32巻3号(1980.3)

特集 22 一研究速報一

生產研究 199

UDC 669.004.15 539.388.1 534.23.08

AEと破壊力学による疲労破壊の一研究

(材料の有効利用を目的とした疲労破壊のAE測定の基礎的研究,第二報)

A Study on Fatigue Crack Growth by AE and Fracture Mechanics (A Basic Study on Measurements of Fatigue Crack by Acoustic Emission for the Efficient Use of Materials: The Second Report)

鳥飼 安生*・北川 英夫*・尾上 守夫**・結城 良治*
 Yasuo TORIKAI, Hideo KITAGAWA, Morio ONOE, Ryoji YUUKI,
 大平 壽昭*・方 時桓*・山田 博章**・李 孝雄*

Toshiaki OHIRA, Si Hwan BANG, Hiroaki YAMADA and Hyo Ung LI

1. 序 言

省資源のための材料の有効利用は現在のわれわれの重 要な努力目標の一つとなっていて、各種の側面からのア プローチが試みられている.その一つは、従来廃棄されて いた材料を利用し、複合・変成等を経て、一見新しい材 料として使う場合で、生産廃棄物や生活廃棄物を素材の 一部に使った建材の利用等がそれである.他の側面には、 既に長期間使用してきた機器・構造物の材料を、安全性 ・信頼性等の要求も満たしながら監視しつつ、できる限 り長期間使用する努力がある.

上記のような意味での材料の有効利用に当たっては、 材料の強度評価ないし信頼性評価が必要となるが、その 有力な手法の一つがAEによる監視と破壊力学による解 析との組合わせであろう、すなわち、供用中の材料の局 部破壊の程度・位置ないし、破壊の進行速度に関する情 報をAE信号の解析によって得ると同時に、一方この破 壊を広義のき裂挙動と解釈し、き裂モデルを用いて力学 的に解析する、もし、き裂挙動とAE情報の間に一定の 関係が得られれば、目的が速せられる道が開ける、AE が一種の非破壊検査とも言われるゆえんの一つである。

現在,われわれは上記の各種の側面からの材料の有効 利用に対してAEの利用の検討を行っており、この種材 料で問題となるぜい性破壊と疲労破壊とを主対象として 研究を行っているが、まず疲労破壊から述べる.前回¹⁾ は疲労き裂の成長に関するAE計測と、得られたAE情 報について報告した.今回は、その破壊力学的解釈につ いて述べる.

2. 実験方法

AE 活性度があまり高くない汎用の 60 kg/mm² 級溶接 構造用圧延鋼(WELTEN 60)と、これと比較のため、塑 性変形に対するAE活性度の高い Al-Mg 合金(5052-H24)2種を供試材とし、片側予き裂入り平板試験片に

🍋 🔨 🦮 🗸 🔊 🕆

* 東京大学生産技術研究所 第1部 ** 東京大学生産技術研究所 第3部

10ないし 15Hz で片振れ引張り繰返し荷重をかけて 疲労 き裂成長実験を行い, 疲労き裂成長挙動の連続的測定お よび 2 チャンネルの AE 標定装置(DUNEGAN/END EVCO社 3000 Series)を用いてのA E信号の計測を行な った.実験方法・装置の詳細は前報¹⁾ に述べたとおりで ある.

3. AK~da/dn~dN/dn図による整理

前報¹¹では、疲労き裂成長時のAE事象の累積数Nとき 裂長さaとの関係、AEの発生時刻と荷重位相との関係お よびAEの振幅分布について報告したが、本報では主とし てAE計数率 dN/dn と疲労き裂成長速度 da/dn およ び破壊力学パラメータである応力拡大係数範囲 dKとの 関係について調べた結果について述べる.n は荷重繰返 し回数である。

