究

UDC 699.841:001.891

予引張あるいは予圧縮ばねを利用した免震床の研究 (第1報 振動特性と免震性能-その1-)

An Earthquake Isolation Floor Using Pre-Tensed or Pre-Compressed Springs (1st Report: Vibration Characteristics and Performance of Reducing Acceleration-Part 1-)

> 藤田隆史*•服部 忍*•石田二郎* Takafumi FUJITA, Shinobu HATTORI and Jiro ISHIDA

1. まえがき

破壊的地震の際に建物,特に中・低層建物の上層階に おいては1G程度の非常に大きな床応答加速度の生じる ことが判明している。そのため建物の上層階に設置され ることの多い電子計算機システムの耐震措置が大きな問 題となりつつある。本研究は,中・低層建物に設置され た電算機システムの耐震措置として注目されている免震 床^{11,21} – ある値以上の加速度が生じると建物のスラブ上 を滑ることにより地震入力を低減させる床一について, 新しい型式の免護床を考案し、その振動特性と免震性能

を実験と理論解析によって明らかにしたものである.

2. 本免震床の基本構造

本免震床に用いられる免震装置の基本構造は,図1に 示すように,大きな加速度が生じると低摩擦で動き得る 可動部分とその周辺の枠構造から成っている.可動部分 は予引張ばね((a)の場合)あるいは予圧縮ばね((b) の場合)によって枠に拘束されており,ばねによってあ らかじめセットされた力以下の外力では移動せず,地震 時にそれを越える慣性力が働いた時に動き出す構造を持 っている.したがって,この免震装置では地震時の加速 度を検出して固定装置をはずす型式のトリガー機構を有 しておらず,そのため,地震時の作動の信頼性の高いこ とが大きな特長である.また,地震終了時には自動的に 元の状態に復帰していることも長所の一つとしてあげる ことができる.

予引張方式と予圧縮方式の比較については、前者の方

図3 予引張方式による免震装置の実験モデル

図4 実験モデルの復元力特性と静止摩擦力

図4には測定された復元力特性と静止摩擦力が示されて いる. 図の破線は動摩擦係数 0.037 に対応するものであ

り、これから、最大静止摩擦係数も動摩擦係数にほぼ等

報

速

が小さなばね定数と大きな変形量を実現し易いという点 で後者より適用範囲が広く、特別な場合を除いて、前者 の方式が採用されることになる.

実際の電算機室に適用する場合には、図2に示すよう に、上述の免震装置を室の四隅に、ばねを持たない可動 部分だけのものを中間部に用いて、各々の可動部分を剛な

Ę

Displacement

ŝ

Displacement

0

梁で連結し,その梁の上に通 常のフリーアクセスフロアー を設置する方法が考えられる. なお、壁や柱近傍の構造につ いては図に示したものの他に も種々の構造が考えられ、実 用化に際しては十分に検討し なければならないところであ る.

3. 基礎実験 3.1 実験装置の概要

上述の免震装置の作動を確 認し, 振動特性と免震性能に ついての知見を得るために, 図3に示す実験装置により実 験を行っている.ただし、こ の実験装置では高い性能を得 るための, ばねの選定などに ついての最適化を行っていな いため、ここで得られた結果 が性能の限界を示すものでは ないことをことわっておく.

図3の実験装置は予引張方 式による免震装置の実験モデ ルであって, 可動部分の大き さは1480×1280、 質量は472.7 kgである.摩擦抵抗を極力押 さえるために、可動部分は4 個の自由方向ボールベアリン グ(ISB・IK-25, 静止荷重 200 kgf)で支持し、これだけ の場合のころがり摩擦係数は 0.016である.また,四隅の摺 動部には工作機械などに用い られているフッ化炭素重合体 の低摩擦材(ターカイトB)を 貼付し,装置を組み立てた後 の最終的な動摩擦係数は0.037 である. 可動部分の周囲には 4本の予引張ばねを装着し、

しいものと考えられる. この場合の予引張力は47.2 kgf であり、約100 gal の地震加速度で動き出すように設定 されている. 500 Q=0.650 cm a= 0.915 cm a=1.78 cm 퍥 400 Input nput nput acceleration cceleration acceleration 0 0 ð 8 100 Cal. Exp Harmonic Harmonic з з 3 4 2 3 4 5 6 Frequency ratio 5 6 7 78 ωι/Ω 9 0 1 789 ω₁/Ω 0 1 2 3 4 5 6 Frequency ratio 5 t 正弦波加振による共振曲線(入力変位振幅が一定の場合) 図5 500 A=300 gal A≈500 ca. A=700 gal 룞 400 Acceleration 00 00£ \$ 0.0 000 0 100 Exp Cal. Sweep up eep down Harmonic veep up down Subharmonic

3 Frequer 3 9 ō Z 3 4 5 3 4 1 6 7 ç ō 2 5 /ი 正弦波加振による共振曲線(入力加速度振幅が一定の場合) 図 6

49

研 究 谏

3.2 一方向加振実験

最も基本的な実験として,加振方向を可動部分の一対 の辺(1480mmの辺)に平行な方向とした実験を行い. 次のような結果が得られている.

