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1. Introduction

Let us suppose the case in which a very small circular hole
in a large plate in uniform stress state is a cause of crack initi-
ation. The time to crack initiation, as is well known, is
subjected to a probability distribution such as Weibull’s,
This fact has been an issue of random nature of material
strength, but on one side, this implies that the hole might
not be circular precisely, or in other words, the stress
concentration factor might fluctuate from hole to hole. It
turns out then that even elastic stress analysis around a hole
requires probabilistic treatment in some applications from the
standpoint of stochastic structural mechanics.

We authors newly propose a stochastic stress analysis
procedure which enables us to evaluate the probabilistic nature
of stress distribution around a hole, the shape of which homo-
geneously fluctuates. The present theory is based on a
stochastic conformal mapping, the function of which involves
probabilistic variables. If the power spectrum of shape fluctu-
ation is given, such spectrum has once been observed for a
particular case? , the covariance matrix of aforementioned
probabilistic variables is evaluated so as to characterize the
probabilistic nature of stress functions. Then the expectaﬁon
and dispersion of stress at a point on the contour are obtained
by the means of the first-order approximation principle.

In this paper, only the formulation is described, and the
numerical results and discussions will be presented in the

subsequent paper which follows shortly later.

2. Formulation
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2.1 Stochastic Conformal Mapping

Consider a randomly shaped hole in an infinite plate
(Fig. 1), whose contour is defined in form of 7 +/(8) where
7 is a constant radius of reference circle and f(#) a function
of angular position # of arbitrary point A. The shape fluctu-
ation is described through f(8) . A relation 2=2(¢) is taken

to represent the conformal mapping of the external of

7+ f(6) onto that of the circle 7. We assume Z(¢) as follows;

S

Z@O=rn e S eSS (1)
n=lc C C CN
where S.(n="1 2, -, N) are unknown complex

coefficients, and =€ +inp=pe’*(G=,/—1). By the use of
the values chosen at M points, the following simultaneous
equations are derived to determine N coefficients.
N
[r [0 e = re £ 3. % ¢ =i
=

=1
k=12, M; MzN)
Making use of the partition into real and imaginary parts of

2>

Sn AS Sn =Sn+14S,, wehave

(CUst=iA (3
where the vectors {5}(2Nx 1), {f}(2M X 1) and
matix [C J(2M X 2N ) are defined by

&—pl

Fig. 1 Present Conformal Transformation Representing

a Randomly Shaped Hole on a Regular Circle
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{5}= s\ 81 82 S2 swsua”,
{f}zl_f(ﬁl) 0 f(az) 0 f(BM) 0,7,
¢t ¢1 -t

[(Cl= :
CLC3--CH?

CZ“——-L,, [ c?s(n-l- 18 sin(n + I)Bk} ()
4 —sin(n+ 1D, cos(n+ 1)0.],

n=12", N, k=12, M)
The solution {35} for {;‘} is used to determine the conformal
mapping Eq. (1). In the case of M=N, Eq. (3) is solved
in wsual manner. If M> N, Eq. (3) is solved in the sense of
the least square approximation. Generally the solution of
Eq. (3) is expressed as follows.

(5Y=[(CTLCIT[CTIN=[C*)]} (5)

When the function is assumed to be a homogeneous
random process with E[f]= 0, the coefficients s, are also
random  with Els, 1=E[s,]=0. The
Cov(si, s57), Cov(si, s7) and Cowv(si, s;), denoted by
Coo (34, 5;) commonly, are defined by taking the expect-

ation of the following matrix

covariances

Ve . ’ . . ) ’
5181 $181° 818w SiSw

.. s,
S181 - §1SY S1Sw

{sHs} = )
S¥Sw SwSu
sym. SuSy
=[C*UFHFITIC*T", (6)
that is

[Cov(3;, 5;) 1=[C*1- EL{AFITI-[C*T". (7)
The matrix E[{7}{f}7] is written as
E[f(6,)/(0,)]1 0 E[f(8:)/(8:)1 0
0 0 0 0

E[f(6x)f(6:)1 0 ELAO4)f(82)] 0
0 0 0 0

< E[A6,)6s)] O
0 0
: : (8)
< E[f(0u)f(0u)] O
0 0
where E[f(0 )f(0:)1(m, k=1, 2.---, M)equals the auto-
correlation of the random process f(8) denoted by R(0n
—0;). Introducing the discrete Wiener-Khintchine relation,

we have

ELf0u)f (0)1=R On—02)= E_S () t0n~00
(o)

where S(2,) is the line spectrum for the n-th wave number
A»=n/ 2. This means that the covariance of the coefficients
$» for the stochastic conformal mapping function can be
determined through the power spectrum S(1,) of the given
shape fluctuation.

