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Abstract

This thesis proposes an end-to-end, unified framework for understanding articulated objects
from a single-view RGBD input. The primary focus lies in the estimation of part shape, pose,
and kinematic parameters for man-made articulated objects in a scene, such as household
appliances and furniture. These objects are assumed to have a base and one or more connected
movable parts, excluding loop structures, separations, or structures where one movable part
is attached to another.

The proposed method addresses multiple challenges associated with the understanding
of articulated objects captured from a single viewpoint. The task is highly ill-posed, in
terms of shape reconstruction and kinematics estimation due to partial observation of shapes
and the static target without motion. The diversity and combination of part poses, shapes,
kinematics, part counts, and structures presents a significant challenge in understanding 3D
attributes of the articulated objects due to the arising complexity. Moreover, the need for 3D
part-level supervision signals, such as kinematic parameters and part labels, makes training
low data-efficient. Existing studies have failed to provide a comprehensive solution, by
assuming prior knowledge for the target articulated object to manipulate for obtaining prior
kinematics information, limiting part structure and counts for the target articulated objects
to limit the complexity in shape reconstruction, and requiring a whole set of 3D part-level
annotations for all training data.

This thesis proposes a comprehensive pipeline in response to the above problems. The
pipeline takes a single RGBD image, camera intrinsics, and, optionally, foreground masks
as input, and outputs the part shape, pose, kinematic parameters of individual parts, and
the hierarchical structure of parts that make up the instance. This thesis further delves into
unsupervised learning for data efficiency besides the supervised approach, by exploiting the
fact that certain everyday articulated objects, such as ovens and washing machines, tend
to have consistent part structures. The method also explores unsupervised segmentation
of parts into finer semantic shapes, such as the handle of the doors, which is essential to
recognize a preferable contact point for motion planning. By combining both the supervised
and unsupervised approaches, the proposed pipeline is learned in a semi-supervised manner,
which is the most realistic setting that we have access to the annotation for a portion of



data while reducing the amount of required annotation for better data efficiency whenever
possible.

In summary, this thesis makes significant strides in understanding articulated objects
from a single-view input, developing a unified framework that handles part detection, shape
reconstruction, pose estimation, kinematic estimation, and segmentation of the finer shape
details. Through this work, we hope to facilitate further exploration and advancement in the
understanding of man-made articulated objects.

vi
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Chapter 1

Introduction

1.1 Background

3D understanding of objects is crucial for perceiving the environment. Humans can un-
derstand complex 3D environments from limited viewpoints only with color and depth
information from stereovision. For example, by looking at the washing machine from one
view, humans can instantly identify the parts that make it up, imagine their shapes, and
reason about pose and kinematic constraints of those parts. Understanding these properties is
essential for daily tasks to interact with such objects, such as physically grasping an object,
determining how to grasp it, or identifying the appropriate grasping points. Therefore, in
computer vision, understanding the 3D property of objects from limited viewpoints, espe-
cially from a single viewpoint, has been an important field to achieve intelligent machines
with vision capabilities similar to humans.

While existing research has advanced in the areas of everyday objects important to
human life, such as furniture, appliances, and vehicles, these studies have mainly focused
on rigid objects. Man-made articulated objects as shown in Figure 1.1, with movable parts
like drawers, lids, and doors, have not been extensively studied despite their abundance in
our surroundings and the essential roles they play in our daily lives. 3D understanding of
articulated objects is particularly important for scene interaction in AR/VR applications
and scene understanding for robotics applications to manipulate objects. In this thesis, we
address the challenges of shape reconstruction, pose and kinematics estimation, and part
parsing of man-made articulated objects from a single view observation, thus filling the gap
in the existing literature. We discuss three important elements in this section: (1) shape
reconstruction, (2) pose and kinematics estimation, and (3) part parsing.

1



Introduction

Figure 1.1 Example of man-made articulated objects.

Figure 1.2 Overview of shape reconstruction from partial observation.

1.1.1 3D shape reconstruction from partial observation

Reconstruction of 3D shape from a single viewpoint has been explored in computer vision
research as a shape-from-x task. Earlier works exploit partial observations such as shade
[40, 44], texture [132], or focus cues [85] to reconstruct 3D shapes.

In recent years, learning-based approaches have advanced in reconstructing more com-
prehensive shapes from a single RGB image, sparse point cloud, or low-resolution voxels
[127, 102, 35, 93, 90]. Learning-based shape reconstruction methods typically involve
training a model on large datasets of 3D object shapes to generalize to unseen shapes.

1.1.2 Pose and kinematic estimation for articulated objects

Pose and kinematic estimation plays a crucial role in determining the position, orientation, and
mobility constraints of an object’s parts in 3D space. This estimation is vital for understanding
the functionality and interactions of articulated objects. Pose and kinematic estimation for
articulated objects typically involves 3D pose estimation of individual articulated parts and
estimation of the corresponding joint parameters as kinematics representation. Several
approaches estimate the pose and kinematics of articulated parts, including those that rely

2



1.1 Background

Figure 1.3 Overview of generative part parsing from partial observation.

on interaction to estimate kinematics of parts by physically manipulating articulated parts
[75, 87], those that assume spatio-temporal observations of moving articulated parts to
estimate underlying kinematic models [140, 47], and recent works that estimate pose and
kinematics from observation of static targets at inference time, not requiring target’s spatio-
temporal observations or physical interaction [63, 128, 48, 32]. However, these methods
require fully annotated data for supervision.

1.1.3 Part parsing

Part parsing is the process of decomposing an object into its constituent parts based on
semantic understanding. In the context of articulated objects, part parsing is closely related to
understanding the functional components and their relationships. The most straightforward
approach learns part parsing as a segmentation task using part-level segmentation labels
[101, 128, 63]. For articulated objects, motion cues can be exploited to induce part segmen-
tation [43, 140, 49]. Another line of work employs the analysis-by-synthesis approach as
a generative part decomposition task [26, 94, 19], which aims to reconstruct 3D shape as a
combination of multiple primitive shapes, realizing unsupervised part segmentation through
shape reconstruction. The overview of the generative part parsing is visualized in Figure 1.3.

3
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1.2 Challenges

Addressing the following challenges will be crucial for improving the 3D understanding of
articulated objects from single-view input:

1. Shape reconstruction with exponentially increasing possible shapes: Reconstruct-
ing objects with articulated parts presents a significant challenge due to the exponential
increase in possible shapes caused by the mobility of the parts and diverse part struc-
tures. An efficient approach which can handle this variability is required.

2. Annotation efficient pose and kinematics learning: Existing supervised approaches
rely on full supervision of pose and kinematics learning. However, part-level annota-
tion, which is necessary for supervision, is often expensive. Therefore, it is crucial
to devise unsupervised methods that minimize annotation costs. Previous methods
relying on spatio-temporal observation show that pose and kinematics can be modeled
by learning canonical poses and their transformations. However, articulated objects,
unlike humans and animals, rely on external forces to manipulate their movable parts
and lack inherent self-movement. This characteristic renders methods that rely on
temporal information unsuitable for articulated objects. While interaction-based ap-
proaches have been explored to address this challenge, they require prior knowledge of
the desired shape and motion.

3. Balancing semantic part parsing and accurate shape reconstruction: The challenge
involves the need for detailed semantic shape information without expensive manual
annotations. Generative part parsing realizes the unsupervised approach for part decom-
position of shapes. However, these methods rely on less expressive primitive shapes to
induce unsupervised part decomposition of the target shape in shape reconstruction,
facing a trade-off between accurate shape reconstruction and the semantic capability
of the resulted decomposition. The ideal solution requires a shape representation
that achieves both semantic shape reconstruction and high reconstruction accuracy
simultaneously.

Addressing these challenges will advance the field of understanding articulated objects
from a single viewpoint and contribute to the development of more accurate and robust
techniques for shape reconstruction, pose and kinematics estimation, and part parsing.

4



Chapter 2

Towards a Unified Framework for
Part-level Articulated Object
Understanding

In this chapter, we clarify the scope, objective, contribution, and structure of this thesis
before going into the details. In Section 2.1, we clarify the objective and scope of this thesis.
In Section 2.2 to 2.4, we discuss the proposed approach and system. We also show our
contributions toward building this system in Section 2.5. In Section 2.6, we show the contents
of each chapter.

2.1 Objective and scope

In this thesis, we propose comprehensive methods for estimating part shape, pose, kinematic
parameters, and sub-part level labels for man-made articulated objects from single-view
RGBD input as a semi-supervised system. We illustrate the input and output of the pipeline
in Figure 2.1. The scope of this thesis is illustrated in Figure 2.2. We target man-made objects
such as furniture and appliances which are static without self-motion and have various part
structures, as opposed to natural articulated objects such as humans and animals, which have
fixed articulated structure and can be dynamic. Within articulated objects, we assume a
structure where common household appliances and furniture have a base and one or more
connected movable parts with 1D prismatic or revolute joints. We do not consider loop
structures, separations, or sequential joints where one movable part is attached to another
movable part.

This system should have the following features:

5



Towards a Unified Framework for Part-level Articulated Object Understanding

Figure 2.1 Overview of our proposed method.

1. It can perform estimation given unsegmented partial shape and color observation as
a single RGBD frame, so that we do not assume interaction or prior knowledge of
manipulation of articulated objects.

2. It can handle various part structures to target a wider range of real-life articulated
objects.

3. It can reduce costly 3D part-level annotation.

4. It can further understand finer semantic detail beyond part-level shape, such as the
handle of objects, which is needed to perform downstream tasks like grasping.

2.2 Part-level understanding of articulated objects

In this thesis, we achieve this system by part-level understanding of articulated objects by
considering both supervised and unsupervised approaches. Below, we discuss how part-level
representation can address the required features of the system.

6



2.2 Part-level understanding of articulated objects

Figure 2.2 Scope of reconstruction target.

Figure 2.3 Overview of the proposed system.

2.2.1 Handling Variously Structured Articulated Objects

Articulated objects have diverse part configurations in part structures and part counts. Even
within a single category, like a drawer, their part configurations significantly vary in a real
environment.

Previous studies [38, 67, 83] reconstruct the whole shape without part-level understanding.
However, the combination of different part poses, sizes, shapes, numbers of parts, and their
layout results in exponential complexity in the task, limiting previous works’ targets to simply
structured articulated objects with only a few parts. Part-level representation can efficiently
handle this difficulty as we decompose the task into the reconstruction of simpler part shapes.

In contrast, recent works [32, 48] on pose and kinematic estimation consider part-level
understanding articulated objects. However, they do not consider shape reconstruction, and

7
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instance detection is necessary before estimating part-level attributes. Therefore, a unified
method that covers from detection, pose and kinematic estimation to shape reconstruction
has not been considered so far. In Chapter 4, we introduce a single-stage, end-to-end method
to address this problem as a detection-based shape reconstruction. Our proposed method
takes a single RGBD image, camera intrinsic matrix, and optionally, a foreground mask
recognized by a separate model as input, and outputs the shape, pose, size, joint parameters
of individual parts, the category of parts, and the hierarchical structure of parts that make up
the instance. The model is trained by part-level supervision on a large-scale synthetic dataset
based on [133] which have variously structured articulated objects.

Moreover, we extend our detection-based approach tailored for articulated objects. For
non-articulated objects, methods that perform detection to reconstruction have been consid-
ered in the previous works [88, 141]. However, articulated objects are composed of small
and thin parts. In addition, while those methods assume only yaw rotation for instances, the
parts we target can take various poses, making it a more challenging problem. To improve
detection performance of these parts, we focus on the trajectory of movement of small and
detailed parts, and by grouping individually detected parts with a common trajectory and
integrating them, we reduce false positives and improve recognition accuracy. Furthermore,
previous works [32, 48] required separate instance detector for part-level understanding
of articulated objects. Our proposed method avoids such additional detector. Instead, our
approach detects individual parts along with their association to instances in the scene. This
allows a unified approach from part-level detection to instance-level understanding of target
objects in a single stage. This detect-then-group approach is advantageous for articulated
objects due to the countless possible part structures and vast number of shape combinations.

2.2.2 Reducing costly 3D part annotations

The previous section considered cases where the input part structure is diverse and not limited.
However, in important articulated objects in daily life such as microwaves, laptops, etc.,
there are cases where it is practical to assume a part structure depending on the category. As
mentioned earlier, with the use of a detector like previous works [32, 48], it is possible to
detect instances, their global poses, sizes, and recognize their categories. However, compared
to the annotation required for the automatic acquisition of global pose and size using depth
sensors or AR markers, the data acquisition cost of part-level information for part poses,
individual part shapes, and segmentation is high because (1) it requires manual annotation
when we use scanned shapes of real objects or (2) building a large number of realistic
synthetic assets with complex textured shapes requires professional artists thus expensive
and not scalable. There exist unsupervised part decomposition approaches [124, 94, 19]

8



2.3 Decomposition of parts into finer semantic shapes

which decomposes target shapes into semantic parts as a set of primitive shapes which have
consistent part shapes and 3D position without part-level annotation. They target rigid objects
and assume the same parts across instances are reasonably fixed in the similar position in the
3D space to induce the unsupervised decomposition. However, articulated objects consist of
moving, dynamic parts and they cannot estimate kinematic parameters beyond 3D location
of parts.

In Chapter 5, when it is assumed that the part structure is consistent for each category,
we show introducing pose and kinematics aware part representation can effectively solve
unsupervised learning of part shapes, pose, and kinematic estimation without relying on
3D part annotation, but instead only using whole shape supervision. Such whole shape
supervision is easily available from recent multiview shape reconstruction only requiring
casual capture of target objects and able to reconstruct textured shape with fine details.

2.3 Decomposition of parts into finer semantic shapes

So far, we have seen methods for decomposing parts into shapes that are independent of
part poses in both supervised and unsupervised cases. However, there are cases where more
detailed semantic shape information is required. For example, when recognizing a front
panel to pull out a drawer or recognizing a drawer bottom to place an object to store. Since
such finer annotations are expensive, it is desirable to automatically decompose shapes into
finer and consistent shapes. Furthermore, for shape recognition, it is desirable to have high
reconstruction accuracy. Previous works learn such decomposition without segmentation
annotation [19, 26, 124, 94] for 3D shapes, by reconstructing target shapes using simple
primitive shapes as analysis-by-synthesis approach, known as generative part decomposition.
However, there was a trade-off between accurate shape reconstruction [19, 26] and semantic
decomposition [124, 94]. This is because if simple primitives such as cuboid are used,
individual parts have semantic correspondence with the original object, but when projected
onto the original shape, the segmentation becomes inaccurate at ground truth semantic shape
boundaries, or the reconstruction accuracy is low due to the use of too simple shapes. On
the other hand, if a large number of parts are used for learning reconstruction, the semantic
meaning of individual shapes becomes less significant. Therefore, a shape representation
that can achieve semantic shape reconstruction while maintaining reconstruction accuracy is
necessary.

In Chapter 6, we introduce a primitive representation termed neural star domain for gen-
erative part decomposition to achieve both accurate shape reconstruction and high semantic
capability. The star domain is a geometry of generalization from previous methods such as
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Towards a Unified Framework for Part-level Articulated Object Understanding

Single-view input Various structures Unsupervised Shape reconstruction Semantic parts
Heppert et al. [37] ✓ ✓
Huang et al. [43] ✓ ✓ ✓
Huang et al. [32] ✓ ✓ ✓

Paschalidou et al. [94] ✓ ✓ ✓
Chen et al. [19] ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓

Table 2.1 Comparison with the previous works.

convex [19, 26], cuboid [124], and superquadrics [94]. It is also suitable for representing
parts with thin and detailed surfaces, such as articulated objects by optimizing the analytical
surface representation made available by the star domain. Additionally, by using the capacity
of the neural network to represent the star domain, our proposed shape representation can
fully utilize the parameters of the neural network, compared to previous shape representations
based on several hundred parameters for cuboids, superquadrics, and convex shapes.

2.4 System overview

Figure 2.3 shows an overview of our method. Our method takes an RGBD image with
multiple articulated objects as input, and reconstructs instances. Moreover, each predicted
instance consists of part shape, pose, kinematic parameters. Finally, each part shape is further
decomposed into sub-part level shapes. Inside the system, we combine both the supervised
and unsupervised approaches, making the system a semi-supervised pipeline to address both
complex part configurations of articulated objects and annotation efficiency. We summarize
our system compared to existing methods in Table 2.1.

2.5 Summary of contributions

To summarize our proposed method:

• When dealing with various structures and unable to assume a consistent structure for
each category, we learn parts detection and reconstruction through supervised learning
of part shapes and part poses (Chapter 4).

• When assuming a consistent structure for each category and learned instance detector,
we reconstruct parts shapes and part pose estimation without using annotations for part
shapes and part poses (Chapter 5).

• We explore the reconstruction of finer-level semantic part shapes (Chapter 6).
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2.6 Structure of the thesis

• We unify the above approaches with semi-supervised learning to consider the most
realistic scenario of leveraging both the annotated and unannotated data (Chapter 7).

2.6 Structure of the thesis

In this thesis, we aim to develop a comprehensive understanding of articulated objects from
a single-view input. Chapter 1 provides a background and motivation for this thesis. In
Chapter 2, we discuss the objective and scope of this thesis, introduce core ideas of part-
level understanding of articulated objects, and present the proposed system. In Chapter
3, we discuss related research comprehensively. In Chapter 4, we propose a framework
for understanding variously structured articulated objects through supervised learning of
part shapes and part poses. In Chapter 5, we consider a method to learn the shapes, joint
parameters, and poses of individual parts without using annotations for part shapes and part
poses when assuming a consistent part structure. In Chapter 6, we introduce a novel shape
representation called the neural star domain, which allows for finer-level semantic part shapes
while maintaining reconstruction accuracy. In Chapter 7, we introduce and demonstrate
our unified pipeline. Finally, in Chapter 8, we conclude this thesis and remark on future
directions.
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Chapter 3

Related works

This chapter presents related work on articulated shape reconstruction, part pose and kine-
matics estimation, and part decomposition.

3.1 Articulated shape reconstruction

3.1.1 Natural articulated objects

A growing number of studies have tackled the reconstruction of category-specific, articulated
objects with a particular kinematic structure, such as the human body and animals.

Representative works rely on the use of category-specific template models as the shape
and pose prior [142, 143, 60]. They assume the target articulated objects have consistent
kinematic model and shape, thus utilizing the template model as a "mean shape" of the target
objects as a prior. Low dimensional parametrization of human shape has been proposed and
enables reconstructing the target shape and pose without directly deforming the template
[69, 9]. Recently, [138, 139] have proposed to learn articulated shapes from set of images
dipicting the articulated objects from the same category and kinematic model without using
templates.

Focusing on human shapes, there exists large body of works for estimating target shapes
and textures from single-view input [108, 109, 65]. They utilize the category specific prior
knowledges of spatial and textural information obtained from large datasets.

Another body of works reconstruct target shapes exploiting temporal and pose-independent
consistency of the target object in canonical frame. Implicit field representation proposed by
[27] reconstruts a part-wise implicit field given a part pose as an input to deform canonically
posed shape. Another works focus on non-rigid tracking of the seen samples [11, 64] from
point cloud, or from video [137, 136]. These works explicitly track trajectory of surface
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3.1 Articulated shape reconstruction

points in point cloud or continous surface correspondence along temporal direction to deform
canonical shape to reconstruct target shape.

In contrast, our approach focuses on man-made articulated objects with various kinematic
structures even within the same category. Thus we cannot simply apply template based
approaches assuming the uniform kinematic structures. Moreover, due to various part
structure of target shapes, we cannot strongly rely on category-specific prior knowledge
of target shapes. Also, man-made articulated objects we are interested in are static wihout
self-motion. Moreover, explicit surface correspondense is not always available for man-made
articulated objects especially for prismatic parts whose surface are largely occluded by
base part when closed. Therefore, we cannot assume access to temporal correspondence
information of the target for tracking based reconstruction. These problems neccessitate us
to develop different techniques for man-made articulated objects reconstruction.

3.1.2 Man-made articulated objects

To reconstruct man-made articulated objects considering articulation under category-specific
, single-view setting, [83] proposes to disentangle pose and shape for latent space modeling
to tackle the complexity in shape encoding in latent space. They first encode target shape
into shape latent space and also estimates part poses. Then they concatenate shape latent
embedding and 1D scalar degree values per part as input for shape decoder to reconstruct
target shape. In multi-view setting, [123] also disentangle pose and shape latent space and
realized textured shape reconstruction by neural radiance field [79]. [130] also employs
neural radiance field and further proposed to disentangle latent space into shape, pose and
additionally kinematic model category, enabling few-shot reconstruction. [49] proposes to
learn part-aware shape reconstruction from pair of frames with different articulation state.

To address multi-category, single-view setting, [67] proposes to employ multiple category-
specific shape decoder from [83] and switch between them based on the category estimation
in the previous detection stage. More recently, [38] proposed end-to-end trainable pipeline
from detection to reconstruction of man-made articulated objects. They employ single
shape decoder based on [83] applicable to multi-categories setting by improving latent
space modeling in detection stage and latent space optimization technique in inference stage.
However, they limit the targe kinematic model to have only single articulated part.

All the above approaches learn whole target shape in instance-level latent space and their
shape decoder can only handle simple kinematic structures with a few parts for category-
specific setting [83, 130, 123, 67] or single part for multi-category setting [38]. This is
because the single shape decoder need to learn complex shape variation arising from combi-
nation of different part poses, part structures and part counts. Especially, variation of part
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Related works

structures exponentially increases with more number of parts if we regard part strcuture
as partitioned rectangle [104, 25], making the previous approaches not scalable to more
complex part structures seen in daily life. To address this problem, in Chapter 4, we propose
part-level latent-space for shape decoding and show our approach can effectively reconstruct
articulatd object shapes with far more complex part structure. Moreover, even under the
assumption of simple kinematic model and category-specific setting, the previous works
[83, 130, 123] requires costly annotations for part segmentation or 3D poses. In Chapter 5,
we show the part-wise reconstruction and pose can be learned in disentangled way only by
using global shape supervision, reducing the annotation cost.

