

図 3.10 スパッタリング膜Ti_{1-X}Zr_XO₂のSEM像

また、混成膜Ti_{1-x}Zr_xO₂と一般的に有機TFTのゲート絶縁膜として利用されている SiO₂(SiO₂のスパッタ薄膜はrmsが0.3程度であった)を比較した場合に、Ti_{1-x}Zr_xO₂ 膜の方が平坦であった。また、Ti_{1-x}Zr_xO₂の膜厚が増加すると、図 3.9、3.10に見 られる窪みは発生しやすくなり、窪みの密度が増加する傾向があった。SEM観察 で窪みはグレインであることを合わせると、この窪み部分は多結晶であると考え られる。より詳しいTi_{1-x}Zr_xO₂膜の結晶性についてはX線回折により、明らかに なると考えられる。図3.4と図3.5に示したそれぞれのTi_{1-x}Zr_xO₂膜の組成、スパッ タリング時間、膜厚、蒸着速度を表3.1にまとめた。組成比は、第三章の第四節で 説明した組成比(X)の決定方法から求めた。表3.1の(a)、(f)を比較するとZrO₂膜の スパッタリング速度はTiO₂膜のスパッタリング速度に比べ、半分程度であること がわかる。図3.6は表3.1をもとに作成したグラフである。

表 3.1混成膜Ti_{1-X}Zr_XO₂の組成比

	スパッタパワー ZrO2/Ti	組成 X	スパッタリング時間 分(m)	膜厚 (nm)	蒸着速度 (nm/h)
(a)	0W/400W	0	68	76	67
(b)	40W/400W	0.03	65	75	69
(c)	60W/400W	0.14	60	78	78
(d)	80W/400W	0.24	53	78	88
(e)	200W/400W	0.52	37	86	140
(f)	200W/0W	1	56	61	66

図3.6はZrO₂のRFパワーターに対するZrO₂組成比(X)の関係を表している。その 関係を見るとZrO₂組成比はZrO₂のRFパワーに対して単調に増加していることが わかる。

図 3.11 ZrO₂のRFパワータ ーに対するZrO₂組成比(X)の関係

表 3.2混成膜Ti_{1-X}Zr_xO₂の組成比のスパッタパワー依存性

ALS S LA	(a)	(b)	(c)	(d)	(e)	(f)	(g)
RF Power (W) ZrO2/Ti	0 / 400	40 / 400	50 / 400	60 / 400	80 / 400	100 / 400	200 / 400
組成比 (X)	0	0.03	0.08	0.14	0.24	0.34	0.52

図 3.7はZrO₂の組成比XとAFMで測定したrmsとの関係を示す。上記にも説明し たように組成比X が大きくなると平坦性も良くなる(rmsが小さくなる)がある組 成Xを境に急に平坦性が悪くなることがわかる。特に、本研究においては混成膜 Ti_{1-x}Zr_xO₂の表面粗さが膜の厚さと関係がある(TiAl₂O₃膜、Ti_{1-x}Zr_xO₂膜とも膜厚 が厚くなると結晶性が表れるため、表面粗さが悪くなる傾向がある)ため、成膜 する際にできるたけ膜厚が一定になるように注意した。

図 3.12組成比(X)とTi_{1-X}Zr_XO2膜の表面粗さ(rms)との関係

あるXを境に急に平坦性が悪くなることが予想できる

第二項 電気的特性

混成膜Ti_{1-x}Zr_xO₂の比誘電率を見積もるため、キャパシタを作製し、キャパシ タンス測定を行った。キャパシタンス構造はTi_{1-x}Zr_xO₂の膜上にAlを蒸着した MIS(Metal-Insulator-Semiconductor)構造であった。まず、スパッタリングで成膜し た混成膜Ti_{1-x}Zr_xO₂(膜厚が約70nmであった)の表面にメタルマスクを張り付けた。 メタルマスクには4mm×4mm、2mm×2mm、1mm×1mm、0.5mm×0.5mmの正方形角 がある。Alの蒸着にはEB(electron-beam)真空蒸着機を用いた。蒸着圧力は10⁵Pa、 蒸着速度を1A/s、膜厚は100nmまで成膜した。キャパシタンスの測定にはLCRメ ータを用い、周波数1kHzで行った。比誘電率を求める際、式 3.1を利用した。実 際にはスパッタリングで成膜した混成膜Ti_{1-x}Zr_xO₂は面内分布を持っている。混 成膜Ti_{1-x}Zr_xO₂は上記にも説明したように基板を回転させながら成膜を行うが、 回転軸から同心円上の膜の対しては面内分布が存在しないが、回転軸から直径方 向には面内分布を持っていることがわかった。そのため、キャパシタンスを求め る際には同心円上の膜の対して平均値を採った。キャパシタンスの値はトランジ スタの移動度を導出する際(式 2.2、式 2.3)にも重要なパラメーターとして扱われ る。図 3.8に混成膜Ti_{1-x}Zr_xO₂を有するキャパシタ構造を示す。

