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A Note on Stochastic Finite Element Method (Part 3)
— An Extension of the Methodology to Nonlinear Problems —
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1. Introduction

Our previous reportsl)’ 2 presented basic concepts and
formulations for linear elastic problems with fluctuating
shape, fluctuating material properties or fluctuating geo-
metrical boundary condition. The authors would like to
emphasize that the expectations and dispersions of displace-
ment, strain and stress at arbitrary points in structure have
been found to be obtained by solving the essential equili-
brium equation only once.

Nonlinear problems are treated usually by incremental
methods or iterative methods, in which laboricus computa-
tional work is required. This fact implies that the statistics
mentioned above are hard to be evaluated by usual means.
It is therefore natural to extend the present method to
nonlinear field. Thus the objective of this note is to examine
the possibility to apply the stochastic finite element method
to-a problem of material nonlinearity. In order to be com-
patible with the previous formulas, only two dimensional
problems are dealt with and redundant explanations are
omitted because of the limitation of space.

2. Formulation for Fluctuations of Material Properties

Nonlinear elasticity in which elastic constants are not
constant but dependent on the strain state is dealt with
in this note. Plasticity is sometimes treated approximately
as nonlinear elasticity, for example, in case of J-integral
calculation on the basis of the deformation theory.

Since the stochastic finite element method cannot
manage at present the change of material constitutive equa-
tion from elasticity to plasticity, an appropriate formula is
desired which covers wide range of strain. Although many
stress-strain formulas® have been proposed such as Ramberg-
Osgood model, most of them are given in the form of
e=g(g) . From the standpoint of finite element displace-
ment method, it is convenient to express constitutive equa-
tion as Eq. (1) for the purpose to describe explicitly the

stress-strain matrix p.
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a=f(e) (1)
In this chapter, any two parameters & and 79‘ in the right
hand side of Eq. (1) are taken as spatially stochastic over the

structure such as the following expression which is devised
so as to approximate desired constitutive equation.

a=Ee—EF[n{1+(%)Z};—1] (2)

In this equation, @ and Fare introduced in order to control
the magnitude of work hardening and yield strain respec-
tively, but the result is not so satisfactory compared with the
model? stated above.

Anyway, if appropriate expression is obtained for a com-
mon constitutive equation which holds for both elastic and
plastic regions, D in the basic stress-strain relation @ = De is

given as follows in two-dimensional case of the deformation

theory.
2G

(1+2Gg)3(1—v)+Es}

3+2E¢ 3v+E¢ 0
| 3v+E¢ 3+2E¢ 0

0 0 {3(1—v)+Ep}/2
D= plane stress (g
26 plane strain

3(1+2Ge)(1—2v)

3(1—v)+E$ v+E¢ 0
-l 3w+E¢ 3(1—v)+E¢ 0
. 0 0 3(1—2v)/2

Where @= 620y Tzy ;7 , €= _ &6 rxy—'T and
¢ =3/2+¢,/c s the proportional constant of the stresses
and strains in the case of pure plasticity, which is appro-
ximated in the case of nonlinear elasticity approximation

for plasticity as follows.

_3(i-3/E
2 1, 1 1
-3 Jal(drgrdr g prirgh)
2 2 1 1 E
A5 erarar g it )
(3-a)
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With the aid of the strain-nodal displacement matrix

B=_{B}{B}:{B};,", D isexpressed in terms of the
nodal displacement vector {J or the set of its entities [/ wof
the element under interest.
D(ex'fy,rzy)ZD(LB_nUy L_B_JzU, \_BJSU)EU(U*) ( 4 )
dn(U*) dlz(U*) dis (U*)
day (Us) doa(Uy) das(Us) (4-a)
dsy(U %) ds2(Us) das(Us)

It is assumed that d(Us) is expanded as a power series

U(U*)=

in o and § which represent the varing portions of dand F
as =g ~E[a ]and §= ;—E[F],where E[* ] indi-
cates expectation. Additionally, it is assumed at present that
the terms of which the orders are greater than third with
respect to « andfor g are negligible based on the postulate
that ¢ and f are small. Therefore, in case ¢ and 4 hold
constant within an element ‘§’, we have:
Beipy(Us) =dp(Us) + dhiy(Usdap+di (U B
+dhbp(Uaddy+dRi,(Usday fp+diip(Us)B3 (5)
As well as in the previous reportsl)’ 2), the following
expansion is used for displacements.