3.2 Part pose and kinematics estimation

Estimating kinematic models from interaction through optimization approach has been
studied in the field of robotics [119, 51]. Recent approaches employ learning-based methods
based on interaction and spatio-temporal observations [75, 87, 99, 72, 49, 42, 140, 47, 43].
However, these works require costly human manipulation or a prior knowlwdge on the
interaction to the target. In this thesis, our goal is to acquire such prior knowledge without
interaction or manipulation through learning-based framework for single-view input.

Another line of works infer the pose and kinematics from observation of static target,
without interaction or spatio-temporal information. The early prior work [78] estimates
articulated part poses given kinematic model and known part shapes from depth input,
optimizing the part poses by the kinematic model constraint. Based on large synthetic
dataset [133, 128], the previous works [63, 128, 1] estimates the part poses of unseen targets.
More recently, detection based approaches have been proposed [48, 32] for handling more
complex part structures of articualted objects. However, the piror works are fully supervised
in part level, and can only handle know target shapes [78], whole shape observation [128],
known kinematic models [63, 1] and limited to pose and kinematics estimation without shape
reconstruction. In Chapter 4, we introduce the comprehensive framework to estimate part
shape, pose and kinematic models. Moreover, in Chapter 5, we discuss an unsupervised
approach which does not require part-level 3D annotation but to learn part shape, pose and
kinematic models from whole shape supervision.

3.3 Part decomposition

Understanding shape as a set of primitive shapes has long been studied in computer vi-
sion [107, 8, 7]. Recent approaches learns the decomposition in an unsupervised manner
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3.3 Part decomposition

by analysis-by-synthsis approach, by learning to reconstruct target shape with learnable
primitive shape representation for shape abstraction task [124, 94, 18, 33, 95] and accu-
rate shape reconstruction [52, 19, 26]. The previous works demonstrates the few-shot part
segmentation by manually annotating part labels to primitive shapes of the few reference
samples. However, the previous works have trade-off between shape reconstruction accuracy
and semantic capability of the decomposition; using more number of primitive shapes for
higher reconstruction accuracy loses the parsimoniousness of the number of primitive shapes,
leading to difficulty in manual labeling for few-shot segmentation in practice. This is because
the previous works primitive shape representation has low shape representation capability due
to its low dimensional parametrization, making a single primitive shape difficult to represent
complex shape, requiring more primitive shapes to accurately reconstruc the target shapes.
To address this trade-off, in Chapter 6, we study an expressive primitive shape representation
by MLP as primitive shape in construction. This enables to represent target shape with fewer
number of primitive shapes compared to the previous works while outperforming in the
reconstruction accuracy.

Moreover, the previous works assumes the part locations are consistent across training
samples, thus using this as an inductive bias to learn the decomposition. However, when
applying part decomposition methods to articulated objects, such assumpation leads to
inconsistent part decomposition which ignores the fact that the part locations are dyinamic
due to different part poses and underlying part structures. In Chapter 5, we study the novel
setting of the part decomposition task targeting the articulated objects, learning the consistent
decomposition which considers underlying part poses and kinematics.
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Chapter 4

Handling Variously Structured
Articulated Objects

4.1 Introduction

Estimating object shape, pose, size, and kinematics from a single frame of partial observation
is a fundamental challenge in computer vision. Understanding such properties of daily
articulated objects has various applications in robotics and AR/VR.

Shape reconstruction of daily articulated objects is a challenging task. These objects
exhibit a range of shapes resulting from different local part poses. More importantly, they dis-
play significant intra- and inter-category diversity in part configurations, including variations
in part counts and structures. These factors together contribute to an exponentially increasing
shape variation. Previous works have addressed this issue by either limiting a single model to
target objects with a single articulated part [38] or employing multiple category-level models
[67] to accommodate varying part counts. These approaches first detect each instance, and
then model the target shape in an instance-level latent space, primarily employing A-SDF
[83] for shape learning. A-SDF maps the target shape into an instance-wise latent space,
and then a shape decoder outputs the entire shape of the instance. However, this approach
is limited when dealing with varying part counts and structures, as the shape decoder must
handle an exponentially increasing number of shape variations due to different part layout
combinations [104, 25] in addition to local part poses. Consequently, addressing this variety
with a single model remains a complex and unsolved task.

In this paper, we address this complexity through our novel detect-then-group approach.
Our key observation is that daily articulated objects consist of similar part shapes. For
example, regardless of the number of refrigerator doors, each door typically has a similar
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shape, and the base part may share similarities with those from other categories, such as
storage units. By detecting each part and then grouping them into multiple instances, we
provide a scalable and generalizable approach for handling diverse part configurations of
daily articulated objects in a scene.

Based on this concept, we propose an end-to-end detection-based approach for part-
level shape reconstruction. Building upon 3DETR [80] as an end-to-end trainable detector
backbone, given a single RGBD image with an optional foreground mask, our model outputs
part shape, pose, joint parameters, parts-to-instance association, and instance category. Our
approach employs a novel detect-then-group approach. It first detects parts and applies
simple clustering of parts into instances based on learned part embeddings’ distance, in
contrast to the previous works using additional instance detection module [67, 38]. An
overview of our approach is shown in Figure 4.1. However, we found that detection-based
shape reconstruction is prone to false positives for articulated objects’ thin and small parts
with little overlap, which is hard to remove by NMS. Also, articulated objects often have
parts of varied sizes and scales, making training with a single-shape decoder challenging.
Additionally, increasing model size by end-to-end training from detection to reconstruction
makes simply enlarging the model size to improve performance undesirable. To address
these challenges, we propose:(1) kinematics-aware part fusion to reduce false positives and
improve detection accuracy; (2) anisotropic scale normalization for various part sizes and
scales in shape learning; (3) and an output space refiner module coupled with a model-size
balancing strategy with decoder for improved performance while keeping the model size.
We evaluate our method on the photorealistically rendered SAPIEN [133] dataset, and our
approach outperforms state-of-the-art baselines in shape reconstruction and joint parameter
estimation. Furthermore, the model trained only on synthetic data generalizes to real-world
data, outperforming the state-of-the-art methods on the BMVC [78] dataset.

Our contributions can be summarized as follows: (1) a novel part-level end-to-end
shape reconstruction method for articulated objects from a single RGBD image; (2) a
novel detect-then-group approach that simplifies the pipeline; (3) addressing detection-based
reconstruction challenges with kinematics-aware part fusion, anisotropic scale normalization,
and a refiner module coupled with model-size balancing; (4) superior performance on the
SAPIEN [133] dataset, with the ability to generalize to real-world data from the BMVC [78]
dataset.
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Figure 4.1 Our detection-based approach estimates part-level shape, pose, and kinematics as
joint parameters. It also recovers parts-to-instance associations to handle multiple instances
with various part structures and counts.

4.2 Related Work

Articulated shape reconstruction A number of works have focused on human subjects
using single image input [109, 108] and utilize category-specific templates to recover de-
formation from a canonical shape [69, 142, 9, 143, 60]. Recent research has delved into
recovering articulated shapes with unknown kinematic chains from sequences of a target in
motion [92, 137]. These works make category-level assumptions about kinematic structures,
with targets in observations sharing common kinematic structures. Their main focus is on
natural objects such as humans and animals. In contrast, our interest is in reconstructing the
shape of multi-category, daily man-made articulated objects with diverse kinematic structures
using a single model. Recent years have seen the emergence of methods specifically targeting
man-made articulated objects [130, 49, 123], and taking single-frame input [83, 67, 38, 53].
However, these models are constrained by either a predefined number of parts per category
or the necessity of multiple models for each combination of categories and part counts.
Consequently, they are unable to scale to a wide array of real-world articulated objects with
varying part counts using a single model. Our approach addresses this limitation.

Pose and kinematic estimation of articulated objects predominantly, existing research
on pose and kinematic estimation of articulated objects has focused on estimation from
sequences [37, 47, 131, 119], necessitating multiple frames of moving targets or interaction
with the environment before estimation. Estimation from a single image has also been
explored [63, 78, 67], but these methods are limited to predefined part structures. A few
recent studies have proposed approaches without assumptions on part structure [48, 32].
However, these methods target single instances, requiring instance detection before part-level
estimation. Moreover, their focus is limited to detection, pose and kinematic estimation,
whereas our work aims for shape reconstruction in an end-to-end manner.
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Figure 4.2 Overview of the pipeline. The input RGBD image is projected to a colored point
cloud. The encoder E extracts scene features and a downsampled point cloud. The decoder
D outputs a set of part proposals {Xn} from part queryies {qn}. The refiner R estimates
the residual of part pose and size ∆B and joint parameter ∆A for refined {B,A}. At test
time, the inference is run NQ times independently to densely sample part proposals as {Xn′}.
KPF removes false positives in {Xn′} by using kinematics-aware IoU (kIoU) to refine the
prediction further. The part shape is reconstructed by the implicit shape decoder O .

Figure 4.3 Architecture of refiner R

Detection-based reconstruction A large body of work exists combining detection and
reconstruction for multiple rigid objects in diverse settings, such as indoor scenes [121, 88,
89, 141, 125, 34], tabletop environments [45, 46], and road scenes [6, 74]. Recent works
target daily articulated objects [67, 37]. However, these methods predominantly rely on an
instance-level detection approach. In contrast, our work pivots towards part-level detection
to effectively handle a wide variety of part structures of real-world articulated objects.
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Figure 4.4 Illustration of (a) false positives, (b) Convex hull for kIoU, and (c) comparison of
3D box IoU and kIoU for overlapping parts.

4.3 Methods

4.3.1 Problem setting

Our method takes a point cloud P with NP 3D points and color feature F lifted from a single
RGBD image I of articulated objects and camera intrinsic K as input. It outputs a set of
parts G = {i ∈ [N]} and non-overlapping subsets of all parts {Gl}NG

l=1 as NG instances, where
G =

⋃
l{Gl}NG

l=1. Note that we use the shorthand {∗i} to denote an ordered set {∗i}N
i=1 for

brevity. For each part i, we estimate 6D pose and size B ∈ SE(3)×R3, part shape O as an
implicit representation and kinematic parameters M. Our shape representation is an implicit
function defined as O : R3→ [0,1] with isosurface threshold τO , where {x∈ R3 |O(x)> τO}
indicates inside the shape. The kinematic parameter M consists of joint type y ∈ {0,1,2}
which represents fixed, revolute, and prismatic types, joint direction a ∈ S2, 1D joint state
dcurrent and dmax for the current pose and fully opened pose from the canonical pose. We
also predict the revolute origin v ∈ R3 for the revolute part. We define the joint parameter
as A = {a,dcurrent,dmax[,v]}, thus M = {y,A}. For each instance l, we estimate the instance
parameter J which consists of category u and part association defined as δli = 1(i ∈ Gl),
where 1 is an indicator function.

4.3.2 Detection backbone

Our detection backbone consists of a transformer-based encoder E and decoder D based on
3DETR [80]. The encoder comprises recursive self-attention layers encoding 3D points P
and color feature F into downsampled 3D point cloud P′ of NP′ points and DF ′-dimensional
scene feature F ′. Query locations {qn}

Nq
n=1 ∈ R3 are randomly sampled using furthest point

sampling (FPS) from P′. The decoder is composed of transformer decoder layers {φk}ND
k=1,

considering cross-attention between queries and F ′ and self-attention among queries. The
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decoder iteratively refines query features {en,k+1} = φk({en,k},F ′). Lastly, a set of part
prediction MLPs decodes each refined query feature to produce output values. For clarity,
the query index n is omitted when possible.

4.3.3 Part representation

Part pose and size We predict part pose and size B as a set of part center c ∈ R3, rotation
R ∈ SO(3) and size s ∈ R3 for each query. We predict c as an offset ∆c from q, added to the
query coordinates, i.e., c = q+∆c.

Part shape We employ a shared-weight, single implicit shape decoder O for performing
part-wise shape reconstruction by taking point clouds arsound the detected regions where
parts are identified. Given the diversity in shape and pose, and anisotropic scaling of the parts
we focus on, it is challenging to learn shape bias with a single shape decoder. Therefore, we
propose anisotropically normalizing the side lengths of the shape decoder’s input and output
to a unit scale to perform reconstruction. We define the input point cloud PO as follows:

PO = {(RS)−1(p− c) | p ∈ P,max(|(RS)−1(p− c)|)≤ 0.5}. (4.1)

where S denotes diagonal matrix of scale s. We define the output occupancy value at x ∈ R3

as ox = O((RS)−1(x− c) | PO ,h), where h ∈ RDh is a part shape feature modeled by a part
prediction MLP. Given that the input point cloud PO includes background, the geometry of
the target part shape can be ambiguous. To address this issue, we train the detector backbone
and shape decoder end-to-end, by inputting h as shape geometry to the shape decoder so
that h informs the shape decoder of the foreground target shape. We utilize a shape decoder
architecture with a lightweight local geometry encoder [98] to spatially associate input points
PO with output occupancy values ox, which are both defined in normalized space.

Part kinematics We predict a 4-dimensional vector y as a probability distribution over part
joint types. This includes a ’background’ or ’not a part’ type for instances where predicted
part proposals might not contain a part. The revolute origin v = q+∆v is predicted similarly
to the part center c, with an offset ∆v. Joint states dcurrent and dmax are modeled by separate
part prediction MLPs for revolute and prismatic types, and we only supervise the output
corresponding to the ground truth joint type. A single MLP is used for joint direction a for
both revolute and prismatic types.
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Figure 4.5 Illustration of the embedding-based sequential association. Part A shows the base
part of the instance, and Parts B and C are the child parts.

4.3.4 Instance representation

We form a collection of parts as a single instance Gl = {i ∈G | ∀i, j ∈G, i ̸= j⇒∥zi−z j∥<
τz}, where the distance between the Dz-dimensional embeddings, zi and z j, of each part pair
within the group is kept below a specified threshold τz. We predict an Nu-dimensional vector
u as a probability distribution over instance categories per part. At test time, we predict the
instance category by taking the category prediction with the highest confidence from the
category predictions of the parts belonging to the same instance.

Extension to sequential joints Although the part structure with sequentially connected
parts is out of the scope of this Chapter, we show that the proposed part grouping strategy is
applicable to such part configuration. Inspired by the linked list data structure, we employ
two embeddings per part for grouping; zs

i represents the self-identity of the part and the other
embedding zp

i represents the identity of its parent part. We formulate this association as:

j∗|i = argmin
j∗∈G\i

∥zp
i − zs

j∥ (4.2)

where j∗|i denotes part i’s parent part j∗. The base part has a parent identity embedding
pointing to a special embedding 0 representing the scene root. We illustrate this embedding-
based sequential association in Figure 4.5.
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4.3.5 Refiner R

Query features are iteratively refined in the decoder D in the feature space [80]. Increasing
the number of decoder layers can enhance performance at the expense of a larger model
size [80]. However, it is crucial to avoid increasing the model size to enable efficient end-
to-end training from detection to shape reconstruction. To improve model performance
while maintaining the model size, we found cross-refining both output space and feature
space to be effective. We introduce a refiner R, which has an identical architecture with the
decoder D . The refiner R serves to refine the prediction in output space by reallocating a
portion of decoder layers from decoder D to R. Assuming there are ND+R decoder layers
in the original model, we reallocate NR decoder layers to the refiner R. Consequently,
ND = ND+R−NR layers are used for query feature refinement in decoder D . The refiner R

refines part pose and size B′ and joint parameter A′ from D by predicting residuals ∆B and
∆A to produce refined prediction B and A, respectively. The architecture of the refiner R is
shown in Figure 4.3.

4.3.6 Kinematics-aware part fusion (KPF)

Articulated objects often consist of small and thin parts. Especially for unsegmented inputs,
only a small portion of the point cloud represents such parts after subsampling. To ensure
a sufficient number of queries cover such parts and their surrounding context, at test time,
we randomize the sampling positions of the queries and independently carry out inference
and NMS for the input NQ times, obtaining a collection of densely sampled part proposals
from NQ inference runs. This process is termed Query Oversampling (OQ). However, OQ
can increase false positives and degrade detection performance. To mitigate this, we propose
Part Fusion (PF), inspired by Weighted Box Fusion (WBF) [117], to merge overlapping
part proposals, thereby reducing false positives and improving detection accuracy. Unlike
WBF, which fuses only 2D bounding parameters, PF fuses all the predicted parameters of
part proposals, with an average weight defined as objectness 1−ybg. However, using IoU
with 3D bounding boxes as overlapping metrics yields overly small values for thin structured
parts, even when they are proximate. This results in PF failing to merge redundant parts,
leading to false positives, as illustrated in Figure 4.4 (a). To overcome this challenge, we
propose a kinematics-aware IoU (kIoU) based on the observation that a redundant part pair
exhibits significantly overlapping trajectories. To calculate kIoU, we construct a convex hull
for each part in the pair using the 24 vertices of three bounding boxes based on size and
canonical pose, current pose, and fully opened pose using the predicted part pose and size
B and joint parameter A, as show in Figure 4.4 (b). Then, we calculate the IoU between
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the two hulls. The comparison between the 3D bounding box IoU and kIoU is depicted in
Figure 4.4 (c). Our overall method, termed Kinematic-aware Part Fusion (KPF), includes:
(1) executing inference and NMS using kIoU to gather part proposals multiple times, (2)
conducting PF using kIoU to update these proposals iteratively, and (3) removing proposals
with low objectness. Note that KPF is non-differentiable and is disabled during training, with
NQ = 1.

We show the detail of KPF algorithm in 1. In Algorithm 1, we present the details of
kinematics-aware part fusion. We gather part proposals through NQ independent inference
runs, achieved by randomly sampling query positions {qn} with the furthest point sampling
(FPS). The ’model’ in the algorithm represents the decoder D and the refiner R, and yfg

represents objectness, defined as 1−bg.
After part proposals are generated, we apply Non-Maximum Suppression (NMS) with

3D bounding box IoU and threshold by objectness 1− ybg before applying NMS with
kinematics-aware IoU (NMS-kIoU) for performance reasons. PF-kIoU denotes the part
fusion (PF) process using kIoU, which is based on the Weighted Box Fusion (WBF) approach
as described in [12]. The procedure is further detailed in Algorithm 2.

Unlike the conventional WBF, our algorithm fuses all parameters in the part proposal
rather than only the 2D bounding box parameters. Furthermore, our algorithm iteratively
runs until convergence, as demonstrated from line 11 to line 15 in Algorithm 1. C represents
clusters of overlapping part proposals identified by kIoU. We employ a simple arithmetic
weighted average for all elements except the rotation matrix in a part proposal for fusion,
denoted as weighted-average.

For the rotation matrix R ∈ SO(3), we initially derive a weighted average for the 3×3
matrices, labeled as Rwa ∈ R3×3. We then compute the weighted-averaged rotation matrix by
minimizing the Frobenius norm to Rwa. This is accomplished as R = argminR∥R−Rwa∥F ,
following the 3D rotation library RoMa [12].

The value of y′fg,n′ denotes the scaled objectness as a confidence score, considering the
number of independent inferences NQ. If the number of part proposals in a cluster is fewer
than the independent inference runs NQ, it indicates that only a limited number of independent
inferences predict it. In such cases, we adjust the corresponding confidence score y′fg,n′ by
scaling it down by the ratio of the number of part proposals in the cluster (|C[n′]|) to the
number of independent inferences T = NQ. Conversely, we scale up the confidence score if
a cluster contains more part proposals than the independent inferences NQ. For the initial
run of part fusion (line 13 of Algorithm 1), we set T = NQ to fuse NQ inferences. We assign
T = 1 for subsequent runs, assuming we apply part fusion to a single inference run fused by
the previous part fusion.
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Algorithm 1 Kinematic-aware part fusion (KPF)

Input: Subsampled point cloud P′, scene feature F ′

Output: Set of detected parts X = {Xi}
1: X ← /0
2: for NQ times do
3: {qn}← FPS(P′)
4: X ′←model({qn},F ′)
5: X ′← NMS(X ′,τIoU)
6: X ′←{Xn | n ∈ [X ′],yfg,n > τobj}
7: X ′← NMS-kIoU(X ′, τIoU)
8: X ←X ′+X
9: end for

10: count← 0
11: repeat
12: Xold←X
13: X ← PF-kIoU(Xold)
14: count← count+1
15: until X = Xold or count = τcount
16: X ←{Xn | n ∈ [X ],yfg,n > τob j f inal}
17: return X

4.3.7 Set matching and training loss

Set matching We base our end-to-end training of detection to reconstruction by utilizing
1-to-1 matching between part proposals and ground truth, using bipartite matching [14] for
loss calculation. Similarly to [80], we define a matching cost between a predicted part and
a ground truth part as Cmatch = λ1∥B−BGT∥1 +λ2∥c− cGT∥1−λ3yy +λ4(1−ybg), where
B defines eight vertices of cuboid defined by part pose and size B, yy defines the joint type
probability given the ground truth label y, and 1− ybg defines the foreground probability.
Deviating from [80], we use the L1 distance of eight vertices of a cuboid instead of the GIoU
[105] of cuboids in the first term to avoid the costly calculation of enclosing hull for 3D
rotated cuboids.

