in Remark B8 and the commutativity of diagram
(M), Iy — Gy — G, is injective and its image coincides with the image of the
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diagonal embedding of H,. We denote the image of Iy in G, by I,. By the argument
above, Iy >~ I,.

Remark 6.2. An element of the stabilizer of 1/¢ induces a permutation on {0, 1,00} C
{0,1,1/¢,00}. Hence we often identify™ Iy with &({0,1,00}). For each py € Iy =
S({0, 1, 00}), the action of py on Y is given in the following Table .

TABLE 5. The action of Iy = &({0,1,00}) on Y

po | (0h(@). pi0) | (@), b)) || o | (h(a), p0)) | (P, Phw))
id (a,b) («,) 01) | Ga) |-21-y)
(1oo) | (1—a,1-0) | (G21.5%) ||(01c0) | (51,550 | (h.1)
(0o0) | (2,1) L e | () | (=t el

Definition 6.3. We define subgroups I C G, I C G and I C G as follows.
I={peG:p,cly}
I={peG:py€ly} (120)
I={(p,Q)eG:pel}

Then I is isomorphic to Iy Xy I. Since Iy — I is an isomorphism by Definition
61, I — [ is also an isomorphism.

Remark 6.4. Since I, C G, is the image of diagonal embedding (Definition B1),
we have

I={(pW,p*)e HxH:p) =pP}=Hxp H (121)
Since H ~ &4 by Remark B8 and H, ~ &3 by Definition B, [ is isomorphic
to 64 X, G4. Since I ~ I, I is also isomorphic to &4 xg, G4. Furthermore,
since sgn(p{!)sgn(p{?)) = 1 for p € I, we have a splitting of I — I defined by
I-1; p— (p,1). By this splitting, we have an isomorphism I~1x Z)27.

We will show that the I-action stabilizes 2% C CH?(X°,1). Hereafter in this
subsection, we assume p = (p,() € I. To prove p,=" C =" we show that the
symbol in Proposition 513 which represents p.£(€) coincides with the symbol which
represents an element in =",

Proposition 6.5. (1) Let C, be the closed subscheme defined in Definition
B12. Then we have C, =C.

(2) Let po be the image of p by I — Iy — &({0,1,00}) where the last isomor-
phism is the one in Remark B22. Then we have the following.

Q50,00 = Qoo (00,000 @o(1,1) = Qloo(1),p0(1))r @p(00,00) = Q?po<oo>,po(<>(o>> |
122

Proof. By the description of Ip-action in Table B, the I-action on Y° stabilizes the
local equation x = y of D. Hence D, = D and by Definition 512, we have (1). (2)
follows from the way of the identification Iy = &({0,1, c0}) in Remark G2. O

We will prove that the sets of rational functions {¢F! : @ =0,1,00} and {F! :
e =0,1,00} are stable under the I-action.

10This isomorphism is different from Iy — I, = Hp = &({0,1,00}) where the second
isomorphism is induced by the diagonal embedding.
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Definition-Proposition 6.6. By Proposition 63, we have
p(pd) Uplpy) = p(CN Qle0)) = CN Qi (0),p0(0)) = p:(,(.) UDs(e) (123)

for @« = 0,1,00 where p¥,py are B°-rational points in Definition Bd. Then by
comparing connected components in (I23), we have either

Sy — ot S+ o
{p(p.)p,,o(.) - {p(p.)ppo(.)

ﬁ(po_) = p;()(.) M

124
p(pe) = Dpye) (124

for e =0,1,00. We define 6(p) € {£1}{01.2°} s follows.

o If the case (A) occurs for ¢ =0, §(p)(po(0)) =1, else 6(p)(po(0)) = —1
o [f the case (A) occurs for e =1, 6(p)(po(1)) =1, else 6(p)(po(1)) = —1.
o If the case (A) occurs for @ = 00, §(p)(po(00)) =1, else 6(p)(po(c0)) = —1.

Then we have the following.
(1) For @ =0,1,00, we have the following.

~ ) . ~ § .
(P a) = g™ (57 (0e) = ) (125)
(2) We define an I-action on {£1}{0:1°} by
Tx {1}0000) 5 1101, ((p,¢), ) — o g5 (126)

Then the map & : I — {£1}{01}: 515 §(p) defines a 1-cocycle with respect
to this I-action.

To prove this proposition, we use the following lemma.

Lemma 6.7. Let 1,0 € R(PL.)*. Assume o1 ¢ Frac(B°). Suppose that
div(p1) = div(ps) and div(p; + 1) = div(ps + 1). Then we have 1 = @o.

Proof. Since PL, is normal, div(¢;) = div(ps) and div(p; + 1) = div(pa + 1)
imply that there exist p,q € F(]P’%FO,O];I ) = (B°)* such that 1 = pps and
T0°

141 = q(1+p2). Thus (1—q)+(1—gp~1)p; = 0. Since o, ¢ Frac(B°), we have
p=q=1.1e. p1 = ps. (]

Proof. (Proposition E6) Note that C and Qs,s) are isomorphic to PL. (Corol-

lary BH). By the explicit presentations for ¢s, e in Definition B4, we see that
e YF ¢ Frac(B°). Hence we can use Lemma EZ2. By the definition of §, we
have the following relations for @ = 0,1, co.

dive (1) (1)) = dive () )
~ -1y - 53 (po(0)) (127)

BVQ2, 0y o (P (00)) = divae, | ) (Phne) )
Here we use the relations in Proposition b7d. Next, we see the divisors associated
with 1 + ¢, and 1 + ¥,. We will consider a closed subscheme Z C X° defined by
the local equation v = 0. Then we have B°-rational points ¢, qo, ¢1, ¢oo 00 X° such

that
g =2NC, qe :ZHQ‘(’.’.) (e =0,1,00). (128)

Using these B°-rational points, we can describe the divisors of 1+¢F! and 14 pF!
as follows.

. (129)

dive (L + %) = gc — Py divge, | (1+¢e) =qo — P4
divge, , (1+¢3") = o — 13

dive(1+¢.") =qe —pa



A GROUP ACTION ON HIGHER CHOW CYCLES ON KUMMER SURFACES 33

where @ = 0,1,00. This follows from the explicit presentations of Definition B.
By the explicit description of G-action in Proposition B20, we see that the closed
subscheme Z C X° is stable under the I-action. Then we have

plge) =p(Z2NC)=2NC=q.

~ ~ o o (130)
P(ge) = P(ZN Qe e) = Z N0 Q(s(0),p0(e)) = po(e)
By the definition of §(p)(e), we have the following relations for ¢ = 0,1, cc.
. ~ ~ . 5 .
dive(1+ (57 (1)) = go — p(p3) = dive (1 + 905
. ~ ~ . 5 °
BVQE, 0, oo (1 F (P DHpa)) = dpo(o) — P02 = AT U @pgi?.()po( ")
(131)
By (21) and (I31), we have (1). (2) follows from (1). O

Proposition 6.8. We have p,(E°") = =", The I-action on ¢ s given as
follows:

p* . ECaIl ECaH
w w (132)

£(e) —— €(3(p) - (eopy )

where §(p)-(eopy ') denotes the product of functions 5(p) € {+1}{%1oo} ¢ 7{0:1,00}
and eo pyt € ZL01ooh,

ey ~ (e é o)-c(py (e
Proof. By Proposition B8, (CP,H.:O’LOO(;) 1)E (g ) )) = (CJ‘LZO’LOO P2 @)(®)-elpy( )))

o ~_1 e(e)) _ ° 5(p)(po(e))-€(e) —
and (@500 (77 () ) = (e e 907 D) for 0 = 0,1, .
Therefore, we have p,&(€) = £ (5(p) - (€0 py ') by Proposition 513. Hence we have
the result. (]
Example 6.9. We calculate 4, K(i) for some elements in 1. The result will be used

in Section 9. For the calculation, we use the local description of G-action on X°
in Proposition B20. Since I — I is an isomorphism (Defintion B3), to specify
elements in I, it is enough to give an automorphism on B° which belongs to I.

