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A Note on Stochastic Finite Element Method(part 1)
—Variation of Stress and Strain Caused by Shape Fluctuation—
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1. Introduction

An attempt is made in this note to extend the versatility
of the finite element method to the degree of stochastic
modelling. The finite element stress analysis has been well
established in engineering practice. Nevertheless, there still
remains a disadvantage of conventional finite element
method, in which element modelling is carried out in
deterministic manner.

When we need to estimate the expectation and
dispersion of stress at an arbitrary point in structure under
interest, expensive calculation should be repeated supposedly
many times, in case Monte Carlo technique is applied in
order to simulate any uncertainties caused by distributing
properties of material,!!  fluctuation of loads, variations in
boundary condition and so on.

It is therefore desirable that finite element modelling
itself involves stochastic nature so that the analysis results
can be expressed in form fitted with stochastic treatment.
Authors examine the possibility whether the finite element
method can be incorporated into-stochastic formulation and
report herein the concept of stochastic finite element
method and the formulations based on the perturbation
method 2 that is also applied in the study of random
vibration.®? For brevity, only the formulation is described
that holds for the case that stiffness matrix is characterized
in stochastic manner as the result of fluctuation of nodal
coordinates alone. The methodology proposed is applicable,
however, to the treatment of stochastic stiffness matrices
raised by properties of material distributed randomly.

2. Stochastic Finite Element Equilibrium Equations and

Solution

As a starting point, it is assumed that the {7 -th entity
of the global stiffness matrix is expanded in terms of random
variables o and A representing small fluctuations of k-th
nodal coordinates. Taking the terms up to the second order

products as regards ox and/or 8 &, we have
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K;j=K?,-+Zk:(K}jkak +K};‘kﬂk)+%:;(K%jklakal

+K¥uanfi+ K frepr) (1)
where K{j, Kijp - are the coefficients to be obtained in
chapter 3.

In case three dimensional problems are dealt with, the
third random variable 7. corresponding to 2z, is to be
introduced in the same manner.

At the same time, authors put Eq. (2) as regards

displacement.
U:=U? +§’;(Uz‘/edk+U§;zﬂ k)““%:;(U%k/dkdz
+UHiasf+UBI BB (2)

If the following straight-forward expressions were put instead
of Egs. (1) and (2), formulations in the latter part of this
chapter become so complicated that the CPU time is
expected enormous prohibitingly.
Kij=k?j+16ij (1-a)
where
ICij=§(ﬁ}jkak+ﬁ}/"kﬂk)+§;(/€%jkldkdl
+tefim e e feB ) (1-b)
U=00+Y30 ket 4‘%:;220%1“ Enikmn  (2-2)
ko mn .
Emphasis can be placed on that a non-linear relation still
holds between K;; and U as seen from Egs. (1) and (2).
Substituting Egs. (1) and (2) into Eq. (3) of the ordinary
form of equilibrium equation, we have Eq. (4) as regards the
7—th row with unknown displacement.
(KU} ={F} (3)
by {K?jU3’+K?j2k:(U§'kdk+Ulj}aﬂk)+U‘} Zk(Kllik(Zk
J
+K§';kﬂk)+K?j§;(U§'kldkdt+U%1dk/91
+U3'l1:1/9kﬂl)+§(K}jkak+K};‘kﬂk) 'Zk:(Uljk(lk
+U %A FUY Zk:;(K,zjkldkdl'f‘Kf;k/dkﬂ/
+RE B rBOF }=F} (4)

where F? is the ¢ -th nodal force which is known and the
superfix 0 in F7is added in order to identify that F; is not

ll(lllllll!lllllllilllllIlIlIlIl_Il(lIlHlIllIlIlIIlIlII(I(IIIIIllIlIIlIlIllIlllIIIIllIlIllIIIlI(lIlIlIlIlIIIIIIlI(IIlIIIlIlIIlIlIlIIIIIIlIllIlIHIIlllllllllllllllllllIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIII(Illlllllll[IIIIIIIIIIII[IIlIlIIII[IlIII[IllllIlIlIIIlIHI

