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Abstract

A 8-bit non-pipeline microcontroller equipped with completion detection capability is

designed by using dual-rail domino circuit. The microcontroller is designed based on

the instruction set of Z80 microcontroller. It is implemented with Rohm 0 .35ƒÊm CMOS

technology with chip size of 4.9•~4.9mm2, and the measurement results reveal that it could

functionally works correctly regardless of the variations due to the instruction dependency
,

data dependency, and the inter-chip variability. The microcontroller achieves an average

speed performance of 23.3ns for evaluation time, and it needs 2 .2ns for precharge time at

nominal supply voltage of 3.3V. It also exhibits an automatic performance adaptation to

the physical properties such as power supply voltage.

Along with these, this paper presents a new footless dual-rail domino circuit that effi-

ciently combines a footless dynamic circuit technique with a robust self-timed precharge

scheme for high performance VLSI circuit design. Besides, the proposed circuit achieves

a whole footless dual-rail domino circuit with the use of the proposed separator . A 20-

stage NAND chains are implemented both in 0.15μm SOI CMOS technology and 90nm

bulk CMOS technology for performance evaluation . Measurement results reveal that the

proposed circuit achieves speed improvement over the circuit implemented with the con-

Ventional Static CMOS, CPL, dynamic DCVSL , D4L, and DR-domino.
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Chapter 1

Introduction

1.1 Background

Recent advances in VLSI have continued to shrink device geometries at a steady rate

in accordance with Moore's Law. However, this advancement has also been accompanied

by increasing variations in the performance of fabricated circuits as shown in Fig. 1.1[1].

As we scale down technology to the sub-100nm feature size, both intrinsic device varia-

tions and process lithography control issues are increasing the statistical variability of each

gate in a circuit[2]. This delay variation causes the expected delay for a circuit, which

is the expected value of the maximum of all the path delays, to grow larger as the wall

of critical paths gets taller. The increasing performance variation results in even higher

timing margin cost issues associated with global, periodic, and common clock that is the

temporal basis for synchronous circuits. In synchronous circuits, a significant percentage

of the clock period is dedicated to margin during which there is no useful logical com-

putation. The speed at which integrated circuit operate varies with the circuit fabrication

process, and fluctuations in operating temperature and supply voltage. In order to achieve

a reasonable shield against these variables, the clock period is extended by a certain mar-

gin. The importance of accurately estimating the margin is directly related to a company's

overall revenue. An overestimation increases the design complexity, possibly leading to an

increase in design time complexity, an increase in die size, rejection of otherwise good de-

signs and even missed market windows. Conversely, an underestimation can compromise

the product's performance and overall yield, as well as increase the silicon debug time[3].

In current practice, these margins are often 100% or more in high-speed circuits[4]. We

are expecting, as the CMOS scaling trends going on, the timing margin of the clock is be-

coming a high performance design obstacles for synchronous chips in the future gigascale
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integration circuits.

Fig.1.1: Performance variability [1].

Therefore, one must find out an exit for new paradigm by using other circuit design. The

obvious way to avoid these problems is to throw out the clock. In this research, hereby, a

design scheme which takes advantage of dual-rail domino circuit is used to design a micro-

controller with completion detection capability. With the completion detection capability,

the microcontroller could eliminate the necessity of the use of globally distributed clock;

hence offers the following benefits:

•EAvoidance of clock skew-Synchronous design methodologies use a global clock

signal to regulate operation, with all state changes in the circuit occurring when the

clock signal changes level. As the feature size decrease and the integration levels

increase, the physical delays along wires in a chip are becoming more significant,

causing different parts of the circuit to observe the same signal transition at different

times. If the affected signal is a clock, then this time difference, known as clock skew,

limits the maximum frequency of operation of a synchronous circuit [5]. Through

careful engineering of the clock distribution network, it is possible to mitigate the

clock skew problem, but solutions such as balanced clock trees [6] are expensive in

silicon area and power consumption and require extensive delay modeling and sim-

ulation. The absence of a global clock in the proposed microcontroller design avoids

the problems of clock skew and the complexity of the clock distribution network.

・ Average-instead of worst-case performance-The fixed clock period of synchronous

circuits is chosen as a result of worst-case timing analysis. It is not adaptive and
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therefbre  does not take advantage of average-or even the best-case computational

situations. In contrast, the proposed microcontroller senses when a computation has

completed, allowing it to exhibit average-case performance. Therefore, there is an

opportunity to achieve increased performance where the worst-case situation is rare,

and when the difference between the worst-case and average-case latencies is signif-

icant. Arithmetic circuits provide good examples. Arithmetic circuit performances

are typically dominated by the propagation delay of carry or borrow signals. The

worst-case propagation situation rarely occurs, yet synchronous arithmetic circuits

must be clocked in a manner that accommodates this rare worst-case condition.

