
博士論文
Teaching AI Through Object Demonstrations and

Language Instructions

(物体教示と言語指示による AI 学習)

Zhongyi Zhou

周　中一

Department of Electrical Engineering and Information Systems

The University of Tokyo

This dissertation is submitted for the degree of

Doctor of Philosophy

December 1, 2023

Abstract

AI has proven to be highly effective in addressing a multitude of research challenges.

However, the development of AI solutions for specific applications still demands

specialized expertise and substantial resources. This phenomenon limits the width

of AI impact: only a small number of AI professions can leverage and customize AI

as intelligent tools to solve their problem.

The main cause of this issue lies in the lack of interactive systems that enable

humans to intuitively teach AI. To facilitate a natural interaction between non-expert

users and an interactive system, humans should be able to perform teaching behaviors

similar how they are engaged in normal social events.

In this dissertation, I focus on investigating two interaction techniques in teaching

events: 1) demonstrations and 2) instructions. I built two interactive systems

(i.e., LookHere and InstructPipe) that allow users to teach AI by performing object

demonstrations and language instructions, respectively. LookHere leverages users’

gestural interactions people naturally perform in their object demonstration process

to predict the target object that users want to specify. InstructPipe enables users to

start prototyping an AI pipeline in visual programming by text-based instructions.

Both studies in the two projects reveal a significant workload drop when a system

leverages humans’ natural teaching capability. Qualitative results further show that

the reduced perceived workload inspire more creative uses of the systems, and that

visualization of the system prediction enhances AI transparency.

Acknowledgements

I want to first thank my advisor, Koji Yatani. Thank you for introducing me to the

exciting field of Human-Computer Interaction. I really appreciate your encouragement

when things failed and when I tasted bitter paper rejection. I also feel encouraged by

the times we celebrated our awards together during this journey. Research is hard.

With you at my back, I feel no fear of exploring the unknown and the uncertainty.

I appreciate all the people I met at the university. I feel lucky that everyone I met

is so friendly, and all of the events together with you constitute my wonderful Ph.D.

journey in my life.

Pursuing a Ph.D. degree in a foreign country that speaks my second foreign

language is never easy. I want to thank Takeo Igarashi and Yinqiang Zheng

who provided great advice for my career. Thank you Takeo Igarashi for kindly

introducing me to the Japanese academic career and for your advice on the

possible career after the Ph.D. life. Thank you Yinqiang Zheng for many

discussions about both research and life.

I want to thank all IIS-Lab fellows I have collaborated with, Shixian

Geng, Kazuhiro Shinoda, Keitaro Shimizu, Anran Xu, Zefan Sramek,

Minghui Chen, Shitao Fang, Hiroki Katori, Rei Sawano, Ginshi Shimojima,

Shunpei Norihama, Takuma Masuda, Kakeru Miyazaki, Kosuke Yamamoto,

Ryo Yoshikawa, Yuya Umeda, Yudai Shimada, Hiroki Nakano, Haruma

Hirabayashi, Simo Hosio, Arissa Janejera Sato, Akari Doi, Michihiko

iv

Ueno, Dimas Antony Chacon Salas, Shoko Sano, Ryo Takashima, Hirotaka

Hayashi, Yuta Hirai, Takaharu Yamada, Nami Ogawa, Yuji Sugiyama, Asahi

Takenouchi, Ikutoshi Katayama, Ryoto Suzuki, Naho Tomiki, Shinichiro

Yoshida, Hao Xu, Carla F. Griggio, Tatsuhiko Sakaguchi, Hiroaki Masaki,

Hidenori Matsui, Ayuka Ito, Siwook Choi, Yuki Tsubouchi, Kosuke Hatai,

Kiyotaka Eguchi, Kengo Shibata, Peihan Tu, Daisuke Shibata, Benio

Shimada, Toby Chong, Yuya Munekata. Life in IIS-Lab is great. Without

any of you, it would be like a puzzle missing its most crucial pieces.

Thank you Misako Motooka, and all the staff at the IME, EEIS, OIS, and

WINGS offices. Your professional support on my onboarding, accounting,

administrative processes, and beyond can always smooth things that would

otherwise overwhelm me if I did it myself. I also want to thank all the staff

in the Japanese Language Class in the School of Engineering. Thank you for

your great skills in teaching foreigners the Japanese language that support

our life in this country.

Thank you Yuta Nakagawa for organizing the Friday Soccer event every

week for years, and thank you to everyone who joins the game. Thank you

CSSAUT, the soccer Association for Chinese students at UTokyo, especially

the current and previous team captions, Ruiyang Xu, Wenpeng Xie, Yunxuan

Hou, Yanyuan Fu, and Jiawei Chen, for organizing the events and the

matches. I enjoyed every game with you.

I want to thank all my collaborators at Google. Thank you for all of your support

that constituted my great experience during my internship.

Thank you Ruofei Du for hosting my internship. Thank you for sharing with

me your enthusiasm for creating interactive systems and for demonstrating

how to efficiently collaborate with many experts within a large organization.

v

I also value your guidance on my project proposals. It is great to have a

mentor who sees what I see and believes in what I envision. Throughout the

collaboration, I feel supported and recognized for all my efforts.

I want to thank my co-authors in the InstructPipe project. Thank you Jing

Jin, Vrushank Phadnis, Xiuxiu Yuan, Jun Jiang, Xun Qian, Jingtao Zhou,

Yiyi Huang, Zheng Xu, Yinda Zhang, Kristen Wright, Jason Mayes, Mark

Sherwood, Johnny Lee, Alex Olwal, David Kim, Ram Iyengar, Na Li, and

Ruofei Du. Without any of you, we cannot make such a great project.

Thank you Fengyuan Zhu, Xuan Gong, Karl Rosenberg, K Z, Danhang

“Danny” Tang, Mingsong Dou, Zhengyang Shen, Anuva Kulkarni, Yingtao

Tian, Yunfan Chen, and Daichi Hirono, for your great support of my work

and beyond.

I am also lucky to receive support from external fellows.

Thank you Xiang ‘Anthony’ Chen for sharing your vision on the human-AI

interaction research. Thank you Jiahao “Nick” Li. I enjoyed our academic

collaboration and casual meals when you were interning in Tokyo.

Thank you Nadir Weibel for kindly inviting me to the UbiComp/ISWC 2023

organization committee. I appreciate all the support from other organizers,

especially those from the general chairs (Monica Tentori, Nadir Weibel, and

Kristof Van Laerhoven) and workshop chairs (Franceli L. Cibrian, Tengxiang

Zhang, and Varun Mishra). Your speedy reply and action on my requests

really helped us publish the proceedings successfully.

Thank you, Mingming Fan, Gonzalo Ramos, Yang Li, Ranjay Krishna, Quan

Li, and Chun Yu for hosting my talk in your group. I appreciate your feedback

on my talk as well as our discussion on our vision of future research in the

community.

vi

Finally, I want to thank my parents. Thank you for your remote support in my

Ph.D. life. I enjoyed sharing with you interesting stories at school and listening to

how things were changing in our hometown.

最后，我想感谢我的父母。感谢你们在我攻读博士期间给予的无形支持。我非常

享受与你们分享学校里的有趣故事以及聆听故乡的变化。

Contents

List of Figures xii

List of Tables xvii

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Research Goal and Focus . 3

1.3 Teaching AI and AI Customization . 4

2 Related Work 5

2.1 Interactive Machine Learning . 5

2.1.1 Interactive Machine Teaching 6

2.1.2 Interactive Visualization for Human Perception 9

2.2 Programming by Demonstration . 11

2.3 Instruction-based Interactive Systems 12

3 Gesture-aware Interactive Machine Teaching with In-situ Object

Annotations 14

3.1 Introduction . 14

3.2 Related Work . 17

3.2.1 Interactive Machine Teaching 17

3.2.2 Interactive Annotations . 18

Contents viii

3.2.3 Interactions Using Deictic Gestures 18

3.3 Research Challenges and Questions . 19

3.3.1 Challenges in Existing V-IMT Systems 19

3.3.2 Research Questions . 20

3.4 LookHere . 22

3.4.1 Object Highlights and In-situ Object Annotation 23

3.4.2 Model Assessment with Saliency Map Visualizations 23

3.5 Implementation . 24

3.5.1 Gesture-aware Object Highlights 25

3.5.2 Joint Classification and Segmentation for Saliency Map Visual-

izations . 26

3.6 Deictic Gesture Dataset . 28

3.6.1 Motivation of Data Collection 28

3.6.2 HuTics Dataset . 30

3.6.3 Performance of Object Highlights on HuTics 32

3.7 User Study . 33

3.7.1 Interface Conditions . 33

3.7.2 Evaluation Metrics . 34

3.7.3 Procedure . 35

3.7.4 Apparatus . 36

3.7.5 Participants . 36

3.8 Results . 37

3.8.1 Quantitative Results . 37

3.8.2 Qualitative Results . 39

3.9 Discussion . 42

3.9.1 Depth-aware Object Highlights 42

3.9.2 Voice Input and In-situ Correction 43

Contents ix

3.9.3 Other Modalities and Privacy Issues 44

3.9.4 Applications of the Object-agnostic Segmentation Model

Trained on HuTics . 44

3.10 Summary . 45

4 InstructPipe: Building Visual Programming Pipelines with Human

Instructions 47

4.1 Introduction . 47

4.2 Related Work . 50

4.2.1 Visual Programming . 50

4.2.2 LLMs and Their Applications in Interactive Systems 51

4.3 InstructPipe . 52

4.3.1 User Workflow . 53

4.3.2 Primitive Nodes . 53

4.4 Pipeline Generation from Instructions 54

4.4.1 Pipeline Representation . 56

4.4.2 Node Selector . 57

4.4.3 Code Writer . 58

4.4.4 Code Interpreter . 60

4.5 Technical Evaluation . 62

4.5.1 Data Collection . 63

4.5.2 Data Post-Processing . 63

4.5.3 Metric: The Number of User Interactions 66

4.5.4 Results . 68

4.6 User Evaluation . 68

4.6.1 Study Design . 69

4.6.2 Procedure . 70

4.6.3 Participants . 72

Contents x

4.6.4 Metrics . 72

4.6.5 Results . 73

4.7 Discussion and Future Directions . 78

4.7.1 Human-AI Collaboration in Prototyping Open-ended ML

Pipelines . 78

4.7.2 Three Attributes to Mental Workload 79

4.7.3 Instructing LLMs Poses Challenges for Both Novices and,

Potentially, Experts . 82

4.7.4 Online InstructPipe . 83

4.8 Limitations . 84

4.9 Summary . 85

5 Discussion 86

5.1 The Roles of Humans, AI Model and Interactive Systems 86

5.1.1 Humans . 86

5.1.2 AI Models . 87

5.1.3 Interactive Systems . 88

5.2 Applications . 88

5.3 Future Directions . 89

5.3.1 Joint Instructions and Demonstrations 89

5.3.2 Module-based Customization 90

5.3.3 Human-in-the-loop ML with LLMs 91

6 Conclusion 93

Publications 94

Bibliography 97

Contents xi

Appendix A LookHere 122

A.1 Implementation Details and Extra Technical Results 122

A.1.1 Configurations of Machine Learning Process in InstructPipe . . 122

A.1.2 Configurations of Training Object Highlights 123

A.1.3 Architecture Selections . 124

A.2 Object Highlight Prediction Failure . 124

Appendix B InstructPipe 125

B.1 A Full List of 27 Nodes in InstructPipe 125

B.1.1 Input Nodes . 125

B.1.2 Output Nodes . 125

B.1.3 Processor Nodes . 126

B.2 System Prompts Used in LLM Modules 128

B.2.1 Code Writer . 128

B.3 User Study Pipelines . 128

List of Figures

3.1 (a): The teaching interface of our vision-based Interactive Machine

Teaching system, LookHere. LookHere provides a segmentation mask

(an object highlight) on the object guided by users’ deictic gestures in

real time during teaching. This segmentation mask is used for model

training as additional information for training classifiers. (b): Users’

deictic gestures guides in-situ object annotations. (c): Example images

in our HuTics dataset that enables the implementation of LookHere.

HuTics includes 2040 labeled images that capture how 170 people use

deictic gestures to present an object. 15

3.2 The screenshots of LookHere. (a) In this teaching interface, real-time

object highlights are provided. The number of samples per class is

presented on the right side of the view; (b) In this model assessment

interface, the saliency map visualizations for the prediction of a

specified class (i.e., class 2 in this example) are shown along with the

prediction confidence score. This feedback informs users of what visual

features in a given frame a model is weighed for predictions. 21

3.3 Highlights are overlaid onto different objects depending on users’ deictic

gestures. 22

List of Figures xiii

3.4 The generation process of object highlights. LookHere first performs

a hand segmentation with the given RGB image. The system then

feeds both the RGB image and segmentation mask into U-Net, which

predicts a segmentation mask of the object guided by deictic gestures. 24

3.5 Visual comparison of saliency maps with different settings of Λ. The

parameter Λ in Equ. 3.1 controls the weight balance between the results

by CAM and our trained model. 26

3.6 Example images in HuTics dataset. HuTics covers four kinds of

deictic gestures to objects: exhibiting (top-left), pointing (top-right),

presenting (bottom-left) and touching (bottom-right). The hands and

objects of interest are highlighted in blue and green, respectively. . . . 29

3.7 Visual comparison of predictions by the models trained with the two

datasets (TEgO-Syn and HuTics). 31

3.8 The results of the mean NASA-TLX scores across the six subscales.

The error bars represent the standard errors. The observed significant

differences are indicated with ∗, ∗∗ or ∗ ∗ ∗ (p<.05, p<.01 and p<.001,

respectively). 37

3.9 A failure case of object highlights. 43

4.1 Traditional visual programming requires users to select nodes, conceive

pipeline structure, and then create the pipeline with a node-graph

editor. In contrast, InstructPipe streamlines this process by

instantiating a multi-modal machine learning pipeline directly from

human instructions, enabling users to further iterate and interact with

the pipeline across diverse applications such as news summarization,

image style transfer, and real-time AR effects. 48

List of Figures xiv

4.2 The user interface of InstructPipe. The user can first click on the

“InstructPipe” button on the top-right corner of the interface in (b).

A dialog will appear, and the user can input the instruction and select

a category tag. InstructPipe then renders a pipeline on (b), in which

the user can interactively explore and revise. 52

4.3 An overview of major primitive processor nodes supported by

InstructPipe. 17 of the 20 processor nodes are categorized by the type

of accepted I/O into a 3× 3 matrix. Note that “PaLM” represents two

nodes in InstructPipe, i.e., a text generation model and a chat model

of PaLM [7]. 54

4.4 Workflow of InstructPipe. First, users describe their desired pipeline

in natural language and designate it with a language, image, or

multi-modal tag. InstructPipe then feeds user instructions into a node

selector to identify a relevant set of nodes. Subsequently, both the

instructions and the relevant nodes with their description are input

into a code writer to produce pseudocode. Finally, a code interpreter

parses the pseudocode, rectifies errors, and compiles a JSON-formatted

pipeline, allowing users to refine and interact with it further within

Visual Blocks’s node-graph editor. 55

4.5 A pair example of pipeline and pseudocode. In the first line of code un-

der “processor”, pali_1_out, pali_1, pali and image=input_image_1,

prompt=input_text_1 represents output variable id, node id, node

type, and node arguments, respectively. 56

4.6 The prompt structure for the Node Selection module. Each node

description is formated as ”{node types}: {short descriptions of

the nodes}; {recommended node(s)}”. The node recommendation is

optional. 58

List of Figures xv

4.7 The prompt structure for the Code Writer module. Detailed node

configurations, see supplementary materials for examples, are listed

in the highlighted region. 58

4.8 A comparison of the same generated pipeline before and after layout

optimization. (a): Each node is assigned with a default property

value when convert pseudocode into a JSON file for rendering the

pipeline. Such default values will cause sub-optimal visual effects.

(b): Our layout optimization process re-arranges the layout for better

presentation of the pipeline. 60

4.9 Example pipelines participants built in the workshops. The input and

out of the pipelines are shown in the sub-captions. 64

4.10 A flow diagram of the user study. After a training session, participants

completed the two tasks in each condition in the sequence determined

by the counterbalancing protocol. 69

4.11 Raw-TLX results. The statistic significance is annotated with ∗, ∗∗, or
∗∗∗ (representing p<.05, p<.01, and p<.001, respectively). 73

4.12 A comparison of InstructPipe generated by two instructions: (a) “Edit

an image by updating the image caption”; (b) “Caption a tiger image

using VQA, modify the character in the caption into a cat using LLM,

and finally generate a cat image based on the updated caption”. See

Figure 4.9c for the complete pipeline. 82

5.1 The application space of AI customization tools. Three rows (blocks in

blue, yellow and green) represent three different purposes of using cus-

tomized AI (“Functional”, “Entertainment” and “Prototyping”). Three

columns show three levels of user engagement of the customization

process. 89

List of Figures xvi

5.2 A comparison of the conventional interactive machine learning (IML)

workflow and the IML with LLMs. 91

A.1 Additional examples of object highlight prediction failure. 123

B.1 Examples of node configuration used in Code Writer. The configuration

is structured in a JSON format. 127

B.2 Text-based pipeline. The “String picker” node provides users a drop-

down menus to select one URL from a list of URLs returned by “Google

Search”. “PaLM Text Generator” is an LLM used to summarize the full

HTML page. 129

B.3 Real-time multimodal pipeline. The “Keyword to image” node is used

to search sunglasses image, and the “Virtual sticker” node anchors the

sunglasses onto users’ face. 129

List of Tables

3.1 Comparison of HuTics and TEgO-Syn. 32

3.2 The mean values and standard deviations of the task completion

time and accuracies (classification and segmentation) across the four

interface conditions. 37

4.1 The ratio of human interactions in the technical evaluation. Results

are reported as mean ± standard deviation. 68

4.2 Participant demographics for the user study, showing various demo-

graphic characteristics and skills relevant to InstructPipe. 72

4.3 Task completion time and the number of human interactions in the user

study (N=16). 73

A.1 Performance comparison of the four models for our object highlight. . . 124

Chapter 1

Introduction

1.1 Background and Motivation

AI technology has demonstrated its capability to solve various research challenges.

From the accuracy surge in the ImageNet classification problem [88] to the latest

breakthrough of foundational models [27, 29, 113] that stimulated people’s dream of

Artificial General Intelligence (AGI) [109], there exists no signal that progress made

by AI research will slow down in the near future.

However, the major impact of AI breakthroughs still lies in the classical AI fields

(e.g., computer vision and natural language processing), and customizing AI for a

broader range of practical usages is still challenging for the general population. The

major reason is that developing new AI models requires professional AI knowledge,

and there is a lack of interactive systems that enable users to leverage AI as a tool to

solve their practical problems. On the other hand, even AI experts still struggle to

develop useful AI applications completely by themselves. The development of an AI

production typically requires more effort than training ML model(s): the production

first needs to satisfy users’ requirements in society, and a created model needs to be

1.1 Background and Motivation 2

deployed in a sustainable and stable platform. The community typically solves this

issue through a team effort with members with various expertise backgrounds:

1. the user experience (UX) researchers first investigate the users’ requirements

and the issues, and then write a report to product managers (PMs).

2. PMs then propose several AI features and consult with engineers and scientists

to decide on the implementation plans.

3. Engineers and scientists implement the system and maintain the system.

4. UX researchers then collect user feedback that forms a development loop.

While a good team effort can effectively find representative user requirements and

solve them with professional solutions, the whole development is still a highly costly

process. I argue that the main cause of this issue is the lack of interactive systems that

enable end-users themselves to intuitively customize their own AI models. Therefore,

our current society has to invest limited resources in those focus areas, in which

the community first distills humans’ shared interests and conducts the development

process on the focus areas.

In practice, to develop an AI model for a target use, developers typically refer

to an existing AI solution and conduct customization upon this existing solution.

One commonly approach is transfer learning [118], in which a model adapts the

knowledge it learns in a related domain to a target domain. The major benefit is

that the ML model can effectively reach a decent accuracy with a limited number of

data. Moreover, various ML benchmanks [102, 156] make developers’ choices on base

ML architectures converge to several outstanding ones, and recent advance in ML

packages [166, 145] further allow developers to make such ML model by as few as one

line of code. Therefore, when developers create AI solutions, they typical perform AI

customization, in which they fine-tune (or assemble) related AI solutions to serve for

their need.

1.2 Research Goal and Focus 3

While this procedure typically requires advanced ML skills, in essence, the

development task is equivalent to teaching an AI with a new concept. With the

increasing capability of ML packages that enhance ML accessibility for developers,

could it also be possible for non-experts to intuitively teach their own AI in the future?

1.2 Research Goal and Focus

In this dissertation, I aim to build interactive systems that empower non-expert users

when they teach AI. To build such systems that enable natural human-computer

interaction between non-experts and AI systems, I raise the following research question

that inspires my research projects: What is the role of AI and humans when humans

teach AI?

On the human end, people are talented at using various interactions to express

their intentions at social events (i.e., human-human interaction). When humans play

the roles of teachers in such events, people naturally perform two kinds of interactive

behaviors for effective and natural teaching: 1) demonstrations and 2) instructions.

Demonstrations allow teachers to explicitly show an abstract concept, and instructions

enable teachers to explain concepts using natural language. On the computer end,

an interactive system requires fundamental input for adapting an ML model for

customized uses. Example input includes a labeled dataset that enables a fine-tuning

process or a prompt that guides the inference of a Large Language Model (LLM).

To this end, my Ph.D. dissertation focuses on building two interactive systems that

empower users to teach AI through object demonstrations and language instructions,

separately. In the first project, I explored humans’ gestural interactions with objects

and leveraged the cues implied in such interactions to inform the ML process. In the

second project, I studied methods to facilitate users to prototype a visual programming

pipeline by giving language instructions. Together, these projects demonstrated an

1.3 Teaching AI and AI Customization 4

early-step exploration of two major approaches to how humans can intuitively teach

AI.

1.3 Teaching AI and AI Customization

Two important phrases will be frequently used in this dissertation: 1) “teaching AI”

and 2) “AI customization”. While both phrases share similar concepts, “teaching

AI” emphasizes the human behaviors within the human-computer interaction process

and the goal of such behaviors is AI customization. While these two phrases can be

used interchangeably in most expressions, I want to highlight that the main focus

of this dissertation is to leverage humans’ teaching behaviors, including teaching

by demonstration and teaching instruction, to better support the AI customization

process.

AI is another important keyword in this dissertation. I use a broader definition

of AI, encompassing not only a singular machine learning model, but also systems

comprising various functional modules, whether each of they are machine learning-

based or otherwise. The AI customization process refers to users’ endeavors to tailor AI

solutions to their needs, irrespective of whether these solutions derive from a singular

model or a constellation of different models. This broader interpretation aligns more

closely with the intended scenarios of interactive machine teaching aimed at non-expert

users, whose primary objective is to develop functional solutions without a particular

focus on the underlying machine components.

Chapter 2

Related Work

2.1 Interactive Machine Learning

Latest ML models usually require a large number of data to train the algorithm.

This causes a massive burden for humans to label considerable data. For example,

for the multi-person pose detection task in computer vision [17], human labelers

need to pinpoint the pixel positions of all 18 landmarks of each person in the view

(i.e., two eyes, two ears, a nose, a neck, two shoulders, two elbows, two wrists, two

hips, two knees, and two ankles.). Such tasks treated humans as an oracle [5],

which is only responsible for an endless labeling task. Not only in the field of

computer science, other researchers also applied ML to their projects which proved

to have promising results [139, 171]. To facilitate the fundamental ecosystem for ML

development, researchers created the necessary dataset for various applications by

labeling a large number of data [83, 143]. Despite the success of knowledge transfer,

the increasing application scope implies that humans need to continuously serve for

machines through infinite labeling tasks. It becomes clearer that further consolidation

of such human-machine collaboration would cause disastrous results for both the

technology community and society.

2.1 Interactive Machine Learning 6

One prominent attribution of this issue is the lack of interaction between humans

and machines during the learning process. Traditional ML development strategies

only ask humans to label a whole dataset at the beginning and then initialize ML

development by fixing that dataset. This separation between humans and ML strongly

eliminated the efficiency of the work. On the one hand, human labelers are usually the

experts of the tasks, but they do not have a chance to inspect the learning progress,

nor to provide further valuable feedback for the learning. This agnostic phenomenon

forces researchers to create a sufficiently large dataset, being as diverse as possible,

despite the redundancy and the burden to the human labelers. On the other hand,

ML cannot ask questions for the experts to solve its confusion, since the teaching

samples is fixed while it is learning. Although the reason for the confusion may be the

ambiguity of the label or the sufficient data, ML researchers have to build an algorithm

that is intelligent enough to solve these issues only by itself.

Interactive Machine Learning (IML) breaks this barrier and introduces a bi-

directional communication between humans and machines. Dudley and Kristensson’s

work [47] summarizes the workflow between humans and machines in an IML system.

It is important to note that IML is different from Active Learning (AL). AL only

concerns the active role of machine learning in which the machine learning algorithm

would actively ask for further clarification when encountering confusion. It implies

that humans still play a passive role: do nothing if ML does not ask for anything.

Based on this, IML further allows the user to actively explore ML and provide feedback

on learning if they consider it necessary.

2.1.1 Interactive Machine Teaching

When a modern machine learns a new concept, it usually asks for a large number

of abstract data (e.g., ImageNet Dataset [39]) for its training process [82]. This

learning approach differs from the principle of human-human instruction. A human

2.1 Interactive Machine Learning 7

teacher usually teaches the student in an intuitive way, like providing a demonstration

and explanation of the idea by talking or using body language. Inspired by this,

researchers have created novel interaction approaches for users to intuitively teach

machines new concepts, which provides abundant information to machines at the same

time. For example, users can instruct machines by sketching [49], speaking natural

languages [101, 125, 111], and demonstrating the workflow of the task [97, 99, 98].

Crayons, a pioneering IML system, allowed users to create an image segmentation

machine interactively through simple sketches [49]. Users can iteratively examine

the prediction results from Crayons and draws simple curves on the interface to

correct the prediction for fine-tuning its algorithm. Teachable Reality [108] applies the

concept of IMT into AR authoring tools and shows that IMT can effectively enhance

the customizability of the toolkits and support an expensive creation supported by

accessible ML models. Feng et al. [50] further explore the application of IMT into

social platforms, and highlight the effectiveness of IMT in enhancing user control and

personalization in social media feeds.

Considerable AI research demonstrates that deep and large ML models can

effectively scale up the machine intelligence [61, 105]. However, finetuning a large

model typically requires many samples from humans so that an ML model can fully

understand the concept. Previous studies revealed that users tended to become

frustrated during such a tedious labeling process [5]. Researchers mainly solved

this issue by creating tools to accelerate labelling [82, 90], or only ask for highly

informative human input [28, 38]. For example, Laielli et al. built LabelAR [90],

which automatically collected data on AR anchors placed by the user. The user

can first anchor AR boxes over target objects. Then the interface computes 24

arrows and guides the user to move the camera under these directions which are

evenly distributed in the 3D world. Their evaluation study showed that LabelAR

supported a fast and accurate data collection experience, by comparing it with

2.1 Interactive Machine Learning 8

two baseline methods [57, 173]. Goodfellow et al. built Generative Adversarial

Network (GAN) [59] that supported the following systems to generative verisimilar

data like human-face images [140], dancing videos [93], and summary sentences [103].

However, the generative model requires the input of a high-dimension latent vector.

This made it hard for a user to explore optimal data since it is impractical for

the user to adjust the latent vector in, e.g., 128-d space. Torre-Ortiz et al. [38]

created a brain-computer interface (BCI) that sensed Electroencephalography (EEG)

as high-dimensional feedback for the exploration in the latent space. Their user study

showed a high convergence speed of the generative model and potential for future

applications. Chiu et al. [28] developed a framework that allowed the user to explore

their ideal data by simply using a 1D slider interface. They applied Singular Value

Decomposition (SVD) which compresses the optimization space into a dynamic 1D

subspace while maintaining as much information as possible. This method supported

a faster convergence as well as an “easy-to-use” user experience, according to their

evaluation study.

The aforementioned work requires humans to spend time on a 1-on-1 teaching

session for machines to learn new concepts. This process can be time-consuming. Is it

possible for machines to learn concepts interactively, but only by themselves without

disturbing users to spend time teaching machines some simple concepts? Recent

research provided solutions to this question mainly by exploiting users’ behaviors

in history, inspired by the approaches in building recommendation systems for

advertisement [128, 136, 159]. This method activates an automatic learning strategy,

in which ML models look for personal preferences by exploring users’ historical

behaviors, like clicking events [10, 25] and eye-contact interests [54]. For example,

Gebhardt et al. [54] exploited the user’s gazing directions to predict the object that

interests the user. This method can intellectualize Mix Reality (MR) interfaces, which

only show the user labels of the objects that interest them. The authors demonstrated

2.1 Interactive Machine Learning 9

the utility of this function when there existed many virtual objects within the user’s

visual field.

2.1.2 Interactive Visualization for Human Perception

After humans provide instructions to the ML model, it operates a learning process

that updates its understanding of the concept based on the new teaching data. ML

researchers usually summarize this optimization process by the following equation:

θt+1 ← θt +∆θt (2.1)

θt represents the model parameter at the tth update. ∆θt is the updating value

determined by its optimizer.

However, simply presenting the parameters to the IML user does not help

users understand the machine. This would discourage users from providing further

instruction for teaching the unknowns of the machine. Instead of showing these

mathematically sufficient data (i.e., the model parameter), explainable AI researchers

let ML models “explain” themselves by providing visual saliency maps [49, 185] or

example data [15, 52]. Class Activation Mapping (CAM) solved the challenge of

explaining the predictions of Convolutional Neural Networks (CNNs) by highlighting

spatial grids that have high weight values to support the prediction [185]. Cai et

al. [15] supported the explanation of image classification prediction by showing a

group of similar images in its training dataset. The system also provides “comparative

explanations”, meaning the system would present top-k prediction labels and include

one training image as an example for explanation. Their user study showed that the

explanation design helped users better understand the system, though “comparative

explanations” may sometimes cause further confusion.

2.1 Interactive Machine Learning 10

The technology of interpreting machine learning above allows humans to

understand the static working principle of ML models at each iterative step during

the IML workflow. Since humans need to repeatedly review the performance of ML

models, how to coherently visualize the dynamic improvement of ML models plays a

critical role in building the closed-loop in IML workflow.

