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Abstract. We construct a family of Kummer surfaces X ◦ → T ◦ from the
Legendre family of elliptic curves. Then we construct a family of higher Chow
cycles on X ◦ → T ◦ and calculate their values under the transcendental reg-
ulator map. For the calculation, we use a finite group action on X ◦ → T ◦

and show that the rank of the space of the indecomposable cycles of Xt is
greater than or equal to 18 for very general t ∈ T ◦(C). To show the linearly
independence of indecomposable higher Chow cycles, we use a Picard-Fuchs
differential operator.
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6. Subgroups Ĩ and G̃fib of G̃ 30
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1. Introduction

1.1. Contents of this paper. In the celebrated paper [Blo86], Bloch defined
higher Chow groups CHp(X, q) for a variety X over a field k. Higher Chow groups
are a natural generalization of Chow groups. For a closed subvariety Z ⊂ X of
codimension c, the localization exact sequence of Chow groups

CHp−c(Z) → CHp(X) → CHp(X − Z) → 0

fits into the localization exact sequence of higher Chow groups

· · · → CHp(X, 1) → CHp(X −Z, 1) → CHp−c(Z) → CHp(X) → CHp(X −Z) → 0.
(1)

Thus higher Chow groups are an analogue of the singular cohomologies for algebraic
varieties. Furthermore, there exists a canonical isomorphism

CHp(X, q)⊗Z Q & H2p−q
M (X,Q(p)) (2)

where H2p−q
M (X,Q(p)) is the motivic cohomology of X. Motivic cohomologies and

higher Chow groups appear in many aspects of algebraic geometry and number
theory. However, its structure is still mysterious for many varieties.

In this paper, we study higher Chow cycles in CH2(X, 1) for a certain type of K3
surfaces, which are regarded as 2-dimensional analogues of elliptic curves. Higher
Chow groups of general K3 surfaces are studied in [CDKL16]. We treat a special
type of Kummer surfaces and study their higher Chow groups in detail.

We consider the following map induced by the intersection product.

CH1(X, 1)⊗Z CH1(X)−→ CH2(X, 1) (3)

Since CH1(X) & Pic(X) and CH1(X, 1) & Γ(X,O×
X), the image of (3) can be de-

scribed by the known invariants. Hence we are interested in the cokernel CH2(X, 1)ind
of (3), which is called the indecomposable part of CH2(X, 1). In this paper, we give
an estimate for the rank of CH2(X, 1)ind.

For the estimation, we construct elements in CH2(X, 1) explicitly, and consider
their images under the following regulator map defined by Beilinson.

H3
M(X,Q(2)) H3

D(X,Q(2)) (4)

Here the target H3
D(X,Q(2)) is the Deligne cohomology of X. In the articles

[GL99],[Mül97], [CDKL16], [dAM02],[Col97] and [Asa16], they consider families of
varieties {Xt}t∈T and construct families of higher Chow cycles {ξt}t∈T . Then they
show that ξt does not vanish for very general1 t ∈ T by studying the behavior of
the images of these cycles under the regulator map as a function of t. We follow
this strategy.

In this paper, we consider a family of Kummer surfaces X ◦ → T ◦, which
is constructed in Section 3. We construct a family of higher Chow subgroups
Ξ = {Ξt ⊂ CH2(Xt, 1)}t∈T◦ and compute their images under the following tran-
scendental regulator maps r at fibers.

r : CH2(Xt, 1) H3
D(X an

t ,Z(2)) (H2,0(X an
t ))∨/H2(X an

t ,Z)

CH2(Xt, 1)ind

(5)

Here the upper left map is the regulator map. The transcendental regulator map
factors through CH2(Xt, 1)ind. Thus we can use the transcendental regulator map

1We use the word “very general” for the meaning that “outside of a countable union of proper(=
not the whole space) analytic subsets”.
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for the rank estimate for indecomposable parts. The main theorem of this paper is
as follows.

Theorem 1.1. (Theorem 9.20) For a very general t ∈ T ◦(C),

rank r(Ξt) = 18. (6)

Especially, rank CH2(Xt, 1)ind ≥ 18.

Since X ◦ → T ◦ is a certain base change of the Kummer surface family treated
in Section 6 of [CDKL16], CH2(Xt, 1)ind (= 0 was already known for very general
t. Theorem 1.1 improves the estimate for the rank of CH2(Xt, 1)ind. While the
construction of a higher Chow cycle in [CDKL16] is based on a certain elliptic
fibration structure of Xt, our construction of Ξt is based on the fact that Xt is the
minimal desingularization of a double covering of P1

k ×k P1
k. Thus we give a new

way of construction of higher Chow cycles on such type of Kummer surfaces in
this paper. The merit of our construction is that the values of the transcendental
regulator maps can be represented by relatively simple integrals. e.g. (7)

For the computation of the image of the transcendental regulator map, we con-
struct topological chains on X an

t explicitly (Section 8) and use the formula obtained
by Levine ([Lev88]). By Levine’s formula, the following multivalued holomorphic
function appears in the image of an element of Ξ under the transcendental regulator
map (Proposition 8.10).

L(a, b) =
∫

'

dxdy√
x(1− x)(1− ax)

√
y(1− y)(1− by)

(7)

Here * = {(x, y) ∈ R2 : 0 < y < x < 1}. (7) is similar to the integral represen-
tation of Appell’s hypergeometric functions. A difference is that the boundary of
the domain of integral is not necessarily contained in the branching locus of the
integrand. In other words, (7) is a kind of incomplete integrals.

The Beilinson conjecture predicts that if X is defined over a number field, the
values (in a suitable sense) of the regulator map (4) are related to the special values
of L-functions of motives of X. Hence it is an interesting problem what kinds of
functions appear in the image of the regulator map.

Recently, in [AO18], Asakura and Otsubo give examples of special varieties
(which have hypergeometric fibrations) whose values of the regulator maps are rep-
resented by the value at z = 1 of a generalized hypergeometric function 3F2. Fur-
thermore, by deforming such varieties, they give a 1-dimensional family of varieties
such that the value of the regulator map of members of such family is represented
by generalized hypergeometric function 3F2 ([AO21]). Hence some relations be-
tween the value of the regulator map and hypergeometric functions were known.
The object we treat in this paper can be regarded as a certain Q⊕18-extension of
the exterior tensor product of two Gauss hypergeometric differential equations 2F1.

To compute the value of transcendental regulator for each element in Ξ, we use
automorphisms of the Kummer surface family. We consider the following type of
automorphisms of a family of algebraic varieties.

Definition 1.2. Let X → S be a family of algebraic varieties over a field k.
The automorphism group Autk(X → S) of X → S consists of a pair (g, g) with
g ∈ Autk(X) and g ∈ Autk(S) such that the following diagram commutes.

X X

S S

g

g

(8)
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In this paper, we construct the following finite group action explicitly on the
Kummer surface family X ◦ → T ◦. Let V be the Klein four-group and π be the
natural projection S4 → S4/V = S3. We set G = ({(h1, h2) ∈ S4 ×S4 : π(h1) =
π(h2)})2. We define a Z/2Z-extension G̃ of G (Definition 4.17).

Proposition 1.3. (Proposition 4.22) The group G̃ acts faithfully on the family
X ◦ → T ◦.

Then we construct a subgroup Ξcan ⊂ CH2(X ◦, 1) and define Ξ as the sum of
ρ̃∗Ξcan (ρ̃ ∈ G̃). The author is informed of the constructions of several elements in
Ξ by Terasoma in seminars. We generalize his idea of the constructions of higher
Chow cycles so that we can use automorphisms of X ◦ → T ◦.

We compute the image of Ξ under the regulator map by using G̃-action as follows:
since Ξ is constructed as a family over T ◦, we can define a “relative transcendental
regulator map” Rω (Definition 9.11)

Rω : Ξ Qω(T ◦) (9)

where Qω is a sheaf on (T ◦)an such that restriction of Qω at t ∈ T ◦(C) is isomorphic
to (H2,0(X an

t ))∨/H2(X an
t ,Q). The reason why Rω is called “relative transcendental

regulator” is that the restriction of Rω(Ξ) at t ∈ T ◦(C) coincides with r(Ξt) mod-
ulo torsion part. This relative transcendental regulator map associates families of
higher Chow cycles to (a generalization of) normal functions. Though this kind of
maps can be defined in more general setting (cf.[Sai02] and [CDKL16]), we employ
an ad hoc definition since we need only the explicit description for special cases.

We define a G̃-action on Qω so that Rω is equivariant under this action. Thus
we reduce the computation of r(Ξt) to that of Rω(Ξ) and the G̃-action on Qω(T ◦).
In Section 6, we construct two subgroups Ĩ & (S4 ×S3 S4) × (Z/2Z) and G̃fib &
(Z/2Z)5 of G̃ which stabilize Rω(Ξcan) ⊂ Qω(T ◦). Since Ξ is defined as the sum of
ρ̃∗Ξcan, we can show that the rank of Rω(Ξ) is at most 18 by examining the size of
the stabilizer of Rω(Ξcan).

To show that the rank of Rω(Ξ) is exactly 18, we consider the image of Rω(Ξ) ⊂
Qω(T ◦) under a Picard-Fuchs differential operator

D : Qω(T ◦) O(T ◦)⊕2. (10)

Similar methods are used in [Mül97], [dAM02] and [CDKL16]. We define a G̃-
action on O(T ◦)⊕2 so that D is G̃-equivariant. To prove the equivariance, we
show the transformation formulae of Picard-Fuchs differential operators by G̃-action
(Proposition 9.18). This result is interesting by itself from the point of view of
differential equations. Using a simple description of D ◦ Rω(Ξ), we show that
D ◦ Rω(Ξ) has 18 Q-linearly independent elements (Table 8). Thus we can show
Theorem 1.1.

1.2. Outline of this paper. This paper is divided into 3 parts.
Part 1 consists of Section 2, Section 3 and Section 4. The purpose of Part 1

is to fix the notation and to prove Proposition 1.3. In Section 2, we introduce
a category (Schgp/k), which is used to consider multiple finite group actions on
multiple schemes simultaneously. In Section 3, we construct the Kummer surface
family X → T . In Section 4, we prove Proposition 1.3.

Part 2 consists of Section 5 and Section 6. The purpose of Part 2 is to explain
the construction of Ξ ⊂ CH2(X ◦, 1) and consider the G̃-action on Ξ. In Section
5, we first construct a subgroup of the higher Chow group Ξcan ⊂ CH2(X ◦, 1) and
define Ξ as the sum of its images under G̃-action. In Section 6, we construct two
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subgroups Ĩ and G̃fib which stabilize the image of Ξcan under the transcendental
regulator map.

The purpose of Part 3 is to prove Theorem 1.1. Part 3 consists of Section 7,
Section 8 and Section 9. In Section 7, we fix relative differential forms ω on X ◦ →
T ◦ and examine G̃-action on ω. Furthermore, we find a Picard-Fuchs differential
operator D which annihilates period functions of X ◦ → T ◦. In Section 8, we
calculate the image of an element of Ξcan

t under the transcendental regulator map.
In Section 9, we define the relative transcendental regulator map Rω in (9) and
prove G̃-equivariance of D and Rω. Finally, we prove Theorem 1.1.

In Appendix A, we recall the definition of decomposable cycles in higher Chow
groups and how decomposable cycles are represented by elements of the homology
group of the Gersten complex (cf. Proposition 5.1).

1.3. Acknowledgement. The author expresses his sincere gratitudes to his su-
pervisor Professor Tomohide Terasoma, who gave the author the idea of the con-
struction of higher Chow cycles in Section 5 and also the idea of the construction
of the topological 2-chains in Section 8 and let the author know a technique of
checking the non-triviality of higher Chow cycles as in [Mül97]. Furthermore, he
gave the author many valuable comments which simplifies the arguments in this
paper. He also thanks Professor Shuji Saito sincerely, who gave the author many
helpful comments on this paper. The author is supported by the FMSP program
by the University of Tokyo.

1.4. Conventions.

1.4.1. Conventions for algebraic geometry.

(1) For a field k, a variety over k is an integral separated scheme of finite type
over k. For a variety X, its function field of X is denoted by R(X).

(2) For a morphism X → S and s ∈ S, we usually denote the fiber over s by
Xs. For ϕ ∈ HomS(Y,X), ϕ" denotes the morphism of sheaves of rings
ϕ" : OX → ϕ∗OY .

(3) For S-schemes Y and X, HomS(Y,X) denotes the set of S-morphisms. If
Y = SpecR, elements in HomS(Y,X) are called R-rational points and we
also use the notationX(R) for HomS(Y,X). The group of S-automorphisms
of X is denoted by AutS(X). For any morphism S′ → S, we have a nat-
ural map HomS(Y,X) → HomS′(Y ×S S′, X ×S S′). For a subset Σ of
HomS(Y,X), the image of Σ under this map is called the base change of Σ
by S′ → S.

(4) For closed subschemes Y1 and Y2 of X which satisfy Y1∩Y2 = ∅, Y1.Y2 ⊂ X
denotes the closed subscheme corresponding to the ideal sheaf IY1 ∩ IY2

where IYi is the ideal sheaf corresponding to Yi.

1.4.2. Conventions for group theory.

(1) In this paper, we always consider left group actions. For a group G, the
opposite G-action is a (left) action of the opposite group Gop. Let G be a
group and M be an abelian group with a G-action. For a subgroup N ⊂ M ,
the G-action of M stabilizes N if and only if for any g ∈ G and n ∈ N , we
have g · n ∈ N .

(2) For a set Σ, S(Σ) denotes the symmetric group of Σ. For n ∈ Z≥1, Sn

denotes the symmetric group of the set {0, 1, . . . , n − 1}. For σ ∈ S(Σ),
sgn(σ) ∈ {±1} denotes its image under the sign character of S(Σ).

(3) For a set A and an abelian group M , the set of maps from A to M is
denoted by MA. The set MA has a natural structure of an abelian group.



A GROUP ACTION ON HIGHER CHOW CYCLES ON KUMMER SURFACES 7

1.4.3. Others.

(1) For a set Σ, |Σ| denotes the cardinality of Σ.
(2) For a ring A, the multiplicative group of A is denoted by A×. If A is an

integral domain, its fraction field is denoted by Frac(A).
(3) For n ∈ Z>1 and a field k, µn(k) denotes the subgroup of k× consisting of

n-th roots of unity.
(4) We use the symbol ! for the fiber product as follows.

X ×S Y Y

X S

pr1

pr2

! (11)

2. Generalities of discrete group actions on schemes

In this section, we introduce a category (Schgp/k) of schemes with group actions
and prove some properties which we use in Section 4 to construct group actions on
a family of Kummer surfaces.

All results in this section are more or less formal and proofs are often straight-
forward. Hence we omit proofs or give only sketches. Throughout in this section,
we fix a field k and assume all schemes and morphisms are over k.

2.1. Schemes with group actions.

Definition 2.1. (The definition of (Schgp/k))

(1) A scheme with a group action (S,H,ϕ) is a triplet consisting of a k-scheme
S, a group H and a group homomorphism ϕ : H → Autk(S). We usually
omit ϕ from the notation and write (S,H). In that case, we use the same
symbol for h ∈ H and its image in Autk(S).

(2) A pair (f,ψ) of a morphism of k-schemes f : T → S and a group homo-
morphism ψ : G → H is called a morphism of schemes with group actions
from (T,G) to (S,H) if the following diagram commutes for any g ∈ G.

T S

T S

f

g ψ(g)

f

(12)

Then we have a category (Schgp/k) of schemes with group actions by the
natural composition of morphisms.

(3) Let (S,H) ∈ (Schgp/k). For a S-scheme X, we define Aut(X;S,H) as the
following group.

Aut(X;S,H) =





(µ, ν) ∈ Autk(X)×H :

X S

X S

µ ν commutes.





(13)

By the natural projection Aut(X;S,H) → Autk(X) and Aut(X;S,H) →
H, we have the following object and morphism in (Schgp/k).

(X,Aut(X;S,H)) (S,H) (14)

(4) For a morphism (f,ϕ) : (X,G) → (S,H) be a morphism in (Schgp/k), we
have a group homomorphism2

G−→Autk(X → S); g /→ (g,ϕ(g)). (15)

2See Definition 1.2 for the notation Autk(X → S).
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If the G-action on X is faithful, this group homomorphism is injective.

In this paper, we often use the following fiber product construction in (Schgp/k).

Proposition 2.2. Consider the following diagram in (Schgp/k).

(S1, H1)

(S2, H2) (S3, H3)

(f1,ϕ1)

(f2,ϕ2)

(16)

Then the fiber product (S1, H1)×(S3,H3) (S2, H2) exists and isomorphic to (S1 ×S3

S2, H1 ×H3 H2). Here H1 ×H3 H2 is the fiber product of groups. i.e.

H1 ×H3 H2 = {(h1, h2) ∈ H1 ×H2 : ϕ1(h1) = ϕ2(h2)}. (17)

Definition 2.3. (1) Let (X,G) → (S,H) be a morphism in (Schgp/k). For
g ∈ G, g denotes its image in H. A subset Σ of HomS(S,X) is compatible
with (X,G) → (S,H) if and only if for any σ ∈ Σ and g ∈ G, g◦σ◦g−1 ∈ Σ.

(2) If Σ is compatible with (X,G) → (S,H), we have a G-action on Σ defined
by

G× Σ−→ Σ; (g,σ) /→ g ◦ σ ◦ g−1. (18)

We can keep track this group action on Σ after fiber product operations.

Proposition 2.4. (1) Let (Xi, Gi) → (Si, Hi) be a morphism in (Schgp/k) for
i = 1, 2. Put (S,H) = (S1, H1)×(S2, H2) and (X,G) = (X1, G1)×(X2, G2).
Then we have the following morphism.

(X1, G1) (X,G) (X2, G2)

(S1, H1) (S,H) (S2, H2)

pr1 pr2

pr1 pr2

(19)

Suppose Σi ⊂ HomSi(Si, Xi) is compatible with (Xi, Gi) → (Si, Hi) for
i = 1, 2. Then

Σ = {σ1 × σ2 : σ1 ∈ Σ1,σ2 ∈ Σ2} ⊂ HomS(S,X) (20)

is compatible with (X,G) → (S,H). The G-action on Σ is given by

G× Σ−→ Σ; ((g1, g2), (σ1,σ2)) /→ (g1 · σ1, g2 · σ2). (21)

(2) Consider the following fiber product diagram in (Schgp/k).

(X ′, G′) (S′, H ′)

(X,G) (S,H)

! (22)

Suppose Σ ⊂ HomS(S,X) is compatible with (X,G) → (S,H). Then its
base change Σ′ ⊂ HomS′(S′, X ′) is compatible with (X ′, G′) → (S′, H ′).
Furthermore, the natural map Σ → Σ′ is G′-equivariant.

2.2. Linearizations of OX-modules. We recall the definition of G-linearizations
of OX -modules. In some references, OX -module with a G-linearization is called
G-equivalent sheaf.
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Definition 2.5. Let (X,G) ∈ (Schgp/k) and L be anOX -module. AG-linearization
of L is a collection of OX -module isomorphisms {Φg : g∗L

∼−→ L }g∈G such that
for any g, h ∈ G, the following diagram commutes.

(g ◦ h)∗L h∗g∗L

L h∗L

Φgh h∗(Φg)

∼

Φh

(23)

The commutativity of (23) is called the cocycle condition.

Sheaves of relative differentials are fundamental examples of linearized sheaves.

Proposition 2.6. Let (f,ϕ) : (X,G) → (S,H) be a morphism in (Schgp/k). We
have a canonical G-linearization {Φg}g∈G of the sheaf of differentials Ω1

X/S.

Proof. For g ∈ G, we have the following diagram.

X X

S S

g

f f

ϕ(g)

(24)

By the universality of the sheaf of differentials, we have an OX -module homomor-
phism g∗Ω1

X/S → Ω1
X/S . By the universality, this satisfies the cocycle condition. "

We list constructions of new linearized sheaves from other linearized sheaves.

Proposition 2.7. Let (X,G) ∈ (Schgp/k) and L be an OX-module with a G-
linearization {Φg}g∈G.

(1) Let (f,ϕ) : (Y,H) → (X,G) be a morphism in (Schgp/k). For h ∈ H, put

f∗Φϕ(h) : h
∗(f∗L ) & (f ◦h)∗L = (ϕ(h)◦f)∗L & f∗ϕ(h)∗L

f∗Φϕ(h)−−−−−→ f∗L . (25)

Then {f∗Φϕ(h)}h∈G is a H-linearization of f∗L .
(2) Let M be a OX-modules with G-linearization {Ψg}g∈G. For g ∈ G, put

Φg ⊗Ψg : g∗(L ⊗OX M ) & g∗L ⊗OX g∗M
Φg⊗Ψg−−−−−→ L ⊗OX M (26)

Then {Φg ⊗Ψg}g∈G is a G-linearization on L ⊗OX M .
(3) Assume that L is invertible sheaf. For g ∈ G, put

Φ⊗(−1)
g : g∗HomOX (L ,OX) & HomOX (g∗L ,OX)

(Φ−1
g )∨

−−−−−→ HomOX (L ,OX) (27)

Then {Φ⊗(−1)
g }g∈G is a G-linearization of L ⊗(−1).

The group cocycles have close relations with sheaves with linearizations. In this
paper, explicit cocycle calculations play an important role for the main result.