U=U°+Z(U;a,+v‘,’ﬂ,)

+Z Z(Ursaras rsarﬂs+U2"ﬁ /9 ) (6)

or

U; U°+Z(Untlr +UL B
+Z Z(Uﬂsaras+U12;sdrﬂs+Uzrsﬂrﬂs) (6_3)

where 7 and s are integer varying from unity to the total
number of elements. By applying Eq. (6-2) into Eq. (5),
di1p(Usy) is summarized as follows when  dlip, dhyp »
-- are analytic in [, 3
diipUs) =dbpy(U3)
+§{‘d21pr(U&,U=’w)+d£:p(U§e)3,ﬁ}ar

+g{l,dglﬂ7(U’?€7U:F’I)+dé,lﬁ(U’?€)87p}ﬂ7
+Zr: Zs:{zdglpn(ng, U:lkr,U:ks 1U>Zkrs)

ki py UG, Uk W5 p+dlsy(U% )8, 485p }atr s
+Z Z{Z dklprs(U*:U*r:U*s,U*rs

Y bt ps (U, Ukis 8,5 +1d}15r (U, Uler 35y
+dklp(U*)87pasp}arﬂs
+ZZ{z”dlzlprs(U*vU*rnU*s,U*m

Y dkipr (U, Uky D5y +diiy (U 8,850} B Bs (7)
Where U%,Ukr, — represent the set of. the entities of
U° UL, - and §;; is Kronecker’s delta.
The element stiffness matrix is obtained through the

integration of the following equation over the relevant
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quadrature points.

(K1=B'D (U+)B,
=l:{bidnp(U*)+Cidup(U*)}bj+{bidlap(U*)

{cidapUs) ¥ bids1py(Us)}bj+{cidas ,(Us)

teidsspUsdle;  {bidiapUs)Feidazy(Usdle;
+bid33p(U*)}6‘/ {Cz‘dzzp(U*)"f‘bidSzp(U*)}L‘/
+{bidlap(U*)+Cid33p(U*)}bj]
+{Cid23p(U*)+bid33p(U*)}bj

where
b; 0
=|:0 c,} (8-a)
ci by

It is therefore obvious that the 7; -th entity K;;(Uy) of
the global stiffness matrix K(U,) has the following
general form through usual merging procedure represented

byZ

[

KW =SS W55 atlpdunUs)
—K?](U*)'*‘ZJ{K}JY(U%,U:H)er

+ K (U, UK)B )

+; g{K?jrs(U?kyU:k;':U;w ,ngrs)ards

+K?;,S(Ui,U§,,U¥s,Ui’”)a,ﬁs
+K,2;;5(U>?<,U§1<7, *xy Elc,;s)ﬂ ﬂ} (9)

in which %, denotes one of the products such as  §;5;,

(8)

bicj » e¢;b; or cic; , and Zg: corresponds to Gauss
quadrature with the weight coefficient W, at space vector
X,

Applying the global stiffness matrix K(Us) character-
ized above, and the displacement vector U of the form of Eq.
(6) into Eq. (10) as equilibrium equation, Eq. (11) is ob-
tained, in which the second order perturbation method is
to be carried out.

KU U=F 10
[ KW+ SURNUL. UL e, + K W, US8,)

+ 3 LAKS (UL, Uk Uks Uk Dt s

T K7 (US, Ukr Uks Uk e, s

+ K (U3, Uy UL UED8.8,) |
X{UO+Z(Urdr Uy )+ 2L (U sords + Ut s
+UE B pO}=F (1

In the sequel, the following equations are obtained in the
similar manner with the first report).