AnchorViz is an IML tool that can decompose the unlabelled dataset semantically

and visualize a dynamic knowledge graph of the model based on several labeled

example data (i.e., ‘anchors”) [149]. The system placed the anchors on a circle

and all the other unlabelled data within this circle. AnchorViz distributed these

unlabelled data according to their semantic similarity among all the anchors on the

circle. This distributing strategy facilitates multiple clusters. The system would

compute the accuracy of the clusters to support the user to decide whether they

need further teach the data in this cluster. By such iteratively teaching through

filling the knowledge graph of the model, the model can quickly learn the knowledge

with as few labels and few human efforts as possible. Hohman et al. [66] found that

many applied ML need to be evolving to follow the change in customers’ preference.

According to their interviews with experts, companies usually solve this issue by

feeding new types of data instead of innovating a new algorithm. However, there are

no existing interfaces and visualization tools to help engineers examine how the new

data affects the result (or model prediction accuracy) throughout the trials. Therefore,

they created CHAMELEON, which they designed for the purpose of visualizing the

performance comparison among all the production versions. Participants in the case

studies found several potential use cases of the system, including helping them find

outliers, encouraging instance-level analysis, and capturing data processing changes.

2.2 Programming by Demonstration 11

2.2 Programming by Demonstration

Computers run according to predefined programs. This implies that the most

fundamental approach to interacting with computer systems, including AI systems, is

to program. However, programming is a specialized skill that demands formal training,

making it challenging for the general population to master. To address this issue,

HCI researchers invent an interaction scheme in which non-experts can “program”

computer systems by performing simple demonstrations [84, 112, 33]. Programming

by Demonstration is an interaction method that “combine(s) the simple interface

of macros with the expressiveness of a scripting language” [92]. Such an interaction

method can effectively reduce technical barriers when users, e.g., command a computer

by writing programs.

Inspired by these concepts, several generations of researchers built various

applications that allow non-expert users to program by demonstration [42]. For

example, Li et al. [99] created PUMICE, a multi-modal agent for non-programmer

users that can learn new concepts and ask for confirmation for ambiguous users’

commands. The system allows the user to teach it by demonstration. For example,

the system would learn how to place a new order, like ordering a cup of cappuccino,

and the user shows the procedure one time. Ten participants with different levels of

programming experience attended their user study, in which they were required to

use PUMICE for four tasks. For example, the user needs to teach the smartphone

to order a pepperoni pizza if there is enough money left in the food budget. The

result of their user study showed that participants completed the tasks within a

similar period of time, regardless of the programming experience. One critical

issue in most programming by demonstration systems is that the systems may

have access to more personal information than necessary to learn users’ teaching

intentions. To address these shared issues of prior systems, Li et al. [98] built a

2.3 Instruction-based Interactive Systems 12

system that automatically obfuscated privacy-threatening regions in a GUI when users

are performing programming by demonstration.

2.3 Instruction-based Interactive Systems

Other than demonstrations, humans also perform instructions to facilitate efficient

communication when humans want to teach concepts to other people. Despite the

wide variety of concepts people want to deliver at social events, natural languages

alone usually satisfy humans’ desire to convey their concepts. Such facts inspire many

researchers to simplify various human-computer interactions into natural languages

and build applications with simple and effective agency. The AI Chatbot, such as

ChatGPT [113] and Bard [154], is one of the most impactful applications in the society.

Following such breakthroughs of the foundational models which can demonstrate their

problem-solving capability in a wide range of tasks, developers have built various AI

applications for incorporating humans’ instructions. AutoGPT [1] is an application

that can take multi-step actions given human instruction. For example, when the

user instructs the system to “summarize the news today”, the system may first gather

news from the internet, identify key points in each article, and draft a summarization.

Such widely interest in instruction-based interactive systems motivates researchers

to further tailor the foundational models for better interpreting users’ instructions

and generating more feasible content. InstructGPT [114] and FLAN-PaLM [30] are

exemplary projects that initialize such exploration, in which researchers incorporate

the instruction tuning that simulates diverse uses of LLM based on instructions. Other

than upgrading models for better perception of human instructions, researchers further

explore the philosophy of the instruction-based human-computer interaction. Chain-

of-thought prompting [164, 86] is one of the most representative prompting techniques.

Instead of prompting the inputs and outputs of a target task as in-context examples,

researchers suggest adding the reasoning processing between the I/Os (i.e., the chain-

2.3 Instruction-based Interactive Systems 13

of-thoughts), and experiments show that such reasoning annotations can effectively

improve model performance.

Instruction-based interactive system design also extends from text-based tasks [75]

to multimodal tasks [4, 181, 126]. Researchers have applied the prompt-based

interaction design into vision-based generation [13, 180] and recognition [126, 95], and

the generation of our modality like music [3] and motions [9, 155]. The prosperity in

foundational models among multiple modalities stimulates people’s dream of artificial

general intelligence (AGI) [109], in which an AI system can perceive multimodal

data in our society and reply in multimodal messages. Despite the wide enthusiasm

in the community, researchers also point out various concerns of instruction-based

systems [78, 174] For example, Zamfirescu-Pereira et al. [174] criticize the overuse of

instruction-based principles to design interactive systems. Their studies reveal that

non-expert users find it difficult to frame clear instructions.

Chapter 3

Gesture-aware Interactive Machine

Teaching with In-situ Object

Annotations

3.1 Introduction

Interactive Machine Teaching (IMT) [127, 141] aims to enhance users’ teaching

experience during the creation of Machine Learning (ML) models. IMT systems

are primarily designed for non-ML-experts, and allow such users to provide training

data through demonstrations. Vision-based IMT (V-IMT) systems utilize cameras

to capture users’ demonstrations. For example, in Teachable Machine [19] users

can create a computer vision classification model by showing different views of each

object (class) to a camera. Despite its low burden for providing training samples,

existing work [189] revealed that an ML model trained through a V-IMT system

might recognize an object by using visual features unrelated to it. For example, even

if a user performs a demonstration of a book, the model may use visual features in

the background. Failure to address this error properly could result in the degraded

3.1 Introduction 15

a b c

Figure 3.1 (a): The teaching interface of our vision-based Interactive Machine Teaching
system, LookHere. LookHere provides a segmentation mask (an object highlight)
on the object guided by users’ deictic gestures in real time during teaching. This
segmentation mask is used for model training as additional information for training
classifiers. (b): Users’ deictic gestures guides in-situ object annotations. (c):
Example images in our HuTics dataset that enables the implementation of LookHere.
HuTics includes 2040 labeled images that capture how 170 people use deictic gestures
to present an object.
performance of the model when it is deployed to real applications. Therefore, users

should have the capability to specify portions of an image that a model should

emphasize in learning to achieve reliable classification.

One approach to address this issue is to perform annotations on the objects of

interest [134] and feed them into the model as well. Advances in annotation tools

reduce user workload by simplifying necessary interactions to clicks [110, 147] or

sketches [130, 178]. Despite their lowered burden, existing annotation tools are not

well tailored toward V-IMT systems, and users thus have to perform annotations in a

post-hoc manner. This would degrade the overall experience of V-IMT systems [146].

Annotation approaches that are more deeply integrated into V-IMT thus need to be

explored.

To this end, this work examines V-IMT systems that can integrate object

annotations into the teaching process. We observe that when users are doing

demonstrations for teaching, they may hold or point to the object of interest. These

deictic gestures in demonstrations thus are indicative of what visual features a model

should focus on. Therefore, this work focuses on the integration of annotations by

leveraging deictic gestures that humans naturally perform during the teaching process.

3.1 Introduction 16

Note that, in this work, we use the term deictic gestures to represent a wide range of

gestures whose purpose is to indicate the object of interest [133, 31] while it typically

represents pointing gestures in HCI research [80].

Our V-IMT system, called LookHere1, embeds in-situ object annotations inferred

from users’ deictic gestures into the teaching process. LookHere provides real-time

visualizations, named object highlights, on what portions of the given frame the

system is considering as the region of the target object (the red mask in Figure 3.1a).

Depending on the deictic gestures users are performing, our system infers different

object regions (Figure 3.1b). To achieve this gesture-aware object segmentation,

we created HuTics, a dataset consisting of 2040 images collected from 170 people

that include various deictic gestures and objects with segmentation mask annotations

(Figure 3.1c). Our technical evaluation shows that our object highlights can achieve

the accuracy of 0.718 (mean Intersection over Union; mIoU) and can run at 28.3 fps.

Our user evaluation confirms that participants were able to build accurate models

while being liberated from post-hoc manual object annotations.

This work offers the following contributions:

• A vision-based IMT system, LookHere, which integrates in-situ object annotations

guided by users’ deictic gestures into the teaching process,

• The development of real-time object highlights, which offers users feedback on the

object region inferred from their deictic gestures,

• The HuTics dataset2, which contains 2040 labeled images from 170 participants

interacting with various target objects using deictic gestures, and

• Our evaluations that confirm LookHere’s benefits through quantitative and

qualitative results.
1The source code is available at https://github.com/zhongyi-zhou/GestureIMT
2The dataset is available at https://zhongyi-zhou.github.io/GestureIMT/.

https://github.com/zhongyi-zhou/GestureIMT
https://zhongyi-zhou.github.io/GestureIMT/

3.2 Related Work 17

3.2 Related Work

3.2.1 Interactive Machine Teaching

Machine Teaching is a term that has been used by both HCI [141, 67, 132] and ML [191,

192] communities with different definitions. To avoid conflicts, we utilized the term

of Interactive Machine Teaching defined by Ramos et al. [127]: IMT is “an IML

(interactive machine learning) process in which the human-in-the-loop takes the role

of a teacher, and their goal is to create a machine-learned model”. This definition

emphasizes user experience rather than mathematical challenges, and is well aligned

with the scope of this work.

IMT systems were typically designed for non-ML-experts to build their own ML

models without requiring technical knowledge and skills [48]. Existing work conducted

qualitative studies with ML novice users and presented user requirements and design

guidelines for IMT systems [55, 131, 132]. For example, Fiebrink et al.’s work [51]

suggested informing users of “where and how the model was likely to make mistakes”

so that users can systematically assess the benefits and risks in their applications.

Yin et al. [172] found that non-ML-experts users evaluated the model only based on

its accuracy, and they were not often aware of the potential unreliability of the model

when it was used in another application.

Zhou and Yatani [189] enhanced the model assessment process by visualizing the

image regions that were highly weighed for predictions. They further found that simple

teaching without further fine-grained annotations [19] could cause unexpected failures.

Effective approaches for specifying the portions of the image in the teaching process

are still under-explored.

This work introduces a V-IMT system that exploits users’ deictic gestures to

present objects for identifying the region which a model should focus on for learning.

This interface design can solve the issue of accidental use of unrelated visual features

3.2 Related Work 18

by ML models by exploiting interactions people would normally perform during the

teaching phase.

3.2.2 Interactive Annotations

One standard approach to addressing accidental use of unrelated visual features is to

provide annotations (e.g., a segmentation mask over the target object) and inform a

system of where a model should focus. While offering useful information, annotation is

generally a tedious manual task. Drawing a polygon-based contour on an object [134] is

a common approach to generating a segmentation mask, but this is generally very time-

consuming. By incorporating computer vision methods, research has demonstrated

different ways to reduce input from users [90], including clicks [110, 147], sketches [130,

178], and mouse drags [22].

As these annotation tools are not specifically designed for the integration into

V-IMT systems, users would have to use them in a post-hoc manner. This does not

thus fully exploit the user interaction that occurred in the teaching phase for inferring

segmentation masks on target objects. Instead of proposing another annotation

approach, our work utilizes users’ deictic gestures toward target objects when they

are performing demonstrations to a camera. In this manner, our system achieves

in-situ object annotations while teaching in V-IMT systems.

3.2.3 Interactions Using Deictic Gestures

Prior research found that infants already have an ability to perform and interpret

hand gestures [20, 107]. Inspired by this inherent human capability, HCI research

has developed various interfaces using deictic gestures [165, 161]. One of the earliest

work in this space is “Put-that-there” [11], in which users can manipulate virtual

objects through a combination of deictic gestures and natural languages. Interface

applications of deictic gestures also include drone manipulations [21], Human-Robot

3.3 Research Challenges and Questions 19

Interaction (HRI) [133, 124] and commutations in Mixed Reality [16]. Sauppe et

al. [133] demonstrated a human-like robot that can perform deictic gestures, and

found that these gestures can contribute to improving communicative accuracy in

interactions with users.

Besides deictic gestures, research has investigated different aspects of hand-object

interactions. By assuming that the object under humans’ manipulations would follow

1-DOF movements, Hartanto et al. [64] created a method to segment the object

and classify the type of object motions (pure displacement motion by the prismatic

joint or pure rotational motion by the revolute joints). Other work built datasets of

hand-object interactions [18, 137, 94], and aimed to derive data-driven approaches for

recognizing these interactions. Lee and Kacorri [94] created the TEgO dataset and a

system for people with visual impairments to recognize a pre-defined set of daily-life

objects and assist interaction with them.

This work extends the application of deictic gestures to V-IMT systems and allows

users to perform in-situ annotations while teaching in real time. More importantly,

LookHere advances the generalizability by removing those constraints in prior work

(e.g., pre-defined object categories [94] or specific motions associated with holding [64]).

3.3 Research Challenges and Questions

3.3.1 Challenges in Existing V-IMT Systems

After reviewing the existing V-IMT systems, the authors summarized our perceived

challenges in the following two aspects:

C1. ML models created through simplified processes supported by V-IMT

can be unreliable because they may learn features unrelated to target

objects. One major shortcoming of V-IMT is that ML models created through

such systems may unpredictably attend to unrelated objects, which is aligned

3.3 Research Challenges and Questions 20

with the findings by Zhou and Yatani’s work [189]. To simplify the creation of

ML models for non-experts [48, 141], V-IMT systems typically only ask users

to perform several demonstrations to the camera [19, 53]. During teaching, the

computer not only captures the object to be classified, but also other unrelated

backgrounds or objects. A model thus may consider those unrelated features

as critical components of the target objects while users expect that it would

only capture the features on the target objects. This discrepancy could result

in unexpected inaccuracy when the model is brought to actual use. This can

greatly degrade the usability of the created model and affect users’ trust [172]

toward it.

C2. Post-hoc annotations can diminish the overall usability of V-IMT

systems. A naïve approach to solve the aforementioned issue is to ask

users to specify what they want to be included in models (i.e., annotate

the image regions of the objects). Existing work has successfully simplified

data annotations [148, 110], but these interfaces are mostly designed for more

professional use [81]. Furthermore, creating a reliable ML model usually requires

the user to provide many samples per class. Performing annotations on many

images repeatedly in addition to teaching through V-IMT systems can thus be

overwhelming to non-expert users [146]. This also can discourage casual use of

ML, which many V-IMT systems envision.

While formative user studies could further confirm these challenges, we decided not

to execute them as they are already well explained in the existing literature. Our user

evaluation results presented in Section 3.8 also confirm these challenges well.

3.3.2 Research Questions

This work explores approaches to solve both challenges by integrating annotations

into the teaching process. To achieve this integration, we exploit how people interact

3.3 Research Challenges and Questions 21

(a) Teaching Interface. (b) Model Assessment Interface.
Figure 3.2 The screenshots of LookHere. (a) In this teaching interface, real-time object
highlights are provided. The number of samples per class is presented on the right side
of the view; (b) In this model assessment interface, the saliency map visualizations for
the prediction of a specified class (i.e., class 2 in this example) are shown along with
the prediction confidence score. This feedback informs users of what visual features
in a given frame a model is weighed for predictions.
with objects of interest using deictic gestures when they perform demonstrations to

a camera. For example, they may hold the object with both hands or may point

to the object with their index fingers. Such human behaviors are known in prior

HCI research [79] that led to diverse gesture-based applications [122, 94]. Therefore,

we hypothesized that such deictic gestures would be an important cue for in-situ

annotation. Accordingly, we derive the following two research questions to be answered

through this research:

RQ1. How can users’ deictic gestures toward objects of interest be utilized for

annotations during teaching?

RQ2. Can such in-situ annotations inferred from users’ deictic gestures reduce the

overall teaching workload while maintaining the model accuracy?

RQ1 asks for technical approaches for leveraging humans’ deictic gestures for the

integration and the corresponding implementation. RQ2 investigates the efficacy of

such gesture-aware annotation methods. Our design and implementation of LookHere

in the following content explore RQ1, and our evaluation study answers RQ2 using

multiple metrics (i.e., time consumption, model accuracies and subjective workload).

3.4 LookHere 22

Figure 3.3 Highlights are overlaid onto different objects depending on users’ deictic
gestures.
3.4 LookHere

Our V-IMT system, LookHere, considers users’ gestures to objects for building

accurate ML models. Unlike existing workflows in V-IMT, LookHere directly

integrates the annotation process into the teaching process. More specifically,

LookHere includes a function called object highlights to inform which part of the

camera view the system is considering as the region of the object to be learned. In the

assessment phase, LookHere also supports a model assessment process by providing a

similar visualization, allowing the user to assess whether the trained model attends to

the correct features.

Besides these two features explained in this section, the architecture and interaction

walkthrough are similar to existing V-IMT systems. In our current implementation,

users can train a multi-class classifier (i.e., classifying different objects). To define

a class, the user first selects the corresponding class (see the top-right corner of

Figure 3.2a). Then, they can perform demonstrations of the object to the camera,

and the system captures the frame when the user clicks a camera button. The number

of frames collected for each class is presented as a bar graph. After finishing teaching

for the three classes, users may either click the “Add” button to include more classes

or the “Finish and Upload” button to finish the teaching session. Appendix A.1.1

shows our detailed configurations in the ML process after teaching.

3.4 LookHere 23

3.4.1 Object Highlights and In-situ Object Annotation

During the teaching process, users can receive visual feedback about which portion

of the camera view LookHere is currently considering as the region of the objects of

interest. As is shown in Figure 3.2a, our system infers the object region based on deictic

gestures users are performing (e.g., holding or pointing to an object for teaching).

Users may simply change how to perform gestures to express different target objects,

as shown in Figure 3.3. LookHere incorporates a gesture-aware algorithm (see details

in the next section) to achieve this adaptive highlight on objects.

Another advantage of providing this highlight in real time during the teaching

process is to help users avoid including erroneous demonstrations. Users can easily

opt out of such frames by not clicking the camera button. In this manner, LookHere

takes a mixed-initiative approach [68] for teaching.

When the user records the current frame by a button click, the system stores the

RGB image as well as the inferred object segmentation mask. Both data are used for

model training. In this manner, LookHere achieves in-situ object annotations during

the teaching process.

3.4.2 Model Assessment with Saliency Map Visualizations

After the teaching phase, LookHere offers the model assessment mode like other

V-IMT systems [53, 19]. However, unlike these systems, LookHere provides saliency

map visualizations for users to confirm whether the created model is considering

appropriate visual features. Figure 3.2b illustrates an example of the view in this

assessment phase. The interface presents two visualizations for the users: bar graphs

to present confidence score distributions (Figure 3.2b right) and real-time saliency

map visualizations (Figure 3.2b left). The confidence score shows how confidently

the model considers that the current frame belongs to the corresponding class. In

the example of Figure 3.2b, the model is 99.4% confident that the object in the

3.5 Implementation 24

Hand
Segmentation

U-Net

RGB

Figure 3.4 The generation process of object highlights. LookHere first performs a hand
segmentation with the given RGB image. The system then feeds both the RGB image
and segmentation mask into U-Net, which predicts a segmentation mask of the object
guided by deictic gestures.
frame belongs to is class 2 (which is configured as a “book” class in Figure 3.2a).

Real-time saliency map visualizations then help users understand which portion of

the frame the model considers as the object of interest (a book in this example).

Existing work [182, 189] leveraged CAM methods to present such visualization while

we introduce a new method for more accurate visualizations by utilizing the object

segmentation masks originally generated for object highlights (see more details for

Section 3.5.2).

3.5 Implementation

The current prototype of LookHere is implemented as a web-based interface, and most

of the computations are executed at the back end. We use WebRTC to synchronize

the video between the interface and server for real-time image processing. The two

key features presented in Section 3.4 are supported by two technical components:

gesture-aware object highlights and joint training. We explain the details of the

implementation of these components in this section.

3.5 Implementation 25

3.5.1 Gesture-aware Object Highlights

Figure 3.4 summarizes the workflow of our gesture-aware object highlight algorithm.

The algorithm first applies a hand segmentor on the input image and predicts a

hand segmentation mask. It then feeds both the original RGB image and the hand

segmentation mask into U-Net [129], which outputs a segmentation mask of the object

that is referred to by the users’ deictic gestures.

Hand Segmentation

We utilize Li et al.’s algorithm [96] trained on the LIP dataset [58] to perform real-time

hand segmentation. The LIP dataset parses a person into 20 body parts and garments

(e.g., “left-leg”, “gloves” and “pants”), and we regard the segmentation result of “left-

arm” and “right-arm” as the portion of hands. We note that the definition of “arm” in

the LIP dataset includes both arms and hands that are not covered by clothes or gloves.

We notice that the publicly-available model provided by the authors of the LIP dataset

is not suitable because it utilizes resnet-101 backbone [65], which is a very deep CNN

architecture and is not executable in real time. Therefore, we re-design their methods

based on resnet-18, a much lighter model with the same encoding approach. We then

tested this light-weighted model on the LIP dataset. The result mIoU accuracy of

the light model is 0.621, and that of the original model using resnet-101 is 0.680.

This demonstrates that our light model for real-time uses can still achieve comparable

accuracy to the original deep model.

Object Highlights

As explained in Section 3.4.1, object highlights offer immediate feedback on what

portions of the image frame the model to be trained should focus on. To avoid losing

the generalizability of V-IMT, LookHere should be able to segment the object of

interest in an object-agnostic manner. To tackle this challenge, we feed the RGB image

3.5 Implementation 26

(a) CAM (Λ = 0). (b) Λ = 1. (c) Λ = 0.718

Figure 3.5 Visual comparison of saliency maps with different settings of Λ. The
parameter Λ in Equ. 3.1 controls the weight balance between the results by CAM
and our trained model.
concatenated with the hand segmentation mask inferred from the hand segmentor

(Section 3.5.1) into a recognition model as shown in Figure 3.4. Intuitively, this hand

segmentation mask carries the information of what objects in the frame users are

specifically referring to in their demonstrations.

The current implementation uses U-Net [129] as the encoder-decoder architecture.

It performs the best as well as the fastest among four commonly-used segmentation

model architectures (see Appendix A.1.3 for detailed data). The network uses the

EfficientNet [153] backbone, a design toward high computation efficiency. To train

this U-Net, we use our own dataset which we will explain in Section 3.6.

3.5.2 Joint Classification and Segmentation for Saliency Map

Visualizations

Saliency map visualizations are useful for users to understand what specific portions

of a given image are weighed more in their ML models. Existing work [189, 182]

created saliency maps of a classification model through CAM methods [135, 185].

CAM methods are primarily used for simple classification models trained by the

dataset without segmentation masks. Unlike existing V-IMT systems, our training

data accompany the object segmentation masks inferred during the teaching phase.

3.5 Implementation 27

We thus devise a new model training approach for LookHere to exploit this unique

information resource to achieve more accurate saliency maps.

LookHere identifies the areas to be highlighted by saliency maps through solving a

classification and segmentation problem jointly. This means that our backend model

predicts a class as well as infers the segmentation of the object of interest at the same

time. More specifically, we train the model through a joint loss function (ljoint), which

is a weighted sum of classification loss (lcls) and segmentation loss (lseg): ljoint =

lcls + λ · lseg. λ is a trade-off weight that determines the relative importance between

the classification loss and segmentation loss. In our current prototype, we set λ to 1,

making both of them equally important in the training process.

While the segmentation masks originally created for object highlights can be useful

for training our backend model for saliency maps as we discussed above, they may also

contain some errors because the generated mask is not always perfect. Such errors

may lead to degradation in the accuracy of segmentation inference for saliency maps.

To eliminate this effect, we introduce another parameter (Λ) to control the balance

between the inference results by our backend model and CAM methods:

Λ ·Out+ (1− Λ) · CAM (3.1)

Out represents the segmentation output of the our backend model and CAM is

the CAM inference result. A larger Λ value means that the system weighs more on

our inference result for the output for saliency maps.

We found that taking such trade-off in consideration can greatly improve the

accuracy of our saliency maps in some challenging cases. Figure 3.5 illustrates

the effect of Λ in a case where a user is holding a plastic bottle. The saliency

map visualization can be quite erroneous when we only use the results of CAM

(Figure 3.5a). This approach would include regions that are not related to the object

of interest. On the other hand, when we only use the prediction by our backend model,

3.6 Deictic Gesture Dataset 28

the result tends to be overly conservative (Figure 3.5b). One reason of this issue is

over-fitting. In this example, we deliberately used different backgrounds for training

and testing. As the bottle in this example was transparent, the model might have

included (or overfit) some visual features of the background during training. Such

features would not appear when the background was changed when being tested, and

this could thus explain why our model can be very conservative.

By choosing an appropriate value for Λ, the saliency map can visualizes the object

region more precisely (Figure 3.5c). We chose Λ value to be the accuracy of our

object highlights in our current implementation and technical evaluation (i.e., 0.718

using EfficientNet-b0 backbone). It is out of our scope to investigate how to achieve

optimization on this parameter.

3.6 Deictic Gesture Dataset

3.6.1 Motivation of Data Collection

As explained in the previous section, the backend model for object highlights needs

training data of how people perform deictic gestures to objects to a camera. Among

existing related human-object datasets [36, 35, 137, 94], TEgO [94] is the one that

best fits our task. TEgO includes 5758 labeled egocentric images of hand-object

interactions. For each image, there is a hand segmentation mask and a point-level

annotation of the object location, which is not immediately sufficient for our purpose

(object segmentation). We therefore attempted to infer the segmentation mask of

the object by emulating a click-based interactive segmentation method [148]. We

then manually inspected all the generated results and removed data samples where

the inferred segmentation masks were completely inaccurate. This constitutes our

customized dataset with automatically-synthesized object segmentation masks, called

TEgO-Syn (n=5232).

3.6 Deictic Gesture Dataset 29

Figure 3.6 Example images in HuTics dataset. HuTics covers four kinds of deictic
gestures to objects: exhibiting (top-left), pointing (top-right), presenting (bottom-left)
and touching (bottom-right). The hands and objects of interest are highlighted in blue
and green, respectively.

The trained network using TEgO-Syn achieved mIoU=0.895 on the testing set,

showing a seemly-promising result. Appendix A.1.2 provides our detailed training

configurations. To further evaluate the robustness of the network in real applications,

we experimented with this model with images where various objects were presented

through different deictic gestures. Our observations showed that the model was not

robust enough which we will further confirm in Section 3.6.3. We then summarized

three main reasons why TEgO still cannot fit our target task:

3.6 Deictic Gesture Dataset 30

• A limited set of gestures. All data in TEgO were collected from two participants,

which is insufficient to cover how different people interact with the object using

gestures.

• A limited set of objects. TEgO-Syn includes 5232 images of 19 objects. Training

on a small set of objects repeatedly enables the model to over-fit the features of

these specific objects, which is harmful to our target task, i.e., object-agnostic

segmentation.

• Egocentric images. The images in the TEgO dataset are taken from the egocentric

view. Our system uses a front-facing camera, which is a common configuration in

V-IMT [19].

3.6.2 HuTics Dataset

To address the three issues above, we created our own dataset. We recruited crowd-

workers on Amazon Mechanical Turk, aiming to enhance the diversity of the dataset.3

In each task, the worker needed to upload 12 images in total that clearly showed how

they would use deictic gestures to express the references to objects. For collecting a

diverse set of images from each worker, we first classified deictic gestures into four

categories based on Sauppe et al.’s taxonomy [133]: pointing, presenting, touching

and exhibiting. We then asked the workers to take three different photos for each

gesture category. We also provided example pictures to clarify our expectations to the

workers.

We collected 2040 qualified images from 170 crowd-workers (M: 99; F: 71) in

total. The average age of the workers was 34 (SD: 9.2). Example unqualified

submissions included images that were highly blurry or where no gesture was involved

at all. The crowd-workers spent 15 minutes on average to complete the task, and
3We received IRB approval for this data collection at our university.

3.6 Deictic Gesture Dataset 31

Prediction. Ground truth.
(a) An example with the model trained with TEgO-Syn (IoU=0.366).

Prediction. Ground truth.
(b) An example with the model trained with HuTics (IoU=0.719).

Figure 3.7 Visual comparison of predictions by the models trained with the two
datasets (TEgO-Syn and HuTics).
we paid each participant 2 dollars. We then recruited another five people on our

local crowdsourcing platform to annotate object segmentation masks on the collected

images. On average, each annotation worker labeled 408 images, and we compensated

them with approximately 78 dollars on average in our local currency. During the

annotation, the workers used AnnoFab [73], an online polygon-based tool, to label the

segmentation masks.

Figure 3.6 presents example images with the annotated object segmentation

masks. Unlike TEgO, our dataset contains a wide range of objects, deictic gestures,

3.6 Deictic Gesture Dataset 32

Table 3.1 Comparison of HuTics and TEgO-Syn.
HuTics TEgO-Syn

Participants 170 2
Object Types Uncontrolled Controlled

View Front-facing Egocentric
of Images 2040 5232
Annotation Segmentation mask Pointed-based

Target Task Object-agnostic segmentation
specified by gestures

Object recognition for
people with visual impairments

backgrounds, and environmental conditions. Table 3.1 summarizes a comparison

of HuTics v.s. TEgO-Syn.

3.6.3 Performance of Object Highlights on HuTics

We used the data from 80% of the participants in HuTics (i.e., 1632 images from

136 people) for training and 20% for testing. We trained our algorithm using the

same configuration above, and the network achieves mIoU=0.718 and 0.806 using

EfficientNet-b0 and EfficientNet-b3 backbone on the testing set, respectively. Running

on one GTX 2080Ti GPU, our implementation of the algorithm was able to reach 28.3

fps and 24.0 fps with the EfficientNet-b0 and EfficientNet-b3 backbone, respectively.

For comparison, we trained another model with the same network architecture using

TEgO-Syn and tested with images in HuTics. The accuracy of that model was

mIoU=0.368, much lower than that of the same network using HuTics for training.

This significant accuracy drop from 0.895 (tested on TEgO-Syn) further confirms our

observations discussed in Section 3.6.1.

Figure 3.7 shows a visual comparison of the results between the networks trained

on TEgO-Syn and HuTics. Each example in Figure 3.7 are the one in our testing

set that has the closest IoU values (0.366 and 0.719) to the corresponding mean IoU

values (0.368 and 0.718). We therefore use the model trained on HuTics in our current

prototype implementation.

3.7 User Study 33

3.7 User Study

We conducted a comparative user study to evaluate how LookHere could improve

the experience of V-IMT in terms of time cost for teaching, accuracy performance on

models created, and subjective user workload.

