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This paper presents Switch-SLAM, switching-based multi-modal SLAM for extreme and degraded environments, designed to 

tackle the challenges in degenerate environments for LiDAR and visual SLAM. Switch-SLAM achieves high robustness and 

accuracy by utilizing a switching structure that transitions from LiDAR to visual odometry when degeneration of LiDAR odometry 

is detected. To efficiently detect degeneration, Switch- SLAM incorporates a non-heuristic degeneracy detection method that does 

not require heuristic tuning and demonstrates generalizability across various environments. Switch-SLAM is evaluated on diverse 

datasets containing both LiDAR and visual odometry degeneracy scenarios. The experimental results highlight the accurate and 

robust localization by the proposed method in multiple challenging environments with either LiDAR or visual SLAM degeneracy. 
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1  Introduction 

  Simultaneous localization and mapping (SLAM) 

systems are subject to several limitations that arise 

from inherent constraints imposed by the sensors. For 

example, LiDAR SLAM tend to degenerate in 

environments lacking distinct structures. Conversely, 

visual SLAM face challenges in scenarios involving an 

aggressive motion, rapidly changing light conditions, 

and texture-less environments. To handle these issues, 

various LiDAR visual SLAM methods have been 

proposed, which integrate information from the LiDAR 

and camera. However, these methods have weaknesses 

when handling persistent degeneracy that exceeds the 

capabilities of the system. This limitation primarily 

arises from their reliance on fusion methods using 

maximum a posteriori (MAP) estimation.  

 To address these limitations, we propose a Switching- 

based LiDAR-Inertial-Visual SLAM (Switch-SLAM). 

Switch-SLAM１） parallelly processes LiDAR and visual 

odometry and selects the appropriate sensor odometry 

using non-heuristic degeneracy detection, Switch-

SLAM incorporates a switching structure that 

effectively avoids failure information from propagating 

throughout the entire system, thereby mitigating the 

negative impact on performance. The main 

contributions of our work are as follows: 

 • Switching structure: Switching structure allows for 

the selection of an optimal initial guess between LiDAR 

and visual odometry. This selection efficiently avoids 

long-term degeneracy and ensures that only reliable 

estimations propagate through the entire system, 

improving overall performance. 

  • Non-heuristic degeneracy detection: Non-heuristic 

degeneracy detection checks whether the optimization 

process has converged or not by employing a pre- 

defined threshold, grounded in physical assumptions 

and statistical significance. This detection mechanism 

enhances the ability to identify degenerate situations 

effectively without the need for heuristic tunning of the 

threshold. 

 

 

2  Method 

2.1  System Overview 

The overview of the proposed method is shown in  

Fig. 1. The proposed approach consists of three main 

components: visual odometry, LiDAR odometry, and a 

switching node.  

In the visual odometry node, the pose is estimated 

with sliding window optimization of tracked features. 

The estimated pose from visual odometry is then 

propagated at the frequency of the IMU measurements. 

In the LiDAR odometry node, the LiDAR distortion 

resulting from ego-motion is corrected using the poses 

obtained from the switching structure. Subsequently, 

scan-to-map matching is conducted utilizing the 

geometric features, with an initial guess provided by 

the switching node. The estimated pose from the scan-

to-map matching is also propagated at the IMU 

frequency. 

In the switching node, the initial guess for the scan-

to-map matching is selected between the poses derived 

from LIDAR-IMU and visual-IMU propagation, based 

on the reults of degeneracy detection. Our work also 

includes a GNSS option, which is fused with the final 

pose from the scan-to-map matching. 

2.2  Lidar-Inertial-Visual Slam 

1) LiDAR Odometry:  LiDAR odometry is 

performed by scan-to-map matching. In this process, 

 

Fig. 1 The system structure of Switch-SLAM 
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planar and edge features are extracted from each 

LiDAR scan by evaluating the smoothness of the local 

surface along the same scan line. Moreover, features in 

j-th scan and those in i-th map are associated using a 

nearest neighbor search. With this association 

established, the distances between the extracted 

features in the scan and corresponding points in the 

map can be calculated as follows:  

 

(1)             

 

 

(2)             

where 𝑑𝑒  denotes the distance between 𝐩𝑗
𝑒 and 

corresponding prior edge features 𝐩𝑖,1
𝑒  and 𝐩𝑖,2

𝑒 . 𝑑𝑝 

denotes the distance between 𝐩𝑗
𝑝
 and corresponding 

prior planar features 𝐩𝑖,1
𝑝

, 𝐩𝑖,2
𝑝

, and 𝐩𝑖,3
𝑝

. 

2) Visual Odometry:  The feature point tracking 

and optimization-based method is adapted for our 

visual odometry submodule. This method effectively 

addresses the scale problem of monocular vision by 

initialization with the alignment of visual and IMU 

motion. After initialization, the sliding window 

optimization is performed for bundle adjustment, and 

the pose derived from the optimization is propagated 

with IMU measurements. 