図 3.13 混成膜をTi_{1-X}Zr_xO₂を有するキャパシタ構造

図は、ZrO₂の組成(X)に対する混成膜Ti_{1-x}Zr_xO₂の比誘電率を表している。測定 結果を見ると混成膜Ti_{1-x}Zr_xO₂の比誘電率はZrO₂の組成比の増加と減少している ことがわかる。本研究で得られたTiO₂膜の比誘電率23.9は、一般的なTiO₂の比誘 電率の値と(図3.1では50以上)比べると小さい値である。その理由としては薄膜の 場合は下地の影響を強く受けることと、この厚みの膜では混成膜のほとんどが比 結晶質であるからだと考えられる。なお、平坦な膜が得られた(c)では、比誘電率 は21であり、Zr_xO₂膜の場合は9.3であった。

有機TFTのゲート絶縁膜として使用された比誘電率15-25程度の膜はTa₂O₅、 HfO₂、LaAlO₃などでも得ることが可能である。また、TiO₂については、30以上の 値が得られるのが一般的である。それらと比べると本研究で得られたTi_{1-x}Zr_xO₂ の比誘電率は決して大きな値ではない。しかし、Ti_{1-x}Zr_xO₂膜のrmsは0.1nmと表 面の平坦性が非常に優れている。この値は移動度1.4cm²/Vsが得られているLaAlO₃ のrms = 0.15-0.20を凌駕する。ゆうえに、膜の平坦性だけから判断するとTi_{1-x}Zr_xO₂ 膜を有機TFTのゲート絶縁膜として使用することにより1cm²/Vs程度の移動度が 期待できる。

図 3.14 ZrO₂の組成比XとTi_{1-X}Zr_XO₂膜の比誘電率との関係

上記に膜厚と比誘電率の関係を言及したがAlO₃、ZnSなどの薄膜に対し、比誘 電率の膜厚依存性に関する報告もあり、Ti_{1-x}Zr_xO₂膜に対しても比誘電率の膜厚 依存性を系統的に調べるとこにした。図 3.15、3.16にZrO₂膜、TiO₂膜に対する比 誘電率の膜厚依存性を示した。図 3.17にはTi_{0.76}Zr_{0.24}O₂膜に対する比誘電率の膜 厚依存性を示した。三つとも、比誘電率は膜厚の増加と共に減少していることが わかった。その理由は上記にも言及したように、薄膜の場合は下地の影響を強く 受けることと、薄膜であるこの厚みの膜ではほとんどが比結晶質であるからだと 考えられる。ZrO₂膜は13nm-24nm、TiO₂膜は42nm-76nm、Ti_{0.76}Zr_{0.24}O₂膜は56-99nm の範囲では比誘電率の膜厚依存性がほぼ線形的に変化した。他の材料(AlO₃、ZnS) でより広い範囲(膜厚は100nm以上)での比誘電率の変化は指数関数的変化し、 ある膜厚で飽和に至ることが報告されている。つまり、膜厚が増加するとバルク 相が表れ、比誘電率は膜厚とは関係なく、一定になることが知られている。 Ti_{1-x}Zr_xO₂膜に関してもより広い範囲に対して調査を行うと、ある膜厚で比誘電 率が飽和されることが確認できる考えられる。なお、Al₂O₃などの酸化物絶縁膜 は時間と共にキャパシタンスの値が減少する報告^[57]もあるが、Ti_{1-x}Zr_xO₂膜では キャパシタンスの時間依存性は見つからなかった。このことはTi_{1-x}Zr_xO₂膜が安 定であることを意味していると考えられる。

図 3.14 ZrO2膜に対する比誘電率の膜厚依存性

	Thickness (nm)	Capacitance (nF/cm²)	Relative dielectric constant
(a)	42	381	18.1
(b)	59	310	20.7
(c)	76	278	23.9