3.7.1 Interface Conditions

Besides LookHere, we included the following three interface conditions to represent

existing V-IMT and object annotation methods.

• NaïveIMT : This represents the most common design in current V-IMT systems [19,

53]. In this condition, participants would only perform object demonstrations

during the teaching phase. Participants would not have an opportunity to specify

which regions of the recorded images would represent the object for a given class.

We implemented this naïve IMT system based on the source code of Zhou and

Yatani [189] available online.

• Contour: In addition to the teaching process with the naïve IMT system, this

condition would involve a manual annotation procedure in a post-hoc manner. In

this condition, participants would be asked to perform contour-based annotations.

This annotation style is widely used in IMT systems for medical purposes [12]. We

used AnnoFab [73] for post-hoc contour-based annotations in this study.

• Click: The third reference condition included a click-based annotation method [148].

We decided to include this condition as the annotation process would be more

lightweight than a contour-based approach. We used RITM [148] as the click-based

annotation tool.

All these three reference conditions involve the teaching process using the naïve

IMT system. To shorten the overall study time, we decided to ask participants

3.7 User Study 34

to perform teaching under the two conditions of NaïveIMT and LookHere. After

this teaching task, participants were then asked to perform annotations under the

two conditions of Contour and Click using the data recorded under the NaïveIMT

condition. In this manner, we liberated the participants from performing the same

tasks repeatedly with NaïveIMT for the Contour and Click conditions.

We counter-balanced both the condition order of NaïveIMT and LookHere and

that of Contour and Click across participants. The order of tasks of teaching and

annotation was fixed (the teaching process was the first).

3.7.2 Evaluation Metrics

Teaching and Annotation Time

We measured how long it took for participants to finish the model creation process

under each interface condition. Specifically, we recorded the teaching/annotation time

from when the participants started uploading/annotating the first sample to when they

finished the last (30th) sample.

Model Accuracy

We measured both classification accuracy and segmentation accuracy (i.e., mean

Intersection over Union or mIoU) of the created models. We randomly used 80%

of the data for training and the rest for testing. For classification accuracy, we

utilized cross-condition validation. Specifically, we tested three models trained by

data collected from naiv̈eIMT on the data collected from LookHere, and vice versa.

In terms of the object segmentation accuracy, we only performed cross validation

for data collected from LookHere because there were no ground-truth segmentation

annotations in LookHere to validate models created from naiv̈eIMT. This ensured that

LookHere gained no advantage over the three comparative conditions.

3.7 User Study 35

NASA-TLX

NASA Task Load Index (TLX) [63] is a standard metric for perceived workload. We

included this to understand how different conditions could affect the experience of

creating ML models with different configurations of IMT systems.

3.7.3 Procedure

At the beginning of the study, we told participants that their goal was to create

four AI models to classify and detect objects by the given systems. For the teaching

tasks, we allowed participants to use any object available in our experimental space.

They were also welcome to bring their own belongings in the study. We did not limit

the set of objects to be used in this experiment in order not to lose the validity of

the study. After they had explanations about the two teaching methods (NaïveIMT

and LookHere) and became comfortable with using both, they were asked to create

three classes for classification, and generate 30 images for each class through the given

teaching method. After completing teaching with the two methods, participants were

given an opportunity to take a break.

We next moved to the annotation tasks with the two interfaces (Contour and

Click). We provided explanations about these two tools, and participants were given

practice time to become comfortable with using them. Participants were then asked

to annotate all the images they captured under the NaïveIMT condition. They

were instructed to perform each annotation task as fast and accurately as possible.

Participants were allowed to take a break between the two sets of tasks (i.e., using the

two annotation tools).

Participants were asked to fill in NASA-TLX questionnaires after finishing each

of the two task sessions (teaching and annotation). In this manner, we ensured that

participants remembered their experience of the conditions. When participants were

rating NASA-TLX for Contour and Click, we explicitly asked them to consider their

3.7 User Study 36

overall workload for the combination of the teaching method with NaïveIMT and the

given annotation approach.

After completing both the teaching and annotation tasks, we conducted semi-

structured interviews with participants. We first interviewed them about their overall

experience and perceived benefits and shortcomings of the methods used in the study.

This helped us collect their immediate use experience of each condition without being

biased by the performance of the resulting models (i.e., the accuracy of the created

models). We next offered our model assessment interface (Figure 3.2b) for all the four

resulting models. Participants were allowed to freely use them and check whether

their created model would function accurately. We then interviewed them about how

they perceived their four models and would characterize them differently.

The whole study takes approximately 3.5 hours on average. We offered each

participant compensation of approximately 40 USD in a local currency at the end

of the experiment.

3.7.4 Apparatus

We set the video frame rate to be 24 fps across all the conditions. We used the

EfficientNet-b0 backbone in our object highlights (i.e., the lightest model), aiming to

understand the effectiveness of such feedback even under the least accurate setting.

3.7.5 Participants

We recruited 12 non-expert participants (P1 – P12) for this study. None of them had

experience in studying or working in the fields related to AI or ML. Eight of them

were female, and the rest were male. The age of participants ranged from 23 to 28.

3.8 Results 37

Table 3.2 The mean values and standard deviations of the task completion time and
accuracies (classification and segmentation) across the four interface conditions.

LookHere NaïveIMT Click Contour
Λ=1 Λ=0.718

Time [s] 104
(44)

67
(10)

1,197
(228)

1,483
(407)

Acc. Cls. 0.824
(0.158)

0.847
(0.190)

0.880
(0.141)

0.833
(0.159)

Seg. 0.578
(0.233)

0.605
(0.153)

0.139
(0.095)

0.716
(0.167)

0.732
(0.151)

Mental Demand Physical Demand Temporal Demand Performance Effort Frustration0

20

40

60

80

Sc
or

es

29.2
27.1 25 23.3

29.6

16.7

24.6
19.2

24.6

18.3
21.7

12.5

32.9 32.9 32.9

21.7

38.8

29.6

50
55

50.8

30

61.2

27.9

*** *
** LookHere

NaiveIMT
Click
Contour

Figure 3.8 The results of the mean NASA-TLX scores across the six subscales. The
error bars represent the standard errors. The observed significant differences are
indicated with ∗, ∗∗ or ∗ ∗ ∗ (p<.05, p<.01 and p<.001, respectively).
3.8 Results

3.8.1 Quantitative Results

Table 3.2 presents the mean completion time and model accuracy in the study. With

respect to the task completion, the Contour and Click conditions exhibited much

longer time than the other two conditions (11.5 and 14.3 times than the LookHere

condition, respectively). One-way repeated-measure ANOVA found that the factor

of the conditions was significant (F (3, 33)=134.02, p<.001, η2=.92). We then used

Scheffe’s multiple comparison procedure to compare the take completion time under

the LookHere condition against the three reference conditions. We found that the

completion time under the LookHere condition was significantly shorter than those

under the Contor and Click conditions (both p < .001). This result clearly suggests

that LookHere successfully removed the effort for object annotations.

3.8 Results 38

We next looked into the accuracies of the models created under the four conditions.

As shown in Table 3.2, the mean accuracies for classification (predicting the correct

class for the given image from the three classes defined by each participant) did

not show large differences. Our one-way repeated-measure ANOVA did not find a

significant effect of the interfaces (F (3, 33)=.460, p=.712, η2=.04).

We further examined the segmentation accuracies. As shown in Table 3.2, the

accuracy under the NaïveIMT condition was clearly lower than those with the

other methods. One-way repeated-measure ANOVA found a significant effect of the

interface conditions (F (3, 33)=105.98, p<.001, η2=.91). Scheffe’s multiple comparison

procedure revealed a significant difference between LookHere and NaïveIMT (p<.001).

This result confirms that the models created with data collected under the NaïveIMT

condition did not necessarily weigh the visual features in the objects of interest,

implying potential unreliability in actual use.

We also compared the segmentation predictions on the same trained model

with two different Λ values: 1 and 0.718 (the default configuration in our current

implementation). While the accuracy was improved by 0.027 with the value of

0.718, this difference was not significant. Future research should investigate how Λ

should be configured to achieve the best performance, but this result implies that the

combination of CAM results and the inference by the backend object segmentation

model could offer improvements.

We next examined the NASA-TLX results. Figure 3.8 shows the mean values of

the raw NASA-TLX subscales. One-way repeated-measure ANOVA on each subscale

found significant effects by the conditions in mental demand (F (3, 33)=7.37, p<.001,

η2=.40); physical demand (F (3, 33)=16.27, p<.001, η2=.60); temporal demand

(F (3, 33)=7.86, p<.001, η2=.42); effort (F (3, 33), p<.001, η2=.57); and frustration

(F (3, 33)=3.23, p<.05, η2=.23). No significant result was found in performance

(F (3, 33)=1.55, p=.22, η2=.12). Post-hoc Scheffe’s procedure revealed significant

3.8 Results 39

differences in physical demand, temporal demand and effort between LookHere

and Contour (p<.001, p<.05, and p<.01, respectively). These results suggest that

the contour-based annotation method significantly impacted the user experience

negatively.

In summary, the quantitative results show that LookHere was able to achieve the

best balance of task completion time and model accuracy. We further looked into how

different user experience of the four interface conditions was through our qualitative

results.

3.8.2 Qualitative Results

We transcribed the interviews and extracted quotes that were related to user

experience and opinions about the four interfaces tested. We then performed the open

coding approach to categorize the quotes and derive them in a bottom-up manner.

Burden for post-hoc annotations

Six participants (P1, P4, P5, P9, P10 and P12) explicitly mentioned that post-hoc

annotations were tedious and reduced the perceived usability of an overall V-IMT

system. While nine participants preferred the Click annotation method to Contour,

all participants agreed that both approaches were “time-consuming”.

“[A good process] shouldn’t contain the annotation process because it is the most

time-consuming one and requires lots of effort. On the contrary, these two

(NaïveIMT and LookHere) are very comfortable to use because there is only one

step.” [P4]

All participants considered LookHere as “efficient” because it does not involve

explicit post-hoc annotations. This was clear from the task completion time and

NASA-TLX results, and our qualitative data were also indicative. In particular, P1

appreciated that LookHere combined the teaching and annotation process:

3.8 Results 40

“It can greatly improve the user experience in terms of not only time

consumption but also the sense of satisfaction.” [P1]

Participants were also satisfied with the accuracy of their created models achieved

through LookHere. Despite the simplified teaching experience, they could not notice

the accuracy difference between LookHere and Contour.

“I prefer to use [LookHere]. First, its accuracy is good, and it’s easy to use ...

It is a user-friendly design, not requiring much effort and time.” [P10]

“In terms of effort and performance, [LookHere] is definitely a cost-effective

choice ... Speaking of [Contour], it requires much effort, but its result is not that

good, probably similar to [LookHere]. It makes me feel that it is not worthwhile.”

[P6]

Uncertainty in teaching with NaïveIMT

Participants expressed their concerns about whether the model created with the

NaïveIMT approach correctly interpreted their teaching.

“Because you can’t find its focus, as a user, you can’t confirm whether it (the

computer) understands my idea.” [P8]

“[NaïveIMT] is very convenient to use but I am afraid that the performance

would be bad.” [P3]

On the other hand, object highlights shown in LookHere offered our participants

more confidence that the regions of the objects would be considered more.

“[Different from NaïveIMT, LookHere] is simple, and it also has visualizations.

It can let users keep well informed whether the object is recognized [by the

computer].” [P5]

3.8 Results 41

In case object highlights were out of place, participants adjusted their deictic

gestures until they were well overlaid onto the objects. This offered a sense of control

as P12 commented:

“On one hand, the procedure is simple, and on the other hand, [LookHere] itself

has already drawn that pattern (object highlights). [Even though it sometimes

has errors,] I can change some positions [of the object] and it can [successfully]

capture this [object] ... It provides a sense of control. Unlike [NaïveIMT], I do

not know what it captures [within each image].” [P12]

Limitations

Participants pointed out limitations of LookHere, and some further provided

suggestions on how we can improve the current prototype. For example, P11 raised an

issue that users could not interact with LookHere using bimanual interaction since one

hand is required to manipulate the mouse, clicking on the camera icon in Figure 3.2a.

Additionally, P4 pointed out that there was a lack of further teaching/clarification

support when object highlights fail. P4 further suggested that V-IMT should integrate

more functions so that users can better correct object highlights in erroneous cases,

rather than passively avoid teaching these samples.

“In terms of [LookHere], is it possible to utilize the Click function there? For

example, when I hold something, [if object highlights are erroneous at this

moment,] can I tell the computer which region I want it to recognize [by clicking

on the object]? ... In the current design, I can only change the position (of the

object) to adjust it (the highlight), and this makes me feel quite inactive (i.e.,

not in good control of object highlights).” [P4]

3.9 Discussion 42

3.9 Discussion

As mentioned in Section 3.2, this work aims to (1) explore technical solutions for the

integration of object annotations into the teaching process (i.e., RQ1) and (2) study the

effectiveness of the solution (i.e., RQ2). We answer RQ1 through our implementation

of LookHere as explained in Section 4 and 5. Our evaluation results further show that

LookHere can effectively reduce users’ workload during the model creation process

while maintaining similar model accuracies, answering RQ2.

Despite its effectiveness, we also found several drawbacks of our systems that

limited user experience in practice. In the following content, we share our insights

about how future work can improve our system and how to extend our research

questions to exploit more human interactions to achieve in-situ annotations in IMT.

Additionally, our dataset, HuTics, which is designed for the gesture-aware object-

agnostic segmentation task, is one important contribution of this work. We further

show that our approach and dataset can also be used to support other HCI projects

by demonstrating several example applications.

3.9.1 Depth-aware Object Highlights

Despite the effectiveness of object highlights to support efficient teaching, we still

observed typical erroneous cases that remain to be addressed. Figure 3.9 shows an

example where IoU was low (more examples can be found in Appendix A.2). The

person in this figure is pointing at an object on her head, but our algorithm incorrectly

highlights the clock in the background. Our object highlights also tend to fail in cases

where a person is pointing at an object at a distance (e.g., buildings or furniture

that are not close to hands). These failure cases are mainly caused by the current

implementation that uses 2D hand segmentation features without a 3D understanding

of the scene. A future system may consider obtaining a richer set of information

through 3D scene reconstruction [34], 3D hand pose estimation [18, 71] from RGB

3.9 Discussion 43

(a) Prediction. (b) Ground truth.
Figure 3.9 A failure case of object highlights.

images, or directly use depth cameras [74]. Future research should further study how

to simplify the aforementioned feature extractors to be used in real time for V-IMT

systems or how to use depth sensors to support V-IMT systems [177, 176].

3.9.2 Voice Input and In-situ Correction

As mentioned in Section 3.8.2, we observed several limitations of our interface design.

To enable bimanual interactions with the object, future research can investigate how

to use technologies like voice input or facial expression recognition to replace a button

click. For example, when users want the system to sample the current frame, they can

simply say “collect” or smile to the system while performing bimanual deictic gestures.

In addition, as mentioned in Section 3.8.2, future systems should study how to

enable users to actively correct object highlights when they observe prediction errors.

Although the segmentation annotation in LookHere allows users to choose appropriate

frames for teaching, the role of users in this Human-AI collaboration is relatively

passive. When users observe the failure case of object highlights, they should be given

an opportunity to actively correct the error [146], instead of passively avoiding those

data. Allowing such in-situ correction initiated by users can further empower the

3.9 Discussion 44

ability of IMT systems to “leverage human capabilities and human knowledge beyond

labels” [127], achieving better human-AI collaboration.

3.9.3 Other Modalities and Privacy Issues

While this work focuses on studying how to use deictic gestures to enable in-situ

annotations, they are not the only human interaction that future IMT research can

exploit. As we discussed in Section 3.9.1, our gesture-aware annotation approach may

not function with some deictic gestures users may perform. More importantly, humans

also innately perform other interactions as a cue of objects of interest. For example,

future research can study how to use gaze tracking technologies to capture the object of

interest that is difficult to hold by hand (e.g., buildings or scenery). While examining

other modalities is out of scope of this work, future work on this aspect is encouraged.

Despite the benefits from collecting fine-grained annotation by sensing additional

human interactions, such systems without proper designs may cause severe privacy

issues. We therefore encourage future research to study how to balance privacy

protection and the benefits from in-situ annotations in IMT.

3.9.4 Applications of the Object-agnostic Segmentation

Model Trained on HuTics

One important contribution of this work is our object-agnostic segmentation model

and its dataset, HuTics. Although our original objective was to enable LookHere, we

envision that our model can be used for a broader range of applications, not limited

to IMT research.

Intelligent Virtual Background

Using our model, developers can create an intelligent virtual background used in

online meeting systems which is aware of the object users are trying to present to

3.10 Summary 45

others. Segmentation algorithms for virtual backgrounds do not typically consider the

behavior of object presentation. Therefore, virtual backgrounds often hide the objects

held by users, diminishing user experience in certain scenarios. Our model can address

this issue and show the object held by the user while preserving virtual backgrounds

to support a better communication experience.

Gesture-guided Portrait Mode

Portrait mode in recent smartphones allows users to have a focus effect (e.g., blurring

the background to highlight a person in the foreground). Using our model, such a

portrait mode may create a focus effect on the objects held by users intelligently. Our

object-agnostic segmentation model thus has a potential to enrich user experience of

photo shooting with smart devices.

Supports for People with Visual Impairments

Prior work demonstrated an assistive technology for people with visual impairments

by recognizing objects held by users. While it only recognized 19 objects constrained

by the dataset used in that project, future assistive systems may develop a more

generalizable approach by using our model trained on HuTics. They can first locate

an object held by users using our object-agnostic segmentation model, and then apply

a classification model trained on large-scale datasets that cover thousands of objects

(e.g., 1000 classes in ImageNet [40]), achieving the goal of recognizing various objects

for supporting activities of people with visual impairments.

3.10 Summary

This work demonstrates LookHere, a V-IMT system that allows users to annotate

objects in real time during the teaching phase by exploiting users’ deictic gestures.

3.10 Summary 46

We build our own dataset (HuTics), consisting of 2040 front-facing images of deictic

gestures and objects to achieve our implementation. Our user study results show that

LookHere successfully removed substantial user effort on post-hoc manual annotations.

However, the models created through LookHere did not show significant differences in

their accuracies compared to those using the data with manual annotations.

Chapter 4

InstructPipe: Building Visual

Programming Pipelines with

Human Instructions

4.1 Introduction

A visual programming interface provides users with a node-graph editor to program.

As opposed to writing code in a code editor, the node graph allows users to

build a pipeline in a visual workspace with nodes and edges. This approach

effectively reduces technical barriers for users to prototype creative applications.

Advances in machine learning (ML) further stimulate growing interest in visual

programming. Open-sourced ML libraries (e.g., TensorFlow [2], PyTorch [121], and

Hugging Face [166]) provide users with various encapsulated modules to accelerate

AI project development and experimentation. Meanwhile, this also provides valuable

protocols for visual programming developers to create systems for ML applications [45],

where ML practitioners can interactively test “off-the-shelf” models on the node-graph

editor. Recent foundational models like large language models (LLMs) [158, 14, 7]

4.1 Introduction 48

Select Nodes

Explore and
modify

pipeline on
demand

+

Ideate Pipeline
Structure

Connect
Nodes

Human Instructions

Describe the pipeline you want:

Tag:

Submit

Multimodal

Caption a tiger image using VQA,
modify the character in the caption into
a cat using LLM, and finally...

User

User

InstructPipe

Traditional Visual Programming

Result Pipeline

Figure 4.1 Traditional visual programming requires users to select nodes, conceive
pipeline structure, and then create the pipeline with a node-graph editor. In contrast,
InstructPipe streamlines this process by instantiating a multi-modal machine learning
pipeline directly from human instructions, enabling users to further iterate and interact
with the pipeline across diverse applications such as news summarization, image style
transfer, and real-time AR effects.
and findings on Chain-of-Thought [164] further stimulate a community-wise interest

in visual programming [167, 169, 46], which provides users interactive experiences to

explore AI chains.

Despite the development of visual programming platforms in various domains, we

observed that existing systems share one similar characteristic: users usually start a

creative process in the workspace “from scratch”. This implies that users need to 1)

select nodes, 2) ideate the pipeline structure, and finally, 3) connect nodes from a

completely empty workspace. For users who are unfamiliar with a particular visual

programming platform, such processes can easily overwhelm them, degrading their

overall programming experience.

Similar issues also exist when users write programs using text-based editors (there

exist many built-in functions in a particular programming language and multiple

variables in a program), but advances in LLM assistants show that such challenges can

be effectively reduced. For example, GitHub Copilot [56] makes it possible for users

to generate code by simply describing users’ requirements in natural language. Even

though the generated code is not absolutely correct, the AI assistance usually finishes

4.1 Introduction 49

a large portion of the task, and programmers may only need to make a few edits to

achieve a correct result. To this end, we raise the following questions that motivate

our work: How can we build such an assistant to benefit visual programming users?

In this work, we built InstructPipe, an AI assistant for visual programming

users to generate a pipeline through natural language instructions (Figure 4.1).

We implemented InstructPipe on Visual Blocks [45], a visual programming system

for prototyping ML pipelines. One major technical challenge in implementing

InstructPipe lies in the lack of visual programming data. Different from the standard

approach to building a copilot for the text-based editor (i.e., training LLMs using

large-scale text-based programs online), it is impractical to collect sufficient data for a

particular visual programming platform. We addressed this issue by decomposing the

generation process into three steps. Using two separate LLM modules, the system first

scopes the potentially useful nodes and then generates pseudocode for a target pipeline.

InstructPipe then compiles the pseudocode and renders the pipeline on the node-graph

editor to facilitate further user interaction. Our technical evaluation suggests that

InstructPipe reduces user interactions by 81.1% compared to building pipelines from

scratch. Our system evaluation with 16 participants demonstrated that InstructPipe

significantly reduced users’ workload in their creative process. Qualitative results

further reveal that InstructPipe effectively supports novices’ on-boarding experience

of visual programming systems and allows them to easily prototype a concept for

various purposes. As one pioneering work on visual programming copilot, we also

observed new challenges caused by humans’ cognitive characteristics and proposed

future technical directions toward a next-level, open-ended AI prototyping assistant.

In summary, this work offers the following contributions:

1. InstructPipe, an AI assistant that enables users to build ML pipelines from human

instructions,

4.2 Related Work 50

2. System design and technical development of InstructPipe, which includes two LLM

modules and a code interpreter that generate codes for a visual programming

pipeline, compile the code, and render the pipeline in an interactive node-graph

editor,

3. A technical and a user evaluations that demonstrate effectiveness of InstructPipe,

and the corresponding findings that reveal new challenges for the HCI community.

4.2 Related Work

4.2.1 Visual Programming

The operation of computer systems is defined by a computer program. However,

“the program given to a computer for solving a problem need not be in a written

format” [152]. This future-looking statement, dating back to 1960s, inspired several

generations of researchers to design and build visual programming systems.

Today, visual programming systems (e.g., LabView [85], Unity Graph Editor [157],

PromptChainer [167], and Visual Blocks [45]) typically feature a node graph editor,

providing users with a visual workspace to “write” their program. Recent work

further explored the application of visual programming in education [76, 87], authoring

support [183, 179], and robotics [37, 70, 69]. Zhang et al. [183] connected the visual

programming tool to the concept of teaching by demonstration [190], allowing users to

rapidly customize AR affects in video creation. FlowMatic [179] extended traditional

visual programming interfaces into 3D virtual environments, providing users with

immersive authoring experiences.

More recently, findings on LLM Chains [169] and Chain-of-Thought [164] further

stimulated researchers to build visual programming tools that chain LLM modules.

Developers want to explore various ways to chain an LLM module for various

application, and in such scenario, visual programming provides a great platform for

4.2 Related Work 51

users to focus on the high-level exploration. Example research work and industrial

products include PromptChainer [167], LangFlow [91], and ComfyUI [32].

InstructPipe offers technical contributions that allow users to generate a pipeline

using text-based instruction, providing users with new experience beyond building a

pipeline from scratch.

4.2.2 LLMs and Their Applications in Interactive Systems

Early multimodal ML work uses language models to solve Visual Question Answering

(VQA) [6, 8], but these solutions are limited to simple questions and cannot

perform effective reasoning and problem solving [106]. LLMs revolutionized AI’s

reasoning capability [164, 186] in language, which motivated researchers to build

LLM applications in various domains beyond NLP [151, 142, 119]. For instance,

LLMs augmented the perceptual and planning intelligence in robotics [142], supported

autonomous driving [100] and assisted clinical processes in medical science [89, 144].

The advances in LLMs empower recent interactive systems [123, 120] with

enhanced machine intelligence. Recent research leverages LLMs to edit visual-

ization [163, 138], receive AI explanation [168], facilitate communications [104],

understand user interface [162], and study simulated social behaviors [119]. The

revolution also motivated HCI researchers to design new interfaces for LLMs [77, 150].

Graphologue [77] augmented LLM response by displaying interactive diagrams on

the side of the response text, which visualizes the semantic logics in a paragraph.

Sensecape [150] provides users with a workspace to explore long LLM response in a

hierarchical structure.

InstructPipe focuses on utilizing LLMs for generating pipelines in visual

programming with human instructions. This work shares similar vision with

Prompt2Model [160] and VisProg [60]. Prompt2Model [160] finetunes a BERT

model [41] using data generated by instructions. VisProg [60] produces Python code

4.3 InstructPipe 52

(a) InstructPipe’s instruction dialog.

(b) InstructPipe’s visual programming interface.
Figure 4.2 The user interface of InstructPipe. The user can first click on the
“InstructPipe” button on the top-right corner of the interface in (b). A dialog will
appear, and the user can input the instruction and select a category tag. InstructPipe
then renders a pipeline on (b), in which the user can interactively explore and revise.
from instructions with task-dependent few-shot prompting. However, both prior arts

lack an interactive workspace that facilities novices to use. In contrast, InstructPipe

generates and compiles a pipeline (without fine-tuning), while rendering the pipeline

in a visual programming interface, facilitating an interactive, collaborative, and

explainable workflow.

4.3 InstructPipe

InstructPipe is an AI assistant that enables users to generate a visual programming

pipeline by simply providing text-based instructions [187]. We implemented

InstructPipe on Visual Blocks [45], a visual programming system for prototyping

4.3 InstructPipe 53

ML pipelines that handles texts and images. Technically, InstructPipe takes user’s

instruction (texts) as inputs and returns a directed graph consisting of nodes and

directed links (directed edges), and the nodes are selected from our node library. Note

that InstructPipe assigns the node parameter with default values, which implies that

InstructPipe leaves the parameter tuning task on the visual programming interface to

the user.

4.3.1 User Workflow

To generate a pipeline, users can first click the “InstructPipe” button on the top-

right corner of the interface (Figure 4.2b). The system then activates a simple dialog

(Figure 4.2a) in which users can 1) provide a description of their target pipeline and

2) tag the pipeline. The tag can be “language”, “visual”, or “multimodal”. After users

click the “Submit” button in the dialog, InstructPipe renders a visual programming

pipeline on the node-graph editor. Based on the result, users can further refine the

pipeline in the visual programming interface.

4.3.2 Primitive Nodes

InstructPipe supports 27 primitive nodes in Visual Blocks, including seven I/O nodes

(e.g., live camera and markdown viewer) and 20 processor nodes. section B.1 provides

a description for each of the 27 nodes. Compared to related work [60, 151] that

automates ad hoc ML inferences in specific use scenarios, we aim at an open-ended

use case with diverse primitive nodes. Figure 4.3 visualizes 17 (out of 20 in total)

processor nodes according to the I/Os of the nodes. The remaining three nodes are

“Google Sheet” (which takes a Google Sheet URL as input and outputs the sheet data),

“image_mixer” (which combines multiple images), and “virtual_sticker” (which casts

a sticker on a person’s face on a live camera). “Metadata” in Figure 4.3 indicates

intermediate data used in ML pipelines, which can be a segmentation mask that

4.4 Pipeline Generation from Instructions 54

PaLM /

Google Web Search

/ Text Processor

PaLM

Imagen / Google
Image Search

PaLM

URL2HTML /

String Picker

Mask Visualizer /
Tensor2DepthMap

PaLI / OCR

Face Landmark /
Pose Landmark /

Portrait Depth

Body Segmentation
/ Image Processor

I N P U T

O
U

T
P

U
T

M E TA D ATA

M E TA D ATA

L a n g u a g e

V i s i o n

L a n g u a g e V i s i o n

Figure 4.3 An overview of major primitive processor nodes supported by InstructPipe.
17 of the 20 processor nodes are categorized by the type of accepted I/O into a 3× 3
matrix. Note that “PaLM” represents two nodes in InstructPipe, i.e., a text generation
model and a chat model of PaLM [7].
describes an input image, or a URL that describes a target news that users want

to read. As shown in the matrix, InstructPipe contains a wide range of nodes that

supports the creation of complex ML pipelines.

4.4 Pipeline Generation from Instructions

InstructPipe leverages LLMs to generate visual programming pipelines from text

instructions. There exist two prevailing approaches for customizing LLMs: 1)

fine-tuning LLMs [13, 104], and 2) few-shot prompting [119, 44]. For our task,

fine-tuning LLMs requires a substantial volume of annotated data comprising pairs of

pipelines and prompts. Additionally, a growing list of nodes poses new challenges to

scaling this approach with new data annotations. In comparison, few-shot prompting

can seem more practical [60, 164, 170], but it is challenging to design an efficient

prompt that fits within a reasonable number of tokens. The configuration file of the

27 nodes alone includes 8.2k tokens. Moreover, because of the combinatorial explosion

of the 27 nodes in the system, it is not clear how many prompt examples are needed

and how we can construct in-context pipeline examples.

4.4 Pipeline Generation from Instructions 55

Node 1 Node 2

Node 4

Node 3

Node N... ...

Visual Blocks
InstructPipe

Describe the pipeline you want:

Tag:

Submit

Multimodal

Describe the emotion of a person in one
image using emoji and show this emoji on
the user's face in the webcam.

Generated

Pipeline

LLM ModuleIntermediate Data

Pseudocode
Input

...

Output

...

Processor

...

Node

Selector

Code
Writer

Code Interpreter

Figure 4.4 Workflow of InstructPipe. First, users describe their desired pipeline
in natural language and designate it with a language, image, or multi-modal tag.
InstructPipe then feeds user instructions into a node selector to identify a relevant
set of nodes. Subsequently, both the instructions and the relevant nodes with their
description are input into a code writer to produce pseudocode. Finally, a code
interpreter parses the pseudocode, rectifies errors, and compiles a JSON-formatted
pipeline, allowing users to refine and interact with it further within Visual Blocks’s
node-graph editor.