・ Automatic adaptation to physical properties-The delay through a circuit can change

with process-voltage-temperature variations in fabrication. Also, adaptive power

supply voltage can be lowered when speed is not required. Since power depends

quadratically on voltage, the combination of slow-down and adaptive supply yields

a cubic power saving with the reduction of speed. In addition, leakage power, which

becomes more significant in newer process technology, can also be managed by re-

ducing the supply voltage[7]. Synchronous circuits must assume that the worst

possible combination of factors is present and clock the system accordingly. It is

easier to vary supply voltage in the proposed microcontroller since there is no need

to coordinate simultaneous variation of the clock frequency.

・ Low power-Power consumption is important in many embedded systems where bat-

tery life is at a premium. In larger, higher performance, systems power consumption

affects the packaging cost of the system due to the need both to supply the energy

onto the chip and to remove the heat generated. Clockless design can reduce power

consumption by avoiding two of the problems of synchronous design:(i) All parts

of a synchronous designs are clocked, even if they perform no useful function; (ii)

the clock line itself is a heavy load, requiring large drivers, and a significant amount

of power is wasted just in driving the clock line. There are synchronous solutions to

these problems, such as clock-gating, but the solutions are complex[8]. In the pro-

posed microcontroller design, it often requires more transitions on the computation

path than synchronous circuits due to the use of dual-rail domino circuit. However,

low power design techniques targeting dual-rail domino circuit have been proposed

and can be implemented with ease, resulting in transitions only in areas involved in

the current computation.
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・ Improved electro-magnetic compatibility(EMC)-The global synchronization of

a clocked design caused much of the activity in the circuit to occur at the same

instant time. This concentrates the radiated energy emissions of the circuit at the

harmonic frequencies of the clock. Synchronous design approaches to spreading this

radiated energy across the spectrum, such as varying the clock period, are complex to

implement and affect the performance of the systems since the clock period can only

be made longer(not shorter) than the minimum for safe operation of the circuit. In

contrast, the activities in the proposed microcontroller are uncorrelated, producing

broadband distributed interference spread across the entire spectrum. This can be

significant advantage in systems which use radio communication where interference

must be minimized.

To design the proposed microcontroller, we are looking for one complete CAD system

suitable for all design tasks including specification, design, simulation, validation, verifi-

cation, debugging and synthesis. Naturally, since the CAD system is the tool rather the

research, and since such a grand CAD system requires immense resources to develop and

maintain, we have turned to the domain of commercial CAD products in our quest. Unfor-

tunately, no large scale commercial CAD systems are available for such design. Therefore,

a design methodology for the design of microcontroller with completion detection capabil-

ity based on the commercial synchronous CAD system is proposed. A design discipline is

developed by which any explicit dependence on the clock is carefully avoided. The circuit

synthesized by the tool into a synchronous structure, but subsequently it is converted into

dual-rail domino circuits that could yield the completion detection capability.

1.2 Dual-Rail Domino Circuit

1.2.1 Dual-Rail Logic

In this study, a design scheme which takes advantages of dual-rail logic is used to elim-

inate the necessity of global clock. In dual-rail circuits, 1-bit signal is encoded into 2-bit

status, i. e. status 01 and status 10, to express the valid state of signal 0 and signal 1. Status

00 is used as a spacer to express that no valid data is being transferred on the data line.

The dual-rail signaling encoding is summarized in Table 1.1 The built-in redundancy in

dual-rail logic can be effectively exploited for completion detection and error detection, as

shown in Fig.1.2. Also, in such microcontroller design, hazards must be removed from the

circuit, or not introduced in the first place, to avoid incorrect results. Dual-rail logic avoids
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the problem  as it guarantees hazard-free operation [9]. By using dual-rail communicating,

the proposed microcontroller is delay-insensitive in the sense that its functionality is un-

affected by any wire or buffer delays that are inserted. This allows it to exhibit average-

instead of worst-case performance as in synchronous circuits.

Table 1.1: Dual-rail signaling encoding.

Fig.1.2: (a) Completion detection circuit for 2-bit signal (b) error detection circuit for 2-bit

signal.

1.2.2 DCVSL Cell Library

The standard cell library is specially designed in DCVSL (Differential cascode Voltage

Switch Logic) [10] circuit style which suited the dual-rail logic principle. DCVSL is a

dynamic logic with precharge, and can generate a completion signal from its differential

property.

DCVSL circuit have two behavior that lead to it's usage in dual-rail logic. (i) During the

precharge phase, input data has no effect on the output values. That means no matter what

value of data appears at the input lines, the outputs will be precharged to low (ii) During

the evaluation phase, the DCVSL gate begins evaluation as soon as the input data are valid.