(1) Let 5 = (p®,1) € I be the element satisfying that
(p*)*: B° = B°  Va,v1—a,Vb,V1—bw va,—V1—a,vVb,v1—b. (133)
Then we have p§ =id € I = &({0,1,00}), xM (p?) = —1 and x? (p?) = 1.
Furthermore, §(p®) can be computed as
6(p*)(0) = =1, 8(p")(1) =1, 6(p")(00) = 1. (134)
(2) Let p® = (p°,1) € I be the element satisfying that
(p*)*: B° = B° Va,V1—a,Vb,V1—brV1—a,va,vV1-bvb  (135)
Then we have pf = (1oo) € Iy = &({0,1,00}), xV(p?) = 1 and x@(p*) =
1. Furthermore, 6(p®) can be computed as
0(p*)(0) = =1, 8(p")(1) = =1, &(p")(00) = —1. (136)

6.2. A fiber-preserving subgroup Gap of G. In this section, we define another
subgroup Gpgp, of G.

Definition-Proposition 6.10. We define a normal subgroup éﬁb C @ as
Gp = Ker(G = G). (137)

In other words, éﬁb consists of elements in G C Auty(X°) which are automor-
phisms over T°. Then we have Gg, ~ (Z/27)5.
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Proof. First, we show Ker(H — H) ~ Ker(Hy — H,) ~ (Z/2Z)%?. We have the
first isomorphism by the fact that a fiber product preserves kernels and the second
isomorphism follows from Table 2. Hence we have Ker(G — G) ~ (Z/2Z)*. Since
B(()l) = B(()Q) = idg, for p = (pM,p?) € Ker(G — @), we have a splitting of
Ker(G — G) — Ker(G — G) defined by p — (p,1). Hence Ggy, is isomorphic to
the direct product of Ker(G — G) ~ (Z/2Z)* and Z/2Z. O

Corollary 6.11. Gg, N1 = {(idg, £1)}.

Proof. Let (p,¢) € Gg, N 1. By Definition B0, we have p=idg. Since I — [ is an
isomorphism, we have p = idg. Hence ¢ = 1. The other direction of the inclusion
is clear. O

Since I stabilize 2% (Proposition ER) and Gg, stabilize the image of 2% (C E)
under the transcendental regulator (Proposition B12), the subgroup éﬁb:f ca
stabilize the image of E°*"(C E) under the transcendental regulator map. Hence
P2 and pl, =" have the same image under the transcendental regulator map if
p,p € G are in the same left coset by Gapl. The following proposition is useful to
determine whether j,5’ € G are in the same left coset or not.

Proposition 6.12. The group homomorphism G — G induces the following bi-
jection of sets.

G/Ganl —— G,/I, (138)
Especially, we have |G/GanI| = |G,y/L,| = 6.

Proof. By the group homomorphism G — G,, Gap = Ker(é — G) maps to {idg, }
and T maps to I,. Hence we see that the surjective map G — G induces a surjection
(I38). We will see this is bijective. It is enough to compare the cardinality of
G/Ggpl with that of G,/I,. By Definition E1, |G,/I,| = |Ho| = 6. On the other
hand, by Definition 523 and Remark B3, |I| = 192. Hence by Proposition 510 and
Corollary B11, we have

|Ganl| = [Gawl 1T 79 _ 9105 (139)

|Gﬁb n I|

By Proposition E22, we have |G| = 18432 = 211 . 32. Hence |G/GgpI| = 6 and we
confirm that (IC38) is bijective. O

7. A DIFFERENTIAL FORM ON X AND A PICARD-FUCHS DIFFERENTIAL
OPERATORS

Since X’ — T is a family of K3 surfaces, we have the unique non-zero relative
2-form up to multiplication of elements in (B’)*. We specify such a relative 2-form
we X, va,/T,) and observe the group action on w. Then we compute periods of
each fiber X; and find a Picard-Fuchs differential operator with respect to {wy }ter.
In other words, we find a differential operator on (7")*" which annihilate period
functions associated with the relative 2-form w € I'(X’,Q3, J0)-

7.1. The definition of the relative 2-form w and G-action on w. We define
a relative 2-form w on X’ using a relative 2-form on £ X £. By Definition BIH, we
have the following morphisms over T

X —— (Exp &) —= Exx & (140)
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Definition 7.1. We define 6 € F(E,Q}S/S) by 6 = % where we use the local
coordinates in Proposition B2. Then we have the following 2-form on £ Xy £.
dx N\ dy

pri(0) Apry(0) = ity e (€ xg 57Q§><k£/T) (141)

where pr; : £ X &€ — & is the i-th projection and we use the local description of
& x1, € in (D). Furthermore, we define the 2-form @ € T'((€ x; &), Q%Sst)N/T) by
the pull-back of pri(0) A pr3(0) by (€ xx E)” — & xi &.

Finally, since w is stable under the Autx((€ X &)7)-action, we have a unique
element w € I'(X, Qi/T) such that the pull-back of w to (£ xx ) coincides with
w. The 2-form w is represented locally on Vo as

dx N\ dy
w= .
vf(x)
We use the same symbol w for its base change by X’ — X. For a k-rational point
t' € T'(k), We define w; € T (Xt?Q%(t/k) as the pull-back of w by #; : X} — X”.

(142)

Proposition 7.2. Let 5 = (p,¢) € G and t' € T'(k) be a k-rational point. Recall
the opposite 1-cocycle X(p) in Definition G.18.
(1) Let w be the relative 2-form defined in Definition [7.1. Then we have

Fo=30) - w. (143)
(2) Let X(p)(t) € k be the image of X(p) € B' under t* : B’ — k. Then we have
Prwp(ty = X(P)(t) - wi (144)

Proof. Since X' — T" is smooth, Q%{, /T is locally free. Hence it is enough to show
that the formula (I43) on some non-empty open subset of X’. We can show that

L [dx A dy) dp*(z) A dp(y) 9y 9 /4 de Ndy . dzAdy
= = — €T _ —_— . .

p < vf(z) o () oz ( ( )) oy (P (y)) P (u) X(p) vf(z)
(145)
Here we use Proposition 19 and the relation v = vf(x). Hence we have (1). (2)
is the restriction of (1) at fibers. O

7.2. Calculation of periods of A&;. Hereafter we assume k = C. In this sub-
section, we calculate periods of X; at ¢t € T'(C) with respect to the 2-form w; in
Definition 1.

Definition 7.3. Let X be a smooth projective surface over C and n € T'( X, Q%{/(C)
be an algebraic 2-form on X. We regard 7 as a holomorphic 2-form on X?". We

define a subgroup P(X,n) of C by

P(Xm):{/rne((::l“eZg(Xa“)}. (146)

where Z5(X?") denotes the group of topological closed 2-cycles on X*. P(X,n) is
a subgroup of periods of X with respect to 7.

Since &} is a Kummer surface associated with a direct product of elliptic curves,
P(X;, w) relates with periods of elliptic curves. We first compute periods of the
member of the Legendre family of elliptic curves with respect to the relative 1-form
0 e F(E,Qé/s).

Definition 7.4. Let s € S(C) be a C-rational point on S and &, be the fiber of
& — S over s. We have the double covering & — P{ by Proposition B2. Let v,
be C°° paths on (PL)* such that the following conditions holds.

(1) v is a path from 0 to 1 and ¢ is a path from 1 to co.
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(2) 7,0 do not pass through 0,1,1/¢, co unless edge points where ¢ € C is the
image of c € A by s*: A — C.

(3) Let 74,7 (resp. d04,0-) be lifts of v (resp. d) by € — (P&)*. Then
[v+] — [y=] and [04+] — [6—] are generators of H;(&s,Z).

If ¢ ¢ R>o, the closed intervals in real axis v = [0,1] and ¢ = [1, 00] satisty the
conditions for v and §.

If ~,9 satisty the conditions (1) to (3) at s € S(C) = S, v, satisfy the
conditions for any s’ which is sufficiently close to s € S*® in the classical topology.
Hence we can define local holomorphic functions P;, P, on S*" by the following
integral representation. Note that c is the coordinate of S".

‘/w 7 ‘A \/xu—f;(l—cx)
dx
-

where 05 € T'(Es, Qa/c) is the pull-back of 6 in Definition Z1 by £, — £. We define
a differential operator L : Ogan — Ogan of order 2 by

d? d 1
L—c(l—c)dc +(1—2c)%—1. (148)

Then we can check that L(P;) = L(P;) = 0 by the integral representation.

(147)

Let t € T(C) and pry(¢t),pra(t) € S(C) be its images by pri,pro : T — S. By
Proposition B3, (£ x¢ £); is isomorphic to &, 1) Xc Epry(r)- Using Pr, Pa, we can
describe P(Epr, (#) XC Epra(t)> PTT (Opry (1)) A P75 (Opry(r))) as follows.

Proposition 7.5. Lett € T(C). Then P(Epr, 1y XcEpryt)s P71 (Opry (1)) APTS (Opry(r)))
is generated by 4Py (a)Py(b), 4P (a)Pa(b), 4Ps(a)P1(b) and 4P(a)Pa(b) € C where
a,b € C are images of a,b€ B by tt : B— C.

Proof. By the condition (3) in Definition [Z4, the periods of the elliptic curve &, (1)
with respect to 0, ) is generated by 2P;(a) and 2P»(a). Similarly, the periods of
the elliptic curve &,,,(;) with respect to 0, is generated by 2P;(b) and 2P5(b).
Then by the Kiinneth formula, we have the result. O

Next, we see the relation between P(Ep,r, 1) X Epry (1) PTT (Opry (8)) A PT3 (Opra 1))
and P (X, wt). By restricting the morphism (I0) to fibers at ¢t € T(C), we have
the following diagram.