図5は正弦波入力の変位振幅を一定とした場合の,可 動部分の絶対加速度と相対変位についての共振曲線であ り、ソフトスプリング型の共振曲線となる、可動部分の 応答加速度はある振動数以上の加振振動数で入力加速度 を下回り、入力加速度が加振振動数の自乗で増加するの に対してほぼ一定の加速度値を保ち,顕著な免震効果が 認められる.

図6は正弦波入力の加速度振幅を一定とした場合の共 振曲線であり、入力加速度が増大しても可動部分の応答 加速度はほとんど変化しないという上述の結果が明瞭に 示されている。また、この場合には広い振動数範囲で分 数調波共振(1/3次)が発生する.分数調波共振の場合 には,同じ加振振動数に対する調和共振に比べて,応答 変位は2倍程度増加するが応答加速度の増加はあまりな く、その増加も加振振動数が高くなると少なくなる、図 7は調和共振の場合の入力加速度と応答加速度、応答変 位の波形を示したものである.

図8は地震波入力の一例として, Taft 波(1952年 Kern County 地震)のフロアーレスポンス(固有振動数4Hz, 臨界減衰比5%の一質点系の応答加速度波)を入力した 場合の結果である。この場合には最大加速度 573 galの 入力に対して可動部分の最大応答加速度は237 gal に減 少している、また、入力地震加速度がほぼ100 gal を 越えた時点で可動部分が動

き出している.

以上の図5~8には解析 結果も示されているが、解 析については次に述べる.

- 4. 理論解析
- 4.1 正弦波加振による 調和共振の解析

本報告では調和共振の解 析について述べ、分数調波 共振の解析については次報 で述べることにする.

正弦波加振を受ける場合 の可動部分の運動方程式は 次式で与えられる.

$$M\ddot{x} + (Mg\mu + S)$$

•
$$sgn(\dot{x}) + F(x)$$

= $Ma\omega f^2 \cos \omega_f t$ (1)

ただし,

$$F(x) = \begin{cases} \beta M + K (x - \beta M/k) : x \ge \beta M/k \\ kx : |x| \le \beta M/k \\ -\beta M + K (x + \beta M/k) : x \le -\beta M/k \end{cases}$$

$$sgn(x) = \begin{cases} 1 : x > 0 \\ -1 : x < 0 \end{cases}$$
(3)

ここで、xは可動部分の枠に対する相対変位,Mは可動 部分の質量、μはベアリングによるころがり摩擦係数, Sは四隅の摺動部によるすべり摩擦力、Kは予引張ばね

(2Hz, 300gal入力)

のばね定数, kは緩衝ゴムのばね定数,βMは予引張力, gは重力加速度, a,ωfはおのおの正弦波強制変位の振幅と円振動数である。

式(1)の両辺をMで割り,

 $K/M = \Omega^2$, $k/M = \omega^2$, $\mu + S/(Mg) = \overline{\mu}$, $\omega_f t = \tau$ とおくと,式(1)は次のように変形される.

$$x'' + \frac{g\overline{\mu}}{\omega_f^2} sgn(x') + \frac{1}{\omega_f^2} f(x) = a \cos \tau \qquad (4)$$

ただし,

$$f(x) = \begin{cases} \beta + \mathcal{Q}^2 (x - \beta/\omega^2) : x \ge \beta/\omega^2 \\ \omega^2 x : |x| \le \beta/\omega^2 \\ -\beta + \mathcal{Q}^2 (x + \beta/\omega^2) : x \le -\beta/\omega^2 \end{cases}$$
(5)

次に、調和共振における周期解を求めるために式(4)を

$$x'' + x = -\frac{1}{\omega_f^2} f(x) + x - \frac{g\overline{\mu}}{\omega_f^2} sgn(x') + a\cos\tau \qquad (6)$$

と変形し,

$$x(\tau) = X(\tau)\cos\{\tau - \phi(\tau)\},$$

$$x'(\tau) = -X(\tau)\sin\{\tau - \phi(\tau)\}$$
(7)