When the input data are not valid, the DCVSL gate remains at the precharge state. These

two behavior lead to latch-free and simple handshake protocol. Two basic DCVSL circuit

designs, NAND gate and NOR gate, are shown in Fig.1.3. DCVSL circuit cannot operate

with traditional flip-flop because the outputs of flip-flop must remain its previous state or
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to keep 00 state during one instruction execution. To solve this problem, dedicated flip-flop

are designed, which is shown in Fig.1.4.

The penalty of using DCVSL logic is the increased power dissipation compared to static

CMOS as well as dynamic circuit techniques which use single-ended logic gates. In order

to minimize the power consumption, the microcontroller is designed so that only the re-

quested blocks can be activated and consumes power. Moreover, there is no need for clock

distribution network, thereby, further contributing in saving power.

Fig.1.3: DCVSL:(a) NAND gate(b) NOR gate.

Fig.1.4: Flip-flop design for DCVSL circuit system.

1.2.3 Completion Detection Circuit

Since the microcontroller does not have a global clock to act as a timing reference, it

must generate completion signal by itself. In order to do so, its data paths are implemented
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with DCVSL. DCVSL logic uses redundant logic encoding that can provide completion

information as part of the logic signals. During the evaluation phase, the DCVSL gate

begins evaluation as soon as the input data are valid, and the outputs of the DCVSL gate

become 01 or 10. When the input data are not valid, the DCVSL gate remains at the

precharge state with outputs remain as 00. Thus, by adding a static CMOS OR logic at

the outputs of the DCVSL logic can act to sense when a computation is completed. This

approach eliminates the need for a delay matching circuit; hence average-instead of worst-

case performance is achievable.

Since the microcontroller is designed based on the instruction set of Z80 microcontroller

by adopting non-pipeline architecture, completion detection is needed only at the end parts

of the combination circuits. The completion of all the instructions of Z80 occurs only when

one or more of the registers, memory and I/0 are written. Thus, by placing completion

detection circuits at the inputs of the data paths to the registers, memory and I/O, and apply

a logical AND to the outputs of the completion detection circuits can act to detect when an

instruction is completed. To which completion detection circuits should function differed

from each of the instructions, hence control signal generated at instruction decoder are

needed to assign to which completion detection circuits are to be checked for functionality.

The completion detection circuit is shown in Fig.1.5.

Fig.1.5: Completion detection circuit.



8

1.2.4 Error Detection Circuit

One of the primary motivations for this study is the need for low power in many fault-

tolerant systems. The current way of providing high-coverage error detection with con-

ventional synchronous circuits is to run two in lock-step and compare them. Its power is

thus doubled in a duplex configuration. Completion detection style designs are expected

to require considerably less power than two synchronous chips.

DCVSL signaling redundancy can be used to provide error detection. Consider a DCVSL

circuit in Fig. 1.3. The circuit is designed so that a single transistor fault or error will only

affect one of the two sides(true or complement), and thus will only affect one output. The

fault will cause an error output pair of 00 or an illegal output pair of 11. Failure to precharge

will eventually result in a 11 output while failure to pull down through the common pull

down transistor will results in 00 outputs. Precharging while evaluating or pulling down

while precharging cause degraded signals that will either result in the correct output, 11

or 00 depending upon transistor sizing. Given that faults in single-level DCVSL circuits

produce 11 or 00 outputs, it is easy to show that a multi-level network behaves similarly.

When a good circuit receives incorrect signal input pairs from a faulty circuit(i.e. 00 or

11), it will produces either the correct output or in an output of 00 or 11. A 00 input can

only prevent a side from being pulled down, producing an error output of 00. Similarly, an

11 on an input pair can only produce an error output of 11. These error will be masked or

propagated through multiple levels of DCVSL circuits and be at the output[11].

Error detection circuit that functioning to detect the illegal output pair of 11 is designed,

as shown in Fig. 1.6. If one of the input circuits fails to complete and generates a 00 signal

pair, then a completion signal would never be generated due to no completion, and the

error can be detected by using a timer.
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Fig.1.6:Error detection circuit.
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Chapter 2

Architecture

2.1Non-pipeline Architecture

One of the fundamental decisions to be made in the design of a microcontroller is the

choice of the structure of the pipeline. The pipeline is a design technique that allows an in-

creased data flow throughput to pass through a combinational block. It consists of dividing

the combinatory logic blocks into several stages. For each stage, a task performed which

yields a partial result. As a result, the performance gain is an increase in the through-

put of the results, which is related to balanced divisions of the pipeline stages. Pipeline

registers are inserted between stages to ensure data flow synchronization. For some time,

the VLSI community has been dramatically improving the performance of synchronous

designs thanks to the use of global clocks to synchronize the switching activity between

pipeline stages.

