究

金属物体の過渡冷却に対する表面熱抵抗層の影響(第2報)

Effect of Surface Thermal-Resistance Layer on Transient Cooling of Metal (2nd Report)

西尾茂文* Shigefumi NISHIO

1. はじめに

物体を過渡的に冷却する際に液体の沸騰現象を用いる 方法は、高い冷却速度が得られ急冷が実現されるため、 鋼材の焼入れや軽水炉緊急炉心冷却系などに用いられて いる.

液体の沸騰を利用した過渡冷却では、冷却速度が被冷 却物体表面温度により大きく変化し、高温側から一般に 徐冷・急冷・徐冷の3段階を経る. この場合、急冷開始 点(ここでは冷却速度の極小点と定義する)や急冷中心 点(冷却速度の極大点と定義する)の温度や急冷温度幅 などの量が問題となり、特に急冷について関心が払われ る場合が多いが、現実の過渡冷却に際し、これらの諸量 を自在に変化させ目的に応じた冷却特性を得る手法を確 立しておくことは重要である.

現在、冷却速度の調節に用いられている方法は、沸騰 液体・液温・流動状態の選択といった液体側の条件を変 化させる方法である、これに対し、前報"において、急 冷など過渡冷却特性の促進に対し, 被冷却物体表面に熱 抵抗層を付加する方法が有効であることを示した.

本報告では、水平平板浸漬冷却系について前報と同様 の実験を行い、前報の結果を確認するとともに、表面熱 抵抗層の沸騰曲線への影響について検討した.

2. 実験装置および実験方法

実験装置および実験方法については、被冷却面をのぞ き前報と同一であるので省略し、被冷却面の構成につい てのみ述べる.

図1は、本実験で用いた(水平平板) 被冷却面の構成 を示したものである. 被冷却面本体は, 厚さ2mm・一 辺 50 mm の銅平板である. この銅平板は図1に示した ベークライトブロック表面に埋めこまれており, 銅平板 裏面には前報と同様に平板の対角線上に 50 µmクロメル ・アルメル熱電対が3組ハンダ付けされている.表面付 加層として,厚さ 0.1 mm, 0.2 mm, 0.3 mm, 0.5 mm,

*東京大学生産技術研究所 第2部

図1 被冷却面

1.0 mm のテフロン膜(板)を用意した.

前報の実験は被冷却物体表面が鉛直方向である鉛直平 板浸漬冷却系について行われたが、本報では図1の被冷 却面の表面を水平に保ったまま液体窒素中へ浸漬する水 平平板浸漬冷却系について実験を行った.

3. 実験結果

水平平板浸清冷却系における代表的実験結果を,図2 ~図4に示した.

図2は冷却曲線(銅板裏面温度 The を冷却時間 r に 対して示したもの)を,図3は冷却速度曲線(冷却速度 Vw を Tw に対して示したもの)をそれぞれ(銅板表面 に付加した)テフロン層厚さ δ_f をパラメータとして示 したものである.ただし、冷却速度 Vw は次式で定義し た.

$$V_{W} = (\rho C \delta)_{W} \left(\frac{d T_{W}^{b}}{d \tau} \right)$$
(1)

ここで、 ρ_W :銅の密度、 C_W :銅の比熱、 δ_W : 銅板厚 さである. $\delta_f = 0 \text{ mm}$ の場合は, V_W は表面熱流束 q_W に 等しい.

図2,図3より、鉛直平板浸漬冷却系とほぼ同様に、 急冷に関して以下の結果が得られる. まず, テフロン層 の厚さ δ_f が 0.3 mm 程度に至るまでは, δ_f の増大とと もに,

1)冷却速度がより高温から増大するようになり、Vw

冷却曲線の変化 図2

が極大値 Vwmax となる急冷中心点の被冷却物体(銅仮) 温度は高温側に移行し,

2) V_{wmax} の値は裸面 ($\delta_f = 0$) での限界熱流束(CH F) に近い値をとり,

3) V_W が V_{Wmax} に近い値(例えば V_W≥0.8 V_{Wmax}) をとる温度範囲(これは急冷温度幅と関係する)が広 くなり,

急冷がより高温で起こり,急冷温度幅も増大し,保温 ・断熱材であるテフロン膜の厚さの増大とともに、逆 に急冷が促進されるようになっている.一方、 δ_f が 0.3 mim 程度を超えて増大すると、 δ_{f} の増大とともに

4) 急冷中心点の被冷却物体(銅板)温度はより高温 側に移行するが,

5) V_{Wmax} の値は裸面($\delta_f = 0$) での CHF より顕著 に減少し,

6) Vw が Vwmax に近い値をとる温度範囲も狭くな るようになり,

急冷中心点は高温側に移行するが、テフロン層はその保 温層としての効果を強め、しだいに急冷が起こりにくく なることが確認される.ただし、本実験範囲では、

7) 急冷中心点より低温側では, δ_f の増大とともに一 様に冷却速度 Vw が低くなる

傾向を示している.

