Doctoral Dissertation

|

Photoinduced phenomena
in organic conductors

(B 1‘%%1ZISL ETBHFERR)

A Dissertation Submitted for
the Degree of Doctor of Philosophy
2023  December
SHS5HEL 2 AL (M) HEE

Department of Physics, Graduate School of Science,
The University of Tokyo

SN e
PR E Ik

Keisuke Kitayama

el =E52






Abstract

Photoinduced phenomena have become a central focus in recent condensed-matter
physics, with numerous studies utilizing light. However, most of these studies has focused
on toy models or two-dimensional systems, such as graphene, silicene, and transition metal
dichalcogenides. In contrast, bulk materials have been largely overlooked in this area of
research. To further advance this promising field, it is crucial to expand the range of
target materials. Theoretical studies on real bulk materials with complex crystal and
electronic structures are highly desirable.

In this context, we investigate photoinduced phenomena in the organic conductor
a-(BEDT-TTF),l3. Employing two different methods, perturbation theory and Floquet
theory, we uncover novel photoinduced phenomena categorized into (i) topological phase
transitions and (ii) photovoltaic effects.

In (i), using Floquet theory, we demonstrate three distinct topological phase transi-
tions: a transition to the Chern insulator phase induced by circularly polarized light, the
pair annihilation of magnetic charges in momentum space induced by linearly polarized
light, and a novel type of photoinduced topological phase transition induced by ellipti-
cally polarized light. We explore the reasons behind these photoinduced phase transitions
and discuss the feasibility of experimental observation.

In (ii), we examine two nonlinear optical responses: the shift and injection currents.
Predicting the dependence of these currents on the frequency of light using perturbation
theory, we find that the direction of these currents strongly depends on the frequency.
Furthermore, we delve into the nonperturbative effects on these currents using Floquet
theory.

These findings highlight that a-(BEDT-TTF),I3 is a unique material offering a rare
opportunity to explore a variety of photoinduced phase-transition phenomena. This work
expands the scope of target materials for research on photoinduced phenomena, contribut-
ing to the development of optical manipulations of electronic states in condensed matter.






Contents

Abstract

1 Introduction

1.1 Quantum Hall effect and topology . . . . . . . . .. .. ... .. ... ..
1.1.1 Quantum Hall effect with a magnetic field . . . . ... ... ...
1.1.2  Quantum anomalous Hall effect . . . . . . ... ... ... ... ..

1.2 Physical phenomena in periodically driven systems . . . . .. ... ...
1.2.1 Topological phase transition . . . . . . ... ... ... ... ...
1.2.2  Edge state in periodically driven system . . . . . ... ... ...
1.2.3 Nonlinear optical responses . . . . . . . .. .. .. ... .. ...
1.2.4  Floquet prethermalization . . . . . . . ... ... ... ... ...
1.2.5 Experiments of periodically driven systems . . . . . . . . . . ...

1.3 Outline of this thesis . . . . . . . .. ... ...

Analytical method for photodriven systems

2.1 Perturbation theory . . . . . .. ... o o
2.1.1 The dipole Hamiltonian . . . . . . ... ... ... ... .....
2.1.2  Current density operator . . . . . . . ... ... ...,
2.1.3 Perturbation expansion . . . . . .. .. ..o

2.2 Floquet theory . . . . . . . . .
2.2.1 Floquet theorem . . . . .. ... . ... ... ... ...
2.2.2 Floquet effective Hamiltonian . . . . . . . ... ... ... ... ..
2.2.3 Floquet theory of photodriven tight-binding model . . . . . . ..

Photoinduced topological phase transition in a-(BEDT-TTF),I;

3.1 Model for photodriven a-(BEDT-TTF),I3 . . . . ... .. ... ... ..
3.1.1 Tight-binding model . . . . . . .. .. ... ... ... ...
3.1.2  Floquet Hamiltonian for photodriven a-(BEDT-TTF),I3 . . . . .

3.2 Topological phase transition induced by circularly polarized light
3.2.1 Band structure and Berry curvature . . . . . . ... ..o
3.2.2 Chiral edge current . . . . . ... oL

3.3 Pair annihilation of emergent magnetic charges induced by linearly polar-
ized light . . . . . .
3.3.1 Band structure and Berry curvature . . . . . .. .. ..o
3.3.2 Phasediagram . . . .. .. ...

il

o

S 00 O Ot Ot W N -

—_ = =
(G200 ]

17
17
17
20
21
27
27
28
31

33
33
33
37
38
39
41



Doctoral Dissertation

3.4 Novel type of photoinduced topological phase transition induced by ellip-
tically polarized light . . . . . .. .. ... oo
3.4.1 Model . . .. . .
3.4.2 Band structure and Berry curvature . . . . ... ... .. .. ..
3.4.3 Photoinduced Hall conductivity . . . . . ... ... .. ... ...
3.44 Phasediagram . . . . ... .o

3.5 Discussion . . . . ...
3.5.1 Band structure and off-resonant condition . . . .. ... ... ..
3.5.2  Experimental feasibility . . . . .. ... ... 000

3.6 Conclusion . . . . . . . .. e

Nonlinear optical responses in a-(BEDT-TTF),I;

4.1 Introduction . . . . . . . .. ..

4.2  Shift current . . . .. .o
4.2.1 Second-order responses . . . . . .. ...
4.2.2 Nonperturbative effects . . . . . . . . ... ... ... ... ...

4.3 Injection current . . . . ... ..o
4.3.1 Second-order responses . . . ... ..o
4.3.2 Nonperturbative effects . . . . . . . . ... ... ... ...

5 Summary
Appendix A Injection and shift currents from the Fermi-Golden rule

Appendix B Derivation of TKNN formula in Floquet systems

B.1 Creation and annihilation operators for Floquet state . . . . . . . .. ..
B.2 Linear response theory in Floquet systems . . . . . ... ... .. ... ..

Acknowledgements

Bibliography

v

67
67
68
69
70
72
74
75

79

81

83
83
84

89

90



Chapter 1

Introduction

In Chap. 1, an overview of recent studies on topology in both equilibrium systems and
time-periodic systems is provided, setting the context for the research presented in this
thesis. The discussion begins with a significant study in the realm of topology in equilib-
rium systems—the theoretical exploration of the quantum Hall effect. In two-dimensional
systems, the quantum Hall conductivity is theoretically shown to be characterized by a
topological invariant known as the Chern number. While the quantum Hall effect is
originally discussed in the presence of a magnetic field, some theoretical studies have
demonstrated the quantized Hall conductivity without the need for a magnetic field.
An illustrative example is the quantum Hall effect in time-periodic systems. The Floquet
theory allows the mapping of time-periodic systems to static systems, enabling the explo-
ration of topology in time-periodic systems analogous to equilibrium systems. Numerous
topological phenomena, including those not realizable in equilibrium systems, have been
investigated using this approach. This chapter reviews selected topological phenomena in
time-periodic systems, with a focus on topological phase transitions, edge states, nonlin-
ear optical responses, thermalization phenomena, and experimental studies. The chapter
concludes by outlining the structure of this thesis.

1.1 Quantum Hall effect and topology

Topological phenomena in quantum materials are a central theme in recent condensed-
matter physics. One of the pioneering areas of research that has unveiled the connection
between topology and quantum systems is the study of quantum Hall effect. After the
experimental observation of the quantum Hall effect, it was revealed to be characterized
by the Chern number, a topological invariant defined using the wave function. Since
its theoretical explanation, there has been vigorous research in the field of topological
materials. In this section, we will review research on the quantum Hall effect and the
quantum anomalous Hall effect, the latter of which can be observed even in the absence
of a magnetic field.
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1.1.1 Quantum Hall effect with a magnetic field

In this section, we introduce the quantum Hall effect, which was the first to reveal the
topological properties of quantum materials, along with its theoretical explanation. The
quantum Hall effect refers to the phenomenon where the Hall conductivity is quantized
in a two-dimensional electron system subjected to a strong magnetic field at low tem-
peratures [1]. Since its experimental observation, attempts to explain this phenomenon
were made by Laughlin and others [2]. In 1982, using linear response theory, it was
demonstrated that the Hall coefficient is given by the following equation [3]:

ie? (
Oy = A_Ohn;észn(k) (En _ Em)2 7(11)

where Ay denotes the area of the system and H is the Hamiltonian of the system. The
quantities E,, and E,, are the eigenvalues of the Hamiltonian, |u,g) is the Bloch function,
and f,(k) represents the Fermi-Dirac distribution function. This equation refers to as
TKNN formula. In 1985, Kohmoto derive the following equation for the Hall conductiv-
ity [4]:

r= [ SIS RR)IVex Ak (1.2

Bz 2T

where the integration is taken over the Brillouin zone. Here, the Berry connection is
defined as A, (k) = i (tumk|Vi|tmk). The Chern number is defined as follows:

vy = /B CriG % AL K).. (1.3)

7 2T

Using the Stokes theorem, it is well-known that this quantity only takes integers when
the system is two-dimensional. At absolute zero temperature, the Hall conductivity is
determined by summing the Chern numbers (v) of the bands below the Fermi level,
leading to the quantization of the Hall conductivity in two-dimensional systems. This
quantized effect is robust against common perturbations, as slight variations in electron
density or magnetic field strength do not alter the Chern number v. Chern numbers
are referred to as one of the topological numbers, and the systems where the topological
number can be defined from the bulk wave function are called topologically nontrivial
systems. The quantum Hall system serves as an example of a topological insulator. An
distinctive feature of the quantum Hall system is the presence of chiral edge states. The
theoretical work of Y. Hatsugai demonstrated the correspondence between the number
of edge states and the Chern number, known as the bulk-edge correspondence [5]. It is
crucial to note that breaking time-reversal symmetry is essential for the quantum Hall
effect, as a nonzero Chern number cannot be obtained without breaking of time-reversal
symmetry.

Subsequently, the quantum spin Hall effect, a topologically nontrivial phenomenon in
systems where time-reversal symmetry is not broken, was discovered [6]. The quantum
spin Hall effect can be intuitively explained as the superposition of the quantum Hall
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effects for spins 1 and |, with the application of a magnetic field in the opposite direction.
In the quantum spin Hall effect, there is no magnetic field; instead, spin-orbit interaction
plays an essential roles. The edge states exhibit motion in opposite directions for spins
1 and |, and this state is referred to as helical edge states [7]. The three-dimensional
versions of this system are observed in certain materials known as a topological insulator,
garnering significant attention in recent years [8, 9].

1.1.2 Quantum anomalous Hall effect

As explained in the previous section, the realization of the quantum Hall effect re-
quires the breaking of time-reversal symmetry. However, some theoretical studies have
explored the possibility of achieving the quantum Hall effect without the application of
a strong magnetic field, leading to what is known as the quantum anomalous Hall effect.
One example is the quantum spin Hall effect, which arises due to spin-orbit interac-
tion, as discussed earlier. Another representative model exhibiting this phenomenon is
the Haldane model [10]. Haldane considered a tight-binding model of graphene incorpo-
rating nearest-neighbor and next-nearest-neighbor hopping terms. He introduced terms
breaking spatial inversion symmetry and time-reversal symmetry to demonstrate the oc-
currence of the quantum Hall effect. Spatial inversion symmetry is broken by adding on-
site energies of +M and —M to two sublattices, while time-reversal symmetry is broken
by introducing a local magnetic flux in graphene, modifying the next-nearest-neighbor
hopping term from ¢y to tee’® [Fig. 1.1(a)]. It is noteworthy that the local magnetic
flux is zero over the entire unit cell, and Haldane demonstrated the manifestation of the
quantum Hall effect even when the energy levels are not discretized as in Landau levels.
The phase diagram, depicted using the magnitudes of terms breaking spatial inversion
symmetry and time-reversal symmetry [Fig. 1.1(b)], illustrates the phases with a nonzero
Chern number, indicating the manifestation of the quantum anomalous Hall effect.

(b)

3V3 v=0
M 4l
p, 0
-3v3 v=0
- 0 mn e

Figure 1.1. (a) Schematic of the Haldane model. There are on-site potentials
and a local magnetic flux in the honeycomb lattice model. (b) The phase
diagram of the Haldane model depicted in the plane of the phase due to the
local magnetic flux and the on-site potential energy. Adapted from Ref. [10].

In 2009, Oka and Aoki theoretically predicted the realization of photoinduced Hall
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effect in graphene under irradiation with circularly polarized light [11]. This was demon-
strated by combining Floquet theory, a theoretical method to analyze periodically driven
systems, with linear response theory which derived the TKNN formula for periodically
driven systems. Subsequently, in a later study [12], the effective model for graphene under
circularly polarized light was analyzed using Floquet theory, revealing its equivalence to
the Haldane model when expanded with respect to 1/w, where w denotes the frequency of
the light. The application of circularly polarized light opens a gap in the Dirac cone of the
graphene band structure [Fig. 1.2(a)]. Furthermore, it became evident that edge states
emerge in graphene under circularly polarized light based on finite-size system analysis
[Fig. 1.2(b)]. Since these studies were presented, research on the topological properties
of periodically driven systems has attracted diverse researchers and has been conducted
extensively.

' ()  Finite Strip

02 0 T 02

.1 0 0.
kx(1/a)

Figure 1.2. (a) The band structure of graphene in the absence of light irradi-
ation (upper figure) and that of graphene irradiated with cirularly polarized
light (lower figure). The bandgap opens at the Dirac points due to the irradi-
ation. (b) The graphene nanoribbon with finite sites in one direction (upper
figure) and the quasienergy band structure of the graphene nanoribbon irra-
diated with circularly polarized light (lower figure). Chiral edge states are
observed in its band structure. Adapted from Ref. [12].
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1.2 Physical phenomena in periodically driven sys-
tems

In the previous section, we delved into the exploration of topological properties in
equilibrium systems. Now, we shift our focus to the phenomena in periodically driven
systems. As mentioned earlier, the pioneering work using the Floquet theorem [11, 12, 13]
predicted that a honeycomb lattice irradiated with circularly polarized light achieves a
topologically nontrivial band structure similar to the one proposed by Haldane [10]. Since
then, there have been numerous attempts to realize phases in non-equilibrium systems
by subjecting materials to periodic driving force, which are challenging or impossible to
achieve in equilibrium [14]. As an example, theoretical research on fundamental aspects
of topology in periodically driven systems, including the classification theory for Floquet
systems [15, 16, 17], and applications like controlling quantum spin systems using light [18,
19], have garnered attention. Recent research employing the Floquet theory encompasses
theoretical explorations to realize time crystals in periodically driven systems [20], studies
examining periodically driven open systems using approaches based on Floquet-Lindblad
equations [21, 22], and investigations into the dynamics of periodically driven systems [23,
24, 25, 26]. This showcases a broad spectrum of research in this field. In this section, we
review some previous studies of photodriven systems related to this dissertation.

1.2.1 Topological phase transition

Topological phases induced by periodic drive have been explored intensively. For
instance, in 2011, Lindner et al. demonstrated that subjecting semiconductor quantum
well structures to a periodic driving force could induce topologically nontrivial states [27].
While previous studies focused on periodic driving in a gapless system [11, 12|, where
the frequency is larger than the bandwidth, this research deals with a gapped system
under periodic drive, where the frequency is smaller than the bandwidth but larger than
the bandgap. Additionally, the mechanism of the phase transition to a topologically
nontrivial system is different from that of the photoinduced topological phase transition
in graphene. It is impossible to resonantly couple the valence and conduction bands when
the frequency is larger than the bandwidth. However, the phase transition proposed by
Lindner et al. is realized by the resonant coupling between the conduction and valence
bands, leading to the opening of the topological bandgap [Figs.1.3(a,b)]. It should be
noted that this topological phase transition accompanies the emergence of a chiral edge
state, as shown in Fig. 1.3(c).

In addition, the induction of phase transitions by irradiating light has been demon-
strated for other materials such as silicene [28], transition metal dichalcogenides [29, 30,
31, 32], and nodal-line semimetals [33, 34, 35]. These theoretical studies utilize a static
effective models obtained through Floquet theory. The method to construct the effec-
tive model is presented in Sec. 2.2. The design of intriguing properties in periodically
driven systems by working backward from effective models is referred to as ”Floquet
engineering”.
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Figure 1.3. (a, b) Schematic illustration of two distinct types of photoinduced
topological phase transitions: (a) phase transition in a gapless system induced
by a periodic drive with a frequency larger than the bandwidth and (b) phase
transition in a gapped system induced by a periodic drive with a frequency
smaller than the bandwidth but larger than the bandgap. (c¢) Quasienergy
band structure for the periodically driven semiconductor quantum well with
finite extent in one direction, revealing the emergence of chiral edge states
connecting the upper and lower bands. The inset shows the band structure
of the semiconductor quantum well before the periodic driving. Adapted from
Ref. [14, 27].

1.2.2 Edge state in periodically driven system

As mentioned earlier, similar to the Chern insulators in an equilibrium state, chiral
edge states appear in graphene irradiated with circularly polarized light [5]. Furthermore,
there are other edge states named anomalous edge states that can only be observed
in Floquet systems [36]. As mentioned later, time-periodic systems with a period T
are characterized by a quasienergy e that has periodicity: shifting € by ¢ + 2mn /T
with respect to an integer m results in the same structure. Here m is an integer that
corresponds to the photon number. In other words, the quasienergy band structure within
the Floquet Brillouin zone A = [—7/T, 7 /T) repeats every 27/T. In 2013, M. Rudner et
al. demonstrated that due to the periodicity of quasienergy, edge states between different
photon numbers m can emerge, which cannot be observed in equilibrium systems [36] [see
the edge state near ¢ = 7w /T in Fig. 1.4(a)]. These edge states are referred to as anomalous
edge states.

The Chern number of a band is given by Nypper — Niower, Where Ny, denotes the
number of edge states that connect the correponding band and its upper band, and Njgyer
represents the number of edge states that connect the correponding band and its lower
band. This fact leads to the bulk-edge correspondence in equilibrium systems. However,
in periodically driven systems, anomalous edge states can be realized, leading to the
possibility of the emergence of edge states even when all the Chern numbers of the bands
in the system are zero [Fig. 1.4(a)]. Figures 1.4(b,c) illustrate a specific example, showing
the quasienergy band structure of a two-band model with nonzero Chern numbers with a



Doctoral Dissertation

—~
L

N[

(c)

Quasienergy
o

N3
=

G5
—
Quasienergy, ¢ (X w)

—7/a | O | /a

Figure 1.4. (a) Schematic illustration of the band structure where edge states
exist despite the Chern numbers of all bands being zero in a periodically driven
system. Edge states are present not only around € = 0 but also around ¢ =
/T, where € represents the quasienergy. These edge states emerge due to the
periodicity of quasienergy e. (b) Band structure of a two-band model with
nonzero Chern numbers for a finite system in the y-direction. (c¢) Quasienergy
band structure for the photodriven system corresponding to the band structure
in (b). The analysis was performed by truncating the Floquet Hamiltonian
shown in Sec. 2.2 to —1 < m < 1. The Chern numbers of the central two

bands corresponding to m = 0 are zero, but edge states exist between these
bands. Adapted from Ref. [36].
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periodic driving force whose frequency w is half of the bandwidth. It is evident that edge
states appear between different photon numbers m. Furthermore, the Chern number of
the band with m = 0 in Fig. 1.4(c) is zero. It is noted that this band structure was
obtained by truncating the Floquet Hamiltonian to —1 < m < 1. These anomalous
edge states between different photon numbers also appear in graphene irradiated with
circularly polarized light with a frequency smaller than the bandwidth [37, 38].

1.2.3 Nonlinear optical responses

In the previous section, we discussed thermodynamic properties using the quasienergy
band structures obtained in the Floquet theory. Now, we delve into transport phenomena.
The transport phenomena in periodically driven systems are more intricate because not
only the quasienergy band structures but also the nonequilibrium occupation function
play a crucial role [39, 40, 41]. Nevertheless, many transport phenomena have been ana-
lyzed using Floquet theory [42, 43]. One typical example is nonlinear optical responses,
and investigating these responses using Floquet theory enables us to discuss nonperturba-
tive effects in shift currents. In this section, we commence by reviewing previous studies
of shift currents before delving into the theoretical study using Floquet theory.

In the linear response theory, the output current j,(w) and the input electric field
E,(w) have a relation j,(w) = 0,0Fq(w). Nevertheless, higher-order terms with respect
to the light electric field opens the door to the fascinating realm of nonlinear optical
responses [44, 45, 46]. A notable example is second harmonic generation observed in sys-
tems with broken spatial-inversion symmetry [47, 48]. Second harmonic generation is one
of the second-order nonlinear optical response, resulting in the output current frequency
being twice that of the incident light. Another class of nonlinear optical responses that
has garnered significant attention is the bulk photovoltaic effect. The bulk photovoltaic
effect is also a nonlinear optical response wherein the output current is direct current (dc)
even in spite of the alternating current (ac) nature of the input electric field, leading to a
rectification effect [44]. Due to this unique mechanism, there has been active exploration
of next-generation solar cells utilizing perovskite compounds lacking an inversion cen-
ter [49, 50]. Understanding this rectification effect has been crucial in the development of
novel photovoltaic technologies. This rectification can be comprehended as the outcome
of the current frequency being the difference between the input frequencies, contrasting
with second harmonic generation, where the input frequencies were combined.