Recently, ample evidence has emerged showing that this global synchronous approach

has started to encounter major difficulties[12]. Among these difficulties are(i) circuitry has

to operate constantly at a frequency determined by the longest path in the combinational

logic even it is not necessary to do so,(ii) registers are triggered by the clock at each cycle,

and subsequently dissipates energy whether the state has changed or not,(iii) numerous

clocked blocks in a large design must be synchronized in order to insure correct operation, a

requirement that is increasingly difficult to satisfy when faced with the growing dominance

of interconnect delays, and(iv) the constant switching of the clock can cause surges in

power-supply noise and electromagnetic emissions.

In view of the imminent difficulties caused by the pipeline architecture; hence non-

pipeline architecture is adopted for the proposed microcontroller design(Fig.2.1). With-

out the use of clock for synchronization between the pipeline registers helps to avoid the
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problems related to clock. In addition, dual-rail domino circuit is utilized so that signal

transitions are limited to one within one cycle of instruction execution. This should effi-

ciently decrease the switching noise. As the result, the waveform of the internal signals is

expected to be relatively stable in the microcontroller.

Fig.2.1:(a) Pipeline architecture(b) non-pipeline architecture.

2.2Multiplexer Architecture

In the proposed microcontroller, rather than using bus architecture, the multiplexer ar-

chitecture is preferred to ease the completion detection. In the bus architecture, the high

impedance state of inout signals cannot be used to sense when a computation is completed

by using dual-rail domino circuit. In contrast, in the microcontroller based on multiplexer

architecture, completion detection can be easily sensed due to the non-existence of high

impedance state.

In the bus architecture(Fig.2.2(a)), the inout signals could be realized easily through the

implementation of tri-state cell and tri-state bus. Nevertheless, the high impedance state of

inout signals cannot be used to sense when a computation is completed by using dual-rail

domino circuit. This results the existence of uncertainty state in completion signal. The

uncertainty state in completion signal could stall the operation due to no completion of

the instruction. In contrast, in the microcontroller based on multiplexer architecture(Fig.

2.2(b)), the uncertainty state in completion signal is disappeared due to the non-existence

of high impedance state. Furthermore, data are transferred using dedicated lines, so that

the bus drivers need not to drive the extra capacitance related to unnecessary drivers and

receivers, which results in a reduction of power dissipation. The multiplexer architecture

is able to reduce the power dissipation by about 30% compared to similar bus architecture

[13]. By adopting multiplexer architecture, the number of transistors used in the proposed

processor is decreased by 9,916, which is about 7.4% if compared to bus architecture as

shown in Table 2.1. However, the inout signals could not be realized in the multiplexer
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architecture. Instead of using inout signals directly, there is a need to represent the inout

signals by using input and output signals separately.

Fig. 2.3 shows the structure of the proposed microcontroller built on the conventional

multiplexer circuits. Noted that the data flow is controlled dedicatedly by the control sig-

nals generated from the instruction decoder, and registers are only used in the final stage

of the structure to store the data.

Fig.2.2:(a) Bus architecture(b) multiplexer architecture.

Table2.1: Transistors used in different architectures.

Fig.2.3: Conventional multiplexer architecture.
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2.3 Instruction Set

The proposed microcontroller is designed based on the instruction set of Z80 microcon-

troller [14]. Although Z80, which was first developed in 1976 by Zilog, Inc., might be an

out-of-date microcontroller, it is still widely used in embedded applications and can be a

good comparison standard for our new design. The Z80 instructions fall into theses major

groups:

・ Load and Exchange-The load instructions move data internally among CPU regis-

ters or between CPU registers and external memory. The exchange instructions can

trade the contents of two registers.

・ Block Transfer and Search-The block transfer instructions allow a block of memory

of any size can be moved to any other location in memory.

・ Arithmetic and Logical-The arithmetic and logical instructions operate on data

stored in the accumulator and other general-purpose CPU registers or external mem-

ory locations.

・ Rotate and Shift-The rotate and shift instructions allows any register or any memory

location to be rotated right or left, with or without carry either arithmetic or logical.

・ Bit Manipulation(Set, Reset, Test)-The bit manipulation instructions allow any bit

in the accumulator, any general-purpose register, or any external memory location to

be set, reset or tested with a single instruction.

・ Jump, Call and Return-The JUMP, CALL and RETURN instructions are used to

transfer between various locations in the user's program.

・ Input/Output-The input/output group of instructions allow for a wide range of trans-

fer between external memory locations or the general-purpose CPU registers, and the

external I/O devices.

