UDC 624.072.2

新離散化モデルによる粘弾性地盤上の梁の解析

An Analysis of Beams on Viscoelastic Foundations by Means of New Discrete Models

竹内則雄*•三藤正明**•川井忠彦*** Norio TAKEUCHI, Masaaki MITO and Tadahiko KAWAI

1. まえがき

川井によって提案された新離散化モデル¹¹の梁要素 は、通常の骨組構造物はもちろん、杭とか矢板のように 弾性地盤、あるいは弾塑性地盤と構造物の連成問題にお いても、きわめて有効であることが竹内²¹によって確か められている.

粘弾性地盤上の梁は、たわみと地盤反力が時間ととも に変化するため、数式上の取り扱いがきわめて複雑にな る一方、実際の挙動をより正確に表しているものと思わ れる.本論文では、Freudenthal, Lorsch³⁾によって線形 粘弾性地盤上の梁の解析に用いられた Kelvin モデル、 Maxwell モデル、Standard solid モデルの3タイプの地 盤を想定し、これを川井モデルに適用して、園田⁴⁾らが固 有関数を用いて求めた解析解との比較を行った。

2. 粘弾性モデル

粘弾性体は、時間に依存する力学的特性をもち、力と たわみが比例するばねと、力がたわみ速度に比例する粘 性ダッシュポットの組み合せにより近似的に表現でき、 その組み合せによって数多くの構成式が提案されてい る.本論文では、それらのうち図-1に示す3種の粘弾性 地盤モデルを想定した.(a)はばねとダッシュポットが 並列に結合されている Kelvin モデル、(b)はばねとダ ッシュポットが直列に結合されている Maxwell モデ ル、(c)はばねと Maxwell モデルが並列に結合されて いる Standard solid モデルである.ここで、図中のk, k_1 , k_2 はばね定数、 η は粘性係数、P は力を表す.Standard solid モデルは、Kelvin モデルと Maxwell モデル を重ね合わせたものと考えられる.図-1(c)のばね k_1 が非常に大きければ Kelvin モデルと同様なものにな り、ばね k_2 が非常に小さければ、Maxwell モデルと同様

各モデルに対する力学的特性を明確にするため、一定 の力が作用した場合の時間とたわみの関係を図-2に示

なものになる.

*** 東京大学生産技術研究所 第2部

(a) Kelvin モデル (b) Maxwell モデル (c) Standard solid エデル

図-2 一定の力が作用した場合の各モデルの 時間・たわみの関係

す.図-2より理解されるように、Kelvin モデルは、たわ み速度が時間とともに減じてゆき、最終的にたわみは、 Winklerの値に収束する.それに対し、Maxwell モデル は、力が作用した瞬間は弾性たわみを示すが、その後は 時間に比例してたわみが線形増加をし定常クリープ現象 となる.一方、Standard solid モデルは、力が作用した 瞬間は弾性たわみを示しているが、その後はたわみ速度 が時間とともに減じてゆき、Kelvin モデルと同様、たわ みが一定値に収束する.この Standard solid モデルは、 Kelvin モデルと Maxwell モデルの中間の挙動を表現し ており、3 モデル中では最も現実の地盤に近いものと思 われる.

3. 粘弾性地盤上の梁の定式化

川井によって提案された離散化モデルにおける梁要素 の剛性行列を誘導する方法は、文献(5)にすでに与えら れている.ここでは、粘弾性地盤の取り扱い方を Kelvin モデル、Maxwell モデル、Standard solid モデルの 3タ イプについて行う.

(1) Kelvin モデルの定式化

カ P は、ばねとダッシュポットに配分されるが、変位 y が共通であることより、以下の関係が得られる.

^{*(}株)協和コンサルタンツ

^{**} 五洋建設(株)

P=ky+ŋý (1)
 ここで、kはばね定数、ŋは粘性係数で上付きの・は、時間による変化率を表す。したがって

 $y = P/\eta - y/\tau$ (2) ここで、 $\tau = \eta/k$ は遅延時間である。

力 P が、 Δt 間において変化すると仮定して増分変位 を求めるため、(2)式を山田の方法⁶⁰ を用いて増分形式 で表す.このとき、以下のような増分力 ΔP と増分変位 Δv の関係式が得られる.

$$\Delta P = (\Delta y - \Delta y_a)/c(t) \tag{3}$$

$$c(t) = \{1 - [1 - \exp(-\Delta t/\tau)] \cdot \tau/\Delta t\}/k$$
(4)

$$\Delta y_a = [P/k - y][1 - \exp(-\Delta t/\tau)]$$
(5)

ここで, t は任意の時間, △t は増分時間である.

