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1. bLtrOduction

our preyious reportsl)I 2) presented basic concepts and

formulations for linear elastic problemswith nuctuating

shape, nuctuating materialproperties or nuctuatiTLg geO･

metrical boundary condition. The authors would like to

emphasize that the expectations and dispersions of displace-

ment, strain and stress at arbitrary points in structure have

been found to be obtained by solving the essential equili-

brium equation only once.

Nonlinear problems are treated usuauy by incremental

methods or iterative methods, in which laborious computa-

t10nalwork is required･ This fact implies thatthe statistics

mentioned above are hard to be evaluated by usual means.

It is血erefbre natural to extend the present method to

nonlinear field. Thusthe objectiye of this note is to examine

the possibility to apply the stochastic finite element method

tot a Problem of materialnonlinearity･ ln order to be com-

patiblewith the previous formulas, only two dimensional

problems are dealt with and redundant explanations are

omitted because of the limitation of space.

2. Fomlulation for FlllCIuatioms of Material Properties

Nonllnear elasticity ln Which elastic constants are not

constant but dependent onthe strah state is dealtwith

in this note･ Plasticity lS SOmetimes treated approximately

as nonlinear elasticity, for example, in case of J-integral

Calculation on the basis of the deformation theory.

shce　the stochastic finite element method cannot

manage at present the change of materialconstitutive equal

lion from elasticity to plasticity, an appropriate fomlula is

desired which coverswide range of strain.Althoughmany

stress-strain fomulas3) hare been proposed such as Ramberg･

osgood model, most of血em are glYen in the form of

8 -9(0) ･ From the standpoint of rmite element displace･

ment method, it is eonvemient to express constitutive equa-

tion as Eq･ (1) for the purpose to describe explicitly the

stress-strain matrix D.
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0-I(e)　　　　　　　　　　　　　　　　( 1)

In this chapter, any two parameters a and ♂ in theright

hand side of Eq. (1) are taken as spatially stochastic over the

structure such as the followin苫eXPreSSion which lS deyised

so as to approximate desired constitutive equation･

0-EE-EFln(i+(音)2)a-1]  (2)

In this equation, a and P are introduced in order to control

the mapitude of work hardening and yield strain respec･

Lively, but the result is not so satisfactory compared with the

mode14) stated above.

Anyway, if appropriate expression is obtained for a com･

mom constitutive equation which holds for both elastic and

plastic re由ons, D in the basic stress-strain rclationo = De is

glVen aS follows in two-dimensional case of the deformation

仇eory.
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(1 +2G¢)(3(1-y')+EQ)

･ [33::2EEQ"3㌔
3+2E¢　3y+E¢

3J/+E¢　3+2E¢

?(.and S千res,S (3)

2G Plane stral'n

3(1十2G¢)(1-2〃)
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3(1-Z/)+E¢　　3J/+E¢　　　　0

3A/+E¢　　3(llV)+E¢　　　0

0　　　　　　　0　　　3(1-2〃)/2

Where o- LOrOy Tェy｣T, e-LEreyrry｣T and

め -3/2 ･70/石is the proportionalConstant of the stresses

and strains inthe case of pure plasticity, which is apprlo-

ximated izlthe■ case of nonmnear elasticity approximation

for Plasticity as fonows･
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With the aid of the strain･nodal displacement matrix

a-LfBll fBl2(B)3.', D isexpressedin terms of the

nodal displacement vector U or the set of its entities U*of

the element under interest.

D(Ex,8g,Try)-D(LBJIU,LBJ2U,｣阜｣3U)≡D'(U*)( 4 )

d(U*)-

dll(U*) d12(U*) dl,(U*)

d21 (U*) d22(U*) d23(U*)

d31(U*) d｡2(U*) d33(U*)

(4-a)

It is assumed that dkl(U*) is expanded as a power series

in α and P which represent the varing portions of α and β
■ヽノ■ヽノ

as α-冒-E[言]andP--P -E[P ],where E[ ･ ] indi･

Gates expectation･ Additionally, it is assumed at present that

the terms of which the orders are) greater than thirdwith

respect to a and/or P are negligible based onthe postulate

that a and P are small. Therefore, in case α and P hold

constant within an element `〆, we have:

dkLP(U*) -d笈/p(U*) + dhLp(U*)ap+dFIp(U*)βb

+d孟Ip(U*)α29+d孟;p(U*)α♪pb +d孟';p(U*)那( 5 )

Aswell as inthe previous reportsl), 2), the following

expansion is used for displacements.