The most widely used method for calculating the nonlinear responses from the bulk
photovoltaic effect employs the perturbative approach. Studies based on this approach
can be distinguished into two groups: the length gauge [51] and the velocity gauge [45, 46]
approaches. These two different gauges incorporate the effect of light in different ways. In
the velocity gauge, the effect of light is incorporated by replacing the momentum operator
(h/i)V with (h/i)V + eA(t), whereas in the length gauge, the term er - E(t) is added
to the Hamiltonian. It should be noted that these two approaches yield equivalent final
results [46, 52]. The formalism for the perturbative approach using the velocity gauge
will be discussed in detail in Sec. 2.1.

However, understanding nonperturbative terms higher than second-order through per-
turbation theory analysis is challenging. Under these circumstances, Morimoto and Na-
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gaosa investigated nonlinear optical responses using a different approach: the method
based on Floquet theory [53]. They began with a two-band model comprising the va-
lence and conduction bands, with the Fermi level situated between them. Subsequently,
they examined the system under irradiation with linearly polarized light and constructed
the Floquet Hamiltonian. As discussed in Sec. 2.2, the Floquet Hamiltonian is infinite-
dimensional. However, they focused solely on the one-photon absorbed valence band and
the original conduction band, leading to a truncated 2x2 matrix Floquet Hamiltonian.
They employed Keldysh-Green’s function to derive the dc photocurrent. The obtained dc
photocurrent is consistent with the photocurrent predicted by perturbation theory when
the light amplitude is small. In other words, they theoretically observed that the dc
photocurrent J is proportional to the square of the amplitude E“. However, as the am-
plitude increases, they observed that J becomes proportional to I' E*, where I' represents
the dissipation coefficient.

@ e, (0)  Black Phosphorus () wSe, ! BP
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Figure 1.5. (a-c) Schematic image of (a) monolayer WSes, (b) black phos-
phorene, and (c) the heterointerface of WSey/BP. (d) Experimental outcomes
showing the laser power dependence of the dc photocurrent in WSey/BP un-
der irradiation with linearly polarized light. (e) Experimental results displaying
the photon energy dependence of the photocurrent. (f) Plots illustrating the
observed dc photocurrent as a function of linear polarization angle. Adapted
from Ref. [54].

This transition from quadratic to linear dependence of the dc photocurrent with an
increase in amplitude has been experimentally observed in a moire system [54]. Aka-
matsu et al. experimentally observed the bulk photovoltaic effect in a van der Waals



Doctoral Dissertation

heterostructure of WSe, and black phosphorene irradiated with linearly polarized light
[Fig. 1.5(a-c)]. Fig. 1.5(d) displays the laser power P dependence of the dc photocurrent
I. When the power P is small, the dc photocurrent is proportional to the power, but
the dependence changes as I oc P%% when the power is large. Note that the power is
proportional to the square of the intensity of light, so this result is consistent with the
theoretical analysis based on Floquet theory. Figure 1.5(e,f) depicts the photon energy
dependence of the dc photocurrent and the linear polarization angle dependence of the dc
photocurrent, respectively. Both of them are consistent with the theoretical calculation
based on the tight-binding model and perturbation theory.

Finally, we delve into the connection between symmetry and nonlinear optical re-
sponses. The manifestation of dc photocurrents through nonlinear processes is intri-
cately tied to time-reversal symmetry, spatial-inversion symmetry, and point group sym-
metry [55, 56, 57]. For instance, the presence of spatial-inversion symmetry renders the
bulk photovoltaic effect non-existent. Conversely, in scenarios where inversion symmetry
is absent but time-reversal symmetry is preserved, two second-order nonlinear optical re-
sponses emerge: the shift current and the circular injection current [45, 46]. As elucidated
in Sec. 2.1, the shift current represents the bulk photovoltaic effect induced by linearly
polarized light, while the circular injection current arises from circularly polarized light.
In cases where both inversion and time-reversal symmetries are broken, yet their product
is conserved, the induction of shift current from circularly polarized light and injection
current from linearly polarized light occurs. These photocurrents are commonly referred
to as magnetic photocurrents [58, 59]. In this thesis, our focus is on the organic conductor
with charge order, where time-reversal symmetry is present while inversion symmetry is
not conserved.

1.2.4 Floquet prethermalization

As explained earlier, various intriguing phenomena have been theoretically observed in
periodically driven systems. However, in 2014, it became evident that there are problems
in the theory of periodically driving isolated systems [60]. Specifically, it was shown that
the perturbative expansion with respect to 1 /w of the effective Hamiltonian obtained from
Floquet theory generally does not converge. This is attributed to the fact that in isolated
quantum systems, there is no way for the energy to dissipate, and the system is heated by
the periodic drive. More precisely, when rigorously determining the Floquet eigenstates
|ug) of interacting many-body systems and calculating the expectation value of a local
physical quantity O, it was demonstrated that it approaches the thermal equilibrium
value as,

(ta|Olua) = Tr[Opss]  if t — 00 (1.4)

in the thermodynamic limit. Here, p., represents the infinite-temperature state. This
assertion is referred to as the Floquet Eigenstate Thermalization Hypothesis [60, 61].
According to this thermalization hypothesis, Floquet eigenstates under periodic driv-
ing generally correspond to infinite-temperature states at ¢ — oco. After this research
was presented, T. Kuwahara et al. demonstrated that for systems with short-range in-
teractions subjected to a high-frequency external field, the expectation value of any local

10
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physical quantity O satisfies
(W(B)O[()) = ((0)] /M it O~/ i |45(0)) (1.5)

for sufficiently large n and times t < (/g)e®"™/9) where g denotes the characteristic
energy of the system [62, 63, 64, 65]. Here, |¥(¢)) is the solution of the time-dependent
Schrodinger equation for the periodically driven Hamiltonian H(t), and HZ; is the effec-
tive model of H(t) expanded to n-th order in 1/w. It is known that the equation holds for
n up to integers of the order of w/g. Therefore, for t < (h/g)e®"/9) the perturbatively
expanded effective Hamiltonian in 1/w can approximately describing the system’s time
evolution.

(O@1) 4

h o)
g

b~

Floquet prethermalization Thermalization to
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>

t

Figure 1.6. Time evolution of the expectation value of a local physical quantity
O(t) in periodically driven isolated quantum systems. There are two relaxation
steps in periodically driven isolated quantum systems, and the relaxation to
the first-step quasi-steady state before reaching infinite temperature is referred
to as prethermalization in the Floquet prethermalized state.

Let us explain the physical picture of this theorem. For the system to absorb energy
from the periodic driving force with frequency w, a single site must be able to absorb
energy up to about g. Consequently, it is necessary to involve approximately fuw /g sites to
absorb energy. Terms of this nature appear in the effective Hamiltonian of Floquet theory
at the same order of magnitude as fw/g. Therefore, considering only low-order terms in
the perturbative expansion of the effective Hamiltonian is equivalent to ignoring processes
of absorbing or emitting energy from the periodic drive. According to this theorem, the
time evolution of a local physical quantity O(t) exhibits two-step relaxation, as illustrated
in Fig. 1.6. The relaxation to the first-step quasi-steady state before reaching infinite
temperature is called prethermalization in the Floquet prethermalized state. We will
refer to this quasi-steady state as the nonequilibrium steady state in this thesis.

11
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1.2.5 Experiments of periodically driven systems

In conclusion of this section, we discuss experiments conducted in the periodically
driven system. While the field of Floquet systems is predominantly theoretical and has
seen relatively few experiments, there have been notable instances where theoretical pre-
dictions based on Floquet theory have been confirmed experimentally. Representative
experiments include the experimental realization of Floquet topological insulators using
photonic crystals, where edge states were observed [66, 67], and the experimental real-
ization of the Haldane model by periodically driving it through oscillations of the optical
lattice [68].

Additionally, some experiments confirmed the renormalization of transfer integrals
characterized by Bessel function under the application of a periodic drive [69]. For in-
stance, H. Lignier et al. conducted the experiments of shaking the optical lattices as
shown in Fig. 1.7(a). Figure 1.7(b) displays the dependence of the transfer integral on
the periodic drive. The renormalization of transfer integrals is explained using the Floquet
effective Hamiltonian. Specifically, as shown in Sec. 2.2, the zeroth-order term obtained
by perturbative expansion with respect to 1/w of the effective Hamiltonian for the pe-
riodically driven tight-binding model corresponds to the tight-binding Hamiltonian with
the transfer integrals replaced by ¢; ; — t; ;Jo(A; ), where A, ; is the dimensionless am-
plitude of the periodic drive. In this thesis, phenomena attributed to this renormalization
of transfer integrals are also observed.

Another noteworthy experiment involves the observation of the photoinduced anoma-
lous Hall effect in monolayer graphene [70]. In this experiment, a graphene sample with
four electrical contacts was exposed to ultrafast mid-infrared circularly polarized light,
as illustrated on the right side of Fig.1.8(a). The frequency of this light is 191 meV,
and the intensity is 4.0 x 10" V/m, corresponding to a pump fluence of 0.23 mJ/cm?.
The anomalous Hall currents were detected using a laser-induced photoconductive switch,
enabling time-resolved transport measurements with picosecond timescale resolution, as
shown on the left side of Fig.1.8(a) [71].

Several notable features of the photoinduced Hall conductivity were observed in this
experiment. Firstly, the anomalous Hall current exhibited a perpendicular orientation to
the applied current and experienced a reversal of polarity when light helicities were op-
posite [Fig.1.8(b)]. Secondly, an observable conductance plateau with a width of 60 meV
was identified when the Fermi energy was adjusted within the gap [Fig.1.8(c)], indicating
a consistent gap opening with the theoretically calculated photoinduced gap of 69 meV
[Fig.1.8(d)]. Furthermore, this experimental study revealed that when the Fermi energy
lies in the bandgap, the estimated Hall conductance is around 1.8 + 0.4 €?/h. However,
theoretical studies using a quantum Liouville equation with relaxations emphasized that,
even though Floquet states are realized, the observed anomalous Hall effect in photodriven
graphene is not solely attributed to the Berry curvature of the Floquet bands but is also
influenced by the population imbalance within the photon dressed bands[72, 73, 74].

The experiment observing anomalous Hall conductivity in photodriven graphene rep-
resents a significant study of photoinduced topological phase transitions in two-dimensional
Dirac systems. Additionally, more recently, the observation of anomalous Hall con-
ductance in three-dimensional Dirac semimetals has been reported by several different

12



Doctoral Dissertation

(b) }‘ A
(a) ) I\A

0.6 — u

| Joge! J |
e

0.4 o\ R

0.2

0.0 &

Figure 1.7. (a) Schematic illustration of optical lattice without the periodic
drive (upper figure) and the shaken optical lattice (lower figure). (b) The
transfer integral Jog of the shaken optical lattice as a function of the amplitude
of the periodic drive is shown. The vertical axis represents the transfer integral
Jegf normalized to the transfer amplitude J before the periodic drive, while the
horizontal axis represents the ratio of the amplitude to the frequency of the
oscillating external field. The dashed line represents the theoretical prediction

derived from Floquet theory. Adapted from Ref. [69].
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Figure 1.8. (a) Schematic illustration for the observation of light induced Hall
conductivity (b) Anomalous Hall current signals I, with an opposite direction
of an applied dc voltage bias. (c) The Fremi-energy dependence of observed
Hall conductance G, and the corresponding Floquet quasienergy band struc-
ture obtaianed using theoretical calculation. Adapted from Ref. [70].
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groups [75, 76]. These experiments are based on the theoretical prediction of a pho-
toinduced topological phase transition from a three-dimensional phase to Floquet Weyl
semimetal phases [77]. While these experimental results demonstrate the realization of
Floquet Weyl semimetal phases in photodriven three-dimensional Dirac semimetals, most
theoretical predictions using Floquet theory are still awaiting experimental validation.

1.3 Outline of this thesis

In this chapter, we have reviewed significant studies in both equilibrium systems and
periodically driven systems. However, most of these investigations primarily focus on
toy models or two-dimensional systems such as graphene, silicene, and transition metal
dichalcogenides. In light of these circumstances, our thesis delves into the exploration
of photoinduced phenomena within the organic conductor a-(BEDT-TTF),I3 [78]. We
focus on this organic conductor because it is a real bulk material with a pair of Dirac-cone
bands in its band structure. Additionally, the lattice constant of this material is larger
than that of other graphene-like materials, resulting in the enhancement of the applied
light effects.

In Chap. 2, we provide a comprehensive review of two distinct methods for analyzing
photodriven systems. The first method is grounded in perturbation theory with respect
to the light electric field. Here, we derive the dc photocurrent up to the second order
with respect to the electric field. The second method employs Floquet theory, and we
discuss the process of obtaining a static effective Hamiltonian in photodriven systems.

In Chap. 3, we present recent studies predicting various photoinduced phase transi-
tions in photodriven a-(BEDT-TTF),l3. Leveraging the Floquet effective Hamiltonian,
we anticipate three photoinduced topological phase transitions: a topological phase tran-
sition induced by circularly polarized light [79, 80], the pair annihilation of emergent mag-
netic charges in a-(BEDT-TTF),I3 under irradiation with linearly polarized light [81],
and a novel type of photoinduced topological phase transition accompanied by the col-
lision and collapse of Dirac cones in a-(BEDT-TTF),l3 induced by elliptically polarized
light [82]. We elucidate these phenomena by examining band structures, Chern numbers,
and Hall conductivity. Additionally, we discuss the feasibility of experimental observa-
tions.

In Chap. 4, our focus shifts to the examination of nonlinear optical responses induced
by light irradiation in a-(BEDT-TTF)sl5. We specifically explore two distinct responses:
the shift current induced by linearly polarized light [83] and the injection current induced
by circularly polarized light [84]. Employing perturbation theory, we demonstrate the
frequency dependence of these currents. Furthermore, we delve into the nonperturbative
effects using Floquet theory.

In Chap. 5, we consolidate and summarize all the discussions presented in this thesis.
Additionally, we conclude the thesis by discussing new and related future problems.
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Chapter 2

Analytical method for photodriven
systems

In this chapter, we review two different methods for analyzing photodriven systems.
One approach involves taking perturbations with respect to the external light electric
field, and we employ this method when investigating the dc photocurrent in Chap. 4. In
Sec. 2.1, we survey recent studies that explore current responses to the light electric field
using the Heisenberg equation [45]. It’s worth noting that we consider up to second-order
responses with respect to the electric field since the second-order is the smallest order
that results in the dc photocurrent. The other method to analyze photodriven systems
involves using Floquet theory. One advantage of this method, compared to perturbation
theory, is that it allows us to discuss nonperturbative effects of irradiation with light. We
apply Floquet theory when studying photoinduced topological phase transitions [Chap. 3]
and nonperturbative effects in dc photocurrents [Chap. 4]. In Sec. 2.2, we review the
method for constructing the static Floquet effective Hamiltonian and discuss its physical
interpretations [85]. We conclude this section by introducing our recent calculation of
the Floquet effective Hamiltonian for the photodriven tight-binding model [80].

2.1 Perturbation theory

In this section, we delve into the perturbation theory of current response with respect
to the light electric field. Initially, we construct the dipole Hamiltonian, which serves as
the foundation for our perturbation analysis. Subsequently, we define the current density
operator, as our primary emphasis lies on current response in this thesis. Finally, we
apply perturbation to the current density with respect to the electric field and discuss
the physical interpretation of the calculation results for second-order responses.

2.1.1 The dipole Hamiltonian

In this section, we construct the dipole Hamiltonian for photodriven systems, which
was introduced by Sipe et al. in Ref. [45]. We employ the Hamiltonian given by,

/@/}T x, )YH(t)Y(x, t)dx. (2.1)
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where 1(x, t) denotes the electronic field operator in the Heisenberg picture that satisfies

{U(x, 1), 0" (@', )} = o(x — ). (2.2)
Here #(t) is defined as,
H(t) = % —ihV + AW + V), (2.3)

where A(t) refer to a vector potential that produces the light electric field given by
E(t) = —dA(t)/dt, and V() is the periodic potential characterized by V(z) = V(z+a),
where a represents the lattice unit vector. The Heisenberg equation of motion is given

by,

= [(z,t), H(t)]. (2.4)
Next, we define the Hamiltonian without the vector potential as,

v
Ho=— — + V(@) (2.5)

and the eigenvectors of this Hamiltonian H, as v, (k,x). Using the Bloch’s theorem,
tn(k,x) can be divided into the phase factor and the periodic function as ¢, (k,x) =
un(k, z)e®®, where u,(k, ) is a function that satisfies u, (k, ) = u,(k,z + a). Then,
we define the function v, (k, z,t) as

Un(k, x,t) = U, (k, x) exp|—icA(t) - /h]. (2.6)
By taking the differentiation with respect to time, we obtain

m&pn(k,w,t)

5 = CE(t)- @ ya(k x) exp[—icA(t) - z/h). (2.7)

Since it is difficult to deal with a factor of @, we eliminate this factor by considering the
differentiation with respect to k. Then, Eq. (2.7) is rewritten as

Z_hawn(kz,m,t)
ot

Oy (K, ,t)

—ieE(t) - Ok

= —cE(t Zsmn Vm(k,z,t),  (2.8)

where the Berry connection &,,,(k) is defined as

&, (k) :i/dmu (k, m)w. (2.9)

It should be noted that &,,,(k) satisfies the following equation:

8un k z) Zum (k,x)€mn (k). (2.10)
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In this thesis, we do not consider the degeneracy of bands expect for the spin degrees of
freedom. Therefore, v, (k, x,t)/0k is finite and well defined. Considering the definition
of ¥, (k,x,t) in Eq. (2.6), ¥,,(k,x,t) form a complete set. Hence, we expand the field
operator ¥ (x,t) as,

(@, t) = Z/dk: an(le )iy (K, ., 1), (2.11)

where a,(k,t) denotes the Fermion operator that satisfies the anticommutation relations
{an(k,t),al (K. 1)} = 6pmd(k — K'), (2.12)

We substitute Eq. (2.11) into the Heisenberg equation of motion in Eq. (2.4). The
differentiation of ¢(x,t) with respect to time becomes

W (@ 1) Z/dk: —aa”éf’t>1/_zn(k,x,t) +an(k,t)—aw”(§£m’t)]

:Z/dk 8an(k,t) _ eE(t) ' Oa,(k,t) ZGE Zénm Y (k t)] (k. 1),

ot h ok
On the other hand, the right-hand side of Eq. (2.4) is transformed as
W, t), H(t)] =) / dk E,(k)a,(k,t)),(k, x), (2.14)

where E,,(k) denotes the eigenvalues of H, that correspond to the eigenvectors 1, (k, x).

By taking the projection of ¢, (k,x), we obtain an effective Hamiltonian for a,(k,t),

which satisfy

Oa,(k,t)
ot

in an explicitly Hermitian form as,

Hey = Z/dk E.(k)al (k,t)a,(k,t) 4+ icE(t Z/dk (k,t)0an (k)]

ih = [an(k, 1), Hogl, (2.15)

+eB(t) ) / dk Tpmal (k, t)an, (k. t), (2.16)
where we define the quantity 7, as
& ifn#Em
Tnm = {O otherwise, (2.17)
and the differentation in [a] (k,t)da,(k,t)] is defined as
1 k,t Ik, t
0l (e, )00 e, 1)] =+ [af (i, 20nBet) _ 0antket) oo ol e (R)al (K, (e 1),
2 ok Ok
(2.18)
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2.1.2 Current density operator

In this section, we define and discuss the current density operator. The current density
operator in Heisenberg picture is defined as,

Jt)=—= d—mw(m, 1)[—ihV + eA()] (. )

m

- _ez/ dkvnm Tk, t)am(k,t), (2.19)

where € denotes the volume of the system and the velocity matrix elements v,,,(k) are
given by,

v (k)5 (K — k') — % / da 7 (k, ) (—ihV o (K, ). (2.20)

Note that the matrix v,,,(k) can be rewritten as,

laEn(k) forn=m
Vom (k) = h Ok (2.21)

1

ﬁ(En(k) — B (k)En(k)  for n # m.

We also define intraband and interband polarization operators P, and P... The
Hamiltonian in Eq. (2.16) leads us to define them as,

Poa / dk Z (k,t)0a,(k,1))], (2.22)
P (t) = —e/ ik ZTnm (K, t)am(k,t). (2.23)

Then, the Hamiltonian in Eq. (2.16) is rewritten as,
Heff(t) - HO - Q[-Pintra(t) + -Pinter(t)] : E(t)> (224)

where the Hamiltonian Hp is defined as,
Ho = Z/dk:E Tk, t)an(k,t). (2.25)

The relation between current density operator J(t) and the polarization operators
-Pinter and -Pintra iS giVen by7

d-Pinter (t>

Jt:']inrat 5
(1) = Tia(t) + 200

(2.26)

where Jia(t) is defined as,
dk
Jintra(t) = —e / qunm (k, t)af (k)a (k). (2.27)
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In this equation, 0,,,(k,t) is given by,

_ € T (k) E°()
/Ugmuc? t) - vZn(k)anm + :

h
_ Enma(k, 1) (2.28)
where €,,,(k,t) is defined as,
Enm(k,t) = hwp(k)dpm — € Tom (k) - E(t). (2.29)
Here the generalized derivative ry, ., is defined as,
o = B el (1) — 8, 0] (B 2:30)

Equation (2.26) is proved by using the Heisenberg equation of motion and the sum
rules:

85§2§)k) B 3%;;&’6) _ _Z-Z [re (k)b (k) — b (k)re, (k)] , (2.31)

Pt = Toma = =1 > [Fay (R)rh,, (k) — 1%, (K)re, (k)] . (2.32)

For a simple derivation of the sum rules, refer to Ref. [51]. Hereafter, we use Eq. (2.26)
to study the optical response in photodriven systems.