・ Basic CPU Control-The basic CPU control instructions allow various options and

modes such as setting or resetting the interrupt enable flip-flop or setting the mode

of interrupt response.

The microcontroller supports 157 instructions from the 198 instructions possessed by

Z80. This includes the load instructions, block transfer and search instructions, arithmetic
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and logical instructions, rotate and shift instructions, bit manipulation (test) instructions,

JUMP, CALL and RETURN instructions, and input/output group of instructions. However,

the microcontroller does not support the exchange instructions, bit manipulation (set, reset)

instructions, and the basic CPU control instructions due to the restrictions imposed by its

architecture.

2.4 Structure of Microcontroller

The architecture of the microcontroller is redesigned so that the proposed 8-bit non-

pipeline microcontroller built on dual-rail domino circuit could be realized. As the result,

it is designed with 6 operation units, 12 CPU registers, and 168-bit control signals. The

control signals are used to control 76 selectors in the microcontroller due to its multiplexer

architecture. Also, 6 operation units need to be used as the reuse of the operation units are

prohibited due the DCVSL's latch-free behavior of the microcontroller. In some of the Z80

instructions, for instance the 16-bit load instructions, the upper and lower 8-bits of the  16-

bit CPU register needs to access memory twice during a cycle of operation. Since DCVSL

behaves in such a way that no changes in inputs is allowed before the next precharge phase,

two data and two address buses need to be used to ensure that the buses work properly [15].

The structure of the microcontroller is featured in Fig. 2.5, and the original Z80 structure

is shown in Fig.2.4.

2.5 Self-Recovery

A self-recovering circuit can detect and recover from a transient fault. Conventional

method to synthesize the self-recovering circuit is to duplicate the computation. The two

copies of the computation then execute on disjoin hardware, both copies taking the same

input. A voting circuit checks the result, detecting a fault if the outputs disagree. Once a

fault is detected, the computation then is restarted again [16].

In our study, we have proposed a self-recovery mechanism that takes advantages of

signaling redundancy of the dual-rail domino circuit. This eliminates the need of using the

duplicate circuit as in the conventional method. The self-recovery mechanism is shown in

Fig.2.6. The fault can be detected by using an error detection circuit and a timer for illegal

output pair of 11 and 00, respectively. Once a fault is detected, the computation then is

restarted again. To enhance the success rate of re-computation, the concept of self-recovery

mechanism involving "Smart Clock Driver" is proposed. The "Smart Clock Driver" is
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Fig.2.4: Z80 original structure.

Fig.2.5: Structure of proposed microcontroller.
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functioning as a timing generator to vary the parameters and conditions of the circuit before

the next trial of re-computation. The parameters and conditions of the circuit that are

considered to be varied are those closely related with the occurrence of the faults. This

includes the precharge time, supply voltage (Vdd), and the transistor threshold voltage (Vt).

If the precharge time of the microcontroller is too short, some parts of its domino circuits

might not be precharged during the precharge phase. To effectively ensure that the whole

circuits are completely precharged is to increase the precharge time. The sources of noise

for dynamics circuits include charge leakage and charge sharing [17, 18]. The noise margin

for a domino gate is the threshold voltage of the NMOS transistor. Any input noise above

threshold voltage can turn on the NMOS and discharge the evaluation node capacitance. As

the threshold voltage is scaled with the decreasing power supply voltage, the subthreshold

leakage current become significantly higher which increases the rate of charge loss through

an OFF transistor. One obvious way to combat the problem is to increase the threshold

voltage of the NMOS transistor. On the other hand, the charge sharing occurs when the

charge which is stored at the output node in the precharge phase is shared among the

junction capacitance of transistors in the evaluation phase. Charge sharing may degrade

the output voltage level or even cause erroneous output value. The effective way to combat

the problem is to increase the power supply voltage. Thus, by increasing precharge time,

power supply voltage, or transistor threshold voltage could increase the noise tolerance of

domino circuits. With such adaptive self-recovery mechanism, we are expecting that the

reliability of the proposed microcontroller would be increased.
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Fig.2.6: Self-recovery mechanism involving "Smart Clock Driver".
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Chapter 3

Design Methodology

3.1 CAD Methodology

In this study, we have proposed a design methodology based on the commercial syn-

chronous CAD systems for the design of the microcontroller. Modifications are made so

that the commercial CAD tools can be applicable for the design. A design discipline is

developed by which any explicit dependence on the clock is carefully avoided. The circuit

synthesized by the tool into a synchronous structure, but subsequently it is converted into

dual-rail domino circuits that could yield the completion detection capability.

