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Chapter 1

Introduction

1.1Background of This Research

Since the pioneering work of Purcell[1] describing the modification of the

coupling between the electromagnetic field and an emitter placed inside a cavity and

the discovery of photonic band gap material[2], the use of photonic band gap

structure as a cavity to control spontaneous emission has become an active field of

research. The photonic band gap structure or called"Photonic crystal" is a periodic

arrangement of dielectric media in wavelength-scale that can affect the propagation of

electromagnetic waves in the same way as electron experiencing a periodic potential

in a semiconductor crystal. In analogy with allowed and forbidden energy bands in

electronic system, photonic crystal can provide a range of wavelengths, in which no

light modes are allowed to propagate through the structures. This range in frequencies

is called photonic band gap. By introducing a defect to the structure, a perfectly

periodic lattice can be destroyed and a cavity is formed. A defect may permit

localized modes with frequencies inside photonic band gap to exist. In past ten years ,

with the maturation of nanometer-size photonic crystal fabrication, there has been

strong interest in creating optical nanocavities for spontaneous emission manipulation.

Nanocavities that can create very high quality factor(Q-factor) with wavelength-size

mode volume, in other words, a large Purcell factor, are expected to be promising

structures for nanophotonic devices, such as low-threshold lasers[3],[4], single

photon sources[5],[6], and etc., because nanocavities can help reducing threshold of

lasers, increasing repetition rate of single photon emitters, and improving their

efficiency. Photonic crystal slab defect cavities have a great potential to achieve that

goal due to their simplicity in fabrication and their ability to achieve strong

confinement of light in three dimensions. Several groups have already reported the

design of ultra high Q-factor photonic crystal slab nanocavities together with mode

volume of the order of the cubic wavelength[7]-[13]. However , the efficiency of

those devices has been a long-standing problem. Such structures are well known to

have low efficiency due to low extraction efficiency and complicated radiation pattern.

Moreover, all those cavities need a modification of the defect structure to achieve
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such high Q-factor. Nonetheless, owing to the sensitivity of the high-Q modes to the

surrounding structural parameters, these designs require a precise control of position

and size of air holes in practical fabrication, in which the Q-factor and the efficiency

are significantly degraded when the structural parameters are deviated from their ideal

setups. In other words, these structures lack of robustness in practical systems. In

addition, radiation pattern of output light is another key obstacle to achieve

highly-efficient light sources, because it determines the collection efficiency. In order

to efficiently collect the output light radiated out from the cavity, a simple radiation

pattern, which has Gaussian-like distribution, is necessary. The efficient collection of

output photons becomes very critical when the situation turns to a single photon

emitter, in which only one photon is emitted at a time. This requirement of

Gaussian-like radiation pattern can be fulfilled in micropillar structures[14],[15].

However, Q-factor of such structures is limited to low values due to transverse 

radiation losses along the pillar cross-section. The Q-factor of such structures can be

enhanced by increasing the diameter of the pillar, but doing this yields larger mode

volume(Veff). Therefore, the Purcell factor is small. This will lead to low coupling

efficiency of the mode into the cavity mode.

To sum up, so as to achieve highly-efficient surface emitting light sources,

such as low-threshold nanolasers, and single photon emitters, three requirements,

which are high coupling efficiency determined by the Purcell factor, high extraction

efficiency, and high collection efficiency determined by the radiation pattern, must be

accomplished. So far, it has been reported that there is no single device that can fulfill

these three requirements since each one of them holds explicit trade-off.