Definition 2.8. Assume an abelian group M has an opposite G-action. An op-
posite 1-cocycle on M is a 1-cocycle of Gop on M . In other words, an opposite
1-cocycle is a map χ : G → M which satisfies the following condition: For any
g, h ∈ G,

χ(gh) = χ(h) + h · (χ(g)). (28)

Let (X,G) ∈ (Schgp/k). We have a natural opposite G-action on the k-algebra
Γ(X,OX) defined by

G× Γ(X,OX) → Γ(X,OX); (g, a) /→ g"(a). (29)

We also have an opposite G-action on the abelian group Γ(X,O×
X). If X is an

integral scheme, by the similar method, we have an opposite G-action on R(X)×.
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We can get opposite 1-cocycles from linearizations of invertible sheaves and ra-
tional sections of them

Proposition 2.9. Let (X,G) ∈ (Schgp/k) where X is an integral scheme. Let L
be an invertible sheaf, {Φg}g∈G be a G-linearization on L and η be a non-zero
rational section. For g ∈ G, we define φ(g) ∈ R(X)× by

Φg(g
∗(η)) = φ(g)−1 · η (30)

Then φ : G → R(X)× is an opposite G-cocycle, which is called the opposite 1-cocycle
associated with (L , {Φg}g∈G, η). Furthermore, if we take another rational section
η′ = fη (f ∈ R(X)×), opposite 1-cocycle φ changes by the coboundary 1-cocycle
associated with f .

2.3. Lifting of group actions by cyclic coverings and blowing-ups. Finally,
we prove the liftability of group actions by a cyclic covering and a blowing-up. We
recall the construction of cyclic coverings.

Definition 2.10. Let X be a scheme and m ∈ Z>1. Let L be an invertible sheaf
on X and h ∈ Γ(X,L ⊗(−m)). We define a commutative OX -algebra structure on⊕m−1

i=0 L ⊗i by the following rule: For an open subset U ⊂ X, x ∈ L ⊗i(U) and
y ∈ L ⊗j(U) where i, j ∈ {0, 1, . . . ,m− 1}, we define

x · y =

{
x⊗ y ∈ L ⊗(i+j)(U) (i+ j < m)

x⊗ y ⊗ h|U ∈ L ⊗(i+j−m)(U) (i+ j ≥ m)
(31)

We extend this multiplication rule OX -bilinearly. Note that commutativity and
associativity follows from that L is an invertible sheaf. Then m-uple covering
associated with (L , h) is defined by

Spec
⊕m−1

i=0 L ⊗i X. (32)

Here Spec denotes the relative spectrum of OX -algebras.

Proposition 2.11. Let (X,G) ∈ (Schgp/k). Let L be an invertible sheaf with G-
linearization {Φg}g∈G. Let η ∈ Γ(X,L ⊗(−m)) be a global section and π : Y → X
be a m-uple covering associated with (L , η). Suppose that

Φ⊗(−m)
g (g∗(η)) = η. (33)

Then we have a G-action on Y such that (π, idG) : (Y,G) → (X,G) is a morphism
in (Schgp/k).

Proof. For g ∈ G, we define an automorphism g̃ : Y → Y as follows.

(1) Let Y1 be the m-uple covering associated with (g∗L , g∗(η)). Then Y1 is a

fiber product of Y → X and X
g−→ X. Since g is an isomorphism, Y1 → Y

is so.
(2) By the isomorphism Φg, (g∗L , g∗(η)) is isomorphic to (L , η). Hence we

have an isomorphism Y
∼−→ Y1 over X.

By composing these isomorphism, we get an automorphism g̃ ∈ Autk(X).

Y Y1 Y

X X X

(2)
∼

π π

(1)
∼!

π

g
∼

(34)

We can show that G → Autk(Y ); g /→ g̃ is a group homomorphism by the cocycle
condition. Hence we can construct G-action on Y and by construction, (π, idG) :
(Y,G) → (X,G) becomes a morphism in (Schgp/k) "
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Finally, we prove liftability of group actions by blowing-ups. This follows from
the universal property of the blowing-up.

Proposition 2.12. Let (X,G) ∈ (Schgp/k) and Y be a closed subscheme of X
which is stable under the G-action. Let b : BlY X → X be a blowing up of X along
Y . Then we have a G-action on BlY X such that b is equivariant to G-actions.

3. Construction of a family of Kummer surfaces

Hereafter we fix a field k whose characteristic is not 2. In this section, we
explicitly construct the family of Kummer surfaces X → T .

3.1. Construction of the Legendre family of elliptic curves.

Definition 3.1. (1) We set A = k
[
c, 1

c(1−c)

]
, which is a localization of the

polynomial ring of one variable k[c] and S = SpecA. Let P1
S = ProjA[Z0, Z1]

be the projective line over S.
(2) We use the notations U0 = D+(Z0) ⊂ P1

S and U1 = D+(Z1) ⊂ P1
S . We

define the local coordinate z = Z1/Z0 on U0.

(3) We define h(z) = z(1−z)(1−cz) ∈ A[z] and h̃ = h(z)dz⊗(−2) ∈ Γ(P1
S , (Ω

1
P1
S/S)

⊗(−2)).

We construct the Legendre family E → S of elliptic curves as a double covering
of P1

S .

Definition-Proposition 3.2. Let E → P1
S be the double covering associated with3

(Ω1
P1
S/S , h̃). On the open subset U0 ⊂ P1

S, E → P1
S can be described as the following

morphism.
E0 = SpecA[u, z]/(u2 − h(z))−→ SpecA[z] = U0 (35)

Definition 3.3. (Definition of Σ)

(1) We define a set of A-rational points Σ on P1
S by

Σ = {0, 1, 1/c,∞} ⊂ HomS(S,P1
S). (36)

Here 0, 1, 1/c,∞ denotesA-rational points corresponding to z = 0, 1, 1/c,∞.
(2) Similarly, we use the same symbol Σ for a set of A-rational points on E

corresponding to z = 0, 1, 1/c,∞ and u = 0.
(3) For a morphism of schemes Z → S, we use the same symbol Σ for its base

change by Z → S.
(4) If we would like to indicate the variety which points in Σ are on, we use

the notation like Σ(P1
S) or Σ(E).

We have the description of the involution ι on E associated with the structure
of elliptic curves as follows.

Proposition 3.4. Let ι be an automorphism of E defined by the following A-algebra
homomorphism.

A[u, z]/(u2 − h(z)) A[u, z]/(u2 − h(z))

u, z −u, z
(37)

Then ι is the involution with respect to the elliptic curve structure (E , O) over S
where O ∈ Σ.

Since E0 is written in Weierstrass form, if O = ∞, we have the result. If
O = 0, 1, 1/c, we use the following lemma. The proof is standard.

3See Definition 2.10 for this notation.
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Lemma 3.5. Let E be a smooth projective curve of genus 1 over a field K. Let
O and O′ be K-rational points of E. Morphisms ι and ι′ are involutions on E
of taking inverses associated with the elliptic curve structure (E,O) and (E,O′).
Suppose O′ is a 2-torsion point for the elliptic curve (E,O). Then ι = ι′.

3.2. A family of Kummer surfaces associated with products of Elliptic
curves.

Definition 3.6. We use the following notations.

(1) Let B denote a k-algebra A ⊗k A. We set a = c ⊗ 1, b = 1 ⊗ c ∈ B and
T = SpecB.

(2) Let Y = P1
S ×k P1

S . We regard Y as a scheme over T = S ×k S. For
i, j ∈ {0, 1}, Yi,j = Ui ×k Uj are open subschemes of Y.

(3) Let x, y denote local coordinates on Y0,0 corresponding to z⊗1 and 1⊗z in
A[z]⊗k A[z], respectively. Using x and y, we can write Y0,0 = SpecB[x, y].

(4) We define the following polynomial with coefficients in B.

f(x) = x(1− x)(1− ax)

g(y) = y(1− y)(1− by)
(38)

(5) Let L be an invertible sheaf on Y corresponding to pr∗1Ω
1
P1
S/S⊗OY pr

∗
2Ω

1
P1
S/S

where pri : Y → P1
S denotes the i-th projection. Furthermore, we define a

global section η by η = pr∗1(h̃)⊗ pr∗2(h̃) ∈ Γ(Y,L ⊗(−2)).

Definition-Proposition 3.7. We define Ỹ−→Y as the double covering associated
with4 (L , η). On Y0,0 ⊂ Y, Ỹ → Y is described as follows.

Ỹ0,0 = SpecB[u, x, y]/(u2 − f(x)g(y)) → SpecB[x, y] = Y0,0 ⊂ Y (39)

We define an open subscheme Ỹ0,0 ⊂ Ỹ as above.

The double covering Ỹ and E×kE are related as follows. Note that the coordinate
ring of E0 ×k E0 ⊂ E ×k E is described as follows.

A[u, z]/(u2 − h(z))⊗k A[u, z]/(u2 − h(z)) B[u1, u2, x, y]/(u2
1 − f(x), u2

2 − g(y))

u⊗ 1, 1⊗ u, z ⊗ 1, 1⊗ z u1, u2, x, y

∼

(40)

Proposition 3.8. We have a morphism E ×k E → Ỹ over T described as the
following B-algebra homomorphism.

B[u, x, y]/(u2 − f(x)g(y)) B[u1, u2, x, y]/(u2
1 − f(x), u2

2 − g(y))

u, x, y u1u2, x, y
(41)

Then E ×k E → Ỹ corresponds to the universal categorical quotient of E ×k E under
the Z/2Z-action induced by ι× ι .

Proof. By the description of ι in Proposition 3.4, ι× ι acts on E0 ×k E0 as

B[u1, u2, x, y]/(u2
1 − f(x), u2

2 − g(y)) B[u1, u2, x, y]/(u2
1 − f(x), u2

2 − g(y))

u1, u2 −u1,−u2

(42)
Hence the image of (41) generates the ring of invariants under the involution. Since
the map (41) is injective, we have the result. "

4See Definition 2.10 for this notation.
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Definition 3.9. (Definition of Σ2)

(1) We define a set Σ2 of B-rational points on Y by

Σ2 = {σ1 × σ2 : σ1,σ2 ∈ Σ} (43)

where σ1 × σ2 : T = S ×k S → P1
S ×k P1

S = Y is the direct product of σ1
and σ2.

(2) Similarly, we define a set Σ2 of B-rational points on E ×k E by {σ1 × σ2 :
σ1,σ2 ∈ Σ}. We also use the same symbol Σ2 for its image under the map
HomT (T, E ×k E) → HomT (T, Ỹ) induced by the morphism E ×k E → Ỹ in
(41).

(3) More specifically, Σ2 is the set of B-rational points whose x-coordinate and
y-coordinate are in {0, 1, 1/a,∞} and {0, 1, 1/b,∞} respectively. We often
identify

Σ2 = {0, 1, 1/a,∞}× {0, 1, 1/b,∞} (44)

and elements in Σ2 is written like (0, 0), (1, 1) and (1/a, 1/b). Each σ ∈ Σ2

can be regarded as a closed subscheme. We use the same symbol Σ2 for the
closed subscheme which is the disjoint union of each σ ∈ Σ2.

(4) For a morphism of schemes Z → T , we use the same symbol Σ2 for its base
change by Z → T .

(5) If we would like to indicate the variety which points in Σ2 are on, we use
the notation like Σ2(Y) or Σ2(Ỹ ′).

Definition-Proposition 3.10. We define X → Ỹ as the blowing up of Ỹ along
Σ2. Then X is described locally on Ỹ0,0 as follows.

V0,0 = SpecB[v, x, y]/(v2f(x)− g(y))

Ỹ0,0 SpecB[u, x, y]/(u2 − f(x)g(y))

W0,0 = SpecB[w, x, y]/(w2g(y)− f(x))

=

(45)
These morphisms are defined by u /→ vf(x) and u /→ wg(y). The local coordinates
v and w are glued by the relation v = 1

w . We define open subschemes V0,0 and W0,0

of X as above.

Definition 3.11. For σ ∈ Σ2, we define Qσ ⊂ X by the following fiber product.

Qσ X

T Ỹ

!

σ

(46)

See Figure 1 for the configurations of Qσ on X .

We constructed the following T -schemes.

E ×k E

X Ỹ Y = P1
S ×k P1

S

V0,0

Ỹ0,0 Y0,0 = U0 ×k U0

W0,0

quotient by ι×ι

blowing−up along

Σ2

double cover

by (L ,η)∪
∪ ∪

(47)
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Figure 1. The exceptional divisors Qσ on X

We can check that these constructions are all stable under any base change of T .

Proposition 3.12. Let Z be any scheme over T . Let XZ , ỸZ , (E ×k E)Z and YZ

denote the base changes of X , Ỹ, E ×k E and Y by Z → T . Then we have the
following.

(1) ỸZ → YZ is the double cover associated with (L , η). Here we use the same
symbol (L , η) for its pull back by YZ → Y.

(2) (E×k E)Z → ỸZ is the quotient by (ι× ι)Z . Here (ι× ι)Z is the base change
of ι× ι.

(3) XZ → ỸZ is the blowing up along Σ2.

(3) is not so obvious since the blowing-up is not stable under the base change.
But in this case the result follows from the fact that OỸ/I

n is flat over T for any
n > 0 where I is the ideal sheaf corresponding to Σ2.

By the properties of the Legendre family E → S, we have the following.

Proposition 3.13. Let t ∈ T and O ∈ Σ2. Then the abelian surface (E ×k E)t
whose identity element is O has the following properties.

(1) Σ2 is the set of 2-torsion points of this abelian surface structure.
(2) (ι× ι)t is the involution of taking inverse.
(3) Let a(t), b(t) ∈ κ(t) be the images of elements a, b ∈ OT (T ) at the residue

field of t. Then (E ×k E)t is isomorphic to the direct product of the elliptic
curves y2 = x(1− x)(1− a(t)x) and y2 = x(1− x)(1− b(t)x) over κ(t).

Finally, we prove that X → T is a family of Kummer surfaces.

Proposition 3.14. For t ∈ T , the fiber Xt is isomorphic to the Kummer surface
associated with the abelian surface ((E ×k E)t, O) where O ∈ Σ2.

Proof. By Proposition 3.13, (ι × ι)t is the involution of taking inverses on the
abelian surface (E ×k E)t. By Proposition 3.12 (2), (E ×k E)t → Ỹt corresponds
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to the quotient by (ι × ι)t. Since Σ2 ⊂ (E ×k E)t(κ(t)) is the set of 2-torsion
points on (E ×k E)t, its image Σ2 ⊂ Ỹt(κ(t)) corresponds to the set of 16 singular
points on Ỹt. By Proposition 3.12 (3), Xt → Ỹt is the blowing-up of Ỹt along these
singular points. Hence Xt is isomorphic to the Kummer surface associated with
(E ×k E)t. "

3.3. Construction of other smooth families of varieties over T . In this
subsection, we define other smooth families of varieties (E ×k E)˜ and X over T
and explain their relations with X . These families of varieties are used for relating
periods of X with those of elliptic curves in the Legendre family (Section 7) and
for a construction of topological 2-chains on fibers Xt (Section 8).

Definition 3.15. Let (E ×k E)˜ (resp. X ) be the blowing-up of E ×k E (resp. Y)
along Σ2. By the universal property of the blowing-up, we have unique morphisms
(E ×k E)˜→ X and X → X such that the following diagram commutes.

(E ×k E)˜ X X

E ×k E Ỹ Y

blowing−up

along Σ2

blowing−up

along Σ2
blowing−up

along Σ2

quotient by ι×ι double cover

(48)

The morphism X → X is described by the following B-algebra homomorphisms.

B[v, x, y]/(vf(x)− g(y)) B[v, x, y]/(v2f(x)− g(y)); v v2

B[w, x, y]/(wg(y)− f(x)) B[w, x, y]/(w2g(y)− f(x)); w w2

(49)

Finally, we name exceptional divisors on X . We use this notation in Section 8.

Definition 3.16. For σ ∈ Σ2, we define the exceptional divisor Qσ ⊂ X by the
following fiber product.

Qσ X

T Y

!

σ

(50)

The morphism X → X induces the 2 : 1 map Qσ → Qσ.

4. Construction of automorphisms of the family of Kummer surfaces

As in Section 3, we fix a field k whose characteristic is not 2. Moreover, we
assume k contains

√
−1. Until subsection 7.1, we assume these conditions on k.

In this section, we will construct a group G̃ and its action to a scheme X ′, which
is a base change of X in Definition 3.10. To construct G̃-action on X ′, we construct
following objects in (Schgp/k).

(T ′, G) (T,G0)

(X ′, G̃) (Ỹ ′, G̃) (Y ′, G) (Y, G0)

(S′, H) (S,H0)

(P1
S′ , H) (P1

S , H0)

pri pri

pri pri

(51)

We will construct them in the following order.
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(1) We start with H0 = Autk(S) = S({0, 1,∞}) (Definition 4.1). We define
a H0 & S4-action on P1

S so that Σ ⊂ HomS(S,P1
S) is compatible5 with

(P1
S , H0) → (S,H0). Then we consider their base changes by a finte étale

extension SpecA′ = S′ → S (Definition 4.6) and get (S′, H) and (P1
S′ , H).

The group H is isomorphic to S4 (Remark 4.8).
(2) We define the following objects in (Schgp/k) (Definition 4.10)

(T,G0) = (S ×k S,H0 ×H0), (T ′, G) = (S′ ×k S′, H ×H)

(Y, G0) = (P1
S ×k P1

S , H0 ×H0), (Y ′, G) = (P1
S′ ×k P1

S′ , H ×H)
(52)

(3) To lift the G-action on Y ′ by the double covering Ỹ ′ = Ỹ ×T T ′ → Y ′,
we use Proposition 2.11. Since Ỹ is constructed from (L , η) in Definition
3.6, we will construct linearization on L satisfying the liftability condition
(33). For this purpose, we consider a group G̃ which is a Z/2Z-extension
of G (Definition 4.17).

(4) Since the G̃-action on Ỹ ′ stabilizes the blowing-up locus of X ′ → Ỹ ′, we
can lift G̃-action on Ỹ ′ to X ′ = X ×T T ′ (Proposition 4.20).

We calculate some opposite 1-cocycles in Subsection 4.4. They are important for
the description of the group action on the higher Chow subgroup Ξcan (Section 6),
on the 2-form ω ∈ Γ(X,Ω2

X ′/T ′) (Section 7) and on the sheaf Qω (Section 9).

4.1. Automorphisms on S and P1
S. In this subsection, we construct objects and

a morphism (P1
S , H0) → (S,H0) in (Schgp/k).

Definition 4.1. We define H0 = Autk(S). If we regard S = P1
k − {0, 1,∞}, every

τ0 ∈ H0 extends to an automorphism on P1
k which stabilizes the k-rational point

set {0, 1,∞}. Hence we have the following group isomorphism.

Autk(S) H0 S({0, 1,∞})

τ0 (• /→ τ0(•))

∼

∈ ∈ (53)

We often identifyH0 withS({0, 1,∞}). The correspondence ofH0 andS({0, 1,∞})
is given in Table 1. Note that the composition on S({0, 1,∞}) is defined as the
usual order. For example, (0 1)(0 ∞) = (0 ∞ 1). Thus H0 induces an opposite
action on the ring A.

Table 1. The correspondence of H0 & S({0, 1,∞})

τ0 τ "0(c) τ0 τ "0(c)

id c (0 1) 1− c

(1 ∞) c
c−1 (0 1 ∞) 1

1−c

(0 ∞) 1
c (0 ∞ 1) c−1

c

Next, we define a subgroup H0 of the automorphism group of P1
S . Using the

notation in Definition 2.1, we have the following group.

Aut(P1
S ;S,H0) =






(τ0, τ0) ∈ Autk(P1
S)×H0 :

P1
S S

P1
S S

τ0 τ0 commutes.






(54)

5See Definition 2.3 for the definition of compatible sets.
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Since the natural projection Aut(P1
S ;S,H0) → Autk(P1

S) is injective, we iden-
tify Aut(P1

S ;S,H0) as a subgroup of Autk(P1
S). We often denote an element in

Aut(P1
S ;S,H0) by τ0. For τ0 ∈ Aut(P1

S ;S,H0), the image of τ0 under the natural
projection Aut(P1

S ;S,H0) → H0 is denoted by τ0.

Definition 4.2. We define H0 as the following subgroup of Aut(P1
S ;S,H0).

H0 =
{
τ0 ∈ Aut(P1

S ;S,H0) : For any σ ∈ Σ, τ0 ◦ σ ◦ τ−1
0 ∈ Σ.

}
(55)

Then we have a natural morphism α : (P1
S , H0) → (S,H0) in (Schgp/k). By the

construction, Σ is compatible with α : (P1
S , H0) → (S,H0). By Definition 2.3, H0

has the following natural set-theoretic action on Σ.

H0 S(Σ) S({0, 1, 1/c,∞})

τ0
(
σ /→ τ0 ◦ σ ◦ τ−1

0

)∈ ∈ (56)

Proposition 4.3. The group homomorphism (56) is an isomorphism.

Proof. Let τ0 ∈ H0. We have the following diagram.

P1
S P1

S P1
S

S S S

τ0 τ−1
0

τ0 τ−1
0

(57)

where τ−1
0 : P1

S → P1
S is the morphism idP1

k
× τ−1

0 : P1
S = P1

k ×k S → P1
k ×k S = P1

S .

Then (τ−1
0 )"(z) = z where z is the inhomogeneous coordinate on P1

S in Definition
3.1. Since τ−1

0 ◦ τ0 : P1
S → P1

S is a morphism over S, we can write (τ−1
0 ◦ τ0)"(z) =

pz+q
rz+s where p, q, r, s ∈ A. Hence we can write

τ "0(z) =
pz + q

rz + s
(p, q, r, s ∈ A). (58)

First, we check (56) is injective. Suppose τ0 ∈ H0 lies in the kernel of (56). Since τ0
acts trivially on Σ, τ0(0) = 0, τ0(1) = 1, τ0(1/c) = 1/c and τ0(∞) = ∞. Especially
we have

p · 0 + q

r · 0 + s
= 0,

p · 1 + q

r · 1 + s
= 1,

p · 1
c + q

r · 1
c + s

=
1

τ "0(c)
,

p ·∞+ q

r ·∞+ s
= ∞.

