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ABSTRACT 

In the contemporary built environment, a significant proportion of building structures, 

particularly Reinforced Concrete (RC) frame buildings, face substantial seismic risk, primarily 

attributed to substandard construction techniques and non-uniform constituent elements. These 

non-engineered structures lack durability and resilience due to the absence of essential 

elements such as sufficient capacity, ductile detailing, and construction quality. To understand 

the structural status of these buildings and mitigate seismic risk, numerical modeling is 

essential. 

Different numerical techniques, the finite element method (FEM) and discrete element methods 

(DEM) etc., have demonstrated their efficacy in offering precise numerical modeling. However, 

constructing numerical models involves uncertainties and assumptions. To validate the results, 

researchers rely on non-destructive measurements and compare them with the numerical data. 

Model update approaches, which modify unknown factors, have been introduced to reduce 

discrepancies between experimental and numerical dynamic characteristics. 

Operational modal analysis techniques like frequency domain decomposition (FDD) or 

stochastic subspace identification (SSI) can extract mode shapes and modal frequencies from 

ambient vibration measurements, providing valuable inputs for model updating. Despite the 

abundance of research on finite element (FE) model updating, there is limited research on 

model updating for low to mid-rise RC buildings with relatively higher stiffness due to infill 

masonry. Additionally, the Applied Element Method (AEM) proves to be an accurate approach 

for monitoring structure response but lacks existing numerical model updating techniques. 

The thesis aims to address this research gap by exploring numerical model updating technique 

for low to mid-rise RC buildings, particularly those analyzed using the Applied Element 

Method, providing insights to enhance seismic resilience and safety in the face of actual 
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disasters. There are four specific objectives of this research. The first objective is to develop a 

least square problem for model updating, tailored to these types of structures. The second 

objective involves integrating the model updating methodology into 3D AEM numerical 

modeling. The third objective focuses on enhancing the computational efficiency of the 3D 

AEM tool. Finally, the research aims to perform a seismic vulnerability assessment of an 

existing building using vibration data, which will help in evaluating its susceptibility to seismic 

events. 

In this research, first, a least square problem for model updating which is suitable for low to 

mid rise buildings having limited number of operational modal data and limited measurements 

is developed. The least square problem is formulated calculating the relative residual vector of 

experimentally measured modal properties and analytical modal properties. The analytical 

modal properties are calculated using the initial guess of updating parameters for the model 

updating which is material properties (Young’s Modulus/ stiffnesses) for the numerical model 

of the structure. Using the formulated least square problem as the objective function for the 

minimization problem, the problem is solved to get the optimum value of updating parameters 

using Levenberg-Marquardt algorithm. Initially, the model updating implementation is 

examined for generalized shear frames with various scenarios involving limited measured 

degree of freedoms (DOFs) and the no. of modes used for model updating, evaluating the 

accuracy of stiffness updates for structural systems. From this implementation it is understood 

that, obtaining higher modes in structural analysis becomes challenging and leads to spurious 

results with increased damping, causing inaccuracies in updating the model. However, it is 

feasible to update the structural model using a limited number of measured degrees of freedom 

(DOFs) and modes in operational modal analysis. While frequency parameters can be obtained 

relatively accurately, mode shape parameters are less precise. In the presence of spurious 
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modes, giving higher weightage to the residual involving eigenvalues is recommended in the 

model updating process. 

Subsequently, the method is tested on a 3-storey scaled experiment model of a steel frame with 

bolt-connected joints, inducing damage in different locations by loosening the bolting 

condition. Ambient vibration measurements are taken in one direction on each floor level, and 

operational modes and frequencies are obtained using frequency domain decomposition. 

Through model updating, the storey stiffness of the experiment model is accurately determined, 

enabling identification of the damage caused by loosening bolts at each storey level. 

Comparisons between the modal properties of the updated structure and the experimental 

modal properties validate the accuracy of the model updating process. 

One of the objectives of this research is to model real existing structure in 3D AEM. So, it was 

necessary to improve the current solvers and storage systems used in 3D AEM. With the 

comparison of different solvers and storage system, parallel direct sparse solver (PARDISO) 

with triplet storage format using multiple thread of CPU is identified to be the most efficient 

one and is implemented in 3D AEM.   

In the next phase, a four-storey reinforced concrete (RC) frame building representing typical 

buildings in Nepal is utilized for implementing the model updating methodology. Synthetic 

data of experimental operational mode shapes and frequencies are obtained by applying 

frequency domain decomposition to the response of the structure subjected to white noise using 

actual material properties. The 3D AEM is employed to model the structure with unknown 

stiffnesses, categorized into three groups: beam/slab, column, and infill wall properties, which 

serve as the updating parameters. The ARPACK-Arnoldi package integrated in 3D AEM is 

utilized to obtain analytical modal properties, and the least square problem is formulated based 

on the residual of experimental and analytical modal properties. The Levenberg-Marquardt 
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algorithm is applied to minimize the problem and obtain the updating parameters. Comparisons 

between the Young’s Modulus and modal parameters of the updated structure with the assumed 

values validate the successful implementation of the model updating in 3D AEM, confirming 

that acceptable error margins can be achieved through this approach. 

Next, static and dynamic analysis of the updated numerical model is performed to understand 

the seismic vulnerability of the structure using 3D AEM. The quantification of the overall 

damage and local damages are studied successfully in performance criteria based on interstorey 

drift, frequency degradation and deformation of the structure. The static pushover analysis of 

the case study structure indicates soft storey behavior, with displacement concentration on the 

ground floor. This is evident from the higher inter-storey drift ratio on the ground floor 

compared to upper floors. Failure patterns observed include in-plane shear cracks, on-plane 

failure of masonry walls, and tensile failure at beam column joints. The frequency degradation 

curve shows a reduction in stiffness with increasing lateral displacement. The incremental 

dynamic analysis of the updated 3D AEM model for various ground motions enhances our 

understanding of the building's seismic performance, providing valuable information on 

deformation, damage level, and failure mechanisms. These insights can be utilized to optimize 

the design of structures and improve earthquake resistance. 

Finally, the method is then applied to real existing building structures using ambient vibration 

data measured from the field and analyzed in 3D AEM. The Young’s Modulus (stiffnesses) of 

the structure is considered unknown and assigned random initial values. The elements are 

grouped into 11 different groups, including floorwise beams/slabs, columns, shear walls, and 

infill walls, serving as the updating parameters. Comparisons between the Young’s Modulus 

(stiffnesses) and modal parameters of the updated structure with the actual assumptions 

validate the successful implementation of the model updating in 3D AEM. The study 
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demonstrates that accurate numerical model updating in 3D AEM is achievable with a limited 

number of operational modes obtained from the field, but the accuracy heavily depends on the 

initial guess of the updating parameters. The updated structure is then performed non-linear 

analysis using static pushover analysis to understand the capacity and performance of the 

structure. 

In conclusion, the least square problem for model updating which is suitable for low to mid 

rise buildings having limited number of operational modal data and limited measurements is 

developed and successfully tested for the generalized frame structures. Next, the model 

updating methodology is successfully integrated in 3D AEM numerical modelling. It is now 

possible to perform the parameters update for the numerical model for real existing buildings. 

Also, the computational efficiency of 3D AEM tool is significantly improved with the use of 

parallelized direct solver (PARDISO), and it is used for performing seismic vulnerability 

assessment of the real existing building using vibration data using both dynamic and static 

analysis methods successfully.   
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Chapter 1: Introduction 

1.1 Background and Motivation 

Earthquakes pose a significant risk when combined with substandard built environments, 

potentially resulting in substantial damage if buildings are unable to withstand the forces 

generated by seismic events. In the contemporary built environment, a significant proportion 

of building structures face substantial seismic risk, primarily attributed to substandard 

construction techniques and non-uniform constituent elements. In recent years, urban and 

semiurban areas of Indian sub-continent have witnessed rapid growth, with the prevalence of 

reinforced concrete with masonry infill (RC) buildings increasingly becoming the norm in 

these regions. One illustrative instance pertains to The National Population and Housing 

Census (CBS 2012) of Nepal, wherein it has been documented that an estimated more than 500 

thousand structures have been classified as reinforced concrete constructions, ranging in height 

from three to five stories (Figure 1-1) [1]. Over the past few decades, the construction of RC 

buildings has significantly increased displacing the traditional construction materials, however 

most of these buildings are non-engineered structures built by untrained masons and owners, 

lacking adequate capacity, ductile detailing, and construction quality, which significantly limits 

their durability and resilience [2]. As these buildings are located in seismically very active 

region, huge damages in these structures have been observed in recent earthquakes (Figure 1-2). 

In summary, the real world contains a significant number of large buildings situated in regions 

prone to earthquakes, constructed with subpar practices and varying material properties. These 

buildings undergo multiple changes over time after their construction. Simulating these 

scenarios in numerical model to study real-world engineering issues can be quite difficult. 

Nevertheless, it is imperative to understand the structural state of these buildings to reduce 

earthquake risk prior to any potential disasters occur. 
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Figure 1-1: Low to Mid Rise Buildings in Nepal (Photo Courtesy: K. Timsina) 

 

Figure 1-2 : Building Damage in Gorkha Earthquake 2015 (Photo Courtesy: NSET, Nepal) 
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Figure 1-3 : Conceptual representation of the motivation for the research 

To facilitate this process, real-world structures are typically transformed into a theoretical 

realm that allows for easy replication of their behaviour. This entails defining the problems 

with respect to structural capacities, geometric and material characteristics. Accurately 

replicating these diverse parameters of real-world structures within an analytical numerical 

model is necessary to achieve a comprehensive understanding of their behaviour in the face of 

actual disasters. The motivation of this research is to bridge the gap between real world and 

theoretical world by improving the capacity of understanding the characteristics of the real 

world structures through numerical modelling and vibration data with good ability, accuracy, 

efficiency and applicability, such that the developed model and numerical tool can be utilized 

by structural consultants and policy makers for earthquake risk reduction (Figure 1-3).  

1.2 Review of Existing Literatures 

1.2.1 Identification of Material Properties 

The three most crucial factors to consider when evaluating a building's state, damage, 

vulnerability, remaining capacity, and post-earthquake safety are its structural, geometric, and 



 

20 

 

material properties. The degree to which the material and geometric properties of the structure 

are predicted or estimated has a significant impact on the accuracy, precision, and practical 

application of the model. The available drawings/design papers, as well as actual measurements, 

can be used to determine the structural and geometrical characteristics of the buildings. On 

contrary, the identification of the material properties has several uncertainties. Theoretically, 

the idealised concrete is assumed to be homogenous and isotropic, however an actual site 

situation may be different. It becomes more complicated generally as a result of environmental 

factors, ageing, and degeneration with time. Since most structures are not engineered and are 

built incorrectly with numerous human faults, it is impossible to estimate material properties 

using any engineering judgement based on expert opinion. So, there is a challenge to estimate 

the material properties accurately for the numerical modelling. 

To determine the material properties, there are various non-destructive tests available, 

including the Schmidt Hammer test and ultrasonic pulse velocity (UPV). However, the existing 

structures we are working with are generally not engineered, with non-uniform material 

distribution throughout the structure, making it impossible to achieve a high accuracy using 

these methods. The precision of the used instruments and their calibration also significantly 

affects the accuracy of the results [3],[4],[5]. 

There are existing studies on expert based properties identification, in which assessment is 

done using different numerical approaches and properties are estimated with certain sets of 

assumptions [6],[7].  There are some researches, in which, parametric analyses are used to 

account for uncertainties by randomising the inputs and changing the parameters [8],[9], [10]. 

With conversation to building owners, masons, or contractors, some studies take into account 

the building's initial properties[11].  
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There are several vibration-based methods available to determine material characteristics. 

Numerous studies have been done to identify the material properties for bridges and detect 

deterioration using vibration based methods [12], [13] and also in the structural health 

monitoring of tall buildings with good reliability[14], [15],[16]. Ambient vibration 

measurements can provide operational modal data in terms of frequencies, and mode shapes 

which are frequently utilised as experimental inputs to forecast unknown physical parameters. 

Mode shapes represent the spatial distribution of vibration within a structure for each mode of 

vibration, while modal frequencies represent the natural frequencies at which a structure 

vibrates. It is feasible to derive frequencies and mode shapes from ambient vibration data by 

applying operational modal analysis techniques like stochastic subspace identification (SSI) 

and frequency domain decomposition (FDD) [17], [18]. The modes identified by operational 

modal analysis, however, are not scaled mode shapes. We are working with existing, generally 

stiffer low- to mid-rise buildings. The higher modes and modal characteristics of these 

structures is highly difficult to obtain. Without knowledge of the higher modes, it is challenging 

to determine the precise material characteristics.  

1.2.2 Model Updating Methods 

There are many numerical methods like finite element method (FEM)[19], discrete element 

methods (DEM)[20] etc. can provide good outcome for the problems with accurate numerical 

modelling. The constitution of numerical models entails numerous uncertainties and 

assumptions. To verify the experimental results, researchers usually conduct non-destructive 

measurements and compare them with the numerical data. Model update approaches have been 

introduced, wherein unknown factors including material properties, and other physical 

parameters are modified, to reduce disparities between experimental and numerical dynamic 

characteristics.  
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Model updating entails changing a numerical model of a structure such that its behaviour 

matches experimental observations. This is a widely employed technique for assessing 

structural performance. Mottershead and Friswell  [15], [21] and Marwala [22] conducted a 

study of the various finite element (FE) model update strategies. Two common approaches to 

model updating are direct and indirect (iterative) methods (Figure 1-4). 

 

Figure 1-4: Model-Updating Methods 

Modal properties of the structure are used in direct methods for model updating. They are 

regarded as precise and efficient techniques. Some of the existing direct model updating 

techniques are the eigen structure-assignment [23], optimal-matrix, error-matrix [21], matrix 

update [24] method. Direct approaches have several drawbacks that make them unreliable, 

even though they are precise and effective [22]. Direct methods assume that the mathematical 

model completely encompasses the fundamental physics of the issue at hand. However, this 

presumption is frequently challenging to meet and does not consider the impact of 

measurement inaccuracies or fluctuations in observed responses [25]. Due to the 

aforementioned challenges, direct methods are unsuitable for the purpose of material properties 
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identification. However, alternative iterative and indirect approaches exist to tackle these issues 

effectively. 

To start with, sensitivity-based techniques involve the analysis of measured responses as 

deviations from the responses of the initial numerical model of the structure, and the 

optimization objective function is defined through the use of an error minimization function 

approach, as described in scholarly literature approach [22],[21]. The underlying assumption 

of this approach is that the measured responses should closely resemble the computed data 

obtained from the numerical model. Hence, sensitivity-based approaches are more appropriate 

when dealing with the structures where the alterations in the actual structure are relatively 

minor in magnitude. Notable examples of research utilizing sensitivity-based methods include 

the study of Yu et al.[26] and Sarvi et al. [27]. 

Next, the Response Surface Method (RSM) is a statistical technique used to establish 

relationships between predetermined design variables and their corresponding responses, 

represented as polynomial functions. Through this method, the optimal response can be 

determined by minimizing the variation between the initial model and the actual measured 

responses. [22], [28], [29].  Owing to its computational efficiency and applicability, RSM has 

found widespread usage in model updating applications as evidenced in [28],[29]. However, 

the statistical approximations employed by RSM cannot accurately identify the location-wise 

properties [22] and application to large-scale structures warrants further research [29]. 

Another one, the Bayesian model-updating technique uses Bayes' theorem. The probability 

distribution of the model is reflected by employing the database set with similar distribution 

[22]. Monte Carlo approaches are commonly employed to solve Bayesian methods. The 

outcome of the Bayesian methods is generally accurate without overfitting and simple to 

execute [30]. The damage identification problems are generally solved using the Bayesian–
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model updating. This technique has been successfully applied for damage detection in steel 

structure [31] and RC bridges [32]. However, the Bayesian model updating methods have 

certain complexities in solving the integrals resulting high computationally expensive. 

Furthermore, it is essential to possess prior information about the distributions of the variables 

to be updated beforehand [22],[30]. 

Since changing structural parameters to improve the matching between the numerical model 

and the real structure is essentially an optimisation problem, computational-intelligence 

techniques are being used more and more for model-updating[22]. This is particularly 

appealing given the uncertainties involved in updating these parameters. Computational 

intelligence techniques can generally be classified into two types: machine learning (ML) and 

evolutionary algorithms (EA). For instance, Fei et al. [33] employed artificial neural network 

(ANN) models to update using frequency-response for the beam-elements. In another research, 

ANN is used to update a frame model with frequency data [34]. 

Evolutionary Algorithms (EAs) are a class of optimization algorithms inspired by the process 

of natural selection and evolution. They are commonly used for solving complex optimization 

problems, including model updating and parameter estimation tasks. These algorithms are 

better for the large structure with high damage as it does not require gradient calculation for 

objective function [35],[36]. 

Numerous studies in the literature delve into FEM and measurement of ambient-vibration and 

model updating for masonry constructions [37], [38],[39], precast structures [40], steel 

structures [41], [42], and buildings [43], [44], [45]. Moreover, for the buildings, Weber et. al. 

[46] used forced-vibration data in sensitivity-based model-updating for a two storey RC frame 

building. Similarly, Shiradhonkar and Shrikhande [47], applied the sensitivity method with 

Tikhonov regularization for updating the parameters of 7 storey 2D RC frame model. Akhlaghi 
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et.al. [48] uses ambient-vibration data in Bayesian model-updating of a four-story infilled RC 

frame building with damage. Besides these, there are very limited research model updating of 

the low to mid rise (3-7 stories) Reinforced Concrete (RC) buildings with relatively higher 

stiffness due to infill masonry, in which only limited no. of modal properties can be obtained 

from ambient vibration although there are plenty of research on FE model updating in recent 

years.  