In this research, a design of photonic crystal slab nanocavity, which can achieve all

the requirements, is presented. By just simply optimizing the slab thickness, the

dipole mode of the photonic crystal air-bridge Hl-defect cavity is shown to have an

ability to achieve large Purcell factor, high extraction efficiency, and simple radiation

pattern. The design of the Hl-defect nanocavity in this research is totally new and

original.
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1.2 Outline of This Thesis

In this thesis, the design of photonic crystal nanocavity for highly-efficient

surface-emitting light sources, is described and organized as follows:

In chapter 2, the theoretical analysis of photonic crystals is reviewed. Starting

with mathematical introduction to photonic crystals, Maxwell's equations is fine

described. And then, the Bloch-Floquet theorem is described to understand the origin 

of band structure and band gap of photonic crystals. After that, structure of photonic 

crystal slab and its band structure are explained. The dependence of its band structure 

on slab thickness and radius of air holes are also shown. Finally, photonic crystal 

nanocavity formed by introducing defects to a perfectly periodic system is presented.

In chapter 3, the computational method adopted in this research is described.

The computational method is based on the three-dimensional finite-difference

time-domain (3D FDTD) method. All characteristics of cavity, e. g., cavity mode

frequency, field distribution, Q-factor, and mode volume of defect mode are

calculated by using this method.

In chapter 4, firstly, structural parameters and H1 -defect structure of the

design cavity is described in details. In the design, the dipole mode is exploited as a 

defect mode. After that, increase of the Q-factor by optimizing the slab thickness is 

demonstrated. The mechanism of this high Q-factor is discussed in the end of the

chapter.

In chapter 5, the efficiency of the dipole mode of the design cavity presented

in chapter 4 is investigated. The capability of the dipole mode of the designed

H1-defect nanocavity to achieve high efficiency is shown. The result is compared

with the highest Q nanocavity reported so far.

In chapter 6, all results are summarized and considered whether the objective

of this research is fulfilled. Finally, future prospects are presented.
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Chapter 2

Basis for Theoretical Analysis of Photonic

Crystal

2.1 Maxwell's Equations and the Bloch-Floquet Theorem

Photonic crystal, which is a periodic arrangement of dielectric media,

introduces a periodic potential to photons propagating through it in the same way as a

crystal, in which electron experiences a periodic potential due to a periodicity of

atoms or molecules, in electronic systems. By cooperating of Maxwell's equations

and solid-state physics, the propagation of light in a photonic crystal can be studied.

Starting with Maxwell's equations [16]:

(2.1)

(2.2)

(2.3)

(2.4)

where E and H are the electric and magnetic fields, which can be expressed by:

(2.5)

(2.6)

J is the free current density, ƒÏ is the free charge density, and g is the dielectric

function. In the case that light propagating within a dielectric medium without any

light sources, J and ƒÏ can be set to zero. In addition, it is acceptable to restrict the

dielectric function ƒÃ to the case of linear dielectrics. And also, s is assumed to be

independent of frequency and being a real number.

According to these assumptions, by substituting Eq. (2.5) and Eq. (2.6) into

Eq. (2.1) and Eq. (2.2) and then combining them together, the result is an equation,

which contains only H(r) components:
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(2.7)

Then use Eq. (2.2) to regain E(r)

(2.8)

It can be observed from Eq. (2.7) that it is a Hermitian eigenvalue problem and can be

solved to have a continuous spectrum of eigenfrequencies ƒÖ. However, when the

case comes to photonic crystal, which is a periodically ordering dielectric media. 

Dielectric function ƒÃ(r) then becomes a periodic function of positions. The solution

of the Hermitian eigenvalue problem can always be shown in the form of

eik•Er.(periodic funtion), where k is the wave vector. This is commonly known as

Bloch-Floquet theorem [17]. A periodic function is expressed as:

(2.9)

for any lattice vector R . If the function is periodic in all three dimensions, lattice

vector R can be formed in, R = la1 + ma2 + na3, where  (1, m, n) are integers and

a1, a2 and a3 are primitive lattice vector.

Therefore, the solution of Eq. (2.7) for a periodic dielectric function c is given by:

(2.10)

This Bloch state indicates each electromagnetic mode through its wave vector k and

periodic function uk (r) . To solve for uk, (r) , Eq. (2.10) is substituted into Eq. (2.7),

another Hermitian eigenvalue problem is then obtained:

(2.11)

Due to the periodicity of u-k. (r) , Eq. (2.11) can be considered as the eigenvalue

problem over a unit cell of the photonic crystal. Corresponding to quantum mechanics,

eigenvalue problem with a finite domain leads to a discrete set of eigenvalues. That is,

there is a set of modes, denoted by ƒÖn(k) (for band number n = 1, 2, 3,...), which

are discretely spaced in frequencies and continuously varied as k varies. The plot of
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these frequency bands as a function of k is called the band structure of photonic

crystal.