2.1.3 Perturbation expansion

In this section, we discuss the perturbation expansion with respect to the light elec-
tronic field E(t). We first develop the equation of the motion for the physical quantity
Cmn (k) that is defined as,

o) = {af () am (k). (2.33)

Using the Heisenberg equation of motion and the Hamiltonian in Eq. (2.16), we obtain
the equation of motion for ¢,,,(k):

OCrn, eEb(t) ieE(t) Z( b b )

o + i(Wm — Wn)Cmn = o Cmb — mpCon — CopT'pm (2.34)

p

where w,, = E,,(k)/h. It is noted that the generalized derivative ¢,y is defined in the
same way as in Eq. (2.30). In many cases, it is a good approximation to neglect the term
corresponding to the intraband motion eE°(t)c,np/h. Hence, in the following, we drop
the first term in the right hand side of Eq. (2.34).

Next, we solve the equation of motion in Eq. (2.34) based on the perturbation expan-
sion with respect to E(t). The ground-state expression of ¢, (k), which corresponds to
the solution in the absence of E(t), should be given by,

O = £ 5. (2.35)
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Using Eqgs. (2.22), and (2.23), the polarization in the ground state is given by,

(PO} = (01 Prt) + Prel)) = ¢ 3 / IR b6k (2.36)

In this equation, the |¥) is the ground state of the Hamiltonian Hp. Note that the
polarization in the above equation is not dependent on time, so the current (J(t))©
becomes zero.

Now we discuss the first and second-order terms for ¢,,,, (k) in terms of the perturba-
tion expansion of E(t). We consider the light electronic field given by,

= Eje et (2.37)
B

By performing the integration with respect to time on Eq. (2.34), we obtain the first
order term:

=> Y B, Eje ", (2.38)
b B

where the quantity BY, is given by,

b
B, =~ ClmTmn (2.39)

I(Win — wg)
and f,, and w,,, are defined as f,, = fn — fn and wp, = w, — w,, respectively.

Performing the similar integral calculation, we obtain the second order term:

2 - b b b ,.c b e, —iwst
) ZZ ih(wmn — wy) ~Byne + Z( TpBpn = BnpTpn) EgE e ™, (2.40)

b,e B,y p

where the frequency ws, is defined as wy, = wz+w.,. In this thesis, we discuss perturbation
theory to study the dc photocurrent. The first-order term in Eq. (2.38) does not result
in the dc photocurrent because wg cannot be zero. On the other hand, the second-order
term in Eq. (2.40) can lead to the dc photocurrent when the summation of frequencies
wy, = 0. Hence, we consider the second-order responses with respect to the light electronic
field.

Here, we consider the second-order term for the current density. Using the Eq. (2.26),
the intraband contribution to the current density is given by,

<Jintra(t)>(2) - < mtra Jmtra(t»([n; (241)
<‘]101L1tra Z/ 3 TI}L’?’Z ZmaEb( ) (242)

<J1(;1tra 2/8 3 ng Zn (243)
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We first discuss the term (J2,. . (¢))YD. Using the second-order term for c,,(k) in
Eq. (2.40), (J&..(t )>(H) is given by,

intra

PROCE [zzz [ e Bt o)

n,m b By

EjES e

c

i ST et

n,m bec S W =

b e —iwnt
EgEle ,

(2.44)

where we define A, as A% =%, (k)—v%, (k). Here we have added the small quantity
n (> 0) to the frequency wz. We symmetrize this term in terms of the conversion b <+ 7c,

and then obtain
hsz Z Z Z/ fnm n nm? Tfnn]

Sz (O =

n,m byec B,y
X [Py (Winns wg) — Fy (Wi, wy)], ERESe™ ", (2.45)
where [r¢, vt T=rc rb —rb ro and the quantity Fi(wmy,,wp) is defined as,
1 1
Fi(wmn,ws) = + . (2.46)

Wimn — Wg — 1] Wiy + Wg — 11
The factor of 1/(wyn —w — 1) in the Fy (W, w,) is transformed as,
1 1
=P + i (Winn, — W), (2.47)

Wimn — W — 1N Wi, — W

where P denotes the principle part. Using the above equation, the (Jg, . (t))4? is given

intra
by,

abc

W Wg, W ,

(T () = ZZ{% —iEo;E ik ”)+w§§”< wy; wg, wy) | E4ESe ™™ (2.48)
be Byy

where 75% and 53¢ are defined as,

,’7(21170( —Wy, wﬁ? (JJ’Y 8h2 Z/ fnm nm, ?nn] [D_ (wmn, (JJﬁ) — D_ (wmn, (JJ,}/)] s
(2.49)
Gabe(— —Wy; W, Wy) 8h2w2 Z/ fnm T mn} [Hi (Winn, wp) — Hy (Wi, wy)] -
(2.50)

Note that 13% is purely imaginary, while 55 is real. In these equations, Di(wpn,ws)

and Hy (wWyn,ws) are given by,

Dy (wimn, wp) = 0§ (Winn — wg) £ (W, + wp) (2.51)

Ho (o g) = —— - & 71 | (2.52)
wmn—W5 Wmn (,U5
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Next we consider (Jg&.(t))) term in Eq. (2.41). By substituting Eq. (2.38) into

intra
Eq. (2.42), we obtain

(e = ZZZ / o3l m_”Z;”‘ _ELECe R (2.53)

n,m bec By mn

In the same way as when we derive Eq. (2.45), we symmetrize Eq. (2.53) in terms of
Bb <> yc. Then, the above equation is rewritten as,

<‘]161l1tra( = 4h2 ZZZ/ fnm Tmn fzm aF (wm7ﬂwﬁ>
nm bec B,y
+ (befry < cbyp)}, (2.54)

where (befy <> cbyf) indicates a term with the interchange of the indices from (b, ¢, 3,7)
to (¢,b,7, ). Using Eq. (2.47), we obtain

< ﬁltra I) = Z Z 0—(21%0 —Ws; wﬁ’ w”/) + i&g}’c(—wg; wﬂ’ w’Y)]EgEse_int7 (255)

be By
where o9% and 5% are defined as,
abe ime?
UQR( W2,wﬂ,w7 4h2 Z fnm mn nma‘D+ (wmnawﬁ)} + (bCﬁ’YH be}/ﬁ)}?
(2.56)
gabe(— W Wa, W) 4h2 Z/ fnm T s (wmn,wﬁ)} + (befBy < cbfyﬁ)} )
(2.57)

Note that both 5% and 3% is real.

Now we move on to the interband current d P (t)/dt in Eq. (2.26). The interband
contribution to the polarization is given by,

<-Pinter 2/8 3 mnrnm (258)

By performing the same calculations as when deriving (Jia(t)) in Egs. (2.48) and (2.55),
the following results are obtained:

< 1(111ter 2) = Z Z X?r?tcer Wy, Wg, w’Y) + X?f&a(—wg; Wa; w’Y)]EZEse_intﬂ (259)
be Byy
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where
) b rc
abc nm TrpT pn
i (Comion) =~ SN [ Tl g )
b,c B,y n,m,p
+ (befBy < cb'yﬁ)}, (2.60)

X?I?tcra( —Wws; CU5, w’Y)

’f’b ) b Ac
B 4h2 ZZZ/B 3o [( PR >+(5057ch’yﬁ) Fy (Winn, wy)

be By mm PyWmn p'y mn ]
pﬁr;}bm;c P rnmA%m |
A S [ g { [ (L ) ()] + 00 0 )}
b,e By n,m PryWmn p’y mn i
(2.61)

Here we define L, (ws,w,) as,

anp(“ﬁvw'y) = p,prmF+ (mea wﬂ) + p')/fon+ (wpmw’y) — fam 'y (wmm WE) ) (2‘62)

with pg = ws/wys and p, = w,/ws.
In conclusion, the second-order term of the current density is represented as,

(J () = 2—>—, (2.63)

where the polarization (P(t))?) is given by,

(P(t)? = x5 (~ws;wp, wy) By Eye ™", (2.64)
Here 3¢ is divided into two terms:
X%bc< wz;(“‘)B?w’}’) X?r?tcer( WE;LU/@,UJ,Y) + X?ﬁ;a(—wZ;Wﬁ,WV% (265)
where x2% is given by,
abc abc
abc UP) ( wZ?wﬁvwv) 09 ( wE;wﬂ7w’Y)
Wy Wa, Wy) =
thra( % %WBy ’Y) (—z'wz)2 — s,
+ Xintra (—Ws3 Wo, w3) (2.66)

with ogt¢ = o4t + (55 + 59%¢). It should be noted that there are powers of ws, in the
denominators in Eq. (2.66), but in many cases, y2 does not diverge when wy, — 0.

We now consider the second-order optical responses when the system is irradiated
with light E(t) = E(w)e ' + E(—w)e™'. We first consider the contribution from
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n3%(0; w, —w) in Eq. (2.66). We write the contribution from 73* as (Jinjection)@). Us-
ing Eqs. (2.49) and (2.66), (Jinjection)? is given by,

d Ja tlon
< 1nJec Z abe 0 w,—W)Eb<CU)EC( )+77¢21bc(0 —w w)Eb( )EC(W)}

Z 5%°(0; w, —w) B’ (w) B¢ (—w) + c.c.]
=2 Z 73 (0; w, —w) E*(w) E¢(—w), (2.67)

abc(

where 75°°(0; w, —w) is given by,

(0 0, —) — Wz [ s fom [P ] 8 = ). (2.68)

It is evident that this term corresponds to the injection of current induced by the irradi-
ation of the light E(t). Note that this term becomes zero when we consider the smaller
frequency compared to the bandgap energy. We also note that the same equation for the
injection current can be derived by using the Fermi’s Golden Rule. This indicates that
the injection current is attributed to the interference via one-photon absorption process
[see Appendix A]. As explained earlier, the irradiation with linearly polarized light results
in the vanishing the injection current when the system has the time-reversal symmetry.

Next, we consider the contribution from ¢$%°(0;w, —w) to the dc photocurrent. As
shown in Egs. (2.48) and (2.55), there are a real and an imaginary part in o$¢(0; w, —w).
However, when we consider the case of wy, = 0, the imaginary part disappears. Therefore,
we only consider the contribution from o2% in Eq. (2.55). We call this contribution as
shift current and write as <Jshift>(2). In the same way as the injection current in Eq. (2.67),
the shift current (Jye)® is given by,

(Jiur) ) =2 05"(0; w0, ~w) E* (W) E*(~w), (2.69)
b,c
where
aoc /Lﬂ-e C Cc
UQb (O,Cd 2h2 2/8 3fnm mn nma +Tmnrfzm;a)5(wmn _w)' (270)

This shift current appears because the charge distribution in real space is different between
the valence band and the conduction band. Consequently, upon light irradiation, a charge
shift occurs when electrons transfer from the valence band to the conduction band. The
"shift” of the center of charge results in a net current generation if the crystal’s symmetry
is low enough. In the following, we consider the component of 03" (0;w, —w). We divide

rb (k) into the phase factor and the absolute part as,

nm

rb (k) = |7“b (k)le—wnm(k). (2.71)

nm nm
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Then, Eq. (2.70) is transformed as,
3
abb (). _ e dk a [b |2
o5 (00, ) =~ n§mj / o Sl 8 = ), (2.72)

where the shift vector S?, (k) is defined as,

(k) = 20m ) o (k) — g5, ) (2.73)
Note that this shift vector corresponds to the change of the position of an electron in
real-space when the light is irradiated. We also note that Eq. (2.73) is gauge-invariant
although the Berry connection £, (k) is not gauge-invariant.

Lastly, we mention the contribution from xinger(0; w, —w) and Yingra(0; w, —w), which
arises from the interband polarization. They corresponds to the dc polarization resulting
from the mixing of the vector potentials with frequencies w and —w. However, they do not
contribute to the dc photocurrent when ws, — 0 [see Eq. (2.66)]. Therefore, in Chap. 4,
we focus solely on the shift current and injection current.

2.2 Floquet theory

In this section, we discuss Floquet theory as a method to study the nonperturbative
effect induced by irradiation with light. We begin with the Floquet theorem, which is a
temporal version of the Bloch theorem, and then explore the approach to derive a static
effective Hamiltonian [85]. Furthermore, we obtain the Floquet effective Hamiltonian for
a photodriven tight-binding model in Sec. 2.2.3. The content in Sec. 2.2.3 is based on
our previous study in Ref. [80].

2.2.1 Floquet theorem

In this section, we introduce a general formalism of the Floquet theory for photo-
irradiated systems. The photodriven systems are described by the time dependent
Schrodinger equation given by,

ih% \W(7)) = H(7)|¥(7)). (2.74)

Here the Hamiltonian H(7) is time-periodic as H(7) = H(7+T) with a temporal period
T (= 27 /w) of the light. In such systems, the wave function |¥(7)) can be written in the
form,

U(r)) = e =@ (7)) (2.75)

where € and |®(7)) are referred to as the quasienergy and the Floquet state, respectively.
The Floquet state satisfies |®(7)) = |®(7 + T')). This theorem is called Floquet theorem
and can be regarded as a temporal version of the Bloch theorem for spatially periodic
systems. We substitute Eq. (2.75) into Eq. (2.74) and perform the Fourier transformations
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with respect to time. Eventually, the time dependent Schrédinger equation is transformed
in the form,

> Hom [O)) =<5 D)), (2.76)
where
Hpm = Hp—yy — w6y, . (2.77)

Here the Fourier coefficients H,, and |®}) are defined as
e :
H, = —/ H(r)e™ dr, (2.78)
T Jo
1 [ :
o) = = / B, (1)) e dr. (2.79)
T Jo

The eigenvalue equation in Eq. (2.76) can be rewritten in the matrix form given by,

Hy—w H; H, |‘I)i> |<I>i>

H,l HO Hl ’@8) = E€a ’q)g> . (280)

H,Q H,1 H0+w ’(I);1> ’(I);1>

In this thesis, we refer to the matrix in Eq. (2.80) as Floquet Hamiltonian. It is noted that
there is no time dependence in the eigenvalue equation in Eq. (2.80), but this eigenvalue
equation is infinite-dimensional. More precisely, using the Floquet theorem, solving the
time-dependent Schrodinger equation [Eq. (2.74)] in a Hilbert space H is transformed
into the static eigenvalue equation in an expanded Hilbert space H ® T, where T is the
Hilbert space for the periodic drive. The integer n in T corresponds to the number of
photons, and |®, ") is interpreted as a state dressed with n photons [85].

It is obvious that the number of eigenvalues in Eq. (2.80) is dimH ® T. However,
there is redundancy in a set of eigenvalues and eigenvectors. When ¢, and {|®7")} are
an eigenvalue and an eigenvector of the eigenvalue equation in Eq. (2.80), then &, + nw
and {|®7"")} also become the eigenvalue and the eigenvector that corresponds to the
same physical state as e, and {|®7")}. In addition, solutions with eigenvalues that differ
only nw correspond to the same physical state, as shown in Eq. (2.75). Therefore, it is
sufficient to obtain the eigenvalues that belongs to the set A = [—w/2,w/2). Here, the
set A is referred to as the Floquet Brillouin zone.

2.2.2 Floquet effective Hamiltonian

In this section, we construct the static Floquet effective Hamiltonian corresponding
to the quasienergy within the Floquet Brillouin zone A = [—w/2,w/2). There are several
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ways to construct a Floquet effective Hamiltonian. In the following, we introduce the
Floquet effective Hamiltonian derived by Brillouin-Wigner theory [85].

We first define the projection operator and wave operator. The projection operator
is given by [Plm.n = Omndm,0, and the wave operator €2(¢) is defined as follows:

|(I)a> = Q(5>P |(I)a> . (2'81)

It should be noted that this equation does not hold for all «, but it works for at most dim P
eigenvectors. In the following, we consider the projection of the Floquet Hamiltonian to
the zero-photon substate. Using the projection operator and wave operator, the Floquet
effective Hamiltonian is given by,

Hyg = PHO(e)P, (2.82)

where H and M are defined as [H]nm = Hp—m — Mwopm and [M], m = mdy, m, respec-
tively. The reason why the effective Hamiltonian can be expressed in Eq. (2.82) is that
the eigenvalue and eigenvector of H.g can be derived using the following calculation:

Heffp |(I)a> = PHQ(g)P |(I)a>
== PH ‘(I)oz>
=e,P|Ps) . (2.83)

Note that P? = P holds by definition. This calculation shows that the eigenvalue and
eigenvector of Heg are €, and |®,,), respectively.

In the following, we consider the method for calculating the wave operator 2(¢). Note
that once we obtain the wave operator, the effective Hamiltonian can be derived using
Eq. (2.82). To obtain the wave operator (¢), we consider the projection of (1 — P) onto
the Floquet state |®,) and we find |®,) can be expressed as,

1-P

|‘I)a> =P |q)a> + W(H +MW - 504) |q)a>
= 1—ﬂ(H+M — &4) _17>|¢) (2.84)
= Mo W — €y ) - .

Therefore, we obtain the wave operator (2(¢) and the Floquet effective Hamiltonian Heg(¢)
as,

Qe) = (1 - %(H + Mw — 5))_ P, (2.85)
He(e) = PH <1 — 1/;15(7—1 + Muw — 8)) B P. (2.86)

It should be noted that the effective Hamiltonian is dependent on . The number of
eigenvalues of Heg(e) in Eq. (2.86) is dim H, but each eigenvalue contains the information
of dim T eigenvalues by considering the solution of the equation ¢ = FE;(¢). Therefore,
we can consider dimH ® T eigenvalues by using the effective Hamiltonian in Eq. (2.86).

29



Doctoral Dissertation

However, when we exclude the dependence of ¢ in the effective Hamiltonian by taking a
perturbation, we can only consider the dim H eigenvalues. In other words, the eigenvalues
of the effective Hamiltonian without the dependence of £ are not unique, and they are
determined by the way of eliminating the dependence of .

In the following, we consider a method of eliminating the dependence of ¢ to derive
the effective Hamiltonian from which all quasienergies belonging to the FBZ are able to
be obtained. Equation (2.85) is transformed as,

P 1—P

Qe) =P + 1/\/1%(7-[ + Mw)Q(e) —

Qe)e. (2.87)
In addition, we can conduct the calculation as,

eaP |Bo) = HugP | Do) (2.88)
— PHQ()P |Ds) .

This indicates that we can replace ¢ with PHS)(g). Therefore, the wave operator without
the dependence of ¢ is obtained as,
1-P 1-P
Q=P+ —-(H+ Mw)Q) — —QPHQ. 2.89
i (H + Mw) IR (2.89)
We can solve this equation and obtain the wave operator €2 self-consistently. The pertur-
bative expansion of the wave operator €2 with respect to 1/w is derived as,

Qpw = > Qi (2.90)
N=
00 — p, (2.91)
1 —
oy = —MZ)DHP, (2.92)
1-P
QN = o, (M M) Oy — Z T P 0o paai-an, (2.93)

Here we use the equations (1 — P)P = 0 and PM = 0. Using the above equation, we
obtain the Floquet effective Hamiltonian Hgyw as,

HBW - Z HBW; (294)
N=0
Higy = Ho, (2.95)
1 H—an
Hyy =, =", (2.96)
n#0
(2) H—nl ni— nanz H—ananO
Hgy = Z Z < N Now? o n2w2 ' (2.97)
n17#0 na#0 1
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It should be noted that the effective Hamiltonian Hgw produces all the quasienergies in
the FBZ and eigenvectors projected to the zero-photon subspace |®%) = P |®,).
If we only consider the first order of 1/w, we obtain the effective Hamiltonian Hgyy,

S e A ) .

nw w?
n=1

Here W refers to the bandwidth of the system. This effective Hamiltonian is valid when
the light frequency w is high enough compared to the bandwidth W. It should be noted
that the following approximated form, in which only the first term of the series expansion
is taken, is often used in the high-frequency limit,

H—l; Hl]

Hap ~ Ho + o (2.99)

2.2.3 Floquet theory of photodriven tight-binding model

In this section, we consider the following tight-binding model that describes a lattice
electron system,

H= th cle;, (2.100)

where i and j refer to the lattice sites. The symbol ¢/ (¢;) represents the creation (annihi-
lation) operator of an electron at ith site, while ¢;; denotes the transfer integral between
1th and jth sites. When the system is irradiated with light, the transfer integrals attain
Peierls phases due to the time-dependent vector potential of light electromagnetic field.
A general equation for the vector potential caused by the elliptically polarized light is
given by,

A(1) = (Aysin(wt + ¢), Ay sin(wT)), (2.101)

where ¢ denotes the phase difference between the x-component and y-component. This
vector potential gives a time-dependent electric field

440

= —(A,w cos(wT + ¢), Ayw cos(wT)). (2.102)
The transfer integrals with a time-dependent Peierls phase are given by
e
tij(T) = tij exp [—Z%A(T) . (’l"l’ — ’I"j):|

=t;; exp [ zhA (z; — x;) sin(wr + @) — zhA (i — y;) sin(wr)| . (2.103)

Here we introduce the coordinates r; = (x;, y;) for ith site.
The Fourier coefficients H,, are calculated using Eq. (2.78) as

i, Z tij Jn(Aij)e ™ cle;. (2.104)

31



Doctoral Dissertation

Here J,, is the nth Bessel function, and A;; and 6,; are respectively defined as

e

Aij = f—L[Ai(fEi —25)* + Ay — y3)° + 24, A, (i — 2)(yi — y;) cos ¢]/2 (2.105)
B Az(x; — x;)sin¢ }

6, — tan-! { j _ 2.106

J Ay(x; — xj) cos o + Ay(yi — yj) ( )

The second term of Heg in Eq. (2.98) is given by,
> H_n, n) =2
Z Z Z Zlm X X ( clep — cley), (2.107)
n=1
where we define
X = tigJn (Ay) e, (2.108)

This term describes next-nearest-neighbor electron hoppings between ¢th and kth sites
via the in-between jth site connected by two transfer integrals ¢;; and ¢;;,. On the other
hand, the first term Hy of Heg in Eq. (2.98) is given by,

HO = ZtijJQ(Aij)CjCj. (2109)

This term describes the nearest-neighbor electron hoppings between ith and jth sites
connected by a single transfer integral ¢;;, which are renormalized by the Bessel function
Jo(Ai;). It should be noted that the effective Hamiltonian obtained by substituting
Egs. (2.107) and (2.109) into the Eq. (2.98) represents a general equation applicable to
photodriven systems and is not specific to the organic salt a-(BEDT-TTF),l;.
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Chapter 3

Photoinduced topological phase
transition in a-(BEDT-TTF)l;

As introduced in Chap. 1, most of the previous research on photoinduced tological
phase transitions using Floquet theory has dealt with tight-binding models on simple
lattices, and there have been few studies based on realistic models for specific materials.
On the other hand, to further develop this promising research field, widening the range
of target materials is indispensable, and towards this objective, theoretical studies on
actual materials with complex electronic and crystalline structures are highly desired.
Moreover, we can expect richer material-specific photoinduced topological phenomena in
studies on actual materials. One promising material is an organic salt a-(BEDT-TTF )13,
where BEDT-TTF denotes bis(ethylenedithio)-tetrathiafulvalene [86]. This compound
has tilted Dirac cones in its band structure [78, 87, 88], and many interesting topological
properties and phenomena rising from these Dirac-cone bands have been investigated so
far.