1.2.3 Numerical Analysis Tools  

Earthquakes cause a variety of damages to buildings and civil infrastructure. One of the most 

significant areas of research is structural collapse as it causes severe damage in the structures 

and also causes human casualties.  To study the structural behaviour there are many existing 

methodologies. Due to limitation in the depiction of fractures and separation in the elements, 

methods based on the assumption that the material is continuous, such as Finite Element 

Method (FEM) [49], are unable to execute the collapse analysis accurately[50]. The Extended 

Distinct Element Method (EDEM) and the Distinct Element Method (DEM), which use 

discrete elements to represent structures, may track the behaviour of a structure collapsing, 

although they are less precise than FEM before cracking [51],[52].  However, Applied Element 

Method (AEM) represents a precise and effective approach for monitoring the behaviour from 

the zero loading until the point of ultimate failure, encompassing crack propagation and 

separation of structural components. This approach offers reliable accuracy and ease of use in 

terms of material-modelling in a reasonable timeframe [53].  Even though, AEM has the edge 

over FEM for collapse analysis, the numerical model updating for the AEM model is non-

existence.  

The forthcoming obstacle in the domain of numerical analysis tools pertains to the aspect of 

computational efficiency. Specifically, the Applied Element Method (AEM) encounters a 



 

26 

 

noteworthy challenge in its ability to conduct expeditious simulations for the large-scale 

structural problems with the large no. of elements. The computational efficiency result in 

lengthy simulation times due to the limitation of the existing solvers integrated in the AEM 

tool hindering engineers from exploring complex design and conducting multiple iterations.  

1.3 Problem Statement 

The current methods of Operational Modal Analysis (OMA) have limitations when it comes to 

capturing the full range of modes in low to mid-rise buildings and hence resulting less accuracy 

in model updating. To overcome this, optimization schemes are necessary to increase the 

accuracy and effectiveness of the analysis. Furthermore, performing model-updating using 

OMA does not provide scaled mode shapes, so a different formulation is required to obtain 

more accurate results. Next, numerical modelling of non-engineered or non-uniform 

components is essential, and it requires a powerful tool with a large number of elements, such 

as high-performance computing for Applied Element Method.  

1.4 Research Objectives and Expected Outcomes 

The objective of the research is to develop a model updating method with the ability to perform 

realistic numerical modelling in 3D AEM accurately and efficiently. 

The specific objective of the research can be explained as following:  

 Develop a least square problem for model updating which is suitable for low to mid rise 

buildings having limited number of operational modal data and limited measurements. 

 Integrate model updating methodology in 3D AEM numerical modelling. 

 Improve the computational efficiency of 3D AEM tool. 

 Perform seismic-vulnerability assessment of the real existing building by using vibration 

data. 
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1.5 Proposed Methodology 

This research consists of four distinct stages. Stage 1 focuses on the identification of modal 

parameters, encompassing two sub-stages: Stage 1 (α) involves the determination of analytical 

modal parameters by performing modal analysis on the three-dimensional (3D) Applied 

Element Method (AEM) of the building structure. Stage 1 (β) involves the experimental modal 

parameters identification by analyzing ambient vibration data collected from existing buildings. 

Stage 2 involves the development and implementation of a model updating methodology. This 

methodology addresses the least square problem for model updating, specifically tailored for 

low to mid-rise buildings with limited operational modal data and measurements. It is applied 

to both idealized shear frames and experimental frames. 

Stage 3 entails the integration of the model updating method into the 3D AEM and its 

implementation for the identification of material properties, which serve as input parameters 

for the 3D AEM model. 

Finally, Stage 4 focuses on the 3D AEM modeling and analysis of the updated numerical model. 

The first part of this stage is dedicated to improving the computation efficiency of the solver 

in the 3D AEM tool. While, second part involves conducting seismic vulnerability assessments 

on existing buildings using the updated properties within the 3D AEM framework. 

In summary, the research scope encompasses two parts: the development of a comprehensive 

system for vulnerability assessment using vibration data, comprising Stages 1 (α), 2, 3, and 4; 

and the application of this system to assess the vulnerability of existing buildings using ambient 

vibration data, comprising Stages 1 (β), 2, 3, and 4. 
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Figure 1-5: Flow of the Research 

1.6 Research Significance 

This research holds significant importance in the field of earthquake engineering and structural 

analysis. By aiming to develop a model updating method that can perform realistic numerical 

modelling in 3D AEM (Applied element method) accurately and efficiently, this study 

addresses a crucial need in the field. The development of a least square problem specifically 

tailored for low to mid-rise buildings with limited operational modal data and measurements 

is a significant contribution, as it enables engineers to update structural models effectively even 

when modal data and measurements are limited. The integration of this model updating 

methodology into 3D AEM numerical modelling further enhances the accuracy and reliability 

of seismic response predictions. Additionally, the improvement in computational efficiency of 

the 3D AEM tool has practical implications by reducing the time and computational resources 

required for simulations, making it more accessible for seismic vulnerability assessments. 

Ultimately, the research's significance lies in its potential to advance the field of earthquake 
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engineering by providing an efficient and accurate tool for assessing seismic vulnerability of 

buildings, leading to improved design practices and the creation of safer structures. 

1.7 Organization of Thesis 

The research is organized with seven chapters and the contents of the chapters are summarized 

as following: 

Chapter 1:  Introduction 

This chapter serves as the introduction to the research, encompassing background information 

and problem statements, along with a comprehensive literature review of related previous 

studies, while also defining the research objectives, scope, and framework. The thesis aims to 

develop a model updating method with the ability to perform realistic numerical modeling in 

3D Applied Element Method (AEM) accurately and efficiently, providing insights to enhance 

seismic resilience and safety in the face of actual disasters. There are four specific objectives 

of this research. The first objective is to develop a least square problem for model updating, 

tailored to these types of structures. The second objective involves integrating the model 

updating methodology into 3D AEM numerical modeling. The third objective focuses on 

enhancing the computational efficiency of the 3D AEM tool. Finally, the research aims to 

perform a seismic vulnerability assessment of an existing building using vibration data, which 

will help in evaluating its susceptibility to seismic events. There are total 7 chapters in the 

thesis. 

Chapter 2:  Sensitivity-based model-updating method. 

It discusses development of a least square problem for model updating which is suitable for 

low to mid rise buildings having limited number of operational modal data and limited 

measurements. The least square problem is formulated calculating the relative residual vector 
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of experimentally measured modal properties and analytical modal properties. The analytical 

modal properties are calculated using the initial guess of updating parameters for the model 

updating which is material properties (Young’s Modulus/ stiffnesses) for the numerical model 

of the structure. Using the formulated least square problem as the objective function for the 

minimization problem, the problem is solved to get the optimum value of updating parameters 

using Levenberg-Marquardt algorithm. The model updating implementation is examined for 

generalized shear frames with various scenarios involving limited measured degree of 

freedoms (DOFs) and the no. of modes used for model updating, evaluating the accuracy of 

stiffness updates for structural systems.  

Chapter 3:  Implementation of the sensitivity-based model-updating for an experimental 

model. 

In this chapter, the successful implementation of a model-updating method for an experimental 

model is presented. The objective of this method is to identify storey stiffness and detect 

damage within the model using operational modal data acquired through ambient vibration 

measurements in the laboratory. Through the analysis, it is discovered that changes in storey 

stiffness can provide valuable insights into the extent of damage, specifically the decrease in 

stiffness resulting from the loosening of bolts on a particular floor. This understanding allows 

us to quantify the damage experienced by the structure. The results of this study demonstrate 

the efficacy of the developed model updating method in accurately identifying damage in terms 

of stiffness at different locations within the structure. 

Chapter 4:  3D AEM integration of the sensitivity-base model updating. 

At first, this chapter includes the theoretical explanation of numerical analysis tool 3D AEM, 

and its validation for static and dynamic analysis using experiment results from previous 

research. The objective of this research is to model real existing structure in 3D AEM. So, it is 
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necessary to improve the current solvers and storage systems used in 3D AEM. With the 

comparison of different solvers and storage system, parallel direct sparse solver (PARDISO) 

with triplet storage format using multiple thread of CPU is identified to be the most efficient 

one and is implemented in 3D AEM.   

Furthermore, this chapter discussed the methodology of 3D AEM integration of the sensitivity-

based model updating. A successful implementation of the model updating for the 4 storey RC 

frame building to prepare the 3D AEM model is performed in this chapter. Synthetic data of 

experimental operational mode shapes and frequencies are obtained by applying frequency 

domain decomposition to the response of the structure subjected to white noise using actual 

material properties. The 3D AEM is employed to model the structure with unknown stiffnesses, 

categorized into three groups: beam/slab, column, and infill wall properties, which serve as the 

updating parameters. The ARPACK-Arnoldi package integrated in 3D AEM is utilized to 

obtain analytical modal properties, and the least square problem is formulated based on the 

residual of experimental and analytical modal properties. The Levenberg-Marquardt algorithm 

is applied to minimize the problem and obtain the updating parameters. Comparisons between 

the Young’s Modulus and modal parameters of the updated structure with the assumed values 

validate the successful implementation of the model updating in 3D AEM. 

Chapter 5:  Seismic vulnerability of the updated model structure using 3D AEM 

This chapter is about static and dynamic analysis of the updated numerical model to understand 

the seismic vulnerability of the structure using 3D AEM. The quantification of the overall 

damage and local damages are studied in performance criteria based on interstorey drift, 

frequency degradation and deformation of the structure. 

Chapter 6:  Implementation of the model updating in real structure 
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This chapter discusses the implementation of the model updating in the real building structure 

by using the ambient vibration data measured from the field and perform the analysis in 3D 

AEM. The Young’s Modulus (stiffnesses) of the structure is considered unknown and assigned 

random initial values. The elements are grouped into 11 different groups, including floorwise 

beams/slabs, columns, shear walls, and infill walls, serving as the updating parameters and the 

updated values of the parameters are obtained from the 3D AEM model updating. The updated 

structure is then performed non-linear analysis using static pushover analysis to understand the 

capacity and performance of the structure. 

Chapter 7:  Conclusion and Future Scope 

This chapter is the summary and conclusion part describing the limitation of the study and 

future recommended studies relevant to this research. 
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Chapter 2: Sensitivity-based model updating method 

2.1 Introduction 

The current state of research indicates that there is a gap in the existing research regarding the 

process of updating models of building structures, specially where there are limited numbers 

of unscaled operational measured modes, as well as a restricted number of measured degrees 

of freedom (DOFs). This chapter represents the theoretical foundations of sensitivity-base 

model updating along with its application in idealized shear frames for reinforced concrete 

(RC) structure with limited number of measured modes and limited measurements are tested 

with the model updating method.  

2.2 Theoretical Development 

One of the iterative and indirect methods for model updating is sensitivity-based approaches, 

which involve estimating differences in model parameters based on their impact on the modal 

characteristics of the system. This process relies on gauging the sensitivity of the modal 

properties with respect to adjustments in the model parameters [54].  

Experimentally measured modal properties; frequencies (ω), and mode shapes (Ф) are used as 

input for model updating. These properties are often obtained from ambient-vibration collected 

on structure of interest. Several techniques exist for extracting modal properties from ambient 

vibration data. In this research, the Frequency Domain Decomposition (FDD) approach is 

employed to extract the frequency components and vibration modes from the collected data. 

The FDD method entails acquiring vibration signals, subjecting them to Fast Fourier Transform 

(FFT) processing to obtain the frequency spectrum, and then applying FDD to identify the 

mode shapes. A comprehensive representation of the intricacies of the Frequency Domain 

Decomposition (FDD) method is available in the literature[17].  
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Hereafter, λexp=(ω2) and {Ф}exp are the experimental eigenvalues and mode shape vectors 

respectively. Let us consider, ‘nmodes’ no. of modal parameters is obtained from the 

Frequency Domain Decomposition (FDD) of measurement data. 

The subsequent step involves determining the physical parameters (P) to update in the model 

of the structure. The physical parameters refer to the properties of the structure that can be 

adjusted or modified to better match the real behaviour. These physical parameters may include 

material properties like density, Young's modulus, as well as geometric properties like length, 

width, and thickness of structural elements. The present study involves updating the global 

stiffness matrix[K]global of the structure by adjusting the Young's Modulus (E) of the materials 

utilized in its construction.  

If the values of updating parameters are large, the accumulation of the errors will increase with 

the updating. So, the relative value of the parameters (x) is considered to be updated.  

{𝑥}௝ =
{𝑃௨}௝ − {𝑃଴}

{𝑃଴}
 

(2-1) 

Where, {𝑥}௝  is vector containing relative values of updating parameters in j-th iteration of 

optimization, {𝑃௨}௝is the vector containing values of physical parameters to be updated, and 

{𝑃଴}is vector containing initial guess of physical parameters. 

Let us consider Young’s Modulus (E) to be the updating physical parameter (P). We can 

calculate the stiffness of each dofs based on the value of Young’s Modulus. Based on equation 

(2-1) stiffness value for each degree of freedom (dof) is calculated as: 

{𝐾}௝ = {𝐾଴}(1 + {𝑥}௝) (2-2) 

Where,  {𝐾}௝is vector containing values of stiffness for each dofs, and {𝐾଴}is vector containing 

initial stiffness values for each dofs. The global stiffness matrix [K]g for the numerical model 

is constructed based on these stiffness values. Let us consider, mass [M] to be a known 
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parameter. A generalized eigen value problem [K]g{Ф}=λ[M]{Ф} is solved using ARPACK 

(Arnoldi package) in FORTRAN90[55]. The solution of this generalized eigenvalue problem 

involves finding the eigenvalues λ and the corresponding eigenvectors {Ф} such that the 

equation above is satisfied. ARPACK uses the Arnoldi algorithm to find a few eigenvalues and 

eigenvectors of the generalized eigenvalue problem[55]. First an orthonormal basis for the 

Krylov subspace of [K]g and [M] using the Arnoldi algorithm is constructed. The Krylov 

subspace is defined as: 

Kp = span{b, Kgb, Kg
2b, ..., Kg

(p-1)b}, where b is an initial vector, and p is the order of the 

Krylov subspace. The Arnoldi algorithm then generates a Hessenberg matrix H with respect to 

this basis, which is similar to the generalized eigenvalue problem matrix pair (Kg, M) and has 

the same eigenvalues. The eigenvalues of H are computed using standard techniques, and the 

corresponding eigenvectors are then transformed back into the original basis to obtain the 

generalized eigenvectors of (Kg, M). This method is useful when dealing with large matrices 

where it is computationally expensive to identify all eigenvalues and eigenvectors. The 

eigenvalues and eigenvectors obtained from the analytical analysis solving generalized eigen 

value problem is hereafter denoted by λana and {Ф}ana respectively.  

Next, a relative residual vector which consists of differences between experimental and 

analytical eigen values and mode shape vectors are calculated. A. Teughels [56] has suggested 

to use the relative residual for the eigenvalues to get the similar weightage for the eigenvalue 

residual, as higher eigen value will have higher residual and will impact the optimization 

process.  

𝑟𝑒𝑠(𝜆) =
(ఒ೐ೣ೛)೔ି(ఒೌ೙ೌ(௫))೔

(ఒ೐ೣ೛)೔
, 𝑖 = 1, 𝑛𝑚𝑜𝑑𝑒𝑠                                                                       (2-3) 

Similarly, let us consider ‘m’ no. of measured dofs in the structure. The mode shape vectors 

from the experiment and analytical are normalized with the largest absolute modeshape vector 
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of each mode. The analytical mode shapes vectors are sequenced in the same order of measured 

experimental data, so that the residuals of mode shape correspond to the same dofs.  

(Φ௘௫௣
௡௢௥௠)௜ =

(஍೐ೣ೛)೔

(஍೐ೣ೛)೔,೘ೌೣ
, 𝑖 = 1, 𝑛𝑚𝑜𝑑𝑒𝑠                                                                              (2-4) 

(Φ௔௡௔
௡௢௥௠(𝑥))௜ =

(஍ೌ೙ೌ(௫))೔

(஍ೌ೙ೌ(௫))೔,ೝ
, 𝑖 = 1, 𝑛𝑚𝑜𝑑𝑒𝑠                                                                        (2-5) 

‘r’ is the dof where experiment has maximum amplitude of mode shape vector in the mode 

corresponding mode.  

The residual vector for the modeshape can be written as: 

𝑟𝑒𝑠(Φ) = (Φ௘௫௣
௡௢௥௠)௜ − (Φ௔௡௔

௡௢௥௠(𝑥))௜, 𝑖 = 1, 𝑛𝑚𝑜𝑑𝑒𝑠                                                       (2-6) 

Since, the reference degree of freedom where the mode shape amplitude is maximum in each 

mode is normalized to one. The dimension of the residual vector associated with each mode 

shape decreases by one size for each mode.  

The complete residual vector can be represented as: 

𝑟𝑒𝑠(𝑥) = ൭
𝑟𝑒𝑠(𝜆)

⋮
𝑟𝑒𝑠(Φ)

൱ = ൮

(ఒ೐ೣ೛)೔ି(ఒೌ೙ೌ(௫))೔

(ఒ೐ೣ೛)೔

⋮
(Φ௘௫௣

௡௢௥௠)௜ − (Φ௔௡௔
௡௢௥௠(𝑥))௜

൲ , 𝑖 = 1, 𝑛𝑚𝑜𝑑𝑒𝑠                             (2-7) 

The weightage factor vector of wt(λ) and wt(Ф) is used for controlling the influence of residuals 

in the optimization. 

