诙

研

究

UDC 620.168 677. 4:621. 793. 7:533. 95

繊維強化複合材料の開発 --異方積層複合材料の強度--Development of Fiber Reinforced Composite Materials

- Strength of Laminate Composite Material -

大 蔵 明 光*・本 田 紘 一*・寺 沢 優 ____** Akimitsu OKURA, Kouichi HONDA and Yuichi TERASAWA

1. はじめに

省エネルギー用材料として、特に可動構造材として軽 くて強い材料の開発が急がれている. 炭素繊維強化複合 材料もその一例である、炭素繊維は製造工程上の問題で, まだ価格が高く特殊な機能用複合材としてのみ使用され ているが、一般可動構造材には使用されるに至っていな い. しかし最近では化繊メーカーが競って量産の方向を 打ち出し,価格の低廉化を目標に検討され始めた.した がって極めて近い将来に一般可動構造材に使用される可 能性があると言える.

従来の多くは一方向繊維強化アルミニウム複合材の研 究であったが,本研究では異方積層複合材料の製造を研 究調査し、その複合材と一方向強化繊維複合材との強度 特性を比較検討したのでその結果について述べる.

異方積層複合材の弾性率

プラズマスプレー溶射による一方向繊維プリプレグシ ート"を素材として異方強化複合材をホットプレス法に より作製した.2) この場合の繊維の方向は Fig.1 に示す ごとく等角対称になるようプリプレグシートを積層にし てある. このようにして製造した複合材の弾性率を次の ように求めた.

プリプレグシートの上下(積層にした場合の厚さ方向) の第 m 層の軸に対する傾き角 α_mは,

 $\alpha_m = \pi/2n + \pi/n \cdot (m-1)$ (n=1, 2...n) (2-1) この場合, 面内剛性マトリックス要素, A_{ij} (ij = 1, 2 $\cdots s$), $(n \geq 3)$ t

$$A_{11} = A_2 = \frac{nt}{4} \left\{ \frac{3(E_L + E_T) + 2\nu_L \cdot E_T}{1 - \nu_L \nu_T} + 4G_{LT} \right\}$$

$$A_{ss} = \frac{nt}{4} \left\{ \frac{E_L + E_T - 2\nu_L E_T}{1 - \nu_L \nu_T} + 4G_{LT} \right\}$$

$$A_{12} = \frac{nt}{4} \left\{ \frac{E_L + E_T + 6\nu_L E_T}{1 - \nu_L \nu_T} - 4G_{LT} \right\}$$

$$A_{1s} = A_{2s} = 0$$

$$* \, \bar{p} \, \bar{s} \, \bar{\varsigma} \,$$

任意のY方向の弾性係数 $E_1(\phi)$, ポアソン比 $\nu_1(\phi)$, 剪断弾性率 G12() は次のようになる.

$$E_{1}(\phi) = N_{1}/2nt \varepsilon_{1}^{\circ}$$

$$= (A_{12} \cdot A_{22} \cdot A_{ss} - A_{11} \cdot A_{2s}^{2} + 2A_{12} \cdot A_{1s} \cdot A_{2s}$$

$$-A_{12}^{2} \cdot A_{ss} - A_{1s}^{2} \cdot A_{22})/2nt(A_{22} \cdot A_{ss} - A_{2s}^{2})$$

$$\nu_{1}(\phi) = -\varepsilon_{2}^{\circ}/\varepsilon_{1}^{\circ}$$

$$= (A_{12} \cdot A_{ss} - A_{1s} \cdot A_{2s})/(A_{22} \cdot A_{ss} - A_{2s}^{2})$$

$$G_{12}(\phi) = N_{12}/2nt \gamma_{12}^{\circ} = (A_{1s}^{2} \cdot A_{22} - 2A_{12} \cdot A_{1s} \cdot A_{2s}$$

$$+A_{11} \cdot A_{2s}^{2} + A_{12}^{2} \cdot A_{ss} - A_{11} \cdot A_{22} \cdot A_{ss})/2nt$$