Xy —— (Exc &)t —— (Exc &)t — Epry(t) XC Epra(t) (149)

Let p: (€ xc &)t = Epry(t) XC Epra(r) be the composition of the right arrows in
([29) and 7 : (€ x¢ 5) = Xt be the left arrow in (I49). We have the following
morphism ¢ of Z-Hodge structures.

¢ HQ(gan X 5 an

pra( 2 (t

) s H2(((E % )70)™) —" H2(X™)  (150)

where p* is the pull-back by p and m is the Gysin morphism ([Vai02] p.178) induced
by . In other words, m is the map

H2(((€ xc €)70)™) —= Ha(((€ xc €)70)™) —— Ha(Xf") +~— H>(AF")
(151)
where 7, is the push-forward map induced on the homology group and the first and
the last isomorphisms are Poincaré duality.
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Proposition 7.6. The following relation holds in H?(X,C).
(ﬁ([prf (epn(t)) Aprs (eprz(t))b = Q[Wt] (152)

Proof. Under the isomorphism (EXc&)t > Epr, (1) X Epra( (1): the 2-form pri (0pr, 1)) A
P13 (Opr, (1)) coincides with the pull-back of pri(6) Apr3(6) in Definition T at ¢. Let
wr € T((€ xc &) 4y Q(stcf)n/c) be the pull-back of & in Definition 1 at ¢. Then
we have
*(pri (0, A prs (6, =w
p*(pi(f’ L) APT5(Opra(ry)) = G (153)
T Wt = We.
Since 7 : (€ x¢ €)7¢ — A} is the quotient by the involution (Proposition B13), =
is a generically 2 : 1 map. Hence the mapping degree of 7 : ((€ x¢ £)7¢)*" — Ap"
is 2. By the definition of Gysin map, m o m* : H2(X™) — H?(X™) equals to
multiplication by 2 (cf. [Vai02], Remark 7.29). Then we have

O([prT (Opry 1) A Pr3Opry0)]) = M [Pr1 (Opry () A P (Opry ()] = M [wi] = 2([%]-)
154
]

Definition-Proposition 7.7. Fori,j € {1,2}, we define a local holomorphic func-
tion P;; on T%" by
P;;(t) = 2Pi(a)P;(b) (teT®") (155)

where a,b € C are images of a,b € B by t' : B — C and Py, Py are local holomorphic
functions defined in Definition [7.4. Note that a,b are coordinates on T?". By
pulling-back P;; by (T")* — T*", we can regard P;j as a local holomorphic function
on (T")*" fori,j € {1,2}.

Then for each t' € T'(C), the subgroup P(Xy,wy) C C is generated by Py1(t'),
Plg(t,), Pgl(tl) and sz(t/) S C.

Proof. For t' € T'(C), let t € T(C) be the image of ¢’ by T/ — T. Then we have
P(Xiywi) = P(Xyp,wy ). Hence by Proposition [[H, it is enough to show

1 X %
P(Xta wt) = ip(gprl (t) Xc gprg(t)7pr1 (epn (t)) A pro (0p7‘2(t)))' (156)
Since A is a K3 surface and £2" o (£) X EW (1) 15 an abelian surface, their singular

cohomology groups with coefﬁments in Z are free of finite rank ([BPVR&4], Chap-

ter VIII, Proposition 3.2). Hence Ha(AX?") and Hg(é’pr1 0 > Epry (t)) are duals of

H2(X ™) and H2(52;‘ x 5 (1)) and the following morphism is the dual of ¢.

¢V Ho(X™) —Ts Ho(((E xc &))™) —2s Hy(E20 ) xc €2 ) (157)

pr (t
where 7' is the following morphism.

Ha(X7™) S H2(X™) = H(((€ xc £)7)™) — Ha(((€ xc £)7)™)
(158)
For any I € Z5(X2"), we have

[t = @l T = 5007 O 0) £ 27500 [T

1 * 1 * *
= 5 Oors0) A5 O 6 D) = 5 [ 215 Op0) £ 275 0pr0)
where ( , ) is the canonical pairing of cohomology and homology and IV € Z5(&?
or(t)) 15 @ Tepresentative of ¢V ([I']) € Ha(E2 o () %

the inclusion (C) in (I56). To prove the other direction of the inclusion, it is enough

to show that any element in Hy(EJR ) X &7 4y, Z) can be written as ¢V ([[)) for

(159)

Pf‘l(t)
o (ty)- This equation proves

X
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some [['] € Hy(X2"). By [BPVR4], Chapter VIII, Proposition 5.1 and Corollary
5.6, ¢ : HQ(E;?I(t) x Exn 12 L) = H?(Xp",Z) is injective and its cokernel has no
torsion. Hence its dual ¢V is surjective and we have the result. O

Finally we can find a Picard-Fuchs differential operator &, which annihilate the
period functions Pj;.

Definition 7.8. We define differential operators %1, %2 : O(pryan — O(7ryan by

D :a(l—a)a—Q—i-(l—Qa)g—}
8(12 8(1 4 (160)
g1t 1o L
b2 ab 4
Using these operators, we define a Picard-Fuchs differential operator 2 by
9 = (g;) F Oy = OfFtyun- (161)

These are C-linear morphisms of sheaves. By Definition 4 and Definition 72, the
local holomorphic functions P;; are annihilated by the differential operator 2.

8. BASIC CALCULATION OF THE REGULATOR MAP

In this section, we calculate the image of the higher Chow cycle & ¢ — &+ €
CHZ(Xt,l) in Definition B8 under the transcendental regulator map by using
Levine’s formula. For this purpose, we construct topological 2-chains K, and K_
on A" explicitly (Proposition B) and express the value of &, — &, under the
transcendental regulator map using the local holomorphic function £ (Definition
KT0). Hereafter we use the following notations.

(1) For a smooth variety X over C, its analytification is denoted by X?". As a
set, we have X?" = X(C).

(2) For a complex manifold X", S,,(X?®") denote the free abelian group gen-
erated by C-singular chains on X" of dimension n. The boundary
operator is denoted by 0 : Se(X?") — Se_1(X?"). We set Bo(X?") =
Im(Ses1 (X)) 2 S,(X2)) and Zo(X0) = Ker(Se(X?) 2 Sq_1(X20)).

(3) For a smooth variety X over C, we identify algebraic cycles on X of di-
mension 0 with elements in So(X®"). Furthermore, we regard a C*°-path
v :[0,1] = X" as an element of S;(X?") such that 9y = v(1) — v(0).

8.1. Levine’s formula for the regulator map. In this section, let X be a smooth
projective surface over C such that Hy(X?*,Z) = 0. We have the following canon-
ical isomorphism for the Deligne cohomology of X&".

- H2(Xan7(c) N (FlHQ(Xan,C))V
T OH? (XA Z(2) + F2H?(X2n,C) ~  Ha(X?,7Z)
where we denote the dual of a C-vector space V' by VV. The last isomorphism is in-
duced by the Poincaré duality. We regard Ho(X 2%, Z) as a subgroup of (F*H?(X?* C))Y
by the integration. By this identification, we regard the Deligne cohomology as a
quotient of the space of functionals of F*H?(X?",C).

We will recall the formula for the regulator map in [Lev&R]. Let £ be an element
of CH?(X,1). By the Proposition E1, ¢ is represented by

Hp(X™,Z(2)) (162)

S f)eKe | @ R P zop (163)

J Zex @) peX (2
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where () is a closed curve on X and f; is a non-zero rational function on Cj. Let D;
be the normalization of C;. Hence D; is a smooth projective curve. p; : D; — X
denotes the composition of D; — C; and C; — X.

First, we will define v; € S1(D3"). If f; € C*, we set 7; = 0. If f; is not a
constant function, we regard f; as a finite morphism from D; to P{ (because D;
is smooth). Let [00,0] € S1((P{)) be a path from oo to 0 along the positive real
axis. Since D" — (]P’%:)a“ is a finite covering, we can define «; as the pullback of
[00,0] by D3* — (P¢)**. Then we have

Ov; = divp, (f;) € So(D2™). (164)

Next, we will define a 2-chain I € S (X™"). Let v € S1(X*") be >_,(u;)+7; where
(115)+7; denotes the push-forward of ; by p; : D" — X*". Since Zj (Cy, f5) €
Ker(div), we have v € Z1(X?"). By the assumption H;(X?* Z) = 0, we can find a
I € S3(X?) such that ' = . We name these v and I" as follows.

Definition 8.1. In this paper, v € S1(X?") is called the I-cycle associated with &
and I' € S3(X?") is called a 2-chain associated with . Note that I" is determined
only up to elements in Z5(X?").

By [LCexv88], p.458-459, the following map is well-defined.

}711‘['_[2()(%(17 (C)\/

CH?*(X,1) X2
[Ej(cj7fj):| B MH/rwJFZ%\lﬂ/D,, Alog(fj)'u;fw mod Hy(X,7)

(165)
Here log(f;) is the pull-back of the principal branch of the holomorphic function
log 2z on (P{)* — [00,0] by f;. By the isomorphism (I32), this map is regarded as
a map to H3 (X 7Z(2)). This map is called the requlator map™.

