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A Note on Stochastic Finite Element Method (Part 5)
——A Framework for Structural Safety and Reliability——
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1. Introduction

The objective of the present note is to discuss the
adaptation of the stochastic finite element method the
authors have been developing*®** to structural
safety and reliability. Various uncertainties are in-
volved in actual structures and are regarded as ran-
dom variables. The behaviours of such structures are
well analysed by our method without using any simu-
lation technique, which fact is of great importance
from the aspect of CPU time especially when a finite
element method is concerned. Prior to the detailed
formulation, a couple of concepts in structural re-
liability theory are briefly discussed from our stand-
point.

Let’s denote the random variables mentioned above
by Xi(k=1,2,--,n) or {X}. A structural behaviour
Y such as a stress, strain, displacement, force, eigen-
value and so forth is a function of {X} and is written
in the form of

Y=hr({X}) (1)
Suppose a failure occurs when the following relation
holds.

Z=Y.—Y=g({X}=0 (2)
For the brevity of the description, Y. is taken as
deterministic. The integration of the joint probability
density function f({X}) of {X} in the n-dimensional
failure domain (D) which satisfies Eq. (2) is nothing
but the probability of failure, ie.

Pr= [ FUXDdXidXodXo (3)
The boundary Z=g({X})=0 is called the limit state
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equation or failure surface.

According to our stochastic finite element context
which is based on the second order perturbation
technique, Y is estimated as follows.

Y= Y°+§ Y;iak-%zk) g Yiara (4)

=Y°+[Y' Hal+[allY*He) (4-a)
where

{e}t={X}-E[{X}] . (5)

Y®, Y} and Y2 (k,/=1,2,,n) are evaluated by
solving the governing equation only once. Y° cor-
responds to the solution of the conventional finite
element method.

As mentioned in the previous reports, E[Y] and
Var [Y], the expectation and variance of Y, are
estimated as follows based on the second order approx-
imation principle®.

E[Y]:YD+Z;;:ZI: YiElaxa:] (6)

Var[Y]=Zk1 le YiY!Elawa:]
+2 2 2 2 Yk1 Ytsz[a’lzazam]

Rl m

+2 2 2 E{Ykzt Yfm(E[a’kalﬂma’n]

B L m n
—Elara)E[anas))} (7)
These statistics should be made much of from engi-
neers’ intuitive point of view. The well known prin-
ciple of reliability index 8 may be adopted as its
interpretation®, ie.

B=E[Z])/ v/Var]Z (8)
Because Eqs. (6) and (7) are based on the second order
approximation, the problem of so-called ‘lack of
invariance’™® of Eq. (8) is expected to be smaller than
that in the ‘mean-centered first order second moment
method’®. The drawback of the above manipulation
would be that the third and fourth moments of {a}
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must be given in Eq. (7).

In contrast to the mean-centered first order second
moment method, the so-called ‘advanced first order
second moment method®® has been developed re-
cently. According to its principle, the smallest di-
stance Bx: from the mean value point to the failure
surface is measured in terms of the standard devia-
tion in the orthogonally transformed basic variable
coordinate system, and a ‘notional probability of
failure’ is calculated from Bu:. The conventional
reliability index B based on the first order second
moment method agrees with this new index Bx: only
when ¢g({X}) is a linear function with respect to {X}.
Although fy. is said to be rather free from the lack of
invariance problem under certain conditions®, it does
not appear to fit the stochastic finite element method.
Let’s suppose a bar consists of two elements with
stiffnesses K, and K> and let’s assume a failure occurs
when the displacement U exceeds U. under a given
tensile loading F (see Fig. 1). We can also regard this
as a single element model with a equivalent stiffness
Kr. When the expectations and covariance matrix of
K and K are given, Bu: in two dimensional sense is
determined according to the procedure described
briefly in the above. On the other hand, it is obvious
that the full distribution information about Xi and K»
is required to calculate E[K:] and Var[K:] on which
Bu: in one dimensional sense depends. This means, in
general, Sx: in one dimensional sense differs from
that in two dimensional, althogh probabilities of
failure in one and two dimensional senses coincide
under a given distribution of X: and K. It should be
noted that the above lack of invariance occurs even
though the same problem is discussed in terms of the
same physical variable ‘stiffness of a bar’. The con-
text of our stochastic finite element method is slightly
different from this example, however, the same trou-
ble which in general has been called lack of dimen-
sional invariance'® is obviously anticipated because
of the arbitrariness of the mesh division in the finite
element method.
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U= (H) F=% F
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Fig. 1 An example showing the lack of invariance of