Another important property of the Bloch states is that, in order to solve the

eigenvalue problem for a wavevector k , it is adequate to only solve the eigenvalue

problem for k in a finite zone called the first Brillouin zone. By considering the

Bloch state shown in Eq. (2.10), an eigensolution with wave vector k is identical to

an eigensolution with wave vector k+ G , where G is a reciprocal lattice vector and

can be evaluated from G•ER=N2ƒÎ (for N = 1, 2, 3,...). This means that, in order

to solve the eigenvalue problem for k , k will be bounded to only the region in

reciprocal space where k cannot have any other values of itself by adding any G.

This restricted region is called the first Brillouin zone. Furthermore, if additional

symmetries, e.g., rotational symmetry, are applied to photonic crystals, it is

unnecessary to solve for every k point in the first Brillouin zone. Only the region, in

which those symmetries do not have any effects on ƒÖn (k), is required. This region is

called the irreducible Brillouin zone.

2.2 The Origin of the Photonic Band Gap

In certain structures of photonic crystal there can be a range of ƒÖ, in which

no propagating states ƒÖn(k) corresponding to the restricted wave vector k are

allowed and all incident radiation is reflected. This frequency range is known as the

photonic band gap. In order to understand the origin of the gap, two properties of

Hermitian eigenvalue problem have to be concerned. Firstly, because the operator of

Eq. (2.7) is Hermitian, its eigenvalue must be real and positive and its harmonic

modes must be orthogonal:

(2.12)

That is, an inner product of any two harmonic modes with different frequencies is

zero. Secondly, corresponding to the electromagnetic variational theorem, the lowest

frequency mode is the field pattern that minimizes the electromagnetic energy

functional:
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(2.13)

Other higher bands, e.g., the second band, also satisfy Eq. (2.13), but orthogonality of

harmonics mode according to Eq. (2.12) must be fulfilled as well. From this

expression, in order to minimize Ef, the field of the first band must be concentrated in

the regions of high dielectric constant g to lower its potential energy. This yields to

have a lower frequency. Additionally, the curl of field •¤•~H should be small, in

other words, the field is varying slowly inside the high dielectric constant regions and

containing no nodal plane, in order to lower its kinetic energy. When the case comes

to the second band, this mode also wants to be concentrated in the high dielectric

constant regions and contain no nodal plane inside those regions to obtain the

minimum E. However, from Eq. (2.12), this mode must be orthogonal to the mode

of the first band. As a result, the second band has to be concentrated in the regions of

low dielectric constant and restrictedly have nodal plane in those regions to make the

integral zero. This results in a difference in frequencies of these two bands and the

band gap occurs.

In this thesis, the calculation of band diagram relies on a numerical-analysis

method called plane-wave expansion, which solves Maxwell's equations to generate

complete band structures and identify band gaps for complex periodic structures.

2.3 Types of photonic crystal

According to the order of dimensions that they periodically alter, photonic

crystals can be classified into three categories, which are one-dimensional,

two-dimensional, and three-dimensional photonic crystals. These three types of

photonic crystal are shown in Fig. 2.1. Straightforward to their names,

one-dimensional photonic crystal can only control light at normal incidence to its

alternating multilayers, whilst two-dimensional photonic crystal can control light

incident from any direction in the plane of periodicity. Complete manipulation of light

in three dimensions can be achieved in three-dimensional photonic crystal, which

possesses a three-dimensional band gap. Fabricating such an ideal structure, however,

has still been a great challenge due to the requirement of highly-advanced structural

designs as well as fabrication techniques. Therefore, the system with less restriction
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Figure 2.1 Schematic illustrations of photonic crystal(a) one-dimensional (b)
two-dimensional(c) three-dimensional.