Training losses For each pair of prediction and ground truth, we define part loss as

Lpart =
1
N

N

∑
i
∥Bi−BGT

i ∥1 +∥I−RT
i RGT

i ∥2
F +Ex∼R3BCE(ox,i,oGT

x,i )+∥dmax,i−dGT
max,i∥1

+∥dcurrent,i−dGT
current,i∥1−aT

i aGT
i +PL(vi,vGT

i ,aGT
i )+CE(yi,yGT

i )+CE(ui,uGT
i )

(4.3)
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Algorithm 2 Part Fusion with kIoU (PF-kIoU)
Input: Set of part proposals X
Output: List of updated part proposals X ′

1: C← Empty list,X ′← Empty list
2: Sort X in desceding order by objectness
3: for ∀X ∈X do
4: match← False
5: for ∀X ′ ∈X ′ do
6: if kIoU(X ,X ′)> τkIoU then
7: matched← True
8: n′← index of X ′ in X ′

9: Append X to C[n′]
10: X ′[n′]← weighted-average(C[n′])
11: Break
12: end if
13: end for
14: if not match then
15: Append X to X ′ and C
16: end if
17: end for
18: for ∀n′ ∈ [X ′] do
19: y′fg,n′ ← yfg,n′

|C[n′]|
T

20: end for
21: X ′ = {X ′n′|n

′ ∈ [X ′], y′fg,n′ > τscaled}
22: return X ′

All loss terms have equal weights. The first term is a disentangled L1 loss described in [114]
to optimize B. This loss is replicated three times by using only one of the predicted three
components (R,c,s) for B, while replacing the other three with their ground truth values. We
also found that directly optimizing rotation, as in the second term of the loss, leads to smaller
rotation loss during training. BCE and CE denote binary cross-entropy and cross-entropy
loss, respectively. PL denotes the point-line distance between the revolute origin vi and the
ground truth joint axis defined by vGT

i and aGT
i . For unrefined prediction B′ and A′, we define

the same loss as Lpart except for ox, yi and ui denoted as L ′
part. During training, we use

ground truth B for Eq.4.1 to avoid noisy prediction adversely affecting shape learning.
We also define instance loss Linstance for learning part-to-instance association with

modified improved triplet loss [20] defined as:

Linstance = λintra ∑
i∈G

1
|Gl|i|

∑
j∈Gl|i\i

[ηi j− τ
′
z]++

1
N ∑

i∈G
[ max

j∈Gl|i\i
ηi j− min

j′∈G\Gi
ηi j′+3τ

′
z]+ (4.4)
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where Gl|i = { j ∈ Gl | δli = 1} and ηi j = ∥zi− z j∥ denotes the L2 distance between the
part-to-instance association embeddings of the i-th and j-th parts. The first term enforces the
distance between the two embeddings of two different parts belonging to the same instance
below τ ′z and the second term ensures the distance between embeddings of parts belonging to
different instances is larger than 3τ ′z. However, computing all combinations of triplets for
the second term is operationally complex for part-wise supervision. To streamline this, we
instead opt to maximize the difference between the upper bound and the lower bound of inter-
and intra-instance distances of the embeddings. In practice, we replace max and min with
their soft approximations defined as LogSumExp(ηi j) and −LogSumExp(−ηi j′) for smooth
gradient propagation. During inference, we use a threshold τz =

1
2(3τ ′z + τ ′z) to determine

if two parts belong to the same instance based on the distance between their embeddings.
For extending to the sequential part structures, we replace ηi j with η∗i j = ∥z

p
i − zs

j∥. In the
experiments in Section 4.4, we use ηi j except in Section ??.

The total loss we minimize is Ltotal = Lpart +L ′
part +Linstance. At training time, we use

the same part prediction MLPs to predict part parameters at every layer in the decoder. We
compute the Ltotal for each layer independently and sum all the losses. We only use the
part parameter predicted from the last decoder layer at test time. The comprehensive loss
formulation is as follows:

Ltotal =
ND

∑
k=1

Lpart,k +L ′
part,k +Linstance,k. (4.5)

4.3.8 Implementation detail

Architecture Our approach strictly follows the hyperparameters of the masked-encoder
described in [80]. We employ three self-attention transformer layers with self-attention
masks between points in the point cloud, and each point only attends to others within a
specified radius. The input point cloud to the encoder consists of NP = 32768 points, which
are subsequently subsampled to NP′ = 2048 points in the encoder. We set the scene feature
dimension DF a value of 256, following [80].

For the decoder, we maintain the hyperparameters from [80], except for the number of
decoder layers ND . The decoder layers for the decoder D and the refiner R are set to ND = 6
and NR = 2, respectively. We match the query embedding dimension with the scene feature
dimension for addition and set the number of queries to Nq = 128 during training. For testing,
Nq is set to 512, unless stated otherwise, with independent runs for query oversampling (QO)
for kinematics-aware part fusion (KPF) with NQ = 10 independent inference runs.
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As for the part prediction Multi-Layer Perceptrons (MLPs), we follow the box prediction
MLP hyperparameters in [80], except for the number and output dimension of each MLP.
The MLPs in the refiner for residual prediction strictly follow the part prediction MLPs
hyperparameters in the decoder but without dropout. We set the dimension for shape feature
h = 128, and the dimension for part-to-instance association embedding z = 32.

With respect to the ConvONet [98] architecture in the shape decoder, the local point
encoder consists of five MLPs of width 128, and the volume encoder has three MLPs with
widths of 16, 32, and 64. We employ the tri-plane version of the volume encoder for volume
representation, using only the xy and yz planes to save GPU memory. In the implicit shape
decoder, we employ four fully-connected layers with a hidden dimension of 128 and a leaky
ReLU activation.

Training details We set the weights for the matching cost Cmatch at λ1 = 8,λ2 = 10,λ3 =

1,λ4 = 5. Each loss term in the total loss Ltotal carries equal weight. We use the AdamW
[71] optimizer with a base learning rate of 9e-4 with a cosine scheduler down to a learning
rate of 1e-6. The warm-up period is set to nine epochs, and mixed precision is used during
training.

All models were trained on two A100 GPUs, each with 40GB GPU memory. We set
the batch size to 26 per GPU, and it took approximately two days to complete 500 epochs.
Weight decay was set at 0.1, with gradient clipping with an L2 norm of 0.1, as per [80].

We implemented on-the-fly sampling of 3D points and corresponding occupancy values
to train the shape decoder. Half of these points are sampled uniformly from the space
[−0.5,0.5]3. Additionally, a quarter of the points are sampled around the surface with a
Gaussian-distributed random offset along the surface normal direction, with a standard
deviation of 0.1. The remaining quarter is sampled with a standard deviation of 0.01. Each
part has 128 points sampled for occupancy values.

In training the foreground segmentation model, we used the AdamW optimizer and a
cosine scheduler, identical to the approach used in training the previous models. This model
was also trained on two A100 GPUs with 40GB GPU memory and a batch size of 26 per
GPU. Training took approximately one day for 500 epochs.

We add noise to the depth map during training, following the approach in [73]. We
incorporate a depth map filter for the model tested on real-world data to mitigate the flying
pixel effect on the object edge as suggested by [129]. This filter is also applied during testing
for real-world data. Following the projection of the depth map to 3D points, we introduced
random scaling within a range of ±15%, and random rotation along the surface normal
direction within ±30°. The point cloud was zero-centered for both training and testing.
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F-Score@80% ↑ F-Score@90% ↑ CD@5% ↑ CD@1% ↑ IoU@25% ↑ IoU@50% ↑
A-SDF-GT [83] 65.49 47.69 74.60 39.76 36.62 10.81

A-SDF-GT-2 [83] 68.81 52.55 75.91 43.58 38.59 10.43
Ours-BG 74.22 68.80 75.71 58.61 40.06 9.80

Ours 74.77 68.38 77.39 56.53 41.35 11.63

Table 4.1 Shape mAP results on SAPIEN [133] dataset.

Figure 4.6 Qualitative results on SAPIEN [133] dataset.

Color augmentation during training follows the original code of [80]. For the model using a
foreground mask, we augment the mask by randomly displacing the foreground pixels around
the border and performing successive dilation and erosion to simulate noise on inferred
masks during training.

Mesh generation We sample occupancy values on 643 voxel grids per part, then extract
the surface mesh using the marching cubes method [70] at an isosurface level τO = 0.3775 =

Sigmoid(−0.5). For surface mesh reconstruction evaluation, we store an instance mesh as a
union of part meshes and apply quadratic decimation [31] to reduce the number of faces to
10000. For volumetric IoU evaluation, where we evaluate the union of IoU for each part, we
stored a part mesh and applied quadratic decimation to reduce the number of faces to 5000.
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Figure 4.7 Qualitatative results on SAPIEN [133] from novel viewpoint.

4.4 Experiments

4.4.1 Datasets

We evaluate our method on both synthetic and real-world data. We use the SAPIEN [133]
dataset for synthetic data evaluation, following recent works on articulated shape reconstruc-
tion [53, 130, 38]. We select ten categories with representative articulation types, a sufficient
number of CAD models, and various part structures across categories. We then randomly
construct room geometry (wall and floor) and place one to four instances per scene. Each
instance is generated by applying random horizontal flips, random anisotropic resizing of
side lengths, and random articulation of CAD models. The camera pose is sampled randomly,
covering the upper hemisphere of the scene. Instances with severe truncation from the view
frustum or occlusion with other instances are ignored during training and evaluation, ensuring
that least one instance is visible in a view. For the training split, we randomize the textures
of parts and room meshes. We use the original textures from the SAPIEN dataset for the test
split. We generated 188,726 images for training and validation. Due to computational and
time constraints, we used 20,000 images for training and kept the rest for validation usage.
Also, we generated 4,000 images for the test split. Image size is 360 × 640 in height and
width. The data overview is shown in Table 4.2.

For real-world data, we use the BMVC [78] dataset for quantitative evaluation. We use
cabinet class which includes both prismatic and revolute parts and has the same part count
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Joint type Part count Instance count
Category Rev. Pris. Most freq. Min Max Train Test

Dishwasher ✓ ✓ 1 1 2 4997 1032
Trashcan ✓ ✓ 1 1 2 5037 1017

Safe ✓ 1 1 1 4795 1029
Oven ✓ 1 1 3 4951 1006

Storage ✓ ✓ 1 1 14 4907 973
Table ✓ ✓ 1 1 9 4790 999

Microwave ✓ ✓ 1 1 2 4832 934
Frige ✓ 2 1 3 5089 924

Washing ✓ 1 1 1 5042 995
Box ✓ 1 1 4 4823 979

Table 4.2 Overview of synthetic data from SAPIEN [133] dataset. Rev. and Pres. denote
revolute and prismatic joints, respectively.

and similar object shape as those used in our training and baseline models. The data contains
two sequences of RGBD frames, capturing the same target objects with different part poses
from various camera poses. We also test our method on RGB images taken with an iPhone X
and depth maps generated from partial front views of the scene using Nerfacto [120].

Toy data For an ablation experiment on the effect of part count distribution in the dataset,
we use the toy dataset where each CAD model is generated procedurally. Specifically, given
uniformly sampled numbers of articulated parts ranging from one to six, part layout is
randomly generated with a random assignment of either a revolute or prismatic joint to each
part. We also randomize the size and pose of each part. We generated 10,000 images for
training and 2,000 images for testing. For simplicity of the experiment only focusing on the
variation of part count distributions, we use a single texture and shape. Note that the size
of each part is randomized, and the size of the whole shape is also randomized depending
on randomly sampled part count and part layout of the CAD models. We name this dataset
procedural dataset. We visualize the generated data in 4.8.

In this section, we also verify the extendability of metric-learning-based part grouping to
man-made articulated objects with sequentially connected parts. Due to the lack of such data
in SAPIEN [133] and BMVC [78] datasets, we generate a point cloud toy dataset containing
multiple instances with sequentially connected parts in a scene. Each object has one base
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Figure 4.8 Visualization of procedurally generated CAD models of articulated objects.

Figure 4.9 Visualization of toy data with sequentially connected parts. Red color indicates
the base parts and green color indicates the sequentially connected child parts.

part and sequentially connected parts. For simplicity of the experiment solely focusing on
part grouping capability in a set prediction setting, we fix the size and shape of all parts. The
base part and child parts have different RGB features for ease of detection. The number of
non-base parts are randomly sampled between one and four. Note that we assume each part
has up to one child part. Each scene has up to four instances. We name this dataset sequential
dataset. We visualize the data in Figure 4.9.

4.4.2 Metrics

Shape evaluation For shape evaluation, following detection-based object reconstruction
studies [89, 121, 37], we report mAP combined with standard shape evaluation metrics
denoted as metric@threshold. We use F-Score [122], Chamfer distance (CD), and volumetric
IoU (IoU) with multiple matching thresholds. F-Score proposed in [122] evaluates percentage
of correctly reconstructed mesh surface. Specifically, it calcurates harmonic mean of two
percentages: surface points whose distance from neareset points on the other surface are
within the threashold measuread from ground truth surface to reconstructed surface and
opposite direction, respectively. We use 1% of ground truth part’s diameter as a threshold
and we sample 10000 points for both ground truth surface and reconstructed mesh surface.
In shape mAP, we use the percentage of F-Score as threashold to evaluate the match against
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ground truth. For chamfer distance, we use L2-chamfer distance in our evaluation. Our
volumetric IoU is calcularted on 643 voxel grids. The proposed method outputs part wise
meshes, thus we evauate union of each IoU result of a part by logical OR.

The shape mAP evaluation includes all the predicted parameters except for part kinematic
parameters, serving as a comprehensive proxy for their quality. For part-wise detection with
part pose and size, we use the average L2 distance between the corresponding eight corners
of bounding boxes between the ground truth and prediction as a matching metric of mAP,
similar to the ADD metric [39], denoted as mAP@threshold. The distance is normalized
by the ground truth part’s diameter, with a proportion of the diameter used as the threshold.
Since IoU-based metrics can yield values close to zero for thin structured parts, even when
they are reasonably proximate and slightly off the ground truth, and do not consider part
orientation, we use the above matching metrics to better analyze part-wise detection. Note
that in shape mAP with chamfer distance, we regard a reconstructed mesh matches to the
ground truth if the chamfer distance is below the proportion of ground truth part’s diameter
as a threshold.

Kinematics evaluation For part kinematics evaluation, we evaluate the absolute error
on joint state (State), Orientation Error (OE) for joint direction, and Minimum Distance
(MD) for rotation origin following [48] for the detected parts with matched ground truth. To
compare 2D detection result of OPD [48] and our 3D detection, we evaluate the interserction
of matched ground truth. We chose detection result of mAP@50% of segmentation result
for OPD and our mAP@70%. Note that, we use the average L2 distance between the
corresponding eight corners of bounding boxes between ground truth and prediction as a
matching metric of mAP similar to ADD metric [39]. The distance is normalized by the
ground truth part’s diameter, and we use 70% as a threshold here. This results in 8501
detections for OPD, 10431 detections for Ours-BG, 10651 for Ours excluding base parts, and
intersection has 7126 matches for the result reported in Section 4.4.5. Threashold 80% has
more similar number of detections of ours (9449 for Ours-BG, and 9720 for Ours) to OPD
but it has less number of interserctions (6549) thus we chose 70% as our mAP’s threashold.

4.4.3 Baselines

By default, we denote the proposed method that takes the foreground mask as ’Ours’, and
the model taking unsegmented input as ’Ours-BG’. To the best of our knowledge, no prior
work operates on exactly the same problem setting as ours. For shape reconstruction, we
benchmark against the state-of-the-art category-level object reconstruction method A-SDF
[83], the closest to our approach. We follow the most recent work setup [38] in evaluation.
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For kinematic evaluation, we compare our method with the state-of-the-art single-view part
kinematic estimation method OPD [48]. Note that we input OPD with an RGBD image to
align input modality and modify it to output joint state. Below, we discuss further details on
the baselines.

A-SDF [83]

Data preparation We follow the description in the original A-SDF paper [83] for data
preparation. After normalizing the global pose and scale, we ensure the base part’s position
does not change regardless of random articulation during training. In addition, for categories
with multiple parts, we maintain consistent part ordering. We automate this by assigning part
positions in canonical poses to a cell in the 5×5×5 voxel, which discretizes the positions.
The 1D flattened cell positions of the voxel determine the part order. To limit the training
time, we randomly sample a maximum of 1500 instances per category for the training split.

Model The model implementation uses publicly shared author code. The original A-SDF
only targets revolute parts. We normalize the prismatic joint state by the maximum joint
state to fall within the [0,1] range. We then multiply this range by 135, ensuring joint states
for revolute and prismatic parts are within the same range to extend the model for prismatic
parts.

A-SDF is a category-level approach that works with a fixed number of parts, which
becomes a problem when evaluated on dataset containing instances with varied part counts
in a category. Similarly to our approach, OPD [48] can handle multiple part counts without
assuming the predefined part number. They evaluate their method against baselines targeting
a fixed number of parts by training the baselines for a category’s most common part count.

We follow this protocol but aim to favor the baseline A-SDF more by training up to two
models per category. The first model is for the most common part count, and the second,
if applicable, is for the next most common part count. The second model is used when a
category has more than two different part counts in the test split.

This setting differs from OPD’s method, which only uses the most common part count.
During testing, we use the model with the most frequent part count for instances with
untrained part counts. We call the baseline model trained for the most frequent part count
A-SDF-GT and the one using the next most frequent part count A-SDF-GT-2. The baselines
and per category part counts, excluding the base part, are summarized in Table 4.3.
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Dishwasher Trashcan Safe Oven Storage Table Microwave Frige Washing Box
Most freq. 1 1 1 2 1 1 1 2 1 1

Next Most freq. n/a 2 n/a n/a 2 n/a 2 1 n/a 4

Table 4.3 The most frequent and the next most frequent part count for each category that
baseline A-SDF models are trained on.

Training We employ the publicly shared author code for training. During training, each
part’s articulation varies randomly from 0°to 135°, sampled at 5°intervals as suggested in
[83]. We dynamically sample 3D points and their corresponding signed distance values from
the randomly articulated watertight meshes of parts during training. The number of sample
points and the ratio of uniformly sampled points to points near the mesh surface follow the
original A-SDF paper [83]. A-SDF model training uses part label supervision and takes
approximately ten days on a single V100 or A100 GPU per model.

Mesh generation For mesh generation, we use the publicly shared author code as well.
A-SDF assumes no background and normalized global pose and size for input. During
testing, we use the ground truth instance segmentation mask for each instance in a scene
to isolate instance-wise foreground points. We also normalize the depth map to the input
space using the ground truth pose and size. The surface mesh is extracted using the provided
implementation, which samples signed distance values on 643 voxel grids and extracts surface
mesh using marching cubes [70]. Additionally, we apply the quadratic decimation [31] to
limit the number of faces to 10000. We then project the generated mesh back to the original
scale and pose in the scene using the ground truth values.

OPD [48]

Data Following the original paper [48] and the publicly shared author code and dataset,
we generate ground truth data. The original data includes a semantic label of part type, one
of drawer, lid, or door. However, our synthetic dataset does not have corresponding labels.
Thus we replace the semantic label with the joint type. Consistent with the original paper, we
exclude the fixed type part from the ground truth, targeting only the revolute and prismatic
parts for detection.

Model We employ the OPDRCNN-C model from [48], which predicts kinematic parame-
ters in camera coordinates. For input modality alignment, the model uses RGBD input. We
have adapted the model to produce a continuous 1D joint state; instead of supervising the
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Figure 4.10 Qualitative results on the BMVC [78] dataset.

Figure 4.11 Qualitatative results on BMVC [78] from novel viewpoint.

joint state prediction head with binary joint state supervision, we use continuous 1D joint
state supervision. We duplicate the MLP head to separately predict joint states for revolute
and prismatic joints. We supervise only the output corresponding to the ground truth joint
type. Furthermore, we guide the joint axis prediction with reference to the floor’s normal
direction, as we experimentally found this improves detection performance.

Training We follows the author’s implementation for training code, maintaining the same
settings and hyperparameters for the OPDRCNN-C model.

Testing As described in Sec. 4.4, we match the ground truth using part segmentation
evaluation with an IoU threshold of 50% following the author’s implementation. We then
evaluate the predicted joint parameters against the matched ground truth.

4.4.4 Shape reconstruction

We show the shape mAP result in Table 4.1. Our method outperforms A-SDF [83] with
ground truth in all metrics, and Ours-BG outperforms in the majority of metrics. We
show the qualitative results in Figure 4.6. Our models effectively reconstruct multiple
instances with diverse part counts and structures, outperforming A-SDF which struggles with
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reconstructing articulated parts. We attribute our method’s superior performance to its part-
level representation, which facilitates easier learning of various part structures. Moreover,
our shape-decoder is less affected by shape variations arising from the combination of part
structures and poses. Corresponding to Figure 4.6, we visualize the qualitatative results from
novel viewpoint on SAPIEN [133] dataset in Figure 4.7

4.4.5 Kinematic estimation

OPD [48] performs 2D detection evaluated by 2D IoU, while ours on 3D by L2 distance
between 3D bounding box corners. To make kinematics estimation results of OPD and ours
comparable, we experimentally choose the matching threshold of our mAP as 70% so that
a similar number of detected parts with OPD’s result with 2D segmentation mAP@50%.
Then, we select the intersection of true positive detected parts by OPD and ours. The result
is shown in Table 4.5. Our methods outperform OPD significantly. We attribute the reason to
our method operating on 3D point clouds while OPD is on 2D. Thus, our method is more
robust to various textures and lighting conditions and makes it easier to reason about 3D
kinematics. Note that our focus here is kinematics estimation after the detection step. Thus,
superiority in detection performance is not our focus.

4.4.6 Ablation studies

In the following ablation studies, we validate each proposed component in a challenging
setting where the input to the encoder has an unsegmented background using Ours-BG.