Bu.
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It is believed that there exists a refined interpreta-
tion of Eq. (4) which takes advantage of the recent
development in structural reliability. An idea is
framed in the following.

2. A framework

In general a.’s given in Eq. (5) are correlated each
other and Var[e:] is not equal to Var[e:] when &= /.
As is done in the advanced first order second moment
method, it is convenient to transform {e} into {a’} so
that [C.’], the covariance matrix of {¢'} is equal to
the unit matrix [/]. The transformation is given as'®

{e'}=([D]diaglvA:][@)") e}
=[A] e} (9)
where [@] is the modal matrix of [C.] as the cova-
riance matrix of {@} and A;’s are the corresponding
eigenvalues, ie.
[C.[@]=[@]diag[A:] (10)
[@] is normalized so as to satisfy the following rela-

tion.

(@]'=[0]" o (1)
Substitution of the inverse form of Eq. (9) into Eq. (4
-a) leads to

Y=Y°+[Y'][Ala’}

+[’ N[AV{Y*][Alla’}
=Y+ (Y e} +H '] Y He'} (12)

1t should be noted that, from Egs. (5) and (9), E[{a}]
and E[{a'}] hold {0}. As shown later, because of its
quadratic expression, Eq. (12) gives a good appro-
ximation for ¥ over the wide range of {a}({a'})
even where fairly strong nonlinearity is observed.
Therefore, in many cases, Eq. (12) may be applied to
the limit state equation. In case the approximation of
Eq. (12) is not good enough, thé expansion point may
be moved from the means towards the failure surface
by a suitable algorithm® or even by an engineering
judgement. As mentioned in the above, the expansion
point does not have to be put very close to the failure
surface by virtue of the quadratic approximation
used here. Therefore, in general, a limit state may be
written in the form of
Yo— Y —[Y"He'} -2l He'} =0 (13)

At this stage, one can find that the recent develop-
ment of quadratic limit state is conveniently utilized.
According to the literature'®, {e’} is again transform-
ed as Eq. (14) so that Eq. (13) is rewritten as follows.
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o % by
{e"}=1%Na’} (14)
Y= Y= [YV][¥] Ha"}

LTIV ) e
=Y~ Y- [Y"Ha ) - [e")[ Y {a"}
=0 (15)

Where [ ¥] is the modal matrix of [Y?¥] which is

normalized to satisfy the similar relation as Eq. (11),

and, therefore, [Y?"] is equal to the diagonal matrix

whose components are the eigenvalues of [Y?¥].

After some calculations, it is found that Eq. (15) is

reduced to the followings.
([e"1={sDIY*){a"}={e ]

=1/4[Y"IYZTHYV I+ Y- Y° (16)
with
{st=—1/2[v¥ ] {y"} (17
or 2 VI (al—3.
=1/4[Y" Y)Y+ Ve
=K, (16-a)

E[{a"}] again equals {0} and it should be noted that

[C."], the covariance matrix of {#”}, continues to be

the unit matrix based on the following equations.
E[ " [a ]

el

a'}a
M N T

—

=[1] (18)
In case the {«} are believed to be Gaussian random

variables, then so are the linearly transformed {a”}
and it is found'? that the probability of failure P, can
be calculated based on Eq. (16-a) with a linear com-
bination of noncentral chi-squared distribution for-
13} 'e
=P<ﬁ) Y.-Z,-"(a}'—é,-)zzf(l)

l f sin 6( u) (19)

Cue(w)

mula

where
H(u)—% 'g[tan WYY u)
+5}iju(1+(Yf,-"u)z)"]—-%Klu (20)
plw)=TL(1+(Y5 w?)