To this end, we implement InstructPipe with a two-stage LLM refinement

prompting strategy, followed by a pseudocode interpretation step to render a pipeline.

Figure 4.4 illustrates the high-level workflow of the InstructPipe implementation.

InstructPipe includes two LLM modules (highlighted in red): 1) a Node Selector

(§4.4.2) and 2) a Code Writer (§4.4.3). Given a user instruction and a pipeline tag,

we first devise the Node Selector to identify a list of potential nodes that would be

used according to the instruction. In the Node Selector, we prompt the LLM with a

very brief description of each node, aiming to filter out unrelated nodes for a target

pipeline. The selected nodes and the original user input (the prompt and the tag) are

then fed into the Code Writer, which generates pseudocode for the desired pipeline.

In Code Writer, we provide the LLM with detailed description and examples of each

selected nodes to ensure LLMs have a thorough understanding of each candidate node.

Finally, we employ a Code Interpreter to parse the pseudocode and render a visual

programming pipeline for the user to interact with.

4.4 Pipeline Generation from Instructions 56

(a) Pipeline.

(b) pseudocode.
Figure 4.5 A pair example of pipeline and pseudocode. In the first line of
code under “processor”, pali_1_out, pali_1, pali and image=input_image_1,
prompt=input_text_1 represents output variable id, node id, node type, and node
arguments, respectively.
4.4.1 Pipeline Representation

The Visual Blocks system represents a pipeline as a Directed Acyclic Graph (DAG) in

JSON format1. To compress the verbose JSON file, InstructPipe represents pipelines

as pseudocode [60, 151], which can be further compiled into a JSON-formatted

pipeline. The pseudocode representation is highly token-efficient. Figure 4.5 shows an

example in which the pseudo compresses the JSON-based pipeline representation (2.8k

tokens) into a 123-token pseudocode representation. The efficiency does come with

a cost: it loses some fine-grained annotations of each node like property values (e.g.,

layout of the nodes, parameters of a segmentation model, and the degree of blurring

parameters in an “image processor” node). InstructPipe leaves the task of finetuning
1Pipeline in JSON files: see supplementary materials for examples.

4.4 Pipeline Generation from Instructions 57

these parameters to the user and focuses on generating the graphic structure of a

visual programming pipeline.

Figure 4.5 provides an example of a pipeline (Figure 4.5a) and its corresponding

pseudocode (Figure 4.5b). The syntax design is inspired by TypeScript. The structure

is inspired by how academic papers present pseudocode [184]: an algorithm block

typically starts with specifying the input/output and then explains the intermediate

processor. We highlight the first line under the processor module (i.e., the operation

of the PaLI node) in Figure 4.5b in four different colors, representing four different

components in the programming language. “pali_1_out” represents the output

variable name of the node. “pali_1” is the unique ID of the node. The green symbol

after the colon, i.e., “pali”, specifies the type of the node. In this example, the

node with the ID of “pali_1” is a “pali” node. The rest part in the bracket, i.e.,

“image=input_image_1, prompt=input_text_1”, defines the arguments of the nodes.

In the input pseudocode, we do not annotate the output variable (i.e., there are no red

colors in the highlighted line under the input module) because all the input nodes only

export one value, and the output variable name is automatically annotated as the same

symbol as the node id (i.e., “input_text_1”). Note that InstructPipe generates the

text input (i.e., the property value) in the “input text” node. Therefore, the argument

in “text=“caption this image in detail”” does not indicate that the “input_text” node

accepts input edges, but accepts the node property input.

4.4.2 Node Selector

Node Selector aims to filter unrelated nodes by providing an LLM with a short

description of each node. Figure 4.6 shows the prompt we use in Node Selector.

Followed by a general task description and guidelines, we list all the node types with

a short description that explains the function of the node. Several nodes come with

recommendation(s) when the users interact with Visual Blocks, and we also include

4.4 Pipeline Generation from Instructions 58

Figure 4.6 The prompt structure for
the Node Selection module. Each node
description is formated as ”{node types}:
{short descriptions of the nodes}; {recom-
mended node(s)}”. The node recommen-
dation is optional.

You are a programmer responsible for helping the user design an AI
pipeline.
Upon receiving a concise description from the user about the
desired functionality of the pipeline, you should generate the whole
pipeline using pseudo codes.

Guidelines:
1. Respond solely in pseudo codes, without additional commentary.
2. Utilize ONLY the nodes listed below; introducing new nodes is not
permitted.
3. Ensure there's a minimum of one line in each pseudocode
category: 'input', 'output', and 'processor'.

Below are the nodes you can incorporate into the pipeline:
… // detailed node configurations for each selected node

The following is a full list of nodes you may also use but those not
included above are not recommended:
… // a full list of node types supported by InstructPipe

Examples:
Q:
{'description': 'generate a photo and validate whether it is real or
generated.', 'tag': 'multimodal'}
A:
… // pipeline pseudo codes

… // more in-context examples

Figure 4.7 The prompt structure for the
Code Writer module. Detailed node con-
figurations, see supplementary materials
for examples, are listed in the highlighted
region.

such node recommendations information in the prompt. The main intuition of this

prompt design is based on how the existing open-source libraries (e.g., Numpy [62])

present a high-level overview of all functions2. The documentation typically presents

a list of supported functions (in each category), followed by a short description so

that developers can quickly find their desired functions. At the end of the prompt, we

provide a list of Q&A as few-shot examples to support the LLM to learn and adapt

to the context of the task.

4.4.3 Code Writer

With a pool of selected nodes, the Code Writer module can write pseudocode for

rendering a target pipeline. Figure 4.7 shows the structure of the prompt utilized in
2See an example in the following link: https://numpy.org/doc/1.25/reference/routines.

array-manipulation.html

https://numpy.org/doc/1.25/reference/routines.array-manipulation.html
https://numpy.org/doc/1.25/reference/routines.array-manipulation.html

4.4 Pipeline Generation from Instructions 59

this LLM module. Similar to §4.4.2, the prompt starts with a general introduction

and several guidelines. The major difference in the prompt design in this stage lies

in the granularity of each node introduction. We provide a detailed configuration

for each selected node with additional information, including 1) input data types,

2) output data types, and 3) an example, represented in pseudocodes, showing how

this node connects to other nodes. We put a detailed explanation of the full node

configuration in the supplementary materials. Similar to the previous LLM module

(§4.4.2), the prompt design here is also inspired by the documentation of several

popular code libraries. Specifically, we gain inspiration from low-level function-specific

documentation3, which typically includes a detailed description and data types in

the input/output, followed by one or more examples of how developers can use this

function with a few lines of codes.

The prompt also includes a list of Q&A as few-shot examples. However, providing

few-shot examples in this stage is non-trivial. The reason lies in the dynamics of the

node selection pool: a combination of all the nodes causes many possible selections,

and it is impossible to design a list of few-shot examples for each possibility. Therefore,

we only created an example list for each pipeline tag (i.e., “language”, “visual”, and

“multimodal”) and intended to utilize these few-shot examples to cover most of the

use cases. The intuition behind this design is: the in-context examples serve to list

possible creative ideas of the pipelines in each tag, which can be condensed into few-

shot examples rather than traversing all the possible combinations. This implies that

the in-context examples may include nodes that are not selected in the prompts.

According to our preliminary tests, such out-of-scope nodes cause negative effects

on the generation results: LLMs tend to also “invent” new nodes that do not exist

in our system, causing failure in node rendering. Note that we also observed this

issue when combining the prompts used in [60]. We eliminate this issue by using the
3See an example in numpy.shape: https://numpy.org/doc/1.25/reference/generated/

numpy.shape.html#numpy-shape

https://numpy.org/doc/1.25/reference/generated/numpy.shape.html#numpy-shape
https://numpy.org/doc/1.25/reference/generated/numpy.shape.html#numpy-shape

4.4 Pipeline Generation from Instructions 60

(a) Before layout optimization. (b) After layout optimization.
Figure 4.8 A comparison of the same generated pipeline before and after layout
optimization. (a): Each node is assigned with a default property value when convert
pseudocode into a JSON file for rendering the pipeline. Such default values will cause
sub-optimal visual effects. (b): Our layout optimization process re-arranges the layout
for better presentation of the pipeline.
prompt contents between the node configurations and the in-context examples (i.e.,

the contents start with “the following is a full list of ...” in Figure 4.7). This aims to

inform LLMs of the exceptions for invention.

4.4.4 Code Interpreter

Finally, InstructPipe employs a code interpreter to parse the generated pseudocode

and compile a JSON-formatted pipeline with an automatic layout. We delineate the

graph compilation and rendering procedure below:

1. Lexical Analysis: InstructPipe first tokenizes each line of the pseudocode is into

output variable id, node id, node type, and node arguments (§4.4.1).

2. Graph Generation: The tokenized results allow us to build a graph structure in a

node-graph editor that connects each node as specified by the pseudocode. We then

generate JSON-formatted code, which Visual Blocks uses to render the pipeline in

the node-graph editor. Note that the JSON code includes far more parameters than

those used in InstructPipe for defining the graphic structure. InstructPipe fills texts

in the “Input Text” node based on LLM-generated pseudocode and uses default

values for the rest nodes. For example, by default, the temperature and the max

output tokens for the PaLM node are set to 0.5 and 256, respectively. If users are

4.4 Pipeline Generation from Instructions 61

not satisfied with the default values, they can interactively adjust the parameters in

the node-graph editor.

3. Graph Rendering and Optimization: A problem with employing the default

parameters is that it results in a chaotic distribution of nodes in the node-graph

editor: each node is located in a predefined position, and the edges go across the

workspace without a reasonable arrangement. Therefore, InstructPipe traverses the

graph with a breadth-first search (BFS) and arranges the nodes based on their depth

values in the DAG. As shown in Figure 4.8, such post-processing can effectively

enhance the visualization of a generated pipeline.

Our exploration shows that LLMs may not always generate accurate code as expected.

One typical issue is that Code Writer tends to invent illegal nodes out of our library

of 27 nodes. To address this, InstructPipe disposes such lines that leverage illegal

nodes. If legal nodes use the output of such an illegal node, InstructPipe discards the

edge connection between them to prevent bugs when running the pipeline. Another

common issue is that the generated code may not have a correct order. For example,

the generated code may be “Line 1; Line 3; Line 4; Line 2;”, in which “Line 1 – 4”

represents four lines of code, and the correct order should be from “Line 1” to “Line

4”. Such ordering issues would cause an input value of the current line to become

undefined, because its definition is mistakenly placed afterward. We address this issue

by stacking the line that is not ready for execution, similar to graph construction by

traversing an adjacency list. The Code Interpreter runs in a loop to interpret the code

until all legal lines in the stack become ready.

4.5 Technical Evaluation 62

4.5 Technical Evaluation

Evaluating our system is challenging. Ideally, the evaluation set should cover 1) diverse

visual programming pipelines (i.e., the pipeline factor) and 2) a variety of instructions

created by different individuals for each pipeline (i.e., the human factor). However,

such a combination requires a significant number of user evaluation sessions, which

is impractical to deploy. For example, if an evaluation set includes 50 pipelines and

20 instructions for each pipeline from 20 different participants, it requires 1,000 user

study sessions. Asking participants to attend multiple pipeline creation sessions seems

efficient, but it introduces new learning transfer effects to the study. The learn effects

usually require additional user study design with counterbalancing, which eventually

increases the total number of required sessions.

To address this issue, we decouple the two factors that cause variations by

decomposing the whole evaluation into two evaluation sessions. The major benefit

of this design is that it allows us to deploy the evaluation tasks with a reasonable

workload while maintaining the rigorousness of the whole evaluation. In our first

evaluation session (i.e., technical evaluation), we focus on understanding the technical

performance of InstructPipe among a variety of pipelines. In the second evaluation

session (i.e., user evaluation), we control the pipeline factor and examine the human

factor by recruiting different participants for prototyping controlled pipelines. The

first technical evaluation provides crucial data on the “accuracy” of InstructPipe,

which guides us to select such representative pipelines with as little bias as possible.

More importantly, the user evaluation further allows us to understand how user

experiences are affected under two conditions: with and without InstructPipe.

In this section, we focus on explaining the first step of our evaluation, the technical

evaluation, and the following user evaluation is covered in the next section.

4.5 Technical Evaluation 63

4.5.1 Data Collection

To conduct the technical evaluation, we first organized a two-day hybrid workshop

with 23 participants, aiming to collect pipelines that Visual Blocks users build for

their creative usage. Six attendees claimed that they had prior experience in using

Visual Blocks. At the beginning of the workshop, we gave a 15-minute tutorial walking

the participants through the nodes and the pipeline-building process using Visual

Blocks. After the tutorial, attendees created pipelines independently. We required the

participants to export the JSON file from Visual Blocks and upload it to our Google

Drive every time they finished a pipeline. We also emphasized that they should caption

their pipelines when they export the files. Such data pairs (pipeline/caption) by the

participants constitute important raw data we use for the technical evaluation.

Note that Visual Blocks includes more primitive nodes than the 27 nodes covered by

InstructPipe. The workshop is an open-ended creation process, in which participants

are free to any node available in Visual Blocks. The InstructPipe feature was not

available in the workshop.

4.5.2 Data Post-Processing

After the workshops, one author carefully examined each collected pipeline and found

several critical issues in the raw data:

• Incomplete pipelines. There exist pipelines uploaded by the participants that

were incomplete.

• Isolated graphs. There exist pipelines that include at least one isolated subgraph.

The isolated subgraph, as opposed to the main graph, is defined as a graph (or a

node) that has no connection to the main graph in the pipeline that provides the

main functionality of the pipeline. The “Image viewer” node on the bottom-left

corner of Figure 4.8b We observed that some participants typically would like to

4.5 Technical Evaluation 64

(a) Search news from Google, summarize it and then conduct fact check. Input: a keyword
for Google Search; Output: a summarization of the news and a fact-check result.

(b) Generating an emoji from a photo. Input: a photo uploaded by the user; Output: an
emoji generated from the photo.

(c) Turning a tiger into a cat. Input: an image of a tiger; Output: an image of a cat.
Figure 4.9 Example pipelines participants built in the workshops. The input and out
of the pipelines are shown in the sub-captions.

4.5 Technical Evaluation 65

explore the system by working on a separate sub-space. While we acknowledge its

usefulness, leaving such “redundant” graphs in the raw data for the evaluation would

cause issues when we calculate the number of user interactions (i.e., the metric used

in the evaluation that will be defined in the next subsection).

• Low-quality captions. While we explicitly required the participants to write

descriptive captions, we found some captions written by the participants were

either empty or low-quality (e.g., “newsletter”, “image editing” and “[participant

name]-demo”).

The observation motivated us to post-process the raw data to present more

rigorous evaluation results. We first removed incomplete pipelines and the isolated

graphs in each pipeline (if there are any). Although the low-quality captions may

reflect real-world scenarios on how the users may use our system, such a hypothesis

cannot be officially validated. In our data collection process, participants are

situated in the scenarios of writing captions instead of instructing an AI assistant.

When users generate instruct pipelines, they may be aware of the importance of

writing good instructions, and thus, such low-quality captions would not be as usual.

More importantly, the technical evaluation focuses on considering the variation of

the pipeline, instead of text instructions. In the next user evaluation (§4.6), we

will explicitly situate a new group of participants in instructing the assistant and

observe the user behaviors and the variation of human instructions on the same

pipelines. Therefore, we were motivated to enhance the quality of the captions for

fair technical evaluations. Two authors individually annotated the caption of each

pipeline separately by referring to the original captions and pipelines authored by

the participants. It is important to note that we finished the workshop and the data

annotation task before we completed the system implementation. The two authors had

no experience using InstructPipe before completing the annotation. We believed this

4.5 Technical Evaluation 66

process could effectively enhance the quality of the captions while maintain fairness

of the technical evaluation.

As we clarified in §4.5.1, the workshop is designed to be an open-ended creation

process. This indicates that the dataset inevitably includes out-of-scope nodes like

“custom scripts” (in which the participants write code to process the input data and

return custom outputs; see Figure 4.9b for an example) and “TFLite model runner”

(which call a custom TensorFlow model with a URL input of the model in the TF-Hub).

As we explained in §4.4.1, InstructPipe focuses on generating the graphic structure

of a pipeline without considering the property value within each node. Different from

the majority of nodes in Visual Blocks, nodes like “custom scripts” and “TFLite

model runner” derive their intrinsic functionality from the property values. Without

this information, the entire pipeline’s rationale is obscured. Therefore, we removed

pipelines that contained “out-of-scope” nodes in our technical evaluation.

The final 48 pipelines (out of 64 pipelines) are comprised of 23 language pipelines,

seven visual pipelines, and 18 multi-modal pipelines. Figure 4.9 shows three pipelines

created by the participants. Figure 4.9b is an example of the pipelines that include

out-of-scope nodes, and therefore is not included in the final 48 pipelines. In the

technical evaluation, we ran our generation algorithm on the pipeline captions six

times (three times for each caption × two captions from two authors for each pipelines)

and evaluated the generation results using the metric that will be introduced below.

4.5.3 Metric: The Number of User Interactions

Evaluating a generated pipeline is more complex than other tasks that have a

universally recognized definition of accuracy. In this project, intuitively, an accurate

generation implies that users only need to do very few edits (or even no edits) based

on the generated result. This intuition inspires our definition of “the number of user

interactions” as the core metric used in our evaluations:

4.5 Technical Evaluation 67

The Number of User Interactions is defined as the minimal number of user

interactions needed to complete the pipeline from a generated pipeline.

Note that there are countless ways to modify a generated pipeline toward a complete

pipeline in practice. Nevertheless, the minimal number of user interactions,

representing the “smartest” way(s) to make a modification, is deterministic, and this

is an objective metric that can fairly reveal how many minimal efforts users need to

spend to achieve their goal. A pipeline is considered complete when it satisfies the

given instruction. We calculate the number of interactions from the sum of two events:

1) adding or deleting a node and 2) adding or deleting an edge between nodes. Note

that when a node with edges connected is deleted, our system will auto-remove these

edges. In such instances, we only register one interaction for the node deletion.

Our definition of the number of user interactions has two important implications.

First, a complete pipeline after user interaction does not need to be the same as

the corresponding pipeline in the dataset. As long as it fulfills the task described

in the caption, we consider the pipeline complete. Second, our definition does not

consider interactions of modifying property values of a node, e.g., typing in a text box

or selecting a value in a drop-down box. We argue that such interactions are highly

node-dependent and are hard to quantify objectively. More importantly, as we explain

in §4.4.1, the generation of property values is out of the scope of this work.

In the technical evaluation with various pipelines, it is unfair to report an averaged

absolute value of user interactions because the complexity of the pipelines varies

dramatically. For instance, the user may need three edits based on a generated

result to complete a large pipeline that requires 20 edits from scratch. In another

pipeline, the user also needs to do three edits starting from the generated result, but

the whole pipeline only takes three edits to finish. Averaging these absolute values

does not provide reasonable insights into how accurate the generation is. Therefore,

we reported an averaged ratio of user interactions required to complete a pipeline “from

4.6 User Evaluation 68

Table 4.1 The ratio of human interactions in the technical evaluation. Results are
reported as mean ± standard deviation.

Overall Language Visual Multimodal
18.9± 20.3% 17.4± 20.6% 17.6± 23.7% 20.8± 16.0%

our generated pipeline” to that “from scratch” as our target metric in the technical

evaluation.

4.5.4 Results

Table 4.1 summarizes the results of the technical evaluation. Compared to building

a pipeline from scratch, InstructPipe allows the user to finish a pipeline with 18.9%

of the user interactions (as defined in §4.5.3), demonstrating the effectiveness of the

InstructPipe support. Seven generated pipelines directly satisfied with instructions

without user interactions in all six trials, and 38 generated pipelines completed at

least once in any of the six trials.

4.6 User Evaluation

While the technical evaluation demonstrates the accuracy of InstructPipe among

various real pipelines created by participants, it is still unclear what is the actual

user experience when real users go through the entire system workflow. Additionally,

there is a lack of subject variation on a controlled group of pipelines in the technical

evaluation. Therefore, we conducted an in-person user study of InstructPipe with

another group of participants, aiming to provide more insights into our system

performance. The study recruitment was in accordance with the ethics board of our

institution. We obtained participant consent before the study began.

4.6 User Evaluation 69

Training taskPre-study
survey

InstructPipe Visual Blocks

Post-study
interview

Any
conditions

left?

No

Yes

Switch
condition

Optional
open-end task

NASA TLX

Task 1 + Task 2

Figure 4.10 A flow diagram of the user study. After a training session, participants
completed the two tasks in each condition in the sequence determined by the
counterbalancing protocol.
4.6.1 Study Design

In the user evaluation, we aimed to investigate how the interface condition (with

InstructPipe and without InstructPipe; the independent variable) affects the user

experience and behaviors (the dependent variable). We will refer to these two interface

conditions as “InstructPipe” and “Visual Blocks” in the following content. Figure 4.10

visualizes the complete study flow. In each condition, participants completed the two

pipelines with counterbalance (referred to as Task 1 and Task 2 in Figure 4.10).

We carefully designed this study to ensure a fair study that can be completed with

reasonable efforts. The following elaborates how we made two important decisions

that affected the rigorousness of our study:

• Two controlled pipelines. Our user evaluation focuses on two controlled pipelines.

While we acknowledge more pipelines (e.g., four, six, or even more, instead of

two in our design) can enhance the solidness of the study, such design also

dramatically increases the required groups of the user study session. For example,

counterbalancing four controlled pipelines with two interface conditions results in

4.6 User Evaluation 70

4! × 2 = 48 study orders. If there are four participants for each unique order, the

whole study requires 48 × 4 = 192 participants, which is far more than a standard

number in HCI system papers (i.e., recruiting 10 - 20 participants for evaluation).

We believe two pipelines fit the best in our case since they require 2! × 2 × 4 = 16

participants.

• Pipeline selection. With the limited number of pipelines we can choose in the

study, it becomes highly important how we select the two pipelines. There are two

critical factors we considered in the pipeline selection process: representativeness and

diversity. The representativeness implies that the selected pipelines should represent

the averaged performance of InstructPipe. The diversity further suggests that the

selected pipelines should provide various experiences to simulate the actual use

scenarios in which InstructPipe may work well in some pipelines but not always. By

following this guideline, we first selected four candidates, and the final decision was

made after a pilot study with one participant to test the level of pipeline difficulty.

The two resultant pipelines are composed of eight nodes with seven edges and six

nodes with six edges, respectively. Using the instructions from two authors, the

averaged ratio of human interactions in these two pipelines are 27.8% and 5.2%,

respectively. See section B.3 for more details of the pipelines.

4.6.2 Procedure

The study starts with a 10-15 minute hands-on training of both conditions. The

training included 1) all the Visual Blocks interactions needed to complete the

subsequent steps of the experiment and 2) all the nodes that participants need to

use for creating the pipelines they are assigned in the main sessions. Participants were

also encouraged to try building a pipeline independently and to ask questions.

4.6 User Evaluation 71

After the training, participants progressed to an unmoderated session where they

were asked to build pipelines under the given conditions. We verbally described the

pipelines to participants as below, and participants are not allowed to read our scripts:

• Text-based pipeline: get the latest news about New York using Google Search

and compile a high-level summary of one of the results.

• Real-time multimodal pipeline: create a virtual sunglasses try-on experience

using your web camera.

During the task, participants were allowed to consult with us for technical help. If

participants were unable to make progress, we provided hints. We provided such

support to ensure that each participant spent a reasonable amount of time on each

task and had sufficient time for the following tasks. As shown in the results (§4.6.5),

we provided far more support in the “Visual Blocks” condition. Therefore, we argued

that this is a fair moderation in the study because it favors our comparative conditions

(i.e., it makes it easier for users to finish the pipeline under the “Visual Blocks”

condition). As an optional extension to the study, eight participants were offered

an open-ended pipeline creation, where participants prototype their own ideas with

InstructPipe. This optional section was offered based on the progress of the participant

in the previous sections and time constraints so that the study duration was controlled

within the time we guaranteed in our recruitment process.

After trying all pipeline-condition combinations, participants answered open-ended

questions in a semi-structured interview. Participants provided their general outlook of

each condition, listed pros and cons, identified potential future use cases, and critiqued

the user interface for future improvements.

In total, participants spent 55-65 minutes in the study.

4.6 User Evaluation 72

4.6.3 Participants

We recruited 16 participants from an internal participant pool at Google. A diverse

variety of job profiles were represented, but no software engineers were included. See

Table (Table 4.2) for a full breakdown. Note that we intentionally recruited novice

users, as we envision them as intended users of InstructPipe. The criteria for selecting

the novice users was based on self-evaluation ratings of the below prompts:

• Please provide a self-evaluation of your programming experience

• Please provide a self-evaluation of your machine learning (ML) skillset

Table 4.2 Participant demographics for the user study, showing various demographic
characteristics and skills relevant to InstructPipe.

ID Job Title Self-identified
Gender

Age
Group

Programming
Experience

Machine
Learninig Skill

LLM
Usage

P1 Product Manager Woman 25 - 34 Beginner Beginner At least once a month
P2 Image Tuning Engineer Man 35 - 44 Intermediate Beginner At least once a week
P3 Program Manager Woman 45 - 54 No experience No experience At least once a week
P4 Hardware Engineer Man 35 - 44 Intermediate No experience At least once a month
P5 Technical Program Manager Man 35 - 44 Beginner No experience At least once a day
P6 Senior Hardware Engineer Man 35 - 44 Beginner No experience At least once a month
P7 Technical Program Manager Woman 18 - 24 Beginner Beginner Never used it
P8 Technical program manager Man 25 - 34 No experience No experience Multiple hours every day
P9 Solutions Engineer Man 25 - 34 Beginner No experience At least once a month

P10 Program Manager Man 55 - 64 Beginner Beginner At least once a month
P11 Program Manager Woman 35 - 44 No experience No experience Never used it
P12 Lab Manager Man 35 - 44 Intermediate Beginner At least once a week
P13 Partner Development Manager Man 25 - 34 Beginner Beginner At least once a week
P14 Hardware Engineer Man 25 - 34 Beginner Beginner At least once a week
P15 Global Supply Manager Man 25 - 34 Beginner No experience At least once a month
P16 Global Supply Manager Woman 55 - 64 No experience No experience At least once a week

4.6.4 Metrics

In addition to the qualitative data from the interview, we measured the following

quantitative data.

Task Completion Time

Back-end logs were used to collect timestamps for starting and ending events. Then,

completion times for each condition were calculated per task for each participant.

4.6 User Evaluation 73

Figure 4.11 Raw-TLX results. The statistic significance is annotated with ∗, ∗∗, or ∗∗∗

(representing p<.05, p<.01, and p<.001, respectively).

Table 4.3 Task completion time and the number of human interactions in the user
study (N=16).

System Time (secs) # Interactions
Median IQR p Median IQR p

InstructPipe 203.5 156.25 p <.001 5.0 4.25 p <.001Visual Blocks 304.5 124.25 16.0 6.0

The Number of User Interactions

We used the number of user interactions (introduced in §4.5.3) to measure the user’s

objective workload. Unlike the results in §4.5.4, we report an absolute value here

because all the pipelines are controlled in the system evaluation.

Perceived Workload

The raw task load index (Raw-TLX) questionnaire was used to measure participant’s

perceived workload [63]. This questionnaire was a subset of the NASA-TLX (part I).

Participants filled out the questionnaire after each condition (InstructPipe or Visual

Blocks).

4.6.5 Results

InstructPipe Reduces Users’ Workload

Table 4.3 shows the results of two objective metrics measured in the study. The

Wilcoxon signed ranks test found significant differences on both scales (p < .001).

4.6 User Evaluation 74

Figure 4.11 further visualizes the results of users’ perceived workload in six sub-

scales. The Wilcoxon signed ranks test revealed significant differences on five sub-

scales, all but “Mental Demand” (see §4.7.2 for more explanations and discussion).

Furthermore, the test indicates that all participants unanimously vote InstructPipe

provides lower or equal workload on the subscales of “Physical Demand”, “Temporal

Demand”, “Performance” and “Effort” (W = 0). These quantitative results, with

both objective and subjective metrics, demonstrate that InstructPipe can effectively

reduce users’ workload during the pipeline creation process.

Users’ qualitative feedback is also aligned with our quantitative results.

Participants complimented that InstructPipe is “helpful”[P16] and “obviously easier

(to use) than [Visual Blocks]”[P1]. P11 and P6 further elaborated how InstructPipe

enhances the user experience when the user builds a visual programming pipeline:

“I feel like I can talk in natural language, and it (InstructPipe) can write the

code for me.” [P11]

On-boarding Support of Visual Programming

P1, P5, and P9 explicitly mentioned that there is a “learning curve” in the visual

programming system for beginners, which validates our statements in §4.1 that

motivates this project.

“There is a learning curve to it (using the visual programming system) for sure,

because you have to, like, read each node carefully” [P1]

P1’s comment matches with our observation of participants’ behaviors during the

study. In the Visual Blocks condition, we observed that people were more easily stuck

in their creative purposes, which required our support4. Typical supports include 1)
4In the whole study, we encouraged the users to talk to us while keeping their focus on their

task. While we offer explicit hints only when we consider a participant is stuck in an issue, it is
still difficult to strictly define what conversation is “ providing hints” and count them quantitatively.
Therefore, we cannot fairly report quantitative data for “the number of hints” in both conditions.
Here, we faithfully report this finding based on our observation and experience.

4.6 User Evaluation 75

guiding participants if we notice they go too far away from the correct pipeline and

2) reminding them of an important node for the pipeline, although we introduced all

the necessary nodes in our training session.

To this end, participants commented that InstructPipe is a good onboarding tool

in visual programming systems, especially for non-experts, to get familiarized with the

system by having a ready solution.

“[InstructPipe] lets you know these nodes exist [when the pipeline appears after

the instruction]. It’s like a super speedy tutorial.” [P7]

“If you don’t have experience in visual programming, you will appreciate

[InstructPipe] much more ... With [InstructPipe], the structure is there, and I

feel less worried about making mistakes. It’s, like, giving you examples. It’s

easier than starting from scratch.” [P5]

Anecdotally, three participants asked for InstructPipe during the Visual Blocks

condition.