In this paper, we do not treat the whole Deligne cohomology group. We consider
a certain quotient of the Deligne cohomology.

Definition-Proposition 8.2. The transcendental regulator map is the composite
of the following maps.

FlHQ(Xan,(C)V HQ,O(Xan)V

: CH?(X,1
r: CHA(X, 1) Hy(Xon, 7)) Hy (X, 7Z)

(166)

where the first map is the regulator map in Definition 81 and the second map is
the projection induced by H*°(X*) — F'H?(X* C). We denote this map by r.
The transcendental requlator map has the following properties.
(1) Let € € CH*(X,1) and T be a 2-chain associated with £. For an algebraic
2-form n on X, we have

HE)([n]) = / n mod P(X, ). (167)

r

where P(X,n) C C is the subgroup defined in Definition [7-3.
(2) For a decomposable cycle ¢ € CH?(X,1)qec, we have r(€) = 0. Especially,
the transcendental regulator map factors through CH?(X,1)ing.

M This definition of the regulator map is different from the map defined in [Lev88] by the
multiplication of 2w/—1. The difference comes from the definition of the Poincaré duality.
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Proof. Since we regard Ha (X", Z) as a subgroup of F1H?(X?*" C)Y by integration,
the evaluation by [] € H*%(X?") induces the following map.

H>0(X*)Y [Hy(X*, Z) —— C/P(X,n); ¢ —— @([n]) (168)

Hence r(€)([n]) should be an element of C/P(X,n). Since n is a holomorphic 2-
form and D" is a complex manifold of dimension 1, we have pin = 0. Thus
iji,Yj log(f;)u;n = 0 for all j. Hence (IE2) follows from the formula in Definition
B0. To prove (2), we use the fact that a decomposable cycle is represented by a
sum of (C,a) where a € T'(X,0%) = C* by Proposition B2. In this case, v = 0
and we can take I' = 0. Thus (2) follows from (1). O

When we compute the value of transcendental regulator map, it is sometimes
convenient to replace a 1-cycle/2-chain associated with £ (Definition B) by another
1-cycle/2-chain. Thus we define as follows.

Definition 8.3. Let ¢ be an element of CH*(X, 1) and ~ be the 1-cycle associated
with £. In this paper, v/ € Z;(X?") is called a I-cycle associated with £ in a weak
sense if there exists a family of smooth curves {Dyx}, on X such that v — 4’ €
Y-\ Bi(D3"). Here we regard Bi(D3}") as a subgroup of Z;(X®") by the natural
inclusions.

Let T' € S2(X?) be a 2-chain associated with . A 2-chain TV € Sy(X??) is
called a 2-chain associated with & in a weak sense if there exists a family of smooth
curves {Dy} on X such that I' — IV € Zo(X?™) + >, Sa(D3").

The following proposition justifies this definition.

Proposition 8.4. Let £ € CH*(X,1).

(1) If+' is a 1-cycle associated with & in a weak sense and T € So(X?™) satisfies
OI" =+, then I is a 2-chain associated with & in a weak sense.
(2) If TV is a 2-chain associated with & in a weak sense, we have

r€)([n]) = / 0 mod P(X, 7). (169)

’

Proof. (1) follows from the definition. (2) follows from the fact that the restriction
of a holomorphic 2-form 7 to each curve D}" is 0 since D}" are 1-dimensional
complex manifolds. O

8.2. Construction of a 2-chain associated with & ; — & in a weak sense.
In this section, we fix a C-rational point ¢ € T°(C). By restricting the morphisms
in Definition BI3to fibers at ¢, we have the following morphisms.

Xy —— ?t — WV (170)
We will construct a topological 2-chain K — K_ € Sp(AX?") associated with &; ¢ —
&o,+ in a weak sense from the following 2-chains on Y{* and "

—5an

Xtan Xt tan
! ¥ ¥ (171)
K+ UK. inverse image K “strict transformation” Z

Definition 8.5. (Definition of A and K) We use the same symbols a, b, /1 — a,v/1 — b
for their image by t* : B® — C. We take a C>-path 7 : [0, 1] — (PL)2" satisfying
the following conditions.

(1) v(0) =0 and (1) = 1.

(2) v(s) #0,1, %, %,oo except s =0, 1.
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(3) We can fix the branch of the functions v/1 — az,v/1 — bz along ~ so that
V1=ay(0) = /1-by(0) = 1 and /1 —ay(1) = VI —a,/1 - by(1) =
v1-—b.

(4) On a neighborhood of 0, we have v(s) = s*. Furthermore, we can fix the
branch of the function /z along v so that y/v(1) =1 and /v(s) = s on a
neighborhood of 0.

(5) On a neighborhood of 1, we have v(s) = 1 — (1 — s)2. Furthermore, we can

fix the branch of the function /1 — z along v so that /1 —~(0) = 1 and
1 —~(s) =1 — s on a neighborhood of 1.

The conditions (4) and (5) are necessary for Ky and K_ to be C*-chains. If
V1—a,v/1—b € Rsy, the closed interval [0,1] along real axis (with suitable
reparametrization) satisfies the conditions above. By the condition (3)(4)(5), we fix

the branch of the local holomorphic functions \/z(1 — 2)(1 — a2) and 1/z(1 — z)(1 —
along v. We define A C Y} as the image of the following map.

) ERZ:0<g<p<]l} — —— Yoo
{(p;9) 0 g<p<l} { (172)

(p,q) + (z,y) = (v(p),7(q))

We define A as the closure (in the sense of classical topology) of A in V2.

Since A C Y2 does not intersect with the blowing-up locus of X; — ), the
inverse image of A by X'; — ) is homeomorphic to A. We also denote the inverse
image of A by A. We define K C X, as the closure (in the sense of classical
topology) of A C X .

X, DO A C

J } [£ (173)

an 5 A C

We define paths e, V11, 7y, V10, Ve and yogo on ??n appearing in the boundary 0K
as in Figure B. We use the local coordinates z,vy,? and x,y,w on X, in Definition
BTH. They satisfy the following properties.

(1) The path 7. is on the strict transformation of D2 € Y by X, — Va0,

(2) The path ~, (resp. ;) is on a curve in X" defined by 2 —1 = w = 0 (resp.
y=1=0).

(3) The paths 00,710 and 11 are on the exceptional curves @?(I)I,O),t’ @Z(T,o),t
and @?il,l),t respectively. Here @(o,o)m @(1)0“ and @(171)’,5 are fibers of
@(070), @(170) and @(1’1) in Definition B18 at ¢.

Definition 8.6. Since A C X; does not intersect with the branching locus of the
double covering X* — X", the inverse image of A by X? — X, decomposes
into the disjoint union of A, and A_, which are both homeomorphic to A C X
(Note that A is simply connected). We define K and K_ as the closure of Ay
and A_. We choose K and K_ so that K contains (z,y,v) = (0,0,1) and K_
contains (x,y,v) = (0,0, —1).

X 5 ALUA. C K UK_
étale
J, J{double cover J (174)

—5an

X, ) A C K

S

2)
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(m7 y’ E) = (17 17 0)

Y11

Q)¢

A Vy
(may7m) = (1707 O)

>

(I, y7ﬁ) = (07 0, 1)

710 Quot

’_ 771 \\
) (way7ﬁ) = (07 07 0) Q(O,O)yt (way)ﬁ) = (1707 0)

FIGURE 4. The figure of K and paths on its boundary

By the condition (4)(5) in Definition BH, we can confirm that K1 are C'*° manifolds
with corners. Since K are compact and have the natural orientation induced by
Ay, we can regard them as 2-chains on A2".

We define paths e+, V11,4, 7y, V10,4, V= and 7ypo,+ on X" appearing in the
boundaries 0K and 0K _ as in Figure B. They satisfy the following properties.

(1) The path ~y. 4+ (resp. ~v,—) is the lift of 7. to K1 (resp. K_) and it is on
the curve C3 C AP". Note that by the condition (3) in Definition BH, its
terminal point is (x,y,v) = (0,0,1) (resp. (x,y,v) = (0,0,—1)) and its
initial point is (z,y,v) = (1, 1, \/\/g) (vesp. (z,y,v) = (1, 1, ,\/Jg)).

(2) The paths Y0+, 710,+ and y10,+ (resp. Yo0,—,710,— and y10,— ) are the lift of
700, Y10 and 11 to Ky (resp. K_) and they are on the exceptional curves
Q?(I)l,o),tv Q?{I,O),t and Q?ﬁl),t respectively.

(3) Since v and vy, on Ttan are contained in the branching locus of X" — E:n,
there exist unique lifts of them to &;. We denote their lifts by the same
symbol 7, and -y,.

Proposition 8.7. The 2-chain K — K_ € So(X{") is a 2-chain associated with
&1t — ot in a weak sense.

