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A Note on Stochastic Finite Element Method (Part 7)
—Time-history Analysis of Structural Vibration
with Uncertain Proportional Damping—
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1. Introduction
Time-history analyses have been carried out as a

part of dynamic analysis of structure subjected to
ground motion. Damping influences dynamic
response, and the followings are two major means to
treat damping. The first one is to introduce damping
elements which simulate actual structural
components, and is adapted to the study of structural
configuration related to the arrangement of damper
as shown in Fig. 1. The second one is to take damping
into account in form of the ratio to critical damping,
which is appropriate to handle damping related to the
mode of vibration. In either case, it seems difficult to
determine precisely the intensity of damping, as the
accuracy of damping identification is dependent on
the way of analysis and measurement.

Consequently it might be wuseful to extend
Hoshiya’s probabilistic study of single-degree-of-
freedom vibration with the first order perturbation”
to a more general case by our stochastic finite ele-
ment method®®, which enables us to evaluate accu-
rately and efficiently the response statistics of struc-
ture with uncertain parameters. This note proposes a
method to deal with probabilistic time-history analy-
sis of lineér vibration system on the basis of the
second order perturbation technique by regarding
uncertain broportional damping as random variable.
2. General equation of motion of continuum

with multiple-support excitation

The equation of motion is expressed in matrix form
by Eq. (1) with the absolute (total) displacements
{V*} of unrestricted n-degree-of-freedom and {V,}
of m-degree-of-freedom which represents support-
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Fig. 1 Structure with multiple-support excitation

and damping components

point-motion,
MUV +ICHV KV
=P}~ [MHVa}~[CH Vol = [Kl{Va} (1)
where {P}is external force vector (taken equal to
zero hereafter), the suffix g denotes n x m matrix

" corresponding to {V,}, and [M], [C]and [K]arenx

n square mass, damping and stiffness matrices. ()
means differentiation with time. {V'*} is given as sum
of the dynamic (relative) displacements” {V}and
pseudostatic ones {Vs} which are caused by equiva-
lent force —[Ky{ V,} as follows.

{(Vs}=— K] [K{ Vo) =R Vo) (2)
The equation of motion is rewritten for the dynamic
displacements { V'} as given below.

MUVI+ICHVI+IKN V]

= —(IMI[R]+ [MD{Ve} = ([CIRI+[CoIN Vi)
(3)
In fhe case the damping components are assumed as
shown in Fig. 1, [C]in Eq. (3) can be given in con-
crete form. The second term with { V,} on the right-
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handed side of Eq. (3) remains in the formulation,
excepting such cases as the proportionality of [C]=
4[K] and [Csl=5[K,] holds, but is neglected usually
in computation.”

3. Modal decoupling of the equation of motion

The eigenvalue ; (circular frequency) and
eigenvector {¢:} of ith order are evaluated firstly in
the eigenvalue problem Eq. (4) without damping
under the condition that all the excitation points are
fixed.

(K- i MD{s:d={0} (4)
The modal matrix [@]is generated by use of n
vectors of {¢:}, which is normalized as [@) M) @]
=[7]. This normalization gives rise to [@]"[K][@}=
[K*]=[Nw?\]J(I\A4:\] means diagonal matrix with
diagonal components A; hereafter). The dynamic
displacements {V} (as a function of time) is
expressed in from of Eq. (5) with the generalized
coordinates {¢}.

(Vi=[ola’) . (5)
We obtain the equation of motion (6) expressed by
{4}, substituting Eq. (5) intoEq. (3) and premulti-
plying it with [@]7, -

{g}+[0]7[Cl o4+ K Ha'}

=[O (IMIRI+ MV} = [@]"([CI[R]
+[CD{Vo) ' (6)
In case if [C] can be diagonalized by the manipulation
with [@] as follows,

[o17[Cllo]=[C*]=\2&w:\] (7
then the vectorical equation ( 6) is decoupled into the
scalar equation (8) with respect to the ith mode.

G+ 28w’ +wig'=— L ¢ J(IMIIR]

+IMD{ V= L s S(CIRIF[CD{Ve) (8)
This sort of problem with multiple-support excita-
tion may also be solved by superposing the solutions
for single excitation point (the other points fixed).”
When damping is given in terms of the damping ratio
& of ith mode, the damping matrix [C] can be cal-
culated reversely from Eq. (7) as given below.

