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1. Introduction

The objective of the present note is to discuss the

adaptation of the stochastic血ite element method the

authors have been developingl'･2'･3m' to structural

safety and reliability. Various uncertainties are in-

volved in actual structures and are regarded as ran･

don variables. The behaviottrs of such structures are

well analysed by our method without using any simu-

lation technique, which fact is of great importance

from the aspect of CPU time especially when a血ite

element method is concemed. Prior to the detailed

formulation, a couple of concepts in structural re･

liability theory are brieny discussed from our stand-

point.

Let's denote the random variables mentioned above

by XA(A-1.2,･･･,n) or lxL A structural behaviour

y such as a stress, strain, displacement, force, eigen-

Value and so forth is a function of (X) and iswritten

in the form of

Y-h(iX))　　　　　　　　　　　　(1)

Suppose a failure occurs when the following relation

holds.

ぞ-Yc-Y-9(iX))≦0　　　　　　(2)

For the brevity of the description, y｡ is taken as

deterministic. The integration of the joint probability

density function I(iX)) of (X) in the n-dimensional

failure domain (D) which satis丘es Eq. (2) is nothing

but the probability of failure, ie.

p/-/D/(†X))dXldX2･･.dX7Z　　( 3 )

The boundary Z-9((X))-0 is called the limit state
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equation or failure surface.

According to our stochastic丘nite element context

which is based on the second order perturbation

technique, y is estimated as follows.

Y- YO+∑ yhlαk+∑ ∑ Yh2IαhaI　　　　(4)
A          Jz  I

≡ YO+lyl】(α)+[α][Y2]1α)　　　(4-a)

where

ia)-LX)-El(X)]　　　　　　　　　( 5)

YO, ykl and Yh2L (A,l-1,2,-,n) are evaluated by

solving the governing equation only once. yO cor･

responds to the solution of the conventional畠nite

element method.

As mentionedinthe previous reports, ElY] and

γar [y], the expectation and variance of y, are

estimated as follows based on the second order approx-

imation principles).

ElY]- YD+∑∑ yh2EElαkαE]　　　　( 6)
A  I

Var[Y]-∑ ∑ Ykl yLIEla々α,]
A  E

+2 ∑ ∑ ∑ Yhl yL2mElαha,αm]
J2  E  m

+∑ ∑ ∑ ∑†Yk2L YBn(Ela々αLαma,Z]
A  i  7n  n

-Elαha,]Ela,nαn]))　　　　( 7 )

These statistics should be made much of from engi-

neers'intuitive point of view. The well known prin･

ciple of re一iability index β may be adopted as its

interpretation6㌧ ie.

8-ElZ]//VarLZJ　　　　　　　　　　( 8 )

Because Eqs. (6) and (7) are based on the second order

approximation, the problem of so-called tlack of

invariance'7)･8) of Eq. (8) is expected to be smaller than

that in the <mean-centeredfirst order second moment

method'6㌧　The drawback of the above rnanipulation

would be that the third and fourth moments of (α)
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must be given in Eq. (7).

ln contrast to the mean･centered丘rst order second

moment method, the so-called tadvanced丘rst order

second moment method'9)･8) has been developed re-

cently. According to its principle, the smallest di-

stance β〟上from the mean value point to the failure

surface is measured in terms of the standard devia-

tion in the orthogonally transformed basic variable

coordinate system, and a tnotional probability of

failure' is calculated from β〟上. The conventional

reliability index jg based on the first order second

moment method agrees with this new index β〃上Only

when g(iX)) is a linear functionwith respect to (X),

Although β〟エis said to be rather free from the lack of

invariance problem under certain conditions8), it does

not appear to丘t the stochastic丘nite element method.

Let'S suppose a bar consists of two elements with

stiffnesses Kl and K2 and let's assume a failure occurs

when the displacement乙/ exceeds乙丁｡ under a given

tensile loading F (see Fig. 1). We can also regard this

as a single element model with a equlValent stiffness

KE, When the expectations and covariance matrix of

Kl and K2 aregiven, βHL in two dimensional sense is

determined according to the procedure described

briefly in the above. On the other hand, it is obvious

that the full distribution information about Kl and K2

is required to calculate ElKE] and VarlKE] on which

JgHL in one dimensionalsense depends. This means, in

general, β〃エin one dimensional sense differs from

that in two dimensional, althogh probabilities of

failure in one and two dimensional senses coincide

under a given distribution of gl and 孤. It should be

noted that the above lack of invariance occurs even

though the same problem is discussed in terms of the

same physical variable tstiffness of a bar'. The con-

text of our stochastic anite element method is slightly

different from this example, however, the same trou-

ble which in general has been called lack of dimen･

sional invariancelO'is obviously anticipated because

of the arbitrariness of the mesh division inthe負nite

element method.

Fig. 1 An example showing the lack of invariance of

eHL,

It is believed that there exists a refinedinterpreta-

tion of Eq. (4) which takes advantage of the recent

development in structural reliability. An idea is

framed in the following.

2. A framework

ln general ats given in Eq. (5) are correlated each

other and Var[αh] is not equal to Varlαl] when k≒l.