Fig.1(a)にWELTEN 60 鋼の $\Delta K \sim da/dn$ 関係と △K~dN/dn 関係を共通の座標を用いて合わせて示す。 この図は荷重レベル、初期き裂長の異なる実験の結果を まとめて示したものであるが、よく知られているように $\Delta K \sim da / dn$ のほとんどのデータは両対数図上で狭い直線 状分散帯に入っている. 図から分かるように AK~dN/dn 関係の多くのデータも上記の AK~da/dn 分散帯と ほぼ平行な若干広い直線状分散帯に収まる. 各試験片ご との左端のデータが下方に流れているのは安定成長まで の遷移現象かとも思われる.両分散帯の縦座標の比は約 30で、これは dN/da[=(dN/dn)/(da/dn)] が一定であ り、き裂成長速度の大小にかかわらず、き裂が1mm 成 長するごとに約30回のAEが発生することを意味する. これはきわめて注目すべき結果であり、従来、1回の荷 重繰返しごとに1本のストライエーションを形成しつつ 成長する疲労き裂進展機構と対応させて考えられること の多かったAEの発生とは、異なった発生機構による A Eで、き裂進行距離依存のAE発生回数が計測されたこ とになる.

また, 上記の dN/dn データがすべて1以下で大部分

115

のデータが10⁻³と2×10⁻¹の間にあることも応用上重要 で、これは荷重が5~1000回かかって初めて1回のAE が計測されたことになり、少なくともこの計測方法では、 低速の荷重繰返しを受ける材料の監視には、長時間の見 落しのない計測を必要とすることになる。

次に Al-Mg 合金についても同様に *AK~da/dn*, *AK~dN/dn* 関係を1枚の図で同時に示したのが Fig.1 116

Fig. 1 (b) Stress Intensity Factor Range (ΔK) – Fatigue Crack Growth Rate (da/dn) and AE Count Rate (dN/dn) Diagram of A1-Mg Alloy 5052 -H 24

(b)である. 一般的傾向は WELTEN 60 鋼と類似し, $\Delta K \sim da/dn \, \vec{r} - s$ は同じく直線状分散帯を形成する.し かし WELTEN 60 鋼との間には次のような著しい差異 が見られる. 1) $\Delta K \sim dN/dn$ 関係には,部分的には $\Delta K \sim da/dn$ 関係と平行な領域があるが,高dN/dn 領域 では飽和傾向が見られ,dN/dn=1の近傍に飽和点があ るように見られる. 2) $dN/dn \geq da/dn$ 両分散帯の縦

Fig. 2(a) Unificated Expression of Fatigue Crack Growth Rate (da/dn) of Steel and Al-Mg Alloy by Elastic Strain Intensity Factor Range $(\Delta K/E)$

座標の比は WELTEN 60 綱に比べると著しく高く, Al - Mg 合金では、き裂が1mm成長するごとに約1000 回 のAEが発生することになり、WELTEN 60 鋼での実験 の約1/3のAKレベルでのき裂進行であったことを考え ると、この材料はきわめてAE活性度が高いことがわか る. しかし飽和域では上記の1mm当たりのNは1000回 より低下し、50回程度まで下がることもある. なおFig.

Fig. 2(b) Comparison of AE Count Rate (dN/dn) of Steel and Al-Mg Alloy by Unificated Parameter, Elastic Strain Intensity Factor Range ($\Delta K/E$)

1(b)中のNo.1とNo.4は特別に熱処理した材料のデータ であり、AK~da/dn 特性は他の試験片と同じ特性を示 したが、 $\Delta K \sim dN/dn$ 特性はかなり異なり、材料の熱処 理に対し、き裂成長速度は鈍感でもAEの方は影響を受 けやすいことがありうることを意味する.

次に両材料の疲労き裂成長速度データを弾性ひずみ拡 大係数範囲 AK/E で整理し、Fig.2(a) に示す. 図から

分かるように、両材料のデータの大部分は一本の線に集 まってくる.したがって、Fig.2(b)に示すように、 *dN/dnを4K/E* で整理することは、材料の差に無関係 にき裂成長速度でAE計数率を整理することと等価であ ると考えられる.Fig.2(b)は当然のことながら、同じ *AK/E* 値に対して、Al-Mg 合金では、WELTEN 60 鋼 に比べて、AE計数率が高いことが示されている.

