積層ゴムによる重量機器の免震支持(第2報)

免震支持装置についての基礎研究ーその2-

An Aseismic Base Isolation System Using Laminated Rubber Bearings for Heavy Mechanical Equipment (2nd Report : Fundamental Study on Isolation Device—Part 2)

> 藤田隆史*・藤田 聴*・芳沢利和* Takafumi FUJITA Satoshi FUJITA Toshikazu YOSHIZAWA

1. まえがき

本研究では変電機器などの重量機器の免震支持に関し て、積層ゴムを中心要素とした免震支持装置を考案し、 基礎および実用化研究を行っている.前報¹¹では,免震支 持装置の基本構造および免震性能の解析と積層ゴムの設 計法について述べた.本報告では,試作した定格搭載荷 重 10 ton 用免震支持装置の基礎実験について述べる.

2.供試体

実験に用いた積層ゴムは、図1に示すように薄い円板 状のゴムシートと鉄板を交互に重ね,接着した物である。 ゴムシートには天然ゴム系のゴムを使用しており、その 詳細については前報を参照されたい。

免震支持装置は,図2,3に示すような構造を取ってい る。中心に積層ゴムを取り付け,円筒側壁に断面が□状 になった環状物をかぶせ,その上面の8ヵ所に摩擦材を 設けて摩擦ダンパとしている。この摩擦ダンパは,押上 げばねにより上下方向にスライドさせることが可能であ り,被支持体に適当な摩擦力を与えることができる.

3. 実験方法

3.1 実験装置 実験装置本体の概略を図4,図5に 示す. 試作した2体の免震支持装置を上下に向かい合わ せ、その間に水平方向スライド板を設け、水平方向アク チュエータにより強制変位を与えることとした.また, 上側の免震支持装置の底部を鉛直方向スライド板に固定 し、鉛直方向アクチュエータにより、定格鉛直方向荷重 の代替としての荷重を与えることとした.

3.2 測定方法 図5に示すように各測定ピックア ップを設けた.アクチュエータにはロードセルを取り付 け、反力を測定した.実験装置本体フレームと水平方向

* 東京大学生産技術研究所 第2部

図1 積層ゴム

図2 免震支持装置

414 34巻9号(1982.9)

図5 実験装置および計測位置

スライド板の間に変位計を設け水平方向変位を,鉛直方 向スライド板との間には3ヵ所に変位計を取り付け,その 中心部の鉛直方向変位を求めた.さらに,水平方向スラ イド板下面の3ヵ所に非接触変位計を取り付け,中心部 の鉛直方向変位を測定した.免震支持装置の摩擦ダンパ 押上げばね(上・下各8本)にはそれぞれ歪みゲージを 取り付け,押上げ力などを測定した.

3.3 実験項目 積層ゴムは計4個試作し,2個ずつ の組を作りそれぞれ R.B.1,2, R.B.3,4とした.まず摩擦 ダンパ実験 I を行い静・動摩擦係数を測定した.次に積層 ゴム実験 I (R.B.1,2) において水平・鉛直両方向剛性をク リープテスト(100時間程度のクリープテスト)前後に測 定しその影響を調べた.つづいて免震支持装置実験 I を 行い特性を測定した.次に積層ゴム R.B.1,2を取りはず し再び摩擦ダンパ実験 II, R.B.3,4 を用いた積層ゴム実験 II そして免震支持装置実験 II を行った.

4. 摩擦ダンパの実験結果

図 6(a),(b),(c)に摩擦力特性の一例を示す.(a) 摺動された後の実験IIにおける測定値の方が2割程度大 は摩擦力の初期的変動(摩擦材はまったくの新しい状態 きいが、地震時のみに作動することを考えると実験Iの から測定を開始した)の様子であり、しだいに摩擦力は 測定値をもとに設計動摩擦係数を設定すべきであると考

図7 動摩擦係数の速度依存性

減少し10数サイクルで(b)に示すような定常状態にな る.(c)は鉛直方向荷重を増大させほぼ定格摩擦力7.84 KN(800 kgf)を示している状態である。同図より,静・ 動摩擦分の差は認められないことがわかり,図7には, 動摩擦係数とすべり速度の関係を示す。摩擦材が幾度も 摺動された後の実験IIにおける測定値の方が2割程度大 きいが,地震時のみに作動することを考えると実験Iの 測定値をもとに設計動摩擦係数を設定すべきであると考

えられる.また,摩擦ダンパのみで 98 KN (10,000 kgf) の荷重を支持する場合 (バックアップ機構)を想定した 実験においても摩擦力特性は安定していた.