As is done in the advanced Brst order second moment

method, it is convenient to transform iα) into (α′) so

that lCa'], the covariance matrix of ia') is equalto

the unit matrix [丑The transfomation is given asll)

(α′)-([¢]diag[J㌃][0]T)一1(α)

≡[』]~liα)　　　　　　　　　　　( 9)

where [¢] is the modal matrix of [Cα] as the cova-

riance matrix of (α) and Az's are the corresponding

elgenValues, le.

[Ca][¢]- lQ]diag[ん]　　　　　　　　(10)

lO] is normalized so as to satisfy the following rela･

tion.

lQ]｣-[¢]T　　　　　　　　　　　　　(ll)

Substitution of the inverse form of Eq. (9) into Eq. (4

-a) leads to

Y- YO+lyl]lA](a')

+ [α'][A]Tly2][A](α′)

≡ yo+[yl′】(α′)+【α′]【y2′]〈α′)　　(12)

it should be noted that, from Eqs. (5) and (9), E[ta)]

and Elia')] hold (0). As shown later, because of its

quadratic expression, Eq. (12) gives a good appro-

ximation for y over the wide range of (α)((α′))

even where fairly strong nonlinearity lS Observed.

Therefore, in many cases, Eq. (12) may be applied to

the limit state equation. In case the approximation of

Eq. (12) is not good enough, the expansion point may

be moved from the means towards the failure surface

by a suitable algorithms) Or even by an engineering

judgement. As mentioned in the above, the expansion

point does not have to be put very close to the failure

surface by virtue of the quadratic approximation

used here. Therefore, in general, a limit state may be

written in the form of

Yc- YO-[yl7](α′ト[α′][Y2′](a′)-o　(13)

At this stage, one can缶nd that the recent develop-

ment of quadratic limit state is conveniently utilized.

According to the literature12), (α′) is again transform-

ed as Eq. (14) so that Eq. (13) is rewritten as follows.
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(α′′1-日y](α′)

Yc- YO-lyl′][ WP(a′′)

-[α〝M F]~1)Tly21[ ly]11(α〝)

… Yr- Yo-[Yl"](α′′)-la〝][Y2′′](α′′)

(14)

-0　　　　　　　　　　　　　　　　　　　(15)

Where [lF] is the modal matrix of lY2′] which is

normalized to satisfy the similar relation as Eq. (ll),

and, therefore, 【 y21 is equal to the diagonal matrix

whose components are the eigenvalues of [y2'].

After some calculations, it is found that Eq. (15) is

reduced to the followings.

(la"]-[8])lY2"](ia")-iS))

=1/4[yl′′][y2′′]-liyl〝‡+ y｡- yO　(16)

with

l∂〉ニー1/2[y2′′Ptyl′′) (17)

or　∑ Y22,′′(α,"-8,)2
z-1

-1/4[Yl′′]ty2′']~1〈yl′′)+ yc- yO

≡∬1　　　　　　　　　　　　　　　　　(16-a)

El(a")] again equals (0) and it should be noted that

【C｡1, the covariance matrix of (α′′), continues to be

the unit matrix based on the following equations.

El†α")[α′′]]

-Ell lF]1α′)[α′][ W]T]

-l Zy]El(α')[α′】][ g]T

-lg][/]lW]T

-lV]lW]T

-l ly]l ly]~1

-【J]　　　　　　　　　　　　　　　(18)

In case the (α) are believed to be Gaussian random

variables, then so are the linearly transfomed 〈α〝)

and it is found12'that the probability of failure P/ can

be calctllated based on Eq. (16-a) with a linear com-

bination of noncentral chi-squared distribution for-

mula13l, ie.

pf-P(,il Yz2Z-(αZ-一∂王)2≧Kl)

-‡十三丁豊du (19)

where

o(u,-‡鼻ltan-1( Y,2J-u,

･8,2Y-u(1･(Y,2f′u)2)-l]-‡Klu (20)

1Z

p(u)- n(1+( Y,2,,′u)2)与
.,=L

(21)

when some of the components of [y2′] are zero, Eq.

(16-a) is replaced by the following equation after a

similar calculation12).

〝】                          JJ

∑ Y,2,′′(α;′-8▲)2+　∑　Y:′′a;′-K2　　　(22)
L=l                 7-m+1

Therefore, the probability of failure P/ in this case is

glVen aS

p/- I:i(蛋)p(.il Yz2L′′(αZ-- 8t ,2

･ K2 I a",)dα′′′　　　　　(23)

where (ブa′′′ is the standard deviation of　α′〝≡

〟

∑　Y.1′′α;′ and め(I) the standard normal density
l-m-1

function.

In case (α) are not stlbjected to Gaussian distribu-

tions, the notion of tgeneralized'or Tequivalent'relia･

bility index proposed by Ditlevsen14'may be employ･

ed as a useful criterion, ie.

βE- -¢ー1(pf)　　　　　　　　　　　　(24)

where めll(I ) is the inverse of standard normal distri･

bution ftlnCtion and P/ is evaluated as Eq. (19) or (23).