on designs and fabrication techniques, the photonic crystal slab, is preferable. What is

called photonic crystal slab is the dielectric slab with a thickness of the order of the

wavelength that has periodicity in two dimensions and is cladded by low-index

dielectric in the third direction. Its schematic illustration is shown in Fig.2.2. Hence

the light manipulation in photonic crystal slab is a combination of Bragg reflection

from the two-dimensional photonic crystal and total internal reflection from the

low-index cladding results in a three-dimensional control of optical modes.

2.4 Band Structures of Photonic Crystal Slab

Band structure for photonic crystal slab is slightly different from that of

two-dimensional photonic crystal because band structure computed for a

two-dimensional photonic crystal corresponds only to the modes, in which the

Figure2.2 Schematic illustration of photonic crystal slab structure. Dark grey

layer is a slab waveguide cladded by claddings. Air holes are also depicted in the

fioure.
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Figure 2.3 Band diagram for the air-bridge slab structure with r= 0.30a and d=
0.60a. The insets show triangular lattice of air holes in dielectric with refractive
index of 3.4 and its first Brillouin zone.

consideration of wave vector in the direction perpendicular to the plane of periodicity

is not included. Furthermore, finite stretch of photonic crystal slab structure in the

third direction destroys the band gap of the two-dimensional structure. By considering

the system to be three-dimensional, the band gap in the guided modes of the slab, in

which no guided modes exist, may occur. That is to say, the photonic crystal slab

structure is able to possess the band gap only for the guided modes, not for all modes.

An example of photonic band diagrams corresponding to the high-symmetry points at

the corners of the irreducible Brillouin zone is shown in Fig.2.3 for photonic crystal

slab cladded by air. Triangular lattice of air holes, with lattice constant a and radius

(r) 0.30a, is introduced to the slab with thickness(d) 0.60a. The top-view of the

structure and its corresponding first Brillouin zone are shown in the insets. The

refractive index of the high index material is 3.4. Band structure of the photonic

crystal slab is composed of two regions, guided mode region and light cone. They are

separated by light line depicted as the dark line in the figure. Concretely, examining
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the energy-momentum dispersion relation for a homogeneous dielectric cladding with

refractive index n:

(2.14)

where ƒÖ is the angular frequency, k•Ú is the in-plane wave vector, k•Ûis the wave

vector normal to the slab, and c is the speed of light. Light line can be confined as:

(2.15)

The region above the light line is defined to be a light cone. Modes that locate inside

the light cone will radiate vertically out of the slab and are referred as vertical

radiation loss. On the other hand, modes that lie below the light line as indicated by

lines with filled circles in the figure are guided within the plane of the slab and decay

exponentially into the claddings. The gap for guided modes is shown by shaded

region.

In two-dimensional photonic crystal, due to the mirror reflection symmetry in

the direction perpendicular to the plane of periodicity, modes of every

two-dimensional photonic crystal can be classified into two non-interacting classes of

polarizations: TE polarized modes(electric field in plane of periodicity)and TM

polarized modes(magnetic field in plane of periodicity). As in two-dimensional

system, guided modes in photonic crystal slab can be also decomposed into two

distinct classes. These are not purely TE and TM polarized as in the two-dimensional

photonic crystal due to the finite extent of slab in the direction normal to the plane of

slab. However, they are classified by whether they transform to be even or odd with

respect to a horizontal mirror plane bisecting the slab. These even and odd states have

the strong similarities with TE and TM modes, respectively, in two-dimensional

photonic crystal. In addition, within the slab they are TE-and TM-like, and closely

resemble the TE and TM modes in two-dimensional system.