Integration into The Existing Workflow

InstructPipe is a feature available in Visual Blocks. In the interviews, participants

particularly expressed their strong appreciation of this design as an AI assistant that

enhances, instead of completely replacing, the existing user workflow (i.e., the creative

process purely using the node-graph editor):

“[The pipeline generated by [InstructPipe] could be pretty close to what I want

... Or maybe sometimes not, but that’s okay. I got most of the blocks there,

and then it’s up to me to figure out how to connect them.” [P6]

While most participants shared similar opinions with P6, P15 raised one concern

about such integration. The concern lies in the mental experience of the state that

transits from the prompting task to the node-graph editing process:

4.6 User Evaluation 76

“Rather than fixing it (the generated pipeline) on my own [on the node-graph

editor], I would have gone back and changed my prompt ... I’m pretty sure I

could have gotten it closer ... because I just spent so much time figuring out

what the prompt should be. That’s kind of like already where my brain was

and I knew that something was wrong there (the prompt), but I would have to

switch over to the other mode (visual programming) of figuring out what

was wrong on the pipeline.” [P15]

Use Scenarios: Accessible ML Prototyping and Education

In the open-ended session, we observed participants could efficiently utilize

InstructPipe to prototype a pipeline for various daily life or business purposes. For

example, P14 tried InstructPipe with “summarize real estate price increase in San

Diego California over 2023”. Compared to using LLM chatbots, InstructPipe helps the

user quickly build a more explainable pipeline in which the user can track (or modify)

the information resources. P4 prototyped an interactive VQA app by “Describe the

product in the camera”. P13 further shared his thoughts on how this rapid and

accessible prototyping experience can support future business:

“It (InstructPipe)’s going to facilitate the prototype building for PMs (Product

Managers) ... I was a PM ... Back then ... My biggest fear is to code ... I have

lots of ideas, but my challenge is how to translate an idea into the technical

world and see a prototype. I think that this app expedites me in that process a

lot.” [P13]

Another emerging theme was regarding educating kids on programming as

explained in the following:

“With [InstructPipe], I don’t need to teach them (kids) to code for them to build

something ... Some kids like to code, some kids like to create stuff but don’t

4.6 User Evaluation 77

want to be bored with learning the syntax of coding ... Using [InstructPipe],

I can see kids can build, like, customized chat-bots or interactive Wikipedia.”

[P13]

Limitations and Future Directions

Across the study sessions, we consistently observed a specific user behavior pattern:

participants typically paused their pace when a generated pipeline appeared in the

workspace. At these times, some participants used soliloquy, as in saying “Let me

see”, while others kept a focused stare on the workspace. These human behaviors

strongly indicate that the participants were engaging in deep, contemplative thought.

This observation suggests that participants typically need to perceive a pipeline

that appears in the workspace. Such a sense-making process brings new challenges to

their creative process:

“[Using InstructPipe] is a little mentally demanding ... I have to debug ... If it

doesn’t help (generating an almost 100% correct pipeline), I have to go through

all the nodes ... I don’t like debugging.” [P13]

Additionally, we observed that several participants spent more time crafting their

prompts than the others. P15 is the participant who spent the most time writing the

prompt. The following comments explain the reason, and how the prompting process

causes extra mental workload to him/her/them.

“I’m a relatively visual thinker ... Getting the prompt right requires me to think

in a way that is a lot more like precise and like getting it figured out without

working it out live ... [When writing prompts,] you’re just putting them (every

detail in a whole pipeline) all out [in one short prompt]” [P15]

In addition to the lack of the original visual thinking experience in visual

programming, P13 also warned that such simplification of the creative process into

prompting experience may sacrifice users’ hands-on experiences:

4.7 Discussion and Future Directions 78

“I’m very hands-on with techs. I would like to understand what’s going on

[rather than prompting LLMs to generate everything for me]. I want to like

think for myself and then compile all the information myself.” [P13]

4.7 Discussion and Future Directions

4.7.1 Human-AI Collaboration in Prototyping Open-ended

ML Pipelines

Our technical evaluation (§4.5.4) shows that InstructPipe reduces the number of user

interactions to 18.9 % (±20.3%). There are two implications from the results.

• InstructPipe automates most pipeline components with a single prompt.

• InstructPipe is not able to automate all the pipeline creation processes.

Such takeaways differ from existing findings that show LLMs can achieve full

automation of ML inference [151, 60]. The main reason is that existing work built

their ad hoc solutions for target use scenarios, respectively. In contrast, InstructPipe

covers a wide range of mainstream ML models (§4.3.2) and aims for an open-ended use

case. Our results show that LLMs (i.e., GPT-3.5-turbo) still fail to write robust code

with prompt engineering techniques. As we mentioned in §4.4.4, the main attribute of

such failure is that LLMs tend to invent nodes (i.e., the node type in the pseudocode)

that do not exist in our node library, which causes execution error. Note that we

explicitly instructed the LLM that “introducing new nodes is not permitted” in the

system prompt for the Code Writer module (Figure 4.7). We also observed similar

issues when we combined all the official prompts of four scenarios in VisProg [60].

While the execution error in existing work indicates the failure of the full solution,

InstructPipe renders the executable components of the generation pipeline in a node-

graph editor. This facilitates a collaboration protocol between humans and AI in which

4.7 Discussion and Future Directions 79

humans do not need to start a project from scratch. Results in §4.6.5 revealed that

a wide range of participants appreciated this design of human-AI collaboration. We

believe the main reason behind this observation is that most non-expert users prefer

working on a task from a template (although sometimes it is not perfect) rather than

starting the whole project from scratch. The visual programming system provides

non-experts with a novice-friendly interface to work with AI in a visual platform. In

this manner, “users can do what matters most – building software by letting AI do the

redundant work” [175].

4.7.2 Three Attributes to Mental Workload

While most participants are positive about our integration of InstructPipe into

the existing user workflow of Visual Blocks, results from the user evaluation also

reveal several challenges in such human-AI collaboration. Results in §4.6.5 show

that InstructPipe failed to significantly reduce novice users’ mental demand. We

summarized its major causes into three aspects.

• Instruction. P15’s comment in §4.6.5 summarizes the first aspect that causes

mental burden. Although the “instruction-to-pipeline” process is fast and seems

effortless, the process of framing a prompt is one factor that may overwhelm

users, especially those who are more accustomed to visual thinking. In essence,

an instructor of an LLM system (the user of InstructPipe) should be clear about the

problem they want to solve and preferably what pipeline they want, which causes a

mental burden to the user. Zamfirescu-Pereira et al.’s study shows that non-experts

may not prompt LLMs well [174], which further explains why non-expert participants

might find the instruction process mentally demanding.

• Perception. The integration of LLM supports into the visual programming

interface enables a “multimodal programming” experience [43], in which, users

4.7 Discussion and Future Directions 80

can program through both verbal and visual approaches. Despite the enhanced

flexibility of the system, it also causes additional perceptual burden because users

need to switch their “brain mode” between “visual thinking” and “text-based thinking”.

This finding is aligned with Dual Coding Theory (DCT) [116], in which Paivio

hypothesized that human brains process information using two different channels:

verbal and visual. Interestingly, our results seemingly contradict with multiple

psychological findings based on DCT that show a combination of verbal and visual

information actually helps humans’ memory process [115, 117]. For example, people

feel it easier to remember a new word if they learn the word using a vocabulary

card with a figure with texts. Based on these existing theories on humans’ mind

processes, we make the following explanation on the finding in our project: the cause

of mental workload does not imply that people dislike a multimodal workspace,

but that users require a transparent interface that connects humans’ mental model

to the AI reasoning process, both verbally and visually. When users frame the

instruction in the InstructPipe dialogue, there is a lack of feedback system from the

AI assistant that visualizes how AI interprets the instructions in real time. As a

result, humans need to either first estimate the AI prediction or make no expectations

when they perform instruction. Even for experts, it is hard to accurately predict

AI generation, and thus, the generated pipeline is usually unexpected. When users

frame the instructions, the current interface design is purely based on texts, and

the visual channel in the brain is off. When the generation is complete, the user

suddenly needs to switch on a sleeping (visual) channel, which causes a mental

workload. One possible approach to addressing this issue is to expose users to the

multimodal information when they perform instructions. For example, future work

can investigate methods to visualize a generated pipeline on-the-fly when users are

framing and typing their instructions. In this manner, users’ mental models are

4.7 Discussion and Future Directions 81

continuously synchronized with the AI assistant before the final generation, which

should eliminate users’ cognitive burdens when the final generation result appears.

• Debugging. When a rendered pipeline does not match with users’ expectations,

users then are required to debug the generated results (see P13’s comment §4.6.5).

In essence, debugging is one professional programming skill, which explains why

it mentally overwhelms beginner-level users. InstructPipe made the first step to

facilitate users to 1) perceive the results and 2) take actions on the results, i.e., two

important elements in a debugging process, on the node-graph editor. Results in our

study reveal that this first step is insufficient to support users so that users still feel

like they are debugging the codes as professional programmers. Future work should

investigate how to further support users’ debugging process with visual programming

interfaces. For example, when execution fails, future work can consider visualizing

messages that provide cues on the possible issues and provide actionable guidance

on the interface for users to fix the issues easily.

On the other hand, it is important to note that we distill the attributes mainly

from a subset of participants who explicitly mentioned that they realized an increase

in mental workload when using InstructPipe. Those participants typically spent

more time writing prompts and working on the node-graph editor than the average

performance (e.g., P15 spent the most time ideating and writing the instructions).

Therefore, we argue that the aforementioned issues do not represent the average

user experience, and the issues are distilled from explicit comments on their negative

experience. In fact, we observed that most participants were relatively decisive and

could quickly write their instructions and modify a generated result in the node-graph

editor. This observation aligns with our qualitative results in Figure 4.11: the median

score of “Mental Demand” in the InstructPipe condition is lower than the baseline

condition.

4.7 Discussion and Future Directions 82

(a) (b)
Figure 4.12 A comparison of InstructPipe generated by two instructions: (a) “Edit an
image by updating the image caption”; (b) “Caption a tiger image using VQA, modify
the character in the caption into a cat using LLM, and finally generate a cat image
based on the updated caption”. See Figure 4.9c for the complete pipeline.
4.7.3 Instructing LLMs Poses Challenges for Both Novices

and, Potentially, Experts

As we explained above, one reason that caused mental workload is that non-experts

found it challenging to instruct LLM. More interestingly, we found that even we,

the inventors of InstructPipe, failed to write optimal instructions. As mentioned

in §4.5.2, two authors annotated captions for the pipelines offline, and we observed

multiple imperfections, especially for the complex ones. For instance, the two captions

of Figure 4.9c are “Describe the image and turn it into a cat image” and “Edit an

image by updating the image caption”. Neither caption explicitly describes the detailed

pipeline flow clearly, and therefore, all the six evaluation trials (§4.5) were incomplete

(see Figure 4.12a for one example). The average ratio of user interactions is 45.8%,

more than twice the average value for our multimodal pipelines (20.8%). To further

understand the cause of the failure, another author improved the instruction into

“Caption a tiger image using VQA, modify the character in the caption into a cat

using LLM, and finally generate a cat image based on the updated caption”. The

resulting pipeline is significantly improved but still not perfect (Figure 4.12b). The

user only needs to turn “Imagen” into another mode so that it also accepts the input

“image” node. Revisiting the improved instruction, we instructed InstructPipe with

“generate a cat image based on THE updated caption”, which actually missed the input

image.

4.7 Discussion and Future Directions 83

The important takeaway is while natural languages are proven to be one promising

communication media that connects humans and AI systems [26, 162], instructions

may not be the best format to facilitate such connection. We believe the reason

is that instructions are still not intuitive to humans: AI typically requires flawless

and unambiguous instructions while humans tend to express their intention using

ambiguous natural languages in conversations. We encourage future work to

investigate alternative interaction mediums beyond instructions to further enhance

user experience in human-AI collaboration.

4.7.4 Online InstructPipe

In this project, we made the following assumption: visual programming and its LLM

support are both offline. Note that InstructPipe does have connection to the Internet,

and the “offline” here implies that the system does not dynamically update its node

library with online resources: every node is pre-defined by the system developers. This

statement shows one major limitation of InstructPipe we observed in the open-ended

session of our user evaluation: the 27 nodes covered by InstructPipe are insufficient

to facilitate all the creative instructions from participants. For example, P9 prompted

InstructPipe using “giving me [an] image person walking [a] dog with webcam of

myself”. After some clarification, we found that P9 wanted to generate a video in which

P9 is walking a dog by taking the webcam as the input of P10’s visual appearance.

Such a pipeline is infeasible in our system because it requires a text-driven video

generation model. While an extension of InstructPipe with such a text-to-video model

as a primitive node can solve this specific issue, we argue that, in practice, users may

request many more nodes for their customized uses. Therefore, it is rather important

for researchers to investigate a generalizable solution for issues of this category.

In this project, InstructPipe enables users to prototype an ML pipeline with human

instruction, and we focus our exploration on a fixed node library. An extension of

4.8 Limitations 84

InstructPipe to a system that covers a wide range of possible online functions is still

under-explored. With a next generation of InstructPipe that can find ML models,

define nodes and implement the node dynamically with human instruction, we believe

the aforementioned issues (e.g., the one raised by P10) can be effectively addressed.

In the past several years, the community has already established ML libraries and

API services for various models (e.g., by Hugging Face [72]). Such ecosystems provide

crucial resources for AI-oriented visual programming systems to dynamically define

their primitive nodes, and thus provide more powerful support for users. We encourage

future work to investigate how to build a model selector (similar to the Node Selector

in Figure 4.4) that can intelligently select the correct online API to be called in a node.

We believe such “online InstructPipe” would provide an unprecedented user experience

in which researchers can brainstorm with the system, and the system will automatically

return a pipeline with state-of-the-art ML models to accelerate researchers’ creative

workflow.

4.8 Limitations

As we discussed in the main content, we notice multiple limitations of InstructPipe. In

our current implementation, InstructPipe focuses on generating the graph structure in

the pipeline (§4.4.1), and therefore the system is not able to generate property value of

the nodes. In some nodes like “tf-model-runner” that exists in Visual Blocks (but not

covered by InstructPipe), such property value plays a critical role that directly defines

the functionality of the node. Additionally, when InstructPipe detects an undefined

generated node, it directly disposes the line without leveraging such information for

other purposes (§4.4.4). In the evaluation, we were not able to conduct a large-scale

user study with thousands of user study sessions to understand the performance of

InstructPipe with both variations from the pipeline factors and the human factors

(§4.5). Our quantitative results show that InstructPipe fail to significantly reduce

4.9 Summary 85

participants’ mental workload (fig. 4.4). Qualitative results further validate this

finding, and reveal several issues that causes the mental burden when users use

InstructPipe (§4.7.2).

We also observe two major limitations of the project that we did not mention in

the main content of the chapter, and encourage future research to conduct further

investigation. First, our user study participants only engaged InstructPipe in one

hour, and therefore, it is unclear whether users will still frequently use and appreciate

InstructPipe supports in a long-term manner. Additionally, all participants are all

non-experts, hence we are not able to verify the effectiveness of InstructPipe for

users with other levels of expertise. Second, InstructPipe currently cannot detect

harmful data or misuse of AI. We believe such feature is crucial especially when future

work builds “online InstructPipe”(§4.7.4) which greatly enhances the generalizability

of ML pipeline prototyping capability. Future work should study effective methods to

eliminate potential harmful uses.

4.9 Summary

In this chapter, we introduced InstructPipe, an AI assistant that facilitates users

to build ML visual programming pipelines with instruction. We implemented our

InstructPipe by decomposing the task into three modules: a node selection module,

a code writer and a code compiler. Results in our technical and system evaluations

demonstrate that InstructPipe provided users’ satisfactory “on-boarding” experience

of visual programming systems and allow them to rapidly prototype an idea. We

further discussed the issues we observed concerning LLMs in visual programming,

related to both human factors and technical implementations. We hope that

InstructPipe will engage a diverse community to easily develop creative machine

learning pipelines.

Chapter 5

Discussion

5.1 The Roles of Humans, AI Model and Interac-

tive Systems

This dissertation explores two interaction techniques humans naturally perform during

teaching. The evaluations in both projects reveal that a system that leverages humans’

natural teaching behaviors can effectively reduce humans’ teaching efforts. More

importantly, qualitative results from the studies show that the reduced workload can

lead to an expansion of new use cases of similar systems, which would not be reasonable

if non-experts had to spend much effort.

The intuition of the system design of both LookHere and InstructPipe comes from

the exploration of the following question: what are the roles of humans, AI models,

and interactive systems, respectively, in their collaboration?

5.1.1 Humans

Humans should be provided opportunities to express their teaching intention as

naturally as how they teach humans. In this dissertation, LookHere and InstructPipe

allow users to teach AI by object demonstrations and natural instructions. I believe the

5.1 The Roles of Humans, AI Model and Interactive Systems 87

two projects are only the early-stage exploration of these two critical human behaviors.

As we discussed in both chapters, we observed multiple limitations in our systems,

and future work should conduct an in-depth investigation. In addition to object

demonstration and natural instruction, I believe that humans can inherently perform

many more interactions that remain underexploited. With more researchers engaging

in this research fields, I envision a future when there will be a general interactive

system that can interpret most of people’s intentions in their daily-life behaviors.

5.1.2 AI Models

The mission of AI models is to adapt to user requirements that humans express in

their interactions. The approach for such adaptation strongly depends on the ML

community’s research findings. The most classical method of training an ML model for

a customized purpose requires a large-scale dataset, but, in practice, it is unreasonable

to request users for data at scale. To achieve quick and cheap adaptation, there

exist two approaches in the community: 1) fine-tuning and 2) prompting. LookHere

fine-tunes a model pre-trained on the ImageNet [40] based on the limited number

of data collected from the interface. While results show that it can achieve high

accuracy, the fine-tuning process still takes time to finish. Additionally, the time

would scale up if the backend model becomes larger. InstructPipe, on the other hand,

uses prompting protocol in the LLM to achieve simple AI adaptation. Extensive

studies have demonstrated the effectiveness of prompting LLMs through text-based

instructions, but its performance on vision-based models is still underexplored.

The design of how I adapt the backend models toward users’ intention is limited to

the state-of-the-arts optimization findings in ML. In the future, I believe there will be

more approaches that allows efficient adaption, and future work should investigate how

such adaptation methods can effectively incorporate take human factors into consider

for system creation.

5.2 Applications 88

5.1.3 Interactive Systems

Interactive systems bridge humans’ interactive behaviors with the AI adaptation

process. One intuition that motivates the system implementation of my projects is that

the system should predict the hidden information implied in the user behaviors. For

example, LookHere contains a real-time vision model that predicts the segmentation

mask of a target object that is specified by the user. The system then leverages

such implications as pseudo-labels when fine-tuning its backend model. Note that the

system may utilize an ML model for achieving such prediction of human implication,

but this model differs from the backend AI model of the system as we discussed

in §5.1.2.

5.2 Applications

With an increasing number of contributions that lower the technical barriers for a

general population to customize AI, I envision a future in which humans will easily

utilize AI as simple tools to support daily-life events, similar to how modern citizens

freely utilize the internet. Figure 5.1 shows the application spaces of AI customization

technology in different fields. The space divides the applications into two dimensions:

1) the level of user engagement and 2) the purpose of using AI. The three columns

shows three levels of user engagements (direct interaction, indirect interaction and no

interaction), and the three rows show three purposes (functional, entertainment and

prototyping).

Teachable Reality [108] is an early-step system that incorporates an IMT toolkit

into a downstream application. Their finding reveals the importance of IMT toolkits

that supports users to “lower the barrier to creating functional AR prototypes”. In the

future, I believe there will be more systems that explore such benefits of IMT toolkits

and build systems that engage more users to support their creative process.

5.3 Future Directions 89

Medical
science

Smart
home

Industrial
tracking

Interactive
arts gallery

Intelligent
AR affects

Intelligent
BGM

AI
education

Conceptual
verification

Traffic
monitoring

Direct interaction Indirect interaction No (low) interaction

Purpose: Functional Purpose: Entertainment Purpose: Prototyping

Level of User Engagement

Figure 5.1 The application space of AI customization tools. Three rows (blocks in
blue, yellow and green) represent three different purposes of using customized AI
(“Functional”, “Entertainment” and “Prototyping”). Three columns show three levels
of user engagement of the customization process.
5.3 Future Directions

5.3.1 Joint Instructions and Demonstrations

While this dissertation includes two projects that supports users to teach AI by object

demonstrations and language instructions separately, it is still underexplored how a

system can effectively provide a combined support. Intuitively, people utilize these two

interactive techniques in different scenarios, and a system that supports a combined

input should provide users more systematical experience for express their intentions.

Demonstrations are useful for expressing concepts that are hard to explicitly describe

verbally. At the same time, simple demonstrations usually suffer from ambiguity issues

if there is no explicit specification on the details of the concepts. Language-based

5.3 Future Directions 90

instructions can be one useful communication media to address such issues, in which

human teachers can make comments which provide specific guidance on their concepts.

5.3.2 Module-based Customization

One important difference between InstructPipe and LookHere is that InstructPipe

considers the AI model to be customized as a pipeline composed of multiple

ML modules. With the increasing intelligence of modern AI applications, such

configuration will be prevalent in future system design.

Similar to how recent deep learning architecture slowly converges to several

dominant networks (e.g., a stack of multiple Transformers blocks), I envision such

phenomenon will also exists in many major ML benchmarks. The breakthrough in

classical ML problem benchmarks (e.g., classification, segmentation, VQA) will be not

be as significant, and for each problem, there will be a solution that represents the most

accurate prediction. The community has established multiple platforms (e.g., Hugging

Face) that encapsulate a complex network into one module so that programmers can

call each network with one line of code. Such platforms make it possible for future

systems to quickly deploy off-the-shelf models into the back-end model. As a result,

the remaining task for AI customization becomes how users choose and connect a large

number of off-the-shelf models to constitute their preferred personal AI ecosystem.

More importantly, recent advance in foundational models further facilitate this

future for two reasons. First, foundational models typical provide prompting protocol

for users to customize their usages, and the customization from prompt engineering

usually can achieve a decent accuracy. Second, fine-tuning foundational models are

much more difficult than other small models because they may not open-sourced

and fine-tuning the models require a huge computation resources which may not be

reasonable for non-experts.

5.3 Future Directions 91

Data

Training Testing

(a) Conventional IML.

Natural
Language UIs

(b) IML with LLMs.
Figure 5.2 A comparison of the conventional interactive machine learning (IML)
workflow and the IML with LLMs.
5.3.3 Human-in-the-loop ML with LLMs

For years, researchers have been exploring what are the roles of human beings in the

future world with AI. Figure 5.2a shows an example workflow of interactive machine

learning (i.e., human-in-the-loop ML):

1. An interactive system collects data from the users.

2. The AI model then is trained on data.

3. The user can test the model after the training finishes.

The major limitation of this workflow lies in two aspects: 1) users need to

repetitively provide multiple samples as training data; 2) training a robust model

is time-consuming. Both aspects lower the user experience when they interact with

AI.

With recent advance in LLMs, I argue that the community is ready to upgrade

this workflow towards a more natural human-AI collaboration process. Figure 5.2b

visualizes the interaction flow between AI and humans bridged by LLMs. Since LLMs

provide support for natural language conversation, the user can simple communicate

with the AI on their requirements (similar to the projects proposed in Section 2.1 and

5.3 Future Directions 92

Section 2.2). This implies that both limited in the conventional IML workflows will

be effectively eliminated. Firstly, users will no longer be required to provide repetitive

training samples. Instead, they can easily prompt the model, and even brainstorm

with the LLM support, which constitutes a more natural interaction similar to how

humans interact with humans in a creative process. Second, since prompting LLM

does not involve a training process, the result will be ready for users to test the model

immediately after sending the prompt. In other words, users will no longer need to

wait for the training process to receive feedback. Will LLMs revolutionize Interactive

Machine Learning (IML) research by re-defining how and why humans interact with

AI? Future work should conduct in-depth investigation on this research question, and

provide a new research philosophical guidance if they give a positive answer.

Chapter 6

Conclusion

While AI demonstrates its capability to solves multiple research challenges, there

is still a lack of interactive systems that allows users to intuitively teach AI for

creating downstream applications. In this dissertation, I built two interactive systems

that empower humans’ teaching capability in their AI customization process by

leverage their object demonstrations and language instructions, respectively. In

the first project, I built LookHere, which leverages humans’ deictic gestures that

people naturally perform when they demonstrate an object. Lookhere predicts the

segmentation mask of the target object by using the hand-object interactions in real

time. In the second project, I created InstructPipe, a system that allows users to

prototype an AI pipeline with text-based instructions. Compared to the conventional

method in which users start building a visual programming pipeline from scratch, our

study shows that InstructPipe effectively enhance non-experts’ on-boarding experience

of the system, and open up various new use cases. Together, this dissertation provides

answers on how interactive systems can leverage interactions people naturally perform

in the teaching process to support their teaching process. This work is a step toward

creating AI that learns from intuitive human interactions, paving the way for more

personalized and user-friendly AI applications.

Publications

Peer-reviewed Publication related to this thesis

1. Zhongyi Zhou and Koji Yatani. Gesture-aware Interactive Machine

Teaching with In-situ Object Annotations. In The 35th Annual ACM

Symposium on User Interface Software and Technology (UIST ’22).

http://dx.doi.org/10.1145/3526113.3545648

2. Zhongyi Zhou and Koji Yatani. Enhancing Model Assessment in Vision-

based Interactive Machine Teaching through Real-time Saliency Map Visu-

alization. In The Adjunct Publication of the 34th Annual ACM Sym-

posium on User Interface Software and Technology (UIST ’21 Demo).

https://doi.org/10.1145/3474349.3480194

3. Zhongyi Zhou. Exploiting and Guiding User Interaction in Interactive Machine

Teaching. In The Adjunct Publication of the 35th Annual ACM Symposium

on User Interface Software and Technology (UIST ’22 Doctoral Symposium).

https://doi.org/10.1145/3526114.3558529

Peer-reviewed Publications not related to this thesis

Full Papers

95

• Anran Xu, Zhongyi Zhou, Kakeru Miyazaki, Ryo Yoshikawa, Simo Hosio, and

Koji Yatani. DIPA2: An Image Dataset with Cross-cultural Privacy Perception

Annotations. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 7, 4,

Article 192 (December 2023).

• Zefan Sramek, Arissa J. Sato, Zhongyi Zhou, Simo Hosio, and Koji Yatani.

SoundTraveller: Exploring Abstraction and Entanglement in Timbre Creation

Interfaces for Synthesizers. In Proceedings of the 2023 ACM Designing Interactive

Systems Conference (DIS ’23).

• Zhihang Zhong, Mingdeng Cao, Xiao Sun, Zhirong Wu, Zhongyi Zhou, Yinqiang

Zheng, Stephen Lin, and Imari Sato. Bringing Rolling Shutter Images Alive with

Dual Reversed Distortion. In Computer Vision - ECCV 2022 - 17th European

Conference.

• Zhongyi Zhou, Anran Xu and Koji Yatani. SyncUp: Vision-based Practice

Support for Synchronized Dancing. Proc. ACM Interact. Mob. Wearable

Ubiquitous Technol. (IMWUT) 5, 3, Article 143 (September 2021), 25 pages.

Short Papers:

• Ruofei Du, Na Li, Jing Jin, Michelle Carney, Xiuxiu Yuan, Kristen Wright, Mark

Sherwood, Jason Mayes, Lin Chen, Jun Jiang, Jingtao Zhou, Zhongyi Zhou,

Ping Yu, Adarsh Kowdle, Ram Iyengar, and Alex Olwal. Experiencing Visual

Blocks for ML: Visual Prototyping of AI Pipelines. In The Adjunct Publication

of the 36th Annual ACM Symposium on User Interface Software and Technology

(UIST ’23 Demo).

• Anran Xu, Zhongyi Zhou, Kakure Miyazaki, Ryo Yoshikawa, Simo Hosio,

Koji Yatani. DIPA: An Image Dataset with Cross-cultural Privacy Concern

Annotations. In IUI 2023 Open Science track.

96

• Hirotaka Hayashi, Anran Xu, Zhongyi Zhou and Koji Yatani. Vision-based

Scene Analysis toward Dangerous Cycling Behavior Detection Using Smartphones.

In Adjunct Proceedings of the 2021 ACM International Joint Conference

on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM

International Symposium on Wearable Computers (UbiComp-ISWC ’21).

Bibliography

[1] [n. d.]. GitHub - Significant-Gravitas/AutoGPT: AutoGPT is the vision of
accessible AI for everyone, to use and to build on. Our mission is to provide
the tools, so that you can focus on what matters. — github.com. https:
//github.com/Significant-Gravitas/AutoGPT. [Accessed 05-02-2024].

[2] 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[3] Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti,
Antoine Caillon, Qingqing Huang, Aren Jansen, Adam Roberts, Marco
Tagliasacchi, et al. 2023. Musiclm: Generating music from text. arXiv preprint
arXiv:2301.11325 (2023).

[4] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain
Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katie Millican, Malcolm
Reynolds, Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao
Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian
Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj
Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karen
Simonyan. 2022. Flamingo: a Visual Language Model for Few-Shot Learning.
arXiv:2204.14198 [cs.CV]

[5] Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza.
2014. Power to the people: The role of humans in interactive machine learning.
Ai Magazine 35, 4 (2014), 105–120.

[6] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. 2017. Neural
Module Networks. arXiv:1511.02799 [cs.CV]

[7] Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin,
Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El Shafey, Yanping Huang,
Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang,
Gustavo Hernandez Abrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan
Botha, James Bradbury, Siddhartha Brahma, Kevin Brooks, Michele Catasta,
Yong Cheng, Colin Cherry, Christopher A. Choquette-Choo, Aakanksha
Chowdhery, Clément Crepy, Shachi Dave, Mostafa Dehghani, Sunipa Dev,
Jacob Devlin, Mark Díaz, Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu
Feng, Vlad Fienber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann, Lucas

https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://www.tensorflow.org/

Bibliography 98

Gonzalez, Guy Gur-Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua Howland,
Andrea Hu, Jeffrey Hui, Jeremy Hurwitz, Michael Isard, Abe Ittycheriah,
Matthew Jagielski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun, Sneha
Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric Li, Music Li,
Wei Li, YaGuang Li, Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu,
Frederick Liu, Marcello Maggioni, Aroma Mahendru, Joshua Maynez, Vedant
Misra, Maysam Moussalem, Zachary Nado, John Nham, Eric Ni, Andrew
Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex Polozov, Reiner
Pope, Siyuan Qiao, Emily Reif, Bryan Richter, Parker Riley, Alex Castro Ros,
Aurko Roy, Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone,
Daniel Smilkov, David R. So, Daniel Sohn, Simon Tokumine, Dasha Valter,
Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang, Pidong Wang, Zirui Wang,
Tao Wang, John Wieting, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting Xue,
Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven Zheng, Ce Zheng, Weikang Zhou,
Denny Zhou, Slav Petrov, and Yonghui Wu. 2023. PaLM 2 Technical Report.
arXiv:2305.10403 [cs.CL]

[8] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv
Batra, C. Lawrence Zitnick, and Devi Parikh. 2015. VQA: Visual Question
Answering. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV).