(59)

Hence we see that τ "0(z) = z and τ "0(c) = c. i.e. τ0 = idH0 .
Next, we check that (56) is surjective. It is enough to find elements in H0

corresponding to (0 1), (0 1 1/c∞) ∈ S(Σ) since they are generators of S(Σ). We
use the presentation in (58) again. For example, to find τ0 ∈ H0 corresponding to
(0 1 1/c∞), it is enough to find p, q, r, s ∈ A such that

p · 0 + q

r · 0 + s
= 1,

p · 1 + q

r · 1 + s
=

1

τ "0(c)
,

p · 1
c + q

r · 1
c + s

= ∞,
p ·∞+ q

r ·∞+ s
= 0.

(60)

From these conditions, we can find a pair of automorphisms (τ0, τ0) ∈ Autk(P1
S)×

H0 such that τ "0(z) =
1

1−cz and τ "0(c) = 1 − c, which is in H0 and its image under
the map (56) is (0 1 1/c∞) ∈ S(Σ). Similarly, we can find the element of H0 such
that its image under the map (56) is (0 1) ∈ S(Σ). "
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Remark 4.4. By Proposition 4.3, we often identify H0 with S(Σ). The explicit
correspondence of H0 & S(Σ) is given in Table 2. We can find these correspondence
by the same method we use in the proof of Proposition 4.3. In the table, for each
τ0 ∈ H0, the image of c under τ "0 : A → A and the image of the local coordinate z

under τ "0 : OP1
S
→ (τ0)∗OP1

S
are given.

Table 2. The correspondence of H0 & S({0, 1, 1/c,∞})

τ0 τ !
0(c) τ !

0(z)

id c z

τ0 τ !
0(c) τ !

0(z) τ0 τ !
0(c) τ !

0(z) τ0 τ !
0(c) τ !

0(z)

(0 1) c
c−1 1− z (0 1/c) 1− c 1−cz

1−c (0 ∞) 1
c

1
z

(1/c ∞) c
c−1

(1−c)z
1−cz (1 ∞) 1− c z

z−1 (1 1/c) 1
c cz

τ0 τ !
0(c) τ !

0(z) τ0 τ !
0(c) τ !

0(z) τ0 τ !
0(c) τ !

0(z)

(0 1)(1/c ∞) c 1−z
1−cz (0 1/c)(1 ∞) c 1−cz

c(1−z) (0 ∞)(1 1/c) c 1
cz

τ0 τ !
0(c) τ !

0(z) τ0 τ !
0(c) τ !

0(z)

(0 1 1/c) 1
1−c 1− cz (0 1/c 1) c−1

c
c(1−z)
c−1

(0 ∞ 1) 1
1−c

z−1
z (0 1 ∞) c−1

c
1

1−z

(0 1/c ∞) 1
1−c

1−c
1−cz (0 ∞ 1/c) c

c−1
1−cz
(1−c)z

(1 ∞ 1/c) 1
1−c

(c−1)z
1−z) (1 1/c ∞) c−1

c
cz

cz−1

τ0 τ !
0(c) τ !

0(z) τ0 τ !
0(c) τ !

0(z) τ0 τ !
0(c) τ !

0(z)

(0 1/c 1 ∞) c
c−1

c−1
c(1−z) (0 1 1/c ∞) 1− c 1

1−cz (0 1 ∞ 1/c) 1
c

1−cz
1−z

(0 ∞ 1 1/c) c
c−1

cz−1
cz (0 ∞ 1/c 1) 1− c 1−z

(c−1)z (0 1/c ∞ 1) 1
c

c(1−z)
1−cz

Remark 4.5. We have a bijection

{{{0, 1}, {∞, 1/c}}, {{0,∞}, {1, 1/c}}, {{0, 1/c}, {1,∞}}} & {0, 1,∞} (61)

defined by {{0, 1}, {∞, 1/c}} /→ 0, {{0,∞}, {1, 1/c}} /→ 1, {{0, 1/c}, {1,∞}}} /→
∞. SinceS(Σ) acts on the set on the left hand side, we have a group homomorphism

S(Σ)−→S({0, 1,∞}) (62)

The group homomorphism H0 → H0 is identified with the group homomorphism
(62) under the identifications H0 = S(Σ) and H0 = S({0, 1,∞}).

4.2. A finite étale covering S′ → S and lifts of group actions. To get enough
automorphisms of the family of Kummer surfaces, we have to enlarge the base
scheme S. As we will see later in Section 5, this base change is also necessary for
the construction of higher Chow cycles in Ξcan.

Definition 4.6. We define an A-algebra A′ as A′ = A[
√
c,
√
1− c] and S′ =

SpecA′. We have a natural morphism S′ → S induced by A ↪→ A′. Furthermore,
we define H = Aut(S′;S,H0). i.e.

H =





(τ , τ0) ∈ Autk(S

′)×H0 :
S′ S

S′ S

τ τ0
commutes.





(63)
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Then we have a natural morphism β : (S′, H) → (S,H0) in (Schgp/k). Since
the natural projection H → Autk(S′) is injective, we regard H as a subgroup of
Autk(S′). We often denote an element in H by τ . For τ ∈ H, the image of τ under
the natural projection H → H0 is denoted by τ0 ∈ H0.

Proposition 4.7. We have the following properties about (S′, H).

(1) S′ → S is a finite étale morphism.
(2) We have the following isomorphism between k-algebras. Especially, A′ is

an integral domain.

A′ k
[
γ, 1

γ(γ4−1)

]
;

√
c,
√
1− c

γ+ 1
γ

2 ,
γ− 1

γ

2
√
−1

∼ (64)

(3) The group homomorphism H → H0 is surjective.
(4) The kernel of H → H0 is isomorphic to µ2(k)× µ2(k).

Especially, H fits into the following exact sequence.

1−→ µ2(k)× µ2(k)−→H −→H0 −→ 1 (65)

Proof. We can show (1), (2) and (4) by the ring theoretic calculation. To prove (3),
we construct the lifts of τ0 ∈ H0 explicitly. The result is summarized in Table 3. In

the table, we give the image of γ ∈ k
[
γ, 1

γ(γ4−1)

]
under the ring homomorphisms

τ " : k
[
γ, 1

γ(γ4−1)

]
& A′ → A′ & k

[
γ, 1

γ(γ4−1)

]
corresponding to the lifts of each

τ "0 : A → A. "

Table 3. The lifts of τ0 ∈ H0 to H

τ "0(c) τ "(γ) τ "0(c) τ "(γ)

c ±γ,± 1
γ 1− c ±

√
−1γ,±

√
−1 1

γ

c
c−1 ± γ+1

γ−1 ,±
γ−1
γ+1

1
1−c ±

√
−1γ+1

γ−1 ,±
√
−1γ−1

γ+1

c−1
c ± γ+

√
−1

γ−
√
−1

,±γ−
√
−1

γ+
√
−1

1
c ±

√
−1γ+

√
−1

γ−
√
−1

,±
√
−1γ−

√
−1

γ+
√
−1

Remark 4.8. More strongly, we can show that H is isomorphic to S4 as fol-
lows. By the isomorphism (64) in Proposition 4.7, we can regard S′ = P1

k −
{±1,±

√
−1, 0,∞}. Let N = {±1,±

√
−1, 0,∞} ⊂ P1

k(k). If we plot points of
N on the Riemann sphere P1(C), N forms an octahedron. We can check that H
acts on this octahedron and H is naturally isomorphic to the octahedral group,
which is isomorphic to S4.

Definition 4.9. We define (P1
S′ , H) ∈ (Schgp/k) as a fiber product of (P1

S , H0) and
(S′, H) over (S,H0) in (Schgp/k).

(P1
S′ , H) (S′, H)

(P1
S , H0) (S,H0)

!
β

α

(66)

By Proposition 2.2, H is equal to the fiber product

H0 ×H0
H = {τ = (τ0, τ) ∈ H0 ×H : α(τ0) = β(τ)} (67)

where α and β are group homomorphisms corresponding to α : (P1
S , H0) → (S,H0)

and β : (S′, H) → (S,H0). Since H0 & H & S4 (Proposition 4.3 and Remark 4.8)
and H0 & S3 (Definition 4.1), we have H & S4 ×S3 S4.
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By definition, we have the following natural group homomorphisms H → H and
H → H0. By Remark 4.5 and Proposition 4.7, they are surjective.

H H τ τ

H0 H0 τ0 τ0

!
(68)

The images of τ ∈ H in H0 and H are denoted by τ0 ∈ H0 and τ ∈ H, respectively.

Definition 4.10. We define the following objects in (Schgp/k).

(T,G0) = (S,H0)× (S,H0), (Y, G0) = (P1
S , H0)× (P1

S , H0)

(T ′, G) = (S′, H)× (S′, H), (Y ′, G) = (P1
S′ , H)× (P1

S′ , H)
(69)

By Proposition 2.2, G0, G0, G and G coincide with H0 ×H0, H0 ×H0, H ×H and
H × H. By considering the direct products of morphisms in (66), we have the
following morphisms in (Schgp/k).

(Y ′, G) (T ′, G) G ρ ρ G

(Y, G0) (T,G0) G0 ρ0 ρ
0

G0

3 ∈

3 ∈

(70)

By checking the universality, we see that the left diagram in (70) is the fiber product.
Especially, Y ′ is the base change of Y by T ′ → T . We denote the images of
ρ ∈ G under the group homomorphisms in (70) by ρ ∈ G, ρ0 ∈ G0 and ρ

0
∈ G0

respectively. Furthermore, for ρ ∈ G, its first and second components are denoted
by ρ(1) and ρ(2) respectively. i.e.

G = {ρ = (ρ(1), ρ(2)) : ρ(1), ρ(2) ∈ H} (71)

We define ρ(i)
0
, ρ(i)0 , ρ(i) for i = 1, 2 similarly.

Definition 4.11. We define B′ = A′ ⊗k A′. By definition, T ′ = SpecB′. For
any scheme Z over T , Z ′ denotes the base change of Z by T ′ → T . For example,
Ỹ ′ = Ỹ ×T T ′, X ′ = X ×T T ′ and Q′

σ = Qσ ×T T ′. This notation is compatible
with Y ′ = Y ×T T ′.

Proposition 4.12. The B′-rational point set Σ2(Y ′) is compatible6 with (Y ′, G) →
(T ′, G). Especially, G has a natural action on Σ2.

Proof. By Definition 4.2, Σ(P1
S) is compatible with (P1

S , H0) → (S,H0). Then by
Proposition 2.4, Σ(P1

S′) is compatible with (P1
S′ , H) → (S′, H). Since (Y ′, G) →

(T ′, G) is the direct product of (P1
S′ , H) → (S′, H), Σ2(Y ′) is compatible with

(Y ′, G) → (T ′, G) by Proposition 2.4 again. "
4.3. Linearizations on L and cocycles φ,χ. In this subsection, we define a
linearization of L which give rise to a lifting of the G-action on Y ′ to Ỹ ′. Since L =
pr∗1Ω

1
P1
S′/S

′ ⊗OY′ pr
∗
2Ω

1
P1
S′/S

′ , we have a G-linearization {Ψρ}ρ∈G on L . However,

by this natural G-linearization, Ψ⊗(−2)
ρ (ρ∗(η)) and η differs by

Ψ⊗(−2)
ρ (ρ∗(η)) = χ0(ρ)

−1 · η. (72)

where χ0 is an opposite 1-cocycle. The first aim of this subsection is to get the
explicit description of this χ0. Then we will find an opposite 1-cocycle χ̃ such
that χ̃2 = χ0. For this purpose, we introduce opposite coboundary 1-cocycles χ,
χ(1) and χ(2) and take a Z/2Z-extension G̃ of G. Finally, using χ̃, we modify the

6See Definition 3.9 for the definition of the B′-rational point set Σ2(Y ′).
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linearization {Ψρ}ρ∈G on L and get a new G̃-linearization {Xρ̃}ρ̃∈G̃ on L which
satisfies the liftability condition (33) in Proposition 2.11.

Definition-Proposition 4.13. We define H-linearization {Φτ}τ∈H of Ω1
P1
S′/S

′ as

the canonical one induced by Proposition 2.6. By definition, {Φτ}τ∈H satisfies

Φτ (τ
∗(dz)) =

∂

∂z
(τ "(z)) · dz. (73)

We define an opposite 1-cocycle φ0 : H → R(P1
S′)× as the opposite 1-cocycle as-

sociated7 with
(
(Ω1

P1
S′/S

′)⊗(−2), {Φ⊗(−2)
τ }τ∈H , h̃

)
, where h̃ is the section defined in

Definition 3.1. By definition, φ0(τ) can be computed as follows.

φ0(τ) =

(
∂

∂z
(τ "(z))

)2 h(z)

τ "(h(z))
(74)

By the computation of φ0(τ) for each τ ∈ H, we have the following properties.

(1) φ0(τ) is determined by the image of τ under H → H0.
(2) The explicit description of φ0(τ) is given by the following table.

Table 4. The opposite 1-cocycle φ0

τ0 τ "0(c) φ0(τ0) τ0 τ "0(c) φ0(τ0)

id c 1 (0 1) 1− c −1

(1∞) c
c−1 1− c (0 1∞) 1

1−c c− 1

(0∞) 1
c c (0∞ 1) c−1

c −c

Especially, φ0(τ) ∈ A×.

From these properties, we regard φ0 as the opposite 1-cocycle H0 → A×.

Definition 4.14. (Definition of χ0) For i = 1, 2, we have an G-linearization
{pr∗iΦρ(i)}ρ∈G of pr∗iΩ

1
P1
S′/S

′ by pulling back (cf. Proposition 2.7) theH-linearization

of Ω1
P1
S′/S

′ in Definition 4.13 by pri : Y ′ → P1
S′ . Then we define a G-linearization

{Ψρ}ρ∈G of L = pr∗1Ω
1
P1
S′/S

′ ⊗OY′ pr
∗
2Ω

1
P1
S′/S

′ by

Ψρ = pr∗1Φρ(1) ⊗ pr∗2Φρ(2) . (75)

Since8 pr"1(h(z)) = f(x) and pr"2(h(z)) = g(y), we have

pr"1(φ0(ρ
(1))) =

(
∂

∂x
(ρ"(x))

)2 f(x)

ρ"(f(x))

pr"2(φ0(ρ
(2))) =

(
∂

∂y
(ρ"(y))

)2 g(y)

ρ"(g(y))
.

(76)

We define χ0 as the opposite 1-cocycle associated with (L , {Ψ⊗(−2)
ρ }ρ∈G, η). By

definition, we have the following equations.

Ψ⊗(−2)
ρ (ρ∗(η)) = χ0(ρ)

−1 · η (77)

χ0(ρ) = pr"1(φ0(ρ
(1)))pr"2(φ0(ρ

(2))) ∈ B× (78)

By (78), we can calculate χ0 from Table 4.

7See Proposition 2.9 for the definition of associated 1-cocycles.
8See Definition 3.6 for the definition of the polynomials f(x), g(y).
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We will find an opposite 1-cocycle χ̃ such that χ̃2 = χ0. First, we will find an
opposite coboundary 1-cocycle φ of H whose square coincides with φ0 up to sign.

Definition-Proposition 4.15. (Definition of φ) For τ ∈ H, we define

φ(τ) = τ "
(√

c
√
1− c

c2 − c+ 1

)
·
(√

c
√
1− c

c2 − c+ 1

)−1

. (79)

The explicit description of φ is given in Table 6 in Section 9. The opposite 1-cocycle
φ of H has the following properties.

(1) For τ ∈ H, we have

φ0(τ) = sgn(τ0) · φ(τ)2. (80)

where sgn : H0 & S({0, 1,∞}) → {±1} is the sign map.
(2) For τ ∈ H, φ(τ) ∈ (A′)×.

Proof. To prove (1), it is enough to calculate

φ(τ)2 = τ "
(

c(1− c)

(c2 − c+ 1)2

)
·
(

c(1− c)

(c2 − c+ 1)2

)−1

(81)

Since the right hand side of the above equation depends only on the image τ0 ∈ H0

of τ ∈ H under H → H0 and φ0(τ) also depends only on τ0 by Proposition 4.13, it
is enough to check (80) for each τ0 ∈ H0 by using Table 1 and Table 4. (2) follows
from (1). "

We get an opposite 1-cocycle χ of G whose square coincides with χ0 up to sign.

Definition 4.16. (Definition of χ(1),χ(2) and χ) For ρ ∈ G, we define

χ(i)(ρ) = pr"i (φ(ρ
(i))) ∈ (B′)× for i = 1, 2

χ(ρ) = χ(1)(ρ) · χ(2)(ρ) ∈ (B′)×.
(82)

By Proposition 4.15, χ satisfies the following equation9 for ρ ∈ G.

χ0(ρ) = sgn(ρ(1)
0

)sgn(ρ(2)
0

) · χ(ρ)2 (83)

By Definition 4.16, to find an opposite 1-cocycle χ̃ such that χ̃2 = χ0, it
is enough to find a square root of the group homomorphism G → {±1}; ρ /→
sgn(ρ(1)

0
)sgn(ρ(2)

0
). Hence we enlarge G as follows.

Definition 4.17. (Definition of G̃) Let G̃ be the following fiber product of groups.

G̃ µ4(k) ζ

G µ2(k) ζ2

ρ sgn(ρ(1)
0

)sgn(ρ(2)
0

)

s̃gn

! 3

3

∈ ∈

(84)

Then G̃ can be written as follows.

G̃ = {(ρ, ζ) ∈ G× µ4(k) : sgn(ρ
(1)
0

)sgn(ρ(2)
0

) = ζ2} (85)

9See Definition 4.10 for the notation ρ
(1)
0 , ρ

(2)
0 .
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We denote an element in G̃ by ρ̃ or (ρ, ζ). We define s̃gn : G̃ → µ4(k) as above.
Since

√
−1 ∈ k, µ4(k) → µ2(k); ζ /→ ζ2 is surjective and the kernel of this group

homomorphism is µ2(k) ⊂ µ4(k). Especially, we have the following exact sequence.

1 µ2(k) G̃ G 1

(ρ, ζ) ρ

∈ ∈ (86)

Finally, we get the desired cocycle χ̃.

Definition-Proposition 4.18. For ρ̃ = (ρ, ζ) ∈ G̃, we define

χ̃(ρ̃) = s̃gn(ρ̃) · χ(ρ) = ζ · χ(ρ) ∈ (B′)×. (87)

where ρ ∈ G is the image of ρ ∈ G under G → G. Then χ̃ defines an opposite

1-cocycle of G̃ on (B′)×. Here G̃ acts oppositely on (B′)× through G̃ → G → G.
Furthermore, χ̃ satisfies the following equation for any ρ̃ = (ρ, ζ) ∈ G̃.

χ̃(ρ̃)2 = χ0(ρ) (88)

Proof. Since s̃gn is the group homomorphism and G acts on µ4(k) ⊂ B′ trivially,
s̃gn is an opposite 1-cocycle of G̃. Thus χ̃ is the product of opposite 1-cocycles and
χ̃ is also an opposite 1-cocycle. Since s̃gn satisfies s̃gn(ρ)2 = sgn(ρ(1)

0
)sgn(ρ(2)

0
), the

equation (88) follows from (83) in Definition 4.16. "

4.4. A G̃-action on the family of Kummer surfaces X ′. Recall that Ỹ ′ is the
base change of Ỹ by T ′ → T (Definition 4.11). Using the opposite 1-cocycle χ̃ in
Definition 4.18, we can lift G-action on Y ′ to G̃-action on Ỹ ′.

Proposition 4.19. We have a G̃-action on Ỹ ′ such that (Ỹ ′, G̃) → (Y ′, G) is a
morphism in (Schgp/k). For ρ̃ = (ρ, ζ) ∈ G̃, ρ̃" : OỸ′ → ρ∗OỸ′ is described as
follows.

x /→ ρ"(x), y /→ ρ"(y), u /→ χ̃(ρ̃)−1 ∂

∂x
(ρ"(x))

∂

∂y
(ρ"(y))u (89)

where we use the notation in Proposition 3.7.

Proof. For ρ̃ ∈ G̃, consider the following OY′ -module isomorphism.

Xρ̃ : ρ
∗L

Ψρ−−−→ L
χ̃(ρ̃)−1

−−−−−−→ L . (90)

where χ̃(ρ̃)−1 denotes the OY′ -module isomorphism induced by the multiplication
of χ̃(ρ̃)−1 ∈ (B′)× = Γ(Y ′,O×

Y′). By the cocycle condition of Ψρ and the property
of the opposite 1-cocycle, {Xρ̃}ρ̃∈G̃ satisfies the cocycle condition. Hence we have

the new G̃-linearization {Xρ̃}ρ̃∈G̃ of L . Then by Definition 4.14 and Proposition
4.18, we have

X⊗(−2)
ρ̃ (ρ∗(η)) = χ̃(ρ̃)2 ·Ψ⊗(−2)

ρ (ρ∗(η)) = χ̃(ρ̃)2 · χ0(ρ)
−1 · η = η. (91)

Especially {Xρ}ρ∈G̃ satisfies the condition (33) in Proposition 2.11. Since Ỹ ′ is the

double covering associated with (L , η) by Proposition 3.12, we have a G̃-action on
Ỹ ′ such that (Ỹ ′, G̃) → (Y ′, G) is a morphism in (Schgp/k) by Proposition 2.11.