2.5 Air-Bridge Photonic Crystal Slab

A significant issue of photonic crystal slab is its cladding. Photonic crystal

slab uses the mechanism of waveguide originated from the refractive index difference

of material of slab and cladding to confine light in the third dimension. However, in

the perforating air holes, which are etched through the slab and cladding layers, there

10



is no refractive index in the vertical direction. These air holes can cause the

out-of-plane scattering loss from the slab to the cladding. In order to minimize this

loss, high-index contrast system is preferable, especially the structure of dielectric

slab suspended in air, which is called air-bridge structure. With this high contrast,

Bloch modes that lie well below the light line can be created. This leads to no

coupling of these modes to the radiation continuum located within light cone.

According to the active regions of most conventional devices, such as

quantum wells and quantum dots, have the electronic states that predominantly couple

to the TE modes, photonic crystal slabs that support TE-like modes are preferable.

More concretely, air-bridge dielectric slabs with two-dimensional triangular lattice of

air holes are appropriate for this situation because they can support large photonic

band gap in TE-like modes separating the lowest two TE-like bands.

2.6 Effect of Slab Thickness and Radius of Air Holes on Photonic

Band Gap

As already mentioned, a two-dimensional photonic crystal slab has a band

gap in its guided modes. Among many photonic band gaps that can occur, the

lowest-order photonic band gap that emerges between the lowest-order mode and the

second-order mode is the most interesting due to lower density of radiation states in

low frequency region. However, this band gap can occur only when some of

parameters of the slab are suitable. More concretely, if radius of the air holes(r) is

large enough as well as appropriate slab thickness(d) is fulfilled, the gap may appear

[18],[19]. The radius of air holes has an important effect on the propagation in the

slab, as it determines the width of the gap. Increase of radius of air holes over the

appropriate range(for example, not over than 0.40a) results in increase of the gap size

[18]. Figure 2.4 shows the plots between the gap-mid gap ratio, which designates the

band gap size, for and the slab thickness for even modes in the air-bridge structure

with r equal to 0.30a, 0.35a, and 0.40a indicated by boxed dots, circular dots, and

triangular dots, respectively. The structure with r= 0.40a yields the largest gap size,

while structure with r= 0.30a has the narrowest gap over the range of slab thickness

less than 0.60a. When the slab thickness is over 0.60a, the tendency of gap size

becomes complex. This is because when the slab is thick, the gap is determined by the

frequency range between the lowest-order band edge and the second-order waveguide
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Figure 2.4 Dependence of Gap-mid gap ratio on slab thickness for air-bridge slab
structure with r= 0.30a(square), r= 0.35a(circle), and r= 0.40a (triangle).

mode cutoff, instead of the frequency range between the lowest-order band edge and

the band edge at K point of the first Brillouin zone in the case of the slab thinner than

0.60a. In the calculation of band structure, accurate values of the cutoff frequency are

difficult to calculate. Hence, the exact results are a little inconsistent. Generally, larger

gap is preferable in most of applications. However, increase of radius of air holes is

also followed by an increase of coupling losses in the in-plane direction [20]. This

increase of losses is due to decrease in effective index of the mode compared to that

of the imperforated guided mode.

The other way to engineer the band gap is to change the thickness of the slab.

The existence of the gap and the gap size strongly depends on the slab thickness as

shown in Fig.2.4. It is obvious that there is an optimal slab thickness, which can yield

the largest gap between the first two bands. When the slab is too thin, air holes are

just like a weak perturbation on the bare slab. Guided modes will still exist, but they

cannot be strongly confined within the slab. As a result, the gap is very small. On the

other hand, if the slab is too thick, the second-order modes will be created at low
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frequency, which may locate at frequencies very near to the lowest-order mode. When

the slab is thicker and thicker, there will be less and less energy barrier to create the

high-order states due to adding horizontal nodal planes. The second-order mode then

comes down and eventually falls below the lowest-order band edge, and then the gap

is closed [19]. In the aspect of localized modes, which are confined in the photonic

crystal slab defect cavity and have frequencies within the band gap, larger gap means

the ability of the cavity to achieve better lateral confinement for the localized modes.