図 3.15 TiO2膜に対する比誘電率の膜厚依存性

図 3.16 Ti_{0.76}Zr_{0.24}O2膜に対する比誘電率の膜厚依存性

実際に Ti_{1-x}Zr_xO₂ 膜を有機 TFT のゲート絶縁膜として使用する際には有機 TFT の安定動作と表面処理による性能向上(詳しいのは第四章、第五章にて説明する) のため、図 3.17 のように Ti_{1-x}Zr_xO₂ 膜上に約、2-3nm 程度の SiO₂ 膜を積層した。 SiO₂ 膜は Ti_{1-x}Zr_xO₂の成膜が終わったら、すぐスパッタリングにより成膜した。成 膜の条件はアルゴンアを 12.0sccm、酸素を 3.0sccm にフローした。スパッタター ゲットは SiO₂ で、スパッタパワーは 100W にした。特に、Ti_{1-x}Zr_xO₂ 膜の作製と 同じく、SiO₂ 膜を作製する際にも基板を rpm の速度で回転しながら 3 分間、成膜 を行った。

積層されたTi_{1-x}Zr_xO₂/SiO₂膜を用いてキャパシタンスを作製し、キャパシタン ス測定を行った。キャパシタの作製条件を以下説明する。スパッタリングで成膜 したTi_{1-x}Zr_xO₂/SiO₂膜の表面にメタルマスクを張り付ける。その後、電極になる Alの蒸着にはEB (electron-beam) 真空蒸着器を用いた。蒸着圧力は10⁵Pa、蒸着速 度を1A/s、膜厚は100nmまで成膜した。キャパシタンスの測定にはLCRメータを 用い、周波数1kHzで行った。キャパシタは図3.17のような構造であり、比誘電率 を求める際には式3.1を用いた。また、Ti_{1-x}Zr_xO₂/SiO₂膜のキャパシタは式3.2のよ うにTi_{1-x}Zr_xO₂膜とSiO₂膜が直列している。式3.2と式3.1を用いてSiO₂の膜厚を計 算した結果、SiO₂膜厚は2-3nmであることが再確認された。

式 3.2

図 3.17 Ti_{1-X}Zr_XO₂/SiO₂膜をするキャパシタ構造

図3.18-図3.21はTi_{1-x}Zr_xO₂/SiO₂膜に対する比誘電率の膜厚依存性を示した。四 っとも、単体のTi_{1-x}Zr_xO₂膜と同じく、比誘電率は膜厚の増加と共に減少してい ることがわかった。図3.18-図3.21に示してあるTi_{1-x}Zr_xO₂/SiO₂膜は実際に有機 TFTのゲート絶縁膜として使用され、その優位性が確認された。Ti_{1-x}Zr_xO₂/SiO₂ 膜の組成比を変えることにより、膜厚68nmのTi_{0.92}Zr_{0.08}O₂/SiO₂膜に対しては比誘 電率16.9ともっとも大きい値が得られた。その反面、膜厚14nmのTi_{0.66}Zr_{0.34}O₂/SiO₂ 膜に対しては比誘電率5.8ともっとも小さかった。また、Ti_{1-x}Zr_xO₂/SiO₂膜は膜厚が薄くなって行くと組成比による比誘電率の差が小さくなる傾向を示すことがわかった。

図3.18 Ti_{0.92}Zr_{0.08}O₂/SiO₂膜に対する

比誘電率の膜厚依存性

	Thickness (nm)	Capacitance (nF/cm ²)	Relative dielectric constant
(a)	73	185	15.8
(b)	36	234	9.5
(c)	26	300	8.8

図3.20 Ti_{0.76}Zr_{0.24}O₂/SiO₂膜に対する

比誘電率の膜厚依存性

	Thickness (nm)	Capacitance (nF/cm ²)	Relative dielectric constant
(a)	73	202	16.6
(b)	40	272	12.2
(c)	26	348	10.2

図3.19 Ti_{0.86}Zr_{0.14}O₂/SiO₂膜に対する

比誘電率の膜厚依存性

	Thickness (nm)	Capacitance (nF/cm ²)	Relative dielectric constant
(a)	74	166	13.8
(b)	27	270	8.2
(c)	14	368	5.8