𝑟𝑒𝑠(𝑥) = ൭
𝑟𝑒𝑠(𝜆). 𝑤𝑡(𝜆)

⋮
𝑟𝑒𝑠(Φ). 𝑤𝑡(Φ)

൱ = ൮

(ఒ೐ೣ೛)೔ି(ఒೌ೙ೌ(௫))೔

(ఒ೐ೣ೛)೔
. 𝑤𝑡(𝜆)

⋮
(Φ௘௫௣

௡௢௥௠)௜ − (Φ௔௡௔
௡௢௥௠(𝑥))௜. 𝑤𝑡(Φ)

൲                                 (2-8) 

A least square problem is formulated based on the residual vectors calculated in equation (2-

8) and the minimization of the least square problem yields the updated value of the parameter 

(x). The objective function for the optimization problem is represented by: 

𝑓(𝑥) = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑥) 𝑓𝑜𝑟 ‖𝑟𝑒𝑠(𝑥)‖ଶ
ଶ 

= ∑ ൬
(ఒ೐ೣ೛)೔ି(ఒೌ೙ೌ(௫))೔

(ఒ೐ೣ೛)೔
. 𝑤𝑡(𝜆)൰

ଶ

+ ቀ൫Φ௘௫௣
௡௢௥௠)௜ − (Φ௔௡௔

௡௢௥௠(𝑥))௜. 𝑤𝑡(Φ)൯ቁ
ଶ

௡೘೚೏೐ೞ
௜ୀଵ              (2-9) 
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There are numerous optimization algorithms to solve the least square problem. Further, 

Levenberg Marquardt Algorithm is used for the optimization[57]. The method works by 

iteratively adjusting the parameters of the function being optimized to minimize the sum of the 

squares of the residuals, which are the differences between the predicted values of the function 

and the actual data points. 

In each iteration, the algorithm evaluates gradient of the objective function and the curvature 

of function, which are used to determine the step size and direction for the parameter update. 

The Levenberg-Marquardt method uses a damping factor to balance the step size between a 

gradient descent step and a Gauss-Newton step to get the optimum value of the updating 

parameter (x) for that iteration. The (j+1)th iteration value of the updating parameter can be 

represented by: 

𝑥(𝑗 + 1) = 𝑥(𝑗) − (∇ଶ𝑓൫𝑥(𝑗)൯ + Λ𝐼) ିଵ∇𝑓(𝑥(𝑗)                                                                  (2-10) 

Where, ∇𝑓൫𝑥(𝑗)൯ = Gradient (sensitivity) of objective function for jth-iteration. 

              ∇ଶ𝑓൫𝑥(𝑗)൯= Curvature of objective function for jth-iteration. 

Λ= Damping factor to switch between gradient descent and Gauss Newtonian method 

The optimization iteration is continued until it converges to the optimum value. 

The updated value of the parameter can be thus obtained by substituting the optimized value 

of x in equation (2-1) or (2-2).  

2.3 Case Studies for Model Updating 

2.3.1 Case Study Properties 

The sensitivity-based model updating is conducted on simplified four storey RC shear frames 

(Figure 2-1). This process involved changing the damping in the frame for 1% and 5%, the 

number of modes considered to be two and three, and the number of measured dofs from some 

to all. The model updating utilizes operational modal data. The storey stiffnesses of the 

structure of each floor are updating parameters. The updating parameters are then compared to 
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theoretically calculated storey stiffnesses. Theoretical storey stiffness and lumped masses of 

the structure are: 

(Lumped Mass)1-4storey: [5.54,4.08, 4.08,2.62] ton 

(Storey Stiffness)1-4storey: [24336.16, 24336.16,20129.21,18960.70] KN/m 

Table 2-1 : Different scenario of case studies 

SN Storeys 
No. of DOF 
Measured No. of Modes Damping 

1 4 4,3,2 2 and 3 1% and 5% 
     

 

         

 
Figure 2-1: Properties of case study frame 

 

2.3.2 Operational Modal Data 

A synthetic ambient vibration data as a response of each floor of the frame with damping 1% 

and 5% is created by applying white-noise of 0.01hz-100hz for 120 seconds with sampling rate 

of 100hz (Figure 2-2). The operational modal frequency and modeshape data for the frame is 

extracted using of the Frequency Domain Decomposition (FDD) of the ambient vibration data 

(Figure 2-3) and (Figure 2-4).  
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Figure 2-2: White Noise 

 

 Figure 2-3: 1st Singular Values of Power Spectrum Density (PSD) plot for 1% damping 
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Figure 2-4 : 1st Singular Values of Power Spectrum Density (PSD) plot for 5% damping 

Table 2-2 : Mode shape vectors and frequencies obtained from FDD 

  

  

Mode Shape Vectors (1% damping) Mode Shape Vectors (5% damping) 

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

DOF 1 -0.2322 -0.5790 -0.5058 -0.2302 -0.5601 -0.4853 

DOF 2 -0.4218 -0.4640 0.2790 -0.4204 -0.4626 -0.1192 

DOF 3 -0.5829 0.1693 0.3995 -0.5831 0.1274 0.0577 

DOF 4 -0.6545 0.6443 -0.6716 -0.6557 0.5724 -0.4651 

Frequency 4.41hz 11.10hz 16.16hz 4.54hz 11.10hz 16.04hz 

 
The frequencies and modeshape vectors displayed in (Table 2-2) are further used as an 

experimental modal data for performing the model updating. The subsequent analysis employs 

solely the real component of the eigenvalues. Nevertheless, it is noted, the modeshape data for 

the third mode exhibits a relatively higher value in the imaginary component, specifically for 

the third mode of a 5% damped structure. (Figure 2-5) and (Figure 2-6) depict the Argand 



 

41 

 

diagram, which illustrates the real and imaginary components of the modeshape vectors for 

both the 1% and 5% damped structures.  

 

Figure 2-5 : Argand diagram of the mode shapes (real and imaginary) for 1% damping 

 

Figure 2-6 : Argand diagram of the mode shapes (real and imaginary) for 5% damping 

2.3.3 Results of model updating 

With the baseline stiffness of frame guessed to be 20000KN/m in each storey, the model 

updating is performed for the structure. The result of model updating compared with the actual 

stiffness for 1% and 5% damping in the frame, two and three modes, and some to all the number 

of measured dofs as shown in the (Figure 2-7) and (Figure 2-8). The result summary is also 

represented in (Table 2-3). 
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2 Dofs and 2 Modes Measured 3 Dofs and 2 Modes Measured 

All Dofs and 2 Modes Measured 2 Dofs and 3 Modes Measured 

3 Dofs and 3 Modes Measured All Dofs and 3 Modes Measured 

Figure 2-7 : Comparison of model updating results of 1% damped structure with actual value 
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2 Dofs and 2 Modes Measured 3 Dofs and 2 Modes Measured 

 

All Dofs and 2 Modes Measured 

Figure 2-8 : Comparison of model updating results of 5% damped structure with actual value 

 

Figure (9):  

Figure 2-9 : Comparison of model updating results obtained from the eigen value analysis 

data as experimental data with actual value 
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Table 2-3 : Model updating result comparison. 

 

SN 

 

Frame 

Percentage of error in updating parameter 

1% of damping  5% of damping  Eigen Value Analysis 

n.m.=2 n.m. =3 n.m.=2 n.m. =3 n.m.=2 

1 4-dof* 5.170 9.420 5.650 --- Less than 0.1 

2 3-dof* 6.210 9.840 12.490 --- Less than 0.1 

3 2-dof* 7.260 10.060 15.020 --- Less than 0.1 

Where, *: measured dof; and   n.m.: number of modes; 

In the context of a structural system possessing a damping ratio of 1%, the use of two modes 

for the purposes of model updating, in conjunction with the acquisition of measurement data 

from all four degrees of freedom, yields a stiffness update within 5.17% margin of error. 

Conversely, a reduced no. of measured degree of freedoms correspondingly results in increased 

margins of error, with stiffness update errors of 6.21% and 7.21% respectively being observed 

for scenarios involving measurements from 3 and 2 degrees of freedom. When employing three 

modes for the purpose of updating the aforementioned structure possessing 1% damping, the 

associated error margin for model updating increases to 9.42%, under the condition that four 

degrees of freedom are measured. The error margin further escalates to 9.84% and 10.06% 

when measurement data is acquired from only three or two degrees of freedom, respectively.  

Analogously, in the case of frame with a damping ratio of 5%, the utilization of two modes for 

the purpose of model updating, in combination with measurement data collection from all four 

degrees of freedom, culminates in a stiffness update characterized by a margin of error of 

5.65%. Conversely, a reduction in the no. of measured degree of freedoms results in 

commensurate increases in the margin of error. Specifically, scenarios involving measurement 

data collection from three or two degrees of freedom were found to exhibit stiffness update 

errors of 12.49% and 15.02%, respectively. Notably, due to issues concerning the clarity of 
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third mode shape data pertaining to the 5% damping structural system, said data was not 

incorporated in the updating process. 

2.4 Discussion and Conclusion 

The sensitivity-base model updating has been successfully implemented to the RC shear frame 

using only a few degrees of freedom for measurement and limited number of operational modes 

in a reasonable error margin. Nevertheless, obtaining higher mode poses challenges, and as the 

structure's damping increases, these higher modes can become more unreliable, leading to 

inaccuracies in the updating process. Moreover, the accuracy of the model updating is heavily 

reliant on precise modal parameters. While frequency is acquired with higher accuracy 

compared to modeshape, and if the modes are deemed unreliable, it is recommended to assign 

greater importance weight to the residual with eigenvalue during the updating procedure. 
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Chapter 3: Implementation of the sensitivity-base model updating 
method for an experimental model 

3.1 Introduction 

One of the iterative and indirect methods for model updating is sensitivity-based approaches, 

which involve estimating differences in model parameters based on their impact on the modal 

characteristics of the system. In the previous chapter, the structural model updating was done 

by utilizing an optimization-based sensitivity method for the buildings using operational modal 

data. We discussed the sensitivity method with numerical optimization for model updating of 

building structures, especially where there are limited numbers of unscaled operational 

measured modes, as well as a restricted no. of measured degree of freedoms (DOFs).  

This chapter presents the implementation of the same approach to update a three-storey 

experimental steel frame by utilizing operational modal data. The steel frame is constructed in 

laboratory setup with the bolted joint in each floor level. The bolting condition of each floor is 

changed to induce damage in a particular floor. The ambient vibration of the frame is measured 

in each floor level for every damaged condition and operational modal properties; frequency 

and mode shapes of the frame are obtained. Using the limited modal properties of the 

experimental frame, sensitivity-based model updating is performed to obtain the change in 

storey stiffness of structure and damage of the frame is quantified.  

3.2 Experimental Setup 

A three-storey steel frame is assembled by utilizing distinct steel components, depicted in 

Figure 3-1. The interconnection of columns on each floor and the attachment of the slab are 

facilitated through the implementation of gusset plates and steel angles, securely fastened using 
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bolts (details in Annex 1). The specific dimensions and geometric characteristics of each 

component are detailed in Table 3-1. 

 

Table 3-1: Geometric Properties of the Frame 

Item 
No. Quantity Description Dimension 

1 12 Column 
PL 500 mm x 70 

mm x 5 mm  

2 3 Slab 
PL 690 mm x 

700mm x 5 mm  

3 1 Base Plate 
PL 700 mm x 

700 mmx10 mm 

4 8 Gusset Plate 
PL 90 mm x 110 

mm x 5mm 

5 20 
Steel Angles 

(L-shape) 
L 50 mm x 50 
mm x 3 mm 

6 2 
Steel Angles 

(L-shape) 
L 50 mm x 50 
mm x 3 mm 

7 2 
Steel Angles 

(L-shape) 
L 50 mm x 50 
mm x 3 mm 

Figure 3-1: Details of experiment frame 

The steel frame is fabricated within the laboratory facility, with its base securely affixed to a 

rigid foundation (Figure 3-2). To monitor and assess the frame's vibrational characteristics, 

uni-directional sensors are strategically placed on each floor, measuring the ambient vibrations 

experienced by the frame along the designated direction specified in (Figure 3-2). In order to 

deliberately introduce damage to a specific floor, the bolting condition of that floor is 

intentionally altered through the controlled process of loosening and tightening. Figure 3-3 

presents the three distinct scenarios examined in the present study: an undamaged state, 

characterized by the complete tightening of the bolts, and two damaged conditions 

characterized by the loosening of bolts, one on the 1st floor and the other on the 2nd floor. 

The experimental frame is idealized to a shear frame as shown in Figure 3-4. The mass of the 

frame is measured and lumped to the floor level (Table 3-2).  
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Table 3-2 : Lumped Mass of the Experimental Frame 

SN Floor Mass 

1 First floor 18.04 Kg 

2 Second floor 18.02 Kg 

3 Third floor 18.08 Kg 

 

Figure 3-2 : Experimental setup of the frame 
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Case 1: Undamaged Frame Case 2: Damaged first floor Case 3: Damaged second floor 

Figure 3-3 : Case study frames 

 

Figure 3-4 : Idealized Shear frame representation of the experimental frame 

3.3 Ambient Vibration Data from the Experiment 

The ambient vibration data is measured using unidirectional sensor in all three floors in the 

direction shown in Figure 3-2. During the experiment, the sensor captured and recorded the 

acceleration response of the structure. This response represents the magnitude and frequency 

of the vibrations experienced by the structure. By analysing this data, we can gain insights into 

the dynamic behaviour like frequencies, and modeshapes characteristics of the steel frame 
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under ambient conditions. Three different cases, first with the tight bolting condition and 

another with loosening the bolt to induce damage in a particular floor are assessed. 

The Figure 3-5, Figure 3-6, and Figure 3-7 show the filtered and corrected ambient vibration 

responses for each floor, alongside the transformation of the time-domain response into the 

frequency domain by the use of Fast Fourier Transform (FFT). These figures illustrate the 

undamaged scenario, as well as the cases involving bolt loosening in the first and second floors, 

respectively.  

3.3.1 Case 1: Undamaged Case  
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Figure 3-5 : Filtered ambient vibration response of each floor and Fast Fourier transform of 
undamaged frame. 

3.3.2 Case 2: Damaged Case (First Floor) 
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Figure 3-6 : Filtered ambient vibration response of each floor and Fast Fourier transform of 
damaged frame at first floor. 

3.3.3 Case 3: Damaged Case (Second Floor) 
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Figure 3-7 : Filtered ambient vibration response of each floor and Fast Fourier transform of 
damaged frame at second floor. 

3.4 Operational Modal Analysis (OMA) using FDD 

In this study, the ambient vibration data collected from the three-floor steel frame for all three 

cases, the Frequency Domain Decomposition (FDD) method [17] is employed for OMA. First 

step, the time-domain acceleration response data is converted into the frequency domain using 

a fast Fourier transform. This transformation results in a power spectral density function which 

provides information about the distribution of energy across different frequencies. Next, the 

FDD algorithm is used to decompose the power spectral density (PSD) function to a set of 

individual peaks, each corresponding to a vibration mode. The identified peaks in the spectra 

correspond to resonant frequencies of the frame.  The 1st Singular value of the Power Spectral 

Density (PSD) matrix for Case-1, Case-2, and Case-3 are represented in Figure 3-8, Figure 

3-10, and Figure 3-12 respectively. Once the peaks are identified, the FDD method estimates 

the modal parameters associated with each mode, including the natural frequency, and mode 

shape. These estimates are depicted in Figure 3-9, Figure 3-11 and Figure 3-13 as well as Table 

3-3,Table 3-4 and Table 3-5 for Case-1, Case-2 and Case-3 respectively. 
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3.4.1 Case 1: Undamaged Case 

 

Figure 3-8 : 1st Singular value of the PSD matrix of undamaged frame (Case-1) 

 

Figure 3-9 : Mode Shapes of undamaged experimental frame obtained from OMA (Case-1) 

Table 3-3: Modal parameters of the undamaged experimental frame  

 
Mode Shape 

 
Mode 1 Mode 2 

First floor 0.4440 1 

Second floor 0.8016 0.4461 

Third floor 1 -0.800 

Frequencies 2.30Hz 7.19 Hz 
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3.4.2 Case 2: Damaged Case (First Floor) 

 

Figure 3-10 : 1st Singular value of the PSD matrix of damaged frame in first floor(Case-2) 

 

Figure 3-11 : Mode Shapes of damaged experimental frame in first floor obtained from OMA 
(Case-2) 

Table 3-4: Modal parameters of the damaged experimental frame in first floor 

 
Mode Shape 

 
Mode 1 Mode 2 

First floor 0.796124538 1 

Second floor 0.930352931 0.137692308 

Third floor 1 -0.875384615 

Frequencies 1.904Hz 6.630Hz 
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3.4.3 Case 3: Damaged Case (Second Floor) 

 

Figure 3-12 : 1st Singular value of the PSD matrix of damaged frame in second floor (Case-3) 

 

Figure 3-13 : Mode Shapes of damaged experimental frame in second floor obtained from 
OMA (Case-3) 

Table 3-5: Modal parameters of the damaged experimental frame in second floor  

 
Mode Shape 

 
Mode 1 Mode 2 

First floor 0.235 1 

Second floor 0.8402 0.1947 

Third floor 1 -0.4320 

Frequencies 1.9287Hz 6.8176Hz 
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3.5 Model Updating of Experimental Frame 

The sensitivity method for model updating discussed in the previous chapter is implemented 

to perform the model updating of the experimental frame to obtain the storey stiffness of the 

frame idealized as shown in Figure 3-4. The sensitivity-based model updating methodology 

aims to improve the accuracy of a structural model by iteratively adjusting its physical 

parameters based on experimental measurements. Experimental modal properties (frequencies 

and modeshapes) are extracted from ambient vibration data using FDD. The physical 

parameters, storey stiffness, is selected for updating. With an initial guess of the updating 

parameter (x), a global stiffness matrix is constructed, and a generalized eigenvalue problem is 

solved to obtain analytical eigenvalues and modeshapes. The definition of the updating 

parameter (x) is discussed in previous chapter. Residual vectors are then calculated to quantify 

the differences between the experimental and analytical results. An objective function to 

minimize the sum of squared residuals is formulated, and the Levenberg-Marquardt algorithm 

is further deployed for optimization. The algorithm iteratively adjusts the parameter values 

until convergence is reached.  

3.6 Results and Discussion 

Modal parameters of the first 2 modes were used for the model updating to obtain the storey 

stiffness of the frame. The initial guess for each floor's stiffness was provided, and the 

parameters were updated through the model updating. The updating parameters (x) were used 

to calculate the corresponding updated stiffness values. For each floor, initial guess of the 

stiffness is 15000 N/m.  