2.2 Expectation and Dispersion of Stresses

We deal with an infinite plate made of isotropic elastic
material and weakened by a nearly circular hole. The
Goursat’s stress functions ¢(Z) and v (2)? are used to

calculate stresses oz, 0, and 7zy in the following form,

”J%bzzee[w'(c)l
(10)
21:2—"—’+z'r”:2(c)- UL+ T

where O(¢)=@l{Z()}, ¥ () =¥{Z(¢)}. The superscripts
" and " denote the first and second derivatives with
respect to 2 ,and Z(¢) is the conjugate of Z(¢). Since Z(¢)
represents the stochastic conformal mapping function
aforementioned, the stresses given by Eq. (10) are of
stochastic nature also. Taking into account uniform stress state
prescribed by o7, 07 and 7z at infinity, we have the
following form of ®(¢), w (¢) for Z(¢) defined by Eq.
(1).

— 52
D =Ar— r_ s_1+si+...+ﬂ
{ ©=Ac-2B 7 —A(S+ i .
—x) -7 (LY.

r ©O=x0-Z(%) 00

where an auxilliary function X(¢) , a real constant A, and

a complex constant B are given as blow

X(C)Z—A—z—z-ﬁ— 2B¢+A {§1%+;2(7_€>2

5 (&) Y an

- -
=270 2B=S g

where §i means the conjugate of ;.

Solving Egs. (10) for &z, oy and 7zy, we have

0:=Re[20' ()—Z () @ ()~ I= 928, 5)

{ 6, =Re[20'(0)+Z () B" () +¥ () I= 9:(¢. 5)
oy = Im[Z() 0" (O +TH 1= gs (6, F)
(13)

where § represents the conformal mapping coefficients s,
for every n, by which the stochastic nature of the stresses
is governed.

The stress values §:({,3), :(¢,§)  and g5(¢, §)
are derived by substituting Eqs. (1) and (11) into (13),
as follows

T e e e e e T
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m %
9:(¢,3) 1
=2qq.+ —
92(5,3)} 2380 1}43(4445 957

+ 59 —Guoqu)
!]3((; 5)243(0545 +4497+ G0 gs +4squ)

(14)
in which g1 ~@u are calculated as given below,
G=T3T 9e=Reln Relhy 1+ Imh, Umlhy |

1
ga= Tha qi=Relhs—hs]

) qe=]m[h5—h5]

qs=Rak +1,,1
q7=124i?—1?24i

QS:Re[hS] Q9:Rs71%+]87[ do =Imhs]
gu=Ig R—Ral

A_. 3 A—— 3 (15)
R—Re[(hs) ] [—Im[(hs) ]

where Rp4 and I, are the real and imaginary parts of
hohs—hih,, and Rg; and [y, of hehs—h k4,

respectively. The complex functions 2 , ~# 5 are given by

£ B R

ig ﬁ‘i [ T T T T R T T RN E TS DO AT T

where (- )Y =d(-)/d¢, (-)"=d?(-)/d¢?, but their
explicit expressions are tabulated in Appendix 1.

The stress expectations and variations £ (o, ], Var[{o,]
and the likes are calculated on the basis of the first-order
approximation3!.