We use the following lemma. The proof is immediate since H;((Pg)*") = 0.
Lemma 8.8. Ifv,v' € S1((PL)™) satisfy Oy = 07, then v — ' € B1((PL)™).

Proof. (Proposition ) By Proposition B0, &1 ; — &, is represented by the fol-
lowing element in @, _ .« R(Z2)*.

(v—1) (v+ gg) . y VI
Cr, = | T (Q((J,O),ta _1> + | Qane 71\/?: (175)
w+1) (Uf 1—a) vt Vi
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(x7 y7 w) = (17 17 0)

& (z,y,v) = (1,1,—m)

V11,4 Y11,— Vi-a
Y11 K+ 'Yy/: K_
B / /(IL‘, y,w) = (17070)
y
Te Yy Ye i ¥ 10+ Y10,— ¢V7C,7
K
%
~(z,y,v) = (1,0,0
/_ 7 // (,,) = (1,0,0)
00 Z Lo %
00,+ "Yo0,—
(z,y, ’U) = (0’ 0, 1)7 V(z’ y,v) = (0707 _1)

(z,9,v) = (0,0,0)

Fi1GURE 5. The figure of K, K_ and paths on their boundaries

By Figure B, we see that that

(v-1) (v+ 2)
(erl)(v— }:Z) ’

5
v+1) v— Y=

;

5'(’Yc,+ - ’Yc,f) = dive, a(’Y10,+ - ’Y10,7) =0

i

i

v+ 'i:b

(176
Since Cy, Q(0,0),t> @(1,1),+ and Q(1,0),+ are isomorphic to Pg, by Lemma B, (v 4 —
Ye— )+ (1,4 —711,—) + (V10,4 — Y10, ) + (Yo0,4+ — Y00,— ) is a 1-cycle associated with
&1,¢ — &o,¢ in a weak sense. Since we have

D

v—1 (14 —71,-) = diVQu,n,t

9(Y00,+ — Y00,—) = div o). (

ER

Ky —K_) = (Yot —Ye,— )+ (11,4 —711,- )+ (10,4 =710, )+ (00,4 =00, ), (177

the result follows from Proposition 4.

o

8.3. Calculation of the transcendental regulator map at ¢t € T°(C). Since
we have constructed a 2-chain associated with &; + —&p+, we can compute the image
of &1+ — &o,+ under the transcendental regulator map by Proposition 4.

Definition 8.9. Since X} is a K3 surface and the holomorphic 2-form w; in Defini-
tion [ is non-zero, the following map is an isomorphism between abelian groups.

evy : szO(Xta“)VéHz(Xta“,Z) — C/P(jft’“’t) (178)
Qo o(we])

We denote this map by ev;. Hereafter we concern periods of Kummer surfaces X;
for t € T°(C), we simply write P(X;,w;) as P,. Furthermore, the image of x € C
under the natural projection C — C/P,, is denoted by [z] € C/P,,.

Definition-Proposition 8.10. Let t € T°(C). Choose a path v satisfying the
conditions in Definition B3 at t. We can take an open neighborhood U of t in
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(T°)?™ in the classical topology such that y satisfies the conditions in Definition B3
at every point on U. Then we have the following.

(1) The following integral converges and defines a holomorphic function L on
U.

r) - () (g )dpdq .
! /m T o= Vool @i -na <Y
(179)

Note that since the branch of \/z2(1 —2)(1 —az) and /2(1 — z)(1 — b2)
along ~y is fixed by Definition B4, the branch of the integrand on A\ is also
fized.

(2) The image of &1 — &op under the transcendental requlator map r is as
follows.

eve(r(§ie — o)) = 2[L(t)] € C/Py, (180)

(8) If we choose a different path -y, we get another local holomorphic function
L'. However, the difference L(t) — L'(t) € C should lie in 1P, .

Proof. By the construction of Ay C X", we see that A coincides with the image
of the following map.

{(p,g) eR*:0<g<p<1} xpn
% w
\ _ V(@) (1—=7(q)) (1=bv(q))
.0 (520) = (1) 7). YO

181
Hence the right hand side of (I'79) coincides with fA+ w;. Since the integrand ig C°°)
on the boundary of A, we have fA+ wp = f}q w;. Thus the right hand side of (IC79)
can be regarded as integration of a C°*°-function on a compact C°°-manifold with
corners. Furthermore, the integrand is holomorphic with respect to a, b, which are

local coordinates of (7°)*". Hence we have (1). By Proposition B4 and Proposition
B, we have

evi(r(&e — o)) = /K+ wi — / @ s C/Pu, (182)

Since fK+ wt = — [ wy = L(t) by definition, we have (2). Then by (2), 2[£(t)] is
determined up to elements in P,,. Thus we have (3). O

At last, we calculate the image of £ under the Picard-Fuchs operator 2 in
Definition 8. This calculation is used in the rank estimation of the image of =
under the transcendental regulator map in Section 9. This theorem also gives a
system of differential equations which £ satisfies.

Theorem 8.11. Let L be the local holomorphic function defined in Definition BI0.
Then we have

-6
1 1—a - 1
L) = . 183
20= 5 (183)
=
Proof. A local holomorphic function H(c, z) = ﬁ satisfies

1 _ 0H(c,2)
Le ( z(1—2)(1 - cz)) 0z (184)
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where L. is the differential operator defined in Definition 4. Then we have the
following equation on 2-forms on X;.

1

H(a,x)dy )

D dr ANdy =d
(\/m 1—z)(1—ax) \/yl— 1—by)> hay < y(1—y)(1 —by)
(185)

This equation holds on an open neighborhood of K. By the definition of £ and
Stokes theorem on X}, we have the following.

7 (p ) (g >dpdq )
Ky V@)X =)A= av(p)) - V(@)1 —(q)(1 — bv(q))

)(1 (
y ( <w<p>w< > ) _ < 0,7(0)7 (0)da
k. \ V(@1 =7()1—bv(g)) o V(@)1 —v(@)(1 = bv(q))
(186)

N(L) = D <

H(a,z)dy
y(1—y)(1-by)

@1(5):;/01 (1—bz)dfl—az3:a—b/m :a_b <g—1>.

Since the 1-form vanishes at {y = 0} and {z = 1}, we have

(187)
Here we use the coordinate transform v = ﬁviifii We can compute Z5(L) similarly.
O

9. ESTIMATION OF THE RANK OF THE IMAGE OF = UNDER THE
TRANSCENDENTAL REGULATOR MAPS

In this section, we prove Theorem 1. The outline of the proof is as follows.

(1) We construct a Q-linear sheaf Q,, on (7”)*" as a quotient of the sheaf of
holomorphic functions O(gsyan by a locally constant subsheaf P, generated
by period functions P;;. For each ¢t € (T")*", we have a “evaluation” map
Q,(T") — C/QP,, ~ H*°(X)V/Hy(X,;,Q). We see that the Picard-
Fuchs differential operator Z factors through the sheaf Q,, (Definition B13).

(2) The Q-linear space Q,,(T°) is the target of a “relative transcendental reg-
ulator map” R, : E — Q,,(T°) (Definition BTT). The “value” of R, (&) at
t € T°(C) coincides with 7(&) modulo torsion.

(3) By the formula of the G-action on w; in Proposition 22, we have the fol-
lowing commutative diagram (Proposition HH).

CH?(X,,1) —— H?O(X)V/Hy (X, Z) —— C/P,,
l@u)* l(ﬁi‘)v }zm(t) (188)
CH2(X, 0, 1) —— H>O(X3p)Y/Ho(%,2) 5 C/P,

p(t)

(4) By the diagram above, we can define a G-action {Y5} 5 on Qu (Definition
BZZ) so that the relative transcendental regulator map R, is equivariant to
G-actions (Proposmon 1), Furthermore, we can also define a G-action
{©5}5c on (’)(T,)m (Definition BT4) so that the Picard-Fuchs differential

operator & is equivariant to G-actions (Proposmon EEES)
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(5) In conclusion, we have the following diagram for € G.

0 Qu(T?) —Z Orryen(T°)®*
- bﬁ leﬁ (189)

L QW(TO) i} O(T,)an(To)@Q

(1]

—

[1]

By this diagram, we can compute the image Z o R, (Z) (Table 8) and get
the desired rank estimate (Theorem H20).

9.1. The definition of the sheaves P, and Q.. In this section, we define the
sheaves P, and Q,, and prove their properties.

Definition 9.1. We regard the sheaf Oz+yan of holomorphic functions on (77)*" as
a Q-linear sheaf. We define a subsheaf P, C O(r)an as the unique sheaf satisfying
the following property:

For any open set U C (T")™ in the classical topology such that P;; are defined,

P, |u is the subsheaf generated (as a Q-linear sheaf) by P;; for ¢,j € {1, 2}.
(190)
where P;; are the local holomorphic functions defined in Definition 2. Then we
define a sheaf Q,, as the quotient sheaf O(psyan /P,,. For a local section f of Opryan,
[f] denotes the image of f under the quotient map O(pryan — Q.

