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A Note on Stochastic Finite Element Method (Part4)

Eigenvalue problem of column buckling under uncertain boundary conditions
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1. Introduction

This note discusses how to estimate the buckling eigen-
value of a straight column under compression, the boundary
conditions of which are uncertain, in order to present a
methodology based on the second order perturbation
method incorporated with the finite element displacement
method and to examine its applicability to linear eigenvalue
problems.

Buckling load is governed by the imposed boundary
conditions and initially existing imperfections, if any, besides
mechanical properties of material used and dimensions of
structure under consideration. Initial deflection is likely
to develop with increasing external load, and, as the result,
linear eigenvalue analysis is made out of place in the presence
of initial deflection. The fluctuations in the mechanical
propérties of material and dimensions, which can be in-
corporated with the finite element stiffness matrix in the
manner reported previously "2, seem to be less significant
compared with the effect of the fluctuating boundary
conditions.

We have chosen to investigate the effect of uncertain
boundary conditions on buckling load by the use of finite
element modeling equipped with virtual spring elements
which represent elastic restraints against deflection and angle
of rotation at column end. The spring constants of which are
considered varying as random variable to meet uncertainty in
the boundary conditions. Then the probabilistic nature of
the fluctuating buckling load is evaluated on the basis of the
second order perturbation method, instead of the first order
one for the linear statistical model®”®"®". The present

method is exemplified by straight column under conservative
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compressive force, whose bending rigidety £/ and cross-
sectional area S remain definite and uniform through the

whole column length L. *

2. Stiffness matrices

Figure 1 illustrates the elastic restraints for deflection
and angle of rotation at node 1 of an end simulated by
virtual spring elements. We assume that the spring constants
are expressed in form of (s/1—s)(EI/!®) and (¢/1—¢)
(EI/1) for the deflection and angle of rotation respectively,
where / is the length of element given by the nodes 1 and 2.
The stiffness matrix [%#] and geometrical stiffness matrix

{ ko1 " are given below;

r1=Ef S —12 61
(4475 ) =60 2t | (1)
A
12 6
|SYM. 42
x[kc]:/l% 36 3/ —36 3/
4% =31 —/? (2)
36 -3/
SYM. 47°

where 1=P/*/E[ is the buckling eigenvalue of the

column (compressive force P taken positive). The second
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Figure 1  Virtual spring elements and finite element division
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terms of k11 and A2z, which arise from the contribution of
spring reaction, are discarded for any element not subjected
to such boundary conditions.

The parameters representing the spring constants, s and
¢, are taken as the sum of the expectations ($o and ¢o)and
random variable terms as s=s0(1+x) and ¢ =co(1+e),
It goes without saying that the expectations of « and e,
El{uland E[e ), are equal to zero. Then we have the fol-
lowing Taylor expansion of the stiffness matrix [% ] with
respect to small values of # and ¢ up to the second order
products.

Cel=[ko]+[kdutlkele +kudu+ keI (3)
where [£o] is expressed by Eq. (1), in which s and ¢ are

replaced with So and ¢o, and

2

_EI So So
Tk, Tkl =5 ("(1—50)2’*‘_“_0*“)& 1000
000] (4)
00

SYM. 0

ﬂ Co Coz
AN (l—co)3>(0 000

[kel lkel=
Z00] (5)
00

SYM. 0

Such matrix as [k ] is not involved since there is no

coupling of # and ¢ in Eq. (1).
3. Second order perturbation applied to governing equation

The governing equation of the buckling eigenvalue
problem is expressed usually as

(IK}=2LK:DIU={0} (6)
where the overall stiffness matrices [ Jand [ K] are gene-
rated by means of merging (% Jand [£:], and {U } denotes
generalized displacement vector consisting of # unknown
components. Dealing with such a simple case that only the
node 1 is subjected to fluctuating elastic restraints as in
Fig. 1, we make use of the same polynomial expansion of
[K], # and {U} regarding # and ¢ up to the second
order, as given in the following.