図3.21 Ti_{0.66}Zr_{0.34}O₂/SiO₂膜に対する

比誘電率の膜厚依存性

また、図3.18-図3.21にはTi_{1-x}Zr_xO₂/SiO₂膜の組成比と膜厚によるキャパシタンスの値も一緒に示した。膜厚13nmのTi_{0.92}Zr_{0.08}O₂膜のキャパシタンスがもっとも大きく、その値は425nF/cm2にも至った。

図3.22-図3.24にTi_{1-x}Zr_xO₂/SiO₂膜厚が一定の時、組成比によるキャパシタンス と比誘電率の変化を示した。図3.22のTi_{1-x}Zr_xO₂/SiO₂膜厚は平均72nm、図3.23の 場合は平均38nm、図3.24の場合は平均26nmであった。三つとも、単体のTi_{1-x}Zr_xO₂ 膜と同様に組成比が大きくなるとキャパシタンスと比誘電率が線形的に減少し ていることがわかった。その理由はTiO₂膜に比べてZrO₂膜の比誘電率が小さいた め、Ti_{1-x}Zr_xO₂膜中にZrO₂の割合が高くなるとその分Ti_{1-x}Zr_xO₂膜の全体的な比誘 電率は小さくなるからである。

図3.22 膜厚72nmのTi_{1-x}Zr_xO₂/SiO₂膜に対する比誘電率の組成比依存性

図3.23 膜厚38nmのTi_{1-x}Zr_xO₂/SiO₂膜に対する比誘電率の組成比依存性

図3.24 膜厚26nmのTi_{1-X}Zr_xO₂/SiO₂膜に対する比誘電率の組成比依存性

上記に示したキャパシタ構造(図3.17)についてリーク電流と絶縁破壊電界強度 (Breakdown electric fields)を調べた。リーク電流は有機TFTを動作させる時にゲー ト、ソース間の電流となり、消費電力やオン/オフ比などに大きく関係する。その ためゲート絶縁膜がリークしないことは非常に重要なポイントである。また、絶 縁破壊電界強度は絶縁膜の耐久力を評価する重要なパラメーターである。

リーク電流と絶縁破壊電界強度の測定は実際に有機TFTのゲート絶縁層として 使用されるTi_{1-X}Zr_XO₂/SiO₂膜に対して行った。リーク電流における測定では上部 電極と下部の電極の間に電圧を印加し、電極間に流れる電流を測定した。上部電 極は直径200 μ mのAlであり、Alの蒸着には直径200 μ mの円型メタルマスクを Ti_{1-X}Zr_XO₂/SiO₂膜表面に貼り付け、EB(electron-beam)真空蒸着器を用いた。蒸着 圧力は10⁵Pa、蒸着速度を1A/s、膜厚は100nmまで成膜した。測定には半導体パラ メータアナライザkeithley4200を使用した。図3.25、図3.27、図3.29にTi_{1-X}Zr_XO₂/SiO₂ 膜の電界強度に対する電流密度を図3.26、図3.28、図3.30には絶縁破壊電界強度の 組成比依存性を示す。電流密度を計算する際には電極間の電流を電極の面積4 π × 10⁻⁴で割り、電界強度を計算する際には電極間に印加する電圧を絶縁膜の厚さで割 って求めた。本研究において絶縁破壊電界強度を上部電極と下部の電極の間に流 れる電流密度が1 μ A/cm²になる時の電界として定義した。

絶縁破壊電界強度^[51,54,55]は膜厚に依存するため、絶縁破壊電界強度の組成比依存 性を求める際にはTi_{1-x}Zr_xO₂/SiO₂膜厚が一定になるように注意した。Ti_{1-x}Zr_xO₂/SiO₂膜は図3.26、図3.28、図3.30に示したように厚さを一定にした時、組成比が大 きくなると絶縁破壊電界強度も増加しより絶縁性が向上することがわかった。そ の増加する様子は線形的より、指数的に変化した。Ti_{1-x}Zr_xO₂/SiO₂膜のリーク電 流は報告された他の絶縁膜を小さく、優れた絶縁性を示した。また、絶縁破壊電 界強度においても7MV/cmのAl₂O₃, 6MV/cmのLaAlO₃, 2MV/cmのCaZrO₃, 2MV/cm のBa_{0.6}Sr_{0.4}TiO₃、ポリマー絶縁膜の場合は2.1MV/cmのPV, 2.5MV/cmのPPIに対し Ti_{0.66}Zr_{0.34}O₂は8MV/cmにも及んだ。仮にこのTi_{1-x}Zr_xO₂/SiO₂膜をゲート電極とソ ース・ドレイン電極の重なりである有機TFT構造を想定するとゲート・ソース間の リーク電流はおよそpA以下であると考えられる。