U-UO+∑(U主α,+Ui′p,)
r

+∑ ∑(U芳Sα,as+Ursα,Ps+U2,"sp,ps)　( 6 )
′　　∫

Or

U. -UP十∑(U,1,α, +Uzl',p,)
r

+∑ ∑(U,2,5α,αS+U.2,'sa,βS+uf;'Sβ,βS) (6-a)
Y  S

where r and s are integer varymg from unity to the total

nllmber of elements. By applying Eq. (61a) into Eq. (5),

dklP(U*) issummarizedasfollowswhen d呈Z♪ , dkl0 ,

-I are analyticinU* 5)･

dklP(U*) -d呈LP(U基)

+∑tld219,(U基,上端,)+dtlb(US･)8,0)α,
Y

+∑tl′dBLタ,(U& , Ui',) +d£'/?(U& )8,b)β′
′

+∑∑(2dglP,S(US,Ui,,Ui.S,U量,S)
r  S

+ldklP, (U; , Ui, )8sb+d孟IP(US )8,9Ss♪)α,αS

十∑ ∑(2′dgLb,S(U;,Ui:,,Ui'S,US',S)
∫  ∫

+ l′dhzbs (U; , Uils )8,b+ldk'lp,(U; , Ui=, )asp

+d呈;p(U基)8,08sbiα,Ps

+∑ ∑(2"dgLp,S(U; ,Uhl, ,Ui'S,U孟;S )
T  S

+1`dと'l♪, (US , Ui', )8sp +d笈';p(U豊)8,basPIp,Ps (7)

mere U;,Ui, , M representthe set of･the entities of

uo,の,一一, and　8りisKronecker'sdelta･

The element stiffness matrix is obtained throughthe

integration of the fonowing equation over the relevant

quadrature points.

[k]-BrD'(U*)B,

-[fb,dll♪(U*)+cld｡19(U*))b,+ Ib,d139(U*)

fc,d210(U*) +b,d319(U*))b, + tcZd2｡9(U*)

十C,d330(U*)icj fb,d12b(U*)+cld｡20(U*)ic,

+bld330(U*))C, (cZd229(U*)+b,d329(U*)ic,

+ (b,dl｡P(U*)+C,d330(U*)ib,

十fczd23♪(U*)+b,d3,0(U*))b,

where

]　(8)

B,-[至芸]　　(8-a)

It is therefore obvious thatthe lj -th entity Kり(U*) of

theglobal stiffness matrix K(U*) hasthe fonowing

general form throughusualmerging procedure represented

by ;

K,,'U*)誓言wgl寄与a･B,Lpdkl鵡)]X=xg

≡K,0,(U;)+∑(K,i"(U;,Ui, )α,
Y

+K,1'"(U量,Ui',)β,)

+∑ ∑tKfJrS(U&,Ui,,Uis ,U2*,∫)a,αS
Y  S

+節,I,S(U; ,Ui,,UL'S ,鵜',S )α,ps

+Kf,",S(US,Uil,,Uils,US','S)?,βS) (9)

in which alkllp denotes one of the products such as bib"

biC, , C,b, or c事CJ , and　∑ corresponds to Gauss
♂

quadrature withthe weight coefficient Wg at SPaCe Vector

Xg.

Applyingtheglobalstiffness matrix K(U* ) character･

ized above, and the displacement vector Uof the form of Eq.

(6) into Eq･ (10) as equnibrium equation, Eq. (ll) is ob･

tained, in which the second order perturbation method is

to be carried out.

K(U*)U-F              (10)

[Ko(US) +写fKを(U& ,U左′)a, ･Kま.購調,)?,)

+∑ ∑(K2,S(鵜,U;,,鵜S,Ui,S)α,αS
Y S

+Krs(US,鵜,,Ufs , U孟',S)α,ps

十K芳:I(U&･ Ui', ･Ufs･ui'r'S)PyPs )]

･(Uo +写(伽+Ulr'py)･写写(Ugsα,as ･ursarps

Wrs'p,ps)〉-F　　　　　　　(ll)

Inthe sequel, the following equations are obtained in the

similar manner withthe first reportl)･

KO(U;)UO -F　　　　　　　　　　　　(12)

Ki(US,ui=,)UO +KO(U;)班-0　　　　(13)
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Kシ′(U& ,ur,)Uo +KO(U基)Ui′ - 0　　　　(14)

Ki(U;,Ui=,)Uと+Kgs(U;,鵬,,U去s,U量,S)UO

+KO(U;)Ugs-o　　　　　　　　　　　(15)

K}(Ui,uL, )仇′十都′(US,Ui'S)UL +KO(U;)02;