[K)=[K, )+ K, ut (K e+ [Kuuln® + [ Keele? + LK e e

(7D
A=A T phFedet pP AT Aot 1EX e (8)
(UY=(U+ U Su+ (Ude U pd i +{U ede® +{U ped e

(9)

(K] remains - definite, and [K,]=[0]. Substituting
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s # =
Egs. (7), (8) and (9) into the governing equation (6) and
sorting out pertinent terms of «, ¢, #°, ¢* and x¢, we have
the following equations based on the principle of the second
order perturbation method, in other words, by means of
neglecting all the higher terms of u# and/or e than third
order product.
([Ko =2 [Ke DU} ={0} (100
(LK =2 LK DAU I+ (LK 1= 26 LK DU L} = {0} (1)
(LK I=2LK HU 3+ (LK I= 2o (K DU =10} (12)

K] = 2wl Ke DU+ (LK I=2LK DU L}

(LK1= 2 [Ke DU uu} = {0} (13)
([KEEJ-—XEEEKG]){UO}+([K£]_AE[KG]>{UE}
+ (Ko = ALK DU} ={0} ' (14

(CK e 1= 2ue Ke DU o} + ([K)— 2 LK DU L}
(K= ALK DU e} + ([Ko )= 26 [Ke DU e} = {0}
(15)

Equation (10) equals ordinary characteristic equation of
eigenvalue problem, by which the eigen value Ao, and eigen-
vector {Us} are determined for given structural data and So

and Co.
4. Rates of changes of eigenvalues and eigenvectors

Equations (11) through (15) are used to calculate the
rates of change of eigenvalues and eigenvectors, now that
Ao and {U,} are given. Premultiplying Eq. (11) of the ¢ th
order by LU oJ’ and taking advantage of the symmetry of
[Ko]—44[K:], we can easily determine the rate of change

of eigenvalue as

i W KUY 6
A TRUT AL (18

where superscript / means the order of eigenvalue and

2

L I the transpose of { }. The rate of change of eigen-
vector {U,}* cannot be obtained by simple manipulation
of the matrix inverse of [Kol—A4[K¢] because of its
singularity. A few methods have been proposed by Collins ®
and Fox® to determine such rate of change of eigenvector.
We use the method proposed by Collins, though it takes
considerable CPU time since it requires ail the orders of
eigenvalues and eigenvectors, as Fox’s method was reported
to encounter numerical difficulty.
Following Collins, we assume U, Ua, Upn, Uea,
Upa=0, that is, U,=Us without losing generality,
where subscript 1 means the first component of the vector
{U}. This gives rise to the decrease of number of unknowns
(U AU AU uu}, {U e}, {U 4} by unity. Premultiplying
Eq. (11) of the ¢ th order by ( Us,” (j#4¢) and subtract-
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ot %= iH
ing L Uo3?([Ko 1=/ [KeD{U L} =0 from the result, we
have

LL/UJj Y f
Xol—xoj ([Ku] Xn[KG]){Uo} an

U/ LKJU W Y =
Arrangement of #—1 equations (17) for /=1,2,,n(j
# i )results in # — 1 simultaneous equations in form of
AU >} ={(B} (18)
with respect to {U,*}* which stands for LUz, U,
LU, " . The matrix [A lin size of # —1Xn— lis no longer
singular, which is generated from . /o /(K] for j=1,2,
=, (j74) . Thus U, can be calculated by solving the
simultaneous equations (18). The other rates of change of
eigenvalues and eigenvectors are detemined successively in
the similar manner by the use of Eqgs. (12) to (15). It should

be noted that we have
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5. Numerical example

Let us consider a straight column and divide it into five
finite elements. In the case that the column is built-in at the
both ends, the analytical buckling load is given asP =4x%E [/
L?,and P=(z*/4)EI/L* in the case of an end built-in
and the other free. Then the analytical eigenvalues A =p/?
/EI are 1=1.5791and (.098696 respectively in the above
two cases, because / =L /5. To estimate the buckling eigen-
value under nearly builtin condition and nearly free con-
dition at an end to uncertain extent, we apply the afore-
mentioned formulation to such cases as so=co="0.999,
0.960 and 0.001. The eigenvalues and their rates of change
thus calculated are listed in Table 1. Table 2 lists the eigen-
vector and its rates of change in case of so=co=0.999,

In this calculation, the eigenvector {{/,}¢ is normalized as

A= ﬁfﬁ([[{“ HU.¥ LU0 [KcJ{UoY =1 It is noted that only the results about
+ (K- 2K DU N+ (K =2 K DU D the prinary mode (7=1) are shown here. Owing to the