In this chapter, we discuss our recent theoretical studies that predicted novel phe-
nomena and rich phases in photodriven organic salt a-(BEDT-TTF)sl;3. By analyzing
a photodriven tight-binding model describing conduction electrons in the BEDT-TTF
layer using the Floquet theorem, we demonstrate three topological phase transitions in
photodriven a-(BEDT-TTF),l3, (1) topological phase transition to the Chern insula-
tor induced by circularly polarized light [Section 3.2], (2) pair annihilation of emergent
magnetic charges induced by linearly polarized light [Section 3.3], and (3) novel type of
photoinduced topological phase transition accompanied by collision and collapse of two
Dirac cones [Section 3.4]. The content of this chapter is published in Ref. [79, 80, 81, 82].

3.1 Model for photodriven a-(BEDT-TTF),I;

3.1.1 Tight-binding model

In this section, we develop a tight-binding model for the organic conductor a-(BEDT-
TTF)sl; in the absence of the light irradiation. Figure 3.1 illustrates the crystal structure
of a-(BEDT-TTF),l3, where layers of BEDT-TTF*'/2 molecules are stacked alternately

with layers of I;' molecules. Typically, crystals made up of molecules are insulators.
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However, in the case of this material, a unique electron transfer process occurs. The I3
molecule receives an electron from the BEDT-TTF molecule, leading to the formation
of closed-shell electron structures I3 that contribute to the stabilization of the crystal.
As a consequence of this electron transfer, one-quarter of the electrons per spin in the
BEDT-TTF HOMO band shift to the I3 band, while the remaining three-quarters of the
electrons per spin remain in the BEDT-TTF HOMO band. Since the wave functions
overlap with adjacent molecules, electrons in the BEDT-TTF layers are able to move
within the layer. In contrast, the I;! layer’s band is located well below the Fermi energy
due to the closed-shell structure. As the BEDT-TTF layers are separated by the I3 layer,
the probability of electrons to transfer along the c-axis is minimal. Thus, this system is
often referred to as a quasi-two-dimensional system. In this thesis, we treat this material
as an ideal two-dimensional system.

This material exhibits a horizontal-stripe charge order stabilized by the long-range
Coulomb interactions under ambient pressure [89, 90, 91, 92]. However, this charge order
disappears when a uniaxial pressure, P,(> 4 kbar), is applied or when the temperature
exceeds 135 K. At that point, the system transforms into a Dirac semimetal with a pair
of gapless Dirac-cone bands whose Dirac points are situated at the Fermi level [86, 87].
In this thesis, we focus on scenarios where uniaxial pressure is applied, resulting in either
a gapless Dirac semimetal or a Dirac semimetal with a small gap in this material. It’s
important to note that the gap of the Dirac cones in its band structure can be adjusted
by applying the appropriate uniaxial pressure to this material.

® [:IEH:I; oo o

BEDT-TTF Iy

Figure 3.1. (a) BEDT-TTF molecule and I3 anions. (b) Crystal structure of
a-(BEDT-TTF)sl3 viewed from the a axis. BEDT-TTF layers and I3 layers are
stacked alternately. (c) The crystal structure viewed from the ¢ axis. Adapted

from Ref. [86].

Figure 3.2(a) shows the crystal structure of quasi-two-dimensional BEDT-TTF lay-
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ers in a-(BEDT-TTF),l;. We employ a tight binding model to describe the electronic
structure in the BEDT-TTF layer, which is given by,

H = Z Ztia,jﬂcj‘,acj,ﬁ + A Z(CIAQA — C;A,CLAI). (3.1)
ij a, i
In this equation, 7,; refer to the unit cells, while @ and g label the molecular sites
(A, A’ B, and C). The symbol c;a(ciﬁa) represents the electron creation (annihilation)
operator, and t;, ;3 denotes transfer integrals between neighboring sites. In Eq. (3.1),
we introduce a staggered site potential (A > 0) as an order parameter for the charge
order in a mean-field theory [90]. When the charge order completely melts (A = 0), two
tilted Dirac cones emerge between the third and fourth bands. Meanwhile, when the
compound is in the charge order phase (A > 0), the tilted Dirac cones become gapped at
the Dirac points, as confirmed by various experiments [93, 94]. The P, dependencies of
the eight transfer integrals in Fig. 3.2 are deduced theoretically by interpolation: t,; =
—0.028(1.00+0.089P,) eV, t,e = 0.048(1.0+0.167P,) eV, t,3 = —0.020(1.0—0.025P,) eV,
tp = 0.123 eV, tp = 0.140(1.0 + 0.011P,) eV, tp3 = —0.062(1.0 + 0.032P,) eV, and
tpy = —0.025 eV [95]. In this thesis, we assume that P, = 4 kbar.
After performing the Fourier transformations with respect to the spatial coordinates,
the tight-binding Hamiltonian is converted into the momentum space as

CkA
Cr A’
H = Z(CLA C;E:A’ CLB CLC’>H(k> CI;B ) (3.2)
k
CkC
where
A AQ B2 Bl
| A5 —-A B By
B By A, 0
with
Ay = 2t 4 cos(kya/2), (3.4)
By = ty e keb/ZHhya/d) |y o=ilhab/2=kya/4) (3.6)
By = typeikab/2kya/t) |y, o=ilkab/24kya/a), (3.7)

Here b and a are the lattice constants along the z and y axes, respectively [Fig. 3.2(a)].
Figure 3.2(c) displays the band structure obtained by diagonalizing the matrix of the
tight-binding Hamiltonian in Eq. (3.3) when A = 0. As mentioned earlier, two Dirac-
cone bands emerge in its band structure, leading to the discovery of various intriguing
phenomena, such as the flux-induced Chern insulator phases [96], prediction of nonlinear
anomalous thermoelectric effect [97], and observation of freezing of charge motion [98].
It’s worth noting that these Dirac cones differ from those in graphene in that they are
tilted and lack rotational symmetry.
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Figure 3.2. (a) Quasi-two-dimensional conduction layer of a-(BEDT-TTF)sl;.
The dashed rectangle represents a unit cell composed of four molecules (A,
A’) B, and C) and eight kinds of transfer integrals. (b) Schematic of a-
(BEDT-TTF)sI3 under the irradiation with circularly polarized light. (c¢) Band
structure of a-(BEDT-TTF)sl3 obtained from a tight-binding model for two-
dimensional BEDT-TTF layer. There exists a pair of tilted Dirac cones be-
tween the valence band (third band) and the condcution band (the fourth
band). Adapted from our previous study in Ref. [79, 81].
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3.1.2 Floquet Hamiltonian for photodriven a-(BEDT-TTF)-I;

In this section, we construct the Floquet Hamiltonian for a-(BEDT-TTF),I3 under the
irradiation with light. We consider the model where the light is irradiated perpendicularly
to the BEDT-TTF layer in a-(BEDT-TTF),I; [Fig. 3.2(b)]. As explained in the previous
chapter, a general form of the vector potential caused by the elliptically polarized light
is given by Eq. (2.101). Here we introduce dimensionless amplitude A, and A, as,
eal, ebA,

L A=t (3.8)

Note that amplitudes of the two electric-field components EY and L} for the elliptically
polarized light are given by,

A, =

E“’:Ayw:Aa—hw, Eg":Axw:Ab—hw.

@ ea eb (3.9)

For the Hamiltonian in the momentum representation, the effects of irradiation with
elliptically polarized light can be treated simply by replacing the momenta &, and &, as
k, —  ky+ Apsin(wr + ¢), (3.10)
ky, — k,+ Agsin(wr). (3.11)

It is straightforward to obtain the Fourier coefficients of the Hamiltonian H, for a-
(BEDT-TTF),l3 as in Eq. (2.104). The transfer integrals ¢;, jz are renormalized as

= tadu(Aa/2), (3.12)

t = tad n(AL)2), (3.13)

tir = tedon(Al/2), (3.14)

ty = taadu(Al/2), (3.15)

ty =ty (A )e M0 (3.16)

te = tyda(A)eTm-, (3.17)

tis =ty (AL)e ™0, (3.18)

tyy =t p(A)eT -, (3.19)

Here we define A, and 60, as

AL = i\/élfl% + A2 £ 44,4, cos ¢, (3.20)
0. = tan™" (ﬂjﬁ‘;?;li Aa) . (3.21)

By using the renormalizations, the Fourier coefficients of the Hamiltonian H,, is explicitly
given in the matrix form,

Aémo AQ,n(k) BZ,n(k) Bl,n(k)
, A5 (k) — Ao By, () Bi (k)
Hak) =\ B ) By(k) 0 Av (k) (3.22)
Bi (k) Bin(k) A1 (k) 0

1,—n 1,—n
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with

Al,n(k) - fal 6ikya/2<]—n (Aa/2> + tal e_ikya/2Jn<Aa/2)7

(3.23)
Ag (k) = tag v ]_ (Aa)2) + tase ™2 ] (A, )2),

(3.24)
B, (k) =ty 6i(kmb/2+kya/4)Jﬁn(‘AJr)efinG_*_ F ity 6fi(kzb/2fkya/4)Jin<A7)e+in0_’ (3.25)
Bon(k) = tyy eihebl2=kua/d) 1 (4 )etind= 4 g o=ilhib/2Hkya/d) 1 (4 )o=inds, (3.26)

In the case of ¢ = m/2, we have

1 2 _
Ar= A= 4kl + 4= A (3.27)

0, =0_ = tan! (%f”) = 9. (3.28)

In this thesis, we adopt two different approaches to analyze the Floquet Hamiltonian.
One approach is to directly solve the eigenequation in Eq. (2.76) by restricting the number
of photon as |m| < 8 where the size of the Floquet Hamiltonian matrix H,m, (= Hy,—m —
MWy m) in Bq. (2.77) is 68x68 because H, is a 4x4 matrix. The other approach is to
solve the eigenequation for Heg in Eq. (2.98) by restricting the summation over n within
n < 8. The former method provides finer and more precise calculation results in the
low-frequency region of hw/t < 1, while the latter method provides reasonable results
when hw/t > 1 because this method is based on the effective Hamiltonian obtained from
the perturbation with respect to ¢/hw. We also note that for smaller frequencies w, a
larger size |m| of the Floquet matrix is required, typically of the order of W/hw, where
W is the bandwidth [85]. Since we adopt |m| < 8 for a-(BEDT-TTF),l3 with W ~ 0.8
eV, the obtained results are reliable for hAw > 0.1 eV. Therefore we mainly discuss the
results obtained by the former method unless otherwise noted.

3.2 Topological phase transition induced by circu-
larly polarized light

In Sec. 3.1, we reviewed some features of a-(BEDT-TTF)yl3 and constructed the
Floquet Hamiltonian for the material under irradiation with light. Now, we shift our focus
to the photoinduced topological phase transition in a-(BEDT-TTF),I3. We begin by
discussing the photoinduced topological phase transition induced by circularly polarized
light. We demonstrate that irradiation with circularly polarized light opens a gap at the
Dirac points, ultimately leading to the system becoming a Chern insulator characterized
by a quantized topological invariant. The content of this section has been published in
Ref. [79, 81], and is also part of my master’s thesis.
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3.2.1 Band structure and Berry curvature

We discuss the photoinduced variation of band structures and their topological prop-
erties by analyzing the Floquet Hamiltonian obtained in the previous section. Here, we
focus on the case where the charge order dissolves upon applying sufficient uniaxial pres-
sure, and thus, we set A = 0 in the following. Figure 3.3(a) displays the band dispersions
for the third and fourth bands, E5(k) and E4(k), in the absence of photoirradiation. As
mentioned earlier, these two bands make contact at two individual points in momentum
space to form a pair of inclined Dirac cones, with the Dirac points situated at the Fermi
level. Figure 3.3(b-d) depict plots of E3(k) and E4(k) for photoirradiated systems with
various E* and w of light. Once the system is irradiated with circularly polarized light,
a gap opens at the Dirac points.

(a) (b) Chern insulator (c) On-resonant drive
(E®=8 MV/cm, »=0.7 eV) (E®=4 MV/cm, »=0.5 eV)
. \ 0.3F Néh:_1
Wy Wyl
0.1t .
n/a
J'I:/a + h=+1 J'[/a / ky
aky ky, —mu/b k b ™
-n/b Kx 6778 b Ky —pay X
(d) On-resonant drive ©) 0
(E®=8 MV/cm, »=0.5 eV) A B%(k) A ! %K) A
0.3 0 R . ‘
&= k. >
NCh_O ky kX kx
—~0.2} y
O
w
0.1
JIL(/a
- y
/b Ky n/b m/a

Figure 3.3. (a) Band dispersions of the third and fourth bands, E3(k) and
E4(k), before light irradiation. (b-d) Those for the photoinduced phases under
irradiation with circularly polarized light, i.e., (b) Néh # 0 under off-resonant
drive (Chern insulator phase), (c) N&; # 0 under on-resonant drive, and (d)
N¢,, = 0 under on-resonant drive. (e, f) Berry curvatures of the fourth band
BZ(k) in momentum space for (e) the photoinduced Chern insulator phase with
N¢, = —1 and (f) the photoinduced phase with N&;, = 0. Adapted from our
previous study in Ref. [79].

To explore the topological character of a-(BEDT-TTF)l; irradiated with circularly
polarized light, we calculate the Berry curvature and Chern number. The Chern number
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of the vth band N§, (r=1,2,3,4) is related to the Berry curvature BY(k),

1
N, = — / / B (k)dk,dk,, (3.29)
21 BZ

where the Berry curvature BY (k) at each k point is given by

(k)| aH |27 (K)) (P} (k)| 37-[ |®"(k)) — c.c.
- Z k) — k)P '

(3.30)

Here H refers to the Floquet Hamiltonian matrix, whereas " (k) and |®"(k)) are, respec-
tively, the eigenenergies and the corresponding eigenvectors of Eq. (2.76) with v = 1,2, 3,4
and |m| < 8. The summation is taken over m and p where (m, u) # (n,v); “c.c.” denotes
the complex conjugate of the first term of the numerator. Note that BY is independent
of the photon number n. In this thesis, the Chern numbers and Berry curvatures are
calculated using a numerical technique proposed by Fukui et al. in Ref. [99].

The calculated Chern numbers of the bands in photodriven a-(BEDT-TTF),l; are
presented in Figs. 3.3(b-d). The band structure in Fig. 3.3(b) depicts irradiation with
light of a frequency larger than the bandwidth of a-(BEDT-TTF),l3 (this situation is
referred to as the off-resonant situation). Note that the bandwidth of a-(BEDT-TTF),l;
shrinks due to renormalization characterized by the Bessel function Jy(A) resulting from
light irradiation. We observe a nonzero Chern number in the fourth band N¢,. When
the electron filling is 3/4 with three fully occupied lower bands, the sum of the Chern
numbers over the three bands below the Fermi level, Ney = S°0_, Ng,, coincides with
—N¢,,, because conservation of invariance requires the sum of the Chern numbers over
all four bands to be zero. Therefore, the band structure in Fig. 3.3(b), characterized
by Ncn = +1, is assigned to the Chern insulator phase. It should be noted that the
nonequilibrium distribution function can be approximated to the Fermi-Dirac distribution
when the frequency of light is larger than the bandwidth of the system.

On the other hand, we find both zero and nonzero Chern numbers for the fourth band
N¢,, when the frequency of light is smaller than the bandwidth of a-(BEDT-TTF),l;
(this situation is referred to as the on-resonant situation). Figures 3.3(e) and (f) display
the Berry curvature of the photoindced phases, corresponding to the band structures
shown in Figs. 3.3(b) and (d), respectively. The Berry curvature in the Chern insulator
phase has two negative peaks at the gapped Dirac points, corresponding to the nonzero
quantized Chern number —N¢, of —1. Meanwhile, the Berry curvature in Fig. 3.3(f) has
additional positive peaks as well as two negative peaks around the gapped Dirac points
that cancel the opposite contributions, resulting in N¢,, = 0. These additional peaks come
from the band crossing between the one-photon dressed band and the original band, and
thus this kind of phase only appears in on-resonant case. Note that the conductivity
and transport properties in on-resonant systems should be calculated using the Floquet—
Keldysh method [41, 100], which is formulated by combining the Keldysh Green’s function
technique [101, 102] and the Floquet theory. The photoinduced Hall conductivity in a-
(BEDT-TTF),l; is extensively discussed in our previous papers [79, 80] and my master’s
thesis.
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3.2.2 Chiral edge current

The Chern insulator is characterized by existence of chiral edge states as well as the
Chern number N¢y,. Therefore, we next investigate the edge states for systems having
edges to validate the predicted photoinduced topological phase transition. The band
structures including those associated with the edge states are calculated for systems
having edges by imposing the open boundary conditions in the z direction and the periodic
boundary conditions in the y direction and vice versa. Here we display how to perform
the calculations by taking a system having AA” and BC edges, both of which are parallel
to the y axis [Fig. 3.4]. The positions of unit cells are numbered in ascending order from
the left most (i=1) to the right most (i = N, ) along the x axis, whereas from the bottom
(j=1) to the top (j = N,) along the y axis.

AA’ edge BC edge

J

Y
Ny

x (b)

Figure 3.4. Monolayer nanoribbon-shaped system of a-(BEDT-TTF),I3 having
AA’ and BC edges parallel to the y (a) axis used for calculation of the band
structures including those of the edge states. The open boundary conditions
are imposed in the x direction while the periodic boundary conditions in the
y direction. The numberings of the unit cells along the z and y axes are also
presented. Adapted from our previous study in Ref. [80].