 

2.3  Degeneracy Detection 

 1) LiDAR odometry degeneracy:  Most of the 

degenerate cases in LiDAR generally originate from the 

structure-less environments, such as a long corridor or 

a vast open field. Nevertheless, even in these scenarios, 

either plane or line features still exist within LiDAR’s 

sensing range. In the case of the plane, three non-

collinear points can be extracted. One translational 

DOF in the direction perpendicular to the plane and 

two rotational DOFs, except for an axis perpendicular 

to the plane, can be estimated by tracking the plane 

points. Conversely, in the case of the line, two linear 

points can be extracted. Two translational DOFs, 

except for the direction horizontal to the line, and one 

rotational DOF with axis horizontal to the line can be 

determined by tracking the line points. Therefore, we 

can make physical assumptions that the degeneracy 

would rarely occur in the 3-DOF out of the 6-DOF when 

a plane or line is present. Consequently, our work 

primarily focuses on the degeneracy of the other 3-DOF 

directions. Note that LiDAR SLAM is conducted with 

solving Levenberg-Marquardt method as follow, when 

𝐉𝒍  is the Jacobian matrix of 𝐟𝒍 , and 𝜆  is damping 

factor.  

 

 (3) 

 

Here, eigenvalues of 𝐉𝒍
𝐓𝐉𝒍 in Eq. (1) can be utilized to 

detect degeneracy. [ 𝜆1 , 𝜆2 , 𝜆3 ] are extracted as the 

three smallest values from the eigenvalues of 𝐉𝒍
𝐓𝐉𝒍 . 

Then, [𝜆1 , 𝜆2 , 𝜆3 ] is normalized to [𝜆1
̅̅ ̅, 𝜆2

̅̅ ̅ , 𝜆3
̅̅ ̅]. We 

define a non-heuristic threshold of normalized eigen- 

values using the Chi-squared test. The formulation of 

the Chi-squared test can be written as follow, where the 

value of 0.103 denotes the Chi-squared value for 2-DOF 

at a 95% confidence level, 𝜆𝑡 denotes the threshold of 

normalized eigenvalues to solve, and the value of 

𝑒𝑚 denotes the expectation value of the minimum 

eigenvalue.  

 

                  (4) 

 

  𝑒𝑚 is defined as 0.291 using the constraint with 𝜆1
̅̅ ̅ <

 𝜆2
̅̅ ̅  <  𝜆3

̅̅ ̅ . Finally, the non-heuristic threshold 𝜆𝑡  is 

decided as 0.120 from Eq. (4). If the minimum 

eigenvalue of 𝐉𝐓𝐉 is lower than 𝜆𝑡, the initial guess is 

“switched” from the value of LiDAR odometry to visual 

odometry. Inversely, if the minimum eigenvalue returns 

to a value greater than 𝜆𝑡, the system sets the initial 

guess as LiDAR odometry.  

  2) Visual odometry degeneracy: The minimum 

eigenvalue of the Hessian matrix of visual odometry is 

unstable and remains large after failure. Therefore, we 

adapt failure detection of visual odometry. The number 

of tracked features, bias changes, and positional / 

rotational changes between consecutive keyframes are 

used for failure detection. If any of these values exceed 

the predefined threshold, the system treats the current 

state as a failure. Moreover, when the failure is 

detected, the state of visual odometry and the system 

attempts re-initialization. Until successful re-

initialization is achieved, the entire system relies on 

pure LiDAR odometry. 

 

2.4  Scan-to-Map Matching 

  Scan-to-map matching can fail because estimations 

of directions to degenerate DOFs can be unstable in 

structure-less environments. To prevent the effect of a 

degenerate DOF on the optimization process, we remap 

Eq. (3) considering the degenerate DOF. Given 𝐇𝑙  

and its eigendecomposition as 𝐔𝚲𝐔−1, the optimization 

process, when the state of LiDAR odometry is well-

conditioned or visual odometry fails, is as follows:  

 

(5) 

 

  When the state of LiDAR odometry is degenerate in 

at least one DOF and visual odometry does not fail, the 

optimization process is remapped by fusing visual and 

LiDAR odometry in a tightly coupled way as follows:  

 

 

 

(6) 

 

 

 

where Λp denotes the matrix with eigenvalues removed 

corresponding to degenerate DOFs from Λ.    

  When both LiDAR odometry degeneracy and visual 
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odometry failure occur, the optimization process is 

executed only along the well-conditioned DOFs. In this 

case, the IMU preintegration significantly impacts the 

undetermined directions. Note that although Eq. (6) 

relies on MAP fusion, our switching structure ensures 

robustness of the multimodal system, preventing 

failure or degeneration of one element from affecting 

the overall fusion process. The entire processes in the 

switching node are described in Algorithm 1.  

 

 

 

 

 

3  Experiments 

  In this section, the evaluation of the accuracy and 

robustness of the proposed method with various 

datasets containing sensor degeneracy is presented. 