+Kf',(U&, ui,,,Ui'S , ui',S )U0 - 0　　　　( 16)

KL/(US, ui',)Ur +K2'S'(U; ,ui', ,Ui'S ,Ui','S)Uo

+KO(U&)U夏;I-0　　　　　　　　　　(17)

ThlS meanSthat Eq. (12) is to be solved at first as regards

Uo which exactly agreeswiththat of deterministic finite

element analysis. Secondly, application of UO into Eqs. (1 3)

and (14) enables us to evaluate Ul, and Uシ′ forevery r ･

Thirdly, accordhg to Eqs. (15), (16) and (17), U夏S ,Urs and

Urs'are determined for every r and s with the aid of UO,

Uをand Ur ･ In order to solve the above nonlinear equations,

a proper conventional iterative method such as Newton･

Raphson's is utillZed.

Then,仇e expectation and dispersion of山e displace一

ment under discussion are glVen aS follows.

E[U,]-U.0+∑∑(U?,sE[α,αS]十U12;sE[α,Ps]
T  S

+U,2,"sElP,Ps ])　　　　　　(18)

var[U. ]-∑∑tu王,U…sElα,αS ]+2Ul,UrsE[α,Ps ]
I .(

+Ur,Ul'sElp,Ps ] )　　　　　(19)

6)
Eq. (19) is derived based on the first order approximation

In a similar manner, the statistics of strain are easlly obtained

based on the fouowing equation.

eJ-∑ B,mUa2+∑∑ B,m(仇,α,+UIL,p,)
J乃m y

+∑∑∑ B,m(U急rsα,αS +Uhf,Sα,ps +U㌃;sp,ps) (20)
m r  S

where el ,e2and e3 COrreSPOnd toEl,6g and Try respectlVely,

and B]m denotes them･th entity of LBJ, Then, the follow･

ing equation is to be calculated according to Eqs･(7) and

(20) So as to evaluate those of the stress of element ''p " ･

0. -∑ dりP(U*)e,
)

≡oP +∑(0.I,α, +ol,I,?, )+∑∑ (0.2,sa,αS +0,2,'Sα,ps

T                         I  5

+0,2;'sp,ps )　　　　　　　　　　　(21 )

剛lere 01 , 02　and o3 COrreSPOndto qェ,Oy and T3,y

respe c tively ･
～        ′■■■ヽJ

ln case a and P take the same values not only in an

element butalso in a whole structu,e, the sumnations ∑ ･T

∑ and写写appearing in this chapter can be reduced to
S

r-∫-1

3. Formulation for Fluctuation of Shape

lnthis chapter, a and P are takenas varing por-

tions of the r･th nodal cordinate ( X, , y'). Itisassumed

that Eq. (6) or (6･a) holds for displacement, and for brevity,

discussions are made in case d点/(U*) can be expanded as

follows.

dkl(U*)-dh/(U;)+∑(ldk/,(U;,Ui,)α,
r

+l'dkl,(U島, U3:,)P, I

+∑∑(2dkl,S(U;,Ui,,Uis,Ui,S)α,αS
r  S

+ 2′dkL,S(U; , Ui, ,Ui'S, U基',S)α,Ps

+2"dk/,S(U;,Ui',,Ui'S,Ui','S)p,βsI (22)

For the purpose to construct element stiffness matrix

iF]i･S.d,:Lr:e*t'ric ISr.::eltlePllei:denbty iXe dgwifhe,i, ■.JXne ,ceaie.

and lJL denote displacementfunctions and the determinant

of Jacobian -atrix respectiyeiy･ since慧慧det FJI has

been already expanded like Eq. (23) as a power series in°

and ♂ in the first report(Eq. (24))1), it is apparent that the

global stiffness matrix K"(U*) can be summarized

throughthe integration and merging procedure in a similar

fashion as the right hand side of Eq. (9).

豊豊det lJl -(determlnlStic ter-)+∑(m'rαYr

+n',p,)十∑∑V;Sα,αS十g;Sα,Ps+h;Sβ,Ps) (23)
r  S

Then, UO,Ui , -- are solved based on Eqs･ (12)to(17),so

that E[U.] and Var[U,] are also evaluated as Eqs. (18)

and (19).　On the occasion of the evaluation of Ele,]

and Var[el ] , the equations in the first report (Eqs. (13)and

(23) )1) are unchanged in application. Finally, 0. is obtained

by carrlng Out the following equation so as to evaluate

E[ol] and Var[o壬].

oi-∑ dり(U*)e,　　　　　　　　　(24)

∫

4. Fomlulation for FlllCttution of

Geome trical Bollndary Condition

According to the fomulation of the second report2), fuP)

in the following equilibrium equation is taken as a stochastic

process in this chapter.