Since we impose the periodic boundary conditions in the y direction, we perform the
Fourier transformation for the creation and annihilation operators with respect to the y
coordinate,

nga = \/% Z Cltyiaeikyyjya7 (331)

yky

where i and j are the integer coordinates of unit cells along the z and y axes (i.e.,
1<i:<Nyand1 <5< Ny), respectively. The index a labels a molecule site among four
in the unit cell. The coordinate y; , is the y coordinate of the ath molecule site in the
(1,7)th unit cell. Then we can solve the eigenvalue problem for the nanoribbon-shaped
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system shown in Fig. 3.4 using the basis <cky7A71, Chy A 1s ™" > Chy BN, cky’chz> with

2 N, N,
/{:y:N—Zny,(ny:——y—}—l,---,—y)‘

Y

A tight-binding model for this system is given by,

H =) H(ky )i,

where
¢I];y = (Cl]::y,A,lv Czy,A’,U CLy,B,lv Clt:y,C,h T 7CLy,A,Nw7 Cchy,A’,Nz? CL%BM Cl]::y,C,Nl.> )
0 Haar Hap Hae O 0 0 0 0 0
Hyy 0 HpapHpce O 0 0 0 0 0
Hig Hyp 0 Hpe Hpa Hpar O 0 0 0
Hic Hyo Hee 0 Hea Hear O 0 0 0
0 0 Hiyn Hiy 0 Haa Hagp Hpac -+ 0 0
H(k‘y) = 0 O HEA/ HEA’ H;A’ 0 HA/B HA/C"' O 0 ,
0 0 0 0 Hig Hypg 0 Hpc--- 0 0
0 0 0 0 Hjc Hye He O 0 0
0 0 0 0 0 0 0 0 Hgyc
0 0 0 0 0 0 0 0 Hgce O
with

k
Hpc = 2t4; cos (774) =m

Hanr = toge™/? 4 t e /2 = p,
Hac = Hopr = tpe®/t = ¢
Hap = Hpar = tyge %/t = ¢,

’LkU/4 =

Hpyp = Hpa = tip3e q3

Hpae = Hop = tye /4 = ¢4

(3.32)

(3.33)

(3.34)

(3.35)

The transfer integrals in this tight-binding model attain Peierls phase when the system
is irradiated with circularly polarized light. Using the dimensionless vector potential
amplitudes 4, and A4, in Eq. (3.8), the components of the time-dependent tight-binding
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Hamiltonian are given by,

Hype(T) = 2t,4 cos (% + % sin(m-)) = pi(7) (3.42)

Har (1) = toge™/? exp (z% sin(w7)> + taze /2 exp (—z% sin(wr)) = po(7) (3.43)
iky /4 . -Aa . Ab _
Hac(T) = Hear (1) = tpe™  exp |i vh sin(wT) + 5 cos(wt) || = q1(7) (3.44)
—iky /4 . Aa . -Ab _
Hap(7) = Hpa/(T) = tyoe” "™/ " exp | —i va sin(wr) — - cos(wr) || = q2(7) (3.45)
- o iky /4 . Aa . Ab _
Hapg(7) = Hpa(T) = tyze™/ “exp |i vh sin(wT) + 5y cos(wr) || = qs3(1) (3.46)

Huo(r) = Hoa(r) = tue™ ™/ exp [—z (%sin(wT) - %cos(w)ﬂ =qu(r) (347

After the Fourier transformation with respect to time 7, we obtain the following Fourier

components
Pin = la1 [6iky/2J_n (%) +e /2], (é)} (3.48)

2
Do = taze™?J_, (“47) + taze /2], (%) (3.49)
Qin = tb1€iky/4an(A)€7ma (3.50)
Gon = tbz(i*iky/‘lJn(A)eﬂné’ (3.51)
q3n = tbSGiky/4J—n(A)e_in0 (352)
G = toae /T, (A)et (3.53)
where the following relations hold,
(13).n = (P2,—n)" (3.54)
(q1)n = (q1,-0)", (3.55)
(%) = (g2,-n)" (3.56)
(@3).n = (g3-n)" (3.57)
(43)n = (q4,-n)" (3.58)

By diagonalizing thus derived Floquet effective Hamiltonian, we obtain the band disper-
sion relations, which contain those of chiral edge states.

We examine several monolayer systems of a-(BEDT-TTF),l; with different edges.
Figures 3.5(a) and (b) depict band structures before and during the light irradiation,
respectively, for a system with vertical edges along the y axis, that is, the AA’” and BC
edges at left and right ends of the sample [Fig. 3.4 and Fig. 3.5(e)]. As explained earlier,
the open boundary conditions are imposed in the x direction, while the periodic boundary
conditions are imposed in the y direction. It should be noted that we obtain the band
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Figure 3.5. Band structures with chiral edge-state bands for systems with
vertical edges on which the open boundary conditions are imposed in the z (b)
direction. (a) Those for a steady system with AA’-BC edges in the absence
of light irradiation. (b-d) Those for photodriven systems with (b) AA’-BC
edges (¢) AA’-BC edges, and (d) BC-BC edges where the periodic boundary
conditions are imposed in the y (a) direction. (e-f) Systems with (e) AA’-BC
edges, (f) AA’-AA’ edges, and (g) BC-BC edges used for the calculations. The
amplitudes and frequency of light are set to be EY = 8 MV/cm, E = 8
MV /cm, and fw = 0.7 eV. Adapted from our previous study in Ref. [80].
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dispersion relations including those associated with the edge states by diagonalizing the
Floquet effective Hamiltonian. Here the amplitudes and frequency of the elliptically po-
larized light are chosen to be E¥ = 8 MV/cm, E = 8 MV/cm, and fw = 0.7 €V,
respectively, where the Chern insulator is realized. The band structures in Figs. 3.5(a)
and (b) show appearance of the bands associated with the edge states. The Dirac points
are degenerate before light irradiation in Fig. 3.5(a), whereas they become gapped un-
der light irradiation in Fig. 3.5(b). Importantly, the edge-state bands connect the lower
valence band and the upper conduction band, which clearly evidences that the predicted
photoinduced phase assigned to the Chern insulator phase is indeed topologically nontriv-
ial. We also examine other systems with different vertical edges. Figure 3.5(c) displays
the band dispersion relations for a system having two AA’ edges [Fig. 3.5(f)], whereas
Fig. 3.5(d) depicts those for a system having two BC edges [Fig. 3.5(g)]. We again obtain
the band structures associated with the chiral edge states connecting the upper and lower
bands of the gapped Dirac cones.

[ Before lightirradiation | | Under light irradiation
6

SoYs 001
So)Is 66

4

' [PA S A &b W]

Figure 3.6. Band structures with chiral edge-state bands for systems with
horizontal edges on which the open boundary conditions are imposed in the y
(a) direction. (a) Those for a steady system with AB-A’C edges in the absence
of light irradiation. (b-d) Those for photodriven systems with (b) AB-A'C
edges (¢) AB-AB edges, and (d) A’C-A’C edges where the periodic boundary
conditions are imposed in the x (b) direction. (e-f) Systems with (e) AB-A'C
edges, (f) AB-AB edges, and (g) A’C-A’C edges used for the calculations. The
amplitudes and frequency of light are set to be EY = 8 MV/cm, E = 8
MV /cm, and Aw = 0.7 eV. Adapted from our previous study in Ref. [80].

We also calculate the band dispersion relations for systems with horizontal edges
[Figs. 3.6(a)-(d)]. Systems used for the calculations are depicted in Figs. 3.6(e)-(g).
Specifically, we examine the systems with (e) AB-A’C edges, (f) AB-AB edges, and (g)
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A’C-A’C edges at upper and bottom ends of the system. The open boundary conditions
are imposed in the y direction, whereas the periodic boundary conditions are imposed in
the = direction. The amplitudes and frequency of light are again chosen to be EY = 8
MV /em, Ey = 8 MV /cm, and fiw = 0.7 eV, respectively. The Dirac points are degenerate
before the light irradiation [Fig. 3.6(a)], but the degeneracy is lifted by the photoinduced
gap during the light irradiation [Figs. 3.6(b)-(d)]. Although the bands associated with
the edge states depend on the edge species, they always connect the lower valence band
and the upper conduction band separated by the photoinduced band gap at the Dirac
points, again indicating that the corresponding photoinduced Chern insulator phase is
indeed topologically nontrivial.

3.3 Pair annihilation of emergent magnetic charges
induced by linearly polarized light

In the previous section, we demonstrated the photoinduced topological phase transi-
tion to the Chern insulator phase by focusing on the Chern numbers and the chiral edge
states. Against the topological phase transition due to the breaking the time revearsal
symmetry, we discuss the photoinduced band deformation induced by linearly polarized
light in this section. Using the Floquet theory, we theoretically predict that a pair of
slightly gapped Dirac-cone bands in a weakly charge-ordered a-(BEDT-TTF),I3, which
behave as magnetic charges with opposite signs in the momentum space, exhibit pair
annihilation under irradiation with linearly polarized light. This photoinduced pair an-
nihilation is accompanied by a nontopological phase transition to the Floquet normal
insulator phase in contrast to the circularly polarized-light-induced topological phase
transition to the Chern insulator phase. We stress that a charge-ordered state in a-
(BEDT-TTF),l;5 providing a required staggered site potential and thereby provides a
rare example of materials that can be used to observe the predicted pair annihilation
phenomenon. The content of this section has been published in Ref. [81], and is also part
of my master’s thesis.

3.3.1 Band structure and Berry curvature

We first discuss quasienergy band structures of a-(BEDT-TTF),]; irradiated with lin-
early polarized light. The irradiated linearly polarized light generates a vector potential,

A(7) = Asin(wt)(cos b, sin 0). (3.59)

This vector potential corresponds to a linearly polarized light electric field whose polarized
angle is 6,
dA(T)

E(r)=— e — Aw cos(wT)(cos 8, sin 0). (3.60)

Therefore, we set A, = Acosf, A, = Asin6, and ¢ = 0 to obtain the Floquet Hamil-
tonian matrix. Figures 3.7(a-d) show the band structures for various light amplitudes

46



Doctoral Dissertation

obtained by the Floquet Hamiltonian. Here, the frequency and polarization angle of the
linearly polarized light are chosen to be hw = 0.6 eV and 6 = 45°, respectively. Ad-
ditionally, as explained later, the site potential is fixed at A = 1 x 1075 eV for some
reasons. Figure 3.7(a) displays the band structure before the light irradiation. On the
other hand, Figs. 3.7(b-d) depict that the band structures during light irradiation have a
photoinduced pair annihilation of the Dirac points. The distance between the two Dirac
points shortens as the light amplitude E“ increases, and these two Dirac points eventually
merge and disappear at E¥ ~ 15 MV /cm.

0.4

(a) E°=0 (unirradiated) [ (b) E®=12 MV/cm, ho=0.6 eV | (c) E°=14 MV/cm, hw=0.6 eV | (d) E’=15 MV/cm, 7w=0.6 eV
03 i
>
@
>
0.2
[0
c
w
0.1
0 i H H ~2m/a
—n/b Ky n/b -m/b Ky /b “w/b K Wb b e 570 y
T (e ) G) (h)
05 I
& 0 * q— e 4
-0.5
n/a
-1 ky
—n/b Ky Wb -mib Ky wb  -mb Ky a/b -n/b Ky b 0

Figure 3.7. (a—d) Band structures of the photodriven a-(BEDT-TTF),I3 under
irradiation with linearly polarized light for various light amplitudes E“: (a)
E“=0 (unirradiated case), (b) E“=12 MV /cm, (c¢) E“=14 MV/cm and (d)
E“=15MV /cm. (e-f) Berry curvature of the fourth band in the photodriven a-
(BEDT-TTF)2I3. The sharp peaks with opposite signs indicate the existence of
positive and negative magnetic charges at the momentum points corresponding
to the gapped Dirac points. The frequency and the polarization angle of light
are set to be fiw = 0.6 eV and 6 = 45°, respectively. Additionally, the site
potential is fixed at A = 1 x 107 eV. The pair annihilation of magnetic
charges is realized with increasing E“. Adapted from our previous study in
Ref. [81].

This phenomenon can be regarded as a pair annihilation of emergent magnetic charges
with opposite signs. This pair annihilation in the momentum space is clearly visualized
by the Berry curvature in the momentum space, which acts as an effective magnetic
field by exerting an additional quantum phase (Berry phase) on itinerant electrons. For
the massless Dirac-cone bands without a gap opening, the Berry curvature cannot be
defined at the Dirac points. Here, the tiny gap at the Dirac points due to the staggered
site potential of A = 1 x 1075 eV is assumed to avoid this problem. Figures 3.7(e-f)
displays the calculated Berry curvatures B2(k) of the fourth band (v = 4) for various light
amplitudes E“, which correspond to the band structures in Figs. 3.7(a-d), respectively.
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Notice that the peaks of BY(k) at the two gapped Dirac points have opposite signs [79,
103, 96]. The positive peak corresponds to a positive magnetic charge (i.e., a source of the
emergent magnetic field), whereas the negative peak corresponds to a negative magnetic
charge (i.e., a sink of the emergent magnetic field). It should be noted that these magnetic
charges can be regarded as magnetic fluxes rather than magnetic monopoles because they
emerge in the two-dimensional momentum space. Therefore, the pair annihilation in this
organic system can be interpreted as the pair annihilation of magnetic fluxes.

3.3.2 Phase diagram

This pair annihilation of emergent magnetic charges in the momentum space is ac-
companied by a nonequilibrium phase transition. To study the photoinduced phases in
the present material, we define two types of energy gap defined as,

Egap = min [e}(k)] — max [5(k)] (3.61)
Egp = min [4(k) — 5(k)] . (3.62)

The gap Ej,p, is an indicator used to judge whether the system is insulating. That is to say,
when Ej,,, > 0, a gap opens at the Fermi level over the whole area of the Brillouin zone,
and the system is thus insulator. In contrast, the system is semimetal when Fg,, < 0.
Meanwhile, Egap is an indicator used to judge whether the Dirac cones are gapped. In
other words, the Dirac cones are gapped at the Dirac points when Eg,, > 0, whereas they
are not gapped when FEg,,, > 0. Note that F,,, cannot be negative by definition.

180 I I I I | I I | I I 1

b =
() Egap (eV) ©) Egap (V)
Dirac Semimetal L~
-0.04 0 0.04
135 (Type I) Normal 0 0.06

Semimetal

0 (deg)
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0 5 10 15 20 250 5 10 15 20 250 5 10 15 20 25
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Figure 3.8. (a) Phase diagram for nonequilibrium steady states in the photo-
driven a-(BEDT-TTF)2l3 irradiated with linearly polarized light, in the plane
of the amplitude E“ and the polarization angle 6 of the light. (b,c) Color
maps of the calculated two types of energy gap, (b) Egap and (c) Egap, de-
fined in Egs. (3.61) and (3.62), respectively. The light frequency w is set to be
hw = 0.6 eV. Adapted from our previous study in Ref. [81].

Figure 3.8(a) displays the phase diagram for nonequilibrium steady states in a-
(BEDT-TTF),l3 irradiated with linearly polarized light in the plane of the amplitude
E“ and the polarization angle 6 of light. Here, the light frequency w is chosen to be
hw = 0.6 eV. This phase diagram contains a variety of nonequilibrium steady phases
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such as the type-I Dirac semimetal, type-II Dirac semimetal, normal semimetal, and nor-
mal insulator phases. Here, we distinguish between two types of Dirac semimetal phases:
one is the Dirac semimetal with a point-like Fermi surface (type-I semimetal), and the
other is a Dirac semimetal whose Fermi surface contains electron and hole pockets (type-
IT semimetal). These phases are classified according to the signs of the calculated energy
gaps Eyp, [Fig 3.8(b)] and E,,, [Fig. 3.8(c)] (see Table. 3.1). Notice that we did not
consider the staggered site potential in obtaining the phase diagram.

| H Lgap =0 | Lgap > 0 |
Egop > 0 || Type I Dirac semimetal | Normal insulator

Eqap <0 || Type II Dirac semimetal | Normal semimetal

Table 3.1: Classification of the photoinduced phases in a-(BEDT-TTF),l;
under irradiation with linearly polarized light according to the band gaps
Eq.p and E,, defined by Egs. (3.61) and (3.62).

It should be noted that there are two possible types of band structure for Eg,, < 0
and Egap = 0. Figure 3.9(a) depicts the band structure in which the upper band crosses
the Fermi level at momenta far from the Dirac cones. On the other hand, Fig. 3.9(b)
displays the band structure with overtilted Dirac cones where the upper (lower) cone
band is located below (above) the Fermi level. In this thesis, we do not distinguish these
phases in the phase diagram. In addition, note that the system is in the on-resonant
situation when the amplitude of light is approximately less than 5 MV /cm in Fig. 3.8(a).
Therefore, as explained earlier, the transport phenomena in low amplitude region should
be considered using Floquet-Keldysh formalism. On the other hand, when the amplitude
of light is larger and the bands in photodriven a-(BEDT-TTF),l; is enough shrinked due
to the renormalization of the transfer integrals, the system becomes in the off-resonant
situation. Therefore, the photoinduced pair annihilation of emergent magnetic charges
occurs in the off-resonant situation.

As shown in Fig. 3.8, the phase transition from the Dirac semimetal phase to the
normal insulator phase occurs at E“ ~ 15 MV /cm, which indicates that the observed pair
annihilation of magnetic charges is accompanied by this photoinduced phase transition.
Importantly, this phase transition is not topological but topologically trivial. In the
case of the irradiation with circularly polarized light, the light breaks the time-reversal
symmetry, and the second term of the Floquet effective Hamiltonian in Eq. (2.98) thus
becomes finite (307 \[H_,, H,]/nhw # 0). Indeed, this term opens a gap at the Dirac
points, and the Floquet Chern insulator phase eventually appears as bands separated by
the gap attain nonzero Chern numbers. On the other hand, the Chern insulator phase
never appears in the present case because the linearly polarized light does not break the
time reversal symmetry. When the system is time-reversal invariant, the second term
of the Floquet effective Hamiltonian vanishes (Y [H_,, H,]/nhw = 0) because the
Hamiltonian is required to be invariant upon the replacement of w with —w. As a result,
the Hamiltonian reduces to Hog=Hy+ O(1/w?). However, the photoinduced gap opening
occurs in this case due to the photoinduced renormalization of the transfer integrals.

49



Doctoral Dissertation

(@)

ky y
~n/b Ky wp0 b Ky b0

Figure 3.9. Two possible types of band structure for Eg,, < 0 and Egap =0.
(a) Band structure in which the upper band crosses the Fermi level at momenta
far from the Dirac cones. (b) Band structure with overtilted Dirac cones where
the upper (lower) cone band is located below (above) the Fermi level. Both
cases are assigned to the type-II Dirac semimetal phase in the phase diagram
in Fig. 3.8(a). Adapted from our previous study in Ref. [81].

More specifically, according to Eq. (2.98), the transfer integrals in the expression for Hy
are renormalized as

tia,jﬁ — tia,jﬁJO(Aia,j,B>- (363)

The normal insulator phase appears when the gap is opened by the resulting photoinduced
band deformation.

Bond Photoinduced renormalization | Renormalization
direction of transfer integral factor

[010] tal — taljo(.Aa/2) Jo(.Aa/Q)
tag — tag J() (.Aa/Q)
ta3 — tagjo (.Aa/Q)

[110] ty — tleo(A+) Jo(.A+)
_ tb3 — tngo(A+)

[110] tpo — tngo(A_) J()(.A_)
tb4 — tb4Jo(A_)

Table 3.2: Photoinduced renormalizations of the transfer integrals in a-
(BEDT-TTF),I3 under irradiation with linearly polarized light.

In the phase diagram of Fig. 3.8(a), the normal insulator phase is observed only when
the polarization angle @ is approximately 45°. This indicates that only linearly polarized
light with a polarization angle of § ~ 45° gives rise to the pair annihilation of emergent
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Figure 3.10. (a) Photoinduced renormalization factors Jy(A./2), Jo(A4) and
Jo(A-) for the transfer integrals in a-(BEDT-TTF)2l3 under irradiation with
linearly polarized light as functions of the light polarization angle . The light
amplitude and frequency are set to be E“=15 MV /cm and hw=0.6 eV, respec-
tively. (b) Trajectories of the positive and negative emergent magnetic charges
at the Dirac points with increasing light amplitude £* in the momentum space.
Adapted from our previous study in Ref. [81].

magnetic charges. This sensitivity to the polarization angle § might be attributed to the
anisotropic renormalizations of the transfer integrals. Under the irradiation of light, the
transfer integrals are renormalized by factors represented by the Bessel functions as shown
in Eq. (3.63). More specifically, the transfer integrals for bonds along [010], [110] and [110]
directions are renormalized by factors Jo(A./2), Jo(A4) and Jo(A-), respectively (see
Table. 3.2). Since A,, A, and A_ are functions of # as shown in Egs. (3.72) and (3.77),
the extent of the renormalization significantly depends on the angle 6. In Fig. 3.10(a),
we plot the three renormalization factors Jy(Aq/2), Jo(A4) and Jy(A_) as functions of
6. We find that Jy(A;) takes a minimum at 6 ~ 45°, which means that the transfer
integrals for bonds along the [110] direction are strongly suppressed at 6 ~ 45°. This
anisotropic renormalization of the transfer integrals is expected to modulate the band
dispersions along the [110] direction in the momentum space, which displaces the Dirac
points along this direction and the resulting collision and pair annihilation of the emergent
magnetic charges with opposite signs. To confirm this, we display the positions of the
two emergent magnetic charges in Fig. 3.10(b). As the light amplitude E*“ increases from
0 to 15 MV /cm, the positions of the positive and negative magnetic charges move toward
(ky, ky)=(0,7) and (0, —), respectively. Notably, they move approximately along the
[110] direction in the momentum space, which supports the idea that the pair annihilation
results from the anisotropic renormalizations of transfer integrals.

It should be noted that the pair annihilation of Dirac points cannot be observed
in a honeycomb lattice irradiated with light. This is because the renormalizations of
the transfer integrals do not depends on the bond direction in this case. Recently, the
movement and merging of the Dirac points have been observed both theoretically [104]
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and experimentally [105], but these studies manipulate the transfer integrals one by one.
Therefore, the photoinduced pair annihilation of magnetic charges is a novel phenomenon
that can occur only in low symmetry materials.