The existence of P, can be confirmed by the following remark.

Remark 9.2. Let 7 : X’ — T’ be the structure morphism. We define the following
sheaves P, Q on (T7)2".

_ 2
P =Im(R F*@(X,)an
Q= COkeI"(RZﬂ'*@(X,

— HOmO(T,)an (W*QQX//T/,O(T/)an>> (191)
Jan = HOMO 1san (W*Qi,/T,, O(rryan))
where Q( ryan is the constant sheaf with coefficients in Q on (X”)*" and the mor-

phism RQW*@(X,)an = Homo 1 an (T(*Qg(,/T,, O(rryan) is induced by the fiber inte-
gration.

Since X’ is a family of K3 surface, W*Q%(,/T, is a locally free O(7+)an-module of
rank 1. Then we have an isomorphism Orrjan >~ HOmo 1)an (W*QQX,/T,,(’)(T,)an)
induced by ¢ — ¢ - w where w is the 2-form in Definition 1. Under this iso-
morphism, we have P ~ P, and Q ~ Q. Since 7 : X’ — T’ is a topologically
locally trivial fibration, for a sufficiently small open neighborhood in the classical
topology, we have a Q-basis in P|y. The holomorphic functions P;; (i,j € {1,2})
are the images of such a basis under P|y ~ P, |v.

Definition 9.3. For each t € T'(C), O(gr)an ; denotes the stalk of O(pr)an at t. We
define the evaluation map m; by

my O(T/)an7t C, @t (p(t). (192)

For an open neighborhood U of t in the classical topology, composition of m; and
a restriction map O(pryan (U) — O(pryan 4 is also denoted by m;. Furthermore, since
P, C Cis generated by the values of P;; at ¢ by Definition 2, my : O¢pryan ; — C
induces the following map 9, — C/QP,,.

0(T/)an7t L} C

| l (193)
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where QP,,, C C is a Q-linear subspace of C generated by P,,,. We also denote this
map by m;. Furthermore, the composite of m; and the restriction map of Q,, is
also denoted by m;.

Proposition 9.4. Let U be an open subset of (T')*" in the classical topology and
¢ € Oryan(U). Then o(t) ¢ QP,, for very general™ t € U if and only if ¢ &
Pu(U). Especially, if o € Opnan(U) satisfies that ¢(t) € QP,, holds for every
t € U, then ¢ is a section of P,,(U).

Proof. We will prove the former part of the proposition. We may assume U is so

small that P;; are defined on U. For each quadruple ¢ = (¢;;) € Q®4, we define a
holomorphic function F, by

Fo=¢—) c;Py. (194)
4,3

Consider the countable family {F.}.cq+ of holomorphic functions on U. If ¢ ¢
P.(U), they are non-zero holomorphic functions. Especially, for very general t € U,
F.(t) # 0 holds for all ¢ € Q. Since P,, is generated (as a Q-linear subspace of C)
by Pi;(t), we see that F,(t) # 0 holds for all ¢ € Q* is equivalent to ¢(t) & QP,,.
Converse is clear. The latter part follows from the former part. O

The sheaf Q,, has the following property. This lemma enables us to reduce the
computation of Q,, to that of its restriction at each point on U.

Lemma 9.5. For each open subset U of (T")*™ in the classical topology and non-
zero section x € Q,(U), the restriction my(x) is non-zero for very general t € U.
Especially, the following map is injective.

Q.,(U) —— H(C/Q’Pwt; x —— (my(z)), (195)
teU

Proof. We can shrink U so small that z is of the form x = [p] for ¢ € Opryan (U).
Then the results follows from Proposition B4l O

9.2. A G-action on Q,,. First, we see that how G acts on C/P,,.
Proposition 9.6. Let t € T°(C) and p = (p,¢) € G. Let py : X, = X1y be the
automorphism defined in Definition [.23. B

(1) We have Py, ., = X(p)(t) - Pu, as a subgroup of C. Here X(p)(t) € C is the

value of X(p) € B in Defintion [1.18 at t.
(2) From (1), the following map is well-defined.

X(P)(t) : C/Puy —— C/Puyyys 5] —— [X(D)(2) - ] (196)
(8) We have the following commutative diagram.
CH?*(X;, 1) —"— H?O(X)Y/Ha(Xy,Z) —— C/P.,
|- |@” RGE (197)
EVp(t)

CH?(X,4),1) —— HO(X58))Y [ Ha(Xe, Z) —— C/Pu,

where the right vertical map is (I98) above.

12We use the word “very general” for the meaning of “outside of a countable union of proper
(= not the whole space) analytic subsets”.
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Proof. Note that the following equation holds for every 2-chain I' € Sy(X2").

/(m)*pwp(t) - /F(ﬁt)*wﬁ(t) =X(M)(t) - /Fwt (198)

For the second equality, we use Proposition 2. By the equations ([98) for I' €
Z5(Xp"), we can show (1). If T is a 2-chain associated with & € CH?(&;, 1), then
(p)«I' is a 2-chain associated with (p:).€ € CHQ(Xp(t), 1). Hence by the equation
(UR) for a 2-chain T' associated with &, we see that the whole rectangle in (IJ7)
commutes. Since evy,ev ;) are isomorphisms by Definition B9, all squares in (I97)

commute. O

Then we will define a G-linearization on O(7ryan.

Definition 9.7. Let p = (p,¢) € G. We define a morphism Y5 : Oy —
(p™1)4O(7ryan as follows. Let U be an open subset of (77)*" in the classical topology.

Tp : O(Tl)an(U) e O(T/)an (B(U)) = (B_l)*O(T/)an(U)
w W (199)
p——— (7 (X(P) - ¥)
Then {Tﬁ}ﬁe & satisfies the cocycle condition. In other words, the following diagram
commutes for 7,7’ € G.
T~

O(T/)an —p> (B_l)*O(T/)an
lrﬁ, s l@lmﬁ’ (200)
(£'0))- Oy —— (o)) Oy

Proposition 9.8. For j € G and an open subset U C (T")™ in the classical
topology, we have
T5(Pu(U)) = Pu(pU)). (201)

Proof. Tt is enough to show only (C) by the cocycle condition. Let ¢ € P, (U).
Then for p(t) € p(T'), we have

M) (T5(9)) = my(ny ((pHR(P) - 9)) = me(X(P) - )
=X(P)(#) - (1) € X(P)(F) - QPw, = QPuy,y-

The last equality follows from Proposition 6. By Proposition B4, YT;(¢) €
Pu(p(U)). 0

(202)

By the proposition above, the G-linearization on O(7+yan induces a G-linearization
on Q..

Definition 9.9. By Proposition B8, Y5 : Oryan — (p~1)xO(1r)an induces a mor-
phism Q. — (p™1)+ Q.. Since p(T°) = T°, we have the following Q-linear map.

T5: Qu(T°) —— Qu(T°) (203)
By the cocycle condition (200), Y5 defines a G-action on the Q-linear space Q. (T°).
By Definition 877, the following diagram commutes for ¢ € (7°)2".
Qu(T°) —— C/QP.,
T, [z (204)
Qu(T°) 2% ¢/QP., 1)
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where the right vertical map is induced by (2) of Proposition H8.

9.3. Construction of the relative transcendental regulator map R,,. In this
section, we construct the relative transcendental regulator map and show the G-
equivariance of R,,. First, we construct an element in Q,(7°) corresponding to a
half of the image of £&; — £y under the relative transcendental regulator map.

Proposition 9.10. There exists a unique element [L] € Q. (T°) such that for
teT°(C),

my([£]) = [£(?)] (205)
where L(t) € C denotes the value of the local holomorphic function L in Definition
BT0.

Proof. The uniqueness follows from Lemma BH. We show the existence. We take an
open cover {U; }scr of (T°)*" such that £ is defined on each U;. Let L; € Opryan (U;)
denote a holomorphic function £ on U;. It is enough to glue [£;] € Q. (U;). By
Proposition B0, for each t € U; NU;, L;(t) — L;(t) € QP,,. Then we have
L; — L; € P,(U; NUj) by Proposition &4. Hence we have [Li]|v,nv, = [£;]lu,nu;
in Q,(U; NUj) and we can check the gluing condition.

Definition-Proposition 9.11. (Definition of R,) There exists a unique group
homomorphism

R, :Z2 —— Q,(T°) (206)
which satisfies the following properties. The map R, is called the relative transcen-
dental regulator map.

(1) Fort € T°(C), the following diagram commutes.

_ Re Q.,(T°)

it x (207)

CH?(X;,1) 2% C/P,, — C/QP,,

(1]

—

where i} is the pull-back map in Definition B3, r is the transcendental
requlator map in Definition B2, evy is the map defined in Definition B3,
my is the map defined in Definition and C/P,,, — C/QP,, is the natural
projection.

(2) Forp e G, the following diagram commutes.