(2) Maxwell モデルの定式化

全変位量は, ばねおよびダッシュポットから得られる 変位の和である, ゆえに,

$$\dot{P} = k\dot{y} - P/\tau \tag{7}$$

となる.ここで、r = n/k は緩和時間である.(7)式を差 分表示すれば、増分力 ΔP と増分変位 Δy の関係式は次 のように得られる.

$$\Delta P = k \cdot \Delta y - P \cdot \Delta t / \tau \tag{8}$$

(3) Standard solid モデルの定式化

増分力 *P*は, Maxwell 要素とばねに配分される増分 力 *P*₁, *P*₂の和である。ゆえに

$\dot{P} =$	$\dot{P_{1}} + \dot{P_{2}}$		(9)
である。	ここで, <i>P</i> 1	, <i>Ի</i> ₂は,	
÷	· ·		()

$$\begin{array}{ll} P_{1} = k_{1} \, \dot{y} - P_{1} / \tau & (10) \\ \dot{P}_{2} = k_{2} \, \dot{y} & (11) \end{array}$$

である. (10), (11)式を(9)式に代入する.

 $\dot{P} = (k_1 + k_2) \cdot \dot{y} - P_1 / \tau \tag{12}$

ここで、 k_1 , k_2 はばね定数, $\tau = \eta/k_1$ である. (12)式を差 分表示すれば、増分力 ΔP と増分変位 Δy の関係を次の ように得ることができる.

 $\Delta P = (k_1 + k_2) \cdot \Delta y - P_1 \cdot \Delta t / \tau$ (13) 以上で各地盤タイプの増分力 ΔP と増分変位 Δy の関 係式が求まった.次に新しい梁要素に関する定式化につ いて説明する.なお、これ以後の定式化の説明は、各モ デルとも同一であるため、Standard solid モデルを用い て説明し、他の2 モデルについての詳細な説明は省略す る.

さて、新しい梁要素では、剛体変位を仮定しているの で、図-3に示すように要素重心での垂直方向変位をv、 回転を θ とすれば、任意点における変位yは、

$$y = v + \theta \cdot x$$

$$y_{L,x}$$

 θ_{Av}
 ψ_{A}
 ψ_{A}
 ψ_{Av}
 ψ

$$= \begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} 0 \\ \theta \end{bmatrix}$$
$$= \mathbf{B} \cdot \mathbf{U} \tag{14}$$

$$B = \begin{bmatrix} 1 & x \end{bmatrix}$$
(15)

$$U' = {}_{1}v \quad \theta_{1} \tag{16}$$

となる. 増分外力を ΔF とし,仮想増分変形を $\delta \Delta U$ とす れば,増分形仮想仕事式は以下のようになる.

$$\delta \Delta U^{t} \cdot \Delta F = \int \delta \Delta y \cdot \Delta P dx$$

= $\int \delta \Delta y [(k_{1}+k_{2}) \cdot \Delta y - P_{1} \cdot \Delta t/\tau] dx$
= $\delta \Delta U^{t} \cdot \int B^{t} \cdot (k_{1}+k_{2}) \cdot B dx \cdot \Delta U$
 $- \delta \Delta U^{t} \cdot \int B^{t} \cdot P_{1} \cdot \Delta t/\tau dx$ (17)

$$\Delta F = \int B^{t}(k_{1}+k_{2})Bdx \cdot \Delta U - \int B^{t} \cdot P_{1} \cdot \Delta t/\tau \ dx$$
(18)

$$\int \boldsymbol{B}^{t} \cdot (k_{1} + k_{2}) \cdot \boldsymbol{B} dx = (k_{1} + k_{2}) \begin{bmatrix} l & 0 \\ 0 & l^{3}/12 \end{bmatrix}$$
(19)

$$\int \boldsymbol{B}^{t} P_{1} \cdot \boldsymbol{\varDelta} t / \tau \, dx = P_{1} \cdot \boldsymbol{\varDelta} t / \tau \begin{bmatrix} l \\ 0 \end{bmatrix}$$
(20)

ここで, *l* は梁長であり, *P*_i は要素重心の値を用いた。 以上により、増分外力と増分変形の関係が求まった。

新しい梁要素の剛性行列に(19)式で示したばね剛性を重 ね合わせ、時間 t=0の弾性解を初期値とし、その後は、 初期ひずみ法⁷⁾に従ってくり返し計算を実行し、任意時 間の解を求める.ただし、Kelvin モデルは、 Δt を小さく とり、初期値を求めた.この弾性解を用いて、(20)式よ り、時間 Δt 後の増分荷重を求める。この増分荷重を用 い、平衡方程式を解くことにより増分変形 ΔU が求ま り、さらに増分地盤反力 ΔP を求める。これらの増分値 を初期値に加算することにより、 Δt 時間の値を求める。 その後は、 Δt 時間の値を初期値とし、同じ手順をくり返 すことにより、次の時間増分 Δt に対する解が求まる。

Maxwell モデル, Kelvin モデルについて言及すれば, (17)式の *ΔP* の項におのおの(8)式と(3)式を代入し, その後は, Standard solid モデルと同じ手順により計算 すれば良い.