Kinematics-aware part fusion We show quantitative results in Table 4.6. Besides mAP,
we also show precision considering false positives. QO denotes test-time query oversampling,
and PF indicates part fusion. As a baseline, we first disable all components (w/o QO, PF,
kIoU) using the same number of queries Nq = 128 during training and add each component
one by one. Introducing our proposed kIoU on top of QO and PF outperforms the baseline
in shape reconstruction mAP and part detection while preserving similar precision. We
visualize the effectiveness of the KPF module in Figure 4.12. In the provided comparison,
’w/o KPF’ denotes disabling QO, PF and kIoU. We see that KPF enhances the detection and
pose estimation of small parts. We also show the qualitative results on the proposed kIoU in
Figure 4.13. Applying QO and PF alone leads to false positives of thin parts, which kIoU
effectively reduces. It indicates that the proposed KPF module improves overall detection
performance while suppressing false positives.
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Figure 4.12 Qualitative results on kinematics-aware part fusion (KPF).

Figure 4.13 Qualitative results on kinematics-aware IoU (kIoU).

Anisotropic scaling and end-to-end training for shape learning We validate the effect
of anisotropic scale normalization and end-to-end training in shape mAP evaluation. In
Table 4.7, w/o AS denotes using isotropic scaling by normalizing the maximum side length
to one instead of all sides. w/o SF denotes not passing shape feature h but training shape
decoder O separately. Disabling each component degrades performance. Especially disabling
anisotropic scaling significantly drops the performance, as the single shape decoder is tasked
to decode various sizes of target shapes.

Ratio of decoder layers in the refiner R We investigate the relationship between the
proportion of decoder layers in R and performance in shape mAP. The result is shown in
Figure 4.17. We vary the ratio of decoder layers in the refiner NR/ND+R from 0% to 75%.
Allocating a portion (25%) of decoder layers to the refiner improves performance with the
same number of decoder layers while reducing excessive decoder layers from the decoder
degrades performance.

Comparison on the number of learnable parameters in the refiner R We evaluate the
effectiveness of the refiner R in enhancing performance while maintaining a comparable
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Fscore@80% Fscore@90% CD1@5% CD1@1% IoU@25% IoU@50% Params.
ND = 16 73.25 68.27 74.76 58.64 40.74 10.57 14.33M
ND = 8 71.88 65.38 73.68 54.79 35.31 8.20 9.05M

ND = 6,NR = 2 74.22 68.80 75.71 58.61 40.06 9.80 10.25M

Table 4.4 Ablation on the refiner R for shape mAP and the number of parameters.

model size. Table 4.4 shows the quantitative results on the shape mAP and the number
of learnable parameters of the Ours-BG model, with the number of decoder layers in the
decoder ND = 6 and in the refiner NR = 2. We compare this model against the model without
a refiner and having the same total number of decoder layers ND = 8, and another model
with a doubled number of decoder layers ND = 16 without the refiner. The result shows that
using the refiner achieves comparable performance in shape mAP with the model with a
doubled number of decoder layers ND = 16 with a smaller model size.

Effect of the refiner R to the kinematic estimation The effect of the refiner R on
kinematic estimation is shown in Figure 4.14. We conduct evaluations on joint parameter
estimation. These evaluations focus on the intersection of true positive detections from both
the model with and without the refiner with various mAP thresholds. Except for the joint
axis orientation error at mAP@90%, the refiner improves the joint parameter estimation.

Effect of data distribution in terms of part counts To investigate the effect of the data
distribution in terms of part counts, we trained our models on two train splits with controlled
distribution of part counts. We generated such dataset with procedurally generated toy data
from the procedural dataset as described in Section 4.4.1. The first train split contains
fewer instances with part counts more than four to simulate a dataset having a fewer number
of instances with many joints. We call this split train baseline. The other split has more
instances with part counts bigger than four. We call this split diverse train. The distribution
of the data in terms of the number of joints per instance as part counts is visualized in Figure
4.19 (a). The green bar shows the distribution of the test split. We show the quantitative
evaluation result in terms of part detection accuracy in Figure 4.19 (b). Training on the
diverse train split significantly improves the detection accuracy for instances with more
parts compared to the baseline train split. This result suggests that our model is capable of
understanding complex articulated object shapes with more part counts when the training
dataset has a sufficient amount of such data.
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State ↓ OE ↓ MD ↓
OPD [48] 19.23°/17.10cm 29.68 ° 38.11cm
Ours-BG 4.30°/5.27cm 3.97° 6.43cm

Ours 3.85°/4.06cm 3.66° 6.58cm
Table 4.5 Joint parameter estimation results.

4.4.7 Real-world data

We verify the generalizability of our approach, which is trained only on synthetic data to
real-world data. Here, we include foreground masks as inputs to mitigate the domain gap
from background. We present the quantitative results on the BMVC [78] dataset in Table
4.8. As only one instance is present in the scene, we evaluate with shape metrics without
mAP. The CD value is multiplied by 100. Our method outperforms A-SDF [83]. We observe
reasonable generalization as shown in Figure 4.10. We visualize the qualitative results from
novel viewpoint in Figure 4.11.

4.4.8 Sequential joints

We verify the applicability of the grouping approach formulated in Equation 4.2 to sequential
joints. For this experiment, we use the sequential dataset as described in 4.4.1. We show the
qualitative result in Figure 4.16. Each cuboid in the figure indicates the detection of the part.
Red and green colors on the top faces of each cuboid indicate the base parts and non-base
parts. The association of parent-child association is visualized as yellow and blue colors. No
cuboid with yellow color means the estimated parent is the scene root. As shown in the figure,
the proposed grouping successfully identifies the correct parent. Especially, even when the
candidate parent parts are at the same distance with reference to the base part as shown in (b),
the correct parent part is estimated. In (c), since the selected part is the base part, it correctly
estimates its parent as scene root. We also quantitatively evaluate the accuracy of the parent
identification by assigning prediction and ground truth by bipartite matching as described in
Section 4.3.7 to exclude the effect of false positives and negatives to the accuracy. We found
the proposed approach accurately identifies the parent-child association with an accuracy of
99.63%. This result suggests the potential application of the proposed part grouping strategy
to sequential part structures.
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mAP@90 ↑ Precision ↑ F-Score@90%↑
w/o QO, PF, kIoU 38.87 52.29 67.43
w/o PF, kIoU 36.48 32.65 65.99
w/o kIoU 40.78 49.64 66.24
All (Ours-BG) 41.09 51.64 68.8

Table 4.6 Ablation on KPF module.

Fscore@80% Fscore@90% CD1@5% CD1@1% IoU@25% IoU@50%
w/o AS 59.37 38.83 69.84 24.10 25.72 5.76
w/o SF 71.04 60.49 73.83 43.14 25.17 0.64

All (Ours-BG) 74.22 68.80 75.71 58.61 40.06 9.80
Table 4.7 Ablation on shape learning.

4.5 Limitation

In this section, we discuss the failure cases and limitations of this approach.

4.5.1 Physical constraint violation

The proposed approach currently does not consider the physical constraints between parts
during training. Although the KPF module removes redundant parts as post-processing,
physically implausible false positives still occur, as shown in Figure 4.20 (a), for parts
without overlapping trajectories. Introducing regularization, such as physical violation loss
[141], on such implausible configurations would alleviate this problem.

4.5.2 Data imbalance

The kinematic models that the supervised model can handle depend greatly on the distribution
of the training data; it struggles with part structures and counts that are only included in small
numbers.

Objects with many parts Our methods tend to perform worse for objects with more parts.
For instance, a single object with many parts is separately reconstructed as two instances, as
visualized in Figure 4.18. As shown in Figure 4.18, the dataset contains a very small number
of training data for such an object with many parts; the method tends to fail on such objects.
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F-Score ↑ CD ↓ IoU ↑
A-SDF-GT-2 [83] 83.25 1.73 12.26

Ours 97.51 0.56 27.96
Table 4.8 Shape reconstruction results on the BMVC [78] dataset.

Ambiguous opening direction Our methods do not explicitly consider the ambiguity in
the opening direction of parts. As shown in Figure 4.20 (b), the model fails to estimate the
correct axis direction w.r.t. the base part for the closed part of the oven. This is because the
dataset includes parts with different opening directions but similar shapes when closed. In
this case, the data ground truth joint direction is horizontal w.r.t the base part of the oven;
however, such data consists of only 18.75% of training data, and the rest are in the vertical
direction, which is the same as the falsely predicted joint direction. Such ambiguity can be
addressed by explicit uncertainty modeling, as in [1, 29], and integrating finer 2D visual cues
for 3D reasoning [125, 62, 17] for localizing knobs and handles, which are informative for
the opening direction.

4.6 Conclusion

We presented an end-to-end trainable part-level shape reconstruction method for multiple
articulated objects from a single RGBD image. We have demonstrated that our method
successfully tackles the major limitation of previous works, which are unable to handle
objects with various part counts using a single model, by employing a novel detect-then-
group approach. We have also shown that the proposed kinematic part fusion (KPF) module
effectively handles small parts as challenging targets while suppressing false positives for
detection-based reconstruction. Our method outperformed the state-of-the-art baselines in
shape reconstruction and kinematics estimation on the SAPIEN [133] dataset. Furthermore,
on the BMVC [78] dataset and casually captured images, we demonstrated that the model
trained on synthetic data reasonably generalizes to real-world data.
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4.6 Conclusion

Figure 4.14 Effect of the refiner to joint parameter estimation.
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Figure 4.15 (a) Distribution of data in terms of the number of joints as part counts for the
two train splits and the test split. (b) Average part detection accuracy for each part count per
instance in terms of the number of joints.

Figure 4.16 Visualization of the sequential part association. Cuboids indicate the detection
of the part, and red and green colors on the top faces of the cuboids show the base parts and
non-base parts. The yellow color shows the estimated parent part of the part with blue color.
In (c), since the estimated parent of the part is the scene root, no part is colored with yellow.
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Figure 4.17 Ablation on refiner R.

Figure 4.18 Failure case on an object with many parts.
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Figure 4.19 Distribution of objects in the dataset by the number of parts.

Figure 4.20 Visualization of failure cases.
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Chapter 5

Exploiting consistent part structure for
unsuperiviesd learning

5.1 Introduction

Our daily life environments are populated with man-made articulated objects, ranging from
furniture and household appliances such as drawers and ovens to tabletop objects such as
eyeglasses and laptops. Humans are capable of recognizing such objects by decomposing
them into simpler semantic parts based on part kinematics. Researchers have shown that
even very young infants learn to group objects into semantic parts using the location, shape,
and kinematics as a cue [118, 116, 134], even from a single image [112, 59]. Although
humans can naturally achieve such reasoning, it is challenging for machines, particularly in
the absence of rich supervision.

3D part-level understanding of shapes and poses from a single frame observation has
wide range of applications in computer vision and robotics. Learning to represent complex
target shapes with simpler part components as a generative approach enables applications
such as structure modeling [82, 106] and unsupervised 3D part parsing [124, 94, 19, 96].
The previous unsupervised approaches have mainly focused on non-articulated objects.
Because they exploit the consistent part location as a cue to group shapes into semantic parts,
these approaches are unsuitable for decomposing articulated objects when considering the
kinematics of dynamic part locations. For part pose, modeling kinematic structures as joint
parameters has various applications, such as motion planning in robotic manipulation [1]
and interaction with environment in augmented reality [10]. There exists a large body of
works for discriminative approaches dedicated to man-made articulated objects for part pose
estimation in addition to part segmentation. However, they require explicit supervision, such
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Exploiting consistent part structure for unsuperiviesd learning

Figure 5.1 (Left) Even through independent observations, infants can build a mental model of
the articulated object for part parsing based on its kinematics. (Middle) Likewise, we propose
an unsupervised generative method that learns to parse the single-frame, unstructured 3D
data of articulated objects and predict the part-wise implicit fields as abstracted part shapes as
well as their part poses as joint parameters. (Right) Our approach outperforms the previous
works in consistent part parsing for man-made articulated objects.

as segmentation labels and joint parameters [29, 1, 140, 133, 63]. Removing the need for such
expensive supervision has been an important step toward more human-like representation
learning [4].

In this study, as a novel problem setting, we investigate the unsupervised part decom-
position task for man-made articulated objects with mechanical joints, considering part
poses as joint parameters, in an unsupervised fashion. Specifically, we consider the revolute
and prismatic parts with one degree-of-freedom joint state because they cover most of the
kinematic types that common man-made articulated objects have [133, 1, 78]. This task aims
to learn consistent part parsing as a generative shape abstraction approach for man-made
articulated objects with various part poses from single-frame shape observation. An overview
is shown in Figure 5.1. Recent part decomposition studies have focused on novel part shape
representations for shape reconstruction. In contrast, we focus on part parsing and part pose
modeling as a first step to expand the current generative part decomposition’s applications to
man-made articulated objects in novel ways, such as part pose consistent segmentation and
part pose estimation as joint parameter prediction. To realize the task, we identify the two
challenges; (1) for pose-aware part decomposition, the model must consider the kinematics
between possibly distant shapes to group them as a single part and (2) has to disentangle the
part poses from shape supervision. A comparison with previous studies is presented in Table
5.1.

To address these challenges, we propose PPD (unsupervised Pose-aware Part Decom-
position) that takes an unsegmented, single-frame point cloud with various underlying part
poses as an input. PPD predicts abstracted part-wise shapes transformed using the estimated
joint parameters as the part poses. We train PPD as an autoencoder using single-frame
shape supervision. PPD employs category-common decoders to capture category-specific
rest-posed part shapes and joint parameters. Learning to transform the rest-posed shapes
properly disentangles shape and pose, and (2) constraining the position of the parts by
the joint parameters forces shapes in distant space that share the same kinematics to be
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5.2 Related works

Part
segmentation

Joint parameter
estimation

Generative Unsupervised

ANSCH [63] ✓ ✓
A-SDF [83] ✓ ✓

Nueral Parts [96] ✓ ✓ ✓
Ours ✓ ✓ ✓ ✓

Table 5.1 Overview of the previous works. We regard a method as unsupervised if the
checked tasks can be learned only via shape supervision during training.

recovered as the same part. We also propose a series of losses to regularize the learning
process. Furthermore, we employ non-primitive-based part shape representation and utilize
deformation by part poses to induce part decomposition, in contrast to previous works that
employ primitive shapes and rely on its limited expressive power as an inductive bias.

Our contributions are summarized as follows: (1) We propose a novel unsupervised
generative part decomposition method for man-made articulated objects based on part
kinematics. (2) We show that the proposed method learns disentangled part shape and pose: a
non-primitive-based implicit field as part shape representation and the joint parameters as the
part poses, using single-frame shape supervision. (3) We also demonstrate that the proposed
method outperforms previous generative part decomposition methods in terms of semantic
capability (parsimonious shape representation, consitent part parsing and interpretability of
recovered parts) and show comparable part pose estimation performance to the supervised
baseline.

5.2 Related works

5.2.1 Unsupervised part decomposition.

Existing unsupervised generative part decomposition studies mostly assume non-articulated
objects in which the part shapes are in a fixed 3D location [124, 95, 18, 19, 26, 52], or also
targeting human body and hand shapes without considering part pose [96]. They induce part
decomposition by limiting the expressive power of the shape decoders by employing learnable
primitive shapes. Closest work of ours is BAE-Net [18], whose main focus is consistent part
parsing by generative shape abstraction. It also employs a non-primitive-based implicit field
as the part shape representation, similar to ours. However, it still limits the expressive power
of the shape decoder using MLP with only three layers. In contrast, our approach assumes
parts to be dynamic with the consistent kinematics and induces part decomposition through

49
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rigid transformation of the reconstructed part shapes with the estimated part poses to make
the decomposition pose-aware.

5.2.2 Articulated shape representation.

A growing number of studies have tackled the reconstruction of category-specific, articu-
lated objects with a particular kinematic structure, such as the human body and animals.
Representative works rely on the use of category-specific template models as the shape and
pose prior [69, 142, 9, 143, 60]. Another body of works reconstruct target shapes without
templates, such as by reconstructing a part-wise implicit field given a part pose as an input
[27] or focusing on non-rigid tracking of the seen samples [11]. The recent work [83] targets
man-made articulated objects and supervised part shape reconstruction. In contrast, our
approach focuses on man-made articulated objects with various kinematic structures. Our
approach learns the part shapes and poses during training, without any part label and pose
information either as supervision or input, and is applicable to unseen samples.

5.2.3 Part pose estimation.

In discriminative approaches, a number of studies have focused on the inference of part poses
as joint parameters [63, 133, 1] targeting man-made articulated objects. These approaches re-
quire expensive annotations, such as part labels and ground-truth joint parameters. Moreover,
they require category-specific prior knowledge of the kinematic structure. In contrast, our
model is based on generative approach and is category agnostic. Moreover, it only requires
shape supervision during training. A recent work [43] assumes an unsupervised setting
where multi-frame, complete shape point clouds are available for both input and supervision
signals during training and inference. Whereas our approach assumes a single-frame input
and shape supervision, it also works with partial shape input during inference. Note that, in
this study, the purpose of part pose estimation is, as an auxiliary task, to facilitate consistent
part parsing. It is not our focus to outperform the state-of-the-art supervised approaches in
part pose estimation.

5.3 Methods

In our approach, the goal is to represent an articulated object as a set of semantically
consistent part shapes based on their underlying part kinematics. We represent the target
object shape as an implicit field that can be evaluated at an arbitrary point x ∈ R3 in 3D
space as O : R3 → [0,1], where {x ∈ R3 | O(x) = 0} defines the outside of the object,
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Figure 5.2 Model overview. PPD infers implicit field Ô based on part poses {Bi} and part-wise
implicit fields {Ôi} given input point cloud I. The category-common decoders Fc and {Gc

i }
capture part pose biases and part shape priors in constant latent vectors. Instance-dependent
decoders Fz and {Gz

i}model input specific components. Constraining the instance-dependent
decoders by the category-common biases and the priors in the proposed approach realizes
unsupervised part decomposition and joint parameter learning. Note we shorthand {∗i} to
denote an ordered set {∗i}N

i=1 for brevity.

{x ∈ R3 | O(x) = 1} the inside, and {x ∈ R3 | O(x) = 0.5} the surface. Given a 3D point
cloud I ∈ RP×3 of P points as an input, we approximate the object shape using a composite
implicit field Ô that is decomposed into a collection of N parts. The i-th part has an implicit
field Ôi(x | I) as part shape and part pose Bi ∈ SE(3). We ensure that O is approximated as
O(x)≈ Ô(x | I,{Bi}N

i=1) through the losses.
An overview of PPD is shown in Figure 5.2. PPD employs an autoencoder architecture,

and is trained under single category setting. Given a point cloud I, the encoder derives the
disentangled shape latent vector φφφ ∈ Rm and the two pose latent vectors θθθ ∈ Rn and ψψψ ∈ Ro.
Category-common pose decoder Fc captures joint parameter biases given ψψψ . Instance-
dependent pose decoder Fz models residual joint parameters to the biases given θθθ . The
part-wise category-common shape decoder Gc

i captures category-common shape prior. Given
φφφ and conditioned by Gc

i , instance-dependent shape decoder Gz
i infers residual shape details

of the target shape to decode a part-wise implicit field Ôi. We discuss the details about Fz

and Fc in Section 5.3.1, and Gz
i and Gc

i in Section 5.3.2.

5.3.1 Part pose representation

We characterize part pose Bi by its part kinematic type and joint parameters. Each part
kinematic type yi ∈ {fixed,prismatic, revolute} is manually set as a hyperparameter. The
joint parameters consist of the joint direction ui ∈ R3 with the unit norm and joint state
si ∈ R+. Additionally, the "revolute" part has the pivot point qi ∈ R3. We refer to the joint
direction and pivot point as the joint configuration. For the "fixed" part, we set Bi as an
identity matrix because no transformation is applied. For the "prismatic" part, we define
Bi = T (siui), where T (·) represents a homogeneous translation matrix given the translation
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Figure 5.3 Illustration of part decomposition induction. "Single part" indicates that the model
is degenerated to use only a single part to reconstruct the whole target shape. "Multiple
parts" indicates that part decomposition is correctly induced. In (b), the "single part" model
misclassifies query point x2 as outside, in contrast to x1. As shown in (c), a single part
pose {Bi} cannot correctly transform both query points inside the rest-posed shape. The
"multiple parts" model successfully classifies both query points using different part poses
per part. Minimizing the reconstruction loss incentivizes the model to use multiple parts and
appropriate part types for {Bi}.

Figure 5.4 Geometric relationship between the joint parameters.

in R3, and si and ui represent the translation amount and direction, respectively. For the
"revolute" part, we set Bi = T (qi)R(si,ui), where R(·) denotes a homogeneous rotation matrix
given the rotation representation, and si and ui represent the axis-angle rotation around the
axis ui by angle si. In human shape reconstruction methods using template shape, its pose
is initialized to be close to the real distribution to avoid the local minima [50, 60]. Inspired
by these approaches, we parametrize the joint direction as [ui;1] = R(ri)[ei; 1], where ei is
a constant directional vector with the unit norm working as the initial joint direction as a
hyperparameter and ri ∈ R3 represents the Euler-angle representation working as a residual
from the initial joint direction ei. This allows us to manually initialize the joint direction
in a realistic distribution through ei by initializing ri = 0. Figure 5.4 illustrates the joint
parameters.
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Figure 5.5 Visualization of the training process. The numbers in the figure show the training
steps.