We can calculate the local description of G̃-action directly from the construction
in Proposition 2.11. We can confirm that this action preserves the local equation
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u2 − f(x)g(y) = 0 of Ỹ ′ as follows. For ρ̃ = (ρ, ζ) ∈ G̃, we have

ρ̃"(u2 − f(x)g(y)) = ρ̃"(u)2 − ρ"(f(x))ρ"(g(y))

= χ̃(ρ̃)−2

(
∂

∂x
(ρ"(x))

∂

∂y
(ρ"(y))

)2

u2 − ρ"(f(x))ρ"(g(y))

=
(76),(78)

χ̃(ρ̃)−2

(
∂

∂x
(ρ"(x))

∂

∂y
(ρ"(y))

)2

u2 − χ0(ρ)
−1

(
∂

∂x
(ρ"(x))

∂

∂y
(ρ"(y))

)2

f(x)g(y)

=
(88)

χ0(ρ)
−1

(
∂

∂x
(ρ"(x))

∂

∂y
(ρ"(y))

)2

(u2 − f(x)g(y)) = 0.

(92)
"

Recall that X ′ is the base change of X by T ′ → T (Definition 4.11). We lift the
G̃-action on Ỹ ′ to X ′. Since X ′ → Ỹ ′ is blowing-up, it is enough to show that the
blowing-up locus is stable under G̃-action.

Proposition 4.20. We have the following.

(1) The set Σ2(Ỹ ′) of B′-rational points is compatible with (Ỹ ′, G̃) → (T ′, G).
(2) There exists a G̃-action on X ′ such that (X ′, G̃) → (Ỹ ′, G̃) is a morphism

in (Schgp/k).
(3) For ρ̃ = (ρ, ζ) ∈ G̃, ρ̃" : OX ′ → ρ∗OX ′ can be described locally as follows.

x /→ ρ"(x), y /→ ρ"(y), v /→
sgn(ρ(1)

0
)

ζ

χ(1)(ρ)

χ(2)(ρ)

∂
∂y (ρ

"(y))
∂
∂x (ρ

"(x))
v (93)

Here we use the notation in Proposition 3.10.

Proof. By Proposition 4.12, Σ2(Y ′) is compatible with (Y ′, G) → (T ′, G). Since
the G̃-action on Ỹ ′ is a lift of G-action on Y ′ and each σ ∈ Σ2 is contained in
the branching locus of Ỹ ′ → Y ′, we can check that Σ2(Ỹ ′) is compatible with
(Ỹ ′, G̃) → (T ′, G). Hence we show (1).

By Proposition 3.12, X ′ → Ỹ ′ is the blowing-up along Σ2 ⊂ Ỹ ′. By (1), Σ2 ⊂ Ỹ ′

is stable under the G̃-action. Hence by applying Proposition 2.12, we have (2). (3)
follows from the local description in Proposition 4.19 and the definition of χ̃. "

Recall that for σ ∈ Σ2, Qσ ⊂ X denotes the exceptional divisor over σ ⊂ Ỹ
(Definition 3.11) and Q′

σ denote the base change of Qσ by T ′ → T (Definition
4.11). The closed subscheme Q′

σ ⊂ X ′ is the same as the inverse image of σ ⊂ Ỹ ′

by X ′ → Ỹ ′. Hence we have the following.

Proposition 4.21. For ρ̃ = (ρ, ζ) ∈ G̃ and σ ∈ Σ2, the following holds.

ρ̃(Q′
σ) = Q′

ρ·σ. (94)

where ρ · σ is the image of (ρ,σ) ∈ G × Σ under the map G × Σ → Σ induced by
the G-action on Σ in Proposition 4.12.

Finally, we can prove Proposition 1.3 as follows.

Proposition 4.22. The automorphism group of X ′ → T ′ has a finite subgroup G̃
which is isomorphic to a Z/2Z extension of (S4 ×S3 S4)2.

Proof. It is enough to show the following.

(1) We have an injective group homomorphism G̃ → Autk(X → T ).
(2) The group G̃ is isomorphic to a Z/2Z extension of (S4 ×S3 S4)2.
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By Definition 4.10, Proposition 4.19 and Proposition 4.20, we have following mor-
phisms in (Schgp/k).

(X ′, G̃) → (Ỹ ′, G̃) → (Y ′, G) → (T ′, G). (95)

By the explicit description in Proposition 4.20, G̃-action on X ′ is faithful. By
Definition 2.1, we have (1). By the exact sequence (86) in Definition 4.17, G̃ is
µ2(k) & Z/2Z-extension of G. Furthermore, G = H × H (Definition 4.10) and
H & S4 ×S3 S4 (Definition 4.9). Hence we have (2). "

For later use, we name G̃-actions on fibers of X ′ → T ′.

Definition 4.23. For a k-rational point t ∈ T ′(k), let Xt denote the fiber of
X ′ → T ′ over t. We denote the natural inclusion Xt ↪→ X ′ by it. For ρ̃ = (ρ, ζ) ∈ G̃,
let ρ(t) ∈ T ′(k) denote the k-rational point ρ ◦ t. We define ρt : Xt → Xρ(t) as a
unique isomorphism over k which makes the following diagram commute.

X ′ T ′

Xt Spec k

X ′ T ′

Xρ(t) Spec k

ρ̃

ρ
it t

iρ(t)

ρ(t)

(96)

5. Construction of a subgroup Ξ of the higher Chow group

In this section, we explain the construction of a higher Chow subgroup Ξ ⊂
CH2(X ◦, 1) where X ◦ is an open subset of X ′. First, we construct Ξcan ⊂ CH2(X ◦, 1)
and we define Ξ as the sum of ρ̃∗Ξcan where ρ̃ ∈ G̃. For the construction of higher
Chow cycles, we use the following results (Corollary 5.3 in [Mül00]).

Proposition 5.1. Let X be a variety over k. The higher Chow group CH2(X, 1)
of X is canonically isomorphic to the homology group of the following sequence.

KM
2 (R(X))

⊕

Z∈X(1)

R(Z)×
⊕

p∈X(2)

Z · pT div (97)

Here X(1), X(2) are the sets of integral closed subschemes of X codimension 1 and
2, the map div is the sum of the divisor map divZ for each Z ∈ X(1) and T is the
tame symbol map from the Milnor K-group KM

2 (R(X)) of R(X).

Hence to construct higher Chow cycles, it is enough to find a collection of rational
functions which lies in the kernel of div.

5.1. A familiy of curves C on X ◦. We construct a family of curves C, which is
the key for our construction of higher Chow cycles. First, we define an open subset
T ◦ ⊂ T ′. Hereafter we consider all things on this open subset.

Definition 5.2. Under the G-action on B′, the orbit of a− b ∈ B′ consists of the
following six elements up to multiplications of elements in (B′)×.

a− b, a+ b− 1, a− b

b− 1
, a− 1

1− b
, a− 1

b
, a− b− 1

b
(98)

We define a k-algebra B◦ as the localization of B′ by these six elements. We define
T ◦ = SpecB◦, which is an open subscheme of T ′. For a scheme Z over T ′, Z◦

denotes its base change by T ◦ ↪→ T ′. For example, Y◦ = Y ′×T ′ T ◦, Ỹ◦ = Ỹ ′×T ′ T ◦

and X ◦ = X ′ ×T ′ T ◦.
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By the construction, T ◦ ⊂ T ′ is stable under G-action. Hence we have the
following diagram in (Schgp/k) whose vertical morphisms are open immersions.

(X ◦, G̃) (Ỹ◦, G̃) (Y◦, G) (T ◦, G)

(X ′, G̃) (Ỹ ′, G̃) (Y ′, G) (T ′, G)

(99)

Definition-Proposition 5.3. We define a closed subscheme D ⊂ Y◦ by the lo-
cal equation x = y. Furthermore, we define a closed subscheme D̃ ↪→ Ỹ◦ as the
following fiber product.

D̃ Ỹ◦

D Y◦

! (100)

The closed immersion D̃ ↪→ Ỹ◦ is described locally on Ỹ ◦
0,0 ⊂ Y◦ as follows.

SpecB◦[u, z]/(u2 − f(z)g(z)) SpecB◦[u, x, y]/(u2 − f(x)g(y)) = Ỹ ◦
0,0 (101)

where f(z), g(z) are polynomials in (38) in Definition 3.6 and the morphism is
induced by x /→ z and y /→ z.

Figure 2. The figure of D on Y◦

Definition-Proposition 5.4. We define a closed subscheme C ⊂ X ◦ as the strict
transformation of D̃ ↪→ Ỹ◦ by the blowing-up X ◦ → Ỹ◦. The closed immersion
C ↪→ X ◦ is described locally on V ◦

0,0,W
◦
0,0 ⊂ X ◦ as follows.

SpecB◦[v, z]/(v2(1− az)− (1− bz)) SpecB◦[v, x, y]/(v2f(x)− g(y)) = V ◦
0,0

SpecB◦[w, z]/(w2(1− bz)− (1− az)) SpecB◦[w, x, y]/(w2g(y)− f(x)) = W ◦
0,0

(102)
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These morphisms are induced by x /→ z and y /→ z.

By the description in Proposition 5.4 and the fact a − b is invertible on T ◦, we
see that C is a conic bundle on T ◦ with a section (e.g. (x, y, v) = (0, 0, 1)). Hence
we have the following corollary.

Corollary 5.5. The T ◦-scheme C is isomorphic to P1
T◦ .

In this subsection, we constructed the following closed subschemes.

X ◦ Ỹ◦ Y◦

C D̃ D
strict transform pull-back

#
(103)

5.2. Construction of a subgroup Ξcan of the higher Chow group. In this
section, we will construct a subgroup Ξcan of the higher Chow group CH2(X ◦, 1).
For the construction, we consider the closed subscheme C in the previous subsection
and exceptional divisors Q◦

(0,0), Q
◦
(1,1) and Q◦

(∞,∞) in Definition 3.11.
To define rational functions on them, we use the following local descriptions of

Q◦
(0,0), Q

◦
(1,1) and Q◦

(∞,∞). Since Q
◦
(0,0) and Q◦

(1,1) are contained in V0,0 and defined
by the equation x = y = 0 and x = y = 1, we have the following description.

V ◦
0,0 ∩Q◦

(0,0) = SpecB◦[v, x, y]/(v2f(x)− g(y), x, y) & SpecB◦[v]

V ◦
0,0 ∩Q◦

(1,1) = SpecB◦[v, x, y]/(v2f(x)− g(y), x− 1, y − 1) & SpecB◦[v]
(104)

To get the local description of Q◦
(∞,∞), we consider the following affine open sub-

scheme V ◦
1,1 of X ◦.

V ◦
1,1 = SpecB◦[v′, ξ, η]/((v′)2ξ(ξ − 1)(ξ − a)− η(η − 1)(η − b)) (105)

Here ξ = 1
x ,η = 1

y and v′ = y2

x2 v. Since Q◦
(∞,∞) is defined by the equation ξ = η = 0,

we have the following description.

V ◦
1,1∩Q◦

(∞,∞) = SpecB◦[v′, ξ, η]/((v′)2ξ(ξ−1)(ξ−a)−η(η−1)(η−b), ξ, η) & SpecB◦[v′]
(106)

Definition-Proposition 5.6. We define six B◦-rational points pδ•(• ∈ {0, 1,∞}, δ ∈
{+,−}) on X ◦ as follows.

(1) p+0 and p−0 correspond to B◦-rational points on V ◦
0,0 ⊂ X ◦ such that (v, x, y) =

(1, 0, 0) and (v, x, y) = (−1, 0, 0) respectively.
(2) p+1 and p−1 correspond to B◦-rational points on V ◦

0,0 ⊂ X ◦ such that (v, x, y) =(√
1−b√
1−a

, 1, 1
)
and (v, x, y) =

(
−

√
1−b√
1−a

, 1, 1
)
respectively.

(3) p+∞ and p−∞ correspond to B◦-rational points on V ◦
1,1 ⊂ X ◦ such that

(v′, ξ, η) =
(√

b√
a
, 0, 0

)
and (v′, ξ, η) =

(
−

√
b√
a
, 0, 0

)
respectively.

By the local description, we have the following relations.

C ∩Q◦
(0,0) = p+0 . p−0 , C ∩Q◦

(1,1) = p+1 . p−1 , C ∩Q◦
(∞,∞) = p+∞ . p−∞ (107)

Definition-Proposition 5.7. We define the following non-zero rational functions
on C, Q◦

(0,0), Q
◦
(1,1) and Q◦

(∞,∞) using the local description in Proposition 5.4 and

equation (104),(105).

• ψ0 = (v + 1) · (v − 1)−1, ψ1 =
(
v +

√
1−b√
1−a

)
·
(
v −

√
1−b√
1−a

)−1
,

ψ∞ =
(
v +

√
b√
a

)
·
(
v −

√
b√
a

)−1
∈ R(C)×
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Figure 3. The relation between pδ• and C, Q◦
(•,•)

• ϕ0 = (v − 1) · (v + 1)−1 ∈ R
(
Q◦

(0,0)

)×

• ϕ1 =
(
v −

√
1−b√
1−a

)
·
(
v +

√
1−b√
1−a

)−1
∈ R

(
Q◦

(1,1)

)×

• ϕ∞ =
(
v′ −

√
b√
a

)
·
(
v′ +

√
b√
a

)−1
∈ R

(
Q◦

(∞,∞)

)×

Then the rational functions ϕ•,ψ• satisfy the following relations.

(1) divC(ψ0) = p−0 − p+0 = −divQ◦
(0,0)

(ϕ0)

(2) divC(ψ1) = p−1 − p+1 = −divQ◦
(1,1)

(ϕ1)

(3) divC(ψ∞) = p−∞ − p+∞ = −divQ◦
(∞,∞)

(ϕ∞)

Then we can construct a subgroup Ξcan of CH2(X ◦, 1) at most rank 3 as follows.

Definition 5.8. (Definition of Ξcan) Consider the following elements of
⊕

Z∈(X◦)(1) R(Z)×.

ξ0 = (C,ψ0) + (Q◦
(0,0),ϕ0)

ξ1 = (C,ψ1) + (Q◦
(1,1),ϕ1)

ξ∞ = (C,ψ∞) + (Q◦
(∞,∞),ϕ∞)

(108)

By Proposition 5.7, they are in Ker
(⊕

Z∈(X◦)(1) R(Z)×
div−−→

⊕
p∈(X◦)(2) Z · p

)
. Hence

these elements define elements in CH2(X ◦, 1) which are denoted by the same sym-
bols ξ0, ξ1, ξ∞ respectively. We define Ξcan ⊂ CH2(X ◦, 1) to be the subgroup gen-
erated by ξ0, ξ1 and ξ∞. For ε ∈ Z{0,1,∞}, we set

ξ(ε) = ε(0)ξ0 + ε(1)ξ1 + ε(∞)ξ∞ ∈ Ξcan. (109)

By the following pull-back map, we can regard an element ξ ∈ CH2(X ◦, 1) as
a family of higher Chow cycles {ξt}t∈T◦ . The existence of the following pull-back
map is given in [Lev98], Part I, Chapter II, 2.1.6.

Definition 5.9. For a k-rational point t ∈ T ◦(k), it : Xt → X ◦ in Definition 4.23
is a k-morphism between smooth varieties. Hence we have a pull-back map

i∗t : CH2(X ◦, 1)−→ CH2(Xt, 1). (110)

For each ξ ∈ CH2(X ◦, 1), i∗t ξ is denoted by ξt.
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Proposition 5.10. For a k-rational point t ∈ T ◦(k) and ε ∈ Z{0,1,∞}, ξ(ε)t ∈
CH2(Xt, 1) is represented by the following element in

⊕
Z∈X (1)

t
R(Z)×.

(
Ct, (ψ0)

ε(0)
t (ψ1)

ε(1)
t (ψ∞)ε(∞)

t

)

+ (Q(0,0)t, (ϕ0)
ε(0)
t ) + (Q(1,1)t, (ϕ1)

ε(1)
t ) + (Q(∞,∞)t, (ϕ∞)ε(∞)

t )
(111)

Here Ct, Q(•,•)t are the fibers of C and Q◦
(•,•) at t and (ψ•)t, (ϕ•)t are the pull back

of the rational function ψ•,ϕ• by Ct ↪→ C and Q(•,•)t ↪→ Q◦
(•,•).

Proof. Recall that we regard elements in
⊕

Z∈(X◦)(1) R(Z)× as elements in Z2(X ◦, 1)

⊂ Z2(X ◦×k ∆1) (∆1 = Spec k[T0, T1]/(T0+T1− 1)) by considering their graphs of
rational functions. For example, (C,ψ1) represents a codimension 1 integral closed
subscheme of C ×k ∆1 defined by the local equation

(
v −

√
1− b√
1− a

)
T0 +

(
v +

√
1− b√
1− a

)
T1 = 0. (112)

Here we use the local coordinates of C in Proposition 5.4. This closed subscheme
intersect properly with Xt ×k ∆1,Xt ×k {T0 = 0},Xt ×k {T1 = 0}. Hence the
pull-back of the cycle corresponding to (C,ψ1) by Xt ↪→ X ◦ is defined. Since
the intersection of this closed subscheme with Xt ×k ∆1 is integral, the pull-back
coincides with this intersection. Furthermore, this intersection is the graph of (ψ1)t
by definition. By considering pull-backs of (C,ψ•) and (Q◦

(•,•),ϕ•) for • = 0, 1,∞
similarly, we can show that

(Ct, (ψ0)t) + (Q(0,0),t, (ϕ0)t)

(Ct, (ψ1)t) + (Q(1,1),t, (ϕ1)t)

(Ct, (ψ∞)t) + (Q(∞,∞),t, (ϕ∞)t)

(113)

represents ξ0,t, ξ1,t and ξ∞,t ∈ CH2(Xt, 1). Hence we have the result. "

5.3. Definition of a subgroup Ξ of the higher Chow group. In this section,
we define Ξ ⊂ CH2(X ◦, 1) and give representatives in

⊕
Z∈(X◦)(1) R(Z)× for cycles

in Ξ. In Section 6, we use these expressions to show that a subgroup Ĩ of G̃ stabilize
Ξcan ⊂ CH2(X ◦, 1).

Definition 5.11. We define a subgroup Ξ of CH2(X ◦, 1) as

Ξ =
∑

ρ̃∈G̃

ρ̃∗Ξ
can (114)

where Ξcan ⊂ CH2(X ◦, 1) is the subgroup of higher Chow group defined in Def-
inition 5.8 and ρ̃∗ : CH2(X ◦, 1) → CH2(X ◦, 1) is the push-forward map induced
by an automorphism ρ̃ : X ◦ → X ◦. For a k-rational point t ∈ T ◦(k), we define
Ξt ⊂ CH2(Xt, 1) as the image of Ξ under i∗t in Definition 5.9.

Definition 5.12. For ρ ∈ G, we define a closed subscheme Dρ ⊂ Y◦ by the
schematic image ρ(D). Note that Dρ is determined by the image of ρ ∈ G under
G → G0. The local equation of Dρ is given by (ρ−1)"(x− y) = 0.

We define D̃ρ ↪→ Ỹ◦ as the pull-back of Dρ ↪→ Y◦ by Ỹ◦ → Y◦. Furthermore,

we define Cρ ↪→ X ◦ as the strict transformation of D̃ρ by X ◦ → Ỹ◦.

X ◦ Ỹ◦ Y◦

Cρ D̃ρ Dρstrict transform pull-back

#
(115)
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Since ρ(D) = Dρ, for ρ̃ ∈ G̃, we have ρ̃(D̃) = D̃ρ and ρ̃(C) = Cρ.

The following proposition follows from Proposition 4.21 and Definition 5.12.

Proposition 5.13. By an automorphism ρ̃ = (ρ, ζ) ∈ G̃ on X ◦, we have

ρ̃(C) = Cρ, ρ̃(Q◦
(0,0)) = Q◦

ρ·(0,0), ρ̃(Q◦
(1,1)) = Q◦

ρ·(1,1), ρ̃(Q◦
(∞,∞)) = Q◦

ρ·(∞,∞).
(116)

Let ε ∈ Z{0,1,∞}. Then ρ∗ξ(ε) ∈ CH2(X ◦, 1) is represented by the following elements
in
⊕

Z∈(X◦)(1) R(Z)×.
(
Cρ, (ρ̃−1)"(ψε(0)0 ψε(1)1 ψε(∞)

∞ )
)
+ (Q◦

ρ·(0,0), (ρ̃
−1)"(ϕε(0)0 ))

+ (Q◦
ρ·(1,1), (ρ̃

−1)"(ϕε(1)1 )) + (Q◦
ρ·(∞,∞), (ρ̃

−1)"(ϕε(∞)
∞ ))

(117)

where (ρ̃−1)" are the field isomorphisms R(C) → R(Cρ) and R(Q◦
(•,•)) → R(Q◦

ρ·(•,•))
induced by ρ̃.

Remark 5.14. As we stated in the introduction, several elements in ρ̃∗Ξcan are at
first constructed geometrically after T. Terasoma’s idea. The keys for the geometric
construction are the following.

(1) There exists the isomorphism Cρ & P1
T◦ over T ◦.

(2) For • = 0, 1,∞, Cρ ∩ Q◦
ρ·(•,•) decompose into the disjoint union of two

B◦-rational points.

From these facts, we can construct higher Chow cycles in Ξ directly by the similar
method in subsection 5.2.

6. Subgroups Ĩ and G̃fib of G̃

In this section, we construct two subgroups Ĩ and G̃fib of G̃. As we will see later
(Proposition 9.12), these subgroups stabilize the image of Ξ ⊂ CH2(X ◦, 1) under
the transcendental regulator maps at fibers Xt.