3.6.1 Case 1: Undamaged Case 

In reference to Case 1, wherein the frame remains undamaged, the process of model updating 

has yielded updated stiffness values for the first, second, and third storeys, amounting to 26460 
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N/m, 26850 N/m, and 27570 N/m, respectively, as indicated in Table 3-6. Subsequently, a 

comparison was made between the experimentally obtained eigenvalues and their 

corresponding updated counterparts. The discrepancy observed between the experimentally 

obtained and updated eigenvalues for mode 1 was -8.91%, while for mode 2, it was 10.89%, 

as presented in Table 3-7. Furthermore, the error between experimentally obtained and updated 

eigen vectors is within 10% as shown in Table 3-8. The iterative optimization process 

successfully achieved convergence to the optimal solution after 13 iterations, as illustrated in 

Figure 3-14 and Figure 3-15. 

Table 3-6 : Updated Storey Stiffness of the Experimental Frame 

Floor Initial Guess Updating Parameter (x) Updated Stiffness 
1 15000 0.764 26460 
2 15000 0.79 26850 
3 15000 0.838 27570 

Table 3-7: Comparison of experimental and updated eigen values 

 

Eigen Values 

Experiment Updated Error% 

Mode 1 203.40 209.536 -3.02% 

Mode 2 2083.86 2016.905 3.21% 

 

Table 3-8: Comparison of experimental and updated eigen vectors 

  
Experiment Updated ERROR % 

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 
DOF1 0.4440 1 0.453 1 -2.01% 0.00% 
DOF2 0.8016 0.4461 0.809 0.409 -0.92% 8.32% 
DOF3 1 -0.8 1 -0.782 0.00% 2.25% 
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Figure 3-14 : Eigen Values for mode 1 in each iteration of optimization (case 1) 

 

Figure 3-15 : Eigen Values for mode 2 in each iteration of optimization (case 1) 

3.6.2 Case 2: Damaged Case (First Floor) 

In relation to Case 2, wherein the frame experiences damage at the first floor, the model 

updating process has resulted in revised stiffness values for the first, second, and third storeys, 

measuring 9066 N/m, 27210 N/m, and 27360 N/m, respectively, at the conclusion of the 

optimization procedure as demonstrated in Table 3-9. The observed reduction in storey 

stiffness for the first floor enables successful identification of both the location and magnitude 

of the damage. Subsequently, a comparison was conducted between the experimentally 

obtained eigenvalues and eigenvectors and their corresponding updated counterparts. The 
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discrepancy observed between the experimentally obtained and updated eigenvalues for mode 

1 was 2.80%, while for mode 2, it was -2.65%, as presented in Table 3-10. Additionally, the 

error between the experimentally obtained and updated eigenvectors was found to be within 

10%, as depicted in Table 3-11. The iterative optimization process successfully achieved 

convergence to the optimal solution after 13 iterations, as shown in  Figure 3-16 and Figure 

3-17. 

Table 3-9 : Updated Storey Stiffness of the Experimental Frame 

Floor Initial Guess Updating Parameter (x) Updated Stiffness 

1 15000 -0.3956 9066 

2 15000 0.814 27210 

3 15000 0.824 27360 
Table 3-10: Comparison of experimental and updated eigen values 

 

Eigen Values 

Experiment Updated Error% 

Mode 1 142.97 138.9668 2.80% 

Mode 2 1733.59 1779.579 -2.65% 

Table 3-11: Comparison of experimental and updated eigen vectors 

  
Experiment Updated ERROR % 

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 
DOF1 0.7961 1 0.732 1 8.05% 0.00% 
DOF2 0.9303 0.1377 0.908 0.152 2.40% -10.39% 
DOF3 1 -0.8754 1 -0.868 0.00% 0.84% 
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Figure 3-16 : Eigen Values for mode 1 in each iteration of optimization (case 2) 

 

Figure 3-17 : Eigen Values for mode 2 in each iteration of optimization (case 2) 

3.6.3 Case 3: Damaged Case (Second Floor) 

In the context of Case 3, involving a damaged frame at the second floor, the model updating 

process has yielded updated stiffness values for the first, second, and third storeys, which 

amounted to 26400 N/m, 7650 N/m, and 21300 N/m, respectively, at the conclusion of the 

optimization phase, as presented in Table 3-12 . The observed reduction in storey stiffness 

specifically on the second floor indicates the location of the damage. Moreover, the stiffness 

reduction to 7650 N/m provides a quantification of the extent of the damage. Subsequently, a 

comparative analysis was performed between the experimentally obtained eigenvalues and 

eigenvectors and their respective updated counterparts. The observed errors between the 
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experimentally obtained and updated eigenvalues were -1.67% for mode 1 and 1.72% for mode 

2, as indicated in Table 3-13. Furthermore, the error between the experimentally obtained and 

updated eigenvectors fell within 10%, as demonstrated in Table 3-14. The iterative 

optimization process successfully achieved convergence to the optimal solution after 13 

iterations, as illustrated in Figure 3-18 and Figure 3-19. 

Table 3-12 : Updated Storey Stiffness of the Experimental Frame 

Floor Initial Guess Updating Parameter (x) Updated Stiffness 

1 15000 0.76 26400 

2 15000 -0.49 7650 

3 15000 0.42 21300 
Table 3-13: Comparison of experimental and updated eigen values 

 

Eigen Values 

Experiment Updated Error% 

Mode 1 146.7 149.15 -1.67% 

Mode 2 1833.098 1801.49 1.72% 

Table 3-14: Comparison of experimental and updated eigen vectors 

  
Experiment Updated ERROR % 

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 
DOF1 0.2350 1 0.212 1 9.81% 0.00% 
DOF2 0.8402 0.1947 0.873 0.2077 -3.90% -6.68% 
DOF3 1 -0.4320 1 -0.393 0.00% 9.03% 

 

Figure 3-18 : Eigen Values for mode 1 in each iteration of optimization 
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Figure 3-19 : Eigen Values for mode 2 in each iteration of optimization 

 

Figure 3-20 : Comparison of the storey stiffnesses for different cases 

3.7 Discussion and Conclusion 

In conclusion, the successful implementation of a sensitivity-base model updating approach 

for an experimental steel frame to determine the storey stiffness of the frame using only two 

modal parameters. It is understood by analyzing the changes in storey stiffness, it is possible 

to understand and quantify the damage in a specific floor caused by the loosening of a bolt 

(Figure 3-20). In other words, the decrease in storey stiffness can be attributed to the damage 

in that particular floor. The study serves as proof that the model updating method, which was 

discussed in a previous chapter, can be effectively utilized to identify damage in terms of 
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stiffness at various locations within a structure. This suggests that this model updating method 

is a reliable tool for detecting and assessing damage in different parts of a structure based on 

changes in stiffness properties. 
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Chapter 4: 3D AEM integration of the sensitivity-based model 

updating  

4.1 Introduction  

In this chapter, we delve into the theoretical development of the Applied Element Method 

(AEM) and its subsequent validation in elastic analysis, static analysis, and dynamic analysis. 

The elastic validation of AEM involves comparing the results from elastic analysis in AEM 

with theoretical calculations ensuring its reliability and accuracy in predicting structural 

behavior. Furthermore, the static validation assesses AEM's capability to accurately capture 

the response of structures under pushover loading condition, with comparisons made against 

experimental data. Additionally, the dynamic validation focuses on the dynamic response of 

structures subjected earthquake ground motion analyzed in AEM and compare with the 

experimental results. 

Furthermore, in this chapter, the computational efficiency of three different solvers; direct 

solver with skyline storage format, iterative solver with triplet storage format and parallel direct 

sparse solver (PARDISO) with triplet storage format, are discussed and compared 

implementing in 3D AEM.  

Next, the integration of sensitivity-based model updating in the 3D Applied Element Method 

(AEM) represents a significant advancement in the field of structural analysis. The model 

updating method discussed in previous chapter offers a powerful approach to calibrate 

numerical models using measured modal data, while the 3D AEM provides a sophisticated 

framework for accurately representing complex structures. By combining these two 

methodologies, the aim is to refine the numerical model by optimizing (minimization) the 

disparities between the model predictions and experiment observations, ultimately enhancing 
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the accuracy and reliability of structural simulations. This chapter delves into the integration 

of sensitivity-based model updating within the 3D AEM, highlighting the key steps involved 

and the potential benefits it offers for improved structural modeling and analysis. 

4.2 Theoretical Development of Applied Element Method 

Numerical methods for structural analysis can be divided into two categories: continuum-based 

models like the Finite Element Method (FEM) [19]and discrete element techniques like the 

Rigid Body and Spring Model (RBSM)[58] and the Extended Distinct Element Method 

(EDEM)[51]. 

The FEM[19], a continuum-based method, faces limitations when dealing with separation 

between structural elements. It can answer whether the structure will fail or not but struggles 

to predict the collapse process accurately. 

Discrete element techniques, like RBSM[58] and EDEM[51], offer a simpler way to simulate 

cracking but have drawbacks. RBSM cannot analyze the structure up to complete collapse, 

while EDEM can do so but lacks the FEM's accuracy in small deformation ranges. The 

cumulative errors resulting from repeated calculations make it difficult to accurately predict 

the failure behavior using the current EDEM method. As a result, the EDEM can only provide 

insights into "how the structure collapses." 

On the other hand, the Applied Element Method (AEM) is an effective and precise approach 

for capturing the intricate behaviour of structures throughout various stages, encompassing 

initial zero loading to collapse, all within a practical timeframe. The method achieves reliable 

accuracy by employing relatively simple material models. A fundamental aspect of the AEM 

involves dividing the structures into discrete elements interconnected by springs in normal and 

tangential direction. Consequently, the occurrence of failure within these elements can be 
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simulated by monitoring failure of connecting springs. This failure is determined once the 

computed stress derived from spring forces surpasses the critical principal stress thresholds 

[59]. 

The Figure 4-1 shows a sample of meshing for 3D AEM model divided into small square 

elements. The Figure 4-2 and Figure 4-3 shows two elements which is connected with springs 

(one normal and a pair of shear springs) positioned at various contact points around the faces 

of these elements. Every spring fully captures the stress and deformation within a specific 

region of the analyzed elements. The stiffness of each spring is calculated as: 

𝐾௡ =
୉ௗభௗమ

௔
 ;  𝐾ଵ௦,ଶ௦ =

ୋௗభௗమ

௔
                                                                                        (4-1) 

where, “d1” and “d2”: width and thickness of representative area of each spring  

 “a” : length of same representative area,  

“E”:  Young’s modulus 

“G”:  Shear modulus 

The equation (4-1) expresses that each spring corresponds to the stiffness of an area with 

dimensions (d1*d2) and length (a) of the material being studied. Assuming the spring connects 

with the centreline of the element’s normal stiffness Kn, Shear stiffnesses K1s,2s is calculated.  

Each elements have 6 degree of freedoms and these dofs represents the elements’ rigid body 

motion  Figure 4-3. While the overall motion of the element behaves as a rigid body, its internal 

deformations are accounted for through the deformation of springs surrounding each element. 

This setup ensures that the shape of the individual element remains unchanged throughout the 

analysis, preserving its rigidity. However, the collective behavior of the elements can exhibit 

deformable characteristics due to the spring-based representation of internal deformations. 
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The size of local stiffness matrix is 12x12. Equation (4-2) represents the upper one quadrant 

of the matrix. The details are illustrated in Figure 4-3.   

 

          (4-2) 

The local stiffness matrix of each pair of springs is then aggregated to obtain the global stiffness 

matrix. The equation of motion is then solved incrementally:  

M∆Ϋ+C∆Ẏ+K∆Y=∆F                  (4-3)  

∆Y= incremental displacements 

∆Ẏ= incremental velocities 

∆Ϋ =incremental accelerations 

M = global mass matrix,  

C = damping matrix,  

K = global stiffness matrix, 

∆F = incremental force.  



 

69 

 

Newmark-beta methodology is used to solve this problem. The details of Applied Element 

Method (AEM) are discussed in flowchart Figure 4-4. 

 

Figure 4-1 : Sample of 3D AEM meshing 

   
Figure 4-2: Spring distributions 

 

Figure 4-3 : Spring distribution, area of influence of each spring and degree of freedoms 
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Figure 4-4 :  Flowchart of Elastic and Non-linear Analysis in Applied Element Method (AEM) 
[59], [60] 

4.3 Validation of Numerical Tool 

The present study involves the redevelopment of the applied element method (AEM) tool for 

three-dimensional numerical analysis of structures, utilizing the FORTRAN 90 programming 

language. Subsequently, the numerical tool is subjected to validation for various scenarios, 
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namely the elastic case, static case, and dynamic case, which will be discussed in the 

subsequent sub-sections. 

4.3.1 Elastic Validation 

The validation process for the numerical tool used to simulate elastic loading involves 

analyzing a cantilever beam Figure 4-5. The frame's geometrical and material characteristics 

are detailed in Table 4-1. 

Table 4-1: Properties of beam under validation 

Length  3 m 

Cross Section 0.3m. x 0.3 m.  

Young’s Modulus, (E)  2.49 ∗ 108 N/m2 

 

 

 
 3D AEM Model 

Figure 4-5: Case study cantilever beam for elastic validation 

 

Figure 4-6 : Load-Displacement plot for the elastic analysis 
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A 10N of load at the free end of the cantilever beam is applied in the 10 timesteps in 3D AEM. 

The maximum deflection at the free end is identified from the AEM analysis is 0.632 mm 

(Figure 4-6). Manually calculating the deflection for a cantilever beam with point load at the 

end is given by: 

 𝛿(𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟) =
௉௅య

ଷாூ
 = 6.33*10-3 m .  

The theoretical and numerical analysis results show a strong agreement, confirming the 

accuracy and reliability of the numerical tool.  

4.3.2 Static Validation 

To validate the 3D AEM tool for the static case, we analyzed a frame (Figure 4-7) previously 

tested by K. Muto [61]. The result from 3D AEM numerical simulation is compared with the 

experiment result. The frame's geometric characteristics are listed in Table 4-2, while its 

material characteristics can be found in Table 4-3.  

Table 4-2: Geometrical characteristics of the frame  

Length of bay (m.) 2.310m 

Height of frame (m.) 1.460m  

Details of Columns 0.25mx0.25m, 8 no. of 16mm reinforcement bars with 6 mm 

stirrups at 200mm center to center 

Details of Beam 0.18mx0.25m, 4no. of 16mm reinforcement bars with 6 mm 

stirrups at 200mm center to center 

Table 4-3: Material characteristics of the frame 

Young’s Modulus of concrete, (N/m2) 2.49 ∗ 1010 

Yield strength of rebars (N/m2) 4.53*108 

Poison’s ratio 0.2 
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Tensile Strength, (N/m2) 1.471 ∗ 106 

Compressive Strength, Fc (N/m2) 1.824 ∗ 107 

Material Density (Kg/m3) 2400 

Connecting springs in each face 81 

Element Numbers 2350 

Size of elements (m) 0.05 

 

Figure 4-7: Case study frame for static validation 

In 2000 consecutive time increments, a static pushover displacement of 0.0090m is exerted at 

the top part of the frame. Figure 4-8 illustrates the correlation between the applied load and 

deformation, computed using a numerical tool. This numerical analysis is then compared to 

experimental data conducted by K. Muto [61]. The comparison reveals a substantial 

concurrence between the two sets of results, indicating good agreement. Moreover, in Figure 

4-9, the deformed shape and crack location obtained from the numerical model closely match 

those observed in the experimental setup shown in Figure 4-10.  
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Figure 4-8 : Force-Displacement relation for the static analysis case-study frame 

 

Figure 4-9 : Deformed Shape and failure pattern of RC Frame from 3D AEM simulation 
(Illustration Scale: 5) 

 

Figure 4-10 : Failure Pattern of RC Frame from experiment[61] 
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4.3.3 Dynamic Validation 

For the validation of the numerical tool developed based on AEM for dynamic loading case a 

frame shown in Figure 4-11 : Case study frame for dynamic validation [62], [63] verified 

through analytical and experimental study by A. Filiatrault et.al. has been analysed [62],[63]. 

Table 4-4 displays the material characteristics of the frame being analyzed.  

 

Figure 4-11 : Case study frame for dynamic validation [62], [63] 
Table 4-4 : Material Properties of frame under analysis  

Longitudinal reinforcing steel Young’s Modulus of reinforcement= 224.6 Gpa,  

Yield strength of reinforcement = 438 Mpa 

Yield strain of reinforcement = 0.001950,  

Tensile strength of reinforcement =601.00 Mpa 

Ultimate strain of reinforcement= 0.1990 

Transverse  

reinforcing steel 

Yield strength of transverse steel= 750.00 Mpa 

Tensile strength of transverse steel =900.00 Mpa 

Concrete for structure with nominal 

ductility 

Young’s Modulus of concrete = 25.20 Gpa, 

Compressive strength of concrete= 31Mpa,  

Poisson’s ratio of concrete=0.17 
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The Figure 4-12 shows the AEM model of the frame under analysis. The frame is modelled 

with 2728 cubical elements of size 4 cm each. Each face of the elements are connected with 81 

springs.  

 

Figure 4-12 : AEM model of the frame under dynamic validation 

For the experiment, researchers utilized the N04W ground motion component of 1949 Western 

Washington Earthquake from the recording station in Olympia of Washington. The numerical 

simulation in AEM is conducted for the 30-second significant duration of this ground motion. 



 

77 

 

 

Figure 4-13 : Western Washington Earthquake ground motion 

The top floor displacement response for this ground motion has been plotted and compared in 

Figure 4-14 and Figure 4-15. The response calculated from the numerical tool shows a good 

agreement with the experimental result. Maximum roof displacement is observed to be ± 40mm, 

which exactly matches with the experiment result. Also, the crack location from the numerical 

model agrees well with the experiment (Figure 4-16). The cracks are located at the joint of 

beam and column and base of the column, which is also similar to that of experiment. 