On the other hand, when the gap is closed, localized modes are able to couple to slab

guided modes and then be guided through the slab in lateral direction. Hence, the

lateral confinement becomes very poor. With these reasons, conventional photonic

crystal slab cavity structures usually have moderate radii of air holes and slab

thicknesses, which are about 0.30 a and 0.60 a, respectively. However, in later chapter,

the photonic crystal slab cavity with the defect structure, which can achieve strong

light confinement even if the gap is already closed, will be shown and described.

2.7 Photonic Crystal Defect Nanocavities

Analogy to the electronic systems, introducing a defect to the photonic crystal

lattice may permit a single or a set of localized modes, which have frequencies in the

photonic band gap. Consequently, the defect-induced mode cannot penetrate the

unperturbed crystal and is then confined in the defect region. With this concept,

photonic crystal cavity is able to be created. In the case of photonic crystal slab with

air holes, the simplest defect cavity may be formed by removing a single hole in the

photonic crystal. The resonant mode with frequency locating inside the gap is highly

localized to the defect region, and light can only escape by either tunneling through

the two-dimensional photonic crystal or by impinging on the cladding-slab interface

to leak out from the cavity. However, a band gap in this kind of structure prohibits

only guided modes to exist, not a true band gap. To be specific, at the frequencies of

defect-induced localized-modes, there are still radiation modes. These radiation

modes correspond to the mode locating above the light line as previously mentioned.

As a result, the resonant cavity mode will eventually decay into the cladding. The

quality factor (Q-factor) is usually exploited to designate how well the cavity can

confine light before it decays out of the cavity.
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2.8 Summary

In this chapter, the principle of photonic crystal has been reviewed

theoretically. By cooperating of Maxwell's equations and solid-state physics, the

propagation of light in a photonic crystal can be studied. Due to a periodic dielectric

function of photonic crystal, the Bloch-Floquet theorem can then be applied to solve

the Hermitian eigenvalue problem over a unit cell of the photonic crystal. The

solution results in a discrete set of modes, which originates a band structure of the

photonic crystal. In addition, by considering the electromagnetic variation theorem,

the origin of the photonic band gap, in which no propagating modes can be existed ,

has been revealed. After that, the photonic crystal slab structure , which is a

combination of a conventional waveguide and a two-dimensional photonic crystal ,

has been described in details. Its band structure shows that band gaps of guided modes

can be obtained in this kind of structure. The light cone, which is a cause of vertical

radiation loss in the photonic crystal slab structure, has also been clarified by

examining the energy-momentum dispersion relation. Among many types of cladding

materials of photonic crystal slab, air-bridge structure is expected to be able to

suppress the out-of-plane scattering loss from the slab to the cladding . The

dependence of its photonic band gap size on slab thickness and radius of air holes has

been shown. Finally, photonic crystal nanocavities formed by introducing defects to a

perfectly periodic system have been presented.
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Chapter 3

Three-Dimensional Finite-Difference Time-Domain

Method

3.1 Three-Dimensional Finite-Difference Time-Domain Method

The calculation method exploited in modeling optical characteristics of

structures described above is the three-dimensional Finite-Difference Time-Domain

(3D FDTD) method [21], which is based on a discretization of the Maxwell's time

dependent curl equations, e. g., Eq.(2.1) and (2.2). A Cartesian spatial grid is defined

with increments •¢x , •¢y , and •¢z , and •¢t is a time increment. Any field u of space

(i, j, k) and time t is evaluated at a discrete point in space and time as:

(3.1)

Figure3.1 Positions of field components using Yee's cell.
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where n is an integer. A schematic, corresponding to the Yee's algorithm ,

representing positions in space of the electric and magnetic field vector components is

shown in Fig. 3.1. In addition, all field components are advanced in time , using a

leapfrog algorithm. As a result, the electric and magnetic fields are located at the

positions that are differed by half a step in both space and time. Six finite-difference

equations for each of the electromagnetic fields are then solved and shown as [22]:

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

16



(3.7)

In order to obtain efficient and accurate solution of electromagnetic waves as if

the computational domain is unbounded and stretches to the infinity, the perfectly

matched layer (PML) must be introduced at all outer boundaries as a nonreflecting

absorber [23]. PML creates a nonphysical absorbing material, which can absorb the

electromagnetic waves without reflection for any frequency, polarization, and angle of

incidence at the interfaces between the PMLs and the FDTD computational domains.