4. da/dn~dN/dn図による整理

Fig.1(a),(b)に示した $4K \sim da/dn \sim dN/dn$ 図では, Al-Mg 合金のデータでは, $da/dn \geq dN/dn$ の両データ の平行性が必ずしも明瞭でない. そこで 4Kを仲介とし ないで $da/dn \geq dN/dn$ を直接関係づけたのが, Fig. 3 (a) と Fig. 3(b)である. Fig. 3(a)の WELTEN 60鋼 では遷移特性と見なされるデータを除いてプロットする と,データ全体としては傾きが 45° に近い分散帯に沿っ ており, バラツキは少なくないが, $da/dn \geq dN/dn$ の 間には直線関係が近似的に存在するようである.

同様な図を Al-Mg合金について示したのが Fig. 3 (b)である.特殊熱処理材のNa 1, Na 4 のデータと遷移 域データを除いてもなお 45°に近い分散帯とは考えにく い.

5. *AK*~*da/dn*~*dN/dn* 特性, *da/dn*~*dN/dn* 特性, *a*~*N*特性間の関係

Fig. 3(b) Relation between Fatigue Crack Growth Rate (da/dn) and AE Count Rate (dN/dn) of Al - Mg Alloy 5052 - H 24

Fig. 4 Schematic Representation of Linear Portions of the $\Delta K \sim da/dn \sim dN/dn$ Relation

上記のように、 45° の直線状分散帯 (Fig.3)ないし平 行状分散帯 (Fig.1)とは考えにくい場合も含めて、この $da/dn \sim dN/dn$ 図と $AK \sim da/dn \sim dN/dn$ 図および $a \sim N$ 図の関係を次に検討する.

Fig.1(a)等またはこれを模式化した Fig.4から

$$dN/dn = C_N \cdot (\Delta K)^{m_N} \tag{1}$$

$$da/dn = C_a \cdot (\Delta K)^{m_a} \tag{2}$$

ここで、 C_N, m_N, C_a, m_a は定数であり、 m_a は WELTEN 60 鋼では約3,5052-H24Al-Mg合金では約3.8と得 られた. $AK \sim da/dn \sim dN/dn$ 図で近似的平行性が得ら れる領域では、

Fig. 5 Schematic Representation of the Variation of the da/dn vs. dN/dnand a vs. N Diagrams as a Function of the Values of $\lambda (=m_N/m_a)$

 $m_N = m_a = m \quad (\text{rgs}) \tag{3}$

なので,式(1),(2)から,

$$dN/da = (dN/dn)/(da/dn) = C_N/C_a(ceta)) (4)$$

既述のように C_N/C_a は WELTEN 60 鋼で30, 5052 Al-Mg 合金で約 1000 と得られた.

m_N キ*m*_a の領域では,

$$m_N = \lambda \cdot m_a \, \delta \, \delta \, \mathrm{solut} \, m_N / m_a = \lambda \tag{5}$$

とおけば、この入の値を近似的に定数と見なせる各範囲 について、それぞれの入値に対して、

$$dN/da = (C_N/C_a)(\Delta K)^{m_a(\lambda-1)}$$
(6)

となり、AK 依存性または a 依存性が現れる. また、

$$dN/dn = (C_N/C_a^{\lambda}) \cdot (da/dn)^{\lambda}$$

 $= C_{\mathrm{N}a} \cdot (da/dn)^{\lambda} \tag{7}$

$$tt \in C_{Na} = C_N / C_a^{\lambda} \tag{8}$$

となり、 $da/dn \sim dN/dn$ 図の傾きや位置、 すなわち、 き 裂成長速度とAE計数率との関係が、したがってまた、a~N関係も、 $m_N/m_a(=\lambda)$ に強く影響されること、およ びその影響の傾向が分かる. このことは、今回提案した $AK \sim da/dn \sim dN/dn$ による整理方法の有用性を示して いる. この図を経ないで直接 $da/dn \sim dN/dn$ を使うと 遷移データの選別が困難であろう. この $m_N \geq m_a$ の関係 すなわち λ の各種の値に対し、 $da/dn \sim dN/dn$ 関係やa ~N関係がどのように変わるか、その傾向のみを Fig.5 の模式図に例示する.