Ly (1)
. lrﬁ (208)

Loy 0, (1°)

(1]

«—
Sl

(1]

Proof. We will prove that there exists a unique map R, satisfying the condition
(1) and R, satisfies (2).

The uniqueness follows from Lemma BH. If we define R, (1 —&y) = 2[£] where [£]
is the element defined in Proposition B10, we can check the commutativity of (204)
for &1 —&p € E by Proposition B10. We can also define R, (&) for each £ € = so as to
make the diagram (B07) commute as follows: By Proposition B3, £ is represented
by a product of (57 1)%(tbe) and (p~1)*(ws). They are on smooth families of curves
over T° and their zeros and poles are also smooth over 7°. Hence by the similar
method in Section 8, we see that ev;(r(€)) is represented by the value of the local
holomorphic function as in Proposition BI0. Hence by the similar argument in
Proposition 810, we can define R, (§) € Q. (T°). Hence we can check the existence
of the map R, satisfying the condition (1).
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Next, we will prove that R, satisfies (2). Consider the following diagram.

QT

[T I
Jj:\) R, ‘ QW(TO)

{ (209)
evior C/pr ~ J{mpu)
¢ X(p)(t)
~Xy

evﬁ(t)or (C/Q,PWB(t)

aQ
s
[ V]
&
=
=
— 1

CH?(X,), 1)

The left side face commutes by the associativity of pull-back maps on higher Chow
groups™ ([Lex98] Partl, Chapter 11, 2.1.6). The bottom face commutes by Propo-
sition @A and the right side face commutes by (204) in Definition B9. Since the
front and back faces commute by (1), by Lemma 4, we see that the upper face
commutes. O

By é—equivariance of R, we have a G-action on R, (Z). Then we have the upper
estimate for rank R, (Z). The proof below is simplified by advice from T. Saito.

Proposition 9.12. We have the following.

(1) For pe Gib, we have R, (PLE") = R, (E®™).
(2) We have rank R, (Z) < 18.
(8) For each t € T°(C), rank r(Z;) < 18.

Proof. By G-equivariance of R,,, we have R, (p,Z") = T (R, (E)). For p €
G, we have T5 = %1 by definition of T5. Hence we have (1).

By (1) and Proposition EX, R, (E°") C R,(E) is stabilized under the Ggyl-
action. Especially, we have a Gﬁb[ representation on R, (Z"). Then the following
G- equivariant map is induced.

Indg FRU(E™™) — Ru(E) (210)

7R () denotes the induced representation. Since R, (Z) is the

where IndG
sum of R, (p,E") for p € G, the map (EI0) is surjective. Then we have
E

rank R, (Z) < rank Indg TR (ES) = |G/GgplI| - rank R, (E°") < 6-3. (211)
Here we use |G/GgpI| = 6 by Proposition EI2. Hence we have (2). By (2) and the
commutative diagram (BO7), we have (3). O

9.4. The differential operator ¥ and G-actions. In this subsection, we define
a G-action on O(@T%)an so that Z is G-equivariant. For this purpose, we prove
transformation formulae of 2.
Definition 9.13. Since the local holomorphic functions P;; are annihilated by the
differential operator & : O(pryan — 022 (T7yan in Definition IR, P, < O(pryan Z,
O TQ,)W is the 0-map. Hence the following morphism is induced. This morphism is
also denoted by 2.
®2
O(T/)zm *} O(T/)ﬂm

l T (212)
Qu

13Note that since p € G is an isomorphism, px = (5~ 1)*.
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Definition 9.14. Let p = (p,¢) € G. Let U be an open subset of (1) in the
classical topology. We define a morphism ©5 0%2,1,,) - (p~ H,0 TQ,W) as the
following map.

05 : Oy (U) ———— O (p(U)) = (01O (U)

w w
213
o (') (x(ff)x<1> g o) 1)
—1)t @)(
2 (01" (X(P)x ©2)
Here x( and x® are the opposite 1-cocycles defined in Qeﬁnition B16. Then
{Tﬁ}pe & satisfies the following cocycle condition for p,p" € G.

®~
Oy —————> (27O
l@w l(,f )@ (214)
() ™0 0 —— (p~ ()T O

By the cocycle condition, O : O(pryan (T°)P2 — O(7yan (T°)P? defines a G-action
on Opryan (T°)%2.

The main purpose of this subsection is to prove the following.
Proposition 9.15. For p € C:’, the following diagram commutes.
Qu(T°) —Z Oy (T°) 2
e les (215)
Qu(T°) —Z— Opryan (T°)®2

We need some preparation for proving Proposition B15. First, we define some
differential operators twisted by G-action.

Definition 9.16. For p € G, we define differential operators @f for: = 1,2 as
follows.

0? o 1
72— o (1 —d _ 2z
I9r=d(1—a) (@02 + (1 —2d )8a 1 o1
Py =b'(1-1) _ (1— Qbf)ﬂ 1L
2 (Ob')2 o 4

where o/ = p*(a) and ' = p*(b). Furthermore, we define 22 = * (@13 @g) :
Orryan — (’)(@TQ,)M. By definition, for p € G and a local section ¢ of O(pryan, we
have .@f(ﬁn(go)) = p*(Z;) for i = 1,2. Hence the following commutes.

l(g’l)” l(g’l)” (217)

(B_l)*O(T/)an f} (B_l)*O(T’)a“
(P™ )« Zi
We prove transformation formulae for 2. Since %; is the “pull-back” of the
hypergeometric differential operator L in Definition [Z4, the following proposition
is a key for the proof of the transformation formulae.
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Proposition 9.17. For r € H, we define L™ : O(gryan — O(gryan as follows.

2

I*=J(1-/¢) )2

(218)

e

d
1—-2)— —
+( C)dc’

where ¢ = 78(c). Then we have the following relation in the ring of differential
operators on (S”)*".

L™ ¢(z) = ¢(1)* - L (219)
Here we regard ¢(7) € A’ as a differential operator by multiplication.
Proof. Tt is enough to prove the following.
L7 =g(z)* - L ¢(z)" (220)

To compute the right hand side of (E20), we need the explicit description of ¢(7).
By the relation ¢g = sgn - ¢ in Proposition EIH, we can compute ¢(7) up to +1.
The result is given by the following Table B.

TABLE 6. The opposite 1-cocycle ¢

o | 7o) (1) o | THe) (1)

id c +1 (01) [1—-c¢ +1
(loo) | 25 | £V-1V1—c || (0100) | 1= | £V-1V1—c
(Oco) | 2 +V/=1ye | (0ool) | = +/~1/c

Thus we will compute L - % and L - \/% Using % - C

have
1 d? d 1
— 3 —_— = 2 _ - 27_7
(Ve)’L 7 (1 c)d SR o1
—(V1=¢)’L- Lo e( —c)gd—Q—( —c)Qi—1
Ji—c dc? de 4

We will compute the left hand side of (220). Note that LT is determined by the
image of T in H, since 7%(c) depends only on the image of 7 in H,. Hence it is
enough to check (E20) for six elements in H,,. For example, we will check 7, = (100)
case. In this case, ¢ = =<, hence we have

c—1’
d de d 1 d d
= - 2 —_(c=1)2. =2
d¢  dd de (¢ —1)2 de (e—1) dc

(222)

d? d\? 2 d
=(—(c—1)? —) =(c—1D*-5 +2(c—1)3—.
(dc')? < (e—1) dc) (c—1) dc? +2e-1) de
By substituting ¢/, %, (di—f)z, in (EIR) by the above differential operators, we get

. d d 1
LT = —¢(1 - 0)2@ - (1- 6)2% -1 (223)

By the similar calculation, we get Table @ and confirm (220) holds. O
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TABLE 7. The differential operator L™

To Iz
((idl) c(l—c)j—;Jr(l_%)%_%
(((31102) —e(l - 0)2% (- 6)2% - %

(goozoi) o et ]

Then we get the transformation formulae for %;.

Proposition 9.18. For p = (p,{) € é, we have the following relations in the ring
of differential operators on (T')>".

77 -X(0) = XE)x P (p)* - 2
25 -X(7) = X)X P (p)?* - 22

where we regard X(p), X(l)(£)7X(2)(B) as differential operators by multiplication.

(224)

Proof. By Definition B18 and Definition B-I8, we have
X() =5g1(p) - xV(p) - x@(p) = ¢ pri(@(p™M)) - pri(s(p?)). (225)

For any section ¢ € O(gyan, %(prg(go)) = 0 by definition. Hence ¢ -prg(qb(g(g)))
commutes with @12. Furthermore, by Proposition B17, we have the following rela-
tion in the ring of differential operators.

7t - pri (@(p™M)) = pri(e(p™)?) - 71 (226)
Since V) = pri(¢), we have 2 - X(p) = X(P)xM(p)? - 21. We can prove 2, case
similarly. U

Finally, we can prove the é—equivariance of 2.