Based on our observations, we assume that the joint configuration has a category-common
bias, while the joint state strongly depends on each instance. This is because the location of
each part and the entire shape of an object can constrain the possible trajectory of the parts,
which is defined by the joint configuration. To illustrate this idea, we propose to decompose
the joint configuration into a category-common bias term and an instance-dependent residual
term denoted as ri = rc

i + rz
i and qi = qc

i + qz
i , respectively. We employ the category-

common pose decoder Fc(qt(ψψψ)), which outputs {rc
i | i ∈ Ap} and {qc

i | i ∈ Ar}, where
Ap = {i∈ [N] | yi ̸= fixed}, Ar = {i∈ [N] | yi = revolute}, ψψψ denotes a pose latent vector, and
qt(·) is a latent vector quantization operator following VQ-VAE [103]. Directly regressing
the pose parameter value is known to be difficult. Prior work [128] classifies the value into
the discretized value ranges and regresses the residual within the classified range. Motivated
by this, vector quantization for Fc models discrete modality of the joint parameter, and Fz

regresses the residual. The operator qt(·) outputs the nearest constant vector to the input
latent vector ψψψ among the Nqt candidates. Instead of using a single constant vector, the model
selects a constant vector among multiple constant vectors to capture the discrete, multi-modal
category-common biases. We also employ an instance-dependent pose decoder Fz(θθθ) that
outputs {si | i ∈ Ap}, {rz

i | i ∈ Ap}, and {qz
i | i ∈ Ar}. We constrain the possible distribution

of the joint configuration around the category-common bias by the loss function explained in
Section 5.3.3. This constraint incentivizes the model to reconstruct the instance-dependent
shape variation by the joint state, which constrains the part location along the joint direction.
This kinematic constraint biases the model to represent the shapes having the same kinematics
with the same part. The previous works [52, 26, 94] do not impose such a constraint on the
part localization, thus learned part decomposition is not necessarily consistent under different
poses.
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5.3.2 Part shape representation

We propose a non-primitive-based part shape representation that is decomposed into the
category-common shape prior and instance-dependent shape details. We employ MLP-
based decoders to model a part-wise implicit field. We capture the category-common shape
prior using the category-common shape decoder Gc

i (x). Because Gc
i does not take a latent

vector from the encoder, it learns an input-independent, rest-posed part shape template as
the category-common shape prior. We also employ an instance-dependent shape decoder
Gz

i (x | φφφ) to capture the additional instance-dependent shape details conditioned with the
shape prior. We formulate a part-wise implicit field Ôi as follows:

Ôi(x | I) = σ(Gz
i (x,φφφ)Ô

c
i (x)) (5.1)

where σ(·) represents the sigmoid function and Ôc
i (x) = σ(Gc

i (x)). For brevity, we omit
I in Ôi and simply denote it as Ôi(x). Given the part poses {Bi} as part-wise locally
rigid deformation, we formulate Ô as the composition of {Ôi} defined as Ô(x | I,{Bi}) =
maxi{Ôi(B−1

i x)}. As in the piecewise rigid model of [27], coordinate transformation B−1
i x

realizes locally rigid deformation by Bi of the part-wise implicit field by querying the rest-
posed indicator. Note that, although we set the maximum number of parts N, the actual
number of parts used for reconstruction can change; it is possible that some parts do not
contribute to the reconstruction because of the max operation or simply because Ôi < 0.5 for
all 3D locations.

In Equation 5.1, we experimentally found that conditioning Gz
i by Ôc

i through multipli-
cation rather than addition effectively prevents Gz

i from deviating largely from Gc
i . Since

a shape can exist at positions only where both Gz
i and Gc

i are large through multiplication,
for each part, Gc

i defines a category-common shape, and Gz
i provides a shape that reflects

input-dependent details around the category-common shape, visualized in Figure 5.6. This
conditioning induces the unsuperivsed part decomposition. We illustrate the idea in Figure
5.3. Considering reconstructing the target shape by single i-th part, since the multiplication
makes it difficult to output shapes that deviating largely from the category-common prior
shape, the large shape variations of target shapes are expressed by Bi regarded as the global
pose of the reconstructed shape. However, the large shape variations in target shapes are
due to the various local poses of multiple part shapes. Therefore, the large shape variations
of target shapes cannot be expressed only by the single part and its part pose Bi. Thus, as
an inductive bias of the unsupervised part decomposition, the model is incentivized to use
a composition of multiple parts to express the shape variations due to various local part
poses. We visualize the learning process in Figure 5.5. First, the model learns high indicator
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Figure 5.6 Relationship between Gc
i , Gz

i and Ô. (a) Category-common shape Ôc =
maxi{σ(Gc

i (·))}. (b) maxi{σ(Gz
i (·))} overlaid with Ôc. (c) Predicted shape Ô.

values in spatial locations of static parts with high probabilities of space occupancy in any
instance. Next, part decomposition is induced to accommodate various target shapes’ part
poses, generating multiple dynamic parts. Indicator values in the spatial locations with less
displacement by different part poses (e.g., near pivot points of revolute parts) first exceed the
iso-surface threshold. Then, the model simultaneously optimizes part pose estimation and
shape reconstruction during training as an analysis-by-synthesis approach.

5.3.3 Training losses

5.3.4 Shape losses.

To learn the shape decoders, we minimize the reconstruction loss using the standard binary
cross-entropy loss (BCE) defined as:

Lreconstruction = λreconstructionBCE(Ô,O)+λ
c
reconstructionBCE(Ôc,O) (5.2)

where Ôc(x | B) = maxi{Ôc
i (B
−1
i x)}, and λreconstruction and λ c

reconstruction are the loss weights.
The second term in Equation 5.2 is essential for stable training; it facilitates fast learning of
{Gc

i }, so that {Gz
i} can be correctly conditioned in the early stage of the training process.

Moreover, because we consider the locally rigid deformation of the shape, the volumes of
the shape before and after the deformation should not be changed by the intersection of parts;
we formulate this constraint as follows:

Lvolume = λvolume

(
Ex

[
ReLU(max

i
{Gz

i (B
−1
i x,φφφ)})

]
−Ex

[
ReLU(max

i
{Gz

i (x,φφφ)})
])2 (5.3)
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5.3.5 Joint parameter losses.

For the joint parameters qi and ri, we prevent an instance-dependent term from deviating too
much from the bias term, we regularize them by the loss:

Ldeviation = λdeviation

(
1

Nr ∑
i∈Ar
∥qz

i∥+
1

N p ∑
i∈Ap
∥rz

i∥
)

(5.4)

where Nr = |Ar|, N p = |Ap|, and λdeviation is the loss weight. Moreover, we propose a novel
regularization loss that constrains the pivot point with the implicit fields. We assume that
the line in 3D space, which consists of the pivot point and joint direction, passes through
the reconstructed shape. The joint should connect at least two parts, which means that the
joint direction anchored by the pivot point passes through at least two reconstructed parts.
We realize this condition as follows:

Lpivot =
λpivot

Nr ∑
i∈Ar

(
min

x∈SGT
∥qi−x∥+ 1

2

(
min
x∈Si
∥qi−x∥+ min

x∈Si, j
∥qi−x∥

))
(5.5)

where SGT = {x ∈ R3 | O(x) = 1}, Si = {x ∈ R3 | Ôi(B−1
i x) > 0.5}, Si, j = {x ∈ R3 |

Ô j(B−1
j x)> 0.5, j ∈ Ar \ i}, and λpivot is the loss weight. Note that Lpivot is self-regularizing

and not supervised by the ground-truth part segmentation. We illustrate the formulation in
Figure 5.7. To reflect the diverse part poses, we prevent the joint state si from degenerating
into a static state. In addition, to prevent multiple decomposed parts from representing the
same revolute part, we encourage the pivot points to be spatially spread. We realize these
requirements by the loss defined as:

Lvariation =
1

N p ∑
i∈Ap

(
λvariations

std(si)
+λvariationq ∑

j∈Ar\i
exp
(
−
∥qi−q j∥

v

))
(5.6)

where std(·) denotes the batch statistics of the standard deviation, v is a constant that controls
the distance between pivot points, and λvariations and λvariationq are the loss weights. Lastly,
following the loss proposed in [103], the pose latent vector ψψψ is optimized by the loss:

Lquantization = ∥ψψψ− sg(qt(ψψψ))∥ (5.7)

where sg denotes an operator stopping gradient on the backpropagation.
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Figure 5.7 Illustration of Lpivot in 2D.

5.3.6 Adversarial losses.

Inspired by human shape reconstruction studies [16, 97], we employ the adversarial losses
from WGAN-GP [36] to regularize the shape and pose in the realistic distribution. The losses
are defined as:

Ldiscriminator = λdiscriminator

(
Ex̃xx∼Pg[D(x̃xx)]−Exxx∼Pr [D(xxx)]

)
+Ex̂xx∼Px̂xx [(∥∇x̂xxD(x̂xx)∥−1)2]

(5.8)

Lgenerator =−λgeneratorEx̃xx∼Pg[D(x̃xx)] (5.9)

where D(·) is a discriminator; x̃xx is a sample from the reconstructed shapes Pg transformed
by the estimated joint configuration and randomly sampled joint state s̃i ∼ Uniform(0,hi),
with the maximum motion amount hi treated as a hyperparameter; xxx is a sample from the
ground-truth shapes Pr; x̂xx is a sample from Px̂xx, which is a set of randomly and linearly
interpolated samples between x̂xx and xxx; and λgenerator and λdiscriminator are the loss weights. As
an input to D, we concatenate the implicit field and corresponding 3D points to create a 4D
point cloud, following [57].

5.3.7 Implementation details

We use the Adam solvers [55] with a learning rate of 0.0001 with a batch size of 18 to
optimize the sum of the losses: Lreconstruction +Lvolume +Lquantization +Ldeviation +Lpivot +

Lvariation +Lgenerator and the discriminator loss Ldiscriminator, respectively. We set the loss
weights as follows: λreconstruction = 0.01, λ c

reconstruction = 0.001, λdeviation = 0.1, λpivot = 100,
λvariations = 0.1, λvariationq = 0.01, λvolume = 1000, λgenerator = 0.65, and λdiscriminator = 0.35.
We set v = 0.01 in Lvariation and Nqt = 4 for qt(·). For hi in Ldiscriminator, we set to π

2 and 0.4
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the "revolute" and "prismatic" parts, respectively. Note that we experimentally found that it
does not constrain the model to predict si larger than hi to reconstruct the target shape.

Because we do not impose any geometric constraints on the part shapes, we set the
number of parts for each part kinematics yi as its maximum number in the datasets plus
an additional one part for over-parameterization. The detail of the datasets is explained in
Section 5.4.1.

We set N = 8, which consists of one "fixed" part, three "revolute" parts, and four "pris-
matic" parts. We use the same hyperparameter for all categories, without assuming the
category-specific knowledge.

During the training, the max operation is substituted with LogSumExp for gradient
propagation to each shape decoder.

We train our network in two stages following [19]: first, we train it on an implicit field
of 163 grids and then on 323 grids. For the ground-truth implicit field, for each sample in a
batch, we use 4096 3D coordinate points and their corresponding indicator values sampled
from either 163 or 323 grids, depending on the training stage. This multi-stage training
strategy on grids with different resolutions is inspired by [19]. We train our network on
163 grids in the first training stage. In addition, we set ri = rc

i in the first stage. Then, we
set ri = rc

i + rs
i in the second stage. We determine the number of iterations for each stage

according to the reconstruction loss and to the visualization of the reconstructed shapes on
the validation data. For the input, we use the point cloud with 4096 points sampled from the
surface of the target shape during the training. Unless otherwise noted, we use the complete
shape point cloud.

It takes 2 to 3 days to train one model on a single NVIDIA V100 graphics card with 16
GB of GPU memory.

5.3.8 Model parameter initialization.

We use a sine function as a nonlinear activation function and the weight initialization strategy
proposed in [115] in our shape decoders, as follows:

w∼ U

(
−
√

6
IN

,

√
6

IN

)
1
30

(5.10)

where IN is an input channel to a linear layer, U is a uniform distribution, and w is an element
of the weight of a linear layer. For a linear layer that takes 3D coordinates as an input, we do
not scale the weight w by 1

30 .
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As described in the main paper, we set the number of parts used in our model as N = 8,
which consists of one “fixed" part, three “revolute" parts, and four “prismatic" parts.
Each initial joint direction ei for the "revolute" and "prismatic" parts are set as follows, with
z-axis as up, x-axis as forward, and y-axis as right: +z, −z and +y directions for“revolute"
parts and +x direction for “prismatic" parts. See Figure 5.8 for visual correspondence
between shapes and axes.

5.3.9 Network architecture.

We use the PointNet [101]-based architecture from [77] as an encoder E and the one from
[113] as a discriminator D. Our shape decoders {Gc

i } and {Gz
i} are MLP with sine activation

[115] for a uniform activation magnitude suitable for propagating gradients to each shape
decoder. For the category-common pose decoder Fc, we use separate networks of MLP for
each kind of output variables. For the instance-dependent pose decoder Fz, we employ MLP
with a single backbone having multiple output branches.

5.4 Experiments

5.4.1 Datasets.

Synthetic data In our evaluation, we follow the recent part pose estimation studies targeting
man-made articulated objects for the synthetic datasets and the object categories covering
various part kinematics: oven, eyeglasses, laptop, and washing machine categories from
Motion dataset [128], and the drawer category from SAPIEN dataset [133].

Each category has a fixed number of parts with the same kinematic structure. We generate
100 instances with different poses per sample, generating 24k instances in total. We split our
training and test data according to the per-category data split approach introduced in [63].
We ensure that the test split contains at least six samples per category, except for the laptop
category; therefore, the average split ratio is approximately 8:2. For the laptop category, we
use 11 samples in the test split to make the split ratio comparable with those of the other
categories. The number of samples in each split per category is presented in Table 5.2.

Following [77], we generate the ground-truth implicit field by the volumetric fusion of
100 depth images of a mesh object. For the mesh object, we sample 100 instances with
randomly sampled part poses for each sample. For the pose sampling, we uniformly sample
the rotation amount for each joint for the revolute joints. For the revolute joints of all
categories except the eyeglasses category, we sample the rotation amount between 0◦ and
135◦. For the eyeglasses category, we sample between 0◦ and 90◦. For the prismatic joints of

59



Exploiting consistent part structure for unsuperiviesd learning

the drawer category, we sample the translation amount between 0 and the maximum amounts
of the joints written in the URDF files of each sample in the SAPIEN dataset [133]. After
we sample a part pose for each instance, we articulate the sample in its canonical pose (the
rotation amount and translation amount were set to 0◦ and 0, respectively) using the sampled
motion amount and ground-truth joint configuration. The canonically posed shape and the
randomly posed shape of the same sample are shown in Figure 5.8. Finally, we normalize
the size and location of the instances following [77]. Specifically, we normalize the instances
with the maximum extent collected from the instances generated from the same sample.

Real data To verify the transferability of our approach trained on synthetic data to real
data, we use the laptop category from RBO dataset [76] and Articulated Object Dataset [78],
which is the intersecting category with the synthetic dataset.

5.4.2 Baselines

We compare our method with the state-of-the-art unsupervised generative part decomposition
methods with various characteristics: BAE-Net [19] (non-primitive-based part shape repre-
sentation), BSP-Net [19] (primitive-based part shape representation with part localization
by 3D space partitioning), NSD [52] and Neural Parts [96] denoted as NP (primitive-based
part shape representation with part localization in R3). For the part pose estimation, we use
NPCS [63] as the supervised baseline. NPCS performs part-based registration by iterative
rigid-body transformation, which is a common practice in articulated pose estimation of rigid
objects.

We use the author-provided implementations for all the baselines. We explain the
additional detail of the training for the baselines below.

BSP-Net [19] Because the models in the author-provided codes of the other part decom-
position baselines (BAE-Net [18] and NSD [52]) are trained on 323 grids, we also trained
BSP-Net on up to 323 grids, compared to the 643 grids in the original implementation. For
training on the eyeglasses category, we could not successfully train the model even with
different random seeds with the provided training script. After several trials, we experimen-
tally found that scaling ground-truth indicator values by four for the first 20,000 iterations
produced good initialization of the model. On the basis of this finding, we first pre-trained the
model using the scaled ground-truth indicator values for 20,000 iterations for the eyeglasses
category; then, we trained the model with the provided training script.
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NSD [52] and Neural Parts [96] The model defined in the author-provided code takes an
RGB image as an input, which is a more challenging setting for 3D shape reasoning than
3D shape input. We replace the image encoder of the original implementation with the same
PointNet-based encoder used in our approach for a fair comparison.

NPCS [63] In the experiment described in Section 5.4.6 in the main paper, we modified the
original implementation of NPCS to use complete shape point clouds instead of partial point
clouds of the depth map as an input with training from scratch, to remove the unnecessary
performance degradation caused by pose ambiguity arising from the barely visible articulated
part.

5.4.3 Metrics.

Part segmentation For the quantitative evaluation of the consistent part parsing as a part
segmentation task, we use the standard label IoU, following the previous studies [18, 19, 26,
52]. As our method is unsupervised, we follow the standard initial part labeling procedure
using a training set to assign each part a ground-truth label for evaluation purposes following
[26, 52].

First, for each surface point sampled from the ground-truth part mesh of the instance of
the training set, we determine the nearest reconstructed part and vote for the ground-truth
part label of that point. Next, we assign each reconstructed part to the part label that has the
highest number of votes. Finally, for each surface point sampled from the instance in the
test split, we determine the nearest reconstructed part surface and assign the part label of the
reconstructed part.

To visualize part segmentation, similar to [124], We first measure the distance between a
barycentric point of a ground-truth mesh face to the surface of each part. Then we assign a
mesh face the label of the part with the shortest distance to the barycentric point. Lastly, we
color each face according to the obtained label.

Part pose evaluation For the part pose evaluation, we evaluate the 3D motion flow of the
deformation from the canonical pose to the predicted pose as the endpoint error (EPE) [135],
which is a commonly used metric for pose estimation of articulated objects [128, 11]. We
scale it by 100 in experiment results.
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Drawer
Eye-

glasses Oven Laptop
Washing
machine

Training 24 35 30 73 39
Test 6 7 7 13 6

# of parts (1 3 0) (1 0 2) (1 0 1) (1 0 1) (1 0 1)
Table 5.2 Number of samples per category in each data split. Each sample is augmented by
transforming its part pose to generate 100 instances. Numbers in a parethnesis in the last row
indicates the ground-truth number of fixed, prismatic and revolute type parts.

Figure 5.8 Visualization of the canonically posed and randomly posed ground-truth meshes
of each category. The colors correspond to the different ground-truth part labels. The colored
arrows show the axis directions of the coordinate system used in this paper.

5.4.4 Semantic capability

We evaluate the semantic capability of our approach in part parsing. As part decomposition
approaches aim to learn 3D structure reasoning with as small a number of ground-truth labels
as possible, it is preferable to obtain the initial manual annotations with as few numbers of
shapes as possible. This requirement is essential for articulated objects, which have diverse
shape variations owing to the different articulations. As our approach is part pose consistent,
we only need a minimal variety of instances for the initial manual labeling. To verify this,
we evaluate the part segmentation performance using only the canonically posed (joint states
were all zero) samples in the training set.

We visualize the qualitative part segmentation results of the proposed approach in Figure
5.9, and the part segmentation results given various part poses in Figure 5.10.

The show the quantitative results in Table 5.3. Our model uses a much smaller number
of parts than BSP-Net [19]; however, it still performs the best. This shows that our model
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Drawer
Eye-

glasses Oven Laptop
Washing
machine mean

# of
parts

BAE [18] 6.25* 11.11* 73.06 25.11* 80.30 39.17 1.42/8
BSP [19] 66.31 70.69 81.65 76.68 87.92 76.65 27.50/256
NSD [52] 38.39 42.11 74.67 74.44 89.11 63.75 10
NP [96] 60.57 64.69 85.41 86.23 74.65 74.31 5

Ours 74.73 66.18 82.07 86.81 95.15 80.99 4.16/8
Table 5.3 Part segmentation performance in label IoU. Higher is better. The starred numbers
indicate the failure of part decomposition and that only one recovered part represents the
entire shape. The average and the predefined maximum numbers of recovered parts or
primitives are shown before and after the slash, in the last column.

is more parsimonious, and each part has more semantic meaning in part parsing. The
segmentation results compared against the baselines are visualized in Figure 5.11.

To eliminate differences in the number of parts and primitives for each method, Table 5.4
shows the result when each method’s maximum number of parts and primitives is aligned to
N = 8. Our method outperforms the previous works by a large margin.

We also visualize the generated part shapes in Figure 5.12. We can see that a single
part shape successfully reconstructs the complex target shape, such as disconnected shapes
that a single primitive shape cannot express. Also, our part shapes are more semantic
and interpretable than the previous works. This demonstrates the advantage of using non-
primitive-based part shape representation. As we can see in the improved part segmentation
performance, our approach realizes semantically more consistent part decomposition without
a complicated mechanism such as grouping primitive shapes based on part kinematics.

Part segmentation using all the training samples In the above evalution, we show that
our method works most efficiently by requiring instances with only a limited variety of
poses for the initial annotations. We use canonically posed shapes, visualized in Figure
5.8, in the training set for the initial annotations. This section reports the evaluation setting
where annotations of all training instances are available for the initial annotation, which is
a favorable setting for the baselines. However, the annotation cost can be much higher in
reality than in the previous setting.