Furthermore, the effectiveness of the proposed 

degeneracy detection is discussed.  

3.1  Datasets 

We prepared various datasets with various 

environments. Firstly, we evaluate our method in 

simulated datasets: Plane, Fast rotate, and Farm 

datasets. These datasets contain either LiDAR or visual 

SLAM degeneracy. Secondly, we evaluate our method in 

the real world and open-sourced datasets: Handheld, 

Multi Floor, Long Corridor, and CERBERUS DARPA 

subterranean challenge datasets 3 ） . The Handheld 

dataset contains degeneration of LiDAR SLAM caused 

by structure-less and vast open fields. As the 

CERBERUS dataset lacks the degeneration of LiDAR, 

we limit the horizontal field-of-view of LiDAR at 180∘ 

to create a more structure-less situations for each scan. 

The proposed method, Switch-SLAM is compared with 

the state-of-the-art of LiDAR, visual, and LiDAR-visual 

Odometry 3）. 

3.2  Accuracy Evaluations 

As shown in Table I and Fig. 2, in most of the dataset, 

the proposed method shows the best performance 

among the compared method.  

On the Fast Rotate dataset, LIO-SAM shows the best 

performance among the compared methods, whereas 

VINS-MONO fails in their localization because of 

Table I : Comparison of Absolute Translational Errors on Prepared Datasets. 

Fig. 2 Resulting maps from the compared methods and Switch-SLAM 
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aggressive rotation. Compared LiDAR visual inertial 

odometry (LVIO) methods demonstrate a larger drift 

than pure LiDAR-based methods. Our method is 

competitive with LIO-SAM because Switch-SLAM 

works as pure LiDAR SLAM in well-structured 

environments using the switching structure. On the 

Plane dataset, which mainly contains less-structured 

ground-only environments, the proposed method and 

VIN-MONO exhibit the best performance among the 

compared methods, whereas the LiDAR-based methods 

fail in their localization. Our method also outperforms 

state-of-the-art of LiDAR-visual SLAM because Switch-

SLAM mainly employs visual odometry for its initial 

guess of scan matching in less-structured environments. 

 On the Farm dataset, which contains both 

aggressive motion and less-structured environments, 

LiDAR odometry fails in the phase of mapping less-

structured environments, whereas visual odometry 

fails in the phase of aggressive motion. Conversely, the 

proposed method outperforms not only compared 

LiDAR and visual SLAM but also the state-of-the-art 

LVIO methods. This result is attributed to the switching 

structure, which allows for appropriate status 

transitions based on the given environmental 

conditions.  

In the Handheld dataset, the proposed method is 

competitive with LVI-SAM, whereas it outperforms the 

other compared methods, When visual SLAM 

degeneracy is prolonged such as in the Fast Rotate and 

Farm datasets, LVI-SAM can drift significantly 

compared to the proposed method. On the Multi Floor 

and Long Corridor dataset, the proposed method shows 

the best performance among the compared methods. 

Most of the compared methods suffer with scenes 

featuring both structure-less environments and visual 

degradation. By comparison, the proposed method deals 

with these challenges well using the switching-based 

optimization as expressed in Eq. (6). 

On the CERBERUS dataset, the proposed method 

demonstrates the best performance in ANYmal 1 and 

ANYmal 2. This result highlights the ability of Switch-

SLAM to effectively address LiDAR degeneration, even 

outperforming the compared LVIO methods. In 

ANYmal 3, which experiences a single camera 

interruption, VINS-MONO and LVI-SAM fail in 

mapping. Moreover, the corridor-like structure makes 

LOAM and LIO-SAM degenerate. Conversely, Switch-

SLAM successfully conducts SLAM in these 

environments, owing to its switching structure.  

 

3.3  Degeneracy Detection Evaluation 

  To evaluate the accuracy of degeneracy detection, we 

compare the proposed method with the state-of-the-arts 

methods. The ground truth is prepared by comparing 

GNSS data with scan-to-scan matching using ICP at 

each keyframe.  

  The comparison of the proposed method with the 

state-of-the-arts is illustrated in Fig. 3. Notably, during 

the third phase of degeneracy, the proposed method 

successfully detects the degeneracy, which the state-of-

the-art methods fail to identify. Note that compared 

methods are sensitive to threshold tuning, which is not 

required by our method. This detection is accomplished 

by normalizing the minimum eigenvalue using 3-DOF 

eigenvalues and applying a predefined threshold based 

on the Chi-squared test. 

4 Conclusion 

  In this paper, we propose Switch-SLAM. By tackling 

the limitations of MAP-based sensor fusion, Switch- 

SLAM introduces a novel switching-based sensor fusion 

approach utilizing a switching structure to enhance 

accuracy in degenerate situations. Switch- SLAM 

demonstrates superior performance when compared to 

the state-of-the-art SLAM in terms of accuracy and 

localizability. 
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