Although Gaussian expressions are used temporarily

in this manipulation, CE Obtained should be regarded

as rather free from such a distribution川.

3, Numerical example

Let's take a column buckling under an uncertain

boundary condition of Fig. 2 as an example. The

uncertainty of the boundary condition is simulated by

the virtual spring elements whose spring constants

are (S/1-S)(EI/l3) for the de8ection and (C/1

-C)(EI/I) for the rotation4). s and C are expressed

in the form of S-S｡(1+al) and C-C｡(1+α2) with

random variables αl and α2. EI is the bending rigi･

dity of the colllmn and ∫ the length of the丘nite

element.　Details of the stochastic　finite element

analysisn are not described here and only the results

are shown in Fig. 3. The buckling loads versus 5 and

C showninthis丘gure are obtained through　the

conventional deteministic computations. The bro･

ken lines are the estimated contour lines. The solid

lines denoted 'SOA'show the variation of the buckl･

ing load along the indicated sections as approximated

by our stochastic anite element method, the form is

･ exp懐.(8, YI;, u,2/ 2(1+ ( Y,2,.. u,2,)　　Y - 'xE(14/3'41崇'6'3.｡a1.132.3a2
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Fig. 2　Column buckling under uncertain boundary

conditi ons.
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Fig. 3　Buckling load distribution (normalized by EI/

(10312)) and its approxlmation t)y the stochastic

anite element method (number of elements 〟 - 8,

ie. l-L/8).

-221.9α12+15,7αla2-16.2α22)　　(25)

The mean values 50 and C｡ are taken as 0.03 and 0.

3 respectively. As is mentioned in the preceding

chapter, the superiority of the second order appro-

ximation to the丘rst order one (shown by the straight

lines denoted tFOA') is obvious. At least in this case,

the mean centered second order approximation

therefore seems good for the evaluation of the pro-

bability of failure or the reliability index.

Suppose that the applied compressive load is yc-

250×(EI/ (10312)) and the covariance matrix of ia)

takes the following value,

lca]-0122[.oチ5 0i5]　(26)

Then the followlng Values are calculated according to

the procedure described in the preceding chapter.

P/-P[4.860× 10-4(a."+23.559)2

+8.724×10-3(α;′-1.485)2≧0.473]

-6.85×10~4

or　βE--¢~1(Pf)-3.2

Even if many random variables are involvedinthis

procedure, the CPU time is expected to be negligible,

because only a single fold integral (Eq. (19)) or its

convolution (Eq. (23)) appears･

4. Concllはions

According to the terminology in structural relia-

bility, the proposed framework may be classi丘ed as a

second order second moment method. As is well

known it is sometimes impractical to introduce

higher order moments of random variables because of

the lack of infomation, however, there is no reason

the higher order mechanical approximation should

not be applied to the evaluation of the limit state if it

is effective and conveniently dealt with. Our stochas-

ticfinite element method based on the second order

perturbation technique丘ts these conditions･

Acknowledgement

The authors would like to express their sincere

gratitude to Prof. C Allin Cornell, who enabled one of

them to stay at Stan ford Univ. and shared a lot of

time with him for the discussion on the present and

the related problems. His stay th占re was also sup-

ported by Prof. Haresh. C. Shah, to whom the authors

are grateful. (Manuscript received, March ll, 1982)

R eferell C eS

1) Nakagiri, S. and Hisada, T : SEISAN･KENKYU, 32,

2 (1980) 39.

2) Hisada, T. and Nakagiri, S∴ SEISAN-KENKYU, 32,

5 (1980) 28.

3) Hisada, T. and Nakagiri, S∴ SEISAN-KENKYU, 32,

12 (1980) 14.

4) Nakagiri, S. and Hisada, T∴ SEISAN-KENKYU, 33,

7 (1981) 28.　　　　　　　　　　　/

5) Ang, A. H-S. and Tang, W. H.: Probability Concepts

in Engineering Planmng and Design, Vol. 1-Basic

Principles, John Wiley and Sons (1975).

6) Cornell, C.A∴ ACI JH 66, 12 (1969).

7) Ditlevsen, 0 : Univ. Waterloo Research Report 22

(1973).

8) Rationalization of safety and serviceability factors in

structural codes, CIRIA Report 63 (1977).

9) Hasofer,A.M. andLind, N. C∴ Proc.ASCE,100,EM

l (1974) 111.

10) Veneziano, D : MIT Research Report R74-33 (1974).

ll) Ditlevsen, 0. : Uncertainty Modeling, McGraw-Hill

(1981).

12) Fiessler, B., Neumann, HJ. and Rackwitz, R∴ Proc.

ASCE, 105, EM 4 (1979) 661.

13) Imhof, J. P∴ Biometrika, 48, 3 and 4 (1961) 419.

14) Ditlevsen, 0.. I. Struct. Mech., 7, 4 (1979) 435.

IIHl日日日日‖川日日日日日日1日=IHl日日日日日日日日川日日日日日日日日‖日日川1日日日日日1日‖lII)‖IHllllHH日日日日日日日日Hll)I‖IIIH川IIHIII日日日日日日IHJHIH1

17