K WUU =F (12)
Ky (UL, UkU+ KO (UUE =0 s
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Y UL USIU + K ULUY =0 (14)
K (U3, Ui U+ K2 (U, Uk,  Uks, U%, s )U°
+ K (UU} =0 (15)
K (US, Uk DUY + KXY (U, UX)OUL + K (ULOUZ,
+ K3 (US, Uk, UK USOU =0 (16)
YU USHUY + K2 (U, UL, UL UL )U°
+K (U =0 an

This means that Eq. (12) is to be solved at first as regards
U/° which exactly agrees with that of deterministic finite
element analysis. Secondly, application of {/°into Egs. (13)
and (14) enables us to evaluate U} and U} for every 7.
Thirdly, according to Egs. (15), (16) and (17), U%;,U%; and
27 are determined for every 7 and s with the aid of U°,
UL and 7V . In order to solve the above nonlinear equations,
a proper conventional iterative method such as Newton-
Raphson’s is utilized.
Then, the expectation and dispersion of the displace-

ment under discussion are given as follows.
ELU =0+ 25U Elayas )+ U Ela,fs )
+UHELB, B 1} (18)
VarlU;] =27]§{U.',U,-SELa,as 1-F2ULUKELe, B ]

LUSELS 1) (19)
6)

Eq. (19) is derived based on the first order approximation

In a similar manner, the statistics of strain are easily obtained

based on the following equation.
€ =% BinUh+ L3 Bin(Uhrts +U'nr )
+;Zr:¥ Bjm (Ufnrsaras +Ufn’rsar/93 +Ufnl;sﬂr/95) (20)

where e:1,¢2 and @s correspond to ez, &4 and 7 zy respectively,
and B denotes the-th entity of _B ;. Then, the follow-
ing equation is to be calculated according to Eqs.(7) and

(20) 5o as to evaluaie those of the stress of element “ 7 .
o.=2, dijp(Use;
J
EG? +Z(0,17(Z, +6‘i’rﬂ7 )+Z Z (Ulz!sdras +Utz;sd1/9$
r r s

+ol/sBrfs) @D
Where 01 » 6z and O3 correspond to 0x,0y and Tz
respectively.

In case @ and ,F take the same values not only in an
element but also in a whole structure, the summations Z':
Zs and Z'zs: appearing in this chapter can be reduced to
r=s=1

3. Formulation for Fluctuation of Shape
In this chapter, ¢ and /A are taken as varing  por-

tions of the 7 -th nodal cordinate ( zr , ¥-). It is assumed

£ E K
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that Eq. (6) or (6-a) holds for displacement, and for brevity,
discussions are made in case 4 (Us) can be expanded as

follows.
dri(Us) =du(UR) +Zr {'drrr (U, Uskr Dty

+l,dklr(Ug<yU:k’r )ﬂr}
+ZZ{2dk17‘S(U§<vU>lkV)U}kS :Uirs)drds

+¥dutys (UG, Ukr UL ULty s
+2 s (US Uk, Uk UE DB,8: (22)
For the purpose to construct element stiffness matrix
(£, dp(Us) is multiplied by %N %Lvideﬂﬂ in case
the isoparametric finite element is dealt w1th7) Where N;

and |/| denote displacement functions and the determinant

of Jacobian matrix respectlvely Since %N‘ %—Nidet | | has

been already expanded like Eq. (23) as a power series ina
and £ in the first report (Eq. (24))1), it is apparent that the
global stiffness matrix  K;;(Uy) can be summarized
through the integration and merging procedure in a similar
fashion as the right hand side of Eq. (9).

6N, ﬂl det | /| = (deterministic term) +Z(m,a,

+nrﬁr)+zzs:(frsdrasT{_grsarﬂs+hrs/97ﬂs) (23)

Then, [/°,{j. , - are solved based on Egs. (12) to (17), so
that E[U;] and Var[U,-] are also evaluated as Egs. (18)
and (19).
and Var[e;], the equations in the first report (Eqgs. (13) and

On the occasion of the evaluation of F[e; )

