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1. Introduction

It is well known that a sufficiently large heat flow
- [ 1] orelectric current [ 2] across a thin liquid layer
causes macroscopic motion of the medium. This
motion of fluid often exhibits a-stationary regular
pattern such as hexagonal, rectangular, square and
plane wavé type one. A remarkable example is the
electrochemiluminescence pattern due to the convec-
tion, where the luminescing points make up a hex-
agonal lattice [ 3] . Such a regular pattern, which
resembles that of the crystal lattice, is generated only
by dissipating energy due to, e.g.heat flow or
electrical flow, thus it is referred to the dissipative
structure in contrast to the crystal structure. The size
of the convective unit cell or, more precisely, the
lattice constant of the convective pattern has usually
been found to be proportional to and somewhat larger
than the thickness of the layer [3.4] .. This fact seems
to be rather common regardless of the mechanism of
" energy dissipation. The pattern which appears most
often is the hexagonal one, but other types of pattern
can also observed especially in the case where the
surface of the layer is not so large in comparison with
the thickness [ 5] , or when the heat or electrical flow
across the layer becomes quite large [ 6 ] . We discuss
here about a favorable type of lattice and its lattice

constant for the convective pattern.
2.. Molel and Results

Typical convective patterns appearing in a thin
liquid layer are shown in fig. 1. We choose, in this
figure, the sites of asceniing flow as the lattice points
and illustrate the Wigner-Seitz unit cell with broken
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Typical convective patterns appearing in a
thin liquid layer. @, hexagonal convective
pattern. 4, rectangular convective pattern.
¢, plane wave type convective pattern. a:
and a2, ¢ and b, and a are the fundamental
unit vectors for the respectiveé patterns.
Fluid is confined within each Wigner-Seitz
unit cell (illustrated with broken line), and
its convection has the total symmetry in the
cell.
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line. The sites of ascending flow make up a two-
dimensional lattice, whereas the sites of descending
flow make up another two-dimensional lattice, 7. e.
the dual lattice of the former one [7] . For a rectan-
gular or a plane wave type lattice, each dual lattice is
topologically identical with the original, 7. e. they are
self-dual. This means that the ascending and descend-
ing flow of these patterns are equivalent to each
other. For the hexagonal lattice, on the other hand, its
dual lattice is a heneycomb lattice (actually this is
not a lattice) which differs from the original, and thus
it is not nelf-dual. The number of the sites of the
descending flow is twice that of the ascending flow.

These stationary fluid motions are expressed with
the velocity of the fluid »(r), and we assume that the
z-component »z(r) can be separated into the horizon-
tal (x, y) component and the vertical (x) component
as

0, y, 2) =0 (&, g)g(@),-wreeeereremeiins (1)

where the z-direction is taken perpendicular to the
layer surface. Then the function f(x, y)should sat-
isfy the periodical condition of the lattice with lattice
constants ¢ and b, and the function g(z) should
satisfy the boundary condition at the surfaces (z=
+¢/2), where ¢ is the layer thickness. As the
components of a larger wave number in f(x, y)and
g(z) are in general unfavorable for a stationary state
because they might require a larger dissipation of
energy, we take terms of the smallest wave number
into consideration. Thus, by taking account of the
total symmetry of the flow within the Wigner-Seitz
unit cell, f(x, y)is expressed for the hexagonal,
rectangular and plane wave type lattices as

flx, v, )=(1/6)F expliatr),

i, y, a b)=Acos a*x+(1—A)cos b*y, (2)

folx, @)=cos a*x, ‘ ,
respectively, where nn=(r,y), ai(i=1,2,,6)are
the six reciprocal fundamental unit vectors with len-
gth 47/ +/3a, and a* and b* are the reciprocal lattice

constants. By applying a rigid boundary condition v
=0vz/0z=0at z=+¢/2, g(z)is expressed as
g(z, 0)2(1/2)[1+C05(c*z)]’ ceneennseienniinn (3)
where c*=27x/c. From eqs. (2) and (3) we have
differential equations for f and g as
(a*726%/3x 2+ b*"28%/ay* +1) f: =0,
(92/3z%—c**)g=—(1/2)c*?,
where 7 represents %, » or p for the haxagonal,
rectangular or plane wave type pattern, respectively,
and ¢*=5* when {=h. From eq. (4), together with
the continuity conditiori of incompressible fluid flow
div v=0, each velocity component of the fluid motion
is obtained as
ve=va""X8fi/ dx' N dg/ dz),
vy =vb*"*(3f:/dy N deldz),
v2=0f:g.