The overview of the design flow is illustrated in Fig. 3.2. Verilog-HDL description is

used to produce RTL(Register Transfer Level) code that clearly exhibits the functionality

prescribed in the specification. The Verilog-HDL description is then checked to verify the

correctness of the description. The RTL code is used to create an optimized gate-level

single-rail netlist(synchronous style) through logic synthesis. The complementary effect

of dual-rail logic is manipulated to reduce the number of transistors used during the logic

synthesis. For instance, the DCVSL OR gate can be realized by simply interchanging the

output wires of its complementary cell, which is DCVSL NOR cell. The intermediate

single-rail netlist then undergoes gate-level simulation before transferring it to a dual-rail

netlist by using the translation tool that is developed in Perl language. The single-rail netlist

is transferred into a fully dual-rail netlist by overloading all the single-rail assignments as

dual-rail assignments. Precharge signal and buffer insertions are also performed during the

translation. The Verilog-HDL description and its generated netlists are shown in Fig. 3.1.

The generated dual-rail netlist is then checked for fanout analysis, and gate-level simulation

to ensure the correctness of the translation into the dual-rail netlist. Then, place and route

tool is used for placing and routing of the layout from the dual-rail netlist. Finally, the
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layout is checked for DRC verification and transistor-level simulation before submitting it

for chip fabrication through VDEC(VLSI Design and Education Center).

Fig.3.1:Verilog-HDL description and its netlists.

3.2Fanout Analysis

The fanout denotes the number of load gates N that are connected to the output of the

driving gate(Fig. 3.3). Increasing the fanout of a gate can affect its logic output levels.

When the fanout is large, the added load can deteriorate the dynamic performance of the

driving gate. For these reasons, the dual-rail netlist is checked for fanout analysis to guar-

antee that the static and dynamic performance of the element meet specification. In this

study, we use the width of the transistor to serve as the parameter for the fanout analysis

(Fig. 3.4). The specification is defined as the ratio between the total width of the load gates

and the driving gates.

The flow of the fanout analysis can be referred in Fig. 3.2. Buffers would be inserted for

the gates which found to be failed meeting the predetermined specification. In this study,

we have set the specification(i.e. width ratio) as 8. Width ratio of 8 is chosen to ensure

that none of the dynamic performance of the driving gates is deteriorated due to the extra

large load resulting from the improper translation from single-rail netlist to dual-rail netlist.

The analysis is repeated until whole the driving gates inside the dual-rail netlist meet the
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Fig.3.2:Design flow of microcontroller.
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specification. Fig. 3.5 shows the result of the fanout analysis for the dual-rail netlist which

meet the specification, and ready to be used for placing and routing of the layout. From

the figure, about 60% of the driving gates is comprised of width ratio equals to 1. This is

due to the one-to-one connection only between the DCVSL gates.

Fig.3.3:Fanout N.

Fig.3.4:Parameters used in the fanout analysis.
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Fig.3.5:Result of fanout analysis.

3.3Low Power Design

As mentioned above, this study proposes to employ standard commercial logic synthesis

tools to synthesize a large digital system into single-ended synchronous circuits, and to

convert the result into a corresponding dual-rail domino circuits. However, the conversion

process only able to realize the valid status(i.e. 01 or 10), as the single-rail signaling could

at most represents two status(i.e. 0 or 1). Therefore, it suffered from not able to realize the

status 00, which acts as initial status in dual-rail signaling protocol. As the result, one of

the outputs of all the dual-rail domino circuits would always switch during the evaluation

phase. This results in large power consumption, and also other undesirable effects due to

the frequent switching activities. To deal with the problem mentioned above, low power

design techniques based on clock-gating, selective-evaluation, and new multiplexer circuit

have been implemented. The aim is to assure that current only flows along the useful

computation paths, and no unnecessary switching activities along the idle paths.

3.3.1Clock-Gating

Clock-gating has shown to be an efficient technique to significantly reduce dynamic

power dissipation[8]. Because individual circuit usage varies within and across applica-

tions, not all the circuits are used all the time, giving rise to power reduction opportunity.

By ANDing the clock with a control signal, clock-gating essentially disables the clock to

a circuit whenever the circuit is not used, avoiding power dissipation due to unnecessary

charging and discharging of the unused circuit. In a similar way, to reduce the power
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consumption in the microcontroller, clock-gating technique targets the power consumed in

flip-flops have been implemented. Fig.3.6(a) shows the schematic of a flip-flop element.

Cg is the latch's cumulative gate capacitance connected to the internal clock. Because the

clock switches every cycle, Cg charges and discharges every cycle and consumes signif-

icant amount of power. Even if the inputs do no change from one clock to the next, the

flip-flop still consumes clock power. In Fig.3.6(b), the clock is gated by ANDing it with a

control signal. When the flip-flop is not required to switch state, the control signal is turned

off and the clock is not allowed to charge or discharge Cg, saving clock power. Because

the AND gate's capacitance itself is much smaller than Cg, there is a net power saving.