図4は、各テフロン層厚さ δ_f における冷却所要時間 *rc* を,温度区間([0℃,-50℃],[0℃,-100℃],[0 ℃,-150℃], [0℃,-175℃])をパラメータとして示し たものである. この図から判るように、銅板表面に付加 することにより銅板自身の冷却所要時間が最も短縮され

冷却速度曲線の変化 図3

図4 冷却所要時間の変化

るようなテフロン層厚さ δ_{tc} が各温度区間に対して存 在し、テフロン層の効果は急冷促進効果と保温効果とい う矛盾した2側面をもつことがわかる.また、この $\delta_{\ell c}$ の値は温度区間の下限値が低くなるほど小さくなる。こ れは主として前述した7)の特徴によるものである.

以上のように,液体側の条件を固定した状態でも過渡 冷却速度を変化させることができ、この表面付加層の効 果と液体側の条件とを組み合わせることにより、多様な 冷却特性を得ることができると考えられる.

4. 沸騰曲線に関する検討

以上の議論では,被冷却物体(銅板)温度 T% と冷却 速度 Vwの関係(冷却速度曲線)について取り扱ってき た. 過渡冷却法の特性を議論する場合には、この冷却速 谏

究

研 度曲線が重要な情報を与えるが,表面付加層の効果をよ り一般的に詳細に考察するためには、被冷却物体表面温 度 Tw と表面熱流束 qw との関係(沸騰曲線)に対する 表面付加層の影響を知っておく必要がある. ただし、本 実験では Tw · gw ともに実測していないので, 熱伝導の 逆問題により Tw の実測値からこれらの量を計算するこ とにする.

図5は、前報および本報で対象とした被冷却物体系を 模式化したものである. 図5の系について, 簡単のため にテフロン・銅の物性値の温度依存性を無視すると, $(M-1)\Delta\tau < \tau \leq M\Delta\tau$, $(M=1, 2, \cdots)$ における表面熱流 東 $q_w[MA_\tau]$ は、実測値 $T_w^{\nu}[MA_\tau] \cdot T_w^{\nu}[(M+1)A_\tau]$ ・ $T_W^{\circ}[(M+2)A_{\tau}]$ をもとに、J. V. Beck²⁾と同様の方法に より次式で計算できる.

$$q_{W}[M\Delta\tau] = \frac{C_{1}C_{5} - C_{2}C_{4}}{C_{0}C_{4} - C_{1}C_{3}}$$
(2)

ただし.

$$C_{0} = \Delta \phi_{0}^{2} + (\Delta \phi_{0} + \Delta \phi_{1})^{2} + (\Delta \phi_{0} + \Delta \phi_{1} + \Delta \phi_{2})^{2}$$

$$C_{1} = \Delta \phi_{0} (\Delta \phi_{0} + \Delta \phi_{1}) + (2\Delta \phi_{0} + \Delta \phi_{1}) (\Delta \phi_{0} + \Delta \phi_{1} + \Delta \phi_{2})$$

$$C_{2} = \Delta \phi_{0} \left(\sum_{n=0}^{M-1} q_{W} (n\Delta \tau) \Delta \phi_{M-n} \right) + (\Delta \phi_{0} + \Delta \phi_{1}) \left(\sum_{n=0}^{M-1} q_{W} (n\Delta \tau) \Delta \phi_{M-n+1} \right) + (\Delta \phi_{0} + \Delta \phi_{1} + \Delta \phi_{2}) \left(\sum_{n=0}^{M-1} q_{W} (n\Delta \tau) \Delta \phi_{M-n+2} \right) - T_{W}^{b} [M\Delta \tau] \Delta \phi_{0} - T_{W}^{b} [(M+1)\Delta \tau] (\Delta \phi_{0} + \Delta \phi_{1}) + \Delta \phi_{1} + \Delta \phi_{2} \right)$$

$$(3)$$

 $C_3 = \Delta \phi_0 (\Delta \phi_0 + \Delta \phi_1)$

$$+(2\Delta\phi_0+\Delta\phi_1)(\Delta\phi_0+\Delta\phi_1+\Delta\phi_2)$$

$$C_4 = \Delta \phi_0^2 + (2\Delta \phi_0 + \Delta \phi_1)^2$$

$$C_{5} = \Delta \phi_{0} \left(\sum_{n=0}^{M-1} q_{w} [n \Delta \tau] \Delta \phi_{M-n+1} \right) \\ + (2\Delta \phi_{0} + \Delta \phi_{1}) \left(\sum_{n=0}^{M-1'} q_{w} [n \Delta \tau] \Delta \phi_{M-n+2} \right) \\ - T_{W}^{b} [(M+1) \Delta \tau] \Delta \phi_{0} \\ - T_{W}^{b} [(M+2) \Delta \tau] (2\Delta \phi_{0} + \Delta \phi_{1})$$

 $\zeta \zeta \tilde{C} \quad \Delta \phi_i = \phi[(i+1)\Delta \tau] - \phi[i\Delta \tau]$ $\phi: x = \delta_W$ における単位表面熱流束ステップ に対する温度応答関数

(2)・(3)式より計算された各時刻における表面熱流束 を境界条件として図5の系について熱伝導計算を行え ば、各時刻における被冷却物体系の表面温度 T% が計算 される.