4. 数 値 計 算

数値計算例として,両端自由な一様断面梁の中央に,

集中荷重が作用した場合を考えた。用いたパラメーター は、3モデルのばね定数をすべて等しいとし、断面定数 を $(EI/k)/l^4 = 10^{-3}$ となるよう決めた.ここに、E は梁の 弾性係数、I は梁の断面二次モーメントである。計算に用 いた時間きざみは、Kelvin モデルでは $\Delta t/\tau = 0.005$ 、 Maxwell モデル、Standard solid モデルでは $\Delta t/\tau = 0.5$ である。また、Kelvin モデルについては、簡単のため、 (19) 式中の回転項の剛性を梁要素の剛性に重ね合わせる ことを行わなかった。計算ケースとしては、梁の分割数 と解の収束性を調べるため、半梁長を5、10、15、20 分 割の合計 4 ケース行った。

図-4,5,6は,t/r=0から $t/r=\infty$ における各モデ ルのたわみ,曲げモーメント,地盤反力を園田らの解析 解と比較したものである.図は10分割の例で,実線が園 田らの解,〇印が川井モデルによる計算結果を表してい る.たわみは,中央点でやや大き目の値を示しているが, 全体的に見ればきわめて良好な精度で解が求まってい る.また,曲げモーメント,地盤反力は,梁全体を通し て,良好な結果を示している.図-7,8,9は,各モデ ルの中央点のたわみ,曲げモーメントの誤差および中央 点付近の地盤反力の誤差と分割数との関係を,t/r=0か ら $t/r=\infty$ までの各時間に対してプロットしたものであ る.たわみと地盤反力の誤差は,分割数が多くなるにつ

478 34巻11号(1982.11)

速

研

究

中央点の誤差評価

梁の中央点の誤差評価

れて減少し, また, 時間の経過とともに減少することが わかる。曲げモーメントは、分割数が増すにつれて、高 目の解に収束し,時間の経過とともにこの値は減少する. しかし、誤差は、正解に対して1~2%であるため、工 学的にほとんど問題にならないと思われる.

前に述べたが、計算手法としては、簡単な差分式を用 い、また、時間きざみも大きく取ったが、全般的に良好 な精度で解が求まることがわかった.

5. *±* ٢ kh

川井によって提案された新離散化モデルを用いて、粘 弾性地盤上の梁の解析を行った。地盤モデルは、Kelvin モデル, Maxwell モデル, Standard solid モデルの3タ イプ考慮し、半梁長について10分割程度すれば、良好な 解が得られる. 誤差は、曲げモーメント、地盤反力がた わみに比べて小さく、また、時間の経過とともに減少し てゆく、以上のように、本モデルは剛体変位場を仮定し、 地盤の影響をあらかじめ積分することにより支点ばねと して導入しているため,取り扱いが非常に簡単になって いる、それにもかかわらず、本モデルは、精度の高い要 素となっており、今後粘弾塑性地盤の梁の解析に対して も有効に利用できるものと思われる、

(1982年8月4日受理)

考 文 献

- 1) Kawai, T.: New element models in discrete structual analysis, 日本造船学会論文集, 第141号 (1977)
- 2) 竹内則雄,神尾洋一,川井忠彦:新しい梁モデルによる 地盤を考慮した骨組構造物の極限解析,第27回構造工学 シンポジウム論文集, pp. 189~198 (1981)
- 3) A. M. Freudenthal and H.G. Lorsch: The Infinite Elastic Beam on a Linear Viscoelastic Foundation Journal of the Engineering Mechanics Division, Proc. ASCE, Vol. 83, No. EMI, pp. 1158~1158-22 1957.
- 4) 園田恵一郎,小林治俊,石尾年光:線形粘弾性基礎上の はりの解析, 土木学会論文報告集, 第247号1976年3月
- 5) 竹内則雄,神尾洋一,川井忠彦:新しい梁モデルによる 弾性床上の梁の解析, 生産研究, Vol. 33, No. 1, pp. 18~21 (1981)
- 6) 山田嘉昭: 塑性・粘弾性, 有限要素法の基礎と応用シリ ーズ6, 培風館, 1981, pp. 130~135
- 7) 桜井春輔:有限要素法の地盤・岩盤への応用,経営開発 センター,講習会テキスト, pp.58~68