 

Figure 4-14 : Top floor displacement response in AEM 
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Figure 4-15 : Top floor displacement response by experimental analysis by Filiatraut et. al. 
[62],[63] 

 

Figure 4-16 : Crack location in Experiment 

 

Figure 4-17 : Deformation of the frame in AEM 
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4.4 Computational Efficiency of the Tool 

The displacement measurement (x) in each dof can be calculated solving the linear equation 

{F}=[K]{x}. Where, {F}nx1 is vector containing the external force applied to n-degree of 

freedoms and [K]nxn is highly sparse and symmetric global stiffness matrix and {x}nx1 is the 

displacement vector. Numerous solvers are available to solve this linear equation.  Three 

solvers: direct solver with skyline storage format, iterative solver with triplet storage format 

and parallel direct sparse solver with triplet storage format, used in the Fortran 90 

implementation with GNU compiler of AEM to solve the linear equation {F}=[K]{x} since its 

development.  

Direct solver with skyline storage format, generally implemented using gaussian elimination 

method, is a type of linear equation solver used in numerical analysis and computational 

mathematics [64].  It is designed specifically for solving sparse matrices that have a symmetric, 

positive definite structure. This solver exploits the sparsity pattern of the matrix to reduce the 

no. of computations required to solve the system of equations. Direct solver with skyline 

storage format is commonly used in a wide range of applications, including finite element 

analysis. They are particularly useful when the matrix is sparse and large and when the sparsity 

pattern is irregular. However, this solver can be computationally expensive, especially when 

the matrix is not well-conditioned or when the sparsity pattern is highly irregular[65].  

Though there are numerous iterative solvers, in this paper, the Generalized Minimum Residual 

(GMRES) algorithm for the iterative method for solving large-scale sparse-linear systems is 

used. The GMRES algorithm is designed to work well for large-scale sparse linear systems that 

are difficult to solve by direct methods such as Gaussian elimination.  The GMRES algorithm 

works by constructing an orthonormal basis for the Krylov subspace and then solves the least 

squares problem of finding the vector that minimizes the residual over the Krylov subspace 

[66],[67],[68]. It is widely used in computational fluid dynamics, structural mechanics, and 
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numerical optimization. This iterative method is used in conjunction with the triplet storage 

format, in which the triples are stored in a one-dimensional array, with each triple taking up 

three consecutive elements in the array. The array is ordered first by row, then by column, so 

that all the nonzero elements in a given row are stored together. One advantage of the triplet 

storage format is that it is easy to modify elements from the matrix, since each element is 

represented as a separate triple due to which the large numbers of zeros in the sparse matrix 

can be eliminated.  

Next, PARDISO, a parallel direct sparse solver, represents a software library employed for the 

solution of extensively sparse linear systems of equations through direct method. PARDISO is 

designed to solve the linear equations in a parallel and efficient manner on modern computer 

architectures [69]. It is particularly well-suited for solving the linear equations with highly 

sparse matrices that arise in the structural analysis problem. Different storage formats can be 

used with this solver, however, in this study triad storage format is used for analysis. 

In this section, the computational efficiency of three different solvers; direct solver with skyline 

storage format, iterative solver with triplet storage format and parallel direct sparse solver 

(PARDISO) with triplet storage format, are discussed and compared. The computational device 

employed for the task features an Intel Core i9-10850K processor with a base clock speed of 

3.6 GHz, which possesses 10 cores and 20 threads. Additionally, the device is equipped with 

DDR4 memory in the form of two 16 GB modules, operating at a frequency of 3200 MHz. 

4.4.1 Theoretical Description of the study  

The problem addressed in this chapter includes the numerical solution of a system of linear 

equations, {F}=[K]{x}, arising from numerical analysis of the structural system in 3D AEM. 

The [K] matrix in the linear system has nxn sized highly sparse, and symmetric matrix structure.  
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First method, the direct solver with skyline storage format is a methodology to solve a 

symmetric, positive definite (SPD) linear system using Cholesky factorization. The Cholesky 

factorization is a special case of Gaussian elimination that decomposes the SPD matrix [K] into 

a lower triangular matrix [L] such that [K] = [L][L]T. The direct solver with skyline storage 

format uses the skyline structure of the matrix to reduce the no. of computations required to 

perform the Cholesky factorization and solve the linear system. The process involves 

initializing [L] as a zero matrix, computing the diagonal and off-diagonal elements of [L] using 

a particular ordering of the rows and columns of [K], and solving the linear system using 

forward and backward substitution [64]. 

Second method, iterative solver with the GMRES algorithm is an iterative method used to solve 

a sparse linear system of the form {F}=[K]{x}, where [K] is a large, sparse, and symmetric 

matrix, and {F} is a known vector. The [K] matrix stored in triplet storage format. The 

orthonormal basis Qk for a Krylov subspace of [K] and {F} using the Arnoldi iteration is 

constructed and then solves the least squares problem to identify the vector x which 

minimalizes the residual ||F - Kx||2 over Qk. The GMRES algorithm can be restarted to improve 

convergence and is useful for solving large-scale sparse linear systems, especially for non-

symmetric matrices that are challenging to solve by direct methods[68]. 

Last method, the PARDISO solver is a direct, sparse matrix solver that utilizes parallel 

processing to solve large-scale linear equations which involves the factorization of a sparse 

matrix into lower [L] or upper [U] triangular matrices. It is designed to be highly efficient on 

modern computer architectures, including multi-core processors and high-performance 

computing clusters. In our implementation, the PARDISO solver is used with [K] matrix stored 

in triplet format. The factors L and U of a sparse matrix [K] using symbolic and numerical 

factorization. The symbolic factorization analyses the structure of [K] to determine the non-

zero part of [L] and [U], while the numerical factorization computes their numerical values 
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using a pivoting strategy for stability. Once the factors are computed, PARDISO uses forward 

and backward substitution to solve the linear system. PARDISO is highly efficient and scalable, 

with parallel processing capabilities and support for different matrix formats[69].  

In these three methods as discussed in previous paragraphs, two types of storage formats are 

used. First one, the skyline matrix storage format [70],[71], also known as the profile matrix or 

the border matrix, is a way to store symmetric and sparse matrices. Figure 4-18 shows a sample 

of matrix storage in skyline format. In this format, only the non-zero elements on and below or 

above the diagonal are stored, as well as the indices of the initial non-zero component in each 

row. This can greatly reduce the storage requirements for sparse matrices with a significant 

number of zeros below the diagonal. Second one, triplet storage[72] is a popular format for 

storing sparse matrices in computer science and linear algebra. The triplet format is used to 

efficiently store matrices where most of the elements are zero i.e., highly sparse matrices. 

Figure 4-19 shows a sample of matrix storage in triplet format. In the triplet format, the non-

zero component of the matrices are stored in compressed form along with their corresponding 

row and column indices. The system of storage has three arrays, one array containing values 

and other two containing column index and row index.   

In this paper, these three methods are tested for their computational efficiency with 6 different 

structural analysis case studies of a concrete block in 3D AEM with [K]nxn matrix with ‘n’ 

ranging from 1080 to 32560 (Figure 4-20).A pushover load {F} of 0.1m in 10 timesteps is 

applied at the top-most part of the model to perform the analysis. The average time taken for 

solving {F}=[K]{x} to get the displacement vector {x} is recorded and compared. For the 

method using PARDISO solver, each of the 6 cases are solved using 4, 8, 12, 16, and 20 CPU 

threads.  
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Figure 4-18 : Triplet Storage Format 

 

Figure 4-19 : Skyline Storage Format 

   
Case 1: (n=1080) Case 2: (n=2160) Case 3: (n=4320) 
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Case 4: (n=8640) Case 5: (n=17280) Case 6: (n=34560) 

Figure 4-20: Case Studies 

4.4.2 Results from the different solvers 

The results of the comparison of computational efficiency of linear solvers on matrices of 

varying sizes in 3D AEM are presented in the Table 4-5 and Figure 4-21. Three solvers, Direct 

solver with skyline storage format, Iterative Linear Solver (GMRES), and Parallel direct sparse 

solver (PARDISO) with different numbers of CPU threads, are evaluated. 

For smaller matrices (1-2), Direct solver with skyline storage format appears to be the fastest, 

with computational times ranging from 0.0144 seconds for a 1080x1080 matrix to 0.047 

seconds for an 4320x4320 matrix. With the increase in size of matrix, The Skyline Direct 

Linear Solver becomes slower compared to other solvers. For matrix size 34560x34560, 

skyline format of storage of [K] matrix exceeds the allowable storage capacity. 

Iterative Linear Solver (GMRES) also performed well, with computational times ranging from 

0.0492 seconds for a 1080x1080 matrix to 34.76 seconds for an 34560x34560 matrix. However, 

it is slower compared to the direct linear solver, it can handle the higher size of matrices.  

On the other hand, the Parallel direct sparse solver (PARDISO) has better results compared to 

other two solvers. The computational times (in seconds) for solving matrices of different sizes 

(1-6) using the Parallel direct sparse solver (PARDISO) with varying numbers of CPU threads 
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(4-20) is shown in Table 4-5 and Figure 4-22. The solver was able to solve larger matrices 

more efficiently using more CPU threads. For smaller matrices (1-4), the computational times 

were generally lower and did not vary significantly with the number of CPU threads. For larger 

matrices (5-6), the computational times decreased significantly with the use of more CPU 

threads, with the fastest times achieved using 20 CPU threads. The fastest computational time 

achieved for the largest matrix (34560x34560) was 0.762 seconds with 20 CPU threads. 

Table 4-5 : Comparison of Computational Efficiency of Different Solvers 

S

N 

Size of [K] 

matrix (nxn) 

Time (sec.) for each solution 

Direct 

Linear 

Solver 

Iterative 

Linear 

Solver 

(GMRES) 

Parallel direct sparse solver (PARDISO) 

4-CPU 

threads 

8- CPU 

threads 

12-

CPU 

threads 

16- 

CPU 

threads 

20-

CPU 

threads 

1 1080x1080 0.0144 0.0492 0.0415 0.0408 0.033 0.0315 0.022 

2 2160x2160 0.047 0.295 0.2015 0.098 0.0833 0.078 0.071 

3 4320x4320 0.354 0.738 0.218 0.1252 0.0467 0.043 0.0405 

4 8640x8640 0.624 1.265 0.3057 0.2006 0.1848 0.1930 0.1870 

5 17280x17280 8.6405 7.8208 0.4725 0.421 0.3532 0.35 0.3422 

6 34560x34560 *** 34.76 1.5655 0.929 0.79 0.766 0.762 

*** : skyline format of storage of [K] matrix exceeds the allowable storage capacity. 
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Figure 4-21: Comparison of Computational Efficiency  

 

Figure 4-22 : Comparison of Computational Efficiency (Parallel solvers) 
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4.4.3 Key Findings and Interpretations of the comparative study of solvers 

The direct solver with skyline storage format can handle smaller size problems very efficiently, 

however with the increase in size of problem, skyline storage system cannot handle the problem. 

However, triplet format requires less memory than skyline format, especially for matrices that 

are very sparse. This is because triplet stores only the non-zero values and their indices, while 

skyline stores the diagonal elements and the upper triangular matrix elements. Triplet format 

allows for faster matrix-vector multiplication compared to skyline format, especially for 

matrices with a large number of rows. This is because the triplet format can take advantage of 

the cache hierarchy of modern processors and optimize memory access. With the use of parallel 

solvers in conjunction with triplet storage format would significantly increase the 

computational efficiency, specially for the structural analysis where [K] matrix would be large 

and highly sparse. 

Two conclusions are derived from this paper. Firstly, the triplet format is a more efficient and 

versatile storage format for highly sparse matrices compared to skyline format. Secondly, the 

choice of linear solver depends on the size of the matrix and the computing resources available. 

For smaller matrices, Direct solver with skyline storage format and Iterative Linear Solver 

(GMRES) may be options, while for larger matrices, the parallel direct sparse solver 

(PARDISO) with multiple CPU threads may provide the best computational efficiency.  
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4.5 3D AEM integration of the sensitivity-based model updating  

4.5.1 Methodology 

The 3D AEM formulation is discussed in the previous section. The non-linear analysis and 

collapse behaviour can be handled very efficiently in 3D AEM. Once the structures’ material 

properties in terms of young’s modulus is obtained accurately from the field, it is possible to 

replicate behaviour of the structure through AEM numerical model. The operational modal 

data through the ambient vibration measurement from the field in conjunction with the 

numerical model updating in AEM can capture the on-field property of the structure. This will 

help to conduct efficient and accurate vulnerability assessment of large building stocks. For 

this regard, the model updating procedure described in the previous section is integrated into 

3D Applied Element Method FORTRAN90 implementation. The overall flowchart of the 

procedure is represented in Figure 4-23. 

In the context of materials characterization, it is imperative to commence the analysis by 

offering an initial estimation of material properties, specifically Young's modulus. The initial 

step is to prepare an Applied Element Model for the as built geometric properties of the 

structure providing a preliminary guess for the material properties (Young’s Modulus (𝐸଴)).  

This parameter serves as a fundamental indicator of a material's stiffness and its ability to resist 

deformation when subjected to external forces. Furthermore, it is crucial to assign a 

corresponding GroupID to each element group based on their distinct material properties. This 

categorization facilitates the classification and organization of materials into homogeneous 

clusters, enabling efficient data management and subsequent analysis. The elements of the 

numerical model are grouped based on their material properties. Each of them is assigned a 

group identity that corresponds to its respective material property group. 

Young’s modulus {𝐸଴}௜ ∈ ℝ(𝑖 = 1, 𝑛𝑔𝑟)                  (4-4) 
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The coefficient denoted as xij, which governs the update of parameters, as specified in the 

equation, is distinctly defined for individual groupings of elements. This provision allows for 

a systematic treatment of each element group, ensuring that the updating process is tailored to 

the unique characteristics and properties exhibited by these specific groups. By employing such 

a well-defined coefficient, the parameter updating procedure is effectively executed, leading 

to enhanced accuracy and precision in the analysis of the elements within their respective 

groups. 

Coefficient of updating parameters (x
ij
) for each group 

 𝑥௜௝ =
ா೔ିா೔బ

ா೔బ
  (𝑖 = 1, 𝑛𝑔𝑟, 𝑗 = 0, 𝑛𝑖𝑡𝑒𝑟)                 (4-5) 

Where “ngr” is no. of element groups, “niter” is iteration number for optimization. 

The initial guess of coefficients of updating parameters (xi0) are important for the convergence 

of the optimization. 

Next is to calculate the local stiffness matrix for each connecting springs. In order to determine 

the initial local stiffness matrix for each connecting spring, we need to calculate the normal 

stiffness (Kn), shear stiffness in direction-1 (K1s), and shear stiffness in direction-2 (K2s).  

K
n 
: Normal stiffness of spring = 𝐸௜଴(1 + 𝑥௜௝)

 
*d

1
*d

2
/a                                                         (4-6) 

K
1s

 : Shear stiffness of spring in direction-1 = 𝐺௜଴(1 + 𝑥௜௝) *d1*d2/a                                     (4-7) 

K
2s

 : Shear stiffness of spring in direction-2  = 𝐺௜଴(1 + 𝑥௜௝) *d1*d2/a                                 (4-8) 

Where , Shear Modulus 𝐺 =
ா

ଶ(ଵାజ)
                                                                                         (4-9) 
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The details of the notations d
1
, d

2
 and a are discussed in Figure 4-3. 

In the 3D AEM structural problem, the local stiffness matrix has an important role in 

identifying the behavior of individual elements within the system. The local stiffness matrix 

represents the stiffness properties of an element in its local coordinate system. It is a 12x12 

square matrix that captures the relationships between the displacements and the forces acting 

on the element. The entries of the local stiffness matrix are determined by the material 

characteristics, geometrical characteristics, and connectivity of elements. 

The local stiffness matrix can be represented by     𝐾௟௢௖௔௟ = ൤
𝑲𝟏𝟏   

𝐾ଶଵ

𝐾ଵଶ

𝐾ଶଶ
൨

ଵଶ௫ଵଶ

                      (4-10) 

𝑲𝟏𝟏   can be expressed as discussed in previous chapter: 

 

The procedure for creating the global stiffness matrix [𝐾]௚௟௢௕௔௟ involves several steps. Initially, 

we assemble the stiffness matrices of individual elements and correctly position them within 
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the global-stiffness matrix, utilizing the element connectivity information. This process 

involves mapping the degrees of freedom of each element and element groups to their 

corresponding locations in the global system. Summing up the contributions from all element 

groups leads us to the final global stiffness matrix. This highly sparse stiffness matrix is stored 

in triplet storage format. 

([𝐾]௚௟௢௕௔௟)௞,௟ = ∑ [𝐾௟௢௖௔௟]௜
௡೒ೝ

௜ୀଵ
,  1 ≤ 𝑖 ≤ 𝑛𝑔𝑟,  1 ≤ 𝑘 ≤ 𝑛𝑑𝑜𝑓, 1 ≤ 𝑙 ≤ 𝑛𝑑𝑜𝑓                   (4-11) 

              𝑊ℎ𝑒𝑟𝑒,  [𝐾]௚௟௢௕௔௟ = 𝑓(𝑥)  

The Arnoldi Method is an iterative algorithm that allows for the identification of a selected no. 

of eigenvalues and eigenvectors of a given matrix. ARPACK[55], a widely used software 

library, provides an efficient implementation of the Arnoldi Method, enabling researchers and 

practitioners to obtain eigenvalues and eigenvectors with high accuracy and computational 

efficiency. When coupled with the Applied Element Method (AEM), the ARPACK algorithm 

becomes a versatile tool for investigating the eigenvalue properties of complex systems. The 

analytical eigen value analysis using Arnoldi Method (ARPACK) implemented in AEM is 

performed for the following generalized eigen-value problem. 

     [𝐾]௚௟௢௕௔௟{Ф௔௡௔}=𝜆௔௡௔ [M]{Ф௔௡௔}                                   (4-12) 

where [𝐾]௚௟௢௕௔௟ represents the global stiffness matrix, [M] represents the mass matrix, {Φana} 

is the vector of the analytical mode shapes, and λana is the corresponding eigenvalue. The mass 

matrix [M] is calculated based on the material density property and assumed to be constant 

with the time. 