The subgroup Ĩ consists of automorphisms in G̃ which stabilize a subgroup of
symbols in

⊕
Z∈(X◦)(1) R(Z)× which represents cycles in Ξcan. Hence Ĩ stabilize

Ξcan (Proposition 6.8). We describe the explicit Ĩ-action on Ξcan.
The subgroup G̃fib consists of automorphisms in G̃ over T ◦. Hence elements

of G̃fib induce automorphisms of each fiber Xt. Since G̃fib acts on a relative 2-
form ω ∈ Γ(X ◦,Ω2

X◦/T◦) by the multiplication ±1, G̃fib stabilize the image of the

transcendental regulator map (Proposition 9.12).

6.1. Definition of Ĩ and stability of Ξcan under the Ĩ-action.

Definition 6.1. By Proposition 4.3, we identify H0 = S({0, 1, 1/c,∞}). We define
a subgroup I0 ⊂ G0 by the image of the stabilizer of 1/c ∈ {0, 1, 1/c,∞} under the
following diagonal embedding.

H0 H0 ×H0 G0; τ0 (τ0, τ0)
∆ (118)

Consider the following diagram.

S({0, 1, 1/c,∞}) H0 H0 ×H0 G0

S({0, 1,∞}) H0 H0 ×H0 G0

(62)

∆

∆

(119)

By the description of H0 → H0 in Remark 4.5 and the commutativity of diagram
(119), I0 ↪→ G0 $ G0 is injective and its image coincides with the image of the
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diagonal embedding ofH0. We denote the image of I0 inG0 by I0. By the argument
above, I0 & I0.

Remark 6.2. An element of the stabilizer of 1/c induces a permutation on {0, 1,∞} ⊂
{0, 1, 1/c,∞}. Hence we often identify10 I0 with S({0, 1,∞}). For each ρ0 ∈ I0 =
S({0, 1,∞}), the action of ρ0 on Y is given in the following Table 5.

Table 5. The action of I0 = S({0, 1,∞}) on Y

ρ0 (ρ"
0
(a), ρ"

0
(b)) (ρ"0(x), ρ

"
0(y)) ρ0 (ρ"

0
(a), ρ"

0
(b)) (ρ"0(x), ρ

"
0(y))

id (a, b) (x, y) (0 1) ( a
a−1 ,

b
b−1 ) (1− x, 1− y)

(1 ∞) (1− a, 1− b) ( x
x−1 ,

y
y−1 ) (0 1 ∞) (a−1

a , b−1
b ) ( 1

1−x ,
1

1−y )

(0 ∞) ( 1a ,
1
b ) ( 1x ,

1
y ) (0 ∞ 1) ( 1

1−a ,
1

1−b ) (x−1
x , y−1

y )

Definition 6.3. We define subgroups I ⊂ G, I ⊂ G and Ĩ ⊂ G̃ as follows.

I = {ρ ∈ G : ρ
0
∈ I0}

I = {ρ ∈ G : ρ0 ∈ I0}

Ĩ = {(ρ, ζ) ∈ G̃ : ρ ∈ I}
(120)

Then I is isomorphic to I0 ×I0
I. Since I0 → I0 is an isomorphism by Definition

6.1, I → I is also an isomorphism.

Remark 6.4. Since I0 ⊂ G0 is the image of diagonal embedding (Definition 6.1),
we have

I = {(ρ(1), ρ(2)) ∈ H ×H : ρ(1)
0

= ρ(2)
0

} = H ×H0
H (121)

Since H & S4 by Remark 4.8 and H0 & S3 by Definition 4.1, I is isomorphic
to S4 ×S3 S4. Since I & I, I is also isomorphic to S4 ×S3 S4. Furthermore,
since sgn(ρ(1)

0
)sgn(ρ(2)

0
) = 1 for ρ ∈ I, we have a splitting of Ĩ → I defined by

I → Ĩ; ρ /→ (ρ, 1). By this splitting, we have an isomorphism Ĩ & I × Z/2Z.

We will show that the Ĩ-action stabilizes Ξcan ⊂ CH2(X ◦, 1). Hereafter in this
subsection, we assume ρ̃ = (ρ, ζ) ∈ Ĩ. To prove ρ̃∗Ξcan ⊂ Ξcan, we show that the
symbol in Proposition 5.13 which represents ρ̃∗ξ(ε) coincides with the symbol which
represents an element in Ξcan.

Proposition 6.5. (1) Let Cρ be the closed subscheme defined in Definition
5.12. Then we have Cρ = C.

(2) Let ρ0 be the image of ρ by I → I0
∼−→ S({0, 1,∞}) where the last isomor-

phism is the one in Remark 6.2. Then we have the following.

Q◦
ρ·(0,0) = Q◦

(ρ0(0),ρ0(0))
, Q◦

ρ·(1,1) = Q◦
(ρ0(1),ρ0(1))

, Q◦
ρ·(∞,∞) = Q◦

(ρ0(∞),ρ0(∞))

(122)

Proof. By the description of I0-action in Table 5, the I-action on Y◦ stabilizes the
local equation x = y of D. Hence Dρ = D and by Definition 5.12, we have (1). (2)
follows from the way of the identification I0 = S({0, 1,∞}) in Remark 6.2. "

We will prove that the sets of rational functions {ϕ±1
• : • = 0, 1,∞} and {ψ±1

• :
• = 0, 1,∞} are stable under the Ĩ-action.

10This isomorphism is different from I0
∼−−→ I0

∼−−→ H0 = S({0, 1,∞}) where the second
isomorphism is induced by the diagonal embedding.
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Definition-Proposition 6.6. By Proposition 6.5, we have

ρ̃(p+• ) . ρ̃(p−• ) = ρ̃(C ∩Q◦
(•,•)) = C ∩Q◦

(ρ0(•),ρ0(•)) = p+ρ0(•) . p−ρ0(•) (123)

for • = 0, 1,∞ where p+• , p
−
• are B◦-rational points in Definition 5.6. Then by

comparing connected components in (123), we have either

(A)

{
ρ̃(p+• ) = p+ρ0(•)

ρ̃(p−• ) = p−ρ0(•)
or (B)

{
ρ̃(p+• ) = p−ρ0(•)

ρ̃(p−• ) = p+ρ0(•)
(124)

for • = 0, 1,∞. We define δ(ρ̃) ∈ {±1}{0,1,∞} as follows.

• If the case (A) occurs for • = 0, δ(ρ̃)(ρ0(0)) = 1, else δ(ρ̃)(ρ0(0)) = −1.
• If the case (A) occurs for • = 1, δ(ρ̃)(ρ0(1)) = 1, else δ(ρ̃)(ρ0(1)) = −1.
• If the case (A) occurs for • = ∞, δ(ρ̃)(ρ0(∞)) = 1, else δ(ρ̃)(ρ0(∞)) = −1.

Then we have the following.

(1) For • = 0, 1,∞, we have the following.

(ρ̃−1)"(ψ•) = ψδ(ρ̃)(ρ0(•))ρ0(•) , (ρ̃−1)"(ϕ•) = ϕδ(ρ̃)(ρ0(•))ρ0(•) (125)

(2) We define an Ĩ-action on {±1}{0,1,∞} by

Ĩ × {±1}{0,1,∞} {±1}{0,1,∞}; ((ρ, ζ), ε) ε ◦ ρ−1
0 (126)

Then the map δ : Ĩ → {±1}{0,1,∞}; ρ̃ /→ δ(ρ̃) defines a 1-cocycle with respect
to this Ĩ-action.

To prove this proposition, we use the following lemma.

Lemma 6.7. Let ϕ1,ϕ2 ∈ R(P1
T◦)×. Assume ϕ1 (∈ Frac(B◦). Suppose that

div(ϕ1) = div(ϕ2) and div(ϕ1 + 1) = div(ϕ2 + 1). Then we have ϕ1 = ϕ2.

Proof. Since P1
T◦ is normal, div(ϕ1) = div(ϕ2) and div(ϕ1 + 1) = div(ϕ2 + 1)

imply that there exist p, q ∈ Γ(P1
T◦ ,O×

P1
T◦

) = (B◦)× such that ϕ1 = pϕ2 and

1+ϕ1 = q(1+ϕ2). Thus (1− q)+ (1− qp−1)ϕ1 = 0. Since ϕ1 (∈ Frac(B◦), we have
p = q = 1. i.e. ϕ1 = ϕ2. "

Proof. (Proposition 6.6) Note that C and Q◦
(•,•) are isomorphic to P1

T◦ (Corol-

lary 5.5). By the explicit presentations for ϕ•,ψ• in Definition 5.7, we see that
ϕ±1
• ,ψ±1

• (∈ Frac(B◦). Hence we can use Lemma 6.7. By the definition of δ, we
have the following relations for • = 0, 1,∞.

divC((ρ̃
−1)"(ψ•)) = divC(ψ

δ(ρ̃)(ρ0(•))
ρ0(•) )

divQ◦
(ρ0(•),ρ0(•))

((ρ̃−1)"(ϕ•)) = divQ◦
(ρ0(•),ρ0(•))

(ϕδ(ρ̃)(ρ0(•))ρ0(•) )
(127)

Here we use the relations in Proposition 5.7. Next, we see the divisors associated
with 1 + ϕ• and 1 + ψ•. We will consider a closed subscheme Z ⊂ X ◦ defined by
the local equation v = 0. Then we have B◦-rational points qc, q0, q1, q∞ on X ◦ such
that

qc = Z ∩ C, q• = Z ∩Q◦
(•,•) (• = 0, 1,∞). (128)

Using these B◦-rational points, we can describe the divisors of 1+ψ±1
• and 1+ϕ±1

•
as follows.

{
divC(1 + ψ•) = qc − p+•

divC(1 + ψ−1
• ) = qc − p−•

,

{
divQ◦

(•,•)
(1 + ϕ•) = q• − p−•

divQ◦
(•,•)

(1 + ϕ−1
• ) = q• − p+•

(129)
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where • = 0, 1,∞. This follows from the explicit presentations of Definition 5.7.
By the explicit description of G̃-action in Proposition 4.20, we see that the closed
subscheme Z ⊂ X ◦ is stable under the Ĩ-action. Then we have

ρ̃(qc) = ρ̃(Z ∩ C) = Z ∩ C = qc

ρ̃(q•) = ρ̃(Z ∩Q◦
(•,•)) = Z ∩Q◦

(ρ0(•),ρ0(•)) = qρ0(•)
(130)

By the definition of δ(ρ)(•), we have the following relations for • = 0, 1,∞.

divC(1 + (ρ̃−1)"(ψ•)) = qc − ρ̃(p+• ) = divC(1 + ψδ(ρ̃)(ρ0(•))ρ0(•) )

divQ◦
(ρ0(•),ρ0(•))

(1 + (ρ̃−1)"(ϕ•)) = qρ0(•) − ρ̃(p−• ) = divQ◦
(ρ0(•),ρ0(•))

(1 + ϕδ(ρ̃)(ρ0(•))ρ0(•) )

(131)
By (127) and (131), we have (1). (2) follows from (1). "

Proposition 6.8. We have ρ̃∗(Ξcan) = Ξcan. The Ĩ-action on Ξcan is given as
follows:

ρ̃∗ : Ξcan Ξcan

ξ(ε) ξ
(
δ(ρ̃) · (ε ◦ ρ−1

0 )
)∈ ∈ (132)

where δ(ρ̃) ·(ε◦ρ−1
0 ) denotes the product of functions δ(ρ̃) ∈ {±1}{0,1,∞} ⊂ Z{0,1,∞}

and ε ◦ ρ−1
0 ∈ Z{0,1,∞}.

Proof. By Proposition 6.6,
(
Cρ,
∏

•=0,1,∞(ρ̃−1)"(ψ•)ε(•)
)
=
(
C,
∏

•=0,1,∞ ψ
δ(ρ̃)(•)·ε(ρ−1

0 (•))
•

)

and
(
Q◦
ρ·(•,•), (ρ̃

−1)" (ϕ•)
ε(•)
)

=
(
Q◦

(ρ0(•),ρ0(•)),ϕ
δ(ρ̃)(ρ0(•))·ε(•)
•

)
for • = 0, 1,∞.

Therefore, we have ρ̃∗ξ(ε) = ξ
(
δ(ρ̃) · (ε ◦ ρ−1

0 )
)
by Proposition 5.13. Hence we have

the result. "
Example 6.9. We calculate δ,χ(i) for some elements in Ĩ. The result will be used

in Section 9. For the calculation, we use the local description of G̃-action on X ◦

in Proposition 4.20. Since I → I is an isomorphism (Defintion 6.3), to specify
elements in I, it is enough to give an automorphism on B◦ which belongs to I.

(1) Let ρ̃a = (ρa, 1) ∈ Ĩ be the element satisfying that

(ρa)" : B◦ → B◦;
√
a,
√
1− a,

√
b,
√
1− b /→

√
a,−

√
1− a,

√
b,
√
1− b. (133)

Then we have ρa0 = id ∈ I = S({0, 1,∞}), χ(1)(ρa) = −1 and χ(2)(ρa) = 1.
Furthermore, δ(ρ̃a) can be computed as

δ(ρ̃a)(0) = −1, δ(ρ̃a)(1) = 1, δ(ρ̃a)(∞) = −1. (134)

(2) Let ρ̃b = (ρb, 1) ∈ Ĩ be the element satisfying that

(ρa)" : B◦ → B◦;
√
a,
√
1− a,

√
b,
√
1− b /→

√
1− a,

√
a,
√
1− b,

√
b. (135)

Then we have ρb0 = (1∞) ∈ I0 = S({0, 1,∞}), χ(1)(ρb) = 1 and χ(2)(ρb) =
1. Furthermore, δ(ρ̃a) can be computed as

δ(ρ̃a)(0) = −1, δ(ρ̃a)(1) = −1, δ(ρ̃a)(∞) = −1. (136)

6.2. A fiber-preserving subgroup G̃fib of G̃. In this section, we define another
subgroup G̃fib of G̃.

Definition-Proposition 6.10. We define a normal subgroup G̃fib ⊂ G̃ as

G̃fib = Ker(G̃ → G). (137)

In other words, G̃fib consists of elements in G̃ ⊂ Autk(X ◦) which are automor-
phisms over T ◦. Then we have G̃fib & (Z/2Z)5.
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Proof. First, we show Ker(H → H) & Ker(H0 → H0) & (Z/2Z)2. We have the
first isomorphism by the fact that a fiber product preserves kernels and the second
isomorphism follows from Table 2. Hence we have Ker(G → G) & (Z/2Z)4. Since
ρ(1)
0

= ρ(2)
0

= idH0
for ρ = (ρ(1), ρ(2)) ∈ Ker(G → G), we have a splitting of

Ker(G̃ → G) → Ker(G → G) defined by ρ /→ (ρ, 1). Hence G̃fib is isomorphic to
the direct product of Ker(G → G) & (Z/2Z)4 and Z/2Z. "

Corollary 6.11. G̃fib ∩ Ĩ = {(idG,±1)}.

Proof. Let (ρ, ζ) ∈ G̃fib∩ Ĩ. By Definition 6.10, we have ρ = idG. Since I → I is an
isomorphism, we have ρ = idG. Hence ζ = ±1. The other direction of the inclusion
is clear. "

Since Ĩ stabilize Ξcan (Proposition 6.8) and G̃fib stabilize the image of Ξcan(⊂ Ξ)
under the transcendental regulator (Proposition 9.12), the subgroup G̃fibĨ ⊂ G̃
stabilize the image of Ξcan(⊂ Ξ) under the transcendental regulator map. Hence
ρ̃∗Ξcan and ρ̃′∗Ξ

can have the same image under the transcendental regulator map if
ρ̃, ρ̃′ ∈ G̃ are in the same left coset by G̃fibĨ. The following proposition is useful to
determine whether ρ̃, ρ̃′ ∈ G̃ are in the same left coset or not.

Proposition 6.12. The group homomorphism G̃ → G0 induces the following bi-
jection of sets.

G̃/G̃fibĨ G0/I0
∼ (138)

Especially, we have |G̃/G̃fibĨ| = |G0/I0| = 6.

Proof. By the group homomorphism G̃ → G0, G̃fib = Ker(G̃ → G) maps to {idG0
}

and Ĩ maps to I0. Hence we see that the surjective map G̃ → G0 induces a surjection
(138). We will see this is bijective. It is enough to compare the cardinality of
G̃/G̃fibI with that of G0/I0. By Definition 6.1, |G0/I0| = |H0| = 6. On the other
hand, by Definition 6.3 and Remark 6.4, |Ĩ| = 192. Hence by Proposition 6.10 and
Corollary 6.11, we have

|G̃fibĨ| =
|G̃fib| · |Ĩ|
|G̃fib ∩ Ĩ|

= 3072 = 210 · 3 (139)

By Proposition 4.22, we have |G̃| = 18432 = 211 · 32. Hence |G̃/G̃fibI| = 6 and we
confirm that (138) is bijective. "

7. A differential form on X and a Picard-Fuchs differential
operators

Since X ′ → T ′ is a family of K3 surfaces, we have the unique non-zero relative
2-form up to multiplication of elements in (B′)×. We specify such a relative 2-form
ω ∈ Γ(X ′,Ω2

X ′/T ′) and observe the group action on ω. Then we compute periods of

each fiber Xt and find a Picard-Fuchs differential operator with respect to {ωt}t∈T ′ .
In other words, we find a differential operator on (T ′)an which annihilate period
functions associated with the relative 2-form ω ∈ Γ(X ′,Ω2

X ′/T ′).

7.1. The definition of the relative 2-form ω and G̃-action on ω. We define
a relative 2-form ω on X using a relative 2-form on E ×k E . By Definition 3.15, we
have the following morphisms over T .

X (E ×k E)˜ E ×k E (140)
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Definition 7.1. We define θ ∈ Γ(E ,Ω1
E/S) by θ = dz

u where we use the local
coordinates in Proposition 3.2. Then we have the following 2-form on E ×k E .

pr∗1(θ) ∧ pr∗2(θ) =
dx ∧ dy

u1u2
∈ Γ(E ×k E ,Ω2

E×kE/T ) (141)

where pri : E ×k E → E is the i-th projection and we use the local description of
E ×k E in (40). Furthermore, we define the 2-form ω̃ ∈ Γ((E ×k E)˜,Ω2

(E×kE)˜/T ) by

the pull-back of pr∗1(θ) ∧ pr∗2(θ) by (E ×k E)˜→ E ×k E .
Finally, since ω̃ is stable under the AutX ((E ×k E)˜)-action, we have a unique

element ω ∈ Γ(X ,Ω2
X/T ) such that the pull-back of ω to (E ×k E)˜ coincides with

ω̃. The 2-form ω is represented locally on V0,0 as

ω =
dx ∧ dy

vf(x)
. (142)

We use the same symbol ω for its base change by X ′ → X . For a k-rational point

t′ ∈ T ′(k), We define ωt ∈ Γ
(
Xt,Ω2

Xt/k

)
as the pull-back of ω by it : Xt ↪→ X ′.

Proposition 7.2. Let ρ̃ = (ρ, ζ) ∈ G̃ and t′ ∈ T ′(k) be a k-rational point. Recall
the opposite 1-cocycle χ̃(ρ̃) in Definition 4.18.

(1) Let ω be the relative 2-form defined in Definition 7.1. Then we have

ρ̃∗ω = χ̃(ρ̃) · ω. (143)

(2) Let χ̃(ρ̃)(t) ∈ k be the image of χ̃(ρ̃) ∈ B′ under t" : B′ → k. Then we have

ρ̃∗tωρ(t) = χ̃(ρ̃)(t) · ωt (144)

Proof. Since X ′ → T ′ is smooth, Ω2
X ′/T ′ is locally free. Hence it is enough to show

that the formula (143) on some non-empty open subset of X ′. We can show that

ρ∗
(
dx ∧ dy

vf(x)

)
=

dρ"(x) ∧ dρ"(y)

ρ"(u)
=

∂

∂x

(
ρ"(x)

) ∂
∂y

(
ρ"(y)

) dx ∧ dy

ρ"(u)
= χ̃(ρ̃)·dx ∧ dy

vf(x)
.

(145)
Here we use Proposition 4.19 and the relation u = vf(x). Hence we have (1). (2)
is the restriction of (1) at fibers. "
7.2. Calculation of periods of Xt. Hereafter we assume k = C. In this sub-
section, we calculate periods of Xt at t ∈ T ′(C) with respect to the 2-form ωt in
Definition 7.1.

Definition 7.3. Let X be a smooth projective surface over C and η ∈ Γ(X,Ω2
X/C)

be an algebraic 2-form on X. We regard η as a holomorphic 2-form on Xan. We
define a subgroup P(X, η) of C by

P(X, η) =

{∫

Γ
η ∈ C : Γ ∈ Z2(X

an)

}
. (146)

where Z2(Xan) denotes the group of topological closed 2-cycles on Xan. P(X, η) is
a subgroup of periods of X with respect to η.

Since Xt is a Kummer surface associated with a direct product of elliptic curves,
P(Xt,ωt) relates with periods of elliptic curves. We first compute periods of the
member of the Legendre family of elliptic curves with respect to the relative 1-form
θ ∈ Γ(E ,Ω1

E/S).

Definition 7.4. Let s ∈ S(C) be a C-rational point on S and Es be the fiber of
E → S over s. We have the double covering Es → P1

C by Proposition 3.2. Let γ, δ
be C∞ paths on (P1

C)
an such that the following conditions holds.

(1) γ is a path from 0 to 1 and δ is a path from 1 to ∞.



36 KEN SATO

(2) γ, δ do not pass through 0, 1, 1/c,∞ unless edge points where c ∈ C is the
image of c ∈ A by s" : A → C.

(3) Let γ+, γ− (resp. δ+, δ−) be lifts of γ (resp. δ) by Ean
s → (P1

C)
an. Then

[γ+]− [γ−] and [δ+]− [δ−] are generators of H1(Es,Z).
If c (∈ R≥0, the closed intervals in real axis γ = [0, 1] and δ = [1,∞] satisfy the
conditions for γ and δ.