[Ccl=([o)) (o] =M1[o][C*llo] 1] (9)
4. Perturbation solutions in the generalized coor-

dinate system with uncertain damping ratios

A way of general modal decoupling is formulated
in the case of deterministic structural system in the
preceding sections. This section describes how the
fluctuation of the solution of Eq. (8) in the decoupled
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form can be evaluated by means of the second order
perturbation technique in the case that damping can
be diagonalized as Eq. (7) , and that the {th damping
ratio &: fluctuates in the vicinity of its expectation &,
through random variable @; (E[a:]=0is assumed
hereafter) as Eq. (10). In this case the fluctuation of
[C] is expressed in form of Egs. (11) to (13)

&=E(1+as) (10)
[C]= [C‘]+Z;[C}]ai (1)
(€)= M1[0)C 0T M) (12)
[cl=[M[@ICrI17 [M] (13)

where [C*]is given by Eq. (7) whose &: is replaced

with £, and [C{*]denotes the matrix, the idi-th
component of which is 2&,w; while all the other

components are zero. Putting the fluctuation of ¢
with respect to £;as Eq. (14) and substituting it
together with Eq. (10) into Eq. (8), we obtain the
governing equations for the deterministic component
G’ and the first and second order rates of change, af
and g%, on the basis of the second order perturbation
technique as follows.

a'=q't+q"a:tq*at (14)
Fi2&wdi+totai=—LgI(IMR]

+ MDDV} (15)
FUH2Ewid gt =—28 04" (16)
G2 E i+ wla® = —2& w6 an

The term multiplied with { Vs} in Eq. ( 8) is neglected
herein as usual, and perturbation technique does not
hold any more if this term remains, The left-handed
sides of Egs. (15) to (17) are of the same pattern,
implying that the same time integration scheme can
be applied to the calculation of ¢°, ¢'* and ¢*'.

5. Mode decoupling in case of uncertain [C]
matrix

In general, [M], [C] and [K]matrices cannot be
diagonalized by the manipulation of pre-and post-
multiplication with [@]” and [@], when fluctuation is
involved in them. However, the mode decoupling as
shown by Eqs. (6) to (8) still is possible with the
aid of perturbation technique. An example is given in
the follwing in the case that only [C] fluctuates.

‘When [C] takes the following from

[Cl=alM]+bIK] (18)
of Rayleigh (proportional) damping, [C] can be
diagonalized by the product manipulation of (o],
since [M] and [K] are deterministic. On the other
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W%
hand, Eq. (18) does not hold, if [C] is not dependent
of [M] and/or.[K] and fluctuates through [C}] and a.
corresponding to components as follows.
[C]=[C1+Z[Clan (19)

The matrix [C] cannot be diagonalized in this case.

Expressing the generalized coordinate vector {g'} as

Eq. (20) for the damping fluctuation @. of Eq. (10)

and substituting it into Eq. (6), we obtain the

governing equations for the deterministic component

and rates of change with the aid of the second order
~ perturbation technique as Egs. (21) to (23) ,

(@)= (g M Slad et 323 ailamar (20)

{g'}+[o) [ClloNg'}+ (K "M’}
=—[o)(IM][R]+[M)){ Vo)~ [@]"([CIIR]
+ICD{Ve} (21)
{@+ [0l [ClloN{da }+ (K" {ak')
=—[ol"[Cillo}{q")
—[@1"([CHIR]+[CoeD{ Vo) (22)

{gii}+[o][Cllo}{gki} + [K*1{qki}
=-—[o]"([Cillol{g}+ICIoNat' )  (23)
where %4 and / vary from unity to the total number of
fluctuation origins, and the equality {g%i}={q?i} is
assumed in the above.

It can be seen in the above that modal decoupling
into the same form as Eq. (8) is made possible for
the governing equations, if only the matrix [C] is
diagonalized as [@]"[C][@]=[\C:\], while [C]
cannot be diagonalized. Also the same scheme of time
integral is applicable to the determination of the
deterministic component and rates of change. In-this
case, q° does not fluctuate with &; of the section 4,
but with the causes of the fluctuation & and /.