» (19) small number of elements used, the numerically calculated

LUo /K HU e :%]:03;_6 {(TK e J— 2, LK DU Y eigenvalues remain rather larger than the analytical solutions.
(R I=RTK DWW+ (K~ 2K DU Table 1 al.so s.hows that the effect of. the restralflt a.gamst
20 angle of rotation is greater than that against deflection in the

It is seen from the above equations that A and {U .}’

are not zero in spite of the fact that [ K, ]=[0] .

case of nearly built-in condition, and is smaller in the case of
nearly free condition. Figure 2 depicts the comparison

between the result obtained by the present method and those

Table 1 Eigenvalues and their rates of change (Primary mode:;=1)

0.999 | 1.5836

‘ So =Co | Xo X/l 15 /{u,u Zes /{us

\ i —
I ;
| 0. 001 i 0. 10315 0. 406 x 1072 0.401x 107 0.131x10°* —0.610x10°® 0. 118x107°

‘ 0. 960 ‘ 1. 5579 0.482x 1077 0.648x10° —0.639x1077 ~0.400x10° —0 447 x107° ’
‘ 0.163 x 1073 0. 640 x 10° —0.265x1071% -0 442x10° —0.104x1077

L

Table 2 Eigenvector and its rates of change in case of So =c¢o =0.999 (Primary mode: ;=1)

{us} {u.} {uv.} (U} {Ue} {Uu}

w, 0. 30856 x 10~ 0.0 0.0 0.0 0.0 0.0
— 0. 48410 x 10 ~*® — 0. 484 x 1072 —0. 484 x 1072 —0. 484 x 10! —0. 484 x 10! —0. 484 x 10!
w, —0. 84527 x 107! —0. 846 x 102 ~0 169 x10° —0 845 x 10°% —0.253x10° —0.169x10°
— (. 36487 x 10?2 —0. 365x 10! —0. 730 x 10! —0.365x10* ~ 0. 109 x 10° —0. 730 x10*
ws —0.22104 x 10° .—0.221x103 —~ 0. 442 x 10° -0 221 x10°¢ —0. 663 x10° —0.442x10°8
—0.22519%x10"? —0.225%x 10! —0. 451 x 10! —0. 225 x10* -0 676x10* —0.451x10*
wy -0, 22095 x 10° —0 221x10°% —0. 442 x10° —0.230x10°® ~0, 663 x 10° —0.442x 10°¢
0. 22558 x 102 0. 226 x 10! 0.451 x 10! 0. 226 x 104 0. 676 x 10* 0. 451 x 104
ws —0.84381 x10™! —0.844x10? —-0.169x10° —0.844x 105 —0.253x10° -0 169 x10°
0. 36472 x 1072 0. 365 x 10! 0.729x 10* 0.365x10* 0. 109 x10° 0.730x 10*
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Figure 2 Comparison between second order perturbation
estimation and deterministic solutios (Primary
eigenvalue:; =1)

obtained in deterministic manner. The blank circles in Fig. 2
stand for the values calculated by Eq.(10) while so =Co are
varied deterministically. The solid line in the figure is drawn
in accordance with

2=1.5579 + (0.48168 X 107"+ 0.64807 Je

+(—0.63874 X 1077 —0.40025 X 10° — 0.44715

X 107%)e? 2D
by use of the result given in Table 1 for so= ¢, =0.960and
#=¢. The good agreement of the solid line with the circles
proves the validity of the present stochastic treatment. It is
seen from Table 2 that the rates of change of eigenvector
take almost similar form with the fundamental (deter-
ministic) mode.

It goes without saying that the expectations and vari-
ances of eigenvaluesrand eigenvectors, E[A*],Var[2*],E
HUuY1 and Varl{U}] , are easily evaluated as the
functions of moments about # and/or ¢ which represent the

uncertainty of the boundary condition.
6. Concluding remarks

We present herein a method based on the second order
perturbation to evaluate the statistics of the eigenvalues and

eigenvectors. The uncertainty about boundary condition is
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well taken into account by the introduction of virtual spring
elements of which the rigidity is stochastic. Although the
numerical example given is a simple one to show the effect of
uncertain boundary conditions on the eigenvalues in regard
to column buckling under compression, it should be em-
phasized that more complex structures are analized in a
similar manner without difficulty.

It is needless to say that present method can be easily
modified for application to the other problems of mechanical

vibration under uncertain boundary conditions.
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