5. 積層ゴムの実験結果

図8に水平方向復元力特性の一例および実験中の鉛直 方向荷重の様子を示す。図9に水平方向ばね定数の周波 数依存性を示すが,周波数依存性は極めて小さい.また, 本実験程度のクリープの影響は無視でき,しかも個体間 のばらつきもほとんど無いことがわかる.しかし,鉛直 方向荷重が減少すると水平方向ばね定数が大きくなるよ うである.図10に水平方向ばね定数の振幅依存性を免震 支持装置実験の結果と比較して示すが,振幅が大きいほ ど水平方向ばね定数は小さくなることがわかる.図11に 鉛直方向復元力特性(免震支持装置の場合と併記)の一 例を,図12に鉛直方向ばね定数の周波数依存性を示す. 今回の実験装置は鉛直方向剛性を測定する際の微小変位 の計測には向かず誤差が大きいと考えられたので,別途, 積層ゴム単体をサーボパルサにセットし測定した結果も 示してある.後者の方がより正確な値と考えられる.な お、水平・鉛直両方向の減衰定数をヒステリシスの幅よ り求めた結果,臨界減衰比にして水平 3.2% (系の水平方 向固有振動数を 0.5 Hz として), 鉛直 11.2% (系の鉛直 方向固有振動数を 21.3 Hz として)程度は少なくとも期 待できることがわかった.

6. 免震支持装置の実験結果

図13(a)に免震支持装置特性および同条件下での積 層ゴムの特性を示す.本実験中における鉛直方向荷重変 動は図13(b)に示す程度である.免震支持装置の特性 は,積層ゴムの復元力特性と摩擦ダンパの摩擦力特性を 足し合わせたものと考えられる.そこで,(a)より積層 ゴムのヒステリシスを差し引くと(c)になるが,このヒ ステリシスにはまだ傾きを持っている.さらに,この傾 きを補正すると(d)の実線となる.図14に免震支持装置 の水平変位による沈み込み量を示す.振幅8 cm で 0.7 mm 程度,ストッパに接触する15 cm で 3.2 mm 程度で ある.同図より,沈み込みによる摩擦力の増加を考慮し た摩擦力特性を計算すると図13(d)の破線となり,実験 結果と良く一致する.したがって,図13 で行った補正は

F(KN)

表1 設計値と実験値の比較				
	水平方向ばね定数	水平方向固有振動数	鉛直方向ばね定数	鉛直方向固有振動数
設計値	86KN/m~113KN/m (87kgf/cm~115kgf/cm)	0.47Hz~0.53Hz	1.4×10 ⁵ KN/m (1.5×10 ⁵ kgf/cm)	19Hz
実験値	88KN/m~137KN/m (90kgf/cm~140kgf/cm)	0.47Hz~0.59Hz	1.78×10 ⁵ KN/m (1.82×10 ⁵ kgf/cm)	21.3Hz

究 研 速

20 (a) 10→X (m) d0⁻² SINUSOIDAL WAVE FREQUENCY 0. DISPLACEMENT 0. 0.5Hz 0.08M VERTICAL LOAD 98.0KN F(KN) -105 -100 - 95 - 90 98 ±088 KN (b) <u>−10</u>≈X (m) ×10⁻² F(KN) 115 236 KN/m ,...√m -10>X(m) *10² (c) F(KN) 10 5 <u>−10</u>>X (m) ×10⁻² (d)

図13 免震支持装置の特性

正しいものであり,図10に示すように免震支持装置の水 平方向ばね定数は積層ゴムのみの場合よりも大きい値が 求められている.この理由として,実験装置の鉛直方向 スライド板に若干ガタがあり積層ゴムのみで測定すると 水平方向ばね定数は低めに出てしまうこと、免震支持装 置実験の場合は積層ゴムにかかる鉛直方向荷重が98 KN (10,000 kgf) より小さく (摩擦ダンパが一部負担し ている)図9からわかるように水平方向ばね定数は元来 大きいことなどが考えられる.図15には過大な水平方向 変位を与え,積層ゴムがストッパに押しあたる様子を示

す.細かい凸凹が多いのは手動で制御したためである. 最後に、前報で報告した設計値と今回得られた実験値と の比較を, 98 KN (10,000 kgf)を支持した場合の水平・ 鉛直両固有振動数も併記して表1に示す.

7. あとがき

今回の実大免震支持装置についての基礎実験により, 試作した積層ゴム・免震支持装置は設計時の要求性能を ほぼ満たしていることが検証できた、この結果をもとに 今後は、縮小モデルによる加振実験および詳細は地震応 答解析を行う予定である、最後に、実験およびデータ処 理に協力されたブリヂストンタイヤ株式会社の鈴木重信 (1982年6月11日受理) 氏に感謝の意を表します。

参考文献

1) 藤田(隆),藤田(聡),芳沢;積層ゴムによる重量機器の 免震支持(第1報),生産研究, Vol. 34, No. 2 (1982)