If γ, δ satisfy the conditions (1) to (3) at s ∈ S(C) = San, γ, δ satisfy the
conditions for any s′ which is sufficiently close to s ∈ San in the classical topology.
Hence we can define local holomorphic functions P1, P2 on San by the following
integral representation. Note that c is the coordinate of San.

P1(c) =

∫

γ+

θs =

∫

γ

dx√
x(1− x)(1− cx)

P2(c) =

∫

δ+

θs =

∫

δ

dx√
x(1− x)(1− cx)

.
(147)

where θs ∈ Γ(Es,Ω1
Es/C) is the pull-back of θ in Definition 7.1 by Es ↪→ E . We define

a differential operator L : OSan → OSan of order 2 by

L = c(1− c)
d2

dc2
+ (1− 2c)

d

dc
− 1

4
. (148)

Then we can check that L(P1) = L(P2) = 0 by the integral representation.

Let t ∈ T (C) and pr1(t), pr2(t) ∈ S(C) be its images by pr1, pr2 : T → S. By
Proposition 3.13, (E ×C E)t is isomorphic to Epr1(t) ×C Epr2(t). Using P1, P2, we can
describe P(Epr1(t) ×C Epr2(t), pr∗1(θpr1(t)) ∧ pr∗2(θpr2(t))) as follows.

Proposition 7.5. Let t ∈ T (C). Then P(Epr1(t)×CEpr2(t), pr∗1(θpr1(t))∧pr∗2(θpr2(t)))
is generated by 4P1(a)P1(b), 4P1(a)P2(b), 4P2(a)P1(b) and 4P2(a)P2(b) ∈ C where
a, b ∈ C are images of a, b ∈ B by t" : B → C.

Proof. By the condition (3) in Definition 7.4, the periods of the elliptic curve Epr1(t)
with respect to θpr1(t) is generated by 2P1(a) and 2P2(a). Similarly, the periods of
the elliptic curve Epr2(t) with respect to θpr2(t) is generated by 2P1(b) and 2P2(b).
Then by the Künneth formula, we have the result. "

Next, we see the relation between P(Epr1(t) ×C Epr2(t), pr∗1(θpr1(t))∧ pr∗2(θpr2(t)))
and P(Xt,ωt). By restricting the morphism (140) to fibers at t ∈ T (C), we have
the following diagram.

Xt (E ×C E)˜t (E ×C E)t Epr1(t) ×C Epr2(t)
∼ (149)

Let p : (E ×C E)˜t → Epr1(t) ×C Epr2(t) be the composition of the right arrows in
(149) and π : (E ×C E)˜t → Xt be the left arrow in (149). We have the following
morphism φ of Z-Hodge structures.

φ : H2(Ean
pr1(t)

× Ean
pr2(t)

) H2(((E ×C E)˜t)an) H2(X an
t )

p∗ π! (150)

where p∗ is the pull-back by p and π! is the Gysin morphism ([Voi02] p.178) induced
by π. In other words, π! is the map

H2(((E ×C E)˜t)an) H2(((E ×C E)˜t)an) H2(X an
t ) H2(X an

t )∼ π∗ ∼

(151)
where π∗ is the push-forward map induced on the homology group and the first and
the last isomorphisms are Poincaré duality.
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Proposition 7.6. The following relation holds in H2(X an
t ,C).

φ([pr∗1(θpr1(t)) ∧ pr∗2(θpr2(t))]) = 2[ωt] (152)

Proof. Under the isomorphism (E×CE)t & Epr1(t)×CEpr2(t), the 2-form pr∗1(θpr1(t))∧
pr∗2(θpr2(t)) coincides with the pull-back of pr∗1(θ)∧pr∗2(θ) in Definition 7.1 at t. Let
ω̃t ∈ Γ((E ×C E)˜t,Ω2

(E×CE)˜t/C) be the pull-back of ω̃ in Definition 7.1 at t. Then
we have

p∗
(
pr∗1(θpr1(t)) ∧ pr∗2(θpr2(t))

)
= ω̃t

π∗ωt = ω̃t.
(153)

Since π : (E ×C E)˜t → Xt is the quotient by the involution (Proposition 3.15), π
is a generically 2 : 1 map. Hence the mapping degree of π : ((E ×C E)˜t)an → X an

t

is 2. By the definition of Gysin map, π! ◦ π∗ : H2(X an
t ) → H2(X an

t ) equals to
multiplication by 2 (cf. [Voi02], Remark 7.29). Then we have

φ([pr∗1(θpr1(t)) ∧ pr∗2(θpr2(t))]) = π!p
∗[pr∗1(θpr1(t)) ∧ pr∗2(θpr2(t))] = π!π

∗[ωt] = 2[ωt].
(154)

"
Definition-Proposition 7.7. For i, j ∈ {1, 2}, we define a local holomorphic func-
tion Pij on T an by

Pij(t) = 2Pi(a)Pj(b) (t ∈ T an) (155)

where a, b ∈ C are images of a, b ∈ B by t" : B → C and P1, P2 are local holomorphic
functions defined in Definition 7.4. Note that a, b are coordinates on T an. By
pulling-back Pij by (T ′)an → T an, we can regard Pij as a local holomorphic function
on (T ′)an for i, j ∈ {1, 2}.

Then for each t′ ∈ T ′(C), the subgroup P(Xt′ ,ωt′) ⊂ C is generated by P11(t′),
P12(t′), P21(t′) and P22(t′) ∈ C.

Proof. For t′ ∈ T ′(C), let t ∈ T (C) be the image of t′ by T ′ → T . Then we have
P(Xt,ωt) = P(Xt′ ,ωt′). Hence by Proposition 7.5, it is enough to show

P(Xt,ωt) =
1

2
P(Epr1(t) ×C Epr2(t), pr

∗
1(θpr1(t)) ∧ pr∗2(θpr2(t))). (156)

Since X an
t is a K3 surface and Ean

pr1(t)
× Ean

pr2(t)
is an abelian surface, their singular

cohomology groups with coefficients in Z are free of finite rank ([BPV84], Chap-
ter VIII, Proposition 3.2). Hence H2(X an

t ) and H2(Ean
pr1(t)

× Ean
pr2(t)

) are duals of

H2(X an
t ) and H2(Ean

pr1(t)
× Ean

pr2(t)
) and the following morphism is the dual of φ.

φ∨ : H2(X an
t ) H2(((E ×C E)˜t)an) H2(Ean

pr1(t)
×C Ean

pr2(t)
)π! p∗ (157)

where π! is the following morphism.

H2(X an
t ) H2(X an

t ) H2(((E ×C E)˜t)an) H2(((E ×C E)˜t)an)∼ π∗ ∼

(158)
For any Γ ∈ Z2(X an

t ), we have
∫

Γ
ωt = 〈[ωt], [Γ]〉 =

1

2
〈φ([pr∗1(θpr1(t)) ∧ pr∗2(θpr2(t))]), [Γ]〉

=
1

2
〈[pr∗1(θpr1(t)) ∧ pr∗2(θpr2(t))],φ

∨([Γ])〉 = 1

2

∫

Γ′
pr∗1(θpr1(t)) ∧ pr∗2(θpr2(t))

(159)

where 〈 , 〉 is the canonical pairing of cohomology and homology and Γ′ ∈ Z2(Ean
pr1(t)

×
Ean
pr2(t)

) is a representative of φ∨([Γ]) ∈ H2(Ean
pr1(t)

× Ean
pr2(t)

). This equation proves

the inclusion (⊂) in (156). To prove the other direction of the inclusion, it is enough
to show that any element in H2(Ean

pr1(t)
× Ean

pr2(t)
,Z) can be written as φ∨([Γ]) for
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some [Γ] ∈ H2(X an
t ). By [BPV84], Chapter VIII, Proposition 5.1 and Corollary

5.6, φ : H2(Ean
pr1(t)

× Ean
pr2(t)

,Z) → H2(X an
t ,Z) is injective and its cokernel has no

torsion. Hence its dual φ∨ is surjective and we have the result. "

Finally we can find a Picard-Fuchs differential operator D , which annihilate the
period functions Pij .

Definition 7.8. We define differential operators D1,D2 : O(T ′)an → O(T ′)an by

D1 = a(1− a)
∂2

∂a2
+ (1− 2a)

∂

∂a
− 1

4

D2 = b(1− b)
∂2

∂b2
+ (1− 2b)

∂

∂b
− 1

4

(160)

Using these operators, we define a Picard-Fuchs differential operator D by

D =

(
D1

D2

)
: O(T ′)an → O⊕2

(T ′)an . (161)

These are C-linear morphisms of sheaves. By Definition 7.4 and Definition 7.7, the
local holomorphic functions Pij are annihilated by the differential operator D .

8. Basic calculation of the regulator map

In this section, we calculate the image of the higher Chow cycle ξ1,t − ξ0,t ∈
CH2(Xt, 1) in Definition 5.8 under the transcendental regulator map by using
Levine’s formula. For this purpose, we construct topological 2-chains K+ and K−
on X an

t explicitly (Proposition 8.7) and express the value of ξ1,t − ξ0,t under the
transcendental regulator map using the local holomorphic function L (Definition
8.10). Hereafter we use the following notations.

(1) For a smooth variety X over C, its analytification is denoted by Xan. As a
set, we have Xan = X(C).

(2) For a complex manifold Xan, Sn(Xan) denote the free abelian group gen-
erated by C∞-singular chains on Xan of dimension n. The boundary
operator is denoted by ∂ : S•(Xan) → S•−1(Xan). We set B•(Xan) =

Im(S•+1(Xan)
∂−→ S•(Xan)) and Z•(Xan) = Ker(S•(Xan)

∂−→ S•−1(Xan)).
(3) For a smooth variety X over C, we identify algebraic cycles on X of di-

mension 0 with elements in S0(Xan). Furthermore, we regard a C∞-path
γ : [0, 1] → Xan as an element of S1(Xan) such that ∂γ = γ(1)− γ(0).

8.1. Levine’s formula for the regulator map. In this section, letX be a smooth
projective surface over C such that H1(Xan,Z) = 0. We have the following canon-
ical isomorphism for the Deligne cohomology of Xan.

H3
D(X

an,Z(2)) & H2(Xan,C)
H2(Xan,Z(2)) + F 2H2(Xan,C) & (F 1H2(Xan,C))∨

H2(Xan,Z) . (162)

where we denote the dual of a C-vector space V by V ∨. The last isomorphism is in-
duced by the Poincaré duality. We regardH2(Xan,Z) as a subgroup of (F 1H2(Xan,C))∨
by the integration. By this identification, we regard the Deligne cohomology as a
quotient of the space of functionals of F 1H2(Xan,C).

We will recall the formula for the regulator map in [Lev88]. Let ξ be an element
of CH2(X, 1). By the Proposition 5.1, ξ is represented by

∑

j

(Cj , fj) ∈ Ker




⊕

Z∈X(1)

R(Z)×
div−−→

⊕

p∈X(2)

Z · p



 (163)
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where Cj is a closed curve on X and fj is a non-zero rational function on Cj . Let Dj

be the normalization of Cj . Hence Dj is a smooth projective curve. µj : Dj −→X
denotes the composition of Dj −→ Cj and Cj −→X.

First, we will define γj ∈ S1(Dan
j ). If fj ∈ C×, we set γj = 0. If fj is not a

constant function, we regard fj as a finite morphism from Dj to P1
C (because Dj

is smooth). Let [∞, 0] ∈ S1((P1
C)

an) be a path from ∞ to 0 along the positive real
axis. Since Dan

j −→ (P1
C)

an is a finite covering, we can define γj as the pullback of
[∞, 0] by Dan

j −→ (P1
C)

an. Then we have

∂γj = divDj (fj) ∈ S0(D
an
j ). (164)

Next, we will define a 2-chain Γ ∈ S2(Xan). Let γ ∈ S1(Xan) be
∑

j(µj)∗γj where
(µj)∗γj denotes the push-forward of γj by µj : Dan

j → Xan. Since
∑

j(Cj , fj) ∈
Ker(div), we have γ ∈ Z1(Xan). By the assumption H1(Xan,Z) = 0, we can find a
Γ ∈ S2(Xan) such that ∂Γ = γ. We name these γ and Γ as follows.

Definition 8.1. In this paper, γ ∈ S1(Xan) is called the 1-cycle associated with ξ
and Γ ∈ S2(Xan) is called a 2-chain associated with ξ. Note that Γ is determined
only up to elements in Z2(Xan).

By [Lev88], p.458–459, the following map is well-defined.

CH2(X, 1)
F 1H2(Xan,C)∨
H2(Xan,Z)

[∑
j(Cj , fj)

]


[ω] /→
∫

Γ
ω +

∑

j

1

2π
√
−1

∫

Dj−γj
log(fj)µ

∗
jω



 mod H2(Xan,Z)

(165)
Here log(fj) is the pull-back of the principal branch of the holomorphic function
log z on (P1

C)
an − [∞, 0] by fj . By the isomorphism (162), this map is regarded as

a map to H3
D(X

an,Z(2)). This map is called the regulator map11.

In this paper, we do not treat the whole Deligne cohomology group. We consider
a certain quotient of the Deligne cohomology.

Definition-Proposition 8.2. The transcendental regulator map is the composite
of the following maps.

r : CH2(X, 1)
F 1H2(Xan,C)∨
H2(Xan,Z)

H2,0(Xan)∨

H2(Xan,Z) (166)

where the first map is the regulator map in Definition 8.1 and the second map is
the projection induced by H2,0(Xan) ↪→ F 1H2(Xan,C). We denote this map by r.
The transcendental regulator map has the following properties.

(1) Let ξ ∈ CH2(X, 1) and Γ be a 2-chain associated with ξ. For an algebraic
2-form η on X, we have

r(ξ)([η]) =

∫

Γ
η mod P(X, η). (167)

where P(X, η) ⊂ C is the subgroup defined in Definition 7.3.
(2) For a decomposable cycle ξ ∈ CH2(X, 1)dec, we have r(ξ) = 0. Especially,

the transcendental regulator map factors through CH2(X, 1)ind.

11This definition of the regulator map is different from the map defined in [Lev88] by the
multiplication of 2π

√
−1. The difference comes from the definition of the Poincaré duality.
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Proof. Since we regardH2(Xan,Z) as a subgroup of F 1H2(Xan,C)∨ by integration,
the evaluation by [η] ∈ H2,0(Xan) induces the following map.

H2,0(Xan)∨/H2(Xan,Z) C/P(X, η); ϕ ϕ([η]) (168)

Hence r(ξ)([η]) should be an element of C/P(X, η). Since η is a holomorphic 2-
form and Dan

j is a complex manifold of dimension 1, we have µ∗
jη = 0. Thus∫

Dj−γj log(fj)µ
∗
jη = 0 for all j. Hence (167) follows from the formula in Definition

8.1. To prove (2), we use the fact that a decomposable cycle is represented by a
sum of (C, a) where a ∈ Γ(X,O×

X) = C× by Proposition A.2. In this case, γ = 0
and we can take Γ = 0. Thus (2) follows from (1). "

When we compute the value of transcendental regulator map, it is sometimes
convenient to replace a 1-cycle/2-chain associated with ξ (Definition 8.1) by another
1-cycle/2-chain. Thus we define as follows.

Definition 8.3. Let ξ be an element of CH2(X, 1) and γ be the 1-cycle associated
with ξ. In this paper, γ′ ∈ Z1(Xan) is called a 1-cycle associated with ξ in a weak
sense if there exists a family of smooth curves {Dλ}λ on X such that γ − γ′ ∈∑
λB1(Dan

λ ). Here we regard B1(Dan
λ ) as a subgroup of Z1(Xan) by the natural

inclusions.
Let Γ ∈ S2(Xan) be a 2-chain associated with ξ. A 2-chain Γ′ ∈ S2(Xan) is

called a 2-chain associated with ξ in a weak sense if there exists a family of smooth
curves {Dλ}λ on X such that Γ− Γ′ ∈ Z2(Xan) +

∑
λ S2(Dan

λ ).

The following proposition justifies this definition.

Proposition 8.4. Let ξ ∈ CH2(X, 1).

(1) If γ′ is a 1-cycle associated with ξ in a weak sense and Γ′ ∈ S2(Xan) satisfies
∂Γ′ = γ′, then Γ′ is a 2-chain associated with ξ in a weak sense.

(2) If Γ′ is a 2-chain associated with ξ in a weak sense, we have

r(ξ)([η]) =

∫

Γ′
η mod P(X, η). (169)

Proof. (1) follows from the definition. (2) follows from the fact that the restriction
of a holomorphic 2-form η to each curve Dan

λ is 0 since Dan
λ are 1-dimensional

complex manifolds. "
8.2. Construction of a 2-chain associated with ξ1,t − ξ0,t in a weak sense.
In this section, we fix a C-rational point t ∈ T ◦(C). By restricting the morphisms
in Definition 3.15to fibers at t, we have the following morphisms.

Xt X t Yt (170)

We will construct a topological 2-chain K+ −K− ∈ S2(X an
t ) associated with ξ1,t −

ξ0,t in a weak sense from the following 2-chains on Yan
t and X an

t .

X an
t X an

t Yan
t

K+ ∪K− K *inverse image

⊂

“strict transformation”

⊂ ⊂ (171)

Definition 8.5. (Definition of* andK) We use the same symbols a, b,
√
1− a,

√
1− b

for their image by t" : B◦ → C. We take a C∞-path γ : [0, 1] → (P1
C)

an satisfying
the following conditions.

(1) γ(0) = 0 and γ(1) = 1.
(2) γ(s) (= 0, 1, 1

a ,
1
b ,∞ except s = 0, 1.
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(3) We can fix the branch of the functions
√
1− az,

√
1− bz along γ so that√

1− aγ(0) =
√
1− bγ(0) = 1 and

√
1− aγ(1) =

√
1− a,

√
1− bγ(1) =√

1− b.
(4) On a neighborhood of 0, we have γ(s) = s2. Furthermore, we can fix the

branch of the function
√
z along γ so that

√
γ(1) = 1 and

√
γ(s) = s on a

neighborhood of 0.
(5) On a neighborhood of 1, we have γ(s) = 1− (1− s)2. Furthermore, we can

fix the branch of the function
√
1− z along γ so that

√
1− γ(0) = 1 and√

1− γ(s) = 1− s on a neighborhood of 1.

The conditions (4) and (5) are necessary for K+ and K− to be C∞-chains. If√
1− a,

√
1− b ∈ R>1, the closed interval [0, 1] along real axis (with suitable

reparametrization) satisfies the conditions above. By the condition (3)(4)(5), we fix
the branch of the local holomorphic functions

√
z(1− z)(1− az) and

√
z(1− z)(1− bz)

along γ. We define * ⊂ Yan
t as the image of the following map.

{(p, q) ∈ R2 : 0 < q < p < 1} Yan
t

(p, q) (x, y) = (γ(p), γ(q))

∈ ∈ (172)

We define * as the closure (in the sense of classical topology) of * in Yan
t .

Since * ⊂ Yan
t does not intersect with the blowing-up locus of X t → Yt, the

inverse image of * by X t → Yt is homeomorphic to *. We also denote the inverse
image of * by *. We define K ⊂ X an

t as the closure (in the sense of classical
topology) of * ⊂ X an

t .

X an
t * K

Yan
t * *

⊃

/

⊂

⊃ ⊂

(173)

We define paths γc, γ11, γy, γ10, γx and γ00 on X an
t appearing in the boundary ∂K

as in Figure 4. We use the local coordinates x, y, v and x, y, w on X t in Definition
3.15. They satisfy the following properties.

(1) The path γc is on the strict transformation of Dan
t ⊂ Yan

t by X an
t → Yan

t .
(2) The path γy (resp. γx) is on a curve in X an

t defined by x−1 = w = 0 (resp.
y = v = 0).

(3) The paths γ00, γ10 and γ11 are on the exceptional curves Q
an
(0,0),t, Q

an
(1,0),t

and Q
an
(1,1),t respectively. Here Q(0,0),t, Q(1,0),t and Q(1,1),t are fibers of

Q(0,0), Q(1,0) and Q(1,1) in Definition 3.16 at t.

Definition 8.6. Since * ⊂ X an
t does not intersect with the branching locus of the

double covering X an
t → X an

t , the inverse image of * by X an
t → X an

t decomposes
into the disjoint union of *+ and *−, which are both homeomorphic to * ⊂ X t

(Note that * is simply connected). We define K+ and K− as the closure of *+

and *−. We choose K+ and K− so that K+ contains (x, y, v) = (0, 0, 1) and K−
contains (x, y, v) = (0, 0,−1).

X an
t *+ .*− K+ ∪K−

X an
t * K

⊃

double cover
étale

⊂

⊃ ⊂

(174)
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Figure 4. The figure of K and paths on its boundary

By the condition (4)(5) in Definition 8.5, we can confirm that K± are C∞ manifolds
with corners. Since K± are compact and have the natural orientation induced by
*±, we can regard them as 2-chains on X an

t .
We define paths γc,±, γ11,±, γy, γ10,±, γx and γ00,± on X an

t appearing in the
boundaries ∂K+ and ∂K− as in Figure 5. They satisfy the following properties.

(1) The path γc,+ (resp. γc,−) is the lift of γc to K+ (resp. K−) and it is on
the curve Can

t ⊂ X an
t . Note that by the condition (3) in Definition 8.5, its

terminal point is (x, y, v) = (0, 0, 1) (resp. (x, y, v) = (0, 0,−1)) and its

initial point is (x, y, v) =
(
1, 1,

√
1−b√
1−a

)
(resp. (x, y, v) =

(
1, 1,−

√
1−b√
1−a

)
).