$$\cdot (A_{12}^{2} - A_{11} \cdot A_{22})$$

$$(2-3)$$

(2-3) に (2-2) を代入して

$$E_{1}(\phi) = \frac{\frac{E_{L} + E_{T} + 2\nu_{L} \cdot E_{T}}{1 - \nu_{L} \cdot \nu_{T}} \left\{ \frac{E_{L} + E_{T} - 2\nu_{L} \cdot E_{T}}{1 - \nu_{L} \cdot \nu_{T}} \right\}}{\frac{3(E_{L} + E_{T}) + 2\nu_{L} \cdot E_{T}}{1 - \nu_{L} \cdot \nu_{T}} + 4G_{LT}}$$

$$\nu_{1}(\phi) = \frac{\frac{E_{L} + E_{T} + 6\nu_{L} \cdot E_{T}}{1 - \nu_{L} \cdot \nu_{T}} - 4G_{LT}}{\frac{3(E_{L} + E_{T}) + 2\nu_{L} \cdot E_{T}}{1 - \nu_{L} \cdot \nu_{T}} + 4G_{LT}}$$

$$G_{12}(\phi) = \frac{1}{8} \left\{ \frac{E_{L} + E_{T} - 2\nu_{L} \cdot E_{T}}{1 - \nu_{L} \cdot \nu_{T}} + 4G_{LT} \right\}$$

$$(2-4)$$

(2-4) 式から積層材の弾性率を計算する. ただし、織 維のポアソン比のデータがないので,植村ら3)の計算結 果, vf=0.30を採用する. またマトリックスのポアソン

32巻10号 (1980.10)

報

比はストレインゲージにより実測し, vm=0.32 を得た. 計算のための物性値は, CF: $E_f = 23.8 \times 10^3 \text{ kg/mm}^2$, $\nu_f = 0.30$ Gf : $E_f/2(1+\nu_f)$ Al : $E_m = 6.2 \times 10^3 \text{ kg/mm}^2$, $\nu_m = 0.32$ $G_m = E_m / 2(1 + \nu_m)$ である. V, を10%としたとき, $E_c = 7024 \text{ kg/mm}^2$ $\nu_c = 0.310$ $V_f \in 20\%$ としたとき, $E_{c} = 7890 \text{ kg/mm}^{2}$

- $\nu_{c} = 0.314$ $V_f \in 30\%$ としたとき,
- $E_c = 8913 \text{ kg/mm}^2$ $v_c = 0.316$

となる.

実験結果と検討

Fig.2中の実線は理論値である. n=3 の実験値は比 較的理論値に近い値を示している.一方向強化材の場合 には繊維の配向性が複合材の特性に非常に影響を与える が、積層材になると多方向の素材の効果がはいってくる ために、一方向強化材の場合ほどその影響をうけないこ とが考えられる.

Fig.2 に示した結果で, n=3 と n=4 の弾性率を較 べてみると、対称等角積層板の理論から考えると、両者 は同じはずであるが、実測値は n=3の方が弾性率は高 くなっている. これは弾性率の測定を共鳴振動法によっ たことに起因すると考えられる. すなわち弾性率の測定 時に試験片は Fig.3 のような共振をしているとするな らば、曲げの効果がはいってくる. この対称等角積層板 は、Cross elasticity 効果⁴⁾ は消えておらず、曲げ剛性 に関しては異方性を示す. それゆえに最外層の素材の性 質に大きく影響をうけるのである.

最外層の繊維方向が長軸方向となっている n=3 と, 22.5°の角度をもった n=4の差違が表れたものと言える.

3-1. 複合材の高温強度

Fig.4に一方向強化複合材の高温強度の結果を示す. 引張り強度は 550℃ で室温の約 50%まで低下している. 本研究で得られた結果では 400℃ および 550℃ での差違 は明確ではない.

Fig.5に異方強化複合材の引張り強度の温度依存性を 示した. この場合は一方向強化材のものと同様の温度依 存性を示している. すなわち引張り強度は 300℃付近ま ではほとんど低下していないが、400~550℃付近から著 しく低下している.