6.まとめ

AE活性度があまり高くない汎用の溶接構造用鋼 WELTEN 60と、比較的AE活性度の高い Al-Mg 合金 5052-H24 について、いわゆる高サイクル疲労試験を行 ない、疲労き裂成長に伴うAE count の破壊力学的解析 を行った、主なる結論は次のごとくである。

1) WELTEN 60 鋼では、両対数グラフ上でA E計数 率dN/dnはdKに対し直線で、かつ、き裂成長速度 da/dnの $dK \sim da/dn$ 直線とほぼ平行である、すなわ ち、この鋼のこの測定領域では、き裂成長速度やdKに 無関係に、き裂成長距離 1 mm に平均約30回のA E が計 数されていることになりき裂成長距離依存性が高い.

2)今回試験したAl-Mg合金5052-H24では、AE計数率 dN/dnの da/dn に対する比がきわめて高く、最大1000倍にも達する.また、き裂成長の比較的初期に dN/dn の増加は飽和し、き裂成長速度や dK が変わってもほぼ一定ないし微増を続ける。

3) 今回計測したAE計数率 dN/dn は常に1より低かった.すなわち,顕著なAEの発生は,毎回の荷重繰返しごとにではなく,休止期をはさんで,断続的に発生する.その休止期は時に数1000回の荷重繰返しに及ぶこともある.

4) 今回提案した *AK*-*da/dn*-*dN/dn* 図によるAE
 データ整理方法は, *dN/dn*-*da/dn* 関係や *a*-*N* 関係の
 推定,その他の情報を得る上で有用であろう.

_

٩

7. 謝辞

(1980年1月21日受理) を表したい.

参考文献

この研究にご協力いただいた山腰綱吉氏に対し、謝意 1) 鳥飼・北川・尾上・李・大平・山田; 生産研究, Vol. 31, ましたい (1090年1月21日受理) No 3 (1979) p. 208 No.3(1979) p.208