Fig.3.6: Clock-gating a flip-flop.

3.3.2 Selective-Evaluation

To effectively implement the power-saving technique to the dual-rail domino circuit,

module-level implementation of selective-evaluation technique is proposed. Module-level

implementation is preferred to avoid the large overhead incurred by the control circuitry

if implemented in gate-level. The proposed selective-evaluation technique is illustrated in

Fig.3.7(a). The precharge signals (p1~p2), are generated from the decoder in cases of the

corresponding modules are used in the cycle (Fig.3.7(b)). Otherwise, the precharge signals

would remain low, preventing all the domino circuits inside the modules from switching in

the cycle.

The selective-evaluation technique is used to activate or deactivate the operation units

existed in the microcontroller. As many as 6 operation units are used as the reuse of

the operation unit is prohibited in every cycle of instruction execution due to the dual-

rail domino circuit behavior. The operation units, thus, constitute as much as 21% of all

the transistors in the microcontroller. Because individual operation unit usage varies with

instructions, not all the operation units are used all the time, giving rise to power reduction

opportunity.
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Not only the power is significantly reduced, the peak precharge current is also con-

siderably reduced by using the selective-evaluation technique. Fig.3.8 illustrates the

precharge scheme in the conventional microcontroller design. The simultaneous precharge

of all the domino circuits resulting in large peak precharge current, which might causes

an unacceptable IR-drop noise. In contrast, the precharge sequence is delayed during the

precharge phase for the module that was used in the previous evaluation phase by using

selective-evaluation technique. For the module that was idle in the previous evaluation

phase, precharging an already-charged module does not consume power unless there are

leakage losses (which we do not consider in this paper). Both the cases contribute to re-

duce the peak precharge current in the microcontroller. The precharge timing sequence of

the selective-evaluation technique is illustrated in Fig.3.7(b).

3.3.3 New Multiplexer Circuit based on Bulb and Junction Structure

Besides implementing selective-evaluation technique in the module-level targeting oper-

ation units, we have been proposing new low power technique in circuit-level specifically

targeting the multiplexers. Multiplexers have been widely used in the microcontroller due

to the multiplexer architecture which has been adopted. The conventional 2-input multi-

plexer is shown in Fig.3.9. The conventional multiplexer would always switch during

the evaluation phase even it is not used in the cycle. To automatic shut-off the idle parts

efficiently, we have proposed a new multiplexer circuit built on the bulb and junction struc-

ture. To utilize the new multiplexer circuit, the selector signals are described in the one-hot

encoding. Fig.3.10 shows the illustration of the new multiplexer circuit. Also, the 4-

input new multiplexer circuit built on 2-input JUNCTION (JUNC2) gate is illustrated in

Fig.3.11. The BULB and JUNC2 gates used for the construction of bulk and junction

structure are shown in Fig.3.12. The new multiplexer circuit effectively ensures that for

every instruction executed, current only flows through a particular channel of the multi-

plexer circuit selected by the one-hot encoding. For the channel selected by the one-hot

encoding, the precharge signal to its bulb gate would turn high. Consequently, the bulb

gate would enter the evaluation phase. For the rest of the channels, the precharge signals

would remain low, preventing the bulb gates and also the nodes along the channels from

switching in the cycle; hence contributing to power-saving. Also, the delayed-precharge

scheme of the bulb gate, and the effective prevention of the unnecessary switching of the

new multiplexer could help to reduce the peak precharge current.

Fig.3.13 shows the comparison between the conventional multiplexer and the new mul-
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Fig.3.7: Implementation of selective-evaluation in dual-rail domino circuit.
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Fig.3.8: Precharge scheme in conventional microcontroller design.
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tiplexer in terms of number of transistors used in one-hot encoding. The data used is based

on the results on logic synthesis using gates limited to INV1, NAND2, NOR2, BULB, and

JUNC2. The results show that the new multiplexer uses less transistors than the conven-

tional multiplexer if implemented in DCVSL circuit.

Fig.3.9: Conventional 2-input multiplexer.

Fig.3.10: Illustration of the new multiplexer circuit.

3.4 Layout of Microcontroller

The layout of the microcontroller is implemented by using Rohm 0.35ƒÊm CMOS tech-

nology with chip size of 4.9•~4.9‡o2 (Fig.3.14). The total number of transistors used in

layout is 93,975 with core size of 2.2•~2.2‡o2.