The solution of this generalized eigen value analysis is: 
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(𝜆௔௡௔)௞,ଵ, 1 ≤ 𝑘 ≤ 𝑛𝑑𝑜𝑓 

(Ф௔௡௔)
௞,௟

,  1 ≤ 𝑘 ≤ 𝑛𝑑𝑜𝑓, 1 ≤ 𝑙 ≤ 𝑛𝑑𝑜𝑓 

    𝑊ℎ𝑒𝑟𝑒,  𝜆௔௡௔ 𝑎𝑛𝑑 Ф௔௡௔ = 𝑓(𝑥)                                        (4-13) 

The experimental modal data (λexp=(ω2) and {Ф}exp.) are obtained from the frequency domain 

decomposition of response measured at each floor of the structure. The modal frequencies 

provide insight into the frequencies of vibration exhibited by structure, while the modeshapes 

describe the spatial distribution of these vibrations across each floor. It's important to note that 

the measurement locations for these modal parameters are limited to a specific number of 

degrees of freedom ("mndof ≤ ndof"), which refers to the no. of sensors or measurement 

locations used. Additionally, the no. of modes obtained ("nmodes ≤ ndof") reflects the 

maximum number of distinct vibration patterns identified in the data. 

 (𝜆௘௫௣)௞,ଵ, 1 ≤ 𝑘 ≤ 𝑚𝑛𝑑𝑜𝑓 

 (Ф௘௫௣)
௞,௟

,  1 ≤ 𝑘 ≤ 𝑚𝑛𝑑𝑜𝑓, 1 ≤ 𝑙 ≤ 𝑛𝑚𝑜𝑑𝑒𝑠                                                     (4-14) 

Corresponding degree of freedom in numerical model are mapped to experimental 

measurements. This allows us for element level of model updating in the numerical model from 

the limited no. of measurement data. The eigenvalues corresponding to measured dofs in 

experimental observations (𝜆௘௫௣) are initially arranged in an array, followed by the 

unmeasured degrees of freedom. The same ordering scheme applies to the mode shapes. 
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                                                            (4-15)  

 

                                                                                                                                            (4-16)  

The Ф௔௡௔ and Ф௘௫௣ are normalized by setting their maximum value to unity for the measured 

dofs, aligning analytical and experimental data on a similar scale. 

     

                                                                                                                                            (4-17) 

Calculate relative residual vector of experimental and analytical modal data (𝑟𝑒𝑠(𝑥)) from the 

measured data.  

𝑟𝑒𝑠(𝑥) =

⎝

⎜
⎜
⎛

(𝜆௜
௘௫௣ − 𝜆௜

௔௡௔(𝑥)) 

𝜆௜
௘௫௣ 𝑤ఒ௜

⋮

൭
𝜙௜,௟

௘௫௣,ெ

𝜙௜,௥
௘௫௣,ெ −

𝜙௜,௟
௔௡௔,ெ(𝑥)

𝜙௜,௥
௔௡௔,ெ(𝑥)

൱ 𝑤థ௜
⎠

⎟
⎟
⎞

,  𝑖 = 1, 𝑛𝑚𝑜𝑑𝑒𝑠,  𝑙 = 1, 𝑚𝑛𝑑𝑜𝑓,  𝑟 = 𝑚𝑛𝑑𝑜𝑓 

                                                                                                                                          (4-18) 
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The weightage for eigenvalue and mode shape residuals 𝑤ఒ௜ and 𝑤థ௜ in model updating is a 

subjective decision that depends on analysis purpose, confidence in the measured data, and 

characteristics of the structure. Assigning weightage involves considering the relative 

importance of eigenvalues and mode shapes in achieving the analysis objectives. Equal 

weightage is a common approach, but optimization techniques or expert judgment may be used 

to determine optimal weightage values.  

The objective function f(x) with the least square problem based on residuals of modal 

parameters is formulated as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) =    ∑ ቀ
(ఒ೔

೐ೣ೛ିఒ೔
ೌ೙ೌ(௫)) 

ఒ೔
೐ೣ೛ 𝑤ఒ௜ቁ

ଶ

+ ൭ቆ
థ೔,೗

೐ೣ೛,ಾ

థ
೔,ೝ
೐ೣ೛,ಾ −

థ೔,೗
ೌ೙ೌ,ಾ(௫)

థ೔,ೝ
ೌ೙ೌ,ಾ(௫)

ቇ 𝑤థ௜൱

ଶ

௡೘೚೏೐ೞ
௜ୀଵ        (4-19) 

In order to find the value of updating parameters (x) and subsequently the material properties 

(Young’s modulus (E)) and Stiffness Matrix of the structure for the (j+1)-th iteration, the 

Levenberg-Marquardt algorithm [57] is employed. This algorithm is a robust optimization 

method specifically designed for analyzing non-linear least squares problem. This method 

merges the strengths of both the steepest descent and Gauss-Newton methods while 

incorporating a damping factor to regulate the step size during each iteration. Through an 

iterative process of updating variable values, its primary goal is to do minimization of the 

objective function and ultimately discover optimal solution to given problem.  

𝑥௝ାଵ = 𝑥௝ − (∇ଶ𝑓൫𝑥௝൯ + Λ𝐼)ିଵ𝛻𝑓൫𝑥௝൯ ,  𝑗 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟,  𝑠𝑖𝑧𝑒 𝑜𝑓 𝑥 𝑖𝑠 (1, 𝑛𝑔𝑟) 

                              (4-20) 

Where,  

xj represents the vector of variables at iteration j. Its size is 1×ngr, where ngr is the number of 

updating element groups. 
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∇f(xj) : gradient of the function ‘f’ evaluated at xj. 

This gradient is a vector of partial derivatives (Jacobian) of ‘f’ w.r.t each variable in xj. It 

represents the sensitivity of the objective-function ‘f’ w.r.t each of the parameters xj.  

∇2f(xj) : Hessian matrix of the function ‘f’ evaluated at xj. The Hessian matrix is second-order 

partial derivatives of  objective function ‘f’ w.r.t the variables xj. 

‘I’ represents the identity matrix of size ngr×ngr and Λ is damping-factor which is scalar value 

to adjust the step size in each iteration. 

At the end of the optimization, the structure would be accurately replicated, and it would be 

ready for the further analysis.  

 

Figure 4-23 : AEM integration of model updating 
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4.5.2 Case Study Frame 

The study involves the testing of a sensitivity-based model updating technique integrated into 

the 3D AEM framework, utilizing a sample of four-storey RC frames with infilled masonry, as 

illustrated in Figure 4-24. The building properties were selected to represent a typical soft 

storey structure in Nepal, as documented in a survey conducted by [38]. The geometrical and 

material characteristics of frames are tabulated in Table 4-6.  

Table 4-6: Geometrical and Material Characteristics of the case study frame 

 

Figure 4-24 : 4-storey 

RC frame 

Geometric Properties  

Length of Bay, (m.) 3 m 

Height of floor (m.) 3 m  

Detail of columns 0.30m x 0.30m, 8 no. of 16mm 

reinforcement bars and 8 mm stirrups at 

200mm center to center 

Detail of beams 0.30m x 0.45m, 4 no. of 16mm 

reinforcement bars and 8 mm stirrups at 

200mm center to center 

Material Properties  

Properties Column  Beam/Slab Masonry 

Young’s Modulus E 

(N/m2) 

2.23∗ 

1010 

1.94 ∗ 1010 1.58 ∗ 1010 

Poisons Ratio 0.2 0.2 0.2 

Tensile strength, (N/m2) 2.0 ∗ 106 1.5 ∗ 106 1.0 ∗ 106 
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Compressive strength, 

(N/m2) 

2.0 ∗ 107 1.5 ∗ 107 1.0*107 

Density of Material 

(Kg/m3) 

2400 2400 1900 

No. of connecting 

springs  

81 81 81 

Size of elements (m) 0.15 0.15 0.15 

 

The structure is discretized in 8184 elements of 0.15m sizes each in 3D AEM. The elements 

are grouped into three groups for column, beam/slab and masonry wall respectively. The 

material properties of three groups of elements are the physical properties to be found through 

model-updating methodology considered in this chapter.  

4.5.3 Experimental operational modal data for the case study frame 

A synthetic ambient vibration data as a response of each floor of the frame with damping 1% 

is created by applying white noise of 0.01hz to 100hz for 120 seconds with sampling rate of 

100hz Figure 4-25. Frequencies and modeshapes of the structure are identified by doing FDD 

of the ambient vibration data thus obtained from the response of the structure due to white 

noise Figure 4-26. 

 

Figure 4-25 : White Noise 
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Figure 4-26 : 1st Singular Values of Power Spectrum Density (PSD) Y-direction 

Table 4-7: Mode shape vectors and frequencies obtained from FDD (Y-direction) 

  

  

Mode Shape Vectors 

Mode Shape Vectors  

(Normalized to the maximum amplitude) 

Mode 1 Mode 2 Mode 1 Mode 2 

First Floor -0.4235 0.6408 0.741 -0.932 

Second Floor -0.4711 0.2836 0.824 -0.412 

Third Floor -0.5215 -0.1900 0.912 0.276 

Fourth Floor -0.5716 -0.6876 1.000 1.000 

Frequency 3.8384 hz 16.2611 hz   
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Figure 4-27 : Mode Shapes (Y-direction) 

The frequencies and mode shape vectors displayed in Table 4-7, Figure 4-27 and are further 

used as an experimental modal data for performing the model updating.  

4.5.4 Result of model updating 

The preliminary value of the young’s modulus is guessed to be 2.10*1010 N/m2, 1.80*1010 

N/m2, 1.40*1010 N/m2 for column, beam/slab and masonry wall element group respectively.  

The initial coefficient of all three updating parameters is assumed to be 0.001 and equal 

weightage for all the parameters are provided. The updated parameters (Young’s Modulus) 

values after the model updating using the developed method is shown in Table 4-8.  
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Table 4-8 : Young’s Modulus of the updated structure  

SN 

Youngs’ Modulus *105 (KN/m2) 

Error % Experiment (Exact) Initial Guess Updated 

Column 223 210 229.60 2.95% 

Beam/Slab 194 180 196.87 1.48% 

Wall 158 140 160.41 1.52% 

 

Similarly, the frequency of the updated structure is obtained within the error margin of 1.83% 

as shown in Table 4-9. 

Table 4-9 : Comparison of frequency of the updated structure 

 

 

 

  Frequency (Hz) Error % 

 

Experiment Initial Guess Updated 
 

1
st

 Mode 3.8384 3.75 3.899 1.585% 

2
nd

 Mode 16.2611 15.81 16.557 1.83% 
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On the other hand, the updated mode shape vectors are obtained within the error margin of 

3.45% in comparison with the experimental mode shape of the structure as shown in Table 

4-10 and Figure 4-28. 

Table 4-10 : Comparison of mode shape of the updated structure 

  

  

Mode Shape Vectors 

(Experimental) 

Mode Shape Vectors  

(Updated) 

Error % 

Mode 1 Mode 2 Mode 1 Mode 2  

First Floor 0.741 -0.932 0.757 -0.958 2.77% 

Second Floor 0.824 -0.412 0.878 0.431 4.53% 

Third Floor 0.912 0.276 0.934 0.267 -3.45% 

Fourth Floor 1.000 1.000 1.000 1.000 - 

 

Figure 4-28 : Comparison of Mode Shapes (Y-direction) 
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4.5.5 Discussions and Conclusions 

The findings of the present study yield several noteworthy conclusions. Firstly, the model 

updating of the numerical model in 3D AEM can be achieved with an acceptable error margin. 

Secondly, the incorporation of additional measurement data can potentially enhance the 

accuracy of model updating methodology. However, this is crucial to be mindful of presence 

of spurious higher modes in the experimental data that may lead to erroneous results. Thirdly, 

the results of this case study demonstrate that even with a limited no. of modes obtained from 

field, an accurate numerical model can be updated using the proposed method. Fourthly, the 

correctness of the model updating process is heavily related on the initial guess of the updating 

parameters. Although the Levenberg-Marquardt algorithm can improve convergence by 

circumventing local minima, a significant deviation of the preliminary guess from accurate 

values of updating parameters may prevent convergence altogether. Therefore, obtaining an 

initial guess as close as possible through empirical calculations is essential. Lastly, the 

grouping of the elements constitutes another critical aspect of the model updating process in 

3D AEM. The no. of unknowns or updating parameters should not exceed the number of 

equations of residuals. Therefore, grouping the elements in a manner that groups together the 

same material properties and keeping the number of groups within permissible limits is crucial. 

If the elements of each critical location are grouped together, the model updating process can 

yield a good match between the AEM model and the existing structure. 
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Chapter 5: Seismic vulnerability assessment of the updated model 

structure using 3D AEM 

5.1 Introduction 

The seismic vulnerability assessment of buildings and structures is a crucial step for ensuring 

the safety and resilience of buildings and infrastructure systems in earthquake-prone regions. 

In this chapter, we present a comprehensive seismic vulnerability assessment of an updated 

model structure using the 3D AEM. The 3D AEM is a powerful numerical technique that 

allows realistic simulation of the structural response by incorporating the nonlinear behavior 

of materials and the interaction of different components in structure [60]. 

The updated model structure from previous chapter is considered in this study for the 

vulnerability assessment. To understand the non-linear behaviour of structure, static pushover 

analysis and single-ground motion incremental dynamic analysis has been performed. The 

quantification of the overall damage and local damages are studied in performance criteria 

based on interstorey drift, frequency degradation and visual deformation of the structure. The 

findings from this study provides broader knowledge of the seismic performance of structures 

and can be used to inform design guidelines, retrofit strategies, and risk mitigation measures.  

5.2 Static Pushover Analysis 

Static pushover analysis is an effective method to assess the performance and vulnerability of 

the structures. This analysis method allows engineers to evaluate the behaviour of a building 

under incremental lateral loads, providing insights into the structural behaviour, capacity, and 

potential failure modes. The static pushover analysis is performed on a 4-storey soft-storey 
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reinforced concrete (RC) frame building in this study. The goal is to acquire a comprehensive 

knowledge of the building's seismic performance and identify critical weak points.  

5.3 Case study frame and Numerical Model 

The numerical model, which includes updated material properties, is constructed in a three-

dimensional (3D) Applied Element Method (AEM). The model consists of 8184 elements with 

an element size of 0.15 meters Figure 5-1. Representing the material properties of each element 

nine springs are incorporated in each face of the element.  To understand the performance of 

the structure for lateral load, non-linear static pushover analysis is performed for the structure. 

It involves subjecting the structure to increasing levels of displacement controlled lateral loads 

(P) of 0.24m in 4000 timesteps in a static manner. This analysis accounts for the non-linear 

performance of the structure and provides an estimation of the capacity and deformation 

demands of the structure during lateral loading. The response of the structure is calculated at 

each load level, considering the non-linearities of both materials and structural connections. 

The result provides an approximation of lateral force-displacement relationship, commonly 

known as the pushover curve. The interstorey drift ratio and the frequency degradation with 

the increase in load are evaluated as the performance indicators. The critical locations and the 

weaknesses of the structure along with the damage pattern are discussed. 

So, in summary following four performance indicators are studied: 

1. Lateral force-displacement relationship 

2. Interstorey drift ratio  

3. Frequency degradation 

4. Damage pattern and location 
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No. of Elements: 8184 

No. of springs in each face of structure: 9 

Lateral Pushover (P) : 0.24 m at the top of structure 

Pushover timesteps: 4000 steps 

 

Figure 5-1 : 3D AEM model of the structure with element discretization 

 

5.4 Result of Static Pushover Analysis 

The frame exhibits linear behavior until reaching a lateral drift at the roof of 0.048 m under a 

lateral load of 9.28 KN at location (a) on the force-displacement curve (Figure 5-3). Beyond 

this load, the frame exhibits soft storey behavior, with displacement concentration occurring 

on the ground floor of the structure. The slight drop in the force-displacement curve at location 

‘a’ can be attributed to the occurrence of a crack in the infill wall on the first floor (Figure 5-2- 

location (iii) and (iv)). Another sudden drop in the force-displacement curve is observed at 

location (c) of the force-deformation curve, which can be attributed to the occurrence of a crack 
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at the joint of the beam-column on the first floor. Beyond this load, all deformation is 

concentrated on the open ground floor, which leads to soft storey failure. The soft storey 

behavior of structure is further evidenced by an inter-storey drift ratio of 0.88% on the ground 

floor compared to 0.24% at the top of the frame at location ‘a’, which increases to over 5% at 

the ground floor compared to 0.91% at the top floor at location ‘e’ (Figure 5-4). The structure 

exhibits typical failure patterns, including in-plane shear cracks at location (iii) and on-plane 

failure of the masonry wall at location (iv) of Figure 5-2. Additionally, tensile failure at the 

beam column joint at location (ii) and some tensile cracks at the base of the column at location 

(i) were observed. 

Furthermore, an observation was made on the frequency degradation (Figure 5-5). The 

frequency of the structure decreases with increasing lateral displacement, indicating structural 

failure and a reduction in stiffness. As the frequency of the structure is determined based on 

the eigenvalue analysis in each loading step, this curve is good representation of the stiffness 

degradation of the structure. A sudden rise in frequency occurs at a lateral push of around 0.07 

m, which corresponds to location ‘c’ in the force-displacement curve. This is attributed to the 

recontact of separate elements during the failure that occurred at location ‘c’. 
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Figure 5-2 : Final deformation and crack pattern (at ‘e’) 

 

Figure 5-3 : Force-Displacement (Capacity) Curve 
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Figure 5-4 : Interstorey-drift ratio 

 

Figure 5-5 : Frequency degradation of the frame 

5.5 Dynamic Analysis of the Structure 

The concept of Incremental Dynamic Analysis (IDA) revolutionizing the field of structural 

engineering and seismic design [73]. IDA is a methodology that aims to provide a complete 
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understanding of the behaviour of the structure under varying levels of ground motion intensity. 

IDA involves analyzing ground motion records with increasing levels of intensity in a step-by-

step manner.  