	Orrest (established)	Ti _{1-X} Zr _x O ₂ (X)	Thickness (nm)	Breakdown electric fields (MV/cm)	
	(a)	0.08	71	4.2	
	(b)	0.24	73	4.5	
	(c)	0.34	74	5.0	
٥.	(d)	0.52	72	6.0	

図3.25, 3.36 膜厚72nmのTi_{1-X}Zr_XO₂/SiO₂膜における絶縁破壊電界強度の組成比依存性

	gl-orlo	Ti _{1-x} Zr _x O ₂ (X)	Thickness (nm)	Breakdown electric fields (MV/cm)
÷.	(a)	0.08	39	5.3
	(b)	0.14	40	5.6
1.1	(c)	0.24	37	7

図3.27, 3.28 膜厚38nmのTi_{1-x}Zr_xO₂/SiO₂膜における絶縁破壊電界強度の組成比依存性

-	Ti _{1-x} Zr _x O ₂ (X)	Thickness (nm)	Breakdown electric fields (MV/cm)
(a)	0.08	27	5.9
(b)	0.14	26	6.2
(c)	0.24	25	6.7
(d)	0.34	26	7.9

図3.29, 3.30 膜厚26nmのTi_{1-X}Zr_XO₂/SiO₂膜における絶縁破壊電界強度の組成比依存性

図3.31に膜厚13nm-71nmのTi_{0.92}Zr_{0.08}O₂/SiO₂膜における絶縁破壊電界強度の膜厚 依存性を示す。膜厚が厚くなると絶縁破壊電界強度は減少する傾向が表れた。ま た、その減少の様子は指数的であった。絶縁破壊電界強度の膜厚依存性を表す 式としてForlani-Minnajaの公式が知られており、最初にその関係を提唱した人の 名前を冠している。Ti_{0.92}Zr_{0.08}O₂/SiO₂膜をForlani-Minnajaの公式により、解析を行 った。Forlani-Minnajaの公式は式3.3として表れる。

$E_B = Ad^{-lpha}$ (EBは絶縁破壊電界強度、Aは定数、dは膜厚) 式3.3

この式で α の値はlogE_Bをlogdの関数として表現したとき、グラフから求めること ができる。 α はlogE_B-logdのグラフにおいて直線の傾きに相当する。Forlaniと Minnajaは α の値を0.5-0.25だと予測したがTi_{0.92}Zr_{0.08}O₂/SiO₂膜においてはが0.45が 得られ、Forlani-Minnajaの公式を満足していることがわかった。このように絶縁 破壊電界強度の膜厚依存性が表れる理由は報告^[50]されたとTa₂O₅, Y₂O₃, Er₂O₃と同 様に薄膜のモルフォロジーに関係すると考えられる。Ti_{1-x}Zr_xO₂膜は膜厚が厚くなるほど結晶化しやすく、表面の平坦性が悪くなる傾向がある。そのため、膜厚が厚くなるとより非均一、非平坦な表面が表れやすくなる。この非均一、非平坦な表面には高電界が印加され易くなり、その結果、電荷注入の増加を導くようになりリーク電流が増加すると考えられる。

図3.31 Ti_{0.92}Zr_{0.08}O₂/SiO₂膜における絶縁破壊電界強度の膜厚依存性

39

71

5.3

4.2

第五節 まとめ

本章では、2元同時スパッタリングにより混成膜Ti_{1-x}Zr_xO₂を作製し、表面形状 および電気的特性の評価を行い、有機TFTのゲート絶縁膜としての可能性を検討 した。これを、以下にまとめる。

1) Ti_{1-X}Zr_XO₂膜のrmsは0.1nmオーダーで非常によい平坦性を示した。

(c) (d)

- 2) Ti_{1-x}Zr_xO₂膜が平坦な膜の比誘電率は9.3-23.9であった。
- 3) Ti_{1-X}Zr_XO₂膜・Ti_{1-X}Zr_XO₂/SiO₂膜の比誘電率は組成比により、線形的に変化する。
- 4) Ti_{1-x}Zr_xO₂/SiO₂膜の絶縁破壊電界強度は組成比、膜厚により、指数的に変化する。