[芸;aa芸aP;](狂(芸ap)　　(25)

Where tUa ) represents unknown displacement vector, and

(Fai and fFPi indicate known and unknown nodal force

vectors respectively･ The stochastic process UlP , theいth

entity of(U円, is represented as the following equationwith

the variational portion r･ ･

U,6-E[U.G]+γ,≡oUF+T.　　　　　(26)

At the same time, U㌢ ,the i ･thentity offUa),isassumed

to beexpandedasapowerseries由I rJ.

U,a-Ou㌢ +∑ luF,T,十∑∑ 2uF,sr,rs　　　(27)
r T S
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Since Eq. (27) involves Eq･ (26), displacement is formally

represented as follows regardless of the difference between

U㌢ and U.G.

U. -OU, +∑ luけT,+∑∑ 2U,,sr,rs　　　(28)
r            Y  S

Wherelu-,-8,,and2um-oincase U, stands for U戸.

Based on the same principle asthat of chapter 2,

dkJ(U*)in Eq. (4-a) is consequently expanded as follows

when analytic in U*.

dk/(U*)-dkZ(OU*)+∑ ldkl,(OU*,lu*,)γ,
r

+∑∑ 2dkl,S(Ou*,lu*,,lu*S,2U*,S) γyrs (29)
r  S

The integration and mergulg Procedure to construct the

dobal stiffness matrix K"(U*) corresponds to the linear

operation of the product ofdkl(U*) and a'iL♪ aPPeanng

: r7qi.':'evoerr%l観5oeftTJl. 'is3:=einTsnd?tiesrcmhlan:--

stic, or in other words a=P -0, so that it is obvioustha.t

Kり(U*) is summarized as follows.

Kり(U*)-K10, (OU*)+∑ K,i,･,(OU*, lU*, )T,
∫

+∑∑ K12,I,S(OU*,lu*,,lu*S,2U*,S) T,γS (30)

′  ∫

Eq. (25) is to be solved at first by examining Eq. (31),

which can be expressed as Eq. (31-a) according to the treat･

ment that U.a and UIP are formallyidentical.

･Kaa KaP](Zap)-{Fα}　　　(31)

KU-F　　　　　　　　　　　　　　(31-a)

substituting the vector representation of Eq. (28) and (30)

into Eq. (3トa), the following relation is obtained･

‡KO(OU*)+∑ Kシ(oU*,lu*,)T,
′

+∑∑ K芳S(oU*,lu*,,lu*S,2U*′∫)T,γS)
r  S

x (ou+∑ lu,γ,+∑∑ 2U,sr,rsi-F　(32)
Y            Y  S

Then, onthe basis of second order perturbation principle,

the set of nonlinear equations are derived as follows･

KO(Ou*)OU-F　　　　　　　　　　　(33)

幻(oU*, lu串,)OU+KO(OU*)1U, -o　　　(34)

Ki(oU*, lu*, )1us +K芳S(oU*, lU*,,lu*S, 2U*,S)OU

+KO(OU*)2U" -o　　　　　　　　　(35)

Finally, OU , lu, and 2U,Saresolvedforevery r ands

by a proper iterative method so as to evaluate Elu]and

Var[U] . It w山be unnecessary to show the procedure to

evaluate E and its statistics owing to the detembistic nature

ofB matrix1 0nthe occasion of the eva.luation of q , Eq.

(29) is againintroduced and multiplied by e as a power

series in T.. Thus the statistics ofq are obtained in a similar

manner as described in chapter 1.

It should be noted again thatall the te-s whose orders

are greater than third with respect to the varlng POrt10mS

are neglected throughout this paper, and as regards second

moments of these varlng POrtions, spectral interpretation

is made throughWiener-Khintchine relation such as

E[α. P'']-RαG(X,-X,)

-I_wbSdP(j)exp伽(X,-X,)d}(36)

Where jP｡/? ( ･ ) and Sap ( I ) denote crosscorrelation func.

tionand crossspectral densityrespectively, xl and Xj

indicate space vectors, and　} represents the wave number

vector.

5. CoTIClusions

Original concept of stochastic finite element method is

found to be expansible into the nonlinear elastic problems.

Since Monte Carlo approach is hardly applicable to

this sort of problem from the aspect of CPU time, the pre･

sent methodology is believed to havewide varieties for the

use in structuralsafety and reliability.
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