(23) )V are unchanged in application. Finally, o; is obtained
by carring out the following equation so as to evaluate
Elo;] and Var[o:].
0.=Zj: di;(Ugde; (24)
4. Formulation for Fluctuation of
Geometrical Boundary Condition
According to the formulation of the second reportz), {U#}
in the following equilibrium equation is taken as a stochastic
process in this chapter.
Koo jaf a a
I:Kﬂd iﬂﬁ} gﬁ}:{ﬁﬂ (25)
Where {{/¢} represents unknown displacement vector, and
{F%}and { F#} indicate known and unknown nodal force
vectors respectively. The stochastic process [Jf , the ¢-th
entity of {{/#}, is represented as the following equation with
the variational portion 7 .
=EW+ri="Uf+r: (26)
At the same time, U¢ ,the i -th entity of {{/#}, is assumed
to be expanded as a power seriesin 7i .

Ud_oUd"_Z lU:rTr'{';zs: zUi'zni’rTs @n
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Since Eq. (27) involves Eq. (26), displacement is formally
represented as follows regardless of the difference between
U¥ and U? .

Ui="Ui+E Uirt, *EE WVirsrrs (28)

Where'U;, =8;,and 2l/;,, =0incase {/; standsfor Uf .
Based on the same principle as that of chapter 2,
du(Us)in Eq. (4-a) is consequently expanded as follows
when analytic in U/ ..

dkl(U*):dkl(oU*)+g 'ty CUs, " User Iy

+Z Z zdklrs (OU* ’ lU*r ) 1U:k.s: 2U:iws ) TrTs (29)

r s
The integration and merging procedure to construct the
global stiffness matrix X;;(Us) corresponds to the linear

operation of the product of @k (Ux) and %, appearing
in Eq. (9) or%—]\; Q%’- det | J|of Eq. (23). Within this chap-
ter, however, g%, or%[%%i
stic, or in other words & =4 =0, so that it is obvious that

det | | is taken as determini-

Kij(Us) is summarized as follows.
Kij(U*):Kz!)j(oU*)+Z Kl CUs,'User D v
+Z,;Zs KZrs CUs, 'User ,'Uss,?Usrs) 7,75 (30)
Eq. (25) is to be solved at first by examining Eq. (31),
which can be expressed as Eq. (31-a) according to the treat-
ment that U$ and U{ are formally identical.
Ud
(ke KW} = (F) (31)
KU=F (31-a)
Substituting the vector representation of Eq. (28) and (30)
into Eq. (31-a), the following relation is obtained.
{K° (°U*)+Z’] KUy, 'Usr )1y
+Z’:Zs‘ K2 CUs, " User,"Uss, Users 7975}
XQCUAT Uy + 208 Ursrrrs}=F (32
Then, on the basis of second order perturbation principle,

the set of nonlinear equations are derived as follows.

K'CUU=F (33)
K (CUs,"Usey YU+ K CU LU, =0 (34)
FOU, Ui YU s+ K2, (U, Wir, Uss, Usr °U
+K°CUU,s=0 (35)

Finally, ° , 'U, and 2U,,are solved for every 7 and s
by a proper iterative method so as to evaluate E[I/]and
Var[U] .1t will be unnecessary to show the procedure to
evaluate £ and its statistics owing to the deteministic nature
of B matrix. On the occasion of the evaluation of @, Eq.
(29) is again introduced and multiplied by e as a power
series in 7.. Thus the statistics of @ are obtained in a similar
manner as described in chapter 1.

It should be noted again that all the terms whose orders
are greater than third with respect to the varing portions
are neglected throughout this paper, and as regards second
moments of these varing portions, spectral interpretation

is made through Wiener-Khintchine relation such as
Eldi fil=Rap(X;— X;)

=[°Szz/9(2)expl' 222 (X;—X;)d2(36)

Where Kyp () and Sap (+) denote crosscorrelation func-
tion and crossspectral density respectively, X; and X

indicate space vectors, and A represents the wave number

vector.
5. Conclusions

Original concept of stochastic finite element method is

found to be expansible into the nonlinear elastic problems.

Since Monte Carlo approach is hardly applicable to

this sort of problem from the aspect of CPU time, the pre-

sent methodology is believed to have wide varieties for the
use in structural safety and reliability.
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