The results are shown in Table 5.6. Even under this setting favorable for the previous
works, our method performs comparably with the state-of-the-art part decomposition method
BSP-Net [19] using 256 primitives. It is not surprising that using many primitives achieves
fewer part segmentation errors because, even when one primitive is inconsistently assigned to
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Label IoU ↑
BAE [18] 39.17
BSP [19] 66.79
NSD [52] 59.46
NP [96] 70.71

Ours 80.99
Table 5.4 Label IoU with the aligned number of primitives and parts for all methods (N = 8).

the ground-truth part, the impact on the label IoU is smaller. This is because a smaller portion
of the evaluation points becomes erroneous compared with the model using fewer parts or
primitives. Note that our research focuses on representing ground-truth articulated parts with
consistently the same reconstructed parts by considering the part kinematics, unlike BSP-Net
and the other baselines, which can assign different sets of primitives to the same articulated
parts without considering the underlying part pose. To show the effectiveness of considering
the part kinematics, we show the performance drop from using all training instances to using
only the canonically posed instances in the table under the heading“Difference." We can
see that our approach has the second best drop with the comparable number with Neural Parts
[96], yet higher part parsing performance. This shows that considering the part kinematics
contributes to label efficiency by reducing the necessary initial annotation to perform well on
the unsupervised part segmentation of articulated objects.

5.4.5 Disentanglement between the part shapes and poses.

Because our approach disentangles shape supervision into part shapes and poses, it realizes
pose-aware part decomposition. To verify the learned disentanglement, we visualize the
interpolation results of part shapes and joint states as part poses in Figure 5.17. In the middle
row, we show the shape interpolation between the source and the target while fixing the joint
state si of the source to maintain the same part pose. The shape is smoothly deformed from
the source to the target maintaining the original pose. In the bottom row, we interpolate
the joint state si between the source and the target; the joint state changes from the source
to the target maintaining the shape identity of the source shape. Our model successfully
disentangles the part shapes and poses, unlike previous methods as shown in the top row.
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Figure 5.9 Visualization of the part segmentation results of the proposed approach with
various samples. For drawer category, the different between some GT shapes are subtle (e.g.,
difference in handle shapes), we pick the three samples with distinct shape difference to
avoid confusion.

5.4.6 Part pose estimation

To validate whether the predicted part decomposition is based on the reasonable part pose
estimation, we quantitatively evaluate part pose estimation. Because we train our model
without specifying a canonically posed shape, we use the part pose transformations between
the target instance and the canonically posed instance of the same sample as the estimated
part pose to align with the prediction of the supervised baseline, NPCS [63]. Note that
NPCS assumes that part segmentation supervision and ground-truth of part-wise rigid-body
transformations as part pose are available during training, and part kinematic type per
part is known, which we do not assume. Therefore, NPCS offers an upper bound for our
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Drawer
Eye-

glasses Oven Laptop
Washing
machine mean

NPCS [63]
(Supervised) 1.598 1.087 2.702 0.751 1.594 1.546

Ours
(Unsupervised) 3.452 2.631 3.360 2.546 2.529 2.903

Table 5.5 Part pose estimation performance in EPE. Lower is better. NPCS is trained with
ground-truth for both part labels and part-wise rigid-body transformations as part pose,
offering an upper bound for our unsupervised approach.

Drawer
Eye-

glasses Oven Laptop
Washing
machine

mean
(All)

mean
(Canonical)

Difference
(All - Canonical)

# of
parts

BAE [18] 6.25 11.11 73.01 25.11 80.32 39.16 39.17 -0.01 1.42/8
BSP[19] 70.29 74.96 89.40 86.21 95.28 83.23 76.65 6.58 27.50/256
NSD [52] 38.56 44.06 74.63 74.40 89.01 64.13 63.75 0.39 10
NP [96] 60.56 64.75 85.33 86.22 74.72 74.32 74.31 0.01 5

Ours 74.83 66.25 82.06 86.80 95.18 81.02 80.99 0.04 4.16/8

Table 5.6 Part segmentation performance. We use all the instances in the training set to assign
a label to each part as well as to the primitives.“Canonical" denotes the mean label IoU only
using the canonically posed instances of the training for the label assignment. “Difference"
shows the performance drop from the setting that uses all the instances in the training set to
the setting that uses only the canonically posed instances. The average and the predefined
maximum numbers of recovered parts or primitives are shown before and after the slash, in
the last column. Our method achieves the same level of the label efficiency with Neural Parts
with higher part segmentation performance.

unsupervised approach. We present the evaluation results in Table 5.5. Our method is
comparable with NPCS, with the same order of performance. Note again that we are not
attempting to outperform supervised pose estimation methods; rather, we aim to show that
our unsupervised approach can decompose parts based on reasonable part pose estimation.

We also evaluate the accuracy of our joint parameter estimation. Note that, because
we train our model in an unsupervised fashion, the part kinematic types of the ground-
truth and the assigned reconstructed part do not necessarily match. Moreover, multiple
reconstructed parts may be assigned to one ground-truth part. Therefore, we choose EPE
as the primary evaluation metric for part pose estimation due to its kinematic type agnostic
property and calculation based on point correspondence between prediction and ground-
truth, rather than part-level correspondence. To avoid the problem of part pose evaluation
in unsupervised learning described above, we evaluate the accuracy of joint parameter
estimation by considering the prediction is correct when the following three conditions are
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Drawer
Eye-

glasses Oven Laptop
Washing
machine mean

# of
assigned parts 1.0 1.0 1.0 1.0 1.0 1.0

Part type
accuracy 89.50 83.25 100.0 92.14 100.0 91.46

Table 5.7 Part assignment evaluation. The first row shows the number of reconstructed parts
assigned to the ground-truth parts, and the second row shows the accuracy of part kinematic
type matches between the ground-truth and the assigned reconstructed parts for dynamic part
types.

all satisfied. (1) One reconstructed part is assigned to one ground-truth dynamic part. (2)
The part kinematic type is the same between the ground-truth and the assigned reconstructed
part. (3) The error of the joint parameters against the ground-truth is less a threshold. This
evaluation method is more challenging than EPE because of the influence of (1) and (2)
above, besides the prediction error of the joint parameters. We evaluate joint state accuracy
and joint direction accuracy. Only for the revolute part, we also evaluate joint axis distance
accuracy, defined as the line to line distance between the ground-truth and the predicted line
segments consisting of the pivot point and the joint direction.

Figure 5.13 shows the evaluation results with varying error thresholds. We show the
results of NPCS only as a reference; NPCS is a supervised model and assumes that the part
segmentation is available during training, and the part kinematic types are also known. In
contrast, our method learns both part segmentation and part kinematic type in an unsupervised
fashion. Since NPCS does not estimate the pivot point, we only show the results of our
method for joint axis distance accuracy. As for the joint state, we see reasonable accuracy
of 70.80% for revolute parts on average when the threshold is less than 10 degrees and
79.43% when the threshold is 15 degrees. For the“prismatic" part of the drawer, our method
outperforms the NPCS when the threshold is less than 0.1. For joint direction estimation,
in three out of five categories (eyeglasses, laptop, and oven), our method is comparable
or outperforming NPCS. In Table 5.7, we also show the number of reconstructed parts
assigned to the ground-truth parts and the accuracy of part kinematic type of dynamic parts
matches between the ground-truth and the assigned reconstructed parts. In all categories,
the model correctly assigns one part. Moreover, even without part type supervision, our
model successfully predicts correct part types with high accuracy of 91.46%. Improving the
unsupervised learning of joint parameters under shape supervision is an interesting research
direction.
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Lvolume Ldeviation Lpivot Lvariation Lgenerator VQ CS CP Full
Label IoU ↑ 72.20 73.21 74.27 65.29 70.14 72.78 55.67 71.35 80.99

EPE ↓ 4.362 6.628 9.250 6.676 7.276 10.772 8.827 7.219 2.988
Table 5.8 Ablation study of the losses and the proposed components: VQ, CP and CS
indicates disabling the use of multiple constant vectors introduced in Section 5.3.1, the
category-common pose decoder, and the category-common shape decoders, respectively.
"Full" means using all the losses and the components.

Label IoU ↑ EPE ↓
Complete 80.99 2.903

Depth 80.65 3.203
Table 5.9 Comparison between the point cloud input types: complete shape and depth map.

5.4.7 Ablation studies

We evaluate the effect of the proposed losses, the multiple constant vectors for multi-modal
category-common pose bias learning, and the category-common decoders on part segmenta-
tion and part pose estimation. We disable each loss and component one at a time. We only
use the corresponding instance-dependent decoder(s) when disabling the category-common
decoders for pose and shape. The results are shown in Table 5.8. Enabling all losses and the
components performs the best. Particularly, disabling the category-common shape decoders
significantly degrades both label IoU and EPE. This indicates that learning category-common
shape prior is essential to perform proper part decomposition and to facilitate part pose
learning, which is the core idea of this study. We visualize the qualitatie results of turning off
the category common decoders in Figure 5.15. Colors indicate the part IDs. When we remove
caninical shape decoder (CS), we frequently find unsuccessful decomposition; a single part
spans two GT parts (purple), and the shape deformation accounts for the shape variation. The
boxes show the parts with their joint states set to 0. With CS, the variation is expressed by
part poses with successful decomposition. Without canonical pose decoder (CP), similarily
with CS, we find that the model degenerates to express shape variation by different part poses
by shape deformation. During the training, we find turning off Lpivot for correct pivot point
localization makes the traning difficult to converge to preferable decomposition, especially
for eyeglasses category. As visualized in Figure 5.16, with Lpivot, the pivot point locates
the proper position between parts even at the early stage of the training. However, without
Lpivot, the pivot points are off from the reconstructed shape.
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5.4.8 Depth map input and real data

Because PPD’s decoders do not assume a complete shape as an input, it works with depth map
input. Following BSP-Net [19], we train a new encoder that takes a depth map captured from
various viewpoints as a partial point cloud and replace the original encoder. We minimize the
mean squared error between the output latent vectors of the original and the new encoders so
that their output are close for the same target shape. The results are shown in Table 5.9. The
depth map input performs comparably to the complete point cloud input. We also verify that
our model trained on synthetic depth maps reasonably generalizes to real data, as shown in
Figure 5.14.

5.5 Failure cases and limitation

As illustrated in Figure 5.18 (a), mixing different kinematics model during unsupervised
learning is left for future work.

Also, our method tend to result in incosistent part decomposition when size is diverse, as
shown in 5.18 (b). We found our drawer category is more challenging to converge well than
the other categories, resulting in degenerated quantitative performance. Our canonical shape
decoder learns category-specific mean part shapes. The decoder also models canonical part
locations for the prismatic part, unlike a revolute part location modeled by its pivot point.
Thus, deviating largely from the mean part shapes and large part location difference caused
by the size difference weakens the effectiveness of the canonical shape decoder, leading
to the semantically less consistent part decomposition. Due to the small number of parts
used by our model, misclassifying a single part could drop the segmentation performance
significantly (74.83→ 60.97). Note that even such a model performs comparably with the
leading primitive-based part decomposition method [96] when the number of parts is aligned,
as shown in Table 5.4. One possible extension to tackle this problem can be learning to
model size in addition to the shape and pose for each part and letting the canonical shape
decoder learn part shape in normalized space in terms of part pose and size.

Because pose-aware part decomposition without explicit supervision is a highly ill-
posed task, as a limitation, our method requires manual initialization of part types and
joint directions for each part to stabilize the training process, as described in Section 5.3.1.
Although the manual initialization, part decomposition induction by pose constraints with
joint parameters, and the proposed losses contribute to stabilizing the training process,
different model initialization and stochastic training may result in different part decomposition
results due to the unsupervised nature of the approach and the ill-posed target problem. In
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our experiments, we tried a few random seeds when part decomposition failed in the early
stages of the traning for the models reported in Table 5.3 of the main paper.

5.6 Conclusion

We propose a novel unsupervised generative part decomposition method, PPD, for man-made
articulated objects considering part kinematics. We show that the proposed method learns
the disentangled representation of the part-wise implicit field as the decomposed part shapes
and the joint parameters of each part as the part poses. We also show that our approach
outperforms previous generative part decomposition methods in terms of semantic capability
and show comparable part pose estimation performance with the supervised baseline.

As shown in qualitative results, our generative method achieves reasonable part shape
reconstruction reflecting target shape variations sufficient to induce part decomposition and
challenging joint parameter learning. As a limitation, our method currently fails to capture
details of the target shapes up to the primitive-based previous works [52, 19], focusing on the
shape reconstruction performance rather than part pose consistency. Also, joint parameter
learning requires manual initialization of joint direction and part types for each part. The
future work will address the above limitation.
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Figure 5.10 Visualization of the part segmentation results given input shapes with various
part poses. Arrows in the figure indicate the ground-truth or predicted joint directions.
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Figure 5.11 Qualitative result of the part segmentation compared to the baselines. Recon-
structed shape in mesh is shown inside a box. The same color indicates the same segmentation
part.

Figure 5.12 Visualization of parts and primitives. The boxes represent the parts or primitives
used to reconstruct the semantic parts.
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Figure 5.13 Joint parameter estimation performance.
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Figure 5.14 Real depth map input. (Left) RBO dataset [76] and (Right) Articulated Object
Dataset [78].

Figure 5.15 Qualitative ablation of CS and CP. The arrow indicates the predicted revolute
direction.

Figure 5.16 Qualitative ablation on Lpivot at training step 1.3k. The red sphere shows the
pivot point, and the arrow indicates the joint direction.
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Figure 5.17 Interpolation in terms of disentangled part shapes and joint states as part pose.

Figure 5.18 Limitation and failure cases. (a) Consistent kinematics model as limitation for
unsupervised learning. (b) Failure cases on categories with large size difference.
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Chapter 6

Unsupervised Decomposition of Shape
into Finer Semantic Parts

6.1 Introduction

Understanding 3D objects by decomposing them into simpler shapes (termed primitives)
has been widely studied in computer vision [107, 8, 7]. Decomposing 3D objects into
parsimonious and semantic primitive representations is important for understanding their
structure. Constructive solid geometry [61] uses combinations of primitives to reconstruct
complex shapes.

Recently, learning-based approaches have been adopted to primitive based approaches
[19, 26, 28, 94, 95, 91, 124]. It has been demonstrated that these approaches enable a
semantically consistent part arrangement in various shapes. Moreover, the use of implicit
representations allows the set of primitives to be represented as a single collective shape
by considering a union [19, 26, 33]; this can improve the reconstruction accuracy during
training.

However, the expressiveness of primitives, particularly those with closed shapes, has been
limited to simple shapes (cuboids, superquadrics, and convex shapes). Although primitives
can learn semantic part arrangements, the semantic shapes of the parts cannot be learned using
existing methods. In addition, although the union of primitive volumes could be represented
by implicit representations in previous studies, the lack of immediate access to the union of
primitive surfaces during training results in complex training schemes [19, 26, 33].

It is challenging to define a primitive that addresses all these problems. State-of-the-art
expressive primitives with explicit surfaces do not have implicit representations [35, 28],
and thus they cannot efficiently consider unions of primitives to represent collective shapes.
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Figure 6.1 Overview of proposed approach. The primitives have a more meaningful and
wider shape variety compared with those in previous studies.

Leading primitive representations by convex shapes [19, 26] with implicit representations
involve a tradeoff regarding the number H of half-space hyperplanes defining a convex. Using
more hyperplanes yields more expressive convex shapes at the expense of a quadratically
growing computation cost in extracting differentiable surface points. A naive implementation
costs O(H2) to filter the surface points of a convex from the hyperplanes.

To address these issues, we propose a novel primitive representation termed neural star
domain (NSD) that learns shapes in a star domain by using neural networks. A star domain
is a group of arbitrary shapes that can be represented by a continuous function defined
on the surface of a sphere. As it can express concavity, we can regard it as a generalized
shape representation of convex shapes. The learned primitives are visualized in Figure 6.1.
Moreover, we can directly approximate star-domain shapes using neural networks owing to
their continuity. We demonstrate that the complexity of the shapes that can be represented
by an NSD is equivalent to the approximation ability of the neural network. In addition, as
it is defined on the surface of a sphere, a primitive can be represented in both implicit and
explicit forms by transforming it between spherical and Cartesian coordinates. The proposed
approach is compared with those in previous studies in Table 6.1.

The contributions of this study can be summarized as follows: (1) We propose a novel
primitive representation with high expressive power, and we demonstrate that it is more
parsimonious and can learn semantic part shapes. (2) We demonstrate that the proposed
primitive provides unified implicit and explicit representations that can be used during
training and inference, leading to improved mesh reconstruction accuracy and speed.
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Implicit Explicit Semantic Parsimonious Accurate
DMC [66] ✓ ✓ – – ✓
SQ [94] ✓ ✓

AtlasNetV2 [28] ✓ ✓ ✓ ✓
BSP-Net [19] ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓
Table 6.1 Overview of shape representations in previous studies. SQ stands for superquadrics
[94]. We regard a primitive as having an explicit representation if it can access the explicit
surface in both the inference and the training process. Moreover, a primitive representation is
said to be semantic if it can reconstruct semantic shapes in addition to part correspondence.

6.2 Related work

Methods for decomposing shapes to primitives have been studied extensively in computer
vision [107]. Some of the classical primitives used in computer vision are generalized
cylinders [8] and geons [7]. In deep generative models, cuboids [124, 91] and superquadrics
[94, 95] are used to realize consistent parsing across shapes. However, these methods have
poor reconstruction accuracy owing to the limitations in the parameter spaces of the primitives.
Thus, their application is limited to shape abstraction. Using parametrized convex shapes for
improved reconstruction accuracy has been recently proposed in [19, 26]. However, as the
shapes of the primitives are constrained to be convex, their interpretability is limited to part
parsing. In this study, we investigate star domains as primitive representations with more
expressive power than that of previously proposed primitive representations.

In computation theory, 2D polygonal shape decomposition using star domains has a long
history [22, 54]. In computer vision, star domains have been used to abstract 3D shapes to
encode shape embedding [68, 100, 23, 58] for discriminative models. In contrast, we study
the application of star domains to decode shape embedding to accurately reconstruct 3D
shapes for generative models.

Surface representation of 3D objects in the context of generative models has been studied
extensively. In recent studies, the standard explicit shape representation for generative
models is a mesh [35, 50, 102, 127, 35]. Meshes [30], pointclouds [28], and parametrized
surfaces [124, 91, 94, 95] have been studied as explicit surfaces for primitive models. A
state-of-the-art method employs a learnable indicator function for non-primitive- [77, 93] and
primitive-based approaches [33, 19, 26]. However, extracting a surface mesh during inference
is quite costly, as the isosurface extraction operation grows cubically for the desired meshing
resolutions. An implicit representation model with fast polymesh sampling during inference
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was proposed in [19]. However, owing to the lack of explicit surface representations during
training, primitive-based methods with implicit representations require complicated training
schemes, such as near-surface training data sampling with ray casting [33, 26], and heuristic
losses to keep primitives inside the shape boundary [26], or a multi-stage training strategy to
approximate explicit surfaces [19]. A notable exception that uses both implicit and explicit
representations was proposed in [66]; however, this is possible by reconstructing the shape
as a voxel at the cost of limited shape resolution. In this study, we propose a unified shape
representation in both explicit and implicit forms at an arbitrary resolution. This is used to
realize a simple training scheme with fast high-resolution mesh sampling during inference.

6.3 Methods

We first formulate the problem setting in Section 6.3.1. Subsequently, we define star domains
in Section 6.3.2. In addition, we introduce NSDs to approximate shapes in star domains, with
a theoretical analysis of the representation power. Using NSDs as building blocks, we describe
the pipeline of the proposed approach in Sections 6.3.3, 6.3.4, and 6.3.5. Implementation
details are provided in Section 6.3.6.

6.3.1 Problem setting

We represent an object shape as a set of surface points P⊆ R3, and as an indicator function
that can be evaluated at an arbitrary point x ∈ R3 in 3D space as O : R3→ {0,1}, where
{x ∈ R3 |O(x) = τ}. In this equation, τ = 0 defines the outside of the object, and τ = 1
defines the inside. Our objective is to parametrize the 3D shape by a composite indicator
function Ô and surface points P̂ that can be decomposed into a collection of N primitives. The
ith primitive has an indicator function Ôi : R3→ [0,1] and a surface point function defined on
a sphere P̂i : S2→ R3. To realize implicit and explicit shape representation simultaneously,
we further require Ô and P̂ to be related as Ô(p̂) = τo, where p̂ ∈ P̂, and τo ∈ [0,1] is a
constant that represents the isosurface. We ensure that both the composite indicator function
and the surface points are approximated as O≈ Ô and P≈ P̂, respectively, through training
losses.

6.3.2 Neural star domain

A geometry U ⊆R3 is a star domain if ∃t∈U,∀u∈U, [t,u] = {(1−v)t+vu,0≤ v≤ 1}⊆U .
Intuitively, a star domain is any geometry with an origin t such that a straight line segment
between any point u inside the geometry and t is also inside the geometry. Thus, we
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can regard star domain shapes as continuous functions defined on the surface of a sphere.
We denote such functions as r : S2→ R. The spherical harmonics expansion S2→ R is a
multivariate polynomial function that is also defined on the surface of a sphere. Thus, we can
formulate a star domain using a spherical harmonics expansion as

r(d) =
∞

∑
l=0

l

∑
m=−l

cl,mYl,m(ω(d)), ω(d) = (sinθ cosφ ,sinθ sinφ ,cosθ), (6.1)

where d = (θ ,φ) ∈ S2, cl,m ∈ R is a constant, and Yl,m is the Cartesian spherical harmonic
function [126]. The spherical harmonics expansion f∞ with Cartesian spherical harmonics
Yl,m is written as follows:

f∞(d) =
∞

∑
l=0

l

∑
m=−l

cl,mYl,m(ω(d)), ω(d) = (sinθ cosφ ,sinθ sinφ ,cosθ), (6.2)

where d = (θ ,φ) ∈ S2, cl,m ∈ R is a constant. Examples of Yl,m given (l,m) are shown below:

Y0,0(x,y,z) =
1
2

√
1
π

Y1,−1(x,y,z) =

√
3

4π
y

Y1,0(x,y,z) =

√
3

4π
z

Y1,1(x,y,z) =

√
3

4π
x

Y2,−2(x,y,z) =
1
2

√
15
π

xy Y2,−1(x,y,z) =
1
2

√
15
π

yz

Y2,0(x,y,z) =
1
4

√
5
π
(−x2− y2 +2z2)

Y2,1(x,y,z) =
1
2

√
15
π

zx Y2,2(x,y,z) =
1
4

√
15
π
(x2− y2)

To realize the star domain primitive, we propose an NSD, which approximates r by a
neural network fNN , taking ω(·) as input.