3.4 Novel type of photoinduced topological phase
transition induced by elliptically polarized light

In the previous section, we illustrated that the pair annihilation of the emergent
magnetic charges with opposite signs can be realized in a-(BEDT-TTF )13 irradiated with
linearly polarized light. We stressed that this phenomenon occurs due to the anisotropic
renormalization of the transfer integrals. In this section, we theoretically predict that
irradiation with elliptically polarized light with a specific elliptical-axis angle [Fig. 3.11]
causes collision of the Dirac points and resulting their collapse through dynamical band
deformation, which result in the topological phase transition from a semimetal with
gapped Dirac cones (topological) to a normal insulator (nontopological). This novel
type of topological phase transition is distinct from the photoinduced topological phase
transition induced by ciruclarly polarized light shown in Sec. 3.2. We also elucidate a rich
nonequilibrium phase diagram in plane of the amplitude and elliptical-axis angle of light
that contains four phases: topological semimetal phase, Chern insulator phase, normal
semimetal phase, and normal insulator phase [Fig. 3.12]. In addition, we propose that
the Hall conductivity can be a promising probe of the predicted unique photoinduced
phase transition. The content of this chapter has been published in Ref. [82]. Note that
the calculation results of band structure and Berry curvature (Sec. 3.4.2) is part of my
master’s thesis.

Figure 3.11. (a) Elliptically polarized light applied to the BEDT-TTF layer,
which is characterized by the short-axis and long-axis amplitudes (E¢, Ef),
the polarization angle «, and the frequency fiw. (b) Schematic of photodriven
a-(BEDT-TTF),I3 irradiated with elliptically polarized light. [80, 82]
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Figure 3.12. Schematic band structures of various photoinduced phases dis-
cussed in this section, i.e., (a) topological semimetal with gapped Dirac cones,
(b) Chern insulator, (c) normal semimetal, and (d) normal insulator. The
former two are topological phases which is characterized by nonzero Chern
numbers, while the latter two are nontopological phases. Adapted from our
previous study in Ref. [82].
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3.4.1 Model

In this section, we consider the situation that a-(BEDT-TTF),l3 is irradiated with
elliptically polarized light, whose vector potential is given by,

)< (G ) (Aesten. 5o

Here w is the frequency of light. This vector potential produces a time-dependent electric
field,

_ (cgcslg —sina) (—wa sin((m')) ’ (3.65)

sina cosa EY cos(wT)

where the amplitude of light is defined as EY = A,w (v = S,L). Equation (3.65) de-
scribes elliptically polarized light in Fig. 3.11(a), which is characterized by the long-axis
amplitude Ep’, the short-axis amplitude £Y, the elliptical-axis angle o, and the frequency
hw. Tt should be noted that we introduce the elliptical-axis angle to investigate the col-
lapse and collision of Dirac points in this section, which is distinct from the elliptically
polarized light considered in Sec. 3.1.2. The formalism in Sec. 3.1.2 corresponds to the
case of a = 0.

The Fourier coefficients of the tight-binding model with the Peierls phases that cor-
responds to the vector potential in Eq. (3.65) are calculated as,

H, Z thc i8dn(Aiagp)e” mJﬁCT a€i.B (3.66)

(i,5) B
where J, is the nth Bessel function. Here, A;, jz and 6;, ;3 are respectively defined as
(& - ~ ~ ~ .
Ao jp = - [{bAL(mm — Zj8) cos @ + a Ay (Jia — Jjp) sin a}2
+ {—bAs(Zio — Tjp) sin a + aAg(Yia — Jjp) COS a}ﬂ 12
= [{A(Fia — %jp) + Aa(Tia — G55)}
N - . . 1/2
+ {—AdlFio — Fjg) + Ac(Gia — Tis)}] (3.67)
bAL(Zio — Tjp) cos @ + aAL(Jia — Jjp) sina
—bAs(Tio — Tjp) sin o + aAs(Pia — Jj8) COS v

eia,jﬁ = tanfl |:

— tap-l { Ap(Zia — Tjp) + Aa(Jia — Uip) } (3.68)
~Ad(Tia — Tjp) + Ac(Jia — Ujs) |
with
A = eaAthin@ (3.69)
A
Ay = m% (3.70)
A= w (3.71)
bAg si
Ay ===, (3.72)
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After performing the Fourier transformations with respect to the spatial coordinates,

we obtain,
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+2bcos a + asin ),
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0 tan— Apsina
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¢9:|: = tan_l [

We utilize Eq. (3.73) for H,, H_,, and

Ap(£2bcos a + asin )
As(F2bcosa+asina) |

H,_ ., in Egs. (2.77) and (2.98).

3.4.2 Band structure and Berry curvature

(3.73)

(3.74)
(3.75)

(3.76)

(3.77)

We first discuss the photoinduced collision and collapse of two gapped Dirac points
and resulting novel topological phase transition in a-(BEDT-TTF),l3. Figures 3.13(a-d)
depict quasienergy band structures under irradiation with elliptically polarized light for
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(a) Ef =13 MV/cm (b) Ef =14 MV/cm (c) E?=15MV/cm (d) Ef =16 MV/cm

Ky /b —n/b Ky /b -n/b Ky n/b  —n/b Ky
Figure 3.13. (a-d) Band structures in a-(BEDT-TTF)sl3 under irradiation
with elliptically polarized light for different long-axis amplitudes E}’ of light,
ie., (a) Ef =13 MV/cm, (b) EY = 14 MV/cm, (¢) Eff = 15 MV/cm, and
(d) BY =16 MV /cm. (e-h) Berry curvatures for the fourth band in respective
band structures. When a weak light field is applied, a pair of gapped Dirac
points with positive Berry-curvature peaks appear, indicating the emergence
of photoinduced topological phase. The distance between the two Dirac points
becomes closer as Ef’ increases, and they eventually collide to annihilate when
EY ~ 15 MV/cm. At EY = 16 MV /cm, a gapped band structure with zero
Berry curvature appears, indicating the occurence of photinduced phase trani-
tion to a nontopological insulator phase. The frequency, polarization angle, and
short-axis amplitude of elliptically polarized light are set to be Aw = 0.6 eV,
a =45° and E¢ = 2 MV /cm, respectively. Adapted from our previous study
in Ref. [82].
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different long-axis amplitudes EY of light, namely, (a) EY = 13 MV /cm, (b) EY = 14
MV /em, (¢) EY = 15 MV /cm, and (d) EY = 16 MV /cm, where the other parameters of
the light are chosen as hw = 0.6 eV, a = 45°, and EY = 2 MV /cm. These results are
obtained by diagonalizing the Floquet Hamiltonian in Eq. (2.77). In Figs. 3.13(e-h), the
Berry curvatures of the fourth band for corresponding quasienergy band structures are
displayed.

Since elliptically polarized light breaks the time-reversal symmetry, it opens a topo-
logical gap at the two Dirac points that are initially gapless, and brings about a phase
transition to a topologically nontrivial phase. As presented in Figs. 3.13(a) and (b), the
quasienergy bands of this topological phase cross the Fermi level at certain momentum
points distinct from those of the gapped Dirac points, indicating that the system attains
a metallic conductivity. Hence, we call this phase as the topological semimetal with a
pair of gapped Dirac cones. Note that the Chern numbers of the third and fourth bands
are N&, = —1 and N§, = +1, respectively. As shown in Figs. 3.13(e) and (f), the Berry
curvature of the fourth band has positive peaks that correspond to two gapped Dirac
points. These positive Berry curvatures give rise to nonzero Hall conductivity, which
will be discussed in Sec. 3.4.3. This photoinduced topological phase transition is noth-
ing but the one that has been intensively studied since its prediction for a photodriven
Dirac-electron system in graphene [11, 12, 13, 85].

As we increase the long-axis amplitude Ep of light, these two Dirac points get closer in
the momentum space [Figs. 3.13(a) and (b), and Figs. 3.13(e) and (f)]. This approaching
behavior of the Dirac points is caused by the band deformation due to the photoinduced
anisotropic renormalization of the transfer integrals as discussed in Sec. 3.3. When EY
reaches around 15 MV /cm, these Dirac points collide [Figs. 3.13(c) and (g)], and even-
tually disappear [Figs. 3.13(d) and (h)]. After the disappearance of Dirac points, the
quasienergy band structure still has a gap that separates the third and fourth bands as
shown in Fig. 3.13(d). However, the system is no longer topological, that is, the Chern
numbers of the third and fourth bands are both zero, indicating the emergence of non-
topological phase under irradiation with relatively intense elliptically polarized light of
E¥ 2 15 MV /cm. This phenomenon was studied before for the linearly polarized light in
Sec. 3.3. The present result is an extension to the case of elliptically polarized light with
E¥ > Eg. Notice that this photoinduced phase transition is a transition from topological
to nontopological phases and originates from a novel physical mechanism distinct from
the usually argued mechanism based on the time-reversal symmetry breaking.

3.4.3 Photoinduced Hall conductivity

To see unusual aspects of this novel photoinduced topological phase transition, we
calculate dependencies of several physical quantities on the long-axis amplitude E} of
light [Fig. 3.14]. The profile of the Chern number N¢, in Fig. 3.14(a) depicts an abrupt
change from +1 to 0 at Ef = 14.75 MV /cm, indicating the occurence of photoinduced
phase transition from topological to nontopological phases. Upon this change in the band
topologies, the gap between the third and fourth bands is required to close. This can be
seen in the profile of band gap Egap, which is defined in Eq. (3.62). Figure 3.14(a) displays
the profile of Egap, which clearly indicates the closing of band gap at the point where the
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Figure 3.14. Calculated dependencies of several physical quantities, namely,
(a) the band gap FEgap, the Chern number of the fourth band N4, (b) the
energy gap Fgap, and (c) the Hall conductivities o, at various temperatures,
on the long-axis amplitude E}’ of light, which characterize the predicted novel
photoinduced topological-to-nontopological phase transition accompanied with
collision and collapse of the two Dirac points in a-(BEDT-TTF),l3 irradiated
with elliptically polarized light. The light parameters are set as hiw = 0.6 eV,
a =45° and E§ = 2 MV /cm, respectively. Adapted from our previous study
in Ref. [82].
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Chern number changes from N¢;, = +1 to N&,, = 0. Therefore, unlike the pair annihilation
that occurs during the irradiation with linearly polarized light demonstrated in Sec. 3.3,
this phenomenon is difficult to interpret in terms of the annihilation of the magnetic
charges because the Chern numbers of the bands change during the disappearance of the
Dirac points.

We also calculate another quantity called energy gap Eg,, defined in Eq. (3.61). Fig-
ure 3.14(b) depicts the calculated Eg,, as a function of the long-axis amplitude Ep.
According to this figure as well as Fig. 3.14(a), we find that a normal semimetal phase
(Egap > 0 and E,,, < 0) emerges in a small region of 14.75 MV /cm < E¥ < 15 MV /cm
next to the topological semimetal phase with nonzero Chern number. This phase is non-
topological with a vanishing Chern number N&, = 0 and has a metallic conductivity
with Eg,, < 0. In the subsequent region of Ey > 15 MV /cm, the normal insulator phase
appears with N, = 0 and Eg,p, > 0.

The present photoinduced topological phase transition can be seen in the profiles
of photoinduced Hall conductivity o,, as well. The Hall conductivity o, is a physical
quantity that is sensitive to the topological properties of electronic states and thus can be
exploited to identify topological phases characterized by nonzero Chern numbers. This
quantity is associated with the Berry curvatures of bands BY (k) as

2¢? dkdk,
S BY(k). .
Oy ; //BZ o EV n,(k)Bz (k) (3.78)

The factor 2 comes from the spin degeneracy [see Appendix B|. Here n,(k) is the
nonequilibrium distribution function for the v-th Floquet band in the photodriven steady
states [41, 100, 106],

() — (P (SR ) 579
(@8 () | Ax (=9 (k) 28 (k)

This quantity is calculated using the Floquet—Keldysh formalism [41, 100, 106], which
combines the Keldysh Green’s function technique [101, 102] with the Floquet theory. The
quantities Ag and Ng are given by,

Ap(e) = % (GR(k,g) — Gk, g)) , (3.80)

Ni(e) = ———G<(k, ¢). (3.81)

27

The lesser Green’s function G< and the lesser self-energy 3< are given, respectively, by,

G<(k,e) = GR(k,e) 2<(e) G*(k,¢), (3.82)
$<(e) = 2k EKQ(’E) -t (3.83)

The retarded, advanced and Keldysh Green’s functions GR, @A, and GX are obtained by
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solving the following Dyson equation,

(GG

(" i) - (075)

where f]R, SA and 3K are matrices of the retarded, advanced, and Keldysh self-energies,
respectively. Each of the matrices is made up of (2myax + 1) X (2mpax + 1) block matrices
where we set mpy., = 8 in the present study, while the size of each block matrix is 4 x4.
The matrix components of GRO, GA, SR $34 and UK are given respectively by

(3.84)

(G™ (K, )]t e = E0nmOugs — Howana (K), (3.85)
G2k, &)t = E0nmOvgs — Mo (k). (3.86)
S e = =10 g (3.87)
35 e = 100 0 (3.88)

€—u+mw

[ZK(g)]m,mﬂ = —2I"tanh [ e

} G-
(3.89)

Here the symbol M., denotes the (v, u)th component of the (m,n)th block matrix
]\anm (4 x 4), and the block matrix 7:[an constituting the Floquet Hamiltonian is given
by Eq. (2.77). We assume that the system is coupled to a heat reservoir at temperature
T with a dissipation coefficient I" where we set I' = 0.001 eV for the calculations. For
simplicity, we neglect the frequency-dependence and the momentum-dependence of the
dissipation coefficient I', for which the dissipations appear only in the diagonal compo-
nents of the self-energy matrices. In the calculations of n,(k), we phenomenologically
introduced the damping rate I' (= 0.001 eV) to incorporate the effects of coupling to
thermally fluctuating environment. Figure 3.14(c) shows the calculated EY dependencies
of the photoinduced Hall conductivities o, at various temperatures. This quantity takes
large values in the topological semimetal phase with N&, = 1, but it decreases abruptly
with a jump at the transition point to the normal semimetal phase with N&, = 0. In the
normal insulator phase with N¢, = 0, this quantity is almost suppressed to be zero. On
the other hand, the Berry curvature does not become zero in the whole Brillouin zone
by increasing the amplitude of light within the range of experimental realization before
the disappearance of two Dirac points [79, 81]. These results indicate that the predicted
successive photoinduced phase transitions might be experimentally detected by measure-
ment of the Hall conductivity under the irradiation with the light. Additionally, it is
observed that there are oscillations in the calculation results of the photoinduced Hall
conductivities at all temperatures. These oscillations may arise due to finite-size effects,
but the reasons for these oscillations are still unclear.

The emergence of normal semimetal phase in a small region between the topological
semimetal phase and the normal insulator phase, namely, 14.75 MV/cm < Ef <15
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Figure 3.15. (a) Band structures along k, at k, = m/a of a-(BEDT-TTF),l;3
irradiated with elliptically polarized light for different long-axis amplitudes of
light, namely, EY = 14.9 MV /cm (normal semimetal phase) and Ey = 15.1
MV /ecm (normal insulator phase). (b) Magnified view of the band structure
around the Fermi level. The light parameters are set to be iw = 0.6 eV,
a =45° and E§ = 2 MV /cm. Adapted from our previous study in Ref. [82].

61



Doctoral Dissertation

MV /cm, can be discussed by focusing on the fine band structures. Figure 3.15(a) presents
the quasienergy band structures along (k,, 7/a) for EfY = 14.9 MV /cm (normal semimetal
phase) and EY = 15.1 MV /cm (normal insulator phase), while Fig. 3.15(b) magnifies
those near the Fermi level. Both phases have finite band gaps Ey., > 0 [Fig. 3.14(a)],
manifested by a gap at k, = 0. On the other hand, the sign of the energy gap F,,, is
opposite between these two phases. The normal semimetal phase has a negative energy
gap Fgap < 0. This means that the Fermi level runs over the third and fourth bands,
and thus the system becomes a semimetal with metallic conductivity. Meanwhile, the
normal insulator phase has a positive energy gap Fg,, > 0. This means that the Fermi
level runs within a gap between the third and fourth bands and does not cross these
bands. As a result, the system attains insulating nature. As seen in Fig. 3.15(b), the
third band crosses the Fermi level at k, = £7/b for the normal semimetal phase at E}f =
14.9 MV /cm, whereas it does not for the normal insulator phase at Ef = 15.1 MV /cm.
In Fig. 3.12, we have summarized four possible band structures in the present system.

3.4.4 Phase diagram

In this section, we construct a nonequilibrium phase diagram of a-(BEDT-TTF),l;3
under the irradiation with elliptically polarized light by the physical quantities Egap, Eqop,
and N3 . Figure 3.16(a) depicts the phase diagram in plane of the short-axis amplitude
E¢ and the polarization angle o. Here the long-axis amplitude and the frequency of light
are chosen as EY = 18 MV /cm and hw = 0.67 eV, respectively. Notice that the type-
I Dirac semimetal phase does not appear in this phase diagram because even a small
E¢ open a gap at the two Dirac points. In the limit of EY = 0, the light is linearly
polarized. In this case, our previous work in Sec. 3.3 predicted that a pair annihilation
of Dirac points occurs owing to the deformation of band structure due to the anisotropic
renormalization of transfer integrals when a ~ 45°. This Dirac-point annihilation result
in the emergence of normal insulator phase as shown in the phase diagram at o ~ 45° and
E¢ = 0. This normal insulator phase remains even if the light is not perfectly of linear
polarization but elliptically polarized with nonzero E¢ as long as the polarization angle
« is nearly 45°. The phase diagram indicates that the normal insulator phase survives up
to E{ ~ 7 MV /cm, which corresponds to the ellipticity of EY/Ef ~ 0.39. Meanwhile,
when FY 2 12 MV /cm, the system is lying in the Chern insulator phase irrespective of
the polarization angle a. It should be noted that when E¢ = 18 MV /cm, the light is of
perfect circular polarization with E§ = E. We also note that when o = 0, the phase
diagram is consistent with the phase diagrams in Sec. 3.3.

Figure 3.16(a) displays the phase diagram for EY’ = 18 MV /cm, but even when dif-
ferent phases appear at a low amplitude of light, the photoinduced topological phase
transition accompanied by the collision and collapse of the Dirac points occurs as long as
there are gapped Dirac cones between the third and fourth bands. Hence, the phase dia-
gram becomes more complicated at lower amplitudes, but the conclusions in this section
remain unchanged. When the organic salt a-(BEDT-TTF),l; is irradiated by elliptically
polarized light with nonzero E¢, the Dirac points, if any, must be gapped because of the
photoinduced breaking of time-reversal symmetry. Thereby, as long as the Dirac points
exist, either the topological semimetal phase or the Chern insulator phase emerges. The
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Figure 3.16. (a) Nonequilibrium phase diagram of photodriven a-(BEDT-
TTF)ol3 under irradiation with elliptically polarized light in the plane of the
short-axis amplitude E¢ and the polarization angle « of light when hw = 0.67
eV and EY = 18 MV /cm. The topological semimetal phase has gapped Dirac
cones in its band structure. (b), (¢) Typical quasienergy band structures of (b)
the topological semimetal phase and (c) the Chern insulator phase, which are
calculated for « = 90° and a = 135°, respectively. The light parameters are
set to be fw = 0.67 eV, E§ = 7 MV /cm, and EY = 18 MV /cm for both cases.
Adapted from our previous study in Ref. [82].
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topological semimetal phase has the bands crossing the Fermi level although the Dirac
points are gapped, which carry the metallic conductivity. On the other hand, the Fermi
level is located bewteen the well-separated third and fourth bands without crossing them
in the Chern insulator phase, which renders the bulk insulating. Figures 3.16(b) and
(c) show typical quaienergy band structures for the topological semimetal phase and the
Chern insulator phase under irradiation with elliptically polarized light. It is noted that
the quasienergy band structure in the Chern insulator phase in Fig. 3.16(c) is significantly
deformed from the original band structue at equilibrium [Fig. 3.2(b)]. This exemplifies
the photoinduced band deformation due to the anisotropic renormalization of transfer
integrals.

3.5 Discussion

3.5.1 Band structure and off-resonant condition

In Sec. 3.3 and Sec. 3.4, the phase diagram for photoinduced nonequilibrium steady
phases were classified according to the features of the Floquet band structures, whereas
the band occupations were not considered for the classification. In fact, when the light
frequency fw is around 0.6-0.8 eV, a series of the bands (v=1,2,3,4) for the zero-photon
states, which are located near the Fermi level, are separated from bands for the one-
photon-absorbed (n = +1) states and those for the one-photon-emitted (n = —1) states
(off-resonant situation). As explained earlier, in this situation, the nonequilibrium band-
occupation function f,, (k) for the vth Floquet band approximately coincides with the
Fermi-Dirac distribution function in the equilibrium as f,, (k) ~ fep(€]}(k))dn,0-

The frequency window of the off-resonant condition (i.e., 0.6 < hw(eV) < 0.8) for a-
(BEDT-TTF),l3 is determined by the bandwidth W of the band set (v=1,2,3,4) around
the Fermi level relevant to electrons in the BEDT-TTF layer (i.e., the BEDT-TTF bands)
and the energy spacing G between the Fermi level and the upper/lower bands. The first-
principles calculation of this material in Ref. [107] demonstrated that both W and G are
~ 0.8 eV in the static case. In the photodriven system, the bandwidth W is renormalized
as ~ 0.6 eV for the typical light amplitudes and frequencies examined in the present
study. It should be noted that the bandwidth W is dependent of the amplitude of
light. A set of the BEDT-TTF bands of the zero-photon states around the Fermi level
overlaps that of the one-photon-absorbed (-emitted) states when fuww < 0.6 eV, whereas
it overlaps the lower (upper) bands of the one-photon-absorbed (-emitted) states when
hw 2 0.8 eV, resulting in the on-resonant situation. The BEDT-TTF bands near the
Fermi level are well separated from the upper and lower bands in this organic compound,
which provides a rare opportunity to have a finite light-frequency window to realize
the off-resonant situation. Thereby, a-(BEDT-TTF),l; is a precious example material
for studying photoinduced nonequilibrium phases and photoinduced phase transitions
because of this peculiar band structure as well as the charge ordering as a source of the
staggered site potential necessary for the predicted pair annihilation phenomenon. We
expect that slight overlaps of the bands with different photon numbers (i.e., the weak
on-resonant situation) never alter the band occupation so drastically from the equilibrium
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case that the phase classifications based on the Floquet band structure are valid to some
extent even above and below this frequency window.

