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5. Stress-Strain Condition in Simple Shear Test

From the time histories as shown in Figs. 2* and 3%, the
variations of effective vertical stress o, and effective
horizontal stress ox can be evaluated as illuslated in Fig. 4.
The time histories of &, and @5 at no shear stress during
cyclic loading which were obtained from the data shown in
Figs. 2 and 3 are shown in Fig. 5. In Fig. 6 is shown effective
stress path in ferms of @, and @» during cyclic loading
which was constructed from the values shown in Fig. 5. In
this figure, stress. points both at no shear stress and at peak
shear stress are shown. It can been seen from this figure that
there is a unique effective stress path irrespective of the vaiue
of shear stress. It can be also seen from this figure that
this effective stress path is very similar to that of a Ko
rebound test in which horizontal strain is not allowed
during vertical stress is decreased. At the same time, a faster
reduction of B, can be seen than that of 7. It is obvious
that if the equipment was not rigit enough vertically, a
reduction of @ would not have been as fast as seen in Fig. 6.
Measured vertical rigidity of the equipment was 0.014 mm
for the vertical load of 230 N which induces 60 kN/m? in
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the vertical stress in a simple shear specimen having the
diameter of 7 cm. All these facts described above show that
the equipment has an enough vertical rigidity.

From these considerations, it can be concluded that
there were no significant vertical and horizontal strains in a
simple shear specimen during cyclic undrained tests in this
study. These strain conditions are also expected in an in
situ soil element in a level ground which is subjected to
upward shear wave propagation during earthquake motion.
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Fig.4 Method for evaluating effective vertical stress and
effective horizontal stress during cyclic loading.
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Fig. 5 Relationships between effective vertical stress d,
and effective horizontal stress o5 and number of
cyclic loading for wet tamped Monterey No. 0
sand of D,= 60%
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Fig. 6 Effective stress path for wet tamped Monterey
No.Q sand of D,= 60% (Refer to Fig. 3 for

points A and B)
Therefore, the effective stress condition in a cyclic simple
shear specimen can be considered very similar to that of
the in situ soil element. However, it should be noted that
total stress condition in a cyclic simple shear specimen during
cyclic loading in this study is not exactly identical to that of
an in situ soil element. The difference involves the variations
in total vertical stress and in total horizontal stress. These are
illustrated in Figs. 7 and 8. For this reason, measured
excessive pore pressure in cyclic simple shear test in this
study is less than excessive pore pressure under the similar in

situ condition.
The relationship between double amplitude shear strain

DA in percentage and number of cyclic loading N, which
was obtained from the data shown in Fig. 2* is shown in
Fig. 9. Numbers of cyclic loading where DA became 1.5%,
3%, 7.5% and 15% were read from this relationship for each
test as illustrated in Fig. 9.

Similar test results which were obtained from tests on
wet tamped specimens of D,=. 45% and 80% are shown in
Figs. 10 through 15. Three features should be noted.

(a) Similar effective stress paths during cyclic undrained
loading as shown in Figs. 6, 11 and 14 can be seen for
different densities.

(b) As seen from Fig. 10, effective stress in a sample of
Dy= 45% can easily become zero after the rate of decrease
in effective stress increases (this is after number of cyclic
loading of 5 in the case of Fig. 10). Therefore, it is
practically easy to define the moment of initial liquefaction
for'a sample of D,= 45%. On the other hand, as seen from
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Fig. 7 Total and effective stress paths in cyclic simple
shear test in this study.
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Fig. 8 In situ total and effective stress paths during
earthquake motion.
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Fig.9 Relationship between double amplitude shear
strain and number of cyclic loading for wet
tamped Monterey No. 0 sand of D,= 60%

13, effective stress in a sample of D,= 80% does not
become zero as rapidly as in a looser sample. Therefore, it is
difficult to define clearly the moment of initial liquefaction
for a sample of D,= 80%.

(c) Asseen in Fig. 12, shear strain increases rapidly after
initial liquefaction in a sample of D,= 45%. However, as
seen in Fig. 15, shear strain does not increase rapidly even
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Fig. 10 Relationships between effective vertical stress
and effective horizontal stress and number of
loading for wet tamped Monterey No. 0 sand of
Dy= 45%
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Fig. 11 Effective stress path for wet tamped Monterey
No. 0 sand of D,= 45%
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Fig. 12 Relationship between double amplitude shear
strain and number of cyclic loading for wet

tamped Monterey No. 0 sand of D,= 45%
after initial liquefaction in a sample of D,= 80%. This
means that while shear strain after initial liquefaction is
almost unlimited in a sample of D,= 45%, limited shear
strain is expected in a sample of D,= 80% even if initial

liquefaction has been observed.

The relationship between the normalized stress ratio
/8, in which 7 is the amplitude of cyclic shear stress and
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Fig. 13 Relationships between effective vertical stress
and effective horizontal stress and number of
cyclic loading for wet tamped Monterey No. 0
sand of D, =80%
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Fig. 14 Effective stress path for wet tamped Monterey
No. 0 sand of D,= 80%
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Fig. 15 Relationship between double amplitude shear
strain and number of cyclic loading for wet

tamped Monterey No. 0 sand of D,= 80%
Gy, is consolidation effective vertical stress induced by
the test and the numbers of cyclic loading N, to initial
liquefaction, 1.5%, 3%, 7.5% and 15% double amplitude
shear strains is shown for wet tamped specimens of D,=
60% in Fig. 17. Numbers of cyclic loading at which a certain
value of shear strain amplitude is induced or th state of initial

liquefaction is observed increases with decreasing stress ratio
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Fig. 18 Stress ratio versus number of cyclic loading to

initial liquefaction, 1.5%, 3%, 7.5% and 15%
double amplitude shear strains for wet tamped
specimens of D,= 80%

Fig. 21 Stress ratio versus number of cyclic loading to
initial liquefaction, 1.5%, 3%, 7.5% and 15%
double amplitude shear strains for air pluviated
specimens of D,= 80%

t/as,. Similar results for wet tamped specimens of D, = 45% respectively. These data will be analyzed to compare with

and 80% are shown in Figs. 16 and 18, respectively. Also cyclic undrained triaxial data in the following.

shown in Figs. 19, 20 and 21 are test results of specimens

(to be continued)
pluviated through air of D,= 45%, 60% and 80%,
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