Approximation ability We demonstrate the universal approximation ability of the NSD to
a star domain r. The following theorem implies that r can be arbitrarily approximated by an
NSD.

80



6.3 Methods

Theorem. Let r : S2→ R be a continuous function on the surface of a sphere. Then, ∀ε > 0,
∃ an NSD fNN ◦ω : S2→ R such that for any d ∈ S2, we have

|r(d)− fNN(ω(d))|< ε. (6.3)

Proof. By the completeness of spherical harmonics [13] to a continuous function on a
spherical surface, as shown in Equation (6.1), ∀ε1 > 0, ∃L ∈ N+ and cl,m ∈ R such that for
any d ∈ S2, we have

|r(d)− rL(d)|< ε1, where rL(d) =
L

∑
l=0

l

∑
m=−l

cl,mYl,m(ω(d)). (6.4)

ω can be regarded as Y1,m with an appropriate constant c1,m, and from the definition of
Cartesian spherical harmonics [126], each Yl,m with l > 1 can be written as a polynomial
function of Y1,m with an appropriate constant cl,m. Thus, rL can be regarded as a polynomial
function over ω , that is, it is continuous over ω .

By the universal approximation theorem of neural networks to a continuous function
[41, 2], ∀ε2 > 0, ∃ a neural network fNN : R3→ R such that for any ωd ∈ {ω(d) |d ∈ S2},
we have

|rL(d)− fNN(ωd)|< ε2. (6.5)

Given Equations (6.4) and (6.5), ∀ε > 0, ∃ a neural network fNN : R3→ R such that for any
d ∈ S2, we have

|r(d)− fNN(ω(d))|< ε1 + ε2 = ε. (6.6)

It should be noted that there exist network architectures that take the output values of
trigonometric functions as input, such as HoloGAN [86]. However, the proposed approach
differs in the input and output as follows: (1) By taking ω as input, the proposed approach is
theoretically founded on an approximate spherical harmonic expansion. HoloGAN takes the
output values of high-degree trigonometric polynomial functions as input. (2) The neural
network in HoloGAN is aimed at predicting high-dimensional vectors as images, whereas
the proposed approach is aimed specifically at predicting a single-dimensional radius r by
approximating the star domain.
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Figure 6.2 Architecture of NSDN.

6.3.3 Primitive representation

As an NSD is defined on the surface of a sphere, one can define both implicit and explicit
shape representations of a primitive. For simplicity, we define an NSD f := fNN ◦ω in the
following sections.

Implicit representation Given the 3D location x∈R3, an indicator function Ôi : R3→ [0,1]
for the ith primitive located at ti is expressed as follows:

Ôi(x; ti) = Sigmoid(α(1− ∥x̄∥
r+

)), where x̄ = x− ti, r+ = ReLU( fi(G(x))), (6.7)

where α is a scaling factor that adjusts the margin of the indicator values between the inside
and outside of the shape, G : R3→ S2 denotes the conversion from 3D Cartesian coordinates
to the spherical surface, and the ReLU operator ensures that the estimated radius is a non-
negative real number. We note that ∥x̄∥− r+ can be interpreted as a singed distance function.
We define the conversion from Cartesian coordinates to the surface of the sphere G : R3→ S2

as

G(x,y,z) = (arctan
y
x
,arctan

√
x2 + y2

z2 ) (6.8)

We define the conversion from spherical coordinates to Cartesian coordinates G−1 : R×S2→
R3 as

G−1(r,θ ,φ) = (r sinθ cosφ ,r sinθ sinφ ,r cosθ). (6.9)

Explicit representation With a slight abuse of notation, we denote the conversion from
spherical coordinates to a 3D location as G−1 : R×S2→ R3. We can sample a surface point
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in the direction of d from the origin of the ith primitive located at ti as follows:

P̂i(d; ti) = G−1(r+,d)+ ti, where r+ = ReLU( fi(d)). (6.10)

6.3.4 Neural star domain network

To represent the target shape as a collection of primitives, we define an NSD Network
(NSDN), which employs a bottleneck auto-encoder architecture similar to that in [77]. An
NSDN consists of an encoder E, a translation network T , and a set of NSDs { fi}N

i=1. Given
an input I, the encoder E derives a shape embedding z. Then, the translation network T
outputs a set of translation vectors {ti}N

i=1 from z. The translation vectors represent the
location of each primitive. The ith NSD fi acts as a decoder and infers the radius given an
angular coordinate d, translation vectors ti, and a shape embedding z. In this study, we only
estimate the location as the pose of the primitives, whereas in previous studies, the scale
and rotation of each primitive were additionally predicted [26, 94, 124]. We observe that
learning the rotation and scale leads to unsuccessful training. An overview of the architecture
is shown in Figure 6.2.

Composite indicator function To derive an implicit representation of the NSDN, we
define a composite indicator function as the union of N NSD indicator functions as

Ô(x;{ti}N
i=1) = Sigmoid( ∑

i∈[N]

Ôi(x; ti)). (6.11)

To encourage gradient learning of all primitives during training, we use the sum of the
indicator values over the primitives rather than the maximum value. We treat the threshold of
the indicator value τo of the surface level of Ô as a hyperparameter.

Surface point extraction Owing to the unified explicit and implicit shape representation
of the NSD, the NSDN can extract the union of the surface points of the primitives in a
differentiable manner. We define the unified surface points as follows:

P̂ =
⋃

i

{P̂i(d; ti)|∀ j ∈ [N \ i], Ô j(P̂i(d; ti), ti)< τs, d ∈ {dk}K
k=1}, (6.12)

where K denotes the number of points sampled from the surface of the sphere, and τs is a
hyperparameter for the threshold of the indicator value for the surface points.
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Normal estimation NSD can also estimate differentiable normal vectors. Unlike methods
using mesh templates, the proposed approach can derive normals at arbitrary resolution.
Following [77], we derive the surface normal of the ith primitive n̂i can be derived:

n̂i(p̂; ti) =−
∂ Ôi(p̂; ti)

∂ p̂
, (6.13)

where p̂∈ P̂i is the predicted surface point, Ôi is the indicator function, and ti is the translation
vector of the ith primitive. Collective surface normal vectors n̂ can be defined as follows:

n̂ =
⋃

i

{n̂i(p̂; ti)|∀ j ∈ [N \ i], Ô j(P̂i(d; ti); ti)< τs, d ∈ {dk}K
k=1}, (6.14)

where N is the number of primitives, and τs is a hyperparameter for the threshold of the
isosurface indicator value.

6.3.5 Training loss

To learn the parameters of the NSDN, we define the surface point loss, which minimizes
the symmetric chamfer distance between the surface points P from a training sample and
those from the predicted surface points P̂. The surface point loss is formulated as

LS( ) = Ep̂∼P̂ min
p∼P
∥p̂− p∥+Ep∼P min

p̂∼P̂
∥p− p̂∥. (6.15)

We note that the surface point loss enables learning collective surfaces of primitives by
accessing both implicit and explicit representations, as shown in Equation 6.12. The training
loss leads to a better reconstruction than minimizing the distance between P and a simple
union of the surface points of the primitives

⋃
i∈[N] {P̂i(d; ti)|d ∈ {dk}K

k=1}, as in [94, 124].
This is because, ideally, the loss should measure the distance between the two sets of surface
points. We also use the occupancy loss as in [77] LO( ) = Ex∼R3BCE(O(x), Ô(x)), where
BCE is the binary cross entropy. We observe that using the occupancy loss in addition to the
surface point loss achieves the best reconstruction performance.

6.3.6 Implementation details

In all experiments, we use the same architecture, whereas the number of primitives N varies.
N is set to 30 by default, unless stated otherwise. We use ResNet18 as the encoder E, which
produces shape embedding as a latent vector z ∈ R256 for an input RGB image by following
OccNet [77]. For the translation network T , we use a multilayer perceptron (MLP) with
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three hidden layers with (128,128,N ∗3) units with ReLU activation. For an NSD, we use an
MLP with three hidden layers with (64,64,1) units and ReLU activation. We set the margin
α of the indicator function to 100. The threshold τo of the composite indicator function
is determined by a grid search over the validation set. For example, for N = 30, we use
τo = 0.99. We use 0.1 for the threshold τs of surface point extraction. During training, we
use a batch size of 20, and train with the Adam optimizer, with a learning rate of 0.0001. We
set the weight of Lo and Ls as 1 and 10, respectively. For the training data, we sample 4096
points from the ground-truth pointcloud, and 400∗N samples from the generated shape for
the surface point loss Ls; moreover, we sample 2048 points from the ground-truth indicator
values for the indicator loss Lo. For mesh sampling, we use a spherical mesh template.

6.4 Experiments

Dataset In the experiments, we use the ShapeNet [15] dataset. Following [77], we test
the proposed approach on 13 categories of objects. In addition, we use the same samples
and data split as in [77]. For 2D images, we use the rendered view provided in [21]. For the
quantitative evaluation of the part semantic segmentation, we use PartNet [81] and the part
labels provided in [18].

Methods We compare the proposed approach with several state-of-the-art approaches
using different shape representations. Regarding primitive-based reconstruction approaches,
we compare the proposed method with BSP-Net [19], CvxNet [26], and SIF [33] (implicit-
representation), and with AtlasNetV2 [28] (explicit representation). As the approaches in
[19, 26] represent shapes as collections of convex shapes, we regard them as a baseline for
the effectiveness of the star-domain primitive representation. Regarding non-primitive-based
reconstruction approaches, we compare the proposed method with OccNet [77], which
is the leading implicit representation technique, and with AtlasNet [35] (explicit shape
representation). Concerning AtlasNetV2, as the code provided by the author does not
include a model for single-view reconstruction, we replace the provided encoder with the
same ResNet18 used by NSDN and OccNet, and train the model. Furthermore, for a fair
comparison with NSDN, we sample 400 points from each patch during training, and use
30 patches for AtlasNetV2, unless otherwise noted. We confirm that this leads to a slightly
better reconstruction accuracy than the original configuration. For BSP-Net, we use the
pretrained model described in Section 6.4.2. In Section 6.4.3, we train BSP-Net using the
code provided in [19]. As BSP-Net uses different train and test splits, we evaluate it on the
intersection of the test splits from [77] and [19].
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airplane bench cabinet car chair display lamp speaker rifle sofa table phone vessel mean time

F-score

AtlasNet [35] 67.24 54.50 46.43 51.51 38.89 42.79 33.04 35.75 64.22 43.46 44.93 58.85 49.87 48.57 0.008
AtlasNetV2 [28] 54.99 50.67 31.95 39.73 29.10 33.55 28.35 22.54 62.27 30.15 45.93 51.45 39.91 40.05 0.010

OccNet [77] 62.87 56.91 61.79 56.91 42.41 38.96 38.35 42.48 56.52 48.62 58.49 66.09 42.37 51.75 0.525
OccNet* [77] 63.56 57.39 63.03 61.41 43.61 41.54 41.13 45.39 57.94 49.86 59.62 66.11 45.00 53.51 0.529

SIF [33] 52.81 37.31 31.68 37.66 26.90 27.22 20.59 22.42 53.20 30.94 30.78 45.61 36.04 34.86 n/a
CvxNet [26] 68.16 54.64 46.09 47.33 38.49 40.69 31.41 29.45 63.74 42.11 48.10 59.64 45.88 47.36 n/a
BSP-Net [19] 61.91 53.12 44.75 55.24 38.57 35.68 29.98 34.04 57.28 43.89 46.42 49.18 42.76 45.60 0.014
NSDN (ours) 67.96 60.37 59.26 63.54 43.58 41.81 38.83 43.09 63.31 48.97 57.91 70.65 46.49 54.29 0.014

CD1

AtlasNet [35] 0.104 0.138 0.175 0.141 0.209 0.198 0.305 0.245 0.115 0.177 0.190 0.128 0.151 0.175 0.008
AtlasNetV2 [28] 0.119 0.164 0.246 0.176 0.256 0.209 0.313 0.340 0.099 0.210 0.221 0.131 0.159 0.203 0.010

OccNet [77] 0.147 0.155 0.167 0.159 0.228 0.278 0.479 0.300 0.141 0.194 0.189 0.140 0.218 0.215 0.525
OccNet* [77] 0.141 0.154 0.149 0.150 0.206 0.214 0.369 0.254 0.142 0.182 0.175 0.124 0.194 0.189 0.529

SIF [33] 0.167 0.261 0.233 0.161 0.380 0.401 1.096 0.554 0.193 0.272 0.454 0.159 0.208 0.349 n/a
CvxNet [26] 0.093 0.133 0.160 0.103 0.337 0.223 0.795 0.462 0.106 0.164 0.358 0.083 0.173 0.245 n/a
BSP-Net [19] 0.128 0.158 0.179 0.153 0.211 0.224 0.332 0.269 0.126 0.190 0.190 0.153 0.189 0.192 0.014
NSDN (ours) 0.111 0.135 0.155 0.136 0.191 0.205 0.320 0.251 0.118 0.177 0.167 0.110 0.174 0.173 0.014

IoU

OccNet [77] 0.571 0.485 0.733 0.737 0.501 0.471 0.371 0.647 0.474 0.680 0.506 0.720 0.530 0.571 0.525
OccNet* [77] 0.591 0.492 0.750 0.746 0.530 0.518 0.400 0.677 0.480 0.693 0.542 0.746 0.547 0.593 0.529

SIF [33] 0.530 0.333 0.648 0.657 0.389 0.491 0.260 0.577 0.463 0.606 0.372 0.658 0.502 0.499 n/a
CvxNet [26] 0.598 0.461 0.709 0.675 0.491 0.576 0.311 0.620 0.515 0.677 0.473 0.719 0.552 0.567 n/a
BSP-Net [19] 0.549 0.371 0.660 0.708 0.466 0.507 0.323 0.638 0.462 0.667 0.428 0.711 0.523 0.539 0.014
NSDN (ours) 0.613 0.461 0.719 0.742 0.515 0.553 0.368 0.667 0.516 0.689 0.511 0.760 0.550 0.589 0.014

Table 6.2 Reconstruction performance on ShapeNet [15]. In the far right column (labeled as
“time”), the per object average duration (in seconds) of mesh sampling is provided to indicate
the time cost for producing an evaluated mesh. In contrast to the original implementation of
OccNet [77], no data augmentation is performed. Accordingly, we also report the results of
pretrained OccNet trained without data augmentation, denoted as OccNet*.

Metrics We evaluate the proposed methods in terms of reconstruction accuracy, part
correspondence, and mesh sampling speed. To evaluate the reconstruction accuracy, we
apply three commonly used metrics to compute the difference between the reconstruction
meshes and the ground truth: (1) F-score, which, by the argument in [122], can be interpreted
as the percentage of correctly reconstructed surfaces, (2) L1 chamfer distance (CD1), and
(3) volumetric IoU (IoU). For all metrics, we use 100,000 sample points from the ground-
truth meshes, and reconstruct shape meshes by following [77, 26]. To evaluate the part
correspondence in semantic capability, we use the standard label IoU between the ground-
truth part label and the predicted part label. Regarding mesh sampling speed, we measure
the time in which a pipeline encodes an image and decodes mesh vertices and faces. We
exclude the time for the device I/O. All speed measurements are performed on an NVIDIA
V100 GPU. Moreover, for a fair comparison, we measure the time to mesh a single primitive
for AtlasNet, AtlasNetV2, and BSP-Net analogously with parallel processing, because their
original implementation sequentially processes each primitive for meshing, whereas ours
does meshing is parallel.
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Figure 6.3 Visualization of reconstructed meshes with an RGB image input. Best viewed
when zoomed in.

6.4.1 Visualization of differentiable shape and surface representations

NSD provides multiple differentiable shape and surface representations that are available
both during training and inference: mesh, surface points, normal, indicator function (signed
distance function), and texture. We show the qualitative examples in Figure 6.4.

6.4.2 Single view reconstruction

We evaluate the reconstruction performance of an NSD compared with state-of-the-art meth-
ods for an input RGB image. The quantitative results are shown in Table 6.2. Qualitative
examples are shown in Figure 6.3. The number of faces of the meshes generated by NSDN
and AtlasNetV2 are comparable with those by OccNet [77]. We arrive at the following con-
clusions: (1) NSDN consistently outperforms previous primitive-based approaches (CvxNet,
SIF, BSP-Net, and AtlasNetV2) in terms of the averages of all metrics. In particular, signif-
icant improvement is observed in the F-score. (2) NSDN is relatively more effective than
the leading technique (OccNet [77]), as indicated by CD1 and the F-score. It should be
noted that the proposed method is comparable with OccNet, but the mesh sampling speed is
distinctively faster. Details on the mesh sampling analysis can be found in Subsection 6.4.4.

Effect of losses As the surface point loss is made available by using integrated implicit and
explicit representations, we evaluate the effectiveness of the proposed loss to demonstrate
the advantage of the proposed representation. We use N = 10 for faster NSDN training
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implicit explicit F-score
AtlasNetV2 [28] ✓ 40.05

BSP-Net [19] ✓ 45.60
NSDNO ✓ 23.93
NSDNC ✓ 45.84
NSDNS ✓ ✓ 50.52

NSDNS+O ✓ ✓ 52.27
Table 6.3 Effects of different losses on the F-score. Check marks under the implicit and
explicit columns indicate whether the loss uses the corresponding shape representation. In
NSDN, O, C, and S indicate that only the occupancy loss, chamfer loss without surface point
extraction, and surface point loss, respectively, are used.

to accelerate the experiments. The results are shown in Table 6.3. Using only occupancy
loss leads to unsuccessful training. Using the standard chamfer loss leads to performance
comparable with that of previous methods. Using surface point loss outperforms leading
primitive-based techniques [19]. Additionally, using occupancy loss along with surface point
loss leads to slightly higher accuracy and achieves the best results.

Analysis on expressive power of primitive shapes We quantitatively evaluate the expres-
sive power of NSD compared with other primitives in previous studies: convexes [19] and
superquadrics [94]. We evaluate the expressive power by measuring the complexity of the
inferred primitive shapes. To quantify the complexity of the shape, we evaluate the discrete
Gaussian curvature [24]. We use the airplane and the chair categories from ShapeNet [15]
in this evaluation. For NSD, we use N = 10 for the number of primitives. The mean and
standard deviation of the curvature measure are shown in Table 6.4. A larger mean value
indicates that primitive shapes have more complex surfaces in terms of unevenness, and a
larger standard deviation indicates that primitives have more diverse shapes. It can be seen
that NSD has larger mean and standard deviation than the methods in previous studies. This
quantitatively demonstates that NSD has more expressive power, as it learns more complex
and diverse primitive shapes. Randomly sampled primitives from the airplane and chair
categories are shown in Figure 6.5.
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Figure 6.4 Differentiable shape and surface representations of NSD.

mean std
Superquadrics [94] 0.042 0.030

BSP-Net (convex) [19] 0.070 0.344
Proposed (star domain) 0.154 0.351

Table 6.4 Mean and standard deviation of discrete Gaussian curvature [24].

6.4.3 Semantic capability

We evaluate the semantic capability of the proposed approach compared with other ap-
proaches based on implicit and explicit primitive representations: BSP-Net [19] and Atlas-
NetV2 [28]. Following the evaluation methods in [26, 19, 94], involving varying numbers
of primitives for each method, we evaluate the semantic capability of the approaches as
a tradeoff between representation parsimony and semantic segmentation accuracy on part
labels and reconstruction accuracy measured by the F-score. For the semantic segmentation
task, labels for each ground truth point are predicted as follows: (1) For each ground truth
point in a training sample, we determine the nearest primitive and vote for the part label of
the point, (2) we assign each primitive a part label with the highest number of votes, and
(3) for each point of a test sample, we determine the nearest primitive and assign the part
label of the primitive to that point. We use four classes for semantic segmentation: plane,
chair, table, and lamp. For table and lamp, we follow [19] to reduce the parts from (base,
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Figure 6.5 Randomly sampled primitives: superquadrics [94], convex [19], and proposed
(star domain).

pole, lampshade, canopy)→ (base, pole, lampshade), and analogously for table (top, leg,
support)→ (top, leg). The models are trained without part label supervision.

In Figure 6.10, it is seen that the proposed method consistently outperforms previous
methods in terms of reconstruction accuracy regardless of the number of primitives, whereas
it performs comparably in the semantic segmentation task. This demonstrates its superior
semantic capability. It is comparable with the method in [19] in consistent part correspon-
dence, but it better reconstructs target shapes. The learned primitives are shown in Figure
6.8, where it can be seen that the proposed approach is more parsimonious in reconstructing
corresponding parts. We provide an additional visualization of the primitives of ours in
Figures 6.6 for the plane, rifle, and chair categories from ShapeNet [15], respectively.