The total number of transistors that is used in the layout is notably high if compared to

8,200 transistors that are used in the original Z80 microcontroller. For DCVSL circuit
, no

inputs change is allowed before the next precharge phase. This results in a design that for

every cycle of operation, at most only one transition is allowed to occur for each of the

inputs of the logic circuits, which contributes to the increased number of transistors. In
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Fig.3.11: Block diagram of the 4-input new multiplexer circuit .

Fig.3.12:(a) BULB gate (b) JUNC2 gate.
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Fig.3.13: Transistors used in multiplexer using one-hot encoding.

addition, DCVSL circuit used in the microcontroller consumes more transistors than static

CMOS circuit as shown in Table 3.1.

Fig.3.14:(a) Layout of microcontroller (b) overview of chip fabricated.

3.5 Operation of Microcontroller

The proposed microcontroller is simulated by using the model which is featured in Fig.

3.15. The microcontroller is composed of three main parts, namely CPU (Central Proces-

sor Unit) circuit, completion detection circuit and error detection circuit. The CPU circuit
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Table 3.1: Number of transistor in DCVSL and static CMOS gate

is composed of dual-rail domino logic circuit, while the completion detection and error de-

tection circuits are composed of static CMOS circuit. The virtual peripheral units needed

for simulation are timing generator, dual-ported memory, instruction memory and I/O de-

vice. The timing generator is employed to control and adjust the timing related items such

as precharge time, register write time, and to serve as a timer. A 64K x 8 dual-ported RAM

(Random Access Memory) memory is used to serve as the data memory of the microcon-

troller. The dual-ported memory is used as there is a need to access memory twice per cycle

for some instructions. Since the dual-port allows both sides to simultaneously access the

memory, it could also enhance the microcontroller performance. A 64K x 32 ROM (Read

Only Memory) memory is used to serve as the instruction memory of the microcontroller.

The operation of the microcontroller is summarized as below.

1. Reset the CPU circuit.

2. Fetch the instruction from the instruction memory directed by instruction memory

address saved inside the Program Counter.

3. Control signals are generated by the instruction decoder in the CPU circuit according

to the instruction being fetched.

4. CPU circuit is executed according to the control signals.

5. Completion signal is generated after the instruction is completely executed in the

completion detection circuit.

6. Internal clock is generated according to the completion signal in timing generator.

(a) Internal clock is synchronized with the external clock.

(b) Computation result is written into registers according to the internal clock.
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(c) Next instruction is fetched according to the internal clock.

Fig.3.15: Simulation model.

3.6 Simulation Results

The simulation is done using transistor-level circuit simulator, NanoSim, in full-chip

simulation. Fig.3.16 shows the waveform of the simulation. The operation of the micro-

controller is divided into two phase, namely precharge phase and evaluation phase. The

evaluation time and the precharge time are also shown in the figure. The evaluation time

is defined as the time lapse between the precharge signal and the completion signal. From

the simulation, the minimum time required for the precharge time is 1.8ns.

The full-chip simulation is also done to estimate the ratio of the evaluation time con-

sumed in different circuit components of the microcontroller. The microcontroller is di-

vided into 4 main circuits, namely single-rail to dual-rail conversion circuit, instruction

decoder, computation circuit, and completion detection circuit (Fig.3.17). Fig.3.18

shows the results of the simulation for two different instructions, which are load (LD A,n)

and subtraction (SUB n) instructions. The result reveals that for arithmetic and logical

instructions such as subtraction instruction, the major propagation delay time occurs in the

computation circuits. In contrast, for others such as load instruction, the time consumed in

instruction decoder becomes the main component for the evaluation time. The instruction
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decoder is considerable large as it is used to generate 168-bit control signals that are used

to control the 76 selectors in the microcontroller. Please note that the time consumed in

completion detection circuit, a hardware overhead in our design, is only 4ns. This means

that if the difference between the worst-case and average-case latencies is more than 4ns,

speed improvement is achievable if compared to the synchronous design.

Fig.3.16: Waveform of full-chip simulation.

Fig.3.17: Circuit components related to evaluation time.

The simulation is also done to evaluate the power-saving efficiency of the proposed low

power design techniques. The power-saving efficiency is measured using two parameters,

namely the energy consumption (Fig.3.19) and the peak precharge current (Fig.3.20). The

microcontroller achieves a total energy reduction of 53% from the low power design tech-

niques that have been implemented. From the total energy reduction, the new multiplexer

circuit and the selective-evaluation technique constitute 33% and 20%, respectively. A to-

tal of 69% peak precharge current reduction is achieved by implementing the low power
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Fig.3.18: The ratio of evaluation time.

design techniques. Specifically, the new multiplexer circuit and the selective-evaluation

technique help to reduce 48% and 21%, respectively. This proves the power-saving effi-

ciency of the proposed low power design techniques.

Fig.3.19: Energy consumption.
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Fig.3.20: Peak precharge current.