A flow with a certain value takes in general the
path that requires the minimum work [8] . If the
total flow. of heat or electrical charge by the convec-
tion expressed by eq. (5) remains unchanged during
the lattice constants displacement, the lattice con-
stant of a pattern should be so determined that the
work which is needed to maintain the flow should be
minimum. The amount of the heat generated by the
convection of eq. (5) in a unit volume and unit time
is given by the viscous dissipative function [9] , ¢=
(1/ 2)9>{Bv:/ 0z :+ 0v;/0x:)*. When a convective state
is stationary, the mean dissipative function, <@> =

[ o,y z)av
unit cell

the work as mentioned above. It can be shown that

dV, corresponds to

unit cell

this function has a minimum value of <@> w=(7%/.

20 1+3 2/ c? at a=2X 3¢ for the hexagonal

pattern, <@>m={x?/2)3"*9*/c* at a=b=3"c for the

rectangular one and <@> w=r3"270*/c* at a=3"c |
for the plane wave type one. These.results are

tabulated in table 1.

3, Discussion

It should be noted that although fhe lattice constant

Table 1 Lattice constants and mean viscous dissipative functions

lattice constant

(layer thickness unit)

hexagonal 1.520
square 1.316
plane wave 1.316

(P
(7v*/c?® unit)
7.784
8.547
17.095
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ot i 5]
might take various values according to the
convective patterns, the wave numbers of these pat-
terns have the same magnitude of k. =2x37**/c. That
is, three stationary plane wave components with the
wave number &, which are equivalent to each other,
make up the hexagonal pattern, and similarly two
equivalent stationary plane wave components with .
make up the sqliare pattern, and one statitnary
component with . itself means the plane wave type
pattern. In other words, the kind of pattern just
depends on the number of the plane waves which are
superimposed, and the size of the pattern is decided
by the critical wave number k.. According to the
criterion mentioned above, table 1 indicates that the
hexagonal pattern might be the most favorable for
the convection. This seems likely if we consider the
fact that the hexagonal pattern has the highest
symmetry in the two-dimentional lattice. Of cource,
this conclusion premises that the three. stationary
plane wave components should be equivalent to each
other. If these components cannot be equivalent
owing to a boundary condition by side wall,
symmetry of the pattern will be degraded. So the
regular hexagonal convective pattern can most fre-
quently be observed in a thin layer cell with semi-
infinite surface area. A similar degradation in the
pattern symmetry has also been known to take place
when the flow becomes quite large. The most common
example is ‘a transition from the hexagonal
convective pattern to the plane wave type (or the roll
type) one that takes place when the applied voltage
on a thin liquid layer cell is fairly increased [6] .
This might be a sort of “the Jahn-Teller effect,

distinct from the boundary condition effect mentioned
above. Thus, we may conclude that the hexagonal
convective pattern with the wave number of 4.774/¢
will appear in a thin liquid layer with a sufficiently
large surface area just after the transition from the
non-convective state, and there may be another tran-
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sition from the hexagonal pattern to the plane wave
type one when the flow becomes larger.

Which of the ascending and descending flow sites
makes up the hexagonal lattice or its dual lattice, the
honeycomb lattice, is another problem. In the present
case, a stream tube is a closed one, and the fluid is
circulating in this tube. The driving force for this
circulation, of course, depends on each mechanism,
but this force might be applied mainly on either the
ascending or descending parts of the tube, or on both
of them. If the force is applied on both of them
equally, we cannot say anything abouit this problem.
If the force is applied on, e. g. the ascending flow
parts, these will make up the hexagonal lattice and
the descending flow sites will make up the honeycomb
lattice, because the ascending flow rate at the hex-
agonal lattice points, the number of which is a half of
the number of its dual lattice points, is twice the
descending flow rate at the honeycomb lattice points.

(Manuscript received, May 9, 1983)
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