[9] Tenglong Ao, Zeyi Zhang, and Libin Liu. 2023. GestureDiffuCLIP: Gesture
Diffusion Model with CLIP Latents. ACM Trans. Graph. 42, 4, Article 42 (jul
2023), 18 pages. https://doi.org/10.1145/3592097

[10] Bin Bi, Hao Ma, Bo-June (Paul) Hsu, Wei Chu, Kuansan Wang, and Junghoo
Cho. 2015. Learning to Recommend Related Entities to Search Users. In
Proceedings of the Eighth ACM International Conference on Web Search and
Data Mining (Shanghai, China) (WSDM ’15). Association for Computing
Machinery, New York, NY, USA, 139–148. https://doi.org/10.1145/2684822.
2685304

[11] Richard A. Bolt. 1980.“Put-That-There”: Voice and Gesture at the Graphics
Interface. SIGGRAPH Comput. Graph. 14, 3 (July 1980), 262–270. https:
//doi.org/10.1145/965105.807503

[12] Dimitrios Bounias, Ashish Singh, Spyridon Bakas, Sarthak Pati, Saima Rathore,
Hamed Akbari, Michel Bilello, Benjamin A Greenberger, Joseph Lombardo,
Rhea D Chitalia, et al. 2021. Interactive Machine Learning-Based Multi-Label
Segmentation of Solid Tumors and Organs. Applied Sciences 11, 16 (2021), 7488.

[13] Tim Brooks, Aleksander Holynski, and Alexei A. Efros. 2023. InstructPix2Pix:
Learning to Follow Image Editing Instructions. arXiv:2211.09800 [cs.CV]

[14] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language Models are Few-shot Learners. Advances in
Neural Information Processing Systems 33 (2020), 1877–1901. https://doi.
org/10.48550/arXiv.2005.14165

https://doi.org/10.1145/3592097
https://doi.org/10.1145/2684822.2685304
https://doi.org/10.1145/2684822.2685304
https://doi.org/10.1145/965105.807503
https://doi.org/10.1145/965105.807503
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2005.14165

Bibliography 99

[15] Carrie J. Cai, Jonas Jongejan, and Jess Holbrook. 2019. The Effects of
Example-Based Explanations in a Machine Learning Interface. In Proceedings
of the 24th International Conference on Intelligent User Interfaces (Marina del
Ray, California) (IUI ’19). Association for Computing Machinery, New York,
NY, USA, 258–262. https://doi.org/10.1145/3301275.3302289

[16] Minghao Cai, Soh Masuko, and Jiro Tanaka. 2018. Gesture-Based Mobile
Communication System Providing Side-by-Side Shopping Feeling. In Proceedings
of the 23rd International Conference on Intelligent User Interfaces Companion
(Tokyo, Japan) (IUI ’18 Companion). Association for Computing Machinery,
New York, NY, USA, Article 2, 2 pages. https://doi.org/10.1145/3180308.
3180310

[17] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. 2019.
OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity
Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019).

[18] Zhe Cao, Ilija Radosavovic, Angjoo Kanazawa, and Jitendra Malik. 2021.
Reconstructing Hand-Object Interactions in the Wild. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV).
12417–12426.

[19] Michelle Carney, Barron Webster, Irene Alvarado, Kyle Phillips, Noura Howell,
Jordan Griffith, Jonas Jongejan, Amit Pitaru, and Alexander Chen. 2020.
Teachable Machine: Approachable Web-Based Tool for Exploring Machine
Learning Classification. In Extended Abstracts of the 2020 CHI Conference on
Human Factors in Computing Systems (Honolulu, HI, USA) (CHI EA ’20).
Association for Computing Machinery, New York, NY, USA, 1–8. https:
//doi.org/10.1145/3334480.3382839

[20] Maria Cristina Caselli. 1990. Communicative gestures and first words. In From
gesture to language in hearing and deaf children. Springer, 56–67.

[21] Jessica R. Cauchard, Jane L. E, Kevin Y. Zhai, and James A. Landay. 2015.
Drone & Me: An Exploration into Natural Human-Drone Interaction. In
Proceedings of the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing (Osaka, Japan) (UbiComp ’15). Association for
Computing Machinery, New York, NY, USA, 361–365. https://doi.org/10.
1145/2750858.2805823

[22] Chia-Ming Chang, Chia-Hsien Lee, and Takeo Igarashi. 2021. Spatial Labeling:
Leveraging Spatial Layout for Improving Label Quality in Non-Expert Image
Annotation. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing
Machinery, New York, NY, USA, Article 306, 12 pages. https://doi.org/10.
1145/3411764.3445165

[23] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam.
2017. Rethinking Atrous Convolution for Semantic Image Segmentation. https:
//doi.org/10.48550/ARXIV.1706.05587

https://doi.org/10.1145/3301275.3302289
https://doi.org/10.1145/3180308.3180310
https://doi.org/10.1145/3180308.3180310
https://doi.org/10.1145/3334480.3382839
https://doi.org/10.1145/3334480.3382839
https://doi.org/10.1145/2750858.2805823
https://doi.org/10.1145/2750858.2805823
https://doi.org/10.1145/3411764.3445165
https://doi.org/10.1145/3411764.3445165
https://doi.org/10.48550/ARXIV.1706.05587
https://doi.org/10.48550/ARXIV.1706.05587

Bibliography 100

[24] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and
Hartwig Adam. 2018. Encoder-Decoder with Atrous Separable Convolution for
Semantic Image Segmentation. In Proceedings of the European Conference on
Computer Vision (ECCV).

[25] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and
Ed H. Chi. 2019. Top-K Off-Policy Correction for a REINFORCE Recommender
System. In Proceedings of the Twelfth ACM International Conference on Web
Search and Data Mining (Melbourne VIC, Australia) (WSDM ’19). Association
for Computing Machinery, New York, NY, USA, 456–464. https://doi.org/10.
1145/3289600.3290999

[26] Weihao Chen, Chun Yu, Huadong Wang, Zheng Wang, Lichen Yang, Yukun
Wang, Weinan Shi, and Yuanchun Shi. 2023. From Gap to Synergy:
Enhancing Contextual Understanding through Human-Machine Collaboration
in Personalized Systems. In Proceedings of the 36th Annual ACM Symposium
on User Interface Software and Technology (San Francisco, CA, USA) (UIST
’23). Association for Computing Machinery, New York, NY, USA, Article 110,
15 pages. https://doi.org/10.1145/3586183.3606741

[27] Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski,
Daniel Salz, Sebastian Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer,
Alexander Kolesnikov, Joan Puigcerver, Nan Ding, Keran Rong, Hassan Akbari,
Gaurav Mishra, Linting Xue, Ashish Thapliyal, James Bradbury, Weicheng
Kuo, Mojtaba Seyedhosseini, Chao Jia, Burcu Karagol Ayan, Carlos Riquelme,
Andreas Steiner, Anelia Angelova, Xiaohua Zhai, Neil Houlsby, and Radu
Soricut. 2023. PaLI: A Jointly-Scaled Multilingual Language-Image Model.
arXiv:2209.06794 [cs.CV]

[28] Chia-Hsing Chiu, Yuki Koyama, Yu-Chi Lai, Takeo Igarashi, and Yonghao Yue.
2020. Human-in-the-Loop Differential Subspace Search in High-Dimensional
Latent Space. ACM Trans. Graph. 39, 4, Article 85 (July 2020), 15 pages.
https://doi.org/10.1145/3386569.3392409

[29] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling language modeling with
pathways. arXiv preprint arXiv:2204.02311 (2022).

[30] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William
Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma,
Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen,
Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha
Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping
Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob
Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. 2022. Scaling
Instruction-Finetuned Language Models. arXiv:2210.11416 [cs.LG]

[31] Herbert H Clark. 2005. Coordinating with each other in a material world.
Discourse studies 7, 4-5 (2005), 507–525.

https://doi.org/10.1145/3289600.3290999
https://doi.org/10.1145/3289600.3290999
https://doi.org/10.1145/3586183.3606741
https://doi.org/10.1145/3386569.3392409

Bibliography 101

[32] ComfyUI. 2023. ComfyUI. https://github.com/comfyanonymous/ComfyUI

[33] Allen Cypher and Daniel Conrad Halbert. 1993. Watch what I do: programming
by demonstration. MIT press.

[34] Manuel Dahnert, Ji Hou, Matthias Niessner, and Angela Dai. 2021. Panoptic
3D Scene Reconstruction From a Single RGB Image. In Advances in Neural
Information Processing Systems, M. Ranzato, A. Beygelzimer, K. Nguyen,
P. S. Liang, J. W. Vaughan, and Y. Dauphin (Eds.), Vol. 34. Curran
Associates, Inc., 8282–8293. https://proceedings.neurips.cc/paper/2021/file/
46031b3d04dc90994ca317a7c55c4289-Paper.pdf

[35] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, , Antonino Furnari,
Jian Ma, Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett,
Will Price, and Michael Wray. 2021. Rescaling Egocentric Vision: Collection,
Pipeline and Challenges for EPIC-KITCHENS-100. International Journal of
Computer Vision (IJCV) (2021). https://doi.org/10.1007/s11263-021-01531-2

[36] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino
Furnari, Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett,
Will Price, and Michael Wray. 2018. Scaling Egocentric Vision: The EPIC-
KITCHENS Dataset. In European Conference on Computer Vision (ECCV).

[37] Chandan Datta, Chandimal Jayawardena, I Han Kuo, and Bruce A MacDonald.
2012. RoboStudio: A visual programming environment for rapid authoring
and customization of complex services on a personal service robot. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.
2352–2357. https://doi.org/10.1109/IROS.2012.6386105

[38] Carlos de la Torre-Ortiz, Michiel M. Spapé, Lauri Kangassalo, and Tuukka
Ruotsalo. 2020. Brain Relevance Feedback for Interactive Image Generation.
In Proceedings of the 33rd Annual ACM Symposium on User Interface Software
and Technology (Virtual Event, USA) (UIST ’20). Association for Computing
Machinery, New York, NY, USA, 1060–1070. https://doi.org/10.1145/3379337.
3415821

[39] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition. 248–255. https://doi.org/10.1109/CVPR.2009.
5206848

[40] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009.
ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition. 248–255. https://doi.org/10.
1109/CVPR.2009.5206848

[41] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. arXiv:1810.04805 [cs.CL]

https://github.com/comfyanonymous/ComfyUI
https://proceedings.neurips.cc/paper/2021/file/46031b3d04dc90994ca317a7c55c4289-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/46031b3d04dc90994ca317a7c55c4289-Paper.pdf
https://doi.org/10.1007/s11263-021-01531-2
https://doi.org/10.1109/IROS.2012.6386105
https://doi.org/10.1145/3379337.3415821
https://doi.org/10.1145/3379337.3415821
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848

Bibliography 102

[42] Anind K. Dey, Raffay Hamid, Chris Beckmann, Ian Li, and Daniel Hsu. 2004. A
CAPpella: Programming by Demonstration of Context-Aware Applications. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Vienna, Austria) (CHI ’04). Association for Computing Machinery, New York,
NY, USA, 33–40. https://doi.org/10.1145/985692.985697

[43] Griffin Dietz, Nadin Tamer, Carina Ly, Jimmy K Le, and James A. Landay.
2023. Visual StoryCoder: A Multimodal Programming Environment for
Children’s Creation of Stories. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems (Hamburg, Germany) (CHI ’23).
Association for Computing Machinery, New York, NY, USA, Article 96,
16 pages. https://doi.org/10.1145/3544548.3580981

[44] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang,
Xu Sun, Jingjing Xu, Lei Li, and Zhifang Sui. 2023. A Survey on In-context
Learning. arXiv:2301.00234 [cs.CL]

[45] Ruofei Du, Na Li, Jing Jin, Michelle Carney, Scott Miles, Maria Kleiner, Xiuxiu
Yuan, Yinda Zhang, Anuva Kulkarni, Xingyu Liu, Ahmed Sabie, Sergio Orts-
Escolano, Abhishek Kar, Ping Yu, Ram Iyengar, Adarsh Kowdle, and Alex
Olwal. 2023. Rapsai: Accelerating Machine Learning Prototyping of Multimedia
Applications Through Visual Programming. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems (Hamburg, Germany)
(CHI ’23). Association for Computing Machinery, New York, NY, USA, Article
125, 23 pages. https://doi.org/10.1145/3544548.3581338

[46] Ruofei Du, Na Li, Jing Jin, Michelle Carney, Xiuxiu Yuan, Kristen Wright, Mark
Sherwood, Jason Mayes, Lin Chen, Jun Jiang, Jingtao Zhou, Zhongyi Zhou, Ping
Yu, Adarsh Kowdle, Ram Iyengar, and Alex Olwal. 2023. Experiencing Visual
Blocks for ML: Visual Prototyping of AI Pipelines. In Adjunct Proceedings of
the 33rd Annual ACM Symposium on User Interface Software and Technology
(UIST). ACM. https://doi.org/10.1145/3586182.3615817

[47] John J. Dudley and Per Ola Kristensson. 2018. A Review of User Interface
Design for Interactive Machine Learning. ACM Trans. Interact. Intell. Syst. 8,
2, Article 8 (June 2018), 37 pages. https://doi.org/10.1145/3185517

[48] John J. Dudley and Per Ola Kristensson. 2018. A Review of User Interface
Design for Interactive Machine Learning. ACM Trans. Interact. Intell. Syst. 8,
2, Article 8 (jun 2018), 37 pages. https://doi.org/10.1145/3185517

[49] Jerry Alan Fails and Dan R. Olsen. 2003. Interactive Machine Learning. In
Proceedings of the 8th International Conference on Intelligent User Interfaces
(Miami, Florida, USA) (IUI ’03). Association for Computing Machinery, New
York, NY, USA, 39–45. https://doi.org/10.1145/604045.604056

[50] KJ Feng, Xander Koo, Lawrence Tan, Amy Bruckman, David W McDonald,
and Amy X Zhang. 2024. Mapping the Design Space of Teachable Social Media
Feed Experiences. arXiv preprint arXiv:2401.14000 (2024).

https://doi.org/10.1145/985692.985697
https://doi.org/10.1145/3544548.3580981
https://doi.org/10.1145/3544548.3581338
https://doi.org/10.1145/3586182.3615817
https://doi.org/10.1145/3185517
https://doi.org/10.1145/3185517
https://doi.org/10.1145/604045.604056

Bibliography 103

[51] Rebecca Fiebrink, Perry R. Cook, and Dan Trueman. 2011. Human Model
Evaluation in Interactive Supervised Learning. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (Vancouver, BC, Canada)
(CHI ’11). Association for Computing Machinery, New York, NY, USA, 147–
156. https://doi.org/10.1145/1978942.1978965

[52] James Fogarty, Desney Tan, Ashish Kapoor, and Simon Winder. 2008. CueFlik:
Interactive Concept Learning in Image Search. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (Florence, Italy) (CHI
’08). Association for Computing Machinery, New York, NY, USA, 29–38. https:
//doi.org/10.1145/1357054.1357061

[53] Jules Françoise, Baptiste Caramiaux, and Téo Sanchez. 2021. Marcelle:
Composing Interactive Machine Learning Workflows and Interfaces. In The 34th
Annual ACM Symposium on User Interface Software and Technology (Virtual
Event, USA) (UIST ’21). Association for Computing Machinery, New York, NY,
USA, 39–53. https://doi.org/10.1145/3472749.3474734

[54] Christoph Gebhardt, Brian Hecox, Bas van Opheusden, Daniel Wigdor,
James Hillis, Otmar Hilliges, and Hrvoje Benko. 2019. Learning Cooperative
Personalized Policies from Gaze Data. In Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology (New Orleans, LA, USA)
(UIST ’19). Association for Computing Machinery, New York, NY, USA, 197–
208. https://doi.org/10.1145/3332165.3347933

[55] Yolanda Gil, James Honaker, Shikhar Gupta, Yibo Ma, Vito D’Orazio, Daniel
Garijo, Shruti Gadewar, Qifan Yang, and Neda Jahanshad. 2019. Towards
Human-Guided Machine Learning. In Proceedings of the 24th International
Conference on Intelligent User Interfaces (Marina del Ray, California) (IUI
’19). Association for Computing Machinery, New York, NY, USA, 614–624.
https://doi.org/10.1145/3301275.3302324

[56] GitHub. 2023. GitHub Copilot ·Your AI pair programmer. https://github.
com/features/copilot

[57] D. Goehring, J. Hoffman, E. Rodner, K. Saenko, and T. Darrell. 2014. Interactive
adaptation of real-time object detectors. In 2014 IEEE International Conference
on Robotics and Automation (ICRA). 1282–1289. https://doi.org/10.1109/
ICRA.2014.6907018

[58] Ke Gong, Xiaodan Liang, Dongyu Zhang, Xiaohui Shen, and Liang Lin. 2017.
Look Into Person: Self-Supervised Structure-Sensitive Learning and a New
Benchmark for Human Parsing. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[59] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In Advances in Neural Information Processing Systems 27,
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger
(Eds.). Curran Associates, Inc., 2672–2680. http://papers.nips.cc/paper/
5423-generative-adversarial-nets.pdf

https://doi.org/10.1145/1978942.1978965
https://doi.org/10.1145/1357054.1357061
https://doi.org/10.1145/1357054.1357061
https://doi.org/10.1145/3472749.3474734
https://doi.org/10.1145/3332165.3347933
https://doi.org/10.1145/3301275.3302324
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.1109/ICRA.2014.6907018
https://doi.org/10.1109/ICRA.2014.6907018
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

Bibliography 104

[60] Tanmay Gupta and Aniruddha Kembhavi. 2023. Visual Programming:
Compositional Visual Reasoning Without Training. In 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. arXiv. https:
//doi.org/10.48550/arXiv.2211.11559

[61] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua
Liu, Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, et al. 2022. A survey
on vision transformer. IEEE transactions on pattern analysis and machine
intelligence 45, 1 (2022), 87–110.

[62] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H.
van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark
Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.
2020. Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362.
https://doi.org/10.1038/s41586-020-2649-2

[63] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX
(Task Load Index): Results of empirical and theoretical research. In Advances
in psychology. Vol. 52. Elsevier, 139–183.

[64] Richard Sahala Hartanto, Ryoichi Ishikawa, Menandro Roxas, and Takeshi
Oishi. 2020. Hand-Motion-guided Articulation and Segmentation Estimation. In
2020 29th IEEE International Conference on Robot and Human Interactive Com-
munication (RO-MAN). 807–813. https://doi.org/10.1109/RO-MAN47096.
2020.9223433

[65] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[66] Fred Hohman, Kanit Wongsuphasawat, Mary Beth Kery, and Kayur Patel.
2020. Understanding and Visualizing Data Iteration in Machine Learning. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376177

[67] Jonggi Hong, Kyungjun Lee, June Xu, and Hernisa Kacorri. 2020. Crowd-
sourcing the Perception of Machine Teaching. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems (Honolulu, HI, USA)
(CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–14.
https://doi.org/10.1145/3313831.3376428

[68] Eric Horvitz. 1999. Principles of Mixed-Initiative User Interfaces. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Pittsburgh, Pennsylvania, USA) (CHI ’99). Association for Computing
Machinery, New York, NY, USA, 159–166. https://doi.org/10.1145/302979.
303030

https://doi.org/10.48550/arXiv.2211.11559
https://doi.org/10.48550/arXiv.2211.11559
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/RO-MAN47096.2020.9223433
https://doi.org/10.1109/RO-MAN47096.2020.9223433
https://doi.org/10.1145/3313831.3376177
https://doi.org/10.1145/3313831.3376428
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030

Bibliography 105

[69] Justin Huang and Maya Cakmak. 2017. Code3: A system for end-to-end
programming of mobile manipulator robots for novices and experts. In
Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot
Interaction. 453–462.

[70] Justin Huang, Tessa Lau, and Maya Cakmak. 2016. Design and evaluation
of a rapid programming system for service robots. In 2016 11th ACM/IEEE
International Conference on Human-Robot Interaction (HRI). IEEE, 295–302.

[71] Lin Huang, Jianchao Tan, Ji Liu, and Junsong Yuan. 2020. Hand-Transformer:
Non-Autoregressive Structured Modeling for 3D Hand Pose Estimation. In
Computer Vision – ECCV 2020, Andrea Vedaldi, Horst Bischof, Thomas
Brox, and Jan-Michael Frahm (Eds.). Springer International Publishing, Cham,
17–33.

[72] HuggingFace. 2022. Spaces. https://huggingface.co/docs/transformers/
preprocessing

[73] Kurusugawa Computer Inc. 2022. AnnoFab. Retrieved Apr 2, 2022 from https:
//annofab.com/

[74] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard
Newcombe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman,
Andrew Davison, and Andrew Fitzgibbon. 2011. KinectFusion: Real-Time 3D
Reconstruction and Interaction Using a Moving Depth Camera. In Proceedings
of the 24th Annual ACM Symposium on User Interface Software and Technology
(Santa Barbara, California, USA) (UIST ’11). Association for Computing
Machinery, New York, NY, USA, 559–568. https://doi.org/10.1145/2047196.
2047270

[75] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche
Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou
Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample,
Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock,
Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. 2024. Mixtral of Experts. arXiv:2401.04088 [cs.LG]

[76] Peiling Jiang. 2023. Positional Control in Node-Based Programming. In
Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing
Systems (Hamburg, Germany) (CHI EA ’23). Association for Computing
Machinery, New York, NY, USA, Article 231, 7 pages. https://doi.org/10.
1145/3544549.3585878

[77] Peiling Jiang, Jude Rayan, Steven P Dow, and Haijun Xia. 2023. Graphologue:
Exploring Large Language Model Responses with Interactive Diagrams. arXiv
preprint arXiv:2305.11473 (2023).

[78] Eunkyung Jo, Daniel A. Epstein, Hyunhoon Jung, and Young-Ho Kim.
2023. Understanding the Benefits and Challenges of Deploying Conversational
AI Leveraging Large Language Models for Public Health Intervention. In

https://huggingface.co/docs/transformers/preprocessing
https://huggingface.co/docs/transformers/preprocessing
https://annofab.com/
https://annofab.com/
https://doi.org/10.1145/2047196.2047270
https://doi.org/10.1145/2047196.2047270
https://doi.org/10.1145/3544549.3585878
https://doi.org/10.1145/3544549.3585878

Bibliography 106

Proceedings of the 2023 CHI Conference on Human Factors in Computing Sys-
tems (<conf-loc>, <city>Hamburg</city>, <country>Germany</country>,
</conf-loc>) (CHI ’23). Association for Computing Machinery, New York, NY,
USA, Article 18, 16 pages. https://doi.org/10.1145/3544548.3581503

[79] Hernisa Kacorri, Kris M. Kitani, Jeffrey P. Bigham, and Chieko Asakawa.
2017. People with Visual Impairment Training Personal Object Recognizers:
Feasibility and Challenges. In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17).
Association for Computing Machinery, New York, NY, USA, 5839–5849. https:
//doi.org/10.1145/3025453.3025899

[80] Maria Karam and m. c. schraefel. 2005. A Taxonomy of Gestures in Human
Computer Interactions. Project Report. https://eprints.soton.ac.uk/261149/

[81] Yoni Kasten, Dolev Ofri, Oliver Wang, and Tali Dekel. 2021. Layered Neural
Atlases for Consistent Video Editing. ACM Trans. Graph. 40, 6, Article 210
(dec 2021), 12 pages. https://doi.org/10.1145/3478513.3480546

[82] Bongjun Kim and Bryan Pardo. 2018. A Human-in-the-Loop System for Sound
Event Detection and Annotation. ACM Trans. Interact. Intell. Syst. 8, 2, Article
13 (June 2018), 23 pages. https://doi.org/10.1145/3214366

[83] Joohwan Kim, Michael Stengel, Alexander Majercik, Shalini De Mello, David
Dunn, Samuli Laine, Morgan McGuire, and David Luebke. 2019. NVGaze: An
Anatomically-Informed Dataset for Low-Latency, Near-Eye Gaze Estimation.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing
Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.
3300780

[84] Russell B. Kline, Gary D. Hamor, Kenneth L. Krause, and Larry E. Druffel. 1978.
Visual Demonstration of Program Execution. In Papers of the SIGCSE/CSA
Technical Symposium on Computer Science Education (Detroit, Michigan)
(SIGCSE ’78). Association for Computing Machinery, New York, NY, USA,
16–18. https://doi.org/10.1145/990555.990559

[85] Jeffrey Kodosky. 2020. LabVIEW. Proc. ACM Program. Lang. 4, HOPL, Article
78 (jun 2020), 54 pages. https://doi.org/10.1145/3386328

[86] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large language models are zero-shot reasoners. Advances in
neural information processing systems 35 (2022), 22199–22213.

[87] Anastasia Kovalkov, Avi Segal, and Kobi Gal. 2020. Inferring Creativity in Visual
Programming Environments. In Proceedings of the Seventh ACM Conference on
Learning @ Scale (Virtual Event, USA) (L@S ’20). Association for Computing
Machinery, New York, NY, USA, 269–272. https://doi.org/10.1145/3386527.
3406725

https://doi.org/10.1145/3544548.3581503
https://doi.org/10.1145/3025453.3025899
https://doi.org/10.1145/3025453.3025899
https://eprints.soton.ac.uk/261149/
https://doi.org/10.1145/3478513.3480546
https://doi.org/10.1145/3214366
https://doi.org/10.1145/3290605.3300780
https://doi.org/10.1145/3290605.3300780
https://doi.org/10.1145/990555.990559
https://doi.org/10.1145/3386328
https://doi.org/10.1145/3386527.3406725
https://doi.org/10.1145/3386527.3406725

Bibliography 107

[88] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet
classification with deep convolutional neural networks. Advances in neural
information processing systems 25 (2012).

[89] Tiffany H Kung, Morgan Cheatham, Arielle Medenilla, Czarina Sillos,
Lorie De Leon, Camille Elepaño, Maria Madriaga, Rimel Aggabao, Giezel
Diaz-Candido, James Maningo, et al. 2023. Performance of ChatGPT on
USMLE: Potential for AI-assisted medical education using large language
models. PLoS digital health 2, 2 (2023), e0000198.

[90] Michael Laielli, James Smith, Giscard Biamby, Trevor Darrell, and Bjoern
Hartmann. 2019. LabelAR: A Spatial Guidance Interface for Fast Computer
Vision Image Collection. In Proceedings of the 32nd Annual ACM Symposium
on User Interface Software and Technology (New Orleans, LA, USA) (UIST
’19). Association for Computing Machinery, New York, NY, USA, 987–998.
https://doi.org/10.1145/3332165.3347927

[91] LangFlow. 2023. LangFlow. https://github.com/logspace-ai/langflow

[92] Tessa A. Lau and Daniel S. Weld. 1998. Programming by Demonstration:
An Inductive Learning Formulation. In Proceedings of the 4th International
Conference on Intelligent User Interfaces (Los Angeles, California, USA) (IUI
’99). Association for Computing Machinery, New York, NY, USA, 145–152.
https://doi.org/10.1145/291080.291104

[93] Hsin-Ying Lee, Xiaodong Yang, Ming-Yu Liu, Ting-Chun Wang, Yu-Ding Lu,
Ming-Hsuan Yang, and Jan Kautz. 2019. Dancing to Music. In Advances
in Neural Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran As-
sociates, Inc., 3581–3591. http://papers.nips.cc/paper/8617-dancing-to-music.
pdf

[94] Kyungjun Lee and Hernisa Kacorri. 2019. Hands Holding Clues for Object
Recognition in Teachable Machines. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems (CHI ’19). Association for Computing
Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.
3300566

[95] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan
Li, Yiwu Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, Kai-Wei
Chang, and Jianfeng Gao. 2022. Grounded Language-Image Pre-Training. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 10965–10975.

[96] Peike Li, Yunqiu Xu, Yunchao Wei, and Yi Yang. 2020. Self-Correction
for Human Parsing. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2020), 1–1. https://doi.org/10.1109/TPAMI.2020.3048039

[97] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE: Creating
Multimodal Smartphone Automation by Demonstration. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems (Denver,

https://doi.org/10.1145/3332165.3347927
https://github.com/logspace-ai/langflow
https://doi.org/10.1145/291080.291104
http://papers.nips.cc/paper/8617-dancing-to-music.pdf
http://papers.nips.cc/paper/8617-dancing-to-music.pdf
https://doi.org/10.1145/3290605.3300566
https://doi.org/10.1145/3290605.3300566
https://doi.org/10.1109/TPAMI.2020.3048039

Bibliography 108

Colorado, USA) (CHI ’17). Association for Computing Machinery, New York,
NY, USA, 6038–6049. https://doi.org/10.1145/3025453.3025483

[98] Toby Jia-Jun Li, Jingya Chen, Brandon Canfield, and Brad A. Myers.
2020. Privacy-Preserving Script Sharing in GUI-Based Programming-by-
Demonstration Systems. Proc. ACM Hum.-Comput. Interact. 4, CSCW1, Article
060 (May 2020), 23 pages. https://doi.org/10.1145/3392869

[99] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, Tom M.
Mitchell, and Brad A. Myers. 2019. PUMICE: A Multi-Modal Agent That
Learns Concepts and Conditionals from Natural Language and Demonstrations.
In Proceedings of the 32nd Annual ACM Symposium on User Interface Software
and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing
Machinery, New York, NY, USA, 577–589. https://doi.org/10.1145/3332165.
3347899

[100] Xiwen Liang, Yangxin Wu, Jianhua Han, Hang Xu, Chunjing XU, and
Xiaodan Liang. 2022. Effective Adaptation in Multi-Task Co-Training
for Unified Autonomous Driving. In Advances in Neural Information
Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Bel-
grave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates, Inc.,
19645–19658. https://proceedings.neurips.cc/paper_files/paper/2022/file/
7c319b62e2257b34cb0e1040ced2e007-Paper-Conference.pdf

[101] Shih-Chieh Lin, Chang-Hong Hsu, Walter Talamonti, Yunqi Zhang, Steve Oney,
Jason Mars, and Lingjia Tang. 2018. Adasa: A Conversational In-Vehicle Digital
Assistant for Advanced Driver Assistance Features. In Proceedings of the 31st
Annual ACM Symposium on User Interface Software and Technology (Berlin,
Germany) (UIST ’18). Association for Computing Machinery, New York, NY,
USA, 531–542. https://doi.org/10.1145/3242587.3242593

[102] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer,
740–755.