Effect of overlap regularization The high expressivity of NSD results in severe primitive
overlap, leading to less interpretable part correspondence. To alleviate this, we investigate
the effect of overlap regularization. As NSD is also an implicit representation, we adapt the
decomposition loss proposed in [26] as an off-the-shelf overlap regularizer. We note that we
use the L1 norm instead of the L2 norm in our formulation:

Ldecomp(Θ) = Ex∼R3 |ReLU(∑
i

Ôi(x; ti)− τr)|, (6.16)

where τr is a hyperparameter that controls the amount of overlap. The effect of overlap
regularization is shown in Figure 6.9. In the visualization, there is less overlap between
primitives with the regularization. A quantitative evaluation is shown in Table 6.6. In the
table, we define an overlap metric (termed "overlap"), which counts the number of 3D points
inside more than one primitive as follows:

Overlap = Ex∼R31(∑
i
1(Ôi(x; ti)≥ τs)> 1). (6.17)
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Figure 6.6 The additional visualization of the NSD primitives for plane, rifle and, chair
categories from ShapeNet [15]

1 is an indicator function. We set the loss weight of the regularizer to 10. In this experiment,
we train the model for the airplane and chair categories. As the optimal τr varies across
categories, we train the model with a single category. We use 1 and 1.2 for τr in the airplane
and chair categories, respectively.

Applying the overlap regularizer clearly reduces the overlap, with a slight change in the
F-score, and it improves the part IoU for both categories. In particular, the part IoU for the
chair category significantly increases by 8%.

It should be noted that planar mesh patches as primitives [35, 28, 5] also have high
expressivity and suffer from the same overlapping problems as NSD. Existing overlap
regularization for this type of primitives, however, requires computationally expensive
Jacobian computation [5]. Moreover, it is an indirect overlap regularization. We demonstrate
that by simultaneously being highly expressive and an implicit representation, NSD allows
for a computationally simpler and more direct approach to overcoming this shortcoming.
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Unsupervised 89.01%
Few-shot w/ 2 ref. 87.28%
Few-shot w/ 8 ref. 88.15%

Table 6.5 Label IoU evaluation of the few-shot setting.

Figure 6.7 Qualitative comparison of unsupervised and few-shot setting.

Few-shot setting We investigate the effect of using a few reference samples with part labels
in a few-shot setting. We train the model for the airplane category. To train the model without
overfitting, we follow the few-shot training strategy of [18]; we first train the model for 3000
iterations only with reference samples using part labels and then finetune the model on the
whole training set without part labels. We also employ the overlap regularization as discussed
above. We show the quantitative result in Table 6.5. Surprisingly, using a few reference
samples slightly degrades the segmentation performance. We attribute this reason to potential
excessive optimization of the decomposition to the reference samples’ part structure in the
early stage of training, which does not lead to consistent decomposition for other samples
through the successive training. Using more reference samples may alleviate this problem,
as shown in the performance increase with more reference samples in the few-shot setting.
We also show the qualitative result in Figure 6.7. Although there is a slight quantitative
degradation, the qualitative results of the few-shot models show more evenly spread part
decomposition with less overlap compared to the fully unsupervised result, leading to a
visually more preferable result. We observed faster convergence to more evenly spaced
primitive locations under the few-shot setting during the initial training. This observation
attributes primitive shapes tend to have less overlap and become more evenly sized during the
rest of the training. Balancing quantitative and qualitative performance of the decomposition
result is left for future work.

Semantic part In Figure 6.1, it can be seen that a single NSD primitive (in cyan color)
reconstructs the empennage. Moreover, in Figure 6.8, the wings (colored in green) and
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Figure 6.8 Primitives of different categories (plane, chair, and rifle). In each category, from
far left: (1) reconstruction results with colored primitives, (2) top: only a few primitives
are colored to indicate part correspondence with another reconstruction result on the right.
Bottom: one primitive is selected and zoomed. (3) Top: another reconstruction result
in the same category. Bottom: Same primitive as in the previous visualization. (4) Top:
Reconstruction result of the same object with previous reconstruction by BSP-Net. Bottom:
Manually selected primitives that correspond to the same semantic parts of the previous
primitives. Best viewed zoomed in color.

Figure 6.9 Effect of overlap regularization on primitive decomposition for the airplane and
chair categories.

fuselage (colored in blue) are each reconstructed with nacelles by a single primitive. Thus,
NSD can reconstruct complex shapes so that multiple parts under the same semantic part
are reconstructed by one primitive. This demonstrates the expressive power of NSD in
reconstructing semantic parts.

6.4.4 Mesh sampling

As the proposed method can represent surfaces in explicit forms using mesh templates, it can
sample meshes significantly faster than time-consuming isosurface extraction methods. To
demonstrate this, we evaluate the meshing speed and reconstruction accuracy of the proposed
explicit representation compared with an implicit representation using the leading isosurface
extraction method MISE [77]. For comparison, we use the same NSDN model for both
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airplane
Overlap F-score Label IoU

w/o reg. 5.810 69.55 48.15
w/ reg. 0.445 69.92 50.90

chair
Overlap F-score Label IoU

w/o reg. 51.21 35.56 56.12
w/ reg. 1.16 33.92 64.37

Table 6.6 Effects of overlap regularization. The overlap score is scaled by a value of 1000
from the original value.

representations. The results are shown in Table 6.7. NSD can sample meshes significantly
faster than MISE with comparable F-scores (see NSDN ico#2 and MISE up#1). We also
investigate the number of vertices and faces on the surface over mesh sampling speeds. The
proposed method can produce higher-resolution meshes significantly faster than MISE. We
also use the mesh sampling speed of BSP-Net [19] as a reference for implicit representation
approaches with fast mesh sampling. The proposed method is comparable with that in [19].
It should be noted that we use the result of BSP-Net only in relation to meshing speed and
quality, as this method focuses on low polymesh.

6.5 Conclusion

In this study, we proposed NSD as a novel primitive representation. We demonstrated that
the proposed method consistently outperforms previous primitive-based approaches and that
it is the only primitive-based approach performing better than the leading reconstruction
technique (OccNet [77]) in a single-view reconstruction task. Moreover, it has significantly
better semantic capability. In future work, we would like to integrate texture reconstruction
to extend the proposed primitive-based approach to more semantic part reconstruction.
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Figure 6.10 F-score and label IoU with varying number of primitives. The number of
evaluated primitives is: 10, 15, 20, 30, and 50.

#V #F F-score time
NSDN ico0 2 5 34.02 0.012
NSDN ico2 30 88 42.87 0.013
NSDN ico4 478 1414 55.66 0.017
MISE up0 12 31 26.46 0.051
MISE up1 54 143 40.37 0.635
MISE up2 220 592 50.28 5.438

BSP-Net [19] 10 18 45.60 0.014
Table 6.7 Mesh sampling speed for given mesh properties. #V and #F denote the number
of mesh vertices (×100) and mesh faces (×100), respectively. Ico# denotes the number of
icosphere subdivisions used as the mesh template of the primitive. Up# denotes the number
of upsampling steps in MISE [77]. Up0 is equal to 323 voxel sampling, and up2 to 1283.
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Chapter 7

Unified Pipeline for Comprehensive
Understanding of Man-made Articulated
Objects

7.1 Introduction

In previous chapters, we have demonstrated the proposed methods for articulated objects
of diverse shapes through supervised learning (Chapter 4), for reducing 3D annotation data
at the part level when structures can be assumed under unsupervised learning (Chapter 5),
and for decomposing shapes under unsupervised learning (Chapter 6) for finer semantic
shapes. However, in the reconstruction of articulated objects, supervised learning alone
requires part-level supervision for all training data. Furthermore, unsupervised learning can
reduce part-level 3D annotation when a structure can be assumed, but it is not applicable
when a structure is not consistent. In addition, for applications such as planning the opening
and closing of doors, it is necessary to recognize not only a part-level understanding but
also more detailed shapes such as handles attached to the parts, which are suitable for
grasping. However, a consistent part decomposition requires normalized part shapes in terms
of part-level pose and size.

To compensate for the problems of these various methods, we propose an integrated
pipeline that reduces the necessary annotation while accommodating the structure of diverse
articulated objects and recognizing finer shapes of part shapes. In the unsupervised method of
shape reconstruction and pose estimation of articulated objects in Chapter 6, we considered
only the canonicalized shapes in terms of global pose and size as input and output, which is
not applicable as is for input with background, when targeting multiple articulated objects,
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Figure 7.1 Visualization of the unified pipeline.

and when the output is in the camera coordinate space. In addition, the shape decomposition
in Chapter 5 has the problem that when the target sub-part level shape is too detailed for
the whole shape, it is difficult to decompose in an unsupervised manner, and there are cases
where the target sub-part to be recognized does not exist in the input shape requiring to
identify the presence or absence of the target shape.

This chapter proposes a method of integrating the results of unsupervised shape recon-
struction and pose estimation of articulated objects targeting backgrounds and multiple
articulated objects into the output in the camera coordinate system, and as an example of
sub-part level understanding, proposes a method of recognizing the handle shape attached to
the rotating parts by unsupervised shape decomposition. Figure 7.1 shows the relationships
of the components proposed in the previous chapters in the proposed pipeline. For categories
that can assume a consistent structure, the unsupervised method (Chapter 5) is applied, and
for cases where a single structure cannot be assumed, we apply the supervised method han-
dling the variously structured articulated shapes (Chapter 4). Finally, shape decomposition
is performed on the normalized part shapes output from both supervised and unsupervised
methods (Chapter 6). Thus, this chapter proposes a pipeline as a whole that reduces the costly
part-level annotation data while accommodating articulated objects with various structures
and performing sub-part level shape understanding.

7.2 Method

In the following sections, we first discuss conditioning on supervised and unsupervised
approaches in the pipeline in Section 7.2.1. Then, Section 7.2.2 presents the method of
integrating the unsupervised method targeting articulated objects (Chapter 5) into the pipeline,
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Washing machine Microwave Storage Table
17 16 346 101

Table 7.1 Number of CAD models in [133] dataset.

and Section 7.2.3 shows the method for decomposition and segmentation of the sub-part
shapes of part shapes.

7.2.1 Supervised and unsupervised conditioning in the pipeline

One of the main limitations of the supervised approach discussed in Chapter 4 is that the
method requires part-level 3D annotation for training. However, such annotation is costly
to produce for real-world articulated objects, especially with many parts often seen in
storage categories like drawers. Thus, synthetic data with automatically generated part-
level annotations is widely used in previous works [63, 38, 83, 48, 32] and also in the
proposed method in Chapter 4. However, curating synthetic data for complex object shape
and texture is also costly [67] as it requires professional skills to create CAD models and
is time-consuming to create detailed textures and shapes for realistic data. For example,
the SAPIEN [133] dataset, as the most widely used synthetic dataset, only contains CAD
models of the categories with more detailed texture and shapes, such as washing machine
and microwave categories, ten times smaller than the categories with simpler texture and
repetitive simple part shapes, such as storage and table categories. We show the number
of CAD models in the SAPIEN [133] dataset in Table 7.1 and their visualization in Figure
7.2. In contrast, scanning of an object with a short video clip can recover detailed shape and
texture in a few minutes with modern multiview reconstruction pipeline [110, 111, 84, 3]
without special skills. Thus, learning part-level understanding from unannotated data, such
as whole shape scans, is an appealing approach. Moreover, we observe that the categories
with a smaller number of samples in the synthetic dataset, such as microwave and washing
machine as discussed above, have relatively uniform and consistent part structures within
a category due to a smaller number of parts compared to other categories like storage and
refrigerator with more part counts. Thus, in the pipeline, we demonstrate the application of
the unsupervised approach to categories with such consistent part structure within a category
to show the complementary effectiveness of the unsupervised approach to the supervised
approach.
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Figure 7.2 Visualization of CAD models from [133] dataset.

Figure 7.3 Visualization of instance point cloud extraction and camera space projection for
the unsupervised approach.

7.2.2 Instance point cloud extraction and camera space projection

We first extract the foreground point cloud of the target instance by the instance point cloud
extraction module shown as the "instance point cloud extraction" module in Figure 7.1. We
show the module architecture in the yellow box in Figure 7.3. The module takes the RGBD
image, target instance 6D pose, and size detected by the detector and outputs the partial point
cloud of the target instance. The 3D cuboid represented by 6D pose and size is projected
to the image plane to get 2D bounding boxes, which is used to prompt along with the input
RGB image to extract the instance segmentation mask by using the instance segmentation
module [56]. The depth map is segmented by the instance mask and projected to 3D space as
a partial point cloud with the known camera intrinsics to form the input partial point cloud
to the pose-aware part decomposition (PPD) module discussed in Chapter 5. To adapt the
PPD module to the depth input, the partial point cloud encoder is trained by the distillation
approach as discussed in Section 5.4.8. The output shape is then projected to the camera
space by the estimated instance-level pose and size.
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Figure 7.4 Visualization of the sub-part segmentation module.

7.2.3 Sub-part shape segmentation

We visualize the overview of the sub-part shape segmentation approach in Figure 7.4. The
decomposed primitive shapes in the part decomposition approach tend to have similar sizes,
as depicted in Figure 6.8. Also, the method assumes the same semantic shape is located
approximately in a similar location in the canonicalized 3D space (Section 5.4.4) to induce
unsupervised part decomposition. This indicates that variously posed small or thin shapes
of a part shape are hard to segment out. To mitigate this issue when decomposing the part
shapes, we first canonicalize the pose of the input part shape to reduce pose variation, then
apply anisotropic scaling (Section 4.3.3) to normalize all side lengths of the part shape to
one. This preprocessing enlarges the small parts for easier segmentation. After the part
decomposition is learned, we manually annotate a few samples to identify the primitives
corresponding to the target sub-part shape. We follow a similar step as discussed in Section
5.4.3. We treat the shapes reconstructed by the identified primitives as the target sub-part
shape candidate. As discussed in Section 7.1, the identified primitives reconstruct the non-
target sub-part shapes when the target sub-part is missing. To identify whether the primitives
reconstructing the target sub-part, we train a simple binary classifier to detect the target
sub-part. After classifying the target sub-part, we segment the input shape based on the
reconstructed sub-part shape by primitive shapes. Again, we follow a similar step described
in Section 5.4.3, for each input mesh’s face center, measure the distance between the face
and each primitive, and then assign the sub-part label to the face if the primitive with the
shortest distance to the face belongs to the sub-part shape.
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7.3 Experiment

7.3.1 Models

For the unsupervised approach, in this experiment, we target ovens with horizontal joint
direction as a target category. We use the pretrained oven model introduced in Chapter 5. For
sub-part segmentation, we train the neural star domain shape decoder from Chapter 6 on the
output shapes of the supervised approach from Chapter 4.

7.3.2 Data

RGB images taken by a consumer smartphone and the corresponding depth maps generated
from partial front views of the scene using an off-the-shelf neural radiance field model [120]
are used in this experiment. Note that the input to the pipeline is the single RGB-D image.
For the manual annotation of the primitives described in Section 7.2.3, we pick ten to twenty
samples of the primitives reconstructing handle shapes as positive samples, and the same
number of random, non-handle shapes as negative samples to build a binary classifier.

7.3.3 Reconstruction by the supervised approach

The qualitative results are shown in Figure 7.5. "Current pose" indicates the reconstruction of
the target shape with the estimated pose in the input. "Fully opened" or "closed" indicates that
the pose of the instance has been changed based on the estimated kinematic parameters. We
can see that reasonable estimates based on the shape, posture, and kinematic parameters can
be made for various objects with diverse poses. The results of simultaneously reconstructing
two instances are shown in Figure 7.6. Our pipeline successfully performs the simultaneous
reconstruction of multiple target instances.

7.3.4 Reconstruction by the integrated unsupervised approach

The results of the unsupervised method integrated in Section 7.2.2 are shown in Figure 7.7.
The proposed method allows for the reconstruction in camera space, projected from the
canonicalized space of the unsupervised model (Chapter 5). Figure 7.7 (c) shows the result
combined with the supervised method (Chapter 4). We can see that consistent reconstruction
is possible using a model trained without part-level annotation aligned with the results of the
supervised method.
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7.3.5 Sub-part segmentation

Figure 7.8 shows the results of segmentation on the sub-part shapes of the input part shape.
It demonstrates that the same primitives consistently reconstruct the handle shape in two
inputs and that the handle shape can be segmented from the input shape in an unsupervised
manner. Combined with estimated joint parameters as visualized in Figure 7.8, the output of
the pipeline can be transferred to downstream tasks such as grasping by a robot arm.

7.4 Limitation

While our method makes significant strides in the daily articulated object reconstruction task,
it does have several limitations.

Unclear instance boundary Our system cannot handle cases where the instance boundary
is not well defined, such as a door directly attached to a room. 3D reconstruction of room
geometry with part-level shape reconstruction of articulated parts is an interesting future
direction as a scene reconstruction task.

Category-specific setting of the unsupervised method for articulated objects The
unsupervised approach requires a model for each category and different kinematic models by
switching between multiple models as illustrated in Figure 7.9. Applying the unsupervised
approaches to more categories needs to add more models, complicating the pipeline.

False negative reconstruction by sub-part decomposition The sub-part level shape
segmentation by the part decomposition strongly depends on the input shape, thus it directly
reflects any false positives or false negatives of the shapes in the reconstructed parts, as
shown in Figure 7.10. Improving the shape reconstruction accuracies in the previous stages
would alleviate this problem.
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Figure 7.5 Visualization of the real-world result by the supervised approach (Chapter 4) taken
by a commodity smartphone camera.
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Figure 7.6 Visualization of reconstruction result by the supervised approach (Chapter 4) with
multiple instances.
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Figure 7.7 (a) and (b): Visualization of reconstruction result using the unsupervised approach
(Chapter 5) (c): The unsupervised approach combined with the supervised approach (Chapter
4)

Figure 7.8 Visualization of the sub-part shape segmentation.
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Figure 7.9 Limitation of the unsupervised ap-
proach. Figure 7.10 False positive reconstruction of

handle shape by sub-part decomposition.
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Chapter 8

Conclusion and Future Work

Understanding the shape, pose, kinematics, and finer semantic details of articulated objects
at the part level from a single RGBD image has numerous applications in robotics, AR/VR.
However, estimating these properties from a single image is a highly ill-posed and challenging
problem. Furthermore, estimating these properties for articulated objects with diverse
structures and varying numbers of parts is even more challenging. In this study, we propose
a method to achieve the understanding of articulated objects’ shape, pose, kinematics, and
finer semantic details at the part level using both supervised and unsupervised approaches.
Our method targets objects with diverse structures and varying numbers of parts. In this
section, we summarize the proposed method and discuss its contributions.

In Chapter 4, we have presented the central idea of the thesis which is to develop a
robust processing method for single-view input capable of handling the diverse attributes of
articulated objects. The method provides a solution to issues identified in previous studies
by offering a single-stage, end-to-end approach that extends from parts-level detection to
instance reconstruction without assuming the part structures and counts. The proposed
method has been designed to handle various articulated object attributes, with a particular
emphasis on the unique challenges presented by small and thin parts. By focusing on the
trajectory of movement of these small and detailed parts, we have been able to improve
detection performance, reduce false positives, and enhance recognition accuracy. Importantly,
the proposed approach also avoids explicitly learning part structures, instead detecting
parts as individual shapes, which allows for a unified approach from detection to shape
reconstruction.

In Chapter 5, we have introduced the idea of exploiting consistent part structure for
unsupervised learning. In the real world, many everyday objects, such as eyeglasses, laptops,
and scissors, exhibit consistent part structures. Our approach leverages this consistency,
allowing for the learning of shapes, joint parameters, and poses of individual parts without
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the need for manual annotations as opposed to the previous works which require part-level
annotations.

In Chapter 6, we have proposed a novel primitive shape representation, the neural star
domain. This approach helps to maintain high reconstruction accuracy while enabling
the unsupervised decomposition of parts into finer semantic shapes. This novel shape
representation, which generalizes the previous works’ primitive representations, offers
the ability to fully utilize the parameters of the neural network compared to previous shape
representations.

Chapter 7 presents our unified pipeline, integrating the methods described in the pre-
vious chapters. This pipeline efficiently handles articulated objects with consistent part
structures within the category, accommodating varying part counts and structures. Moreover,
it showcases a hierarchical understanding of articulated objects, encompassing shape, pose,
kinematics, and semantics at both the instance and subparts levels.

To summarize, this thesis presents three primary contributions: a method for supervised
learning of part shapes and poses when unable to assume a consistent structure for each
category, a method for reconstructing part shapes and estimating part pose without using
annotations when assuming a consistent structure, and the development of the neural star
domain for the reconstruction of finer-level semantic part shapes.

Finally, we list potential extensions beyond this study as future work:

Modeling other types of joints Although the proposed method covers a wide variety
of daily man-made articulated objects, this study dealt with man-made articulated objects
consisting only of revolute and prismatic joints. However, there are other types of joints,
such as screw joints, ball joints, etc. Modeling each joint with different parameterization
to express each constrained motion is not scalable. Therefore, an interesting direction is to
explore the learnable, unified joint representation suitable in learning-based computer vision
pipelines.

More complex mechanical linkage This study only deals with non-sequential joint config-
urations without loops, where the object consists of a single base part and all the articulated
parts are attached to it. However, humans can reasonably understand and predict more
complex system dynamics of unseen mechanical linkage consisting of joints with sequences,
loops, constraints by other joints from perception. Extending the man-made articulated object
understanding with such a challenging setting is an interesting direction.
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Unified frame including natural articulated objects To the best of my knowledge, a
universal framework for part-level shape and pose understanding explicitly targeting both
man-made articulated objects and other types of common articulated objects, such as humans
and animals in a single-view setting, has not been explored. The existing work relies on
interaction or temporal information to identify kinematics and consisting parts. Without such
information to understand 3D shape and kinematics requires a generic prior knowledge of
the 4D world.
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