There are two main approaches to IDA: single IDA and multiple IDA. In this research, single 

IDA is performed. The single IDA process begins with selecting a ground motion that represent 

the similar frequency property to that of the structure. The ground motion is then scaled to 

different intensities using appropriate scaling laws. For each intensity level, nonlinear time-

history analysis is performed, and the structural response is evaluated. This analysis captures 

the dynamic characteristics of the structure and provides valuable information about its 

response characteristics, such as inter-story drifts, base shear, and ductility demands. 

By incrementally increasing the intensity of ground motion, IDA allows engineers to observe 

how the structure responds to different levels of seismic excitation. This approach provides 

crucial insights into the structure's performance and helps identify critical levels of ground 

motion that may lead to structural damage or failure. Through IDA, engineers can gain a deeper 

understanding of the structural vulnerabilities and limitations, enabling them to make informed 

decisions regarding design modifications, retrofit strategies, or performance-based design. 

5.6 Case Study Frame and Numerical Model 

The numerical model details for the dynamic analysis are same as discussed in static pushover 

analysis (Figure 5-1). 

Incremental Dynamic Analysis (IDA) involves subjecting the structure to a progressive 

sequence of ground motions with increasing intensity. The primary objective of IDA is to 

assess how the structure responds to various levels of ground motion intensity and to ascertain 
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its performance at each level. The fundamental frequency of the structure is 3.899 hz. So, an 

earthquake with similar predominant frequency is selected for the IDA.  The San-Fernando 

Earthquake has the predominant frequency of around 3.84 hz, so it is selected for this study 

(Figure 5-6) illustrates the response spectrum of the earthquake. In single-ground motion 

Incremental Dynamic Analysis (IDA), the structure undergoes a step-by-step analysis, by 

applying a single earthquake ground motion that is gradually scaled to various intensities. The 

ground motion intensity is progressively augmented till structure either attains its ultimate limit 

state or meets a predefined performance threshold. In this case, the ground motion is scaled 

down and scaled up to get the different intensity level.  The significant duration of the 

earthquake which covers Arias Intensity of 0.1-99% is calculated to be 32.99 sec. as shown in 

Figure 5-8. The Arias Intensity (IA) quantifies the magnitude of ground motion by evaluating 

the time-integral of the squared ground acceleration [74]. The ground motion data is then 

truncated for the significant duration as shown in Figure 5-9. 

 

Figure 5-6 : San Fernando Earthquake Ground Motion 
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Figure 5-7 : Response Spectrum 

 

Figure 5-8 : Significant Duration 
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Figure 5-9 : Truncated Ground Motion 

The JMA intensity of this earthquake is calculated to be 5.34 (Figure 5-10) using the relation 

of ground acceleration with JMA intensity proposed by K.T. Shabestari and F. Yamazaki. 

(2001)[75]. This method involves utilizing a reference acceleration value, denoted as "a0" with 

a total period (τ) exceeding 0.3 seconds.  

Intensity in JMA scale: IJMA= 2.0 log(a0) + 0.94                                                                   (5-1) 

Using this relation, the ground motion of San Fernando earthquake has been scaled up and 

scaled down to JMA 3.5, JMA 4.5, JMA 5, JMA 5.5, JMA 6 and JMA 6.5 as an instrumental 

intensity. The ground motion time history is plotted in Figure 5-11. 

Throughout the analysis process, the structure's response is assessed based on its maximum 

inter-story drift ratio and floor displacements at various intensity levels. By interpreting the 

analysis results, it becomes possible to pinpoint the critical components of the structure that 

are at the highest risk of damage and evaluate the overall seismic performance of the entire 

building. 
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Figure 5-10 : Calculation of JMA intensity 

 

Figure 5-11 : Scaled ground motions 
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5.7 Results of Incremental Dynamic Analysis 

In this research, an updated numerical model of a building was analysed for a range of ground 

motions, varying from 3.5 JMA to 6.5 JMA instrumental intensity. The response of the 

structure at each floor level was measured for each intensity ground motion. Figure 5-12 to  

Figure 5-17 compares the response at each floor level and Figure 5-18 compares the maximum 

interstorey drift ratio for the 3.5-6 JMA ground motion. The results indicate that the 

deformation is concentrated on the ground floor, making it a soft storey building. No failures 

were observed for 3.5 JMA and 4.5 JMA ground motions. The interstorey drift ratio is 0.3% at 

the ground floor, compared to 0.026% at the top floor for 4.5 JMA ground motion. However, 

significant failure in the ground floor columns and upper floor masonry wall was observed for 

5 JMA ground motion. The interstorey drift ratio was 0.87% at the first(ground) floor and 

0.024% at the top floor. Extensive damage in first(ground) floor columns and higher response 

was observed for the ground motion of 5.5 JMA with an inter-storey drift ratio of 2.63% at the 

ground floor and 0.041% at the top floor. The structure underwent large deformation on the 

firs(ground) floor, and heavy damage was seen for the 6 JMA ground motion, leading to 

collapse due to soft storey failure. The maximum interstorey drift ratio was observed to be 

4.99% at the first(ground) floor and 0.13% at the top floor for 6 JMA ground motion. The study 

concludes that the structure collapses within 7 seconds for ground motion greater than 6.5 JMA. 

The Incremental Dynamic Analysis (IDA) curve of maximum interstorey drift ratio with 

respect to each intensity level is shown in Figure 5-19. The damage grade 1-5 categorized based 

on the EMS scale of damage grade is employed to classify the damage level of the structure in 

each level of ground motion. The structure is within damage grade 1 (D1) with very minor 

cracks in the structure for JMA 3.5-4.5 ground motions. While for ground motion between 4.5-

5 JMA has damage grade (D2) damage. Similarly, for ground motion 5-5.5 JMA has significant 
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failure on the ground floor resulting damage grade of D3-D4. With the ground motion higher 

than the 5.5 JMA, the structure undergoes damage grade of D5 and followed by complete 

collapse. The deformation and damage of the structure for each intensity level is shown in 

Figure 5-21 to Figure 5-25 .  

Figure 5-20 illustrates how the structure's frequency degrades over time for different levels of 

ground motion intensity. With the increase in intensity level the frequency degradation is also 

high. The frequency degradation ratio (FDR), a ratio of final fundamental frequency and initial 

frequency of the structure after application of ground motion is tabulated in Table 5-1. The 

structure with FDR value 1 is considered to be structure with no damage and with the decrease 

of the FDR value the damage level of the structure will be higher. 

5.7.1 Response at 3.5 JMA ground motion  

  

First (Ground) floor response Second floor response 
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Third floor response Fourth floor response 

Figure 5-12 : Floor Responses for 3.5 JMA Ground Motion 

5.7.2 Response at 4.5 JMA ground motion 

  

First (Ground) floor response Second floor response 

  

Third floor response Fourth floor response 

Figure 5-13 : Floor Responses for 4.5 JMA Ground Motion 
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5.7.3 Response at 5 JMA ground motion 

  

First (Ground) floor response Second floor response 

  

Third floor response Fourth floor response 

Figure 5-14 : Floor Responses for 5 JMA Ground Motion 

5.7.4  Response at 5.5 JMA ground motion 

  

First (Ground) floor response Second floor response 
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Third floor response Fourth floor response 

Figure 5-15 : Floor Responses for 5.5 JMA Ground Motion 

5.7.5  Response at 6 JMA ground motion 

  

First (Ground) floor response Second floor response 

  

Third floor response Fourth floor response 

Figure 5-16 : Floor Responses for 6 JMA Ground Motion 
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5.7.6 Response at 6.5 JMA ground motion 

  

First (Ground) floor response Second floor response 

  

Third floor response  Figure 31(d): Fourth floor response 

Figure 5-17 : Floor Responses for 6.5 JMA Ground Motion 

 

Figure 5-18 : Maximum Interstorey Drift Ratio 
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Figure 5-19 : Maximum Interstorey Drift Ratio with respect to Intensity (JMA) 

 

Figure 5-20 : Frequency Degradation Curve for Different Intensities 
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Table 5-1: Frequency Degradation Ratio 

SN Intensity 

Fundamental 

Frequency (hz) 

Frequency degradation 

ratio (FDR) 

1 Initial structure 3.899 1 

2 3.5 JMA 3.899 1 

3 4.5 JMA 1.83 0.469351116 

4 5 JMA 1.15 0.294947422 

5 5.5 JMA 1.13 0.289817902 

6 6 JMA 0.83 0.212875096 

7 6.5 JMA 0 (complete collapse) 0 

 

Figure 5-21: Damage pattern for JMA 3.5 and JMA 4.5 ground motion 
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Figure 5-22: Damage JMA 5 

 

           

 

Figure 5-23 : Damage JMA 5.5 
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Figure 5-24 : Damage JMA 6 

 

Figure 5-25 : Damage JMA 6.5 
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5.8 Conclusion 

Using the model updating procedure, the existing structures can be modelled accurately in 3D 

AEM. To understand the non-linear behaviour and seismic capacity of the existing structures 

static or dynamic non-linear analysis has been performed and behaviour of the structure for 

different cases has been studied.  

The static pushover analysis performed in the structure indicates that the structure exhibits soft 

storey behavior with displacement concentration occurring on the ground floor. The soft storey 

behavior is evidenced by the inter-storey drift ratio, which is significantly higher on the ground 

floor comparing to the upper floor. The failure patterns observed in the structure include in-

plane shear cracks, on-plane failure of the masonry wall, and tensile failure at the beam column 

joint. The frequency degradation curve indicates a reduction in stiffness with increasing lateral 

displacement.  

The incremental dynamic analysis of the updated 3D AEM model of the building for a range 

of ground motions, as described in this chapter, is of significant importance for enhancing our 

understanding of the performance of building under seismic loading. This can be very useful 

for determining the deformation, damage level, and failure mechanism of a structure. The IDA 

curve of maximum interstorey drift ratio with respect to each intensity level, deformation and 

damage of the structure for each intensity level, and frequency degradation ratio (FDR) provide 

valuable information which will be useful for the optimized design of structures and 

improvement in performances during earthquakes. 
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Chapter 6: Implementation of the 3D AEM Model Updating for 

Existing Structure 

6.1 Introduction 

In this chapter, the 3D AEM integrated model updating method is used for updating an existing 

reinforced concrete (RC) frame structure. The method employed is iterative and indirect, 

involving the estimation of changes in the modeling parameters by considering the sensitivity 

of modal characteristics to these parameters. This method proves particularly useful in 

scenarios where there is a limited no. of measured unscaled operational modes and a restricted 

no. of measured dofs. The previous chapter explored the application of this optimization-based 

sensitivity method for updating structural models in various scenarios involving different types 

of building structures, utilizing operational modal data but it was not applied for the real 

existing structure.  

This chapter employs the same methodology to update a real three-storey RC frame structure 

in 3D AEM. The objective is to update the numerical model by utilizing operational modal 

data. Throughout the process, ambient vibration measurements are conducted at multiple 

critical locations on each floor of the RC building. This enables the acquisition of operational 

mode shapes and frequencies, for the structure. By employing these limited modal properties 

obtained from the existing RC frame, model updating in three-dimensional AEM is performed. 

6.2 Case Study Building 

The building in this study is an existing three-storey RC frame building referred to as "ST2," 

situated within the premises of the Asian Institute of Technology (AIT) in Thailand. 

Constructed in 1979, the building has undergone consistent maintenance measures, leading to 
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its commendable operational state. The photographs in the Figure 6-1 and Figure 6-2 show 

perspective of the building under study. 

 

Figure 6-1 : Front perspective view of the building 

 

Figure 6-2 : Back perspective view of the building 
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The building has an overall dimension of 24 meters by 13.43 meters, and it is characterized by 

2 x 7 bays in two directions. The individual bay lengths range from 4 meters to 4.35 meters. 

Comprising three storeys, each storey maintains a consistent height of 2.6 meters. The typical 

column size is 0.20x0.20 m. and the beam dimension are 0.20x0.50 meters. Furthermore, the 

slab thickness throughout the building is 0.1 meters. The building's geometric details, including 

its dimensions and specific structural elements, are provided in Figure 6-3, Figure 6-4, Figure 

6-5 and Figure 6-6. The summary of the building properties is shown in  

Table 6-1. 

Table 6-1: Characteristics of the Building 

Age of building 44 Years 

Overall Dimension 24 m x 13.43 m 

No. of Bays 2 x 7 

Bay Lengths, L (m.) 4 m- 4.35 m 

No. of Storey 3 

Storey height H (m.) 2.6 m  

Typical Column Details 0.20m x 0.20m (Rebars detail Figure 6-4) 

Beam Details 0.20m x 0.50m (Rebars detail Figure 6-5) 

Slab Thickness 0.1 m (Rebars detail Figure 6-6) 

 

All other structural drawings of the building can be found in ANNEX-2. 
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Figure 6-3: Typical Floor Plan (Source: Asian Institute of Technology (AIT), Thailand) 
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Figure 6-4: Column Schedule of the building (Source: Asian Institute of Technology, AIT) 

 

Figure 6-5: Typical beam detailing of building (Source: Asian Institute of Technology, AIT) 
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Figure 6-6: Typical slab detailing of the building (Source: Asian Institute of Technology, AIT) 

6.3 Limitations and Considerations of the Study 

Firstly, the building's rooftop accessibility was limited, with only one location available above 

the shear wall of the staircase for measurement. Consequently, the measurements of the roof's 

properties were obtained solely from this particular location. 

Secondly, the structural model employed for analysis included solely the RC shear wall, with 

the load generated by the staircase steps allocated to the corresponding floor beams. 

The structure’s global mass matrix was computed based on the material densities. Specifically, 

the density of concrete is considered to be 2400 Kg/m3, while the masonry wall was assigned 

a density of 1900 Kg/m3. The live load of the structure is not considered for this study. 

6.4 Experiment Plan 

The ambient vibration test was conducted on two different dates, June 18 and June 27, 2023. 

The experiment involved a team of eight human resources and aimed to collect data from 16 

sets of measurements, comprising 48 total measurement locations. To gather the required data, 

four GeoDAS 3-directional velocity microtremor sensors were used as measurement sensors, 

connected to a GeoDAS 10-24 DS Data Acquisition System with a sampling rate of 100 Hz. 
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Each measurement set lasted for a duration of 1200 seconds. Sample photographs representing 

the experimental setup are shown in Figure 6-7. 

  

 
Figure 6-7 : Representative experimental setup photographs during experiment 
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6.5 Ambient Vibration Data from Field Survey 

The microtremor velocimeter sensors placed at various locations on all three floors, as depicted 

in the Figure 6-8, are utilized to measure the ambient vibration data. The measured locations 

during the experiment for 16 different sets are illustrated in Table 6-2. The experiment 

employed a collective of four sensors, wherein each measurement set involved the utilization 

of one sensor on the ground and three sensors positioned at the beam column joint of each floor. 

Notably, while the roof was not accessible, it was possible to access the top of the RC shear 

wall of the staircase at location C-4. The set-13 includes the data which includes the 

measurement at each floor level and roof.  

Table 6-2 : Different sets of measurement location 
 

 
Throughout the experiment, these sensors captured and documented the response of the 

structure in terms of velocity. The ambient vibration is measured for 20 minutes for each set 

of data with the sampling rate of 100 Hz. This recorded response provides information about 

the intensity and frequency of the vibrations endured by the building. By analyzing this data, 

we can obtain its frequency and modeshapes, when subjected to ambient conditions. 
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As a sample, the filtered and corrected ambient vibration response for each floor at for set 7, 

which is at the center of the building, is shown in Figure 6-9 along with the transformation of 

the response in time domain to frequency domain using the FFT method. 

 

Figure 6-8: Micro-Tremor sensors measurement locations 
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Figure 6-9 : Ambient vibration response and corresponding FFT for set 7 data. 

6.6 Operational Modal Analysis Using Frequency Domain Decomposition 

The 1st Singular value of the Power Spectral Density (PSD) matrix of the corrected and filtered 

ambient vibration data set was analyzed. As depicted in Figure 6-10 the peaks observed in the 

1st singular value of the PSD matrix elucidate a distinct and prominent first mode of building, 

with a frequency of approx. 3.35 Hz. The corresponding mode shape of this first mode is 

provided in Figure 6-12 and Table 2-1. The mode-shape coordinates are normalized to the 

highest value to be 1. In contrast, the second mode remains indistinct, exhibiting limited clarity. 

By examining diverse data sets and filtering to eliminate the influence of the first mode, it was 

possible to identify an approximate frequency of the second mode to be 6.001Hz as observed 

in the FFT analysis of the data from set 7 (Figure 6-11). However, the modeshape data for the 
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second mode could not be successfully extracted. Consequently, for the purpose of model 

updating, the frequency and mode shape data pertaining to the first mode are employed. 

  

Figure 6-10: 1st Singular value of the Power Spectral Density (PSD) matrix 

 

Figure 6-11: FFT of ambient vibration after filtering first mode for set 7 data 
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Figure 6-12 : First mode-shape of the building from experiment 

Table 6-3 : First mode-shape of the building from experiment at some locations 

SN Location Experiment (Mode 1) 
1 1-Floor: C-1 0.0000 
2 2-Floor: C-1 0.6270 
3 3-Floor: C-1 0.8904 
4 Roof 1.0000 
5 1-Floor: B-1 0.0000 
6 2-Floor: B-1 0.6002 
7 3-Floor: B-1 0.9178 
8 Roof 1.0000 
9 1-Floor: A-1 0.0000 
10 2-Floor: A-1 0.6182 
11 3-Floor: A-1 0.8277 
12 Roof 1.0000 
13 1-Floor: C-4 0.0000 
14 2-Floor: C-4 0.5814 
15 3-Floor: C-4 0.8837 
16 Roof 1.0000 
17 1-Floor: B-4 0.0000 
18 2-Floor: B-4 0.5938 
19 3-Floor: B-4 0.9008 
20 Roof 1.0000 
21 1-Floor: A-4 0.0000 
22 2-Floor: A-4 0.6234 
23 3-Floor: A-4 0.8640 
24 Roof 1.0000 

  Frequency 3.35 Hz 
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6.7 Model Updating of the Case Study Building using 3D AEM 

The structural components of the buildings are grouped together in 11 different groups with 

similar material properties. The components of the buildings are grouped floorwise into 

columns, beams and slabs, masonry wall and a separate group for RC shear wall. We are 

updating the physical parameter young’s modulus of each group of structural components to 

model it accurately in 3D AEM. The details of each group and the initial Young’s Modulus for 

each group is shown in  Table 6-4. 