XEXD{E(B,YN w?/ 201+ (Y u)z)}

& E OB %

SR i

(21)
when some of the components of [ Y?] are zero, Eq.
(16-a) is replaced by the following equation after a

similar calculation'?.

3 V¥ (ai—8r+ 3 Vel =K, (22)

Therefore, the probability of failure P, in this case is
given as

2

P= [ 8(L)P(E virtar -5,

2 K,— a"’)da’” (23)

A

where o.” is the standard deviation of ¢” =
.-é.l Y!"ai and ¢(+) the standard normal density
function,

In case {@} are not subjected to Gaussian distribu-
tions, the notion of ‘generalized’ or ‘equivalent’ relia-
bility index proposed by Ditlevsen'” may be employ-
ed as a useful criterion, ie.

Be=—~ 0 (Py) (24)
where ®7'(+) is the inverse of standard normal distri-
bution function and P, is evaluated as Eq. (19) or (23).
Although Gaussian expressions are used temporarily
in this manipulation, Br obtained should be regarded
as rather free from such a distribution'”

3. Numerical example

Let’s take a column buckling under an uncertain
boundary condition of Fig. 2 as an example. The
uncertainty of the boundary condition is simulated by
the virtual spring elements whose spring constants
are (S/1—SXEI/®) for the deflection and (C/1
— CXEI/1) for the rotation”. S and C are expressed
in the form of S=So(1+a) and C=Co(l+a2) with
random variables ¢ and @.. EI is the bending rigi-
dity of the column and [ the length of the finite
element. Details of the stochastic finite element
analysis” are not described here and only the results
are shown in Fig. 3. The buckling loads versus S and
C shown in this figure are obtained through the
conventional deterministic computations. The bro-
ken lines are the estimated contour lines. The solid
lines denoted ‘SOA’ show the variation of the buckl-
ing load along the indicated sections as approximated
by our stochastic finite element method, the form is

=(El/ (10°1%))
X (434.3-+63.4a:+132.3a.
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Fig. 2 Column buckling under uncertain boundary
conditions.
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Fig. 3 Buckling load distribution (normalized by EI/
(10%/%)) and its approximation by the stochastic
finite element method (number of elements N =8,
ie. /=L/8).

—221.9¢8+15. T a2—16.203) (25)

The mean values So and C, are taken as 0.03 and 0.
3 respectively. As is mentioned in the preceding
chapter, the superiority of the second order appro-
ximation to the first order one (shown by the straight
lines denoted ‘FOA”) is obvious. At least in this case,
the mean centered second order approximation
therefore seems good for the evaluation of the pro-
bability of failure or the reliability index.

Suppose that the applied compressive load is Y.=
250 % (EI/ (10%/?)) and the covariance matrix of {a}
takes the following value.

[Ca]ZO.ZZ[ ' 0'5} (26)
0.5 1
Then the following values are calculated according to
the procedure described in the preceding chapter.
P,=P[4.860%x 107*( @1 +23.559)
+8.724X107*( s —1.485)20.473]
=6.85%x10""* (27)
or Be=—0 ' (Ps)=3.2 (28)
Even if many random variables are involved in this
procedure, the CPU time is expected to be negligible,

because only a single fold integral (Eq. (19)) or its
convolution (Eq. (23)) appears.

4. Conclusions

According to the terminology in structural relia-
bility, the proposed framework may be classified as a
second order second moment method. As is well
known it is sometimes impractical to introduce
higher order moments of random variables because of
the lack of information, however, there is no reason
the higher order mechanical approximation should
not be applied to the evaluation of the limit state if it
is effective and conveniently dealt with. Our stochas-
tic finite element method based on the second order
perturbation technique fits these conditions.
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