を式(6)の近似解と考えて,形式的に平均法を適用す ると次式が得られる。

$$\frac{dX}{d\tau} = -\frac{2g\bar{\mu}}{\pi\omega_f^2} + \frac{a}{2}\sin\phi \qquad (8)$$
$$\frac{d\phi}{d\tau} = \begin{cases} -\frac{\omega^2}{2\omega_f^2} + \frac{1}{2} + \frac{a}{2X}\cos\phi : 0 < X \le \beta/\omega^2 \\ (9) \\ -\frac{\phi(X)}{2\pi\omega_f^2X} + \frac{1}{2} + \frac{a}{2X}\cos\phi : X \ge \beta/\omega^2 \end{cases}$$

ただし,

 $\Phi(X) = 4 \beta (1 - \mathcal{Q}^2 / \omega^2) \sin \alpha + X \{ \mathcal{Q}^2 (2\alpha + \sin 2\alpha) + \omega^2 (\pi - 2\alpha - \sin 2\alpha) \}$

(10)

and the second

 $\alpha = \cos^{-1}\{\beta/(\omega^2 X)\} \quad (0 \le \alpha < \pi/2)$

周期解は式(8)と式(9)あるいは(10)の右辺を0 と置くことにより求められる.

(i) 応答変位の共振曲線: 0 < X ≤ β/ω²の範囲での
 共振曲線は,

$$X = \frac{1}{|\omega^2 - \omega_f^2|} \sqrt{(a\omega_f^2)^2 - \left(\frac{4\,g\bar{\mu}}{\pi}\right)^2}$$
(11)

で与えられ, $X \ge \beta / \omega^2$ の範囲では,入力変位振幅 a が一 定の場合と入力加速度振幅 $A(=a\omega_f^2)$ が一定の場合と でおのおの次のように与えられる.

$$\omega_{f}^{2} = \frac{1}{\pi (X^{2} - a^{2})} \{ X \Phi(X) \\ \pm \sqrt{a^{2} \Phi^{2}(X) - (4 g \overline{\mu})^{2} (X^{2} - a^{2})} \}$$
(12)

(入力変位振幅 a が一定の場合)

$$\omega_f^2 = \frac{1}{\pi X} \left\{ \phi(X) \pm \sqrt{\pi^2 A^2 - (4 g \overline{\mu})^2} \right\}$$
(13)

(入力加速度振幅 A が一定の場合)

(ii) 応答加速度の共振曲線:可動部分の絶対加速度 ÿは

$$\ddot{y} = \ddot{x} - a\omega_f^2 \cos \omega_f t = -g\overline{\mu} sgn(\dot{x}) - f(x)$$
 (14)
で与えられ,式(14) に近似解

$$x(t) = X - \cos(\omega_t t - \phi) \tag{15}$$

を代入すると,

$$\ddot{y}(t) = -g\overline{\mu} sgn\{-X\omega_f \sin(\omega_f t - \phi)\}$$

$$-f\{X\cos(\omega_f t - \phi)\}$$
 (16)

ここで、 $|\ddot{y}(t)|$ の最大値をŸとすると、式(16)より、

$$\ddot{Y} = \begin{cases} g\mu + \omega^* X : 0 < X \le \beta/\omega^* \\ g\overline{\mu} + \beta + \Omega^2 (X - \beta/\omega^2) : X \ge \beta/\omega^2 \end{cases}$$
(17)

図5,6の解析結果は式(11)~(13),(17)による計算 結果であり、図5における破線は不安定解を示している. 図7の解析結果は式(15),(16)による計算結果である. いずれの場合にもほぼ満足し得る一致が得られている.

4.2 **地震応答の解析**

可動部分の地震応答は,入力地震加速度を äとすると, 運動方程式

 $\ddot{x} + g\overline{\mu} sgn(\dot{x}) + f(x) = -\ddot{z}$ (18) の数値積分より求めることができる.

図8の解析結果は式(18)を Newmark の β 法(β = 1/6)によって計算したものであり、加速度についてはほ ぼ良好な一致が得られているが、変位については計算の 方が大きめの結果を与えている.

5. あとがき

現在,上述の実験装置による二方向加振実験(斜め方 向加振実験)は終了し,実大免震床についての実験を準 備中であり,それらの結果についても続報の予定である.

(1980年5月24日受理)

参考文献

- 中川,渡辺,島口ほか3名;ダイナミック・フロア・シス テムに関する実験的研究(その1),大林組技術研究所報。 No.16 (1978)
- 2) 中川,渡辺,島口;ダイナミック・フロア・システムに関 する実験的研究(その2),大林組技術研究所報,No.17 (1978)