(2) The paths γ00,+, γ10,+ and γ10,+ (resp. γ00,−, γ10,− and γ10,−) are the lift of
γ00, γ10 and γ11 to K+ (resp. K−) and they are on the exceptional curves
Qan

(0,0),t, Q
an
(1,0),t and Qan

(1,1),t respectively.

(3) Since γx and γy on X an
t are contained in the branching locus of X an

t → X an
t ,

there exist unique lifts of them to Xt. We denote their lifts by the same
symbol γx and γy.

Proposition 8.7. The 2-chain K+ −K− ∈ S2(X an
t ) is a 2-chain associated with

ξ1,t − ξ0,t in a weak sense.

We use the following lemma. The proof is immediate since H1((P1
C)

an) = 0.

Lemma 8.8. If γ, γ′ ∈ S1((P1
C)

an) satisfy ∂γ = ∂γ′, then γ − γ′ ∈ B1((P1
C)

an).

Proof. (Proposition 8.7) By Proposition 5.10, ξ1,t − ξ0,t is represented by the fol-
lowing element in

⊕
Z∈X (1)

t
R(Z)×.



Ct,
(v − 1)

(
v +

√
1−b√
1−a

)

(v + 1)
(
v −

√
1−b√
1−a

)



+

(
Q(0,0),t,

v + 1

v − 1

)
+



Q(1,1),t,
v −

√
1−b√
1−a

v +
√
1−b√
1−a



 (175)
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Figure 5. The figure of K+,K− and paths on their boundaries

By Figure 5, we see that that

∂(γc,+ − γc,−) = divCt




(v − 1)

(
v +

√
1−b√
1−a

)

(v + 1)
(
v −

√
1−b√
1−a

)



 , ∂(γ10,+ − γ10,−) = 0

∂(γ00,+ − γ00,−) = divQ(0,0),t

(
v + 1

v − 1

)
, ∂(γ11,+ − γ11,−) = divQ(1,1),t




v −

√
1−b√
1−a

v +
√
1−b√
1−a





(176)
Since Ct, Q(0,0),t, Q(1,1),t and Q(1,0),t are isomorphic to P1

C, by Lemma 8.8, (γc,+ −
γc,−)+(γ11,+−γ11,−)+(γ10,+−γ10,−)+(γ00,+−γ00,−) is a 1-cycle associated with
ξ1,t − ξ0,t in a weak sense. Since we have

∂(K+−K−) = (γc,+−γc,−)+(γ11,+−γ11,−)+(γ10,+−γ10,−)+(γ00,+−γ00,−), (177)

the result follows from Proposition 8.4. "

8.3. Calculation of the transcendental regulator map at t ∈ T ◦(C). Since
we have constructed a 2-chain associated with ξ1,t−ξ0,t, we can compute the image
of ξ1,t − ξ0,t under the transcendental regulator map by Proposition 8.4.

Definition 8.9. Since Xt is a K3 surface and the holomorphic 2-form ωt in Defini-
tion 7.1 is non-zero, the following map is an isomorphism between abelian groups.

evt : H2,0(X an
t )∨/H2(X an

t ,Z) C/P(Xt,ωt)

ϕ ϕ([ωt])

∈ ∈ (178)

We denote this map by evt. Hereafter we concern periods of Kummer surfaces Xt

for t ∈ T ◦(C), we simply write P(Xt,ωt) as Pωt . Furthermore, the image of x ∈ C
under the natural projection C → C/Pωt is denoted by [x] ∈ C/Pωt .

Definition-Proposition 8.10. Let t ∈ T ◦(C). Choose a path γ satisfying the
conditions in Definition 8.5 at t. We can take an open neighborhood U of t in
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(T ◦)an in the classical topology such that γ satisfies the conditions in Definition 8.5
at every point on U . Then we have the following.

(1) The following integral converges and defines a holomorphic function L on
U .

L(t) =
∫

'

γ′(p)γ′(q)dpdq√
γ(p)(1− γ(p))(1− aγ(p)) ·

√
γ(q)(1− γ(q))(1− bγ(q))

(t ∈ U)

(179)
Note that since the branch of

√
z(1− z)(1− az) and

√
z(1− z)(1− bz)

along γ is fixed by Definition 8.5, the branch of the integrand on * is also
fixed.

(2) The image of ξ1,t − ξ0,t under the transcendental regulator map r is as
follows.

evt(r(ξ1,t − ξ0,t)) = 2[L(t)] ∈ C/Pωt (180)

(3) If we choose a different path γ, we get another local holomorphic function
L′. However, the difference L(t)− L′(t) ∈ C should lie in 1

2Pωt .

Proof. By the construction of ∆+ ⊂ X an
t , we see that ∆+ coincides with the image

of the following map.

{(p, q) ∈ R2 : 0 < q < p < 1} X an
t

(p, q) (x, y, v) =

(
γ(p), γ(q),

√
γ(q)(1−γ(q))(1−bγ(q))√
γ(p)(1−γ(p))(1−aγ(p))

)∈ ∈

(181)
Hence the right hand side of (179) coincides with

∫
∆+

ωt. Since the integrand is C∞

on the boundary of ∆+, we have
∫
∆+

ωt =
∫
K+

ωt. Thus the right hand side of (179)

can be regarded as integration of a C∞-function on a compact C∞-manifold with
corners. Furthermore, the integrand is holomorphic with respect to a, b, which are
local coordinates of (T ◦)an. Hence we have (1). By Proposition 8.4 and Proposition
8.7, we have

evt(r(ξ1,t − ξ0,t)) =

∫

K+

ωt −
∫

K−

ωt ∈ C/Pωt (182)

Since
∫
K+

ωt = −
∫
K−

ωt = L(t) by definition, we have (2). Then by (2), 2[L(t)] is
determined up to elements in Pωt . Thus we have (3). "

At last, we calculate the image of L under the Picard-Fuchs operator D in
Definition 7.8. This calculation is used in the rank estimation of the image of Ξt

under the transcendental regulator map in Section 9. This theorem also gives a
system of differential equations which L satisfies.

Theorem 8.11. Let L be the local holomorphic function defined in Definition 8.10.
Then we have

D(L) = 1

a− b
·





√
1−b√
1−a

− 1

1−
√
1−a√
1−b



 (183)

Proof. A local holomorphic function H(c, z) = −
√

z(1−z)

2(1−cz)
3
2
satisfies

Lc

(
1√

z(1− z)(1− cz)

)
=
∂H(c, z)

∂z
. (184)
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where Lc is the differential operator defined in Definition 7.4. Then we have the
following equation on 2-forms on Xt.

D1

(
1√

x(1− x)(1− ax) ·
√

y(1− y)(1− by)

)
dx ∧ dy = d

(
H(a, x)dy√

y(1− y)(1− by)

)

(185)
This equation holds on an open neighborhood of K+. By the definition of L and
Stokes theorem on Xt, we have the following.

D1(L) = D1

(∫

K+

γ′(p)γ′(q)dpdq√
γ(p)(1− γ(p))(1− aγ(p)) ·

√
γ(q)(1− γ(q))(1− bγ(q))

)

=

∫

K+

d

(
H(a, γ(p))γ′(q)dq√

γ(q)(1− γ(q))(1− bγ(q))

)
=

∫

∂K+

H(a, γ(p))γ′(q)dq√
γ(q)(1− γ(q))(1− bγ(q))

(186)

Since the 1-form H(a,x)dy√
y(1−y)(1−by)

vanishes at {y = 0} and {x = 1}, we have

D1(L) =
1

2

∫ 1

0

dz

(1− bz)
1
2 (1− az)

3
2

=
1

a− b

∫ √
1−b√
1−a

1
du =

1

a− b
·
(√

1− b√
1− a

− 1

)
.

(187)

Here we use the coordinate transform u =
√
1−bz√
1−az

. We can compute D2(L) similarly.
"

9. Estimation of the rank of the image of Ξ under the
transcendental regulator maps

In this section, we prove Theorem 1.1. The outline of the proof is as follows.

(1) We construct a Q-linear sheaf Qω on (T ′)an as a quotient of the sheaf of
holomorphic functions O(T ′)an by a locally constant subsheaf Pω generated
by period functions Pij . For each t ∈ (T ′)an, we have a “evaluation” map
Qω(T ′) → C/QPωt & H2,0(X an

t )∨/H2(Xt,Q). We see that the Picard-
Fuchs differential operator D factors through the sheafQω (Definition 9.13).

(2) The Q-linear space Qω(T ◦) is the target of a “relative transcendental reg-
ulator map” Rω : Ξ → Qω(T ◦) (Definition 9.11). The “value” of Rω(ξ) at
t ∈ T ◦(C) coincides with r(ξt) modulo torsion.

(3) By the formula of the G̃-action on ωt in Proposition 7.2, we have the fol-
lowing commutative diagram (Proposition 9.6).

CH2(Xt, 1) H2,0(X an
t )∨/H2(Xt,Z) C/Pωt

CH2(Xρ(t), 1) H2,0(X an
ρ(t))

∨/H2(Xt,Z) C/Pωρ(t)

r

(ρ̃t)∗ (ρ̃∗t )
∨

evt

χ̃(ρ̃)(t)

r evρ(t)

(188)

(4) By the diagram above, we can define a G̃-action {Υρ̃}ρ̃∈G̃ on Qω (Definition
9.7) so that the relative transcendental regulator map Rω is equivariant to
G̃-actions (Proposition 9.11). Furthermore, we can also define a G̃-action
{Θρ̃}ρ̃∈G̃ on O⊕2

(T ′)an (Definition 9.14) so that the Picard-Fuchs differential

operator D is equivariant to G̃-actions (Proposition 9.15).
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(5) In conclusion, we have the following diagram for ρ̃ ∈ G̃.

Ξ Qω(T ◦) O(T ′)an(T
◦)⊕2

Ξ Qω(T ◦) O(T ′)an(T
◦)⊕2

ρ̃∗

Rω D

Υρ̃ Θρ̃

Rω D

(189)

By this diagram, we can compute the image D ◦ Rω(Ξ) (Table 8) and get
the desired rank estimate (Theorem 9.20).

9.1. The definition of the sheaves Pω and Qω. In this section, we define the
sheaves Pω and Qω and prove their properties.

Definition 9.1. We regard the sheaf O(T ′)an of holomorphic functions on (T ′)an as
a Q-linear sheaf. We define a subsheaf Pω ⊂ O(T ′)an as the unique sheaf satisfying
the following property:

For any open set U ⊂ (T ′)an in the classical topology such that Pij are defined,

Pω|U is the subsheaf generated (as a Q-linear sheaf) by Pij for i, j ∈ {1, 2}.
(190)

where Pij are the local holomorphic functions defined in Definition 7.7. Then we
define a sheaf Qω as the quotient sheaf O(T ′)an/Pω. For a local section f of O(T ′)an ,
[f ] denotes the image of f under the quotient map O(T ′)an → Qω.

The existence of Pω can be confirmed by the following remark.

Remark 9.2. Let π : X ′ → T ′ be the structure morphism. We define the following
sheaves P,Q on (T ′)an.

P = Im(R2π∗Q(X ′)an
→ HomO(T ′)an (π∗Ω

2
X ′/T ′ ,O(T ′)an))

Q = Coker(R2π∗Q(X ′)an
→ HomO(T ′)an (π∗Ω

2
X ′/T ′ ,O(T ′)an))

(191)

where Q
(X ′)an

is the constant sheaf with coefficients in Q on (X ′)an and the mor-

phism R2π∗Q(X ′)an
→ HomO(T ′)an (π∗Ω

2
X ′/T ′ ,O(T ′)an) is induced by the fiber inte-

gration.
Since X ′ is a family of K3 surface, π∗Ω2

X ′/T ′ is a locally free O(T ′)an -module of

rank 1. Then we have an isomorphism O(T ′)an & HomO(T ′)an (π∗Ω
2
X ′/T ′ ,O(T ′)an)

induced by ϕ /→ ϕ · ω where ω is the 2-form in Definition 7.1. Under this iso-
morphism, we have P & Pω and Q & Qω. Since π : X ′ → T ′ is a topologically
locally trivial fibration, for a sufficiently small open neighborhood in the classical
topology, we have a Q-basis in P|U . The holomorphic functions Pij (i, j ∈ {1, 2})
are the images of such a basis under P|U & Pω|U .

Definition 9.3. For each t ∈ T ′(C), O(T ′)an,t denotes the stalk of O(T ′)an at t. We
define the evaluation map mt by

mt : O(T ′)an,t C; ϕ ϕ(t). (192)

For an open neighborhood U of t in the classical topology, composition of mt and
a restriction map O(T ′)an(U) → O(T ′)an,t is also denoted by mt. Furthermore, since
Pωt ⊂ C is generated by the values of Pij at t by Definition 7.7, mt : O(T ′)an,t → C
induces the following map Qω,t → C/QPωt .

O(T ′)an,t C

Qω,t C/QPωt

mt

mt

(193)
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where QPωt ⊂ C is a Q-linear subspace of C generated by Pωt . We also denote this
map by mt. Furthermore, the composite of mt and the restriction map of Qω is
also denoted by mt.

Proposition 9.4. Let U be an open subset of (T ′)an in the classical topology and
ϕ ∈ O(T ′)an(U). Then ϕ(t) (∈ QPωt for very general12 t ∈ U if and only if ϕ (∈
Pω(U). Especially, if ϕ ∈ O(T ′)an(U) satisfies that ϕ(t) ∈ QPωt holds for every
t ∈ U , then ϕ is a section of Pω(U).

Proof. We will prove the former part of the proposition. We may assume U is so
small that Pij are defined on U . For each quadruple c = (cij) ∈ Q⊕4, we define a
holomorphic function Fc by

Fc = ϕ−
∑

i,j

cijPij . (194)

Consider the countable family {Fc}c∈Q4 of holomorphic functions on U . If ϕ (∈
Pω(U), they are non-zero holomorphic functions. Especially, for very general t ∈ U ,
Fc(t) (= 0 holds for all c ∈ Q4. Since Pωt is generated (as a Q-linear subspace of C)
by Pij(t), we see that Fc(t) (= 0 holds for all c ∈ Q4 is equivalent to ϕ(t) (∈ QPωt .
Converse is clear. The latter part follows from the former part. "

The sheaf Qω has the following property. This lemma enables us to reduce the
computation of Qω to that of its restriction at each point on U .

Lemma 9.5. For each open subset U of (T ′)an in the classical topology and non-
zero section x ∈ Qω(U), the restriction mt(x) is non-zero for very general t ∈ U .
Especially, the following map is injective.

Qω(U)
∏

t∈U

C/QPωt ; x (mt(x))t (195)

Proof. We can shrink U so small that x is of the form x = [ϕ] for ϕ ∈ O(T ′)an(U).
Then the results follows from Proposition 9.4. "

9.2. A G̃-action on Qω. First, we see that how G̃ acts on C/Pωt .

Proposition 9.6. Let t ∈ T ◦(C) and ρ̃ = (ρ, ζ) ∈ G̃. Let ρ̃t : Xt
∼−−→ Xρ(t) be the

automorphism defined in Definition 4.23.

(1) We have Pωρ(t)
= χ̃(ρ̃)(t) · Pωt as a subgroup of C. Here χ̃(ρ̃)(t) ∈ C is the

value of χ̃(ρ̃) ∈ B′ in Defintion 4.18 at t.
(2) From (1), the following map is well-defined.

χ̃(ρ̃)(t) : C/Pωt C/Pωρ(t)
; [x] [χ̃(ρ̃)(t) · x] (196)

(3) We have the following commutative diagram.

CH2(Xt, 1) H2,0(X an
t )∨/H2(Xt,Z) C/Pωt

CH2(Xρ(t), 1) H2,0(X an
ρ(t))

∨/H2(Xt,Z) C/Pωρ(t)

r

(ρ̃t)∗ (ρ̃∗t )
∨

evt

χ̃(ρ̃)(t)

r evρ(t)

(197)

where the right vertical map is (196) above.

12We use the word “very general” for the meaning of “outside of a countable union of proper
(= not the whole space) analytic subsets”.
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Proof. Note that the following equation holds for every 2-chain Γ ∈ S2(X an
t ).

∫

(ρ̃t)∗Γ
ωρ(t) =

∫

Γ
(ρ̃t)

∗ωρ(t) = χ̃(ρ̃)(t) ·
∫

Γ
ωt (198)

For the second equality, we use Proposition 7.2. By the equations (198) for Γ ∈
Z2(X an

t ), we can show (1). If Γ is a 2-chain associated with ξ ∈ CH2(Xt, 1), then
(ρ̃t)∗Γ is a 2-chain associated with (ρ̃t)∗ξ ∈ CH2(Xρ(t), 1). Hence by the equation

(198) for a 2-chain Γ associated with ξ, we see that the whole rectangle in (197)
commutes. Since evt, evρ(t) are isomorphisms by Definition 8.9, all squares in (197)
commute. "

Then we will define a G̃-linearization on O(T ′)an .

Definition 9.7. Let ρ̃ = (ρ, ζ) ∈ G̃. We define a morphism Υρ̃ : O(T ′)an →
(ρ−1)∗O(T ′)an as follows. Let U be an open subset of (T ′)an in the classical topology.

Υρ : O(T ′)an(U) O(T ′)an(ρ(U)) (ρ−1)∗O(T ′)an(U)

ϕ (ρ−1)" (χ̃(ρ̃) · ϕ)

∈ ∈ (199)

Then {Υρ̃}ρ̃∈G̃ satisfies the cocycle condition. In other words, the following diagram

commutes for ρ̃, ρ̃′ ∈ G̃.

O(T ′)an (ρ−1)∗O(T ′)an

((ρ′ρ)−1)∗O(T ′)an (ρ−1)∗(ρ′)−1
∗ O(T ′)an

Υρ̃′ρ̃

Υρ̃

(ρ−1)∗Υρ̃′ (200)

Proposition 9.8. For ρ̃ ∈ G̃ and an open subset U ⊂ (T ′)an in the classical
topology, we have

Υρ̃(Pω(U)) = Pω(ρ(U)). (201)

Proof. It is enough to show only (⊂) by the cocycle condition. Let ϕ ∈ Pω(U).
Then for ρ(t) ∈ ρ(T ), we have

mρ(t)(Υρ̃(ϕ)) = mρ(t)((ρ
−1)"(χ̃(ρ̃) · ϕ)) = mt(χ̃(ρ̃) · ϕ)

= χ̃(ρ̃)(t) · ϕ(t) ∈ χ̃(ρ̃)(t) ·QPωt = QPωρ(t)
.

(202)

The last equality follows from Proposition 9.6. By Proposition 9.4, Υρ̃(ϕ) ∈
Pω(ρ(U)). "

By the proposition above, the G̃-linearization onO(T ′)an induces a G̃-linearization
on Qω.

Definition 9.9. By Proposition 9.8, Υρ̃ : O(T ′)an → (ρ−1)∗O(T ′)an induces a mor-
phism Qω → (ρ−1)∗Qω. Since ρ(T ◦) = T ◦, we have the following Q-linear map.

Υρ̃ : Qω(T ◦) Qω(T ◦) (203)

By the cocycle condition (200), Υρ̃ defines a G̃-action on the Q-linear space Qω(T ◦).
By Definition 9.7, the following diagram commutes for t ∈ (T ◦)an.

Qω(T ◦) C/QPωt

Qω(T ◦) C/QPωρ(t)

Υρ

mt

χ̃(ρ)(t)

mρ(t)

(204)
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where the right vertical map is induced by (2) of Proposition 9.6.

9.3. Construction of the relative transcendental regulator map Rω. In this
section, we construct the relative transcendental regulator map and show the G̃-
equivariance of Rω. First, we construct an element in Qω(T ◦) corresponding to a
half of the image of ξ1 − ξ0 under the relative transcendental regulator map.

Proposition 9.10. There exists a unique element [L] ∈ Qω(T ◦) such that for
t ∈ T ◦(C),

mt([L]) = [L(t)] (205)

where L(t) ∈ C denotes the value of the local holomorphic function L in Definition
8.10.

Proof. The uniqueness follows from Lemma 9.5. We show the existence. We take an
open cover {Ui}i∈I of (T ◦)an such that L is defined on each Ui. Let Li ∈ O(T ′)an(Ui)
denote a holomorphic function L on Ui. It is enough to glue [Li] ∈ Qω(Ui). By
Proposition 8.10, for each t ∈ Ui ∩ Uj , Li(t) − Lj(t) ∈ QPωt . Then we have
Li − Lj ∈ Pω(Ui ∩ Uj) by Proposition 9.4. Hence we have [Li]|Ui∩Uj = [Lj ]|Ui∩Uj

in Qω(Ui ∩ Uj) and we can check the gluing condition. "
Definition-Proposition 9.11. (Definition of Rω) There exists a unique group
homomorphism

Rω : Ξ Qω(T ◦) (206)

which satisfies the following properties. The map Rω is called the relative transcen-
dental regulator map.

(1) For t ∈ T ◦(C), the following diagram commutes.

Ξ Qω(T ◦)

CH2(Xt, 1) C/Pωt C/QPωt

Rω

i∗t
mt

evt◦r

(207)

where i∗t is the pull-back map in Definition 5.9, r is the transcendental
regulator map in Definition 8.2, evt is the map defined in Definition 8.9,
mt is the map defined in Definition 9.3 and C/Pωt → C/QPωt is the natural
projection.

(2) For ρ̃ ∈ G̃, the following diagram commutes.

Ξ Qω(T ◦)

Ξ Qω(T ◦)

ρ̃∗

Rω

Υρ̃

Rω

(208)

Proof. We will prove that there exists a unique map Rω satisfying the condition
(1) and Rω satisfies (2).