3.2 Calculation of Cavity Characteristics by using the 3D FDTD

Method

By using the 3D FDTD calculation, resonant frequencies, field distributions,

and quality factor (Q-factor) of defect modes in photonic crystal cavities can be

evaluated. In all calculations, lattice constant (a) is set to be equal to 20 space steps

(20•¢x.), where •¢x=•¢y=•¢z(cubic lattice). The time step •¢t is chosen to be equal

to •¢x/(2c) , where c is speed of light in free space. These values of steps ensure

numerical stability. To obtain the field distribution and Q-factor of defect modes, the

resonant frequencies of those modes must be calculated first. In order to do this, a

pulse source with a Gaussian-shaped bandpass is excited in the at the point of low

symmetry in the vicinity of the cavity, then the fields are subsequently evolved in

time. The frequency bandwidth of this pulse source is broad enough to cover the total

modes of interest. The time evolution of the fields is recorded at a point of low

symmetry, and is calculated by the fast Fourier transform to obtain the cavity mode

spectrum. Then, another single pulse, which has the frequency bandwidth narrow

enough to excite only one resonant mode of interest, is applied to the cavity.

Snap-shot of each time-varying field components can be recorded to illustrate the

point-in-time view of field distributions of the resonant mode. The Q-factor is

obtained by measuring the exponential decay of electromagnetic energy after turning

off the oscillation of the source [24]:
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(3.8)

where U(t) is the electromagnetic energy in the mode at time t, and coo is the

frequency of the cavity mode. The total Q-factor is evaluated by measuring the slope

of the logarithm plot of this energy-time relation. In order to efficiently determine

what factors are limiting the Q-factor of the defect modes, another calculation method

is adopted to separate out the radiation losses into different directions, vertical and

in-plane directions, which are due to leaky modes and lack of number of photonic

crystal layers that surround the defect region, respectively. In other words, the total

radiating power P can be divided in to vertical radiation P•Û and in-plane

radiation P•Ú. The total radiating power P= P•Û+P•Ú is related to the electromagnetic

energy U(t) by [24]:

(3.9)

where coo is the angular frequency of the cavity mode. As a result, the total Q-factor

can be separated into vertical and in-plane components, denoted as Q•Û and Q•Ú,

respectively, and satisfy the following relation:

(3.10)

Combine the relations in Eq. (3.9) and Eq. (3.10), the Q-factor in each direction are

then given by [25]:

(3.11)

In practical calculation, these effective Q values are calculated by spatial separation of

the power radiated by the mode that is absorbed in the outer boundary [25]. The

in-plane radiation P•Ú is defined as the Poynting vector that is absorbed into the

sidewalls that extend from approximately a half-wavelength above the waveguide to a

half-wavelength below the waveguide. The vertical radiation P•Û is defined as the

Poynting vector that is absorbed into the rest of the boundary.

The Purcell factor [1], which indicates strength of interaction between

electromagnetic field and emitters inside a cavity, and the mode volume are calculated

using the following definition:
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(3.12)

(3.13)

where n is the refractive index of a cavity, ƒÃ(r) is the dielectric constant at position

r, and E(r) is the total electric field at position r.

3.3 Summary

In this chapter, details of the calculation method based on the

three-dimensional finite-difference time-domain(3D FDTD) method have been

described. The computational model was bounded by the perfectly matched layer in

order to obtain efficient and accurate solution of electromagnetic waves. Then, the

application of the 3D FDTD method to investigate the characteristics of cavity , such

as, resonant frequency, field distribution, Q-factor, Purcell factor, and mode volume,

of defect mode has been shown. The computational methods described in this chapter

will be applied to the calculation of all structures in the following chapters.
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