{	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	~~~~~	
}		☆ 筆 者	紹	介 ☆	
{ ()用山	尚	(Hisashi TANAKA) 教授(所長)工博			・パワーエレクトロニクス,電気機器学
{ ~ шт	IFU	專攻 • 建築構造学	◇白石	振作	(Shinsaku SHIRAISHI) 助教授 工博 専
	稔	(Minoru IMAOKA) 教授 工博 専攻•複			攻 •有機合成化学
{		合材料工学, 無機工業化学	◇木内	学	(Manabu KIUCHI) 助教授 工博 専攻•
{ ◇小林 ‐	一輔	(Kazusuke KOBAYASHI) 教授 工博 専	入岸田	Ten Hife	塑性加工学
	(7-16 I	攻・コンクリート上学, 複合材料上字 (The last NOMOTO) 時手, 東東, コンクリ	◇長田	相似的	(Kazuo NAGAIA) 助于(特別研究員) 工種 東西・全局材料学
} ◇魚本 1	健人	(Taketo UOMOTO) 助手 専攻・コングリ - トT学	◇梅津	沾	工得 导致 · 並為約科子 (Kivoshi UMEZU)) 技官 専攻 · 同上
<	学	(Manabu SENO) 教授 理博 專攻•有機工	◇西川	粘一	(Seiichi NISHIKAWA) 教授 工博 専攻・
}	,	業化学	• =		同上
} ◇金子 ÷	秀昭	 (Hideaki KANEKO) 元受託研究員 日本パ -カライジング株式会社 専攻・同上 	◇七尾	進	(Susumu NANAO) 助手(特别研究員) 工博 專攻•同上
	三郎	(Gosaburo MIKI) 教授 工博 専攻・地質 工学	◇松崎	明博	(Akihiro MATSUZAKI) 大学院学生 専攻 •同上
} ◇五十嵐	仁	(Hitoshi IGARASHI) 大学院学生 専攻• 同上	◇徳満	和人	(Kazuto TOKUMITSU) 大学院学生 専攻 • 同上
	文夫	(Furnio TATSUOKA)助教授 工博 専攻 ・同上	◇井野	博満	(Hiromitsu INO) 助教授 工博 專攻 • 同
< ◇増子	昇	(Noboru MASUKO) 教授 工博 専攻・ 約合会局要材工学	◇鈴木	緕	ェ (Kiyoshi SUZUKI) 助手 専攻・材料加工
	四郎	(Zenshiro HARA) 助教授 工博 専攻・金	⇔Ւш	浩幸	テ (Hiroyuki KOYAMA) 研究生(芝浦工業大学)
◆ ○石田 ネ	洋一	(Yoichi ISHIDA) 助教授 工博 Ph.D 専	◇川井	忠彦	専攻・同上 (Tadahiko KAWAI)教授 工博 専攻・船
}		攻·金属物性工学	• • •		体構造力学,数值解析
} ◇井上 	健	(Takesht INOUE)助于 專攻•放射性问题 元素工学	◇山田	嘉昭	(Yoshiaki YAMADA) 教授 工博 専攻• 固体材料強度学
	基之	(Motoyuki SUZUKI)助教授 工博 専攻•	◇奥村	秀人	(Hidehito OKUMURA) 助手 専攻・同上
	欧土	環現化子上子 (Takao FUⅢ) 枝宣 寅攻●同上	◇吉永	Ш.	(Hiroshi YOSHINAGA) 受託研究員 住友コ ・工業性学会社 東本・約会社刻工学
~ ◇ 膝开 「	座 天 光 印	(Mitsunori SUKIGARA) 助教授 工博 専攻	△畫	估民	ム上来休式会社 専攻・復合材料上子 (You-min HIIANG) 大学院学生 東攻・材
}	/	• 工業物理化学	く見	μц	料力学
} ◇大蔵 □	明光	(Akimitsu OKURA) 助教授 工博 專攻• 複合材料工学	◇西口	磯春	(Isoharu NISHIGUCHI) 大学院学生 専攻 • 同上
} ◇中川	威雄	(Takeo NAKAGAWA) 教授 工博 専攻・ 材料加工学	◇山口	楠雄	 (Kusuo YAMAGUCHI) 教授 工博 専攻 • 電気制御工学
} ◇天野	富男	(Tomio AMANO) 研究員 (職業訓練大学校	◇鳥飼	安生	(Yasuo TORIKAI) 教授 理博 専攻・超
} △近井	海郎	助教授)上博 專攻·同上 (Tateuro HAMAI) 株式会社近井砌在所 直	A 11. 111	*** -+*	
{ \> 供开	使的	文·同上	◇北川	央天	(Hideo KIIAGAWA) 教授 上博 専攻・ 材料論度機構学
} ◇曲中	孝	(Takashi TANAKA) 協和合金株式会社 専 攻・同上	◇尾上	守夫	(Morio ONOE) 教授 工博 専攻・応用電 子工学
{ ◇戴	豊樹	(Feng-Shuh DAI)大学院学生 專攻•同上	◇結城	良治	(Ryoji YUUKI) 講師 工博 専攻・材料強
{ ◇ 増沢	隆久	(Takahisa MASUZAWA)助教授 工博 専			度機構学
) 	+17	攻 • 稍密工作学 (Noria → TCUPOL) 研究日(古言法的上世社	◇大平	寄昭	(Toshiaki OHIRA) 助手 専攻・同上
/ ◇呌开	邦天	(Kunio ISUBUL) 研究員(東京商船大字助 教授)工博 専攻・制御工学,パワーエレクト	◇方	時桓	(Si Hwan BANG) 客員研究員(韓国崇田 大学校教授)専攻・同上
} { ◇檜垣	成敏	ロニクス (Shigetoshi HIGAKI) 大学院学生 - 専攻・	◇山田	博章	(Hiroaki YAMADA) 助手 専攻・応用電子 工学
{		電気工学	◇李	孝雄	(Hyo Ung LI) 技官 専攻・超音波工学
} ◇原島	文雄	(Fumio HARASHIMA) 助教授 工博 専攻	~~~~~		