[103] Linqing Liu, Yao Lu, Min Yang, Qiang Qu, Jia Zhu, and Hongyan Li.
2017. Generative Adversarial Network for Abstractive Text Summarization.
arXiv:1711.09357 [cs.CL]

[104] Xingyu Liu, Vladimir Kirilyuk, Xiuxiu Yuan, Alex Olwal, Peggy Chi,
Xiang Chen, and Ruofei Du. 2023. Visual Captions: Augmenting Verbal
Communication With On-the-fly Visuals. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems (CHI). ACM, 20 pages.
https://doi.org/10.1145/3544548.3581566

[105] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning,
Yue Cao, Zheng Zhang, Li Dong, et al. 2022. Swin transformer v2: Scaling
up capacity and resolution. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 12009–12019.

https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3392869
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1145/3332165.3347899
https://proceedings.neurips.cc/paper_files/paper/2022/file/7c319b62e2257b34cb0e1040ced2e007-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7c319b62e2257b34cb0e1040ced2e007-Paper-Conference.pdf
https://doi.org/10.1145/3242587.3242593
https://doi.org/10.1145/3544548.3581566

Bibliography 109

[106] Zixian Ma, Jerry Hong, Mustafa Omer Gul, Mona Gandhi, Irena Gao, and
Ranjay Krishna. 2023. CREPE: Can Vision-Language Foundation Models
Reason Compositionally?. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 10910–10921.

[107] Andrew N Meltzoff. 1995. Understanding the intentions of others: re-enactment
of intended acts by 18-month-old children. Developmental psychology 31, 5
(1995), 838.

[108] Kyzyl Monteiro, Ritik Vatsal, Neil Chulpongsatorn, Aman Parnami, and Ryo
Suzuki. 2023. Teachable Reality: Prototyping Tangible Augmented Reality with
Everyday Objects by Leveraging Interactive Machine Teaching. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems (<conf-loc>,
<city>Hamburg</city>, <country>Germany</country>, </conf-loc>) (CHI
’23). Association for Computing Machinery, New York, NY, USA, Article 459,
15 pages. https://doi.org/10.1145/3544548.3581449

[109] Meredith Ringel Morris, Jascha Sohl-dickstein, Noah Fiedel, Tris Warkentin,
Allan Dafoe, Aleksandra Faust, Clement Farabet, and Shane Legg. 2023. Levels
of AGI: Operationalizing Progress on the Path to AGI. arXiv:2311.02462 [cs.AI]

[110] Eric N Mortensen and William A Barrett. 1998. Interactive segmentation with
intelligent scissors. Graphical models and image processing 60, 5 (1998), 349–384.

[111] MA Viraj J Muthugala and AG Buddhika P Jayasekara. 2016. MIRob: An
intelligent service robot that learns from interactive discussions while handling
uncertain information in user instructions. In 2016 Moratuwa Engineering
Research Conference (MERCon). IEEE, 397–402.

[112] B. A. Myers, B. V. Zanden, and R. B. Dannenberg. 1989. Creating
Graphical Interactive Application Objects by Demonstration. In Proceedings
of the 2nd Annual ACM SIGGRAPH Symposium on User Interface Software
and Technology (Williamsburg, Virginia, USA) (UIST ’89). Association for
Computing Machinery, New York, NY, USA, 95–104. https://doi.org/10.1145/
73660.73672

[113] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

[114] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright,
Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens,
Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instructions with human feedback.
arXiv:2203.02155 [cs.CL]

[115] Allan Paivio. 1969. Mental imagery in associative learning and memory.
Psychological review 76, 3 (1969), 241.

[116] Allan Paivio. 1991. Dual coding theory: Retrospect and current status.
Canadian Journal of Psychology/Revue canadienne de psychologie 45, 3 (1991),
255.

https://doi.org/10.1145/3544548.3581449
https://doi.org/10.1145/73660.73672
https://doi.org/10.1145/73660.73672

Bibliography 110

[117] Allan Paivio, James M Clark, et al. 2006. Dual coding theory and education.
Pathways to literacy achievement for high poverty children (2006), 1–20.

[118] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22, 10 (2009), 1345–1359.

[119] Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris,
Percy Liang, and Michael S. Bernstein. 2023. Generative Agents: Interactive
Simulacra of Human Behavior. arXiv:2304.03442 [cs.HC]

[120] Joon Sung Park, Lindsay Popowski, Carrie Cai, Meredith Ringel Morris, Percy
Liang, and Michael S. Bernstein. 2022. Social Simulacra: Creating Populated
Prototypes for Social Computing Systems. In Proceedings of the 35th Annual
ACM Symposium on User Interface Software and Technology (Bend, OR, USA)
(UIST ’22). Association for Computing Machinery, New York, NY, USA, Article
74, 18 pages. https://doi.org/10.1145/3526113.3545616

[121] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. 2019. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems 32 (2019).

[122] Siyou Pei, Alexander Chen, Jaewook Lee, and Yang Zhang. 2022. Hand
Interfaces: Using Hands to Imitate Objects in AR/VR for Expressive
Interactions. In CHI Conference on Human Factors in Computing Systems (New
Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New York,
NY, USA, Article 429, 16 pages. https://doi.org/10.1145/3491102.3501898

[123] Zhenhui Peng, Xingbo Wang, Qiushi Han, Junkai Zhu, Xiaojuan Ma, and
Huamin Qu. 2023. Storyfier: Exploring Vocabulary Learning Support with Text
Generation Models. arXiv:2308.03864 [cs.HC]

[124] Gabriella Pizzuto and Angelo Cangelosi. 2019. Exploring Deep Models for
Comprehension of Deictic Gesture-Word Combinations in Cognitive Robotics.
In 2019 International Joint Conference on Neural Networks (IJCNN). 1–7.
https://doi.org/10.1109/IJCNN.2019.8852425

[125] E. V. Polyakov, M. S. Mazhanov, A. Y. Rolich, L. S. Voskov, M. V. Kachalova,
and S. V. Polyakov. 2018. Investigation and development of the intelligent voice
assistant for the Internet of Things using machine learning. In 2018 Moscow
Workshop on Electronic and Networking Technologies (MWENT). 1–5. https:
//doi.org/10.1109/MWENT.2018.8337236

[126] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual
Models From Natural Language Supervision. arXiv:2103.00020 [cs.CV]

[127] Gonzalo A. Ramos, Christopher Meek, Patrice Y. Simard, Jina Suh, and Soroush
Ghorashi. 2020. Interactive machine teaching: a human-centered approach to
building machine-learned models. Hum. Comput. Interact. 35, 5-6 (2020), 413–
451. https://doi.org/10.1080/07370024.2020.1734931

https://doi.org/10.1145/3526113.3545616
https://doi.org/10.1145/3491102.3501898
https://doi.org/10.1109/IJCNN.2019.8852425
https://doi.org/10.1109/MWENT.2018.8337236
https://doi.org/10.1109/MWENT.2018.8337236
https://doi.org/10.1080/07370024.2020.1734931

Bibliography 111

[128] Arpit Rana and Derek Bridge. 2020. Navigation-by-Preference: A New
Conversational Recommender with Preference-Based Feedback. In Proceedings
of the 25th International Conference on Intelligent User Interfaces (Cagliari,
Italy) (IUI ’20). Association for Computing Machinery, New York, NY, USA,
155–165. https://doi.org/10.1145/3377325.3377496

[129] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net:
Convolutional networks for biomedical image segmentation. In International
Conference on Medical image computing and computer-assisted intervention.
Springer, 234–241.

[130] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. 2004. ”GrabCut”:
Interactive Foreground Extraction Using Iterated Graph Cuts. ACM Trans.
Graph. 23, 3 (aug 2004), 309–314. https://doi.org/10.1145/1015706.1015720

[131] Téo Sanchez, Baptiste Caramiaux, Jules Françoise, Frédéric Bevilacqua, and
Wendy E. Mackay. 2021. How Do People Train a Machine? Strategies and
(Mis)Understandings. Proc. ACM Hum.-Comput. Interact. 5, CSCW1, Article
162 (apr 2021), 26 pages. https://doi.org/10.1145/3449236

[132] Téo Sanchez, Baptiste Caramiaux, Pierre Thiel, and Wendy E. Mackay.
2022. Deep Learning Uncertainty in Machine Teaching. In 27th International
Conference on Intelligent User Interfaces (Helsinki, Finland) (IUI ’22).
Association for Computing Machinery, New York, NY, USA, 173–190. https:
//doi.org/10.1145/3490099.3511117

[133] Allison Sauppé and Bilge Mutlu. 2014. Robot Deictics: How Gesture
and Context Shape Referential Communication. In Proceedings of the 2014
ACM/IEEE International Conference on Human-Robot Interaction (Bielefeld,
Germany) (HRI ’14). Association for Computing Machinery, New York, NY,
USA, 342–349. https://doi.org/10.1145/2559636.2559657

[134] Boris Sekachev, Nikita Manovich, Maxim Zhiltsov, Andrey Zhavoronkov,
Dmitry Kalinin, Ben Hoff, TOsmanov, Dmitry Kruchinin, Artyom Zankevich,
DmitriySidnev, Maksim Markelov, Johannes222, Mathis Chenuet, a andre,
telenachos, Aleksandr Melnikov, Jijoong Kim, Liron Ilouz, Nikita Glazov,
Priya4607, Rush Tehrani, Seungwon Jeong, Vladimir Skubriev, Sebastian
Yonekura, vugia truong, zliang7, lizhming, and Tritin Truong. 2020.
opencv/cvat: v1.1.0. https://doi.org/10.5281/zenodo.4009388

[135] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In Proceedings of the IEEE
international conference on computer vision. 618–626.

[136] SM Seyednezhad, Kailey Nobuko Cozart, John Anthony Bowllan, and
Anthony O Smith. 2018. A review on recommendation systems: Context-aware
to social-based. arXiv preprint arXiv:1811.11866 (2018).

https://doi.org/10.1145/3377325.3377496
https://doi.org/10.1145/1015706.1015720
https://doi.org/10.1145/3449236
https://doi.org/10.1145/3490099.3511117
https://doi.org/10.1145/3490099.3511117
https://doi.org/10.1145/2559636.2559657
https://doi.org/10.5281/zenodo.4009388

Bibliography 112

[137] Dandan Shan, Jiaqi Geng, Michelle Shu, and David F. Fouhey. 2020.
Understanding Human Hands in Contact at Internet Scale. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[138] Leixian Shen, Enya Shen, Yuyu Luo, Xiaocong Yang, Xuming Hu, Xiongshuai
Zhang, Zhiwei Tai, and Jianmin Wang. 2023. Towards Natural Language
Interfaces for Data Visualization: A Survey. IEEE Transactions on Visualization
and Computer Graphics 29, 6 (2023), 3121–3144. https://doi.org/10.1109/
TVCG.2022.3148007

[139] Yichen Shen, Nicholas C Harris, Scott Skirlo, Mihika Prabhu, Tom Baehr-Jones,
Michael Hochberg, Xin Sun, Shijie Zhao, Hugo Larochelle, Dirk Englund, et al.
2017. Deep learning with coherent nanophotonic circuits. Nature Photonics 11,
7 (2017), 441.

[140] Yujun Shen, Ceyuan Yang, Xiaoou Tang, and Bolei Zhou. 2020. InterFace-
GAN: Interpreting the Disentangled Face Representation Learned by GANs.
arXiv:2005.09635 [cs.CV]

[141] Patrice Y. Simard, Saleema Amershi, David M. Chickering, Alicia Edelman
Pelton, Soroush Ghorashi, Christopher Meek, Gonzalo Ramos, Jina Suh, Johan
Verwey, Mo Wang, and John Wernsing. 2017. Machine Teaching: A New
Paradigm for Building Machine Learning Systems. https://doi.org/10.48550/
ARXIV.1707.06742

[142] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu,
Jonathan Tremblay, Dieter Fox, Jesse Thomason, and Animesh Garg. 2023.
Progprompt: Generating situated robot task plans using large language models.
In 2023 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 11523–11530.

[143] Nikhita Singh, Jin Joo Lee, Ishaan Grover, and Cynthia Breazeal. 2018.
P2PSTORY: Dataset of Children as Storytellers and Listeners in Peer-to-Peer
Interactions. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for
Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/
3173574.3174008

[144] Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mahdavi, Jason Wei,
Hyung Won Chung, Nathan Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen
Pfohl, Perry Payne, Martin Seneviratne, Paul Gamble, Chris Kelly, Nathaneal
Scharli, Aakanksha Chowdhery, Philip Mansfield, Blaise Aguera y Arcas, Dale
Webster, Greg S. Corrado, Yossi Matias, Katherine Chou, Juraj Gottweis, Nenad
Tomasev, Yun Liu, Alvin Rajkomar, Joelle Barral, Christopher Semturs, Alan
Karthikesalingam, and Vivek Natarajan. 2022. Large Language Models Encode
Clinical Knowledge. arXiv:2212.13138 [cs.CL]

[145] Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Ann Yuan, Nick Kreeger,
Ping Yu, Kangyi Zhang, Shanqing Cai, Eric Nielsen, David Soergel, Stan
Bileschi, Michael Terry, Charles Nicholson, Sandeep N. Gupta, Sarah Sirajuddin,

https://doi.org/10.1109/TVCG.2022.3148007
https://doi.org/10.1109/TVCG.2022.3148007
https://doi.org/10.48550/ARXIV.1707.06742
https://doi.org/10.48550/ARXIV.1707.06742
https://doi.org/10.1145/3173574.3174008
https://doi.org/10.1145/3173574.3174008

Bibliography 113

D. Sculley, Rajat Monga, Greg Corrado, Fernanda B. Viégas, and Martin
Wattenberg. 2019. TensorFlow.js: Machine Learning for the Web and Beyond.
https://doi.org/10.48550/arXiv.1901.05350

[146] Alison Smith-Renner, Ron Fan, Melissa Birchfield, Tongshuang Wu, Jordan
Boyd-Graber, Daniel S. Weld, and Leah Findlater. 2020. No Explainability
without Accountability: An Empirical Study of Explanations and Feedback in
Interactive ML. Association for Computing Machinery, New York, NY, USA,
1–13. https://doi.org/10.1145/3313831.3376624

[147] Konstantin Sofiiuk, Ilia Petrov, Olga Barinova, and Anton Konushin. 2020. f-
brs: Rethinking backpropagating refinement for interactive segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 8623–8632.

[148] Konstantin Sofiiuk, Ilia A. Petrov, and Anton Konushin. 2021. Reviv-
ing Iterative Training with Mask Guidance for Interactive Segmentation.
arXiv:2102.06583 [cs.CV]

[149] Jina Suh, Soroush Ghorashi, Gonzalo Ramos, Nan-Chen Chen, Steven Drucker,
Johan Verwey, and Patrice Simard. 2019. AnchorViz: Facilitating Semantic Data
Exploration and Concept Discovery for Interactive Machine Learning. ACM
Trans. Interact. Intell. Syst. 10, 1, Article 7 (Aug. 2019), 38 pages. https:
//doi.org/10.1145/3241379

[150] Sangho Suh, Bryan Min, Srishti Palani, and Haijun Xia. 2023. Sensecape:
Enabling Multilevel Exploration and Sensemaking with Large Language Models.
arXiv preprint arXiv:2305.11483 (2023).

[151] Dídac Surís, Sachit Menon, and Carl Vondrick. 2023. Vipergpt: Visual inference
via python execution for reasoning. arXiv preprint arXiv:2303.08128 (2023).

[152] William Robert Sutherland. 1966. The on-line graphical specification of computer
procedures. Ph. D. Dissertation. Massachusetts Institute of Technology.

[153] Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks. In Proceedings of the 36th International
Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 6105–
6114. https://proceedings.mlr.press/v97/tan19a.html

[154] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste
Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M. Dai, Anja
Hauth, Katie Millican, David Silver, Slav Petrov, Melvin Johnson, Ioannis
Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler,
Timothy Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy, Michael
Isard, Paul R. Barham, Tom Hennigan, Benjamin Lee, Fabio Viola, Malcolm
Reynolds, Yuanzhong Xu, Ryan Doherty, Eli Collins, Clemens Meyer, Eliza
Rutherford, Erica Moreira, Kareem Ayoub, Megha Goel, George Tucker, Enrique
Piqueras, Maxim Krikun, Iain Barr, Nikolay Savinov, Ivo Danihelka, Becca
Roelofs, Anaïs White, Anders Andreassen, Tamara von Glehn, Lakshman

https://doi.org/10.48550/arXiv.1901.05350
https://doi.org/10.1145/3313831.3376624
https://doi.org/10.1145/3241379
https://doi.org/10.1145/3241379
https://proceedings.mlr.press/v97/tan19a.html

Bibliography 114

Yagati, Mehran Kazemi, Lucas Gonzalez, Misha Khalman, Jakub Sygnowski,
Alexandre Frechette, Charlotte Smith, Laura Culp, Lev Proleev, Yi Luan,
Xi Chen, James Lottes, Nathan Schucher, Federico Lebron, Alban Rrustemi,
Natalie Clay, Phil Crone, Tomas Kocisky, Jeffrey Zhao, Bartek Perz, Dian
Yu, Heidi Howard, Adam Bloniarz, Jack W. Rae, Han Lu, Laurent Sifre,
Marcello Maggioni, Fred Alcober, Dan Garrette, Megan Barnes, Shantanu
Thakoor, Jacob Austin, Gabriel Barth-Maron, William Wong, Rishabh Joshi,
Rahma Chaabouni, Deeni Fatiha, Arun Ahuja, Ruibo Liu, Yunxuan Li, Sarah
Cogan, Jeremy Chen, Chao Jia, Chenjie Gu, Qiao Zhang, Jordan Grimstad,
Ale Jakse Hartman, Martin Chadwick, Gaurav Singh Tomar, Xavier Garcia,
Evan Senter, Emanuel Taropa, Thanumalayan Sankaranarayana Pillai, Jacob
Devlin, Michael Laskin, Diego de Las Casas, Dasha Valter, Connie Tao,
Lorenzo Blanco, Adrià Puigdomènech Badia, David Reitter, Mianna Chen,
Jenny Brennan, Clara Rivera, Sergey Brin, Shariq Iqbal, Gabriela Surita,
Jane Labanowski, Abhi Rao, Stephanie Winkler, Emilio Parisotto, Yiming Gu,
Kate Olszewska, Yujing Zhang, Ravi Addanki, Antoine Miech, Annie Louis,
Laurent El Shafey, Denis Teplyashin, Geoff Brown, Elliot Catt, Nithya Attaluri,
Jan Balaguer, Jackie Xiang, Pidong Wang, Zoe Ashwood, Anton Briukhov,
Albert Webson, Sanjay Ganapathy, Smit Sanghavi, Ajay Kannan, Ming-Wei
Chang, Axel Stjerngren, Josip Djolonga, Yuting Sun, Ankur Bapna, Matthew
Aitchison, Pedram Pejman, Henryk Michalewski, Tianhe Yu, Cindy Wang,
Juliette Love, Junwhan Ahn, Dawn Bloxwich, Kehang Han, Peter Humphreys,
Thibault Sellam, James Bradbury, Varun Godbole, Sina Samangooei, Bogdan
Damoc, Alex Kaskasoli, Sébastien M. R. Arnold, Vijay Vasudevan, Shubham
Agrawal, Jason Riesa, Dmitry Lepikhin, Richard Tanburn, Srivatsan Srinivasan,
Hyeontaek Lim, Sarah Hodkinson, Pranav Shyam, Johan Ferret, Steven Hand,
Ankush Garg, Tom Le Paine, Jian Li, Yujia Li, Minh Giang, Alexander
Neitz, Zaheer Abbas, Sarah York, Machel Reid, Elizabeth Cole, Aakanksha
Chowdhery, Dipanjan Das, Dominika Rogozińska, Vitaly Nikolaev, Pablo
Sprechmann, Zachary Nado, Lukas Zilka, Flavien Prost, Luheng He, Marianne
Monteiro, Gaurav Mishra, Chris Welty, Josh Newlan, Dawei Jia, Miltiadis
Allamanis, Clara Huiyi Hu, Raoul de Liedekerke, Justin Gilmer, Carl Saroufim,
Shruti Rijhwani, Shaobo Hou, Disha Shrivastava, Anirudh Baddepudi, Alex
Goldin, Adnan Ozturel, Albin Cassirer, Yunhan Xu, Daniel Sohn, Devendra
Sachan, Reinald Kim Amplayo, Craig Swanson, Dessie Petrova, Shashi Narayan,
Arthur Guez, Siddhartha Brahma, Jessica Landon, Miteyan Patel, Ruizhe
Zhao, Kevin Villela, Luyu Wang, Wenhao Jia, Matthew Rahtz, Mai Giménez,
Legg Yeung, Hanzhao Lin, James Keeling, Petko Georgiev, Diana Mincu, Boxi
Wu, Salem Haykal, Rachel Saputro, Kiran Vodrahalli, James Qin, Zeynep
Cankara, Abhanshu Sharma, Nick Fernando, Will Hawkins, Behnam Neyshabur,
Solomon Kim, Adrian Hutter, Priyanka Agrawal, Alex Castro-Ros, George
van den Driessche, Tao Wang, Fan Yang, Shuo yiin Chang, Paul Komarek,
Ross McIlroy, Mario Lučić, Guodong Zhang, Wael Farhan, Michael Sharman,
Paul Natsev, Paul Michel, Yong Cheng, Yamini Bansal, Siyuan Qiao, Kris Cao,
Siamak Shakeri, Christina Butterfield, Justin Chung, Paul Kishan Rubenstein,
Shivani Agrawal, Arthur Mensch, Kedar Soparkar, Karel Lenc, Timothy Chung,
Aedan Pope, Loren Maggiore, Jackie Kay, Priya Jhakra, Shibo Wang, Joshua
Maynez, Mary Phuong, Taylor Tobin, Andrea Tacchetti, Maja Trebacz, Kevin

Bibliography 115

Robinson, Yash Katariya, Sebastian Riedel, Paige Bailey, Kefan Xiao, Nimesh
Ghelani, Lora Aroyo, Ambrose Slone, Neil Houlsby, Xuehan Xiong, Zhen
Yang, Elena Gribovskaya, Jonas Adler, Mateo Wirth, Lisa Lee, Music Li,
Thais Kagohara, Jay Pavagadhi, Sophie Bridgers, Anna Bortsova, Sanjay
Ghemawat, Zafarali Ahmed, Tianqi Liu, Richard Powell, Vijay Bolina, Mariko
Iinuma, Polina Zablotskaia, James Besley, Da-Woon Chung, Timothy Dozat,
Ramona Comanescu, Xiance Si, Jeremy Greer, Guolong Su, Martin Polacek,
Raphaël Lopez Kaufman, Simon Tokumine, Hexiang Hu, Elena Buchatskaya,
Yingjie Miao, Mohamed Elhawaty, Aditya Siddhant, Nenad Tomasev, Jinwei
Xing, Christina Greer, Helen Miller, Shereen Ashraf, Aurko Roy, Zizhao Zhang,
Ada Ma, Angelos Filos, Milos Besta, Rory Blevins, Ted Klimenko, Chih-Kuan
Yeh, Soravit Changpinyo, Jiaqi Mu, Oscar Chang, Mantas Pajarskas, Carrie
Muir, Vered Cohen, Charline Le Lan, Krishna Haridasan, Amit Marathe,
Steven Hansen, Sholto Douglas, Rajkumar Samuel, Mingqiu Wang, Sophia
Austin, Chang Lan, Jiepu Jiang, Justin Chiu, Jaime Alonso Lorenzo, Lars Lowe
Sjösund, Sébastien Cevey, Zach Gleicher, Thi Avrahami, Anudhyan Boral,
Hansa Srinivasan, Vittorio Selo, Rhys May, Konstantinos Aisopos, Léonard
Hussenot, Livio Baldini Soares, Kate Baumli, Michael B. Chang, Adrià Recasens,
Ben Caine, Alexander Pritzel, Filip Pavetic, Fabio Pardo, Anita Gergely, Justin
Frye, Vinay Ramasesh, Dan Horgan, Kartikeya Badola, Nora Kassner, Subhrajit
Roy, Ethan Dyer, Víctor Campos, Alex Tomala, Yunhao Tang, Dalia El Badawy,
Elspeth White, Basil Mustafa, Oran Lang, Abhishek Jindal, Sharad Vikram,
Zhitao Gong, Sergi Caelles, Ross Hemsley, Gregory Thornton, Fangxiaoyu
Feng, Wojciech Stokowiec, Ce Zheng, Phoebe Thacker, Çağlar Ünlü, Zhishuai
Zhang, Mohammad Saleh, James Svensson, Max Bileschi, Piyush Patil, Ankesh
Anand, Roman Ring, Katerina Tsihlas, Arpi Vezer, Marco Selvi, Toby Shevlane,
Mikel Rodriguez, Tom Kwiatkowski, Samira Daruki, Keran Rong, Allan Dafoe,
Nicholas FitzGerald, Keren Gu-Lemberg, Mina Khan, Lisa Anne Hendricks,
Marie Pellat, Vladimir Feinberg, James Cobon-Kerr, Tara Sainath, Maribeth
Rauh, Sayed Hadi Hashemi, Richard Ives, Yana Hasson, YaGuang Li, Eric
Noland, Yuan Cao, Nathan Byrd, Le Hou, Qingze Wang, Thibault Sottiaux,
Michela Paganini, Jean-Baptiste Lespiau, Alexandre Moufarek, Samer Hassan,
Kaushik Shivakumar, Joost van Amersfoort, Amol Mandhane, Pratik Joshi,
Anirudh Goyal, Matthew Tung, Andrew Brock, Hannah Sheahan, Vedant
Misra, Cheng Li, Nemanja Rakićević, Mostafa Dehghani, Fangyu Liu, Sid
Mittal, Junhyuk Oh, Seb Noury, Eren Sezener, Fantine Huot, Matthew Lamm,
Nicola De Cao, Charlie Chen, Gamaleldin Elsayed, Ed Chi, Mahdis Mahdieh,
Ian Tenney, Nan Hua, Ivan Petrychenko, Patrick Kane, Dylan Scandinaro,
Rishub Jain, Jonathan Uesato, Romina Datta, Adam Sadovsky, Oskar Bunyan,
Dominik Rabiej, Shimu Wu, John Zhang, Gautam Vasudevan, Edouard Leurent,
Mahmoud Alnahlawi, Ionut Georgescu, Nan Wei, Ivy Zheng, Betty Chan,
Pam G Rabinovitch, Piotr Stanczyk, Ye Zhang, David Steiner, Subhajit
Naskar, Michael Azzam, Matthew Johnson, Adam Paszke, Chung-Cheng
Chiu, Jaume Sanchez Elias, Afroz Mohiuddin, Faizan Muhammad, Jin Miao,
Andrew Lee, Nino Vieillard, Sahitya Potluri, Jane Park, Elnaz Davoodi,
Jiageng Zhang, Jeff Stanway, Drew Garmon, Abhijit Karmarkar, Zhe Dong,
Jong Lee, Aviral Kumar, Luowei Zhou, Jonathan Evens, William Isaac, Zhe
Chen, Johnson Jia, Anselm Levskaya, Zhenkai Zhu, Chris Gorgolewski, Peter

Bibliography 116

Grabowski, Yu Mao, Alberto Magni, Kaisheng Yao, Javier Snaider, Norman
Casagrande, Paul Suganthan, Evan Palmer, Geoffrey Irving, Edward Loper,
Manaal Faruqui, Isha Arkatkar, Nanxin Chen, Izhak Shafran, Michael Fink,
Alfonso Castaño, Irene Giannoumis, Wooyeol Kim, Mikołaj Rybiński, Ashwin
Sreevatsa, Jennifer Prendki, David Soergel, Adrian Goedeckemeyer, Willi
Gierke, Mohsen Jafari, Meenu Gaba, Jeremy Wiesner, Diana Gage Wright,
Yawen Wei, Harsha Vashisht, Yana Kulizhskaya, Jay Hoover, Maigo Le, Lu
Li, Chimezie Iwuanyanwu, Lu Liu, Kevin Ramirez, Andrey Khorlin, Albert
Cui, Tian LIN, Marin Georgiev, Marcus Wu, Ricardo Aguilar, Keith Pallo,
Abhishek Chakladar, Alena Repina, Xihui Wu, Tom van der Weide, Priya
Ponnapalli, Caroline Kaplan, Jiri Simsa, Shuangfeng Li, Olivier Dousse, Fan
Yang, Jeff Piper, Nathan Ie, Minnie Lui, Rama Pasumarthi, Nathan Lintz,
Anitha Vijayakumar, Lam Nguyen Thiet, Daniel Andor, Pedro Valenzuela,
Cosmin Paduraru, Daiyi Peng, Katherine Lee, Shuyuan Zhang, Somer Greene,
Duc Dung Nguyen, Paula Kurylowicz, Sarmishta Velury, Sebastian Krause,
Cassidy Hardin, Lucas Dixon, Lili Janzer, Kiam Choo, Ziqiang Feng, Biao
Zhang, Achintya Singhal, Tejasi Latkar, Mingyang Zhang, Quoc Le, Elena Allica
Abellan, Dayou Du, Dan McKinnon, Natasha Antropova, Tolga Bolukbasi,
Orgad Keller, David Reid, Daniel Finchelstein, Maria Abi Raad, Remi Crocker,
Peter Hawkins, Robert Dadashi, Colin Gaffney, Sid Lall, Ken Franko, Egor
Filonov, Anna Bulanova, Rémi Leblond, Vikas Yadav, Shirley Chung, Harry
Askham, Luis C. Cobo, Kelvin Xu, Felix Fischer, Jun Xu, Christina Sorokin,
Chris Alberti, Chu-Cheng Lin, Colin Evans, Hao Zhou, Alek Dimitriev, Hannah
Forbes, Dylan Banarse, Zora Tung, Jeremiah Liu, Mark Omernick, Colton
Bishop, Chintu Kumar, Rachel Sterneck, Ryan Foley, Rohan Jain, Swaroop
Mishra, Jiawei Xia, Taylor Bos, Geoffrey Cideron, Ehsan Amid, Francesco
Piccinno, Xingyu Wang, Praseem Banzal, Petru Gurita, Hila Noga, Premal
Shah, Daniel J. Mankowitz, Alex Polozov, Nate Kushman, Victoria Krakovna,
Sasha Brown, MohammadHossein Bateni, Dennis Duan, Vlad Firoiu, Meghana
Thotakuri, Tom Natan, Anhad Mohananey, Matthieu Geist, Sidharth Mudgal,
Sertan Girgin, Hui Li, Jiayu Ye, Ofir Roval, Reiko Tojo, Michael Kwong, James
Lee-Thorp, Christopher Yew, Quan Yuan, Sumit Bagri, Danila Sinopalnikov,
Sabela Ramos, John Mellor, Abhishek Sharma, Aliaksei Severyn, Jonathan Lai,
Kathy Wu, Heng-Tze Cheng, David Miller, Nicolas Sonnerat, Denis Vnukov,
Rory Greig, Jennifer Beattie, Emily Caveness, Libin Bai, Julian Eisenschlos,
Alex Korchemniy, Tomy Tsai, Mimi Jasarevic, Weize Kong, Phuong Dao, Zeyu
Zheng, Frederick Liu, Fan Yang, Rui Zhu, Mark Geller, Tian Huey Teh, Jason
Sanmiya, Evgeny Gladchenko, Nejc Trdin, Andrei Sozanschi, Daniel Toyama,
Evan Rosen, Sasan Tavakkol, Linting Xue, Chen Elkind, Oliver Woodman,
John Carpenter, George Papamakarios, Rupert Kemp, Sushant Kafle, Tanya
Grunina, Rishika Sinha, Alice Talbert, Abhimanyu Goyal, Diane Wu, Denese
Owusu-Afriyie, Cosmo Du, Chloe Thornton, Jordi Pont-Tuset, Pradyumna
Narayana, Jing Li, Sabaer Fatehi, John Wieting, Omar Ajmeri, Benigno Uria,
Tao Zhu, Yeongil Ko, Laura Knight, Amélie Héliou, Ning Niu, Shane Gu,
Chenxi Pang, Dustin Tran, Yeqing Li, Nir Levine, Ariel Stolovich, Norbert
Kalb, Rebeca Santamaria-Fernandez, Sonam Goenka, Wenny Yustalim, Robin
Strudel, Ali Elqursh, Balaji Lakshminarayanan, Charlie Deck, Shyam Upadhyay,
Hyo Lee, Mike Dusenberry, Zonglin Li, Xuezhi Wang, Kyle Levin, Raphael