Fig. 3 Forced vibration of unconstraint bear

3-2. 顕微鏡観察

Photo.1 に一方向強化複合材(V_f: 20%)の各試験温 度での SEM による破面観察を示した. マクロ的には 400℃以上の試験片は凹凸が多くみられる. これは温度 が高くなるにつれ、成型時のマトリックス間の接合の不 完全な部分で破断が進行するからであろう、また繊維の プルアウトも非常に多くなっていることがわかる. この プルアウトした繊維の表面には、アルミニウムマトリッ クスがほとんど残っていない.

単繊維の破断歪みにも大きなバラツキがあることが確 認されているが、複合化してもこの影響が表れ、繊維の 破断歪みの小さなものから破断する可能性がある.

試験温度 300℃以下の場合にはマトリックスは軟化し ておらず, Fig.6に示すように破断したまわりの破断し ていない繊維によって荷重をささえることができるが, 温度が高くなるとマトリックスが軟化し、しかも熱膨張 係数の差によって、マトリックスと繊維界面とがルーズ

Fig. 4 Temperature dependence of tensile strength of CFRM

Fig. 5 Temperature dependence of tensile strength of laminate

になってくる.したがってマトリックスには応力が伝播 されず,破断した繊維は強度に寄与しなくなる.その結 果繊維のプルアウトおよび強度低下が 550℃以上におい

(1) ×112

(2) ×560

Photo. 1 Scanning electron micrograph of tensile test specimen Unidirectional V. f. 20% (test temp. R. T.)

Fig. 6 Fiber reinforced composite (failure model)

て生ずるものと考えられる.

3-3. 異方積層複合材の破壊

Photo.2に n=3, n=4 の積層板の高温引張り試験後

32卷10号 (1980.10)

n = 3

 $\times 28$

n = 4 $\times 56$ Photo 2 Scanning electron micrograph of tensile test specimen (test temp. 300℃)

の SEM による破断面観察の結果を示す.

マクロ的には一方向強化材と同様に R.T~400℃まで はそれほど顕著な結果はみられない. n=3 の場合,550 ℃において最外層に亀裂を生じているのが認められる. そして S-S 曲線においても最大応力を過ぎた後,ただ ちに破壊するのでなく、内側の層がある程度まで荷重を ささえているのが認められた. n=4の場合も同様で R.T および 300℃ までの破面はほとんど変化がないが,550℃ で最も顕著な結果を示した. この結果は層間で剥離を生 じ、低温のものに比較して、マトリックスと繊維の界面 がよりルーズとなった結果生じたものと考えられる.な お破断モードの比較のために 300℃ および 550℃ におけ る朝断試験、すなわち引張り軸と繊維との方向が45°の 角をもつもの、および横引張り試験したものの破面写真 を Photo.3 に示した. この結果では 300℃と 550℃では 著しい相違が認められる. すなわち試験温度 300℃の破 面では繊維表面が露出している場合が多いが、試験温度 550℃になると繊維表面にマトリックスが付着している. これはマトリックスが延性破壊を起こしたことを意味する.

(Test temp. 300°C) $\times 448$

 $\times 448$ (Test temp. 550°C) Photo. 3 Scanning electron micrograph of transverse test specimen

4. ま لح め

対称等角積層板の弾性率の理論値と n=3, n=4 の結 果を比較し, n=3 の試料は計算値に比較的近い値を示 したが, n=4 の場合は Cross elasticity 効果が取り除 けないため計算値より低い値を示した。また高温強度特 性も一方向強化材と同様に高温になるに従い急激に低下 する傾向を示した.なお破壊モードの比較のために300 ℃および 500℃における剪断試験の結果,試験温度 300 ℃においては破面に露出した繊維表面に付着物が少ない が、550℃になるとマトリックスが付着していることか ら、この温度近傍に延性破壊の下限範囲が存在すること が明らかになった.

(1980年7月16日受理)

文 献

- 大蔵ほか: 生産研究 32(1980) p. 435 1)
- 2) "
- 3) 植村: 材料 24 (1975) 156
- 4) 林: 複合材料 (1979) p. 88