この方法の精度を検討するために、次のような計算を 行った.図6の実線は、前報で示した沸騰曲線 B であ り、鉛直平板浸漬冷却における 0.1 mm 厚テフロン被覆 系での沸清曲線に近いと思われるものである. この沸騰 曲線を用いて、図5の系について $\delta_f = 0.1 \text{ mm} \cdot 0.3 \text{ mm}$ ・ 0.5 mm の場合に対してそれぞれ銅板裏面温度 T% を計 算し、この値をもとにして上述の方法により沸騰曲線を 再現する計算を行った. 沸騰曲線の再現結果を図6に比 較して示した. $\delta_f = 0.5 \text{ mm}$ の場合, CHF領域近くで若 干振動する傾向を示すが、いずれの場合も実線の沸騰曲 線をよく再現しており、この方法の計算精度は十分であ ると考えられる.

前報の鉛直平板浸漬冷却系と本報の水平平板浸漬冷却 系それぞれにおける The の測定値をもとに、上述の方法 により計算された沸騰曲線を、 δ_f をパラメータとして図 7・図8に示した.いずれの系においても、テフロン層 32卷6号(1980.6)

生産研究 293 究

速

報

厚さδ,の変化に対して沸騰曲線自体が大きく変化して いることがわかる。テフロン被覆銅板系については、 δ_f の値によらず表面がテフロンであるので,沸騰に対する 表面条件(粗さ・濡れ性)が同一であることを考えると, この沸騰曲線の変化はテフロン層の熱抵抗の効果による ものと考えてよい. ただし, 逆に Sr→0 mm の場合に 沸騰曲線が裸銅面のそれにどれほど近づくかについては, 本実験では確認するに至っていない.

δ₁の増大にともなう沸騰曲線の変化は、上述した冷却 速度曲線の変化と類似した特徴をもつ. その特徴をまと めると以下のようになる.

i) 膜沸騰域:本実験では δ_f=1.0 mm の場合にのみ 観察され、 δ_r の増大とともに高温部に限定されるよう になる.

ii) 遷移沸騰域: δ_f の増大とともに高温側へ移行し, その熱伝達特性は向上するが、 δ_1 が 0.3 mm程度を超え ると大差なくなる.

iii) 限界熱流束(CHF): δ_f が 0.3 mm 程度までは裸 銅面のそれと大差ないが、 δ_f がこれ以上となると顕著に 減少するようになる.

iv) 核沸騰域: δf の増大とともに, 高温側へ移行し, その伝熱特性は劣化する.

ii),iv)の点に関しては、沸騰サイクルと同期した表 面温度変動サイクルの表面熱抵抗による増幅が、固液接 触割合や核生成密度・気泡離脱周期などをいかに変化さ せるかにより説明されると思われるが,詳細を議論する 段階にない. ただし、固液の急接触により自発核生成が 起こる下限温度 Twsn3)

$$T_{Wsn} = \left(1 + \sqrt{\frac{(\lambda \rho C)_{l}}{(\lambda \rho C)_{W}}}\right) (T_{sn} - T_{sat}) + T_{sat} \quad (4)$$

$$T_{sn} = T_c \ [0.89 + 0.11(P/P_c)] \tag{5}$$

ただし、P。・T。 はそれぞれ液体の臨界圧力・臨界 温度である.

より高温側でも、図7・図8に示したように良好な伝 熱が得られていることを考えると、固液接触サイクル3) に同期する温度変動サイクルに対し, 固液急接触時の温 度変動のみでなく固液接近時の温度変動についても考慮 する必要があると考えられる.

5. ま بح め

水平平板浸漬冷却に関し, 被冷却物体表面に付加した テフロン膜の効果を実験的に検討し、適当な厚さのテフ ロン層が急冷促進に効果があることを示し、この効果が テフロン層の熱抵抗に起因し、表面熱抵抗層の付加によ り沸騰曲線は一般に高温側に移行する様相を示した.

図8 沸騰曲線(水平平板浸漬冷却系)

〔付言〕 本報告の実験は,大倉康君(東海大学学生)の 協力により行われたものである.

(1980年3月3日受理)

参考文献

- 1) 西尾, 生産研究, 32-5(1980-5)
- 2) J. V. Beck, Nuclear Engineering and Design, 7 (1968), pp. 170-178
- 3) 西尾, 生研報告, 28-6 (1980-3)