Bibliography 117

Hoffmann, Dan Holtmann-Rice, Olivier Bachem, Summer Yue, Sho Arora, Eric
Malmi, Daniil Mirylenka, Qijun Tan, Christy Koh, Soheil Hassas Yeganeh, Siim
Põder, Steven Zheng, Francesco Pongetti, Mukarram Tariq, Yanhua Sun, Lucian
Ionita, Mojtaba Seyedhosseini, Pouya Tafti, Ragha Kotikalapudi, Zhiyu Liu,
Anmol Gulati, Jasmine Liu, Xinyu Ye, Bart Chrzaszcz, Lily Wang, Nikhil
Sethi, Tianrun Li, Ben Brown, Shreya Singh, Wei Fan, Aaron Parisi, Joe
Stanton, Chenkai Kuang, Vinod Koverkathu, Christopher A. Choquette-Choo,
Yunjie Li, TJ Lu, Abe Ittycheriah, Prakash Shroff, Pei Sun, Mani Varadarajan,
Sanaz Bahargam, Rob Willoughby, David Gaddy, Ishita Dasgupta, Guillaume
Desjardins, Marco Cornero, Brona Robenek, Bhavishya Mittal, Ben Albrecht,
Ashish Shenoy, Fedor Moiseev, Henrik Jacobsson, Alireza Ghaffarkhah, Morgane
Rivière, Alanna Walton, Clément Crepy, Alicia Parrish, Yuan Liu, Zongwei
Zhou, Clement Farabet, Carey Radebaugh, Praveen Srinivasan, Claudia van der
Salm, Andreas Fidjeland, Salvatore Scellato, Eri Latorre-Chimoto, Hanna
Klimczak-Plucińska, David Bridson, Dario de Cesare, Tom Hudson, Piermaria
Mendolicchio, Lexi Walker, Alex Morris, Ivo Penchev, Matthew Mauger, Alexey
Guseynov, Alison Reid, Seth Odoom, Lucia Loher, Victor Cotruta, Madhavi
Yenugula, Dominik Grewe, Anastasia Petrushkina, Tom Duerig, Antonio
Sanchez, Steve Yadlowsky, Amy Shen, Amir Globerson, Adam Kurzrok, Lynette
Webb, Sahil Dua, Dong Li, Preethi Lahoti, Surya Bhupatiraju, Dan Hurt,
Haroon Qureshi, Ananth Agarwal, Tomer Shani, Matan Eyal, Anuj Khare,
Shreyas Rammohan Belle, Lei Wang, Chetan Tekur, Mihir Sanjay Kale, Jinliang
Wei, Ruoxin Sang, Brennan Saeta, Tyler Liechty, Yi Sun, Yao Zhao, Stephan
Lee, Pandu Nayak, Doug Fritz, Manish Reddy Vuyyuru, John Aslanides, Nidhi
Vyas, Martin Wicke, Xiao Ma, Taylan Bilal, Evgenii Eltyshev, Daniel Balle,
Nina Martin, Hardie Cate, James Manyika, Keyvan Amiri, Yelin Kim, Xi
Xiong, Kai Kang, Florian Luisier, Nilesh Tripuraneni, David Madras, Mandy
Guo, Austin Waters, Oliver Wang, Joshua Ainslie, Jason Baldridge, Han Zhang,
Garima Pruthi, Jakob Bauer, Feng Yang, Riham Mansour, Jason Gelman, Yang
Xu, George Polovets, Ji Liu, Honglong Cai, Warren Chen, XiangHai Sheng,
Emily Xue, Sherjil Ozair, Adams Yu, Christof Angermueller, Xiaowei Li, Weiren
Wang, Julia Wiesinger, Emmanouil Koukoumidis, Yuan Tian, Anand Iyer,
Madhu Gurumurthy, Mark Goldenson, Parashar Shah, MK Blake, Hongkun
Yu, Anthony Urbanowicz, Jennimaria Palomaki, Chrisantha Fernando, Kevin
Brooks, Ken Durden, Harsh Mehta, Nikola Momchev, Elahe Rahimtoroghi,
Maria Georgaki, Amit Raul, Sebastian Ruder, Morgan Redshaw, Jinhyuk Lee,
Komal Jalan, Dinghua Li, Ginger Perng, Blake Hechtman, Parker Schuh, Milad
Nasr, Mia Chen, Kieran Milan, Vladimir Mikulik, Trevor Strohman, Juliana
Franco, Tim Green, Demis Hassabis, Koray Kavukcuoglu, Jeffrey Dean, and
Oriol Vinyals. 2023. Gemini: A Family of Highly Capable Multimodal Models.
arXiv:2312.11805 [cs.CL]

[155] Guy Tevet, Brian Gordon, Amir Hertz, Amit H Bermano, and Daniel Cohen-Or.
2022. Motionclip: Exposing human motion generation to clip space. In European
Conference on Computer Vision. Springer, 358–374.

[156] Jeyan Thiyagalingam, Mallikarjun Shankar, Geoffrey Fox, and Tony Hey. 2022.
Scientific machine learning benchmarks. Nature Reviews Physics 4, 6 (2022),
413–420.

Bibliography 118

[157] Unity. 2023. Unity’s Graph Editor. https://docs.unity.cn/Packages/com.unity.
visualscripting@1.7/manual/vs-interface-overview.html#the-graph-editor

[158] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You
Need. Advances in Neural Information Processing Systems 30 (2017). https:
//doi.org/10.5555/3295222.3295349

[159] Lucas Vinh Tran, Yi Tay, Shuai Zhang, Gao Cong, and Xiaoli Li. 2020.
HyperML: A Boosting Metric Learning Approach in Hyperbolic Space for
Recommender Systems. In Proceedings of the 13th International Conference on
Web Search and Data Mining (Houston, TX, USA) (WSDM ’20). Association
for Computing Machinery, New York, NY, USA, 609–617. https://doi.org/10.
1145/3336191.3371850

[160] Vijay Viswanathan, Chenyang Zhao, Amanda Bertsch, Tongshuang Wu, and
Graham Neubig. 2023. Prompt2Model: Generating Deployable Models from
Natural Language Instructions. arXiv:2308.12261 [cs.CL]

[161] Tijana Vuletic, Alex Duffy, Laura Hay, Chris McTeague, Gerard Campbell, and
Madeleine Grealy. 2019. Systematic literature review of hand gestures used
in human computer interaction interfaces. International Journal of Human-
Computer Studies 129 (2019), 74–94. https://doi.org/10.1016/j.ijhcs.2019.03.
011

[162] Bryan Wang, Gang Li, and Yang Li. 2023. Enabling Conversational Interaction
With Mobile UI Using Large Language Models. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems (Hamburg, Germany)
(CHI ’23). Association for Computing Machinery, New York, NY, USA, Article
432, 17 pages. https://doi.org/10.1145/3544548.3580895

[163] Yun Wang, Zhitao Hou, Leixian Shen, Tongshuang Wu, Jiaqi Wang, He Huang,
Haidong Zhang, and Dongmei Zhang. 2023. Towards Natural Language-Based
Visualization Authoring. IEEE Transactions on Visualization and Computer
Graphics 29, 1 (2023), 1222–1232. https://doi.org/10.1109/TVCG.2022.
3209357

[164] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL]

[165] Jacob O. Wobbrock, Meredith Ringel Morris, and Andrew D. Wilson. 2009.
User-Defined Gestures for Surface Computing. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’09). Association
for Computing Machinery, New York, NY, USA, 1083–1092. https://doi.org/
10.1145/1518701.1518866

[166] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, et al. 2019. Huggingface’s Transformers: State-of-the-Art Natural

https://docs.unity.cn/Packages/com.unity.visualscripting@1.7/manual/vs-interface-overview.html#the-graph-editor
https://docs.unity.cn/Packages/com.unity.visualscripting@1.7/manual/vs-interface-overview.html#the-graph-editor
https://doi.org/10.5555/3295222.3295349
https://doi.org/10.5555/3295222.3295349
https://doi.org/10.1145/3336191.3371850
https://doi.org/10.1145/3336191.3371850
https://doi.org/10.1016/j.ijhcs.2019.03.011
https://doi.org/10.1016/j.ijhcs.2019.03.011
https://doi.org/10.1145/3544548.3580895
https://doi.org/10.1109/TVCG.2022.3209357
https://doi.org/10.1109/TVCG.2022.3209357
https://doi.org/10.1145/1518701.1518866
https://doi.org/10.1145/1518701.1518866

Bibliography 119

Language Processing. ArXiv Preprint ArXiv:1910.03771 (2019). https://arxiv.
org/pdf/1910.03771

[167] Tongshuang Wu, Ellen Jiang, Aaron Donsbach, Jeff Gray, Alejandra Molina,
Michael Terry, and Carrie J Cai. 2022. PromptChainer: Chaining Large
Language Model Prompts through Visual Programming. In Extended Abstracts
of the 2022 CHI Conference on Human Factors in Computing Systems (New
Orleans, LA, USA) (CHI EA ’22). Association for Computing Machinery, New
York, NY, USA, Article 359, 10 pages. https://doi.org/10.1145/3491101.
3519729

[168] Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel S. Weld.
2021. Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and
Improving Models. arXiv:2101.00288 [cs.CL]

[169] Tongshuang Wu, Michael Terry, and Carrie Cai. 2022. AI Chains: Transparent
and Controllable Human-AI Interaction by Chaining Large Language Model
Prompts. In CHI Conference on Human Factors in Computing Systems. ACM.
https://doi.org/10.1145/3491102.3517582

[170] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik
Narasimhan, and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting
in Language Models. arXiv:2210.03629 [cs.CL]

[171] Serena Yeung, Francesca Rinaldo, Jeffrey Jopling, Bingbin Liu, Rishab Mehra,
N Lance Downing, Michelle Guo, Gabriel M Bianconi, Alexandre Alahi, Julia
Lee, et al. 2019. A computer vision system for deep learning-based detection
of patient mobilization activities in the ICU. NPJ digital medicine 2, 1 (2019),
1–5.

[172] Ming Yin, Jennifer Wortman Vaughan, and Hanna Wallach. 2019. Understand-
ing the Effect of Accuracy on Trust in Machine Learning Models. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY,
USA, 1–12. https://doi.org/10.1145/3290605.3300509

[173] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht
Madhavan, and Trevor Darrell. 2018. Bdd100k: A diverse driving video database
with scalable annotation tooling. arXiv preprint arXiv:1805.04687 2, 5 (2018),
6.

[174] J.D. Zamfirescu-Pereira, Richmond Y. Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny Can’t Prompt: How Non-AI Experts Try (and Fail) to
Design LLM Prompts. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems (Hamburg, Germany) (CHI ’23). Association for
Computing Machinery, New York, NY, USA, Article 437, 21 pages. https:
//doi.org/10.1145/3544548.3581388

[175] Beiqi Zhang, Peng Liang, Xiyu Zhou, Aakash Ahmad, and Muhammad Waseem.
2023. Practices and Challenges of Using GitHub Copilot: An Empirical Study.
In Proceedings of the 35th International Conference on Software Engineering

https://arxiv.org/pdf/1910.03771
https://arxiv.org/pdf/1910.03771
https://doi.org/10.1145/3491101.3519729
https://doi.org/10.1145/3491101.3519729
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3290605.3300509
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1145/3544548.3581388

Bibliography 120

and Knowledge Engineering (SEKE2023). KSI Research Inc. https://doi.org/
10.18293/seke2023-077

[176] Hao Zhang, Zi-Hao Bo, Jun-Hai Yong, and Feng Xu. 2019. InteractionFusion:
Real-Time Reconstruction of Hand Poses and Deformable Objects in Hand-
Object Interactions. ACM Trans. Graph. 38, 4, Article 48 (jul 2019), 11 pages.
https://doi.org/10.1145/3306346.3322998

[177] Hao Zhang, Yuxiao Zhou, Yifei Tian, Jun-Hai Yong, and Feng Xu. 2021. Single
Depth View Based Real-Time Reconstruction of Hand-Object Interactions. ACM
Trans. Graph. 40, 3, Article 29 (jul 2021), 12 pages. https://doi.org/10.1145/
3451341

[178] Jing Zhang, Xin Yu, Aixuan Li, Peipei Song, Bowen Liu, and Yuchao Dai.
2020. Weakly-Supervised Salient Object Detection via Scribble Annotations.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

[179] Lei Zhang and Steve Oney. 2020. FlowMatic: An Immersive Authoring Tool
for Creating Interactive Scenes in Virtual Reality. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology (Virtual
Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY,
USA, 342–353. https://doi.org/10.1145/3379337.3415824

[180] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. 2023. Adding Conditional
Control to Text-to-Image Diffusion Models. arXiv:2302.05543 [cs.CV]

[181] Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan
Wang, Yejin Choi, and Jianfeng Gao. 2021. Vinvl: Revisiting visual
representations in vision-language models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 5579–5588.

[182] Wencan Zhang, Mariella Dimiccoli, and Brian Y Lim. 2022. Debiased-CAM
to Mitigate Image Perturbations with Faithful Visual Explanations of Machine
Learning. In CHI Conference on Human Factors in Computing Systems (New
Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New York,
NY, USA, Article 182, 32 pages. https://doi.org/10.1145/3491102.3517522

[183] Yongqi Zhang, Cuong Nguyen, Rubaiat Habib Kazi, and Lap-Fai Yu. 2023.
PoseVEC: Authoring Adaptive Pose-aware Effects Using Visual Programming
and Demonstrations. In ACM Symposium on User Interface Software and
Technology.

[184] Zhenyu Zhang, Xuxi Chen, Tianlong Chen, and Zhangyang Wang. 2021.
Efficient lottery ticket finding: Less data is more. In International Conference
on Machine Learning. PMLR, 12380–12390.

[185] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
2016. Learning deep features for discriminative localization. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 2921–2929.

https://doi.org/10.18293/seke2023-077
https://doi.org/10.18293/seke2023-077
https://doi.org/10.1145/3306346.3322998
https://doi.org/10.1145/3451341
https://doi.org/10.1145/3451341
https://doi.org/10.1145/3379337.3415824
https://doi.org/10.1145/3491102.3517522

Bibliography 121

[186] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi
Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.
Least-to-most prompting enables complex reasoning in large language models.
arXiv preprint arXiv:2205.10625 (2022).

[187] Zhongyi Zhou, Jing Jin, Vrushank Phadnis, Xiuxiu Yuan, Jun Jiang, Xun Qian,
Jingtao Zhou, Yiyi Huang, Zheng Xu, Yinda Zhang, Kristen Wright, Jason
Mayes, Mark Sherwood, Johnny Lee, Alex Olwal, David Kim, Ram Iyengar, Na
Li, and Ruofei Du. 2023. InstructPipe: Building Visual Programming Pipelines
with Human Instructions. arXiv:2312.09672 [cs.HC]

[188] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and
Jianming Liang. 2018. Unet++: A nested u-net architecture for medical image
segmentation. In Deep learning in medical image analysis and multimodal
learning for clinical decision support. Springer, 3–11.

[189] Zhongyi Zhou and Koji Yatani. 2021. Enhancing Model Assessment in
Vision-Based Interactive Machine Teaching through Real-Time Saliency Map
Visualization. In The Adjunct Publication of the 34th Annual ACM Symposium
on User Interface Software and Technology (Virtual Event, USA) (UIST ’21).
Association for Computing Machinery, New York, NY, USA, 112–114. https:
//doi.org/10.1145/3474349.3480194

[190] Zhongyi Zhou and Koji Yatani. 2022. Gesture-Aware Interactive Machine
Teaching with In-Situ Object Annotations. In Proceedings of the 35th Annual
ACM Symposium on User Interface Software and Technology (Bend, OR, USA)
(UIST ’22). Association for Computing Machinery, New York, NY, USA, Article
27, 14 pages. https://doi.org/10.1145/3526113.3545648

[191] Xiaojin Zhu. 2015. Machine teaching: An inverse problem to machine learning
and an approach toward optimal education. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 29.

[192] Xiaojin Zhu, Adish Singla, Sandra Zilles, and Anna N. Rafferty. 2018. An
Overview of Machine Teaching. https://doi.org/10.48550/ARXIV.1801.05927

https://doi.org/10.1145/3474349.3480194
https://doi.org/10.1145/3474349.3480194
https://doi.org/10.1145/3526113.3545648
https://doi.org/10.48550/ARXIV.1801.05927

Appendix A

LookHere

A.1 Implementation Details and Extra Technical

Results

A.1.1 Configurations of Machine Learning Process in In-

structPipe

Each image captured in the front end is fixed at the size of 480×640 (height × width).

We chose U-Net [129] with EfficientNet-b0 backbone [153] to be the machine learning

model at the back end taught by users. During the training stage, InstructPipe uses

Adam optimizer and performs fine-tuning on the model pretrained on ImageNet [40]

for 50 epochs. The batch size is four, and the learning rate is 1e-4.

Note that we only use the encoder of the model for the Naiv̈eIMT condition (see

details in Section 3.7.1) because there is no ground truth data of segmentation masks

in this condition, which is necessary for training the decoder. We used CAM [185] to

predict saliency maps using this classification model.

A.1 Implementation Details and Extra Technical Results 123

(a) Prediction. (b) Ground truth.

(c) Prediction. (d) Ground truth.

(e) Prediction. (f) Ground truth.
Figure A.1 Additional examples of object highlight prediction failure.

A.1.2 Configurations of Training Object Highlights

We fine-tuned the the network of object highlights pretrained on ImageNet using the

Adam optimizer for 100 epochs. The learning rate maintains 1e-4 in the first 25 epochs,

A.2 Object Highlight Prediction Failure 124

Table A.1 Performance comparison of the four models for our object highlight.
U-Net UNet++ DeepLabV3 DeepLabV3+

mIoU 0.718 0.704 0.698 0.704
fps 28.3 24.7 22.5 27.8

and drops exponentially for the subsequent 50 epochs until it reach 1e-5 at epoch 75.

It then maintains the learning rate of 1e-5 in the last 25 epochs. Because there is no

validation set, we simply reported the accuracy based the model achieved at the end

of the training without the early stop operation. We set the batch size to be 4.

We note that this training process is for object highlights in InstructPipe. The

previous section explains how InstructPipe trains the model created by users (through

demonstrations of objects).

A.1.3 Architecture Selections

We chose U-Net [129], UNet++ [188], DeepLabV3 [23] and DeepLabV3+ [24] for

comparison because all of them are widely used different segmentation tasks and

showed good performance. Table A.1 shows the results in which we compared mIoU

and FPS of the trained models. The results show that U-Net was the most accurate

as well as the fastest. Note that all of the architecture used EfficientNet-b0 as the

backbone.

A.2 Object Highlight Prediction Failure

Figure A.1 shows additional examples in which our predictions of object highlights

have large discrepancy with their ground truth.

Appendix B

InstructPipe

B.1 A Full List of 27 Nodes in InstructPipe

The following content shows 27 nodes InstructPipe covers in the generation process

and their corresponding short description used in the Node Selector (§4.4.2):

B.1.1 Input Nodes

1. live_camera: Capture video stream through your device camera.

2. input_image: Select images to use as input to your pipeline. You can also

upload your own images.

3. input_text: Add text to use as input to your pipeline.

B.1.2 Output Nodes

1. image_viewer: View images.

2. threed_photo: Create a 3D photo effect from depthmap tensors.

3. markdown_viewer: Render Markdown strings into stylized HTML.

B.1 A Full List of 27 Nodes in InstructPipe 126

4. html_viewer: Show HTML content with styles

B.1.3 Processor Nodes

1. google_search: Use Google to search the web that returns a list of URLs based

on a given keyword; usually selected with string_picker.

2. body_segmentation: Segment out people in images; usually selected with

mask_visualizer.

3. tensor_to_depthmap: Display tensor data as a depth map.

4. portrait_depth: Generate a 3D depth map for an image; usually selected with

tensor_to_depthmap, threed_photo.

5. face_landmark: Detect faces in images. Each face contains 468 keypoints;

usually selected with landmark_visualizer, virtual_sticker.

6. pose_landmark: Generate body positional mappings for people detected in

images; usually selected with landmark_visualizer.

7. image_processor: Process an image (crop, resize, shear, rotate, change

brightness or contrast, add blur or noise).

8. text_processor: Reformat and combine multiple text inputs.

9. mask_visualizer: Visualize masks.

10. string_picker: Select one string from a list of strings; usually used with

google_search.

11. image_mixer: Combine images and text into one output image. Requires two

image inputs.

12. virtual_sticker: Use face landmarks data to overlay virtual stickers on images.

B.1 A Full List of 27 Nodes in InstructPipe 127

{
 "nodeSpecId": "body_segmentation",
 "description": "Segment out people in images.",
 "category": "processor",
 "inputSpecs": {
 "image": {
 "type": "image"
 }
 },
 "outputSpecs": {
 "segmentationResult": {
 "type": "masks",
 "recommendedNodes": [
 "mask_visualizer"
]
 }
 },
 "examples": [
 "live_camera_xhjtec:
live_camera();\nbody_segmentation_xctd1p_out =
body_segmentation_xctd1p:
body_segmentation(image=live_camera_xhjtec);\nmask_visualizer_frjz
ga_out = mask_visualizer_frjzga:
mask_visualizer(image=live_camera_xhjtec,
segmentationResult=body_segmentation_xctd1p_out);\n"
]
}

(a) Body segmentation

{
 "nodeSpecId": "pali",
 "description": "Answer questions about an image using a
vision-language model.",
 "category": "processor",
 "inputSpecs": {
 "image": {
 "type": "image"
 },
 "prompt": {
 "type": "string"
 }
 },
 "outputSpecs": {
 "answer": {
 "type": "string"
 }
 },
 "examples": [
 "input_image_f1ohfa: input_image();\ninput_text_04ejnm:
input_text(text=\"What is the person in the image
doing?\");\npali_2pzuwn_out = pali_2pzuwn:
pali(image=input_image_f1ohfa,
prompt=input_text_04ejnm);\nmarkdown_viewer_6wqe86:
markdown_viewer(markdownString=pali_2pzuwn_out);\n"
]
}

(b) PaLI
Figure B.1 Examples of node configuration used in Code Writer. The configuration is
structured in a JSON format.
13. palm_textgen: Generate Text using a large language model.

14. keywords_to_image: Search for images by keywords.

15. url_to_html: Crawl the website by a given URL.

16. image_to_text: Extract text from an image using OCR service.

17. pali: Answer questions about an image using a vision-language model.

18. palm_model: Generate text using a large language model based on prompt and

context.

19. imagen: Generate an image based on a text prompt.

20. input_sheet: Read string data from Google Sheets.

B.2 System Prompts Used in LLM Modules 128

B.2 System Prompts Used in LLM Modules

Here we provide more details about the prompts we utilized in InstructPipe. The

original txt files are also attached in the supplementary zip file.

B.2.1 Code Writer

The prompt in Code Writer is dynamic, which is dependent on the nodes chosen

in Node Selector. Therefore, we cannot provide all the possible prompts in the

supplementary materials. Here, we will focus on providing examples of two detailed

node configurations utilized in InstructPipe. Figure 4.7 shows the structure of the

prompt utilized in this LLM stage. Figure B.1 provides two examples of node

configurations (i.e., “Body segmentation” and “PaLI”) that InstructPipe may chose

into the highlighted line(s). Each configuration includes keys of “nodeSpecId” (i.e.,

node types), “description”, “category” and “examples”. For those nodes that support

input and output edges, “inputSpecs” and “outputSpecs” specify the sockets and

their corresponding valid data types. For example, the output socket name of “Body

segmentation” is “segmentationResult”, and its data type is “masks”. Some nodes

(e.g., “Body segmentation”) include recommended node(s) (e.g., “Mask visualizer”

for “Body segmentation”), and our configuration also contains such information in

the dictionary.

B.3 User Study Pipelines

Figure B.2 and Figure B.3 visualize two pipelines we required the participants

to complete in our user study. Figure B.3 is a multimodal pipeline that allows

participants to interact with AR effects in real time. Our technical evaluation shows

that InstructPipe can generate this pipeline accurately: the averaged ratio of human

interactions = 5.2%. Figure B.3 is a text-based pipeline that provides participants with

B.3 User Study Pipelines 129

Figure B.2 Text-based pipeline. The “String picker” node provides users a drop-down
menus to select one URL from a list of URLs returned by “Google Search”. “PaLM
Text Generator” is an LLM used to summarize the full HTML page.

Figure B.3 Real-time multimodal pipeline. The “Keyword to image” node is used to
search sunglasses image, and the “Virtual sticker” node anchors the sunglasses onto
users’ face.
a summary of the news searched from Google. The technical evaluation reveals that

InstructPipe cannot generate this pipeline accurately: the averaged ratio of human

interactions = 27.8%.

Note that even though InstructPipe may be able to complete the pipeline structure

in Figure B.3 from users’ instruction, we observed that participants still need to fine-

tune their keywords to get an ideal pair of sunglasses. Additionally, the default anchor

value is “Face top”, so participants need to use the drop-down menu on the “Virtual

sticker” node to change the value to “Eyes”. This further motivates us to use the

metric of “Time” in addition to the number of user interactions in our study.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background and Motivation
	1.2 Research Goal and Focus
	1.3 Teaching AI and AI Customization

	2 Related Work
	2.1 Interactive Machine Learning
	2.1.1 Interactive Machine Teaching
	2.1.2 Interactive Visualization for Human Perception

	2.2 Programming by Demonstration
	2.3 Instruction-based Interactive Systems

	3 Gesture-aware Interactive Machine Teaching with In-situ Object Annotations
	3.1 Introduction
	3.2 Related Work
	3.2.1 Interactive Machine Teaching
	3.2.2 Interactive Annotations
	3.2.3 Interactions Using Deictic Gestures

	3.3 Research Challenges and Questions
	3.3.1 Challenges in Existing V-IMT Systems
	3.3.2 Research Questions

	3.4 LookHere
	3.4.1 Object Highlights and In-situ Object Annotation
	3.4.2 Model Assessment with Saliency Map Visualizations

	3.5 Implementation
	3.5.1 Gesture-aware Object Highlights
	3.5.2 Joint Classification and Segmentation for Saliency Map Visualizations

	3.6 Deictic Gesture Dataset
	3.6.1 Motivation of Data Collection
	3.6.2 HuTics Dataset
	3.6.3 Performance of Object Highlights on HuTics

	3.7 User Study
	3.7.1 Interface Conditions
	3.7.2 Evaluation Metrics
	3.7.3 Procedure
	3.7.4 Apparatus
	3.7.5 Participants

	3.8 Results
	3.8.1 Quantitative Results
	3.8.2 Qualitative Results

	3.9 Discussion
	3.9.1 Depth-aware Object Highlights
	3.9.2 Voice Input and In-situ Correction
	3.9.3 Other Modalities and Privacy Issues
	3.9.4 Applications of the Object-agnostic Segmentation Model Trained on HuTics

	3.10 Summary

	4 InstructPipe: Building Visual Programming Pipelines with Human Instructions
	4.1 Introduction
	4.2 Related Work
	4.2.1 Visual Programming
	4.2.2 LLMs and Their Applications in Interactive Systems

	4.3 InstructPipe
	4.3.1 User Workflow
	4.3.2 Primitive Nodes

	4.4 Pipeline Generation from Instructions
	4.4.1 Pipeline Representation
	4.4.2 Node Selector
	4.4.3 Code Writer
	4.4.4 Code Interpreter

	4.5 Technical Evaluation
	4.5.1 Data Collection
	4.5.2 Data Post-Processing
	4.5.3 Metric: The Number of User Interactions
	4.5.4 Results

	4.6 User Evaluation
	4.6.1 Study Design
	4.6.2 Procedure
	4.6.3 Participants
	4.6.4 Metrics
	4.6.5 Results

	4.7 Discussion and Future Directions
	4.7.1 Human-AI Collaboration in Prototyping Open-ended ML Pipelines
	4.7.2 Three Attributes to Mental Workload
	4.7.3 Instructing LLMs Poses Challenges for Both Novices and, Potentially, Experts
	4.7.4 Online InstructPipe

	4.8 Limitations
	4.9 Summary

	5 Discussion
	5.1 The Roles of Humans, AI Model and Interactive Systems
	5.1.1 Humans
	5.1.2 AI Models
	5.1.3 Interactive Systems

	5.2 Applications
	5.3 Future Directions
	5.3.1 Joint Instructions and Demonstrations
	5.3.2 Module-based Customization
	5.3.3 Human-in-the-loop ML with LLMs

	6 Conclusion
	Publications
	Bibliography
	Appendix A LookHere
	A.1 Implementation Details and Extra Technical Results
	A.1.1 Configurations of Machine Learning Process in InstructPipe
	A.1.2 Configurations of Training Object Highlights
	A.1.3 Architecture Selections

	A.2 Object Highlight Prediction Failure

	Appendix B InstructPipe
	B.1 A Full List of 27 Nodes in InstructPipe
	B.1.1 Input Nodes
	B.1.2 Output Nodes
	B.1.3 Processor Nodes

	B.2 System Prompts Used in LLM Modules
	B.2.1 Code Writer

	B.3 User Study Pipelines