The uniqueness follows from Lemma 9.5. If we defineRω(ξ1−ξ0) = 2[L] where [L]
is the element defined in Proposition 9.10, we can check the commutativity of (207)
for ξ1−ξ0 ∈ Ξ by Proposition 8.10. We can also define Rω(ξ) for each ξ ∈ Ξ so as to
make the diagram (207) commute as follows: By Proposition 5.13, ξ is represented
by a product of (ρ̃−1)"(ψ•) and (ρ̃−1)"(ϕ•). They are on smooth families of curves
over T ◦ and their zeros and poles are also smooth over T ◦. Hence by the similar
method in Section 8, we see that evt(r(ξ)) is represented by the value of the local
holomorphic function as in Proposition 8.10. Hence by the similar argument in
Proposition 9.10, we can define Rω(ξ) ∈ Qω(T ◦). Hence we can check the existence
of the map Rω satisfying the condition (1).
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Next, we will prove that Rω satisfies (2). Consider the following diagram.

Ξ Qω(T ◦)

Ξ Qω(T ◦)

CH2(Xt, 1) C/QPωt

CH2(Xρ(t), 1) C/QPωρ(t)

Rω

i∗t
ρ∗

Υρ

mtRω

mρ(t)

(ρt)∗

evt◦r
χ̃(ρ)(t)

i∗ρ(t)

evρ(t)◦r

(209)

The left side face commutes by the associativity of pull-back maps on higher Chow
groups13 ([Lev98] PartI, Chapter II, 2.1.6). The bottom face commutes by Propo-
sition 9.6 and the right side face commutes by (204) in Definition 9.9. Since the
front and back faces commute by (1), by Lemma 9.5, we see that the upper face
commutes. "

By G̃-equivariance of Rω, we have a G̃-action on Rω(Ξ). Then we have the upper
estimate for rankRω(Ξ). The proof below is simplified by advice from T. Saito.

Proposition 9.12. We have the following.

(1) For ρ̃ ∈ G̃fib, we have Rω(ρ̃∗Ξcan) = Rω(Ξcan).
(2) We have rankRω(Ξ) ≤ 18.
(3) For each t ∈ T ◦(C), rank r(Ξt) ≤ 18.

Proof. By G̃-equivariance of Rω, we have Rω(ρ̃∗Ξcan) = Υρ̃(Rω(Ξcan)). For ρ̃ ∈
G̃fib, we have Υρ̃ = ±1 by definition of Υρ̃. Hence we have (1).

By (1) and Proposition 6.8, Rω(Ξcan) ⊂ Rω(Ξ) is stabilized under the G̃fibĨ-
action. Especially, we have a G̃fibĨ-representation on Rω(Ξcan). Then the following
G̃-equivariant map is induced.

IndG̃
G̃fibĨ

Rω(Ξ
can)−→Rω(Ξ) (210)

where IndG̃
G̃fibĨ

Rω(Ξcan) denotes the induced representation. Since Rω(Ξ) is the

sum of Rω(ρ̃∗Ξcan) for ρ̃ ∈ G̃, the map (210) is surjective. Then we have

rankRω(Ξ) ≤ rank IndG̃
G̃fibĨ

Rω(Ξ
can) = |G̃/G̃fibĨ| · rankRω(Ξcan) ≤ 6 · 3. (211)

Here we use |G̃/G̃fibĨ| = 6 by Proposition 6.12. Hence we have (2). By (2) and the
commutative diagram (207), we have (3). "

9.4. The differential operator D and G̃-actions. In this subsection, we define
a G̃-action on O⊕2

(T ′)an so that D is G̃-equivariant. For this purpose, we prove
transformation formulae of D .

Definition 9.13. Since the local holomorphic functions Pij are annihilated by the

differential operator D : O(T ′)an → O⊕2
(T ′)an in Definition 7.8, Pω ↪→ O(T ′)an

D−→
O⊕2

(T ′)an is the 0-map. Hence the following morphism is induced. This morphism is
also denoted by D .

O(T ′)an O⊕2
(T ′)an

Qω

D

D

(212)

13Note that since ρ̃ ∈ G̃ is an isomorphism, ρ̃∗ = (ρ̃−1)∗.
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Definition 9.14. Let ρ̃ = (ρ, ζ) ∈ G̃. Let U be an open subset of (T ′)an in the
classical topology. We define a morphism Θρ̃ : O⊕2

(T ′an) → (ρ−1)∗O⊕2
(T ′an) as the

following map.

Θρ̃ : O⊕2
(T ′an)(U) O⊕2

(T ′an)(ρ(U)) (ρ−1)∗O⊕2
(T ′an)(U)

(
ϕ1

ϕ2

) (
(ρ−1)"

(
χ̃(ρ̃)χ(1)(ρ)2 · ϕ1

)

(ρ−1)"
(
χ̃(ρ̃)χ(2)(ρ)2 · ϕ2

)

)∈ ∈ (213)

Here χ(1) and χ(2) are the opposite 1-cocycles defined in Definition 4.16. Then
{Υρ̃}ρ∈G̃ satisfies the following cocycle condition for ρ̃, ρ̃′ ∈ G̃.

O⊕2
(T ′)an (ρ−1)∗O⊕2

(T ′)an

((ρ′ρ)−1)∗O⊕2
(T ′)an (ρ−1)∗(ρ′)−1

∗ O⊕2
(T ′)an

Θρ̃′ρ̃

Θρ̃

(ρ−1)∗Θρ̃′ (214)

By the cocycle condition, Θρ̃ : O(T ′)an(T
◦)⊕2 → O(T ′)an(T

◦)⊕2 defines a G̃-action
on O(T ′)an(T

◦)⊕2.

The main purpose of this subsection is to prove the following.

Proposition 9.15. For ρ ∈ G̃, the following diagram commutes.

Qω(T ◦) O(T ′)an(T
◦)⊕2

Qω(T ◦) O(T ′)an(T
◦)⊕2

D

Υρ Θρ

D

(215)

We need some preparation for proving Proposition 9.15. First, we define some
differential operators twisted by G-action.

Definition 9.16. For ρ ∈ G, we define differential operators D
ρ
i for i = 1, 2 as

follows.

D
ρ
1 = a′(1− a′)

∂2

(∂a′)2
+ (1− 2a′)

∂

∂a′
− 1

4

D
ρ
2 = b′(1− b′)

∂2

(∂b′)2
+ (1− 2b′)

∂

∂b′
− 1

4

(216)

where a′ = ρ"(a) and b′ = ρ"(b). Furthermore, we define Dρ = t
(
D
ρ
1 D

ρ
2

)
:

O(T ′)an → O⊕2
(T ′)an . By definition, for ρ ∈ G and a local section ϕ of O(T ′)an , we

have D
ρ

i (ρ
"(ϕ)) = ρ"(Diϕ) for i = 1, 2. Hence the following commutes.

O(T ′)an O(T ′)an

(ρ−1)∗O(T ′)an (ρ−1)∗O(T ′)an

D
ρ

i

(ρ−1)% (ρ−1)%

(ρ−1)∗Di

(217)

We prove transformation formulae for D . Since Di is the “pull-back” of the
hypergeometric differential operator L in Definition 7.4, the following proposition
is a key for the proof of the transformation formulae.
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Proposition 9.17. For τ ∈ H, we define Lτ : O(S′)an → O(S′)an as follows.

Lτ = c′(1− c′)
d2

(dc′)2
+ (1− 2c′)

d

dc′
− 1

4
(218)

where c′ = τ "(c). Then we have the following relation in the ring of differential
operators on (S′)an.

Lτ · φ(τ) = φ(τ)3 · L (219)

Here we regard φ(τ) ∈ A′ as a differential operator by multiplication.

Proof. It is enough to prove the following.

Lτ = φ(τ)3 · L · φ(τ)−1 (220)

To compute the right hand side of (220), we need the explicit description of φ(τ).
By the relation φ0 = sgn · φ2 in Proposition 4.15, we can compute φ(τ) up to ±1.
The result is given by the following Table 6.

Table 6. The opposite 1-cocycle φ

τ0 τ "(c) φ(τ) τ0 τ "(c) φ(τ)

id c ±1 (0 1) 1− c ±1

(1∞) c
c−1 ±

√
−1

√
1− c (0 1∞) 1

1−c ±
√
−1

√
1− c

(0∞) 1
c ±

√
−1

√
c (0∞ 1) c−1

c ±
√
−1

√
c

Thus we will compute L · 1√
c
and L · 1√

1−c
. Using d

dc · c
α = αcα−1 + cα · d

dc , we

have

− (
√
c)3L · 1√

c
= −c2(1− c)

d2

dc2
+ c2

d

dc
− 1

4

− (
√
1− c)3L · 1√

1− c
= −c(1− c)2

d2

dc2
− (1− c)2

d

dc
− 1

4

(221)

We will compute the left hand side of (220). Note that Lτ is determined by the
image of τ in H0 since τ "(c) depends only on the image of τ in H0. Hence it is
enough to check (220) for six elements inH0. For example, we will check τ0 = (1∞)
case. In this case, c′ = c

c−1 , hence we have

d

dc′
=

dc

dc′
· d

dc
= − 1

(c′ − 1)2
· d

dc
= −(c− 1)2 · d

dc

d2

(dc′)2
=

(
−(c− 1)2 · d

dc

)2

= (c− 1)4
d2

dc2
+ 2(c− 1)3

d

dc
.

(222)

By substituting c′, d
dc′ ,

d2

(dc′)2 in (218) by the above differential operators, we get

Lτ = −c(1− c)2
d

dc2
− (1− c)2

d

dc
− 1

4
(223)

By the similar calculation, we get Table 7 and confirm (220) holds. "
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Table 7. The differential operator Lτ

τ0 Lτ

id
c(1− c)

d2

dc2
+ (1− 2c)

d

dc
− 1

4(0 1)

(1∞)
−c(1− c)2

d2

dc2
− (1− c)2

d

dc
− 1

4(0 1∞)

(0∞)
−c2(1− c)

d2

dc2
+ c2

d

dc
− 1

4(0∞ 1)

Then we get the transformation formulae for Di.

Proposition 9.18. For ρ̃ = (ρ, ζ) ∈ G̃, we have the following relations in the ring
of differential operators on (T ′)an.

D
ρ
1 · χ̃(ρ̃) = χ̃(ρ̃)χ(1)(ρ)2 · D1

D
ρ
2 · χ̃(ρ̃) = χ̃(ρ̃)χ(2)(ρ)2 · D2

(224)

where we regard χ̃(ρ̃),χ(1)(ρ),χ(2)(ρ) as differential operators by multiplication.

Proof. By Definition 4.16 and Definition 4.18, we have

χ̃(ρ̃) = s̃gn(ρ̃) · χ(1)(ρ) · χ(2)(ρ) = ζ · pr"1(φ(ρ(1))) · pr
"
2(φ(ρ

(2))). (225)

For any section ϕ ∈ O(S′)an ,
∂
∂a (pr

"
2(ϕ)) = 0 by definition. Hence ζ · pr"2(φ(ρ(2)))

commutes with D
ρ
1 . Furthermore, by Proposition 9.17, we have the following rela-

tion in the ring of differential operators.

D
ρ
1 · pr"1(φ(ρ(1))) = pr"1(φ(ρ

(1))3) · D1 (226)

Since χ(1) = pr"1(φ), we have D
ρ
1 · χ̃(ρ̃) = χ̃(ρ̃)χ(1)(ρ)2 · D1. We can prove D2 case

similarly. "

Finally, we can prove the G̃-equivariance of D .

Proof. (Proposition 9.15) For ρ̃ = (ρ, ζ) ∈ G̃ and i = 1, 2, the following diagram
commutes by Proposition 9.18 and (217) in Definition 9.16.

O(T ′)an O(T ′)an (ρ−1)∗O(T ′)an

O(T ′)an O(T ′)an (ρ−1)∗O(T ′)an

χ̃(ρ̃)

Di

(ρ−1)%

D
ρ

i
(ρ−1)∗Di

χ̃(ρ̃)χ(i)(ρ)2 (ρ−1)%

(227)

Hence we see that the whole rectangle of the following diagram commutes.

O(T ′)an Qω O⊕2
(T ′)an

(ρ−1)∗O(T ′)an (ρ−1)∗Qω (ρ−1)∗O⊕2
(T ′)an

Υρ̃

D

Υρ̃ Θρ̃

(ρ−1)∗D

(228)

Since O(T ′)an → Qω is an epimorphism and the left square commutes by definition,
the right square commutes. By taking global section at T ◦, we have the result. "
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9.5. The proof of the main theorem. Finally, we prove the main theorem by
describing the image of D ◦Rω(Ξ) explicitly.

Proposition 9.19. Let Rω : Ξcan → Qω(T ◦) be the relative transcendental regula-
tor map in Definition 9.11. For ξ0, ξ1, ξ∞ ∈ Ξcan, we have

D◦Rω(ξ0) =
2

a− b

(
1

−1

)
,D◦Rω(ξ1) =

2

a− b





√
1−b√
1−a

−
√
1−a√
1−b



 ,D◦Rω(ξ∞) =
2

a− b





√
b√
a

−
√
a√
b





(229)

Proof. By Proposition 8.10, we have

D ◦Rω(ξ1 − ξ0) = D(2[L]) = 2

a− b





√
1−b√
1−a

− 1

1−
√
1−a√
1−b



 (230)

where [L] ∈ Qω(T ◦) is the element defined in Proposition 9.11. Let ρ̃a, ρ̃b ∈ Ĩ be
elements defined in Example 6.9. By Proposition 9.11 and Proposition 9.15, D ◦Rω
is equivariant to G̃-actions. By the cocycle computation in Example 6.9, we have

D ◦Rω(ξ0 + ξ1) = D ◦Rω(ρ̃a∗(ξ1 − ξ0)) =
2

a− b




1 +

√
1−b√
1−a

−1−
√
1−a√
1−b





D ◦Rω(ξ0 − ξ∞) = D ◦Rω(ρ̃b∗(ξ1 − ξ0)) =
2

(1− a)− (1− b)





√
b√
a
− 1

1−
√
a√
b





(231)

From (230) and (231), we can deduce the result. "
Finally, we can prove the main result. The proof of Theorem 9.20 below is

simplified by advice from T. Terasoma.

Theorem 9.20. Let Ξ ⊂ CH2(X ◦, 1) be the higher Chow subgroup defined in Defi-
nition 5.11 and Ξt ⊂ CH2(Xt, 1) be the restriction of Ξ at the fiber over t ∈ T ◦(C).

(1) Let Rω : Ξ → Qω(T ◦) be the relative transcendental regulator map defined
in Definition 9.11. Then we have

rankRω(Ξ) = 18. (232)

(2) Let r : CH2(Xt, 1) → H2,0(Xt)∨/H2(Xt,Z) be the transcendental regulator
map. Then we have

rank r(Ξt) = 18 (233)

for very general t ∈ T ◦(C). Especially, we have the following inequality for
very general t ∈ T ◦(C).

rank CH2(Xt, 1)ind ≥ 18 (234)

Proof. (1) Since D : Qω(T ◦) → O(T ′)an(T
◦)⊕2 is Q-linear, it is enough to show

rank D ◦Rω(Ξ) ≥ 18 because we already know rank D ◦Rω(Ξ) ≤ 18 by Proposition
9.12. Since Ξ is the sum of ρ̃∗Ξcan, D ◦Rω(Ξ) is generated by

D ◦Rω(ρ̃∗Ξcan) = Θρ̃ (D ◦Rω(Ξcan)) (ρ̃ ∈ G̃). (235)

Here we use G̃-equivariance of D ◦Rω. Since Ξcan is generated by ξ0, ξ1 and ξ∞,

Θρ̃ (D ◦Rω(ξ0)) , Θρ̃ (D ◦Rω(ξ1)) , Θρ̃ (D ◦Rω(ξ∞)) (236)

are generators of (235). By the definition of Θρ̃ and Proposition 9.19, we can

calculate (236) for each ρ̃ ∈ G̃. Since G̃fibĨ stabilize Rω(Ξcan), it is enough to
calculate (236) for six representatives of G̃/G̃fibĨ. By Proposition 6.12, if we take
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lifts of (id, id), (id, (01)), (id, (1∞)), (id, (01∞)), (id, (0∞)) and (id, (0∞1)) ∈ G0

by G̃ → G0, they become a complete system of representatives for G̃/G̃fibĨ. Then
we calculate (236) for these lifts, we get the following Table 8.

Table 8. The generators of the image of Ξ under D ◦Rω

The image in G0 generators of Θρ̃ (D ◦Rω(Ξ
can))

(id, id)
2

a− b




1

−1



 ,
2

a− b





√
1− b√
1− a

−
√
1− a√
1− b



 ,
2

a− b





√
b√
a

−
√
a√
b





(id, (0 1))
2
√
−1

a+ b− 1




1

−1



,
2
√
−1

a+ b− 1





√
b√

1− a

−
√
1− a√
b



,
2
√
−1

a+ b− 1





√
1− b√
a

−
√
a√

1− b





(id, (1∞))
2

ab− a− b





√
1− b

1√
1− b



,
2

ab− a− b





1√
1− a

√
1− a



 ,
2
√
−1

ab− a− b





√
b√
a

−
√
a√
b





(id, (0 1∞))
2
√
−1

ab− b+ 1





√
b

1√
b



,
2
√
−1

ab− b+ 1





1√
1− a

√
1− a



,
2

ab− b+ 1





√
1− b√
a

−
√
a√

1− b





(id, (0∞))
2

ab− 1





√
b

1√
b



 ,
2
√
−1

ab− 1





√
1− b√
1− a

−
√
1− a√
1− b



 ,
2

ab− 1





1√
a

√
a





(id, (0∞ 1))
2
√
−1

a− ab− 1





√
1− b

1√
1− b



,
2

a− ab− 1





√
b√

1− a

−
√
1− a√
b



 ,
2
√
−1

a− ab− 1





1√
a

√
a





It is enough to show that the vectors in Table 8 are linearly independent over
Q. It is enough to show that the first component of these vectors are linearly
independent over C. Note that the first component of these vectors are written in
the form of

c · F1 · F2 (237)

where c ∈ {±2,±2
√
−1}, F1 is either

1

a− b
,

1

a+ b− 1
,

1

ab− a− b
,

1

ab− b+ 1
,

1

ab− 1
or

1

a− ab− 1
∈ Frac(B) (238)

and F2 is either

1,

√
b√
a
,

√
1− b√
1− a

,

√
1− b√
a

,

√
b√

1− a
,

1√
1− a

,
√
1− b,

1√
a
or

√
b ∈ Frac(B′). (239)
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Since elements in (238) are linearly independent over C and elements in (239) are
linearly independent over Frac(B), their products are linearly independent over C.
Hence we have the result.

(2) By Lemma 9.5, we have rankmt(Rω(Ξ)) = 18 for very general t ∈ T ◦(C).
By the definition of relative transcendental regulator map, we see that rank evt ◦
r(Ξt) = 18 in this case. Since evt is an isomorphism, we have rank r(Ξt) = 18 for
very general t ∈ T ◦(C). The statement about indecomposable part follows from
Proposition 8.2. "

Appendix A. Decomposable cycles in higher Chow group

In this section, we assume X is a smooth variety over a field k. We define a
subgroup CHp(X, q)dec ⊂ CHp(X, q) called decomposable part.

Definition A.1. For p, p′, q, q′ ≥ 0, there exists a bilinear map

CHp(X, q)× CHp′
(X, q′)−→ CHp+p′

(X, q + q′) (240)

called the intersection product. The intersection product is the composition of
the external product CHp(X, q) × CHp′

(X, q′) → CHp+p′
(X ×k X, q + q′) and the

pull-back by the diagonal embedding X → X ×k X.
For p, q ≥ 0, we define a subgroup CHp(X, q)dec ⊂ CHp(X, q) by

CHp(X, q)dec =
∑

s,t

Im
(
CHs(X, t)⊗Z CHp−s(X, q − t) → CHp(X, q)

)
(241)

where (s, t) runs over 0 ≤ s ≤ p, 0 ≤ t ≤ q except (s, t) = (0, 0), (p, q) and
CHs(X, t)⊗Z CH

p−s(X, q− t) → CHp(X, q) is the map induced by the intersection
product. Elements in CHp(X, q)dec are called decomposable cycles. We define

CHp(X, q)ind = CHp(X, q)/CHp(X, q)dec. (242)

We describe the decomposable part of CH2(X, 1). Recall that an element of

CH2(X, 1) is represented by an element in Ker
(⊕

Z∈X(1) R(Z)×
div−−→

⊕
p∈X(2) Z · p

)

as in Proposition 5.1.

Proposition A.2. An element of CH2(X, 1)dec can be represented by
∑
λ(Yλ, cλ) ∈⊕

Z∈X(1) R(Z)× such that cλ ∈ Γ(X,O×
X).

Proof. Since CH0(X, 1) = 0, CH2(X, 1)dec is the image of the map

CH1(X, 1)⊗Z CH1(X, 0)−→ CH2(X, 1) (243)

By [GL01] Section 8, the external product CH1(X, 1)×CH1(X) → CH2(X×kX, 1)
is induced by the following map.

Z1(X, 1)× Z1(X) Z2(X ×k X, 1); ([V ], [W ]) [V ×k W ] (244)

where V ⊂ X×k ∆1 (∆1 = Spec k[T0, T1]/(T0+T1−1)),W ⊂ X are integral closed
subschemes of codimension 1 and [V ], [W ], [V ×k W ] denote the cycles correspond-
ing to V,W, V ×k W . Recall that we regard elements in Γ(X,O×

X) as cycles in
Z1(X, 1) by considering their graphs. Hence we can check that the external prod-
uct of the graph of c ∈ Γ(X,O×

X) and an integral codimension 1-cycle V intersects
properly with the image of the diagonal embedding in Z2(X ×k X, 1). Moreover
their intersection is the graph of c on V . Hence we have the result. "
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