Proof. (Proposition B13) For p = (p,() € G and i = 1,2, the following diagram
commutes by Proposition and (217) in Definition BT8.

% (p~1)*
O(Tl)an L O(Tl)an _— (Bil)*O(T/)an

@{ J@f l(g—l)*@i (227)
X(@)x® (p)? (ph)*

O(T/)an _— O(T/)an _— (B_l)*O(T')a“

Hence we see that the whole rectangle of the following diagram commutes.

2 2
O(T/)a,n Qw O%/)au

lrﬁ lrﬁ e (228)

_ _ (P12 B
(B 1)*O(T’)a“ — (B 1)*Qw (B 1)*(9?’51"2/)an

Since O(pryan — Q,, is an epimorphism and the left square commutes by definition,
the right square commutes. By taking global section at T°, we have the result. [
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9.5. The proof of the main theorem. Finally, we prove the main theorem by
describing the image of 2 o R,,(E) explicitly.

Proposition 9.19. Let R, : " — Q,,(T°) be the relative transcendental requla-
tor map in Definition @11. For &y, &1,Ex € 2", we have

1-b Vb

2 1 2 Via 2 Va
PoR, (&) = b (_1> s ZoR,(&1) = a—b | _ vi=a y DoR,(€so) = a—b\ _va
1—b
(229)
Proof. By Proposition B0, we have
5 -6 _q
V1—a
P o R,(& — &) =2(2[L]) = a—b\,_ v (230)
1-b

where [£] € Q,(T°) is the element defined in Proposition B0, Let 5%, 5 € I be
elements defined in Example 69. By Proposition BT and Proposition I13, 0o R,
is equivariant to G-actions. By the cocycle computation in Example 69, we have

g [1+Y22
~a _ l1—a
70 Ro(o+&1) = 70 Ru(pi(& — &) = — .=
-0
2 4 (231)
— = b — e S —— @
Do Rw(go goo) 9o Rw(p*(gl 50)) (1 — 0‘,) — (1 — b) 1 N
Vb
From (230) and (23T), we can deduce the result. O

Finally, we can prove the main result. The proof of Theorem below is
simplified by advice from T. Terasoma.

Theorem 9.20. Let = C CH?*(X°,1) be the higher Chow subgroup defined in Defi-
nition Bl and Z; C CH?(X;,1) be the restriction of Z at the fiber overt € T°(C).
(1) Let R, : E — Q,(T°) be the relative transcendental regulator map defined

in Definition @11. Then we have
rank R, (Z) = 18. (232)

(2) Let r : CH?(X;,1) — H?9(X,)V/Ha(X;,7) be the transcendental regulator
map. Then we have
rank r(Z;) = 18 (233)
for very general t € T°(C). Especially, we have the following inequality for
very general t € T°(C).
rank CH? (X, 1)inq > 18 (234)

Proof. (1) Since Z : Qu(T°) — O(ryan(T°)®? is Q-linear, it is enough to show
rank Z o R,,(E) > 18 because we already know rank Z o R,,(E) < 18 by Proposition
OT2. Since = is the sum of p,=", P o R, (E) is generated by

P 0 Ru(p.E") = 05 (2 0 Ru(E™™)) (5 € G). (235)
Here we use é—equivariance of 2 o R,,. Since =" is generated by &p, &1 and &,

05 (Z 0 Ru(&)): ©5(Z0Ru(&1), ©5(7 0 Ru(éx)) (236)
are generators of (23H). By the definition of ©; and Proposition B19, we can
calculate (238) for each p € G. Since Gﬁbl stabilize R, (Z°"), it is enough to

calculate (E36) for six representatives of G/GgnI. By Proposition EI2, if we take
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lifts of (id,id), (id, (01)), (id, (100)), (id, (01 00)), (id, (000)) and (id, (0cc1)) € G,
by G — G, they become a complete system of representatives for G/Ggpl. Then
we calculate (E38) for these lifts, we get the following Table B.

TABLE 8. The generators of the image of = under Z o R,,

The image in G, generators of O (2 o R, (E°"))
1 vt Vb
(id, id) 2 2 | Vi-a 2 | Va
’ a—1b "a—1b Vi—a| a-b Va
Vi—b b
Vb T—b
(id, (0 1)) 2v-1 ! 2v-1 vVi—a 2v/—1 Ja
’ a+b—1 . "a+b—1 1—a | a+b—-1 3 Va
Vb vi—b
V 1 Vb
1-b ~yZ
(d, (1sc)) | —2 2 [Vica| VT | Va
’ ab—a—1b 1 Tab—a-b i Tab—a-b Va
Vvi—b vi—a BV
N 1 =5
(d,(0100) | —2Y"L_ 2l [(Ta| 2 | a
’ ab—b+1| 1 ["ab—b+1 —a Tab—b+1| Va
Vb Vit
1-b 1
Vb -
(id, (0 00)) 2 2V-1| Vi-a I
, ab—1| 1 ] ab-1 T—a] ab-1 va
vb 10
Vi=b vb 1
1-0 il
i 2v—l 2 Vi—a 2v=1 (a
(ldv (OOO 1)) P 1 [ T
a—ab—1 a—ab—1 Vi—a a—ab—1 Ja
Jiob 7

It is enough to show that the vectors in Table B are linearly independent over
Q. It is enough to show that the first component of these vectors are linearly
independent over C. Note that the first component of these vectors are written in
the form of

C- F1 . F2 (237)
where ¢ € {£2,4+2+/—1}, F} is either
1 1 1 1 1 1

€ Frac(B) (238)

a—b a+b—1 ab—a—b ab—b+1 ab—1 Orafabfl
and F5 is either

=
I

(=l

(=l

VIi=b Vb 1 1
, , ,  V1—b, — b € Frac(B'). (239
T—¢ a Ji-a Ji-a or Vb € Frac(B). (29)

! Va

) )

SIS

)
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Since elements in (E38) are linearly independent over C and elements in (239) are
linearly independent over Frac(B), their products are linearly independent over C.
Hence we have the result.

(2) By Lemma O, we have rank m;(R,(E)) = 18 for very general ¢t € T°(C).
By the definition of relative transcendental regulator map, we see that rank ev; o
r(Z¢) = 18 in this case. Since ev; is an isomorphism, we have rank r(=Z;) = 18 for
very general t € T°(C). The statement about indecomposable part follows from
Proposition B2 O

APPENDIX A. DECOMPOSABLE CYCLES IN HIGHER CHOW GROUP

In this section, we assume X is a smooth variety over a field k. We define a
subgroup CH? (X, ¢)qec C CHP(X, ¢q) called decomposable part.

Definition A.1. For p,p’,q,q¢ > 0, there exists a bilinear map
CHP(X, q) x CHY (X, ¢') — CHP*P (X, g+ ¢') (240)

called the intersection product. The intersection product is the composition of
the external product CHP(X, ¢) x cH? (X,q") — CHpﬂ),(X X X,q+q') and the
pull-back by the diagonal embedding X — X x; X.

For p,q > 0, we define a subgroup CH” (X, ¢)gec C CHP(X, q) by

CH?(X, q)ace = »_Im (CH*(X,t) ®z CHP (X, q — t) - CH?(X,q)) ~ (241)
s,t
where (s,t) runs over 0 < s < p, 0 < t < ¢ except (s,t) = (0,0),(p,q) and
CH*(X,t) ®z CHP"°(X,q —t) — CHP(X, q) is the map induced by the intersection
product. Elements in CH? (X q)4ec are called decomposable cycles. We define

CHP(X7 q)ind = CHP(X7 q)/CHp(X7 q)déc- (242)

We describe the decomposable part of CH?(X,1). Recall that an element of
CH?(X, 1) is represented by an element in Ker (®Z€X(1) R(Z)* v, Dpex» Z- p)

as in Proposition Bl

Proposition A.2. An element of CH? (X, 1)dec can be represented by >, (Y, cx) €
@D cxw R(Z)* such that ¢y € T(X,0%).

Proof. Since CH’(X,1) = 0, CH?(X, 1)qec is the image of the map
CH'(X,1) ®; CH*(X,0) — CH?(X, 1) (243)

By [GLOT] Section 8, the external product CH(X,1) x CH*(X) — CH?*(X x; X, 1)
is induced by the following map.

ZNX,1) x ZM(X) —— Z2(X % X,1); (V] [W]) —— [V xx W] (244)

where V C X x; Al (Al = Speck[Tp, T1]/(To+T1 — 1)), W C X are integral closed
subschemes of codimension 1 and [V], [W], [V x; W] denote the cycles correspond-
ing to V,W,V x; W. Recall that we regard elements in I'(X,O%) as cycles in
Z1(X,1) by considering their graphs. Hence we can check that the external prod-
uct of the graph of ¢ € I'(X, 0%) and an integral codimension 1-cycle V intersects
properly with the image of the diagonal embedding in Z2(X xj X,1). Moreover
their intersection is the graph of ¢ on V. Hence we have the result. O
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