6. Numerical example

The fluctuation of time-history response is cal-
culated by use of the Newmark £ method (£=1/4)
based on the technique stated in the section 4-in the
case that &; fluctuates. The structure under interest is
a tower® which is modeled as a serial assembly of
fourteen beam elements of hollow cylinder whose
data are given in Table 1. The bottom is fixed to the
base, to which El Centro 1940 NS acceleration wave
Vgis applied directly. Consistent mass matrix is
employed, and therefore [M,] is non-zero matrix in
this example. The Young’s modulus and mass density
of the beam material are taken equal to 205.9 GPa
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Table 1 Element division and its data of

tower-like structure

Elem. Length Dia. Wall thick-
(m) (m) ness (cm)
1 2.0 2.656 1.4
2 3.4 2.6 4.2
3 2.6 2.6 3.8
4 3.0 2.6 3.8
5 3.0 2.6 3.8
6 0.7 2.1 4.5
7 1.0 1.6 4.5
8 2.0 1.6 1.6
9 3.0 1.6 1.6
10 3.0 1.6 1.6
11 3.0 l.6 1.6
12 3.0 1.6 1.6
13 3.0 l.6 1.6
14 3.0 1.6 1.6

~and 0.7959 X 10°kgf+sec?/m*, respectively.

Eigenvalue analysis of this example gives the eigen
circular frequencies up to sixth order as 17.05, 56. 36,
160.81, 505.09 and 822.57 rad/sec and the related
eigenvectors. The time-history analysis is carried out
by use of the first six modes and by taking &,= &,=
£:=&,= 5= £,=0.05. This is because the displace-
ment solution is converged sufficiently when the
modes up to sixth are employed. The pth degree of
freedom of actual dislacements V, is expressed by Eq.

(24) ,
6 N .
Vo= Z’l bha’ (24)
and its expectation and variance are evaluated based

on the second order approximation as Egs. (25) and
(26) .

E[Vo]= 2 ¢4a +a*Ela?]) (25)

H

Var[Ve]= Ze! §¢ (7'q°+ q'q*Elat]

aAa
+4¢ ' qVElaia;}+ @ 9¥E a}]
+ 4% Elata;]+ ¢ 'g¥E a:a}]
+a*q¥Elatai])— (E[V,]) (26)
If normal dintribution is assumed for the random

@

f

variable «:, the third and fourth moments are given
by the following formulae.®

Elaiasan]=0 @7
Ela:a;apa)=Ela:a;)E [apa) )+ Elaiar)Elaa.]
+E[Q’i&'1 ]E [a/jap] (28)

L T A T A A R RO Ly L R T I B T e T T s T il

28



35#% 5% (1983.5)

£ E W %R 235

M e R S A e A e e A i i *E w

0.4 —
L=35,7{(m)

0.2 —

Expectation

it d A

/

100 V/L

<

D

[

-
=

2] =

2>

»

' 'T VVJMJ\/\JVTW 9’“ “'\Qj

—0.2
—0.4 L-
0. 50
—
=
-
= 0.25
<
>
8
S 0
¢ 2 4 6 8 10
Time (SEC)

Fig. 3 Effect of correlation coefficient of @; on standard deviation of top deflection of example structure

Thus the variance of Eq. (26) can be computed when
the covariance matrix of @: is given once, and the
assumption is made as above. Figure 2 shows the time
-history of the expectation and 3-¢ bounds of the top
deflection of the example tower in the case of 0.5 for
the standard deviations of @; and p=1 of the correla-
tion coefficient between @: and a; (i, j=1~6) . The
standard deviations o of the top deflection are com-
pared in Fig. 3 in the cases of p=1, 0 and —1.Asis
shown, the difference of the correlation coefficient o
hardly influences the response standard deviation,
and the reason why seems to be the conspiquousness
of the effect of @1 over the others, because the pri-
mary mode is predominant in this case.
7. Conclusions

The general equation of motion of linear vibration
system with multiple-support exctation is prenented.
The relationship between the fluctuation of damping

ratio and that of response is formulated based on the

modal decoupling and the second order perturbation

technique. The modal decoupling is discussed in the
case that damping matrix is not diagonalized.
Through the numerical example of the time-history
analysis of a tower-like structure subjected to seismic
wave, the effect of the uncertainty of damping ratio is
evaluated quantitatively to evidence the applicability
of the stochastic finite element method to time-his-
tory analyses. (Manuscript received. March 17, 1983)
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