3.5.2 Experimental feasibility

We now discuss the feasibility of experimentally observing the predicted photoinduced
pair annihilation triggered by linearly polarized light and the novel type of photoinduced
topological phase transition induced by elliptically polarized light. Our quantitative
predictions indicate that a rather strong light electric field of E“~15 MV /cm is required
to realize the dissaperance of a pair of Dirac-cone bands. We know that samples may be
damaged or even broken under continuous irradiation with an intense light field, but it is
difficult to discuss to what extent samples of the organic compound can endure an intense
light field. However, we consider that the experiment is worth trying or even feasible
for the following reasons. First, several experiments of photoinduced phase transitions
have been successfully performed for similar organic materials, such as k-type BEDT-
TTF compounds, at least with few-cycle-pulse or one-cycle-pulse laser light as intense
as E¥ =16 MV/cm [108, 109]. Second, although a continuous-wave photoexcitation was
assumed in the present study in applying the Floquet theorem, it has been experimentally
demonstrated that continuous-wave photoirradiation is not necessarily required to observe
the nonequilibrium steady states or the Floquet states, and a small-number-cycle pulse
or even a less-than-10-cycle pulse is sufficient [110, 111]. Third, it has been theoretically
shown that because of electron correlation effects, the positions of the Dirac points in real
materials are closer than those predicted using the present tight-binding model without
electron correlations [88, 112]. Therefore, the collision of the two Dirac points may be
realized with a light electric field weaker than the predicted field strength of ~15 MV /cm.
Of course, there may be difficulties in conducting real experiments, but it is expected that
the predicted pair annihilation of the emergent magnetic charges and the novel type of
photoinduced topological phase transition will be observed experimentally in the near
future as the difficulties are overcome.

3.6 Conclusion

In conclusion, we have theoretically predicted novel phenomena and rich phases in
photodriven a-(BEDT-TTF)sl;. In Sec. 3.2, we demonstrated the emergence of topo-
logical nontrivial phases in a-(BEDT-TTF),l; irradiated with circularly polarized light.
Using the Floquet theory, we observed that irradiation with circularly polarized light
opens a gap at the Dirac points, and the system becomes Chern insulator phase char-
acterized by a nonzero Chern number and chiral edge states. In Sec. 3.3, we predicted
the photoinduced pair annihilation of the emergent magnetic charges induced by linearly
polarized light. This phenomenon is distinct from the photoinduced topological phase
transition to the Chern insulater phase because linearly polarized light does not break the
time-reversal symmetry. Therefore, this pair annihilation phenomenon is accompanied
by a nontopological phase transition to normal insulator phase. We discussed that this
phenomenon is attributed to the photoinduced anisotropic renormalizaion of the transfer
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integrals by calculating the trajectory of the Dirac points. In addition, we constructed the
phase diagram for the nonequilibrium steady state of photodriven a-(BEDT-TTF),I3 and
showed that the pair annihilation phenomenon only occurs when the polarization angle
is around 45°. In Sec. 3.4, we predicted a novel type of photoinduced topological phase
transition accompanied by the collision and collapse of two Dirac cones in a-(BEDT-
TTF)l; irradiated with elliptically polarized light. We demonstrate that irradiation
with elliptically polarized light, at a specific elliptical-axis angle, causes the collision of
the Dirac points, leading to their collapse due to the photoinduced renormalization of the
transfer integrals. This results in a topological phase transition from a semimetal with
gapped Dirac cones (topological) to a normal insulator (non-topological), distinct from
the photoinduced topological phase transition in Sec. 3.2. Using the Floquet-Keldysh
formalism, we calculate the photoinduced Hall conductivity and argue that this novel
type of photoinduced topological phase transition can be experimentally detected by
measuring the Hall current. These three theoretical prediction enrich the fundamental
physics of photoinduced topological phase transitions and are anticipated to be observed
in experiments.
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Chapter 4

Nonlinear optical responses in
a-(BEDT-TTF )5l

In this chapter, we study the dc photocurrent induced by light in the organic salt
a-(BEDT-TTF),l5. We focus on two nonlinear optical responses: shift current [Sec. 4.2]
and injection current [Sec. 4.3]. Employing the perturbation theory outlined in Sec. 2.1,
we calculate the dependence of the shift current and injection current on the frequency of
light in photodriven a-(BEDT-TTF),I3. Furthermore, we delve into the nonperturbative
effects of the nonlinear optical responses using the Floquet theory detailed in Sec. 2.2.

4.1 Introduction

As discussed in Chap. 1, nonlinear optical responses, such as shift current and injection
current, have been extensively explored from the perspectives of both fundamental science
and electronic applications. Historically, these responses has been theoretically exam-
ined as second-order responses to a light electric field using perturbation theory [44, 45].
However, it is evident that higher-order terms contribute to the dc photocurrent, and
such nonperturbative effects have not been fully elucidated. Recently, Morimoto and
Nagaosa investigated the nonperturbative effects on the dc photocurrent in a restricted
two-band system using Floquet theory, leading to a theoretical observation of saturation
effect at higher light intensities [53]. This saturation effect has also been experimentally
demonstrated [54, 113]. Nevertheless, a comprehensive understanding of nonlinear optical
responses in multiband systems remains a subject that requires further investigation.

The organic conductor a-(BEDT-TTF),I; offers a unique opportunity for investigat-
ing nonlinear optical responses in multiband Dirac-electron systems. As discussed in
Sec. 3.5, the four bands illustrated in Fig. 3.2(c) are situated around the Fermi level
and are well-separated from the other bands, making it easier to examine the multiband
effects among these four bands [80, 81, 82, 107]. In addition, this material is composed of
large molecules and, as a result, has relatively large lattice constants (¢ = 0.9187 nm and
b = 1.0793 nm) in comparison to graphene or transition metal dichalcogenides [114]. This
leads to the enhancement of the effects of the light electric field, which is incorporated
through Peierls phases on the transfer integrals [79, 80, 82]. Consequently, it becomes
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possible to observe nonlinear effects at lower amplitude of light, making this material a
promising system for investigating nonperturbative effects.

(a) @ (b) 047
7 e 0.3
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Figure 4.1. (a) Schematic of a-(BEDT-TTF),I3 under the irradiation with lin-
early polarized light. (b) Band structure of a-(BEDT-TTF),I3 obtained from
a tight-binding model for two-dimensional BEDT-TTF layer. The staggered
site potential in Eq. (3.1) is set as A = 0.01 eV. Adapted from our previous
study [83].

In the following, our focus is on two nonlinear optical responses, i.e., shift current in
a-(BEDT-TTF),l3 under the irradiation with linearly polarized light [Fig. 4.1] and in-
jection current induced by circularly polarized light. These systems serve as examples of
photodriven multiband Dirac-electron systems. Through the application of perturbation
theory, we predict the emergence of the shift current and injection current in photodriven
a-(BEDT-TTF),l3, where the direction of the second-order responses being strongly con-
tingent on the frequency of light. We uncover that this distinctive phenomenon arises
from the multiband effect. Furthermore, we explore the nonperturbative effects by uti-
lizing Floquet theory, revealing a change in the sign of the optical responses when the
amplitude of light increases. We conduct a comparative analysis between the results
obtained through Floquet theory and the equation proposed by Morimoto and Nagaosa,
shedding light on the inherent nonlinear effects in this system.

4.2 Shift current

In this section, we focus on the dc photocurrent induced by linearly polarized light in
a-(BEDT-TTF),l3. As mentioned earlier, the dc photocurrent, referred to as shift cur-
rent, is anticipated to be a promising alternative method for generating a large photocur-
rent, distinct from the method based on pn junctions. This section explores the frequency
dependence of the second-order responses obtained through perturbation theory and the
amplitude dependence of the nonlinear responses obtained using Floquet theory [44, 45].
We investigate the multiband effects through the analysis of the four band model for
a-(BEDT-TTF),l3, uncovering peculiar phenomena in photodriven a-(BEDT-TTF),I;.
The content of this chapter have been submitted to the academic journal [83].
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4.2.1 Second-order responses

As explained in the previous chapter, the electronic structure of a-(BEDT-TTF),l;
can be described using a tight-binding model as shown in Eq. (3.1). The breaking of
inversion symmetry is required to realize a nonzero dc photocurrent, so we study the
charge order state (A > 0) in this section. We set the order parameter of A = 0.01 eV,
which can be realized experimentally by applying an appropriate uniaxial pressure [81].

The shift current is described by a rank-three tensor ¢#,, which is given by the for-
mula in Eq. (2.69). As discussed in Sec. 2.1, this rank-three tensor is derived using the
perturbation theory as presented in Eq. (2.72). In this section, we exclusively consider
irradiation with linearly polarized light. Therefore, we do not take into account the injec-
tion current, which would be an additional contribution to the current density resulting

from the breaking of time-reversal symmetry [45, 115, 116, 117].
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Figure 4.2. (a) Shift current conductivities for a-(BEDT-TTF),I3 under the
irradiation with linearly polarized light with the polarization angle of 0°. Red
and green lines indicate the x and y components of the shift current. (b)
Contribution to the x component of the shift current in photodriven a-(BEDT-
TTF)ol3. Blue, green, and red lines indicate the contribution from the different
transitions. (c-e) The multiplication of the shift vector Sy, and the velocity
operator v . in the momentum space, for various band indices, (¢) m = 1 and
n=4,(d) m=2and n =4, and (¢) m = 3 and n = 4. Adapted from our
previous study [83].
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Figure 4.2(a) illustrates the calculated results depicting the dependence of conductiv-
ity o7, and o¥, on the frequency of light. In this figure, we consider linearly polarized
light with a polarized angle & = 0°. Notably, we observe that the behavior of the con-
ductivity o?, differs significantly from that of ¢¥,. As a result, the frequency of light
exerts a critical impact on both the magnitude of the current density and its direction.
On the other hand, it is worth mentioning that the peaks in o7, and oY, occurs at the
same frequency as depicted in Fig. 4.2(a). This suggests that these peaks are attributed
to the joint density of states (DOS) term, represented by §(Aiw — e, + €5,).

Now, let us delve into the reason behind the significant frequency-dependent variation
in the direction of the shift current. We discover that, in addition to the complex crystal
structure, the multiband effect plays a crucial role in manifesting this phenomenon. To
investigate this further, we compute the contribution of the shift current arising from
each transition between two bands [Fig. 4.2(b)]. We find that the contribution from the
transition between the second and fourth bands is negative, whereas the contributions
from other transitions are positive. This sign disparity in contributions is attributed
to the sign of the shift vector S$, defined in Eq. (2.73). Figures 4.2(c-e) depict the
k-space profiles of the multiplication of the shift vector S¥, and the velocity operator
vr  [see Eq. (2.73)]. The shift current is obtained by multiplying the joint DOS term

with SZ_o? —and integrate it across the Brillouin zone [see Eq. (2.72)]. Hence, the value

mn mn
of S* vZ — at the k-point that satisfies iw = e,,(k) — €, (k) is the primary contribution
to the shift current. As the quantity S¥ v%, is complex in momentum space, as shown

in Fig. 4.2(c-e), the calculated contribution to the shift current from each transition, as
shown in Fig. 4.2(b), becomes intricate when the frequency of light is altered.

4.2.2 Nonperturbative effects

Next, we explore nonperturbative effects on the dc photocurrent induced by linearly
polarized light, employing the Floquet theory. As mentioned earlier, the nonlinear opti-
cal response in a restricted two-band system has been analyzed using the Floquet theory,
leading to the theoretical observation of a saturation effect at high intensity of light [53].
We initially derived the static Floquet Hamiltonian. The Floquet Hamiltonian for the
photodriven a-(BEDT-TTF)sl3 under the irradiation with linearly polarized light is de-
rived in Sec. 3.3. Using the Floquet Hamiltonian, the expression for the dc photocurrent
in a-(BEDT-TTF),l; is given by,

27rh/d2k/dVTr [vpG=]

OHp 1 1
d’k | dv'T z< : 4.1
27rh2/ / Y r{akuuﬂr/z—ﬂp y—iF/Q—HF] (41)

Here, vp represents the current operator under the irradiation, G< denotes the lesser
Green function in the Keldysh formalism. The quantity I' refers to the dissipation coef-
ficient and X< is the lesser self-energy, which is defined as,

(25 (1) g = il (1 — tanh {%D Srn . (4.2)
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Here, we assume that the system couples to a heat reservoir at temperature 7j, with a
dissipation coefficient I'. In the following, we set Ty, = 0.

ol (@)w=0.365 eV of (b) o= 0.245 eV
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Figure 4.3. Calculated nonlinear optical responses for two light frequencies
(a) w = 0.365 eV and (b) w = 0.245 eV derived in Floquet theory. These
frequencies correspond to the peak frequency of the shift current in Fig. 4.2(a).
Color plots illustrate the dc photocurrent obtained using the Eq. (4.1), while
color lines represent the dc photocurrent derived by the equation in Ref. [53].
The dc photocurrents obtained using the Eq. (2.72) match those obtained from
the Eq. (4.1) in yellow region. On the other hand, the photocurrent with the
saturation factor is consistent with those obtained from Eq. (4.1) in orange
region. Adapted from our previous study [83].

Figure 4.3(a) displays the calculated dc current in photodriven a-(BEDT-TTF),l;
for various dissipation coefficients I'. The color plots depict the results obtained using
Eq. (4.1), while the colored lines show the outcomes calculated using the equation derived
using a restricted two band model [53]:

2red| B | /dk r
J’l _ — fom Sa Tb 25 Wy — W). 43
A2 Z 871-3f \/462|U#1n|2|Ew|2/w2+F2 nm’ nm| ( ) ( )

n,m

Note that the above equation is the same as the one derived from perturbation theory,
except for the saturation factor given by

r
VA [l | B¢ |2 Jw? + T2

(4.4)

We verify that the photocurrent obtained using the Floquet theory is consistent with
the results calculated using Eq. (2.72) when the intensity E“ satisfies £ < 0.1 MV /cm
(yellow region). In fact, Eq. (2.72) is independent on the dissipation coefficient I', a
feature that is only noticeable in Fig. 4.3(a) at the low intensity of light. On the other
hand, the photocurrent calculated by Eq. (2.72) with the saturation factor match the
results when E“ < 0.3 MV/cm (orange region). Notice that the saturation factor was
derived in the restricted two-band system. Hence, the results in Fig. 4.3(a) contain
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the multiband effect in nonlinear optical responses. We find that the saturation factor
accounts for the saturation effect at intermediate intensity of the light, but it falls short
at higher intensities. Indeed, the sign change of the dc photocurrent is observed around
E¥ ~ 1.5 MV /cem, while the saturation factor remains positive.

Let us discuss the applicable range for the equation derived from the perturbation
theory. In the perturbation theory, we develop a perturbation expansion in terms of
eE¥a/hw where a denotes the lattice constant of the system. Therefore, Eq. (2.72) is
valid when the condition eFE¥a/hw < 1 is satisfied. As explained earlier, since the lattice
constant in a-(BEDT-TTF),l; is considerably larger than that in materials like graphene
or transition metal dichalcogenides, the expansion parameter e £“a/hw can become large,
leading to a pronounced manifestation of the nonlinear effect, as depicted in Fig. 4.3(a). In
particular, we observe a sign change of the current density as the light intensity increases.
In addition, eE“a/hw becomes larger when working with lower-frequency light. Indeed,
the range within which Eq. (2.72) remains applicable narrows when lower-frequency light
is used [Fig. 4.3(b)]. We observe that the applicability of Eq. (2.72) with the saturation
factor also diminishes as the frequency of light decreases. In other words, in the case
of a multiband system, the saturation factor discussed in Ref. [53] has indeed expanded
the applicable range of the equation but remains inadequate when dealing with higher
eE¥a/hw.

Finally, we investigate the dependence of the shift current on the linear polarization
angle of light. In Fig. 4.4, the dc photocurrent density is presented as a function of the
polarization angle for various amplitudes of light. Our findings reveal a significant depen-
dence of the shift current on the polarization angle in photodriven a-(BEDT-TTF),l;.
Consequently, altering the polarization angle results in changes in both the magnitude
and direction of the shift current. The dependence on the polarization angle exhibits
slight variations for different light amplitudes [Figs. 4.4(a-d)]. Moreover, it is important
to emphasize that changing the polarization angle leads to a change in the sign of the y-
component of the shift current. These results emphasize that not only the frequency but
also the polarization angle are crucial parameters affecting the magnitude and direction
of nonlinear optical responses.

4.3 Injection current

In the previous section, we explored the dc photocurrent induced by linearly polarized
light, where the injection current does not contribute to the resulting dc photocurrent.
In this section, our focus shifts to the investigation of the dc photocurrent induced by
circularly polarized light. In this scenario, the shift current term becomes negligible, and
the injection current mainly contributes to the dc photocurrent. Employing perturbation
theory, we analyze the frequency dependence of the dc photocurrent up to the second
order. Remarkably, we observe that the injection current becomes a significantly larger
at lower light frequencies compared to higher frequencies when the light intensity is
small. Additionally, we delve into the nonperturbative effects on the injection current,
revealing a strong suppression of the injection current at low light frequencies when the
light intensity is high. The detailed findings of this section are currently being prepared
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Figure 4.4. The polarization angle dependence on the dc photocurrent in
a-(BEDT-TTF)sl3 for various intensities of light, (a) 0.1 MV /cm, (b) 0.3
MV /em, (c) 0.5 MV /cm, and (d) 1.0 MV /cm. The frequency of light is fixed
at w = 0.365 eV. Red and blue lines indicate the z and y components of the
photocurrent. Adapted from our previous study [83].
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for submission to an academic journal.

4.3.1 Second-order responses

In this section, we investigate the injection current using Eq. (2.68). Similar to the
shift current, nonzero injection current requires the breaking of spatial inversion sym-

metry. Therefore, we choose the site potential of A = 0.01 eV, the same value as in
Sec. 4.2.
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Figure 4.5. (a) Conductivities of the injection currents for a-(BEDT-TTF)l3
irradiated with circularly polarized light. Red and blue lines correspond to
the  and y components of the injection current. (b) Contribution to the x
component of the injection current induced by circularly polarized light in a-
(BEDT-TTF)2I5. Blue, green, and red lines indicate the contribution from
the different transitions. (c-e) The imaginary part of the multiplication of
[rt (k),mhm(k)] and A, depicted in the momentum space, for various band
indices, (c) m=1and n =4, (d) m=2and n =4, and (¢) m =3 and n = 4.

Figure 4.5(a) displays the frequency dependence of the injection current in a-(BEDT-
TTF).l3 under irradiation with circularly polarized light. In this figure, n**¥ (depicted
by the red line) corresponds to the xz-component of the injection current, while n¥*¥
(depicted by the blue line) corresponds to the y-component of the injection current when
circularly polarized light is applied. Note that n*™¥ and n¥*¥ are purely imaginary, and
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we illustrate their imaginary parts in Fig. 4.5. Similar to the shift current, we observe
that the frequency dependence of the conductivity n**¥ significantly differs from that of
7Y leading to a change in direction with varying light frequencies. For instance, there
is a peak in ™Y around w = 0.1 eV, while no peaks are observed in n¥*¥ at the same
frequency.

It is worth noting that the units of injection-current conductivity differ from those
in shift-current conductivity [see Egs. (2.67) and (2.69)]. To compare the conductivities
between injection and shift currents, it is necessary to multiply the injection-current
conductivities by the relaxation time, denoted as 7 = h/I". Assuming a relaxation time
of 107! s, as used in Ref. [116], the largest peak in Fig. 4.5(a) reaches approximately
~ 3500 pA-nm/V? which is almost ten times larger than that of the shift current in
Fig. 4.2. Moreover, with an assumed sample thickness of ~ 7 nm, the injection-current
conductivity at the largest peak in Fig. 4.5(a) becomes nearly the same as the quantized
circular photogalvanic effect in Weyl semimetals discussed in Ref. [116].

Moving forward, we delve into the contributions to the injection current from individ-
ual transitions. Figure 4.5(b) visually represents these contributions to the conductivity
n**¥. Remarkably, the contribution arising from the transition between the third and
fourth bands significantly surpasses the contributions from other transitions. To compre-
hend the reasons for this dominance, we examine the product of A,,,, and [r% (k),r¥ (k)]
in Figs.4.5(c-e). It is pertinent to note that the injection-current conductivities are de-
termined by this product and the delta function 6 (wy,, —w) [see Eq.(2.68)]. In Fig.4.5(e),
prominent peaks are observed, corresponding to the two Dirac points. These peaks
are attributed to the portion of [rZ (k),rY (k)], given that rZ (k) is proportional to

rinm
1/wmn (k) [see Eq.(2.21)]. Consequently, peaks occur at points in momentum space where

the bandgap E,,(k) — E,(k) is minimal.