Oy g:(é’;E)
E {0'1 }z {gz(c,§)}
93(5,3") 3

Ty 5=E(5]=0
Oy w o 9:(, %)
Var {a, }zm;: i {gz((,g)} X
gs(¢, §)

Tay
9 !]1({; $)
35, {yz(C, 5)} “Cou(si, 85) (A7)

9:(¢,3)7 3=E[51=0

)
o;;lQ)

where §; denotes for the ith element of §, namely,
$i=5"i+1/12for odd number i and s” i/12 for even.
The derivatives of 91(¢,3), g2(¢, §), 93¢, 3)

h=0" h=0" he=Z’ ~
! ”(C) 2 @ s @ asregards $; can be rewritten in the following form
=270 k=200 ‘
=7 . (7t , 0. 8 9: (%)
he=2 -—) hqa= (—) he=X"(0) 16 . W
: (c N : 2 Lo t=2-2 a2k (18
a3; . j=1 6%,- - 03;
(16) 9:(, $) gs(h)
Appendix 1
Re Im
2 2
hi | A+ 2;2 (B'CZ_B'SZ)+AZd1 (5%Cnn +$;Sn+1) 2‘0’; <~B'32_B,C2)+A2d1(_s"ls”*l+s;c"“)

2
By | —A4 % (BCy=B'Ss)—AXds(52Crsz+55 Snez)

2
4%(3‘33 +BC)—AY dy(—~5uSusz+55Curz)

hs 1=2d1 (2 Cpry +528um1)

_Zdl (“S;;Snﬂ +S’nCn+1)

N ZdZ(S.nCn+2+SInSn+2)

Y d2(—$nSnszt53Cusa)

By | 0C1+ 2 da(suCpt+5,80)

—0S,+ 2 da(s0Ss—52Cy)

2
he % Cr+ X ds (53Cnt52Sn)

2
—%sl + 3 di (5382 =53 Cy)

2
haq "‘%3 Co+ 2 ds(suChmy +53Su-1)

2
%Sz‘*’ Z ds(s-nsn—x _”S’ncn-l )

2
By A% Cot 2B +AY. ds(s2Cnmy +538nm1)

2
~A%5 e+ 2B T AR ds (5851 =53 Cat)

n

n+l
r4

N
where S, =sinnda, Ca=cosnd, 1,= 2., d; =
n n=1

_n(n+1) 1 o n-l-

pn+2 ’ d3:7: d4_7,2n-' d5:7l yon
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where % means all of the 16 functions arranged such as
Relny), Imlh,), -, Imlhsl, and k; the jth entity
of arranged . The derivatives of ¢, (%), g.(k) and
ga(7l ) with respect to A ; are summerized in Appendix 2.

3. Conclusion

A stochastic procedure to estimate the probabilistic stress
state around a hole with uncertain shape is presented,
provided that the power spectrum of shape fluctuation is
given. Once the probabilistic conformal mapping is established
in conjunction with the power spectrum, the stress state is
calculated by the use of Grousat’s stress functions which
are subjected to the conformal mapping. The first-order
approximation is taken to evaluate the expectation and
dispersion of the stresses.
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Appendix 2

qus = Zh /Ih |4 l]l,e:_z}i /|h |

g2, —hs gz,2 "hs 2,5 '“hn d2s6 —hz
Gs»s =— 605 /| 2a® Gar6 = — 65/ | hs|®
Gs,i =—hR—hsl qs,z—h B h ]

Q53 =hs R + 7l Gsra=—heR +hsl
Gors =haR +RpP+ha+124Q

Gsr6 =—hsR—R:uQ+hy 1+124P
q5,7=—~h R— h2]
41,1 =—h3}?+;z7j

g9,z :7:,41"?—7;.3i
qg,s——h 5R ;RB7P+h151+157Q
qg,;,:-—hlaR R37Q+h15]+137P

Qor1s = —hR—h,1 -
go1s Zth-f‘h.«,] 49:16:—;!51%-}-
q“u:*;z“]h?-ifh,g? - ;t
Grirs =his R+ P—h1s]—R3:Q

Gi1r6 =his R—TarQ+ 1] —Rer P
Grns=—hR+h, 1

l]nus:;lsie—gsj l]u:ls:zsk Zs}
Gar9 =610 =85 =Gross = 1
Gor1s =Genz =1

All the others are nil.
~2 =2 ~ o~ ~
Note; P=3 (hs—he), Q=6hshs, gi,;=0q:/0h;.
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