 Table 6-4 : Different groups of structural components and initial guess of the updating 

parameters 

 

The initial guess of the young’s modulus for the is guessed to be 1.20*1010N/m2, 1.00*1010 

N/m2, 6.0*109 N/m2 for columns/RC shear wall, beams/slabs and masonry walls element group 

respectively.  

With the reference to as built drawings of the building from Asian Institute of Technology 

(AIT), the structure is modelled in 3D AEM. The 3D AEM modelling properties of the building 

is shown in Table 6-5. The initial numerical model prepared is shown in Figure 6-13. The initial 

properties of the material for the building is assigned as Table 6-4. 

Parameters Parameters Group 
Initial Guess of Youngs 

Modulus (N/m2) 

1 Column First Floor 1.20*1010 
2 Column Second Floor 1.20*1010 
3 Column Third Floor 1.20*1010 
4 RC Shear wall staircase 1.20*1010 
5 Beam and Slab First Floor 1.00*1010 
6 Beam and Slab Second Floor 1.00*1010 
7 Beam and Slab Third Floor 1.00*1010 
8 Masonry Wall First Floor 6.00*109 
9 Masonry Wall Second Floor 6.00*109 

10 Masonry Wall Third Floor 6.00*109 
11 Parapet walls 6.00*109 
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Table 6-5 : 3D AEM numerical modelling properties 

SN Description Quantity 

1 Element Size 0.1 m 

1 No. of Elements 151,178 

2 No. of groups of structural components 11 

3 Fixed Boundaries 124 

4 Springs in each face of the elements 9 

5 Total number of degree of freedoms 907,068 

6 Size of global stiffness matrix in triplet format 14,545,698 

7 No. of Springs 2,842,740 

 

 

Figure 6-13: 3D AEM numerical model of the case study building 
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As described in chapter 4, let us recall the following objective function:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) =    ෍ ቆ
(𝜆௜
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           … (6-1) 

This objective function is minimized using the Levenberg Marquardt algorithm.  

𝑥௝ାଵ = 𝑥௝ − (∇ଶ𝑓൫𝑥௝൯ + Λ𝐼)ିଵ𝛻𝑓൫𝑥௝൯ ,  𝑗 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟,  𝑠𝑖𝑧𝑒 𝑜𝑓 𝑥 𝑖𝑠 (1, 𝑛𝑔𝑟) 

          ……….(6-2) 
The detail descriptions of these variables are described in chapter 4. 

Implementing this algorithm for updating this case study building, at the end of the 

optimization, the structure would be accurately replicated, and it would be ready for the further 

analysis. An equal weightage for all the parameters is provided. The updated parameters 

(Young’s Modulus) values after the model-updating using the developed method is shown in 

Table 6-6. 

Table 6-6: Updated Young’s Modulus of different parameters group for the case study building  

 

 

 

 

Parameters Parameters Group 
Initial Guess of 

Youngs Modulus 
(N/m2) 

Updated Value of 
Youngs Modulus 

(N/m2) 
1 Column First Floor 1.20*1010 3.1653*1010 
2 Column Second Floor 1.20*1010 3.1493*1010 
3 Column Third Floor 1.20*1010 3.2160*1010 
4 RC Shear wall staircase 1.20*1010 3.1542*1010 
5 Beam and Slab First Floor 1.00*1010 2.6422*1010 
6 Beam and Slab Second Floor 1.00*1010 2.6349*1010 
7 Beam and Slab Third Floor 1.00*1010 2.6416*1010 
8 Masonry Wall First Floor 6.00*109 1.5916*1010 
9 Masonry Wall Second Floor 6.00*109 1.5723*1010 
10 Masonry Wall Third Floor 6.00*109 1.5934*1010 
11 Parapet walls 6.00*109 1.5860*1010 

 



 

140 

 

Table 6-7 : Comparison of experimental and updated eigen values 

  

Eigen Values 

Experiment Updated Error% 

Mode 1 442.59 410.38 7.28% 

Table 6-8 : Comparison of experimental and updated eigen vectors 

 

Similarly, the frequency of the updated structure is obtained within the error margin of 7.28% 

as shown in Table 6-7. On the other hand, the revised mode shape vectors are acquired with an 

error margin of only 14% when contrasted with the experimental mode shape of the structure. 

Additionally, the Mode Assurance Criterion (MAC) values for these mode shape vectors 

surpass 0.99, indicating a substantial alignment between the experimental and computed mode 

shapes as shown in Table 6-8 and Figure 6-14. 

Grid Location Exp. (Mode 1) Updated (Mode 1) Error % MAC 

All 1-Floor 0 0 0.00%  

C-1 
2-Floor 0.627 0.5391 14.01% 

0.9936 
3-Floor 0.8904 0.8067 9.41% 

B-1 
2-Floor 0.6002 0.5383 10.31% 

0.9965 
3-Floor 0.9178 0.8125 11.47% 

A-1 
2-Floor 0.6182 0.5433 12.11% 

0.9978 
3-Floor 0.8277 0.8199 0.95% 

C-4 
2-Floor 0.5814 0.5371 7.62% 

0.9979 
3-Floor 0.8837 0.8045 8.97% 

B-4 
2-Floor 0.5938 0.5425 8.64% 

0.9975 
3-Floor 0.9008 0.8122 9.83% 

A-4 
2-Floor 0.6234 0.5453 12.53% 

0.9977 
3-Floor 0.864 0.8205 5.03% 

All Roof 1 1 0.00%  

 



 

141 

 

 

Figure 6-14: First mode shape of the updated structure  

6.8 Static Pushover Analysis Using Applied Element Method 

Moreover, an in-depth static pushover analysis is executed on the updated 3D AEM model of 

the building structure under study. The primary goal is to acquire a holistic comprehension of 

the performance of the building in lateral load and discern critical vulnerabilities. The 

numerical model of the updated structure is modelled in three-dimensional (3D) Applied 

Element Method (AEM) incorporating updated material characteristics of the structure under 

study. The non-linear static pushover analysis involves subjecting the building to incrementally 

increasing displacement-controlled lateral loads (P) of 0.08m (1% of height of the structure) at 

the roof level over 700 timesteps in a static manner. By considering the non-linear behavior of 

the structure, this analysis provides an estimation of the structure's capacity and deformation 

demands during the earthquake. The displacement response of the structure is evaluated at each 

load level, accounting for the non-linearities of the materials and structural connections. The 

resulting analysis yields a lateral force-displacement relationship, commonly referred to as the 

pushover curve. Performance indicators such as interstorey drift ratio with increasing load are 

assessed. Furthermore, the critical locations, weaknesses, and damage patterns of the structure 

are discussed based on the findings of the analysis. 

So, in summary following four performance indicators are studied: 
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1. Lateral force-displacement relationship 

2. Interstorey drift ratio  

3. Damage pattern and location 

6.9 Results and Discussion 

The frame exhibits linear behavior until reaching a lateral drift at the roof of 0.0075 m under a 

lateral load of 501.1 KN at location (a) on the force-displacement curve (Figure 6-15). The 

slight drop in the force-displacement curve at location ‘a’ can be attributed to the occurrence 

of a crack in the masonry wall on the first floor (Figure 6-15). As the upper floor has additional 

masonry walls in the upper floors and also cantilever portion with masonry walls over it, the 

upper floor is stiffer than the bottom floor. Consequently, another sudden drop in the force-

displacement curve is observed at location (c) of the force-displacement curve, which can be 

attributed to the occurrence of a crack at the joint of the beam column on the ground floor. 

Beyond this load, all deformation is concentrated on the ground floor, leading to soft storey 

failure. The soft storey behavior of the structure is further evidenced by an inter-storey drift 

ratio of over 2.95% at the ground floor compared to 0.73% at the top floor at location ‘e’ 

(Figure 6-16). The structure exhibits typical failure patterns, including in-plane shear cracks at 

location (2) and outof-plane failure of the masonry wall at location (3) of Figure 6-18. 

Additionally, tensile failure at the beam column joint at location (1) and some tensile cracks at 

the base of the column were observed. 
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Figure 6-15 : Force-displacement curve at the roof level for the study building 

 

 

 

Figure 6-16 : Interstorey drift ratio of the study building 
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Figure 6-17 : Deformation of the building at the end of the pushover analysis 
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Figure 6-18 : Damage pattern of the building at location (1), (2) and (3) 

 

6.10 Conclusion 

Despite the challenging modal identification in this case study, the 3D AEM model updating 

was successfully accomplished with only one modal frequency and mode shape data. The 

results showed an acceptable margin of error between the experimental and numerical models. 

The study encountered specific limitations concerning the measurement locations, which may 

have implications for the precision of the model updating process. Incorporating supplementary 

measurement data has the potential to enhance the overall accuracy and reliability of the model 

updating methodology. Overall, the results of this case study demonstrate that even with a 

limited number of modes and limited measurements obtained from the field, an accurate 

numerical model can be updated using the proposed method. In 3D AEM model updating, the 

proper grouping of elements plays a vital role. To ensure a well-defined solution, the number 

of unknowns or updating parameters should not exceed the number of residual equations. 

Given the structure's good condition with no visible damage and regular maintenance, the 

element grouping was performed thoughtfully, focusing on grouping together elements with 
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similar material properties. This approach kept the number of groups within acceptable limits 

based on the available equations. The columns, RC shear walls, beams/slabs, and masonry 

walls on each floor were grouped separately, resulting in a favorable alignment between real 

existing structure and the numerical 3D AEM model. To initialize the model-updating 

parameters (Young's Modulus), engineering judgment was employed. This allowed for an 

approximate estimation of the actual values and improved the optimization convergence. 

The findings derived from the static pushover analysis reveal notable structural damage 

manifested initially in the ground floor masonry wall, which subsequently culminated in the 

failure of the beam-column joint and eventual collapse of the entire structure. Notably, the 

inter-storey drift ratio exhibits a substantial increase on the first(ground) floor comparing to 

the top floor, following the initial failure of the ground floor wall, thereby imparting behavior 

akin to a soft storey phenomenon. The observed failure patterns in the structure encompass in-

plane shear cracks, on-plane failure of the masonry wall, and tensile failure at the beam-column 

joint. 
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Chapter 7: Conclusions and Future Works 

7.1 Summary 

Firstly, the least square problem for model updating which is suitable for low to mid rise 

buildings having limited no. of operational modal data and limited measurements is developed 

and successfully tested for the generalized frame structures.  

The sensitivity-based model updating technique has been effectively incorporated into the 

three-dimensional applied element method (AEM), enabling the utilization of a minimal no. of 

dofs for measurement and a limited set of modes. This approach facilitates the adjustment of 

parameters within the numerical model. By employing sensitivity analysis, the method 

identifies the influence of each parameters on the response of the model, allowing for targeted 

modifications to improve accuracy and reliability. Through this process, the updated numerical 

model aligns more closely with the measured data, enhancing its predictive capabilities and 

ensuring greater fidelity in structural analysis and design. 

The 3D Applied Element Method (AEM) is a powerful computational technique that has 

proven its efficacy in capturing the intricate non-linear behavior of structures, ranging from the 

early stages of crack initiation to the ultimate point of complete collapse. By employing static 

or dynamic non-linear analysis, AEM can accurately simulate and predict the response of 

complex structures subjected to various loading conditions. Unlike traditional methods, AEM 

accounts for the inherent non-linearities present in the structural materials, allowing for a more 

realistic representation of their mechanical response. This method leverages the discrete nature 

of the elements used in its formulation to model the localized behavior of cracks, yielding 

precise predictions of crack propagation and failure mechanisms.  



 

148 

 

However, there is always a big challenge of computational efficiency and matrix storage in the 

3D AEM tool. To improve the computational efficiency of the 3D AEM tool developed in 

FORTRAN90 has been tested with three different linear solvers: direct solver with skyline 

storage format, iterative solver with triplet storage format and parallel direct sparse solver 

(PARDISO) with triplet storage format. The parallel direct sparse solver (PARDISO) with 

triplet storage format is found to be the most efficient among all and is used for the developed 

3D AEM tool. 

Starting with the measurement of the ambient vibration of structure to operational modal 

analysis, numerical model updating in 3D AEM to seismic vulnerability assessment of the 

structure a complete system has been developed. Different performance criteria are used to 

study the vulnerability of the structure. First, the interstorey drift ratio is a crucial parameter 

for evaluating the damage sustained by each storey in a structure. By measuring the 

displacement between adjacent floors during an earthquake, it provides a quantitative measure 

of the structural damage. Additionally, incremental dynamic analysis offers a comprehensive 

assessment of the structure's overall capacity by subjecting it to progressively increasing 

ground motion intensities. This analysis technique allows engineers to gauge the structure's 

ability to withstand seismic forces and determine its performance under varying levels of 

ground motion. Another essential performance criterion is the Frequency degradation ratio 

(FDR), which reflects the stiffness degradation of the structure. By quantifying how the 

structure's natural frequencies change due to damage, FDR provides valuable insights into the 

global damage suffered by the structure. These performance criteria, namely interstorey drift 

ratio and FDR, play a significant role in optimizing the design of structures to enhance their 

seismic performance. Engineers have the opportunity to utilize this information in order to 

create stronger structures that are capable of withstanding earthquakes more effectively. 
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The precision of the model updating method relies significantly on initial guess of the updating 

parameters. When attempting to implement this method in real structures, obtaining the initial 

guess from a database of similar structures with comparable characteristics, the method can be 

effectively and successfully applied. This approach allows for a more precise estimation and 

adjustment of the updating parameters, leading to improved accuracy in the overall analysis or 

prediction of the real structures under consideration. 

7.2 Limitations 

There are certain limitations of this studies: 

 There were challenges in assessing ambient vibrations of buildings at all critical 

locations. 

 Acquiring higher modes proves to be challenging, and as damping in the structure 

increases, the accuracy of updates diminishes due to the increased occurrence of 

spurious higher modes. The accurate identification of higher modes and mode shapes 

in modal analysis presents inherent difficulties, leading to potential inaccuracies in the 

results. 

 The model updating is based on local optimization using Levenberg-Marquardt 

algorithm. So, occasionally the optimization process will be impeded by instances of 

converging towards local minima, primarily attributed to suboptimal initial guesses. 

 Presently, our capability is limited to representing the structure in 3D using the Applied 

Element Method with elements of the same size. Unfortunately, this approach results 

in an excessive number of elements, which is unnecessary. 
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7.3 Future Works 

7.3.1 Data-driven approach combined with the proposed method for model updating. 

The effectiveness of updating a model using the sensitivity method integrated in 3D AEM 

relies heavily on the preliminary estimation of the updating parameters according to the 

conclusion of this research. The accuracy and reliability of this methodology are closely tied 

to the initial guess of the updating parameters, making it a crucial factor for successful 

implementation in real structures. When the preliminary guess is afar from the actual solution, 

the optimization process using the sensitivity method can yield to a local minimum, leading to 

suboptimal results Figure 7-1. To address this issue, it is crucial to have an initial guess for the 

updating parameters that is close to the solution. One approach to achieve this is by leveraging 

a comprehensive database of analogous structures. By drawing upon the wealth of information 

available in such a database, it becomes possible to obtain reasonable approximations for the 

preliminary values of the updating parameters. This, in turn, enhances the accuracy and 

applicability of the sensitivity method integrated in 3D AEM when applied to real-world 

structures. 

 

Figure 7-1 : Need of database for increasing accuracy of model updating 
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7.3.2 Bayesian method for model updating in 3D AEM. 

After the successful implementation of the sensitivity-base model updating in 3D AEM, in 

future there is possibility to implement the probabilistic method of model updating. The 

Bayesian method can be the one which can be considered. The implementation of the Bayesian 

method in 3D AEM can be the future scope of this research. 

7.3.3 CUDA based solver to improve the computational efficiency of the 3D AEM 

The 3D AEM is a powerful numerical technique used for analyzing complex engineering 

problems by discretizing structures into smaller elements. However, its computationally 

intensive nature often demands substantial computing resources, leading to prolonged analysis 

times. Currently, parallel direct solver (PARDISO) is implemented in 3D AEM to solve the 

structural problem, that uses the capability of CPU threads but still for the large structures it is 

not very efficient. So, we aim to explore the potential of CUDA-based solvers to significantly 

boost the computational efficiency of 3D Applied Element Method (AEM) simulations. To 

address this challenge, we intend to leverage CUDA, the parallel computing platform from 

NVIDIA, to develop a high-performance solver that harnesses the power of GPUs for 

accelerating the resolution of large linear systems inherent in the AEM. By taking advantage 

of the GPU's parallel processing capabilities, we anticipate achieving substantial speedups, 

making 3D AEM simulations more accessible for real-world engineering applications with 

stringent time constraints. This research holds the potential to revolutionize the efficiency of 

3D AEM simulations and pave the way for more advanced and accurate engineering analyses. 

7.3.4 Modelling of structures with non-uniform elements sizes in 3D AEM 

The Applied Element Method (AEM) has shown great promise in efficiently simulating 

complex structures, yet its full potential remains untapped when dealing with non-uniform 

element sizes in three-dimensional scenarios. With the non-uniform element sizes we can 

significantly reduce the total number of elements in complex large structures and also we can 
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efficiently model the non-engineered structures very efficiently. This study seeks to develop 

novel algorithms and methodologies that accommodate varying element sizes, enabling more 

accurate and realistic simulations of real-world structures. By addressing this critical limitation, 

the research endeavors to enhance the overall performance and reliability of the AEM for 

practical engineering applications, contributing significantly to the advancement of structural 

analysis and design in various industries. 
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Annexes 

Annex 1: Structural details of the experimental frame 
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Annex 2: Structural and Architectural drawings of the field study building  
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Annex 3: Ambient vibration data of the field study building 
Set Location  X-direction ambient vibration Y-direction ambient vibration 
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