While contributions from other transitions are comparatively smaller, they are finite,
as depicted in Fig. 4.5(b). These multiband effects, despite their smaller magnitudes,
induce a change in the sign of the injection-current conductivity n**¥. This nuanced
behavior emphasizes the complexity introduced by multiband effects in the injection
current response.

4.3.2 Nonperturbative effects

In this section, we explore the nonperturbative effects of the injection currents induced
by circularly polarized light, similar to the treatment of the shift current. The formalism
for the dc photocurrent in a-(BEDT-TTF),l3 irradiated with circularly polarized light is
expressed by the same equation as in the shift current [Eq. (4.1)]. We specifically consider
the scenario where the system couples to a reservoir at a temperature of Tj, = 0.

A theoretical study has examined nonperturbative effects in injection currents within
a restricted two-band system [118]. The research finds that the relaxation time in the
injection current undergoes a nonperturbative modification as follows:

h . h
' /4e2|vhn 2| E¥ 2 Jw? + T2

(4.5)

It is crucial to note that this term depends on k and should be incorporated into the
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Figure 4.6. Calculated dc photocurrent induced by circularly polarized light
for four different light frequencies (a) w = 0.12 eV, (b) w =0.2 eV, (¢) w = 0.3
eV, and (d) w = 0.6 eV derived in Floquet theory. Color plots illustrate the dc
photocurrent obtained using the Eq. (4.1), while color lines represent the dc
photocurrent derived by the equation in Ref. [118]. In this figure, [ is defined as
the quantized circular photogalvanic effect in Ref. [116], namely, 8 = me3/h2.
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integrand in Eq. (2.68). In other words, the injection current with the modification is
given by,

e 7T|E°"]2 / 1 .
J* = m A T s Tom | 0 (W, — W)
Z 87T?’f V42|Vl 2| E¥ 2 Jw? + T2 [ Jot )

n,m,b,c

(4.6)

We calculate the injection current using the above equation and compare it with the
dc photocurrent obtained using Eq. (4.1) [Figs. 4.6(a~d)]. In Figs. 4.6(c,d), the results
obtained using Eq. (4.1) match with the injection current obtained from the perturbation
theory in the yellow region, while the results obtained from Eq. (4.1) and using the
nonperturbative modification given by Eq. (4.5) are consistent in the orange region. We
observe that the nonperturbative modification in Eq. (4.5) explains the saturation effect
when w = 0.6 eV [Fig. 4.6(d)]. However, the dc photocurrent is strongly suppressed at
smaller light frequencies compared to the results obtained by using the nonperturbative
modification in Eq. (4.5) [Figs. 4.6(a-c)]. These results indicate that the multiband effect
is important at lower frequencies, similar to the findings in the shift current. Additionally,
we note that the sign change is observed in the dc photocurrent with varying light intensity
in Fig. 4.6(b).

When the system is clean and the relaxation time 7 is large, the injection current
is typically larger than the shift current because the injection current is proportional
to 7. Therefore, the injection current induced by circularly polarized light is usually
larger than the shift current induced by linearly polarized light. In the case of this
material, the injection current is approximately ten times larger than the shift current
when considering up to the second order, as discussed in Sec. 4.3.1. Additionally, the
dc photocurrent induced by circularly polarized light tends to be suppressed when the
intensity is large due to the nonperturbative effect, so the shift current may become
larger in this material. However, the behavior of saturation at the high light intensity is
complex and differs with varying light frequencies. Therefore, a comprehensive analysis
using a sufficiently large Floquet Hamiltonian is required to compare these currents.
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Chapter 5

Summary

In this dissertation, we have delved into the exploration of physical phenomena within
light-irradiated systems, with a specific emphasis on two significant aspects: (1) Topolog-
ical phase transitions induced by light and (2) nonlinear responses to light electric fields.
These phenomena have garnered considerable attention, propelled by the remarkable
advancements in laser technology, becoming focal points of extensive research. How-
ever, a significant portion of these studies has predominantly focused on two-dimensional
systems, including transition metal dichalcogenides, or simplistic toy models. Limited
attention has been given to investigations based on realistic models for specific materi-
als. To propel this promising research field forward, it is crucial to extend the scope to
a broader range of target materials. Therefore, there is a pressing need for theoretical
inquiries that concentrate on real materials characterized by intricate electronic and crys-
talline structures. Engaging in studies involving tangible materials holds the potential
to uncover more diverse and material-specific photoinduced topological phenomena. In
line with this objective, we have explored the photoinduced phenomena in the organic
conductor a-(BEDT-TTF),13, which features two tilted Dirac cones in its band structure.

In Chap. 2, we have reviewed two methods for analyzing photodriven systems. The
first method is based on perturbation theory with respect to the light electric field. We
concentrate on the second-order response of the current density operator and derive
expressions for the shift and injection currents. The second method utilizes Floquet
theory, designed for the analysis of time-periodic systems. We derive the static effective
Hamiltonian for the photodriven tight-binding model, a key element in Chap. 3 and
Chap. 4. One notable advantage of employing Floquet theory over perturbation theory
is its capability to explore nonperturbative effects.

In Chap. 3, we delve into the photoinduced topological phase transition in a-(BEDT-
TTF)sl3. Using the Floquet static Hamiltonian derived in Chap. 2, we demonstrate
three distinctive topological phase transitions in this material: (1) a topological phase
transition to the Chern insulator phase induced by irradiation with circularly polarized
light, (2) the pair annihilation of emergent magnetic charges induced by irradiation with
linearly polarized light, and (3) a novel type of photoinduced topological phase transition
accompanied by the collision and collapse of two Dirac cones induced by elliptically
polarized light. The topological phase transition induced by circularly polarized light
is attributed to the breaking of time-reversal symmetry, and the pair annihilation of
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magnetic charges occurs due to the photoinduced anisotropic renormalization of transfer
integrals. On the other hand, the novel type of photoinduced topological phase transition
is a transition from a topological to a nontopological phase when two Dirac cones collide
and collapse due to the renormalization of transfer integrals. To the best of our knowledge,
this organic conductor is the only material where the pair annihilation and the collision
and collapse of two Dirac cones are realized. These theoretical predictions highlight
a-(BEDT-TTF),l3 as a unique material that provides a rare opportunity to explore a
variety of photoinduced phase-transition phenomena.

In Chap. 4, we investigate the dc photocurrent induced by light in a-(BEDT-TTF),l;,
focusing on two distinct nonlinear optical responses: shift and injection current. By ap-
plying the perturbation theory discussed in Chap. 2, we determine the dependencies of
these currents on the frequency of light. Notably, we discover that the direction of these
currents strongly depends on the frequency of light, and this unique dependence is at-
tributed to multiband effects. Furthermore, we explore the nonperturbative effects of
the shift and injection current using the Floquet Hamiltonian derived in Chap. 2. Our
findings reveal a sign change in these responses, a phenomenon not observable when con-
sidering only the second-order response. We discuss the limitations of both the equation
derived by the perturbation theory and the one derived by Morimoto and Nagaosa when
the light intensity is large.

While we have addressed two significant photoinduced phenomena in a-(BEDT-TTF),13,
several important questions and related aspects remain. One such aspect is the consid-
eration of the relaxation process after irradiation with light. The nonequilibrium steady
state is the focus of this thesis, but understanding the dynamics of the system, especially
in the context of experiments using pulsed laser light to prevent sample heating, is cru-
cial. Another important consideration is the more precise incorporation of the effects of
interaction terms. In this study, we accounted for the effect of interaction by adding the
site potential to the A and A’ sites. However, a more in-depth analysis using Floquet dy-
namical mean field theory may reveal even more peculiar phenomena in these materials.
Addressing these challenges will be fascinating directions for future studies.
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Appendix A

Injection and shift currents from the
Fermi-Golden rule

In this section, we develop the formalism for the injection and shift currents using
the Fermi-Golden rule [45, 119, 120]. This derivation is relatively simple compared to
the one using perturbation theory in Sec. 2.1. The injection current Ofinjection(t)/0t is
determined by the change in velocity A,,,(k) = Vym(k) — vpn (k) of the electron during
an interband transition from an initial state m to a final state n. Therefore, the injection
current is given by,

d7j
]IHJECtIOH Z/ eAc )) fanmena (Al)

where M,,,.,, denotes the transition rate from an initial state n to a final state m. Here, n
labels the occupied state and m labels the unoccupied state. Utilizing the Fermi-Golden
rule, the transition rate from the perturbation term of H'e~™* is given by,

Mucnlt) = 2] fml B ) P8(By — B — ). (A2)

In this section, we assume the same light electric field E(t) = E(w)e ™! + E(—w)e™! as
in Sec. 2.1. When this light is irradiated onto the system, the Hamiltonian changes as:

Ho(k) — Ho(k + eA(t)/h)

eA(t) 0H,(k)
h o Ok

ieE(w) O0Ho(k) _,, ieE(—w) O0Hy(k)
he | 0k he 0k

= Hy(k) +

= Hy(k) — et (A3)

There are two perturbation terms that contribute to the transition rate, but the contri-
bution from the third term on the right-hand side of Eq. (A.3) does not affect to the
transition rate. This is because the third term result in a term with §(E,, — E,, + hw) [see
Eq. (A.2)]. Therefore, we consider the second term on the right-hand side of Eq. (A.3)
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in the following. Using Egs. (A.2) and (A.3), the transition rate can be calculated as,

M) = 25|l 1) 8 o —
MR B~
e > AR (BHI 5,y oy o
S e — ) E%() Y (). (A.4)
a,b

Using Eqgs. (A.1) and (A.4), the injection current is given by,

ajicn'ection 27T6 “ " ,
ét - ZZ/ fnm mn nmrmné(wmn _W)E (W)E <—LU). (A5)

n,m a,b

The above equation is consistent with Eqs. (2.67) and (2.68).

The shift current can be derived using the same method as in Eq. (A.5). The shift
current is determined by the transition rate and the shift vector S,,,(k), which corre-
sponds to the change of the position of an electron in real-space. Therefore, the shift
current is given by,

jShlft Z / 87T3 GSC )) fanm<—n

2” F S [ e b S — D EYWE ). (A6)

nm a,b

The above equation is consistent with Egs. (2.69) and (2.72).
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Appendix B

Derivation of TKNN formula in
Floquet systems

In this Appendix, we derive the expression for the photoinduced Hall conductivity
using linear response theory for Floquet systems [11, 14, 121, 122]. We begin with a time-
periodically driven system with a frequency of w and define the creation and annihilation
operators of an electron in Floquet states. Subsequently, we consider a scenario where a
small periodic field is applied in addition to the time-periodic force with frequency w. We
discuss the current response to this small periodic field based on perturbation theory and
derive the TKNN formula for Floquet systems. We conclude this appendix by discussing
the relationship between the photoinduced Hall conductivity and the Berry curvature of
the quasienergy band structure.

B.1 Creation and annihilation operators for Floquet
state

In this section, we define the creation operator that creates a particle in a Floquet
state. As explained in Sec. 2.2, a Floquet system is governed by a time-periodic Hamil-
tonian Hy(t) = Ho(t + T), where T is the period of the system. In the time-periodic
system, the electron is characterized by a quasienergy and Floquet state. The cre-
ation(annihilation) operator in Floquet systems is defined as,

al(t) = /drgb,,(r,t)llﬁ(r), (B.1)

where ¢, (7,t) denotes the time-periodic wave function defined as ¢, (r,t) = (r|®,(t))
with the Floquet state |®,(¢)) in Eq. (2.75). Here, the Fermionic field creation(annihilation)
operator is given by Wi(r)(¥(r)), which satisfies the anticommutation relations,

{U(r), Ui} =6(r — 7). (B.2)

The annihilation operator a,(t) is defined in the same way as the creation operator in
Eq. (B.1).
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In time-dependent systems, the time evolution operator is given by,

Us(t,to) = T exp {—i /t: Ho(t,)dt/:| : (B.3)

where T denotes the time-ordered product. Using this operator, the time-dependent op-
erator A(t) in the Schrédinger picture is transformed as Ay (t) = Ul (t,to)A(t)Us(t, o)
in the Heisenberg picture. Using this equation, when we assume that there are no in-
teractions, the creation and annihilation operators in the Heisenberg picture are given

by,

al, () = e 70 Mgl (1) (B.4)
ay p(t) e_ia”(t_t())/hal,(to), (B.5)

where ¢, is the quasienergy that corresponds to the Floquet state |®,(t)). Then, the
anticommutation relation in the Heisenberg picture is given by,

{a,u(t),al, 4 ()} = 705, (B.6)

B.2 Linear response theory in Floquet systems

In the following, we consider the linear response when a small periodic field with
frequency € is applied to the system in addition to the time-periodic driving force with
frequency w. The Hamiltonian for the system with the small periodic field is given by
H(t) = Ho(t)+F(t)B(t), where B(t) is a time-periodic operator with a frequency of w and
F(t) is a time-dependent function. We define the density matrix py(t) that characterizes
the nonequilibrium steady state before the small periodic field is applied. Note that po(t)
is a time-periodic operator that satisfies po(t) = po(t + 7).

Next, we consider how a time-periodic operator A(t) = A(t+T') changes by applying
the small periodic field with a frequency of €2. We define the change in the expectation
value of A(t) as,

0(A(t)) = Tr{p(t)A(t)} — Tr{po(t) A()}- (B.7)

In analogy to the equilibrium case, 6{A(t)) is expected to be given by,

S(A(t)) = / TR (), (B.8)

—00

where the response function x(t,t') is defined as,
X(t, 1) = —if(t — ') Tr {po(to)[As(t), Bs ()]} - (B.9)
Here the operator A;(t) in the interaction picture is given by,
Ap(t) = Ul (L, to) A(t) U(t, t). (B.10)

84



Doctoral Dissertation

It should be noted that the right-hand side in Eq. (B.9) is not dependent on ¢, even
though there are terms with pg(to).

The time-periodicity of the response function x(¢,¢’) is derived by following calcula-
tion:

Xt +T ¢ +T)=—if(t —t")Tr {po(to)[A;(t + T), B;(t' + T)]}
— —if(t — )T {pdmy—zvyg@mto—zvphu%zﬁ@qn%umto—zj}
(

= —0(t — /)Tl" {PO( )[Al(t)7 Bl(t/)]}
= x(t,t). (B.11)

In this calculation, we use the fact that po(t) and Uy(t + 7,t) are periodic functions with
a period 7. We then define a new response function as x(7,t') = x(t' + 7,t'). The
new response function y(7,t') is a periodic function in terms of 7, so we perform Fourier
transformation and Fourier series expansion with respect to 7 and ¢', respectively, and
obtain the following equation:

ww_z/dwmﬂwwmy (B.12)
By substituting this equation into Eq. (B.8), d(A(t)) is given by,

Z X F(Q —mw). (B.13)

In this appendix, we assume that (2 is sufficiently smaller than w, and F (') is nonzero
only when €' > Q. Then, only m = 0 should be considered, and 6{A(t)) is rewritten as,

6(A(Q2)) = x(1)F(9), (B.14)

where we define the time-average of the response function as y(7) = 1/T fOT dt'x(r,t').

So far, we have developed a general linear response theory, and now we discuss a
system in which an AC electric field with a small oscillation frequency of €2 is added to a
periodically driven system of frequency w induced by light. Let Aq(t) and §A(t) be the
vector potentials generated by the external field with frequency w and that with frequency
2, respectively. Then, the total vector potential is given by A(t) = Ay(t) + 0 A(t). Note
that Ay (¢) is a periodic function that holds A (t) = Ao(t+7). By taking the perturbation
of H(t) with respect to §A(t), the Hamiltonian is rewritten as,

OH(t) 1 0H(1)

H(t) = H(t)|sa0=0 T DA il 3 OAL10A5(0) §AL(t)0As(t)

SA(t)=0

(B.15)

In this equation, the indices o and [ denote the coordinates x, y, and z, and are summed
over. In analogy to the equilibrium case, we define the paramagnetic current operator
J®)(t) and kinetic operator K,s(t) as,

OH(t)

) /0 1 9%H(t)
W= A 2 04,04,

Kap(t) = =5 9404, (B.16)

5A(t)=0 SA(t)=0
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Using these operators, the expectation value of the current operator is given by,

(Ja(t)) = Tr[p(t) Ja(t)]

= (JP(0)) + Y Tr[po(t)Kas(1)] 045(1) + O (BA(L)]?) (B17)
B

It should be noted that we need to consider the first order of §A(t) in the first term of
right-hand side in Eq. (B.17). We call the first term of right-hand side in Eq. (B.17) as
the paramagnetic current term, and the second term the diamagnetic current term.
Then, we consider the linear response of the paramagnetic current term with respect
to 0A(t). Here, we consider the change in the expectation value of J () due to the

term 0A(t). Using Eqs. (B.8) and (B.9), 6(J% (1)) is given by,
S(JP (1)) = / dt'Yap(t — ', )5 As(t), (B.18)
where the response function is given by,
Yes () = =0T { po(t0) LIE) '+ 7), T8 ()]} (B.19)
[} 9 9 5 I . .

Using Eq. (B.12), 6(J% (1)) is transformed as,

5(TP)() = / S I T ()5 4, (1), (B.20)

When we choose the gauge which satisfies E(t) = —0A(t)/0t, the above equation is
rewritten as,

5P i @ o B.21

<a>()—2m (€2 — mw). (B.21)

In the following, we assume that § A(t) appears only in the second-order term H?) (t) =
> xRt )c c¢; with respect to creation and annihilation operator. For instance, the tight-
binding model in which the transfer integrals are multiplied by the Peierls phases is one
example. In terms of the basis of Floquet states, using the creation and annihilation op-
erators al(t)(a,(t)) for an electron in a Floquet state, the second-order term in which
SA(t) appears is written as H®(t) = Y2, hy,(t )akyla’kl/w where v labels the Floquet

state. Then, the current operator is given by,

TP =Y Jawna (R t)al, (k. (D). (B.22)
k
Here, jo.u,.,(k,t) is given by,

GO D 0| B2

jOé,V v (k7 t) =
12 SA(t)=0 Aa(t) SA(t)=0
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where fz(t) is a matrix of single-particle operators whose matrix elements are given by
In addition, we assume that the density operator of the nonequilibrium steady state
in the absence of the small periodic field is given by,

pot) = | [[frvtie, (Daw (t) + (1 = fu ) (£)a, (2], (B.24)

where fg, is the nonequilibrium distribution function for a Floquet state characterized
by the wave number k and the Floquet band v. Using Egs. (B.4) and (B.5), the following
relation holds:

Tr [po(to)a?ku(h)a[’k/y/ (tQ) == fkyeisk(tl_t2)5k7k/61/7y/. (B25)
Using this equation, the response function in Eq. (B.19) is given by,

Xap(T,t") = —i0(T Z Z Ctan o) (frn = frws)Jownwe (ks t' + T) g0 (K, ' )(B.26)

k vive

The matrix elements j, .., (k,t) are time-periodic function in terms of ¢, so we perform
the Fourier series expansion as,

]a V1V2 k t Ze ’Lth]a NZE%) k) (B27)

Then, by performing the Fourier series expansion and Fourier transformation as shown
in Eq. (B.12), the response function in Eq. (B.26) is given by,

1 Vo al/)ll/2 k .(_me) k
=333 Ui — Jian)Jesrin () un () (B.28)

Q —mw + (Eky, — Ekwy) + 11

k viva m

By substituting this equation into Eq. (B.21), we can obtain the change in the paramag-
netic current term due to a small periodic field with frequency ().

On the other hand, the contribution of the diamagnetic current term to the change
in the current operator 6(.J,(2)) is obtained by performing the Fourier transformation of
the second term on the right-hand side in Eq. (B.17). This contribution is calculated as,

/_ " ATy [po () K ap (1)] 5A45(0). (B.29)

The kinetic operator K, s(t) is time-periodic, so we perform the Fourier transformation
of Tr [po(t) Kap(t)] as,

Tr [po(t) Z Ko od ) g —imet, (B.30)

Using this equation, the change in the expectation value of current operator due to the
diamagnetic term is given by,

K

m
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The paramagnetic and diamagnetic current terms together contribute to the conduc-
tivity as follows:

(0) (0)
Xaﬂ(Q) + ICaB
ag()) = —/————. B.32
7us() = X (832
Egs. (B.28) and (B.32) maintain the same form as in the equilibrium system. The key
distinction lies in replacing the Fermi distribution function and energy eigenvalues from
the equilibrium system with the nonequilibrium distribution function fy, and quasienergy
€kv, respectively. Additionally, the inner product of the current operators in Floquet

systems is replaced by,

| T oh(t)
(O — dt (T by (T . B.33
]oz,vwz T/O <¢k, ( )’ o :]a(t) |¢k7 ( )> 5A()—0 ( )

Therefore, the equation for the photoinduced Hall conductivity can be derived in a manner
similar to the equilibrium system. The photoinduced Hall conductivity in Floquet system
is expressed as,

82

o= / % S [V % Aa(k))-. (B.34)

where the Berry connection in Floquet systems is defined as,

?

Aall) = = [ 1 (s (0)] Vi s 1) (B.3)

This equation is utilized in Section 3.4.3 to obtain the Hall conductivity in the photodriven
a-(BEDT-TTF).l;.
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