39



78 32%2 %5 (1980.2)
17
stochastic. According to the principle of second-order

perturbation method,U?%, U}, -+
Eq. (4) as follows.

in Eq. (2) are derived from

U =K1 HFIk (5)
{Ul;'k}j:_[K?j:l_l{ZU(}K}j}e}i (6)
{Usty=—[K)]1 {ZU SKikh (1)

{(U%ul;=—[KY]1 {Z(K pUn+UKE Dl (8)

{U%}; 1 {Z(Kﬁij'H’U K
+U 'Kijkl)}x‘ (9)
Usuti=—[K,3" {Z(K,,,e 7KDY (10)

where {-}; means column vector with respect to ¢, and ¢
and 7 vary from 1 to P of the degrees of freedom of
unknown displacements. It is noted that Eqs. (6) ~ (10) are
constructed by the deterministic components [K?;1™
and {U$%}; given in Eq. (5) which agree with that of
conventional finite element method.

Then, the expectation of U ; is given below from Eq. (2).
EU.] ={? +ZZ {U k/E[OCkO!/]

+UH ElarB )V URIELBA1 ]} 1)

where E[-] represents expectation. In this Eq. (11),
Elar]=E[$+1=0 is put tacitly or in other words @ and
B are defined so as to satisfy Ela, 1=E[8,]1=0:
On the other hand, the dispersion of [/, Var[U:],
is derived as follows.
VarlU;J=E[U?1—{E[UIV
=U* +§Z{(U§'kU§'1+ UV Elaray]

22U LU+ BDE 1]
+URUY FUNEHDELL 18]
—{U? +ZZ(U 2 E lape ) U By Elas )]

f:/E[ﬂkﬂl]}z (12)

where higher than third order terms in products of ¢ and/or
£ & are neglected.

For reference, £ [U; ] on the basis of Egs. (1—a), (1—b)
and (2—a) is calculated in a similer manner and summerized
as Eq. (11—a).

ELU=U} +§I¥{fl}q,§; (e Elatray]

+Eq’rk1E[(Zk191]+ﬂ$:klE[ﬂk/9[])}
+ZZZZ[Uzqrst ZZ {EquﬂstmE[(llam

qr s

+(’ﬁnl’zstm+’fs{l’5qrm)E[alﬂm]
e mE B fmI}] (11-a)

Remaining interest is to estimate the expectation and

"
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dispersion of strain and stress at an arbitrary point. A strain

€y; caused by U ; is represented by gN %N‘
x

is to be given in the form of Eq. (23) in chapter 3. Then,

neglecting higher product terms than third order again, €u;
can be summarized in the general form of

eu; = (product of N's spatial derivatives and U ;)
—e;+z (eheatrteli Bk)+§; (et aray
tefanBitei Bl ) (13)

Consequently, the expectation and disperison of strain are
reduced to Eqs. (14) and (15) respectively in the same way
with Egs. (11) and (12).

E [e]zg e?+;§; {6 Elara;]

+ei Elarfil el B85, 1} (14)

Varlel= (Z‘ &) +ZZZZ {Celuelss + 268 ) E Larars]

+2 (eike;‘/+€(}2f;1)5 lanf i H(eirels
+26%H)EBr A}
—(Xe +Z§; (¢t Elara;]

‘et Elanfi) e ELR 8.0V (15)

where >, and Z denote summation with respect to all
i ]

nodes concerning the element under interest. It is 2 matter of
course that stress is easily calculated through the appropriate
stress-strain matrix.
3. Derivation of Stochastic Stiffness Matrix
The element stiffness matrix used in elastic, small
displacement analysis is calculated in usual by the following

)
equation.

(k1= [{(B@,LDIT[DIBU, L]
det|J|dL1dLe (16)

where [ D ] denotes the stress- strain matrix, [ B ] the strain-
nodal displacement matrix, and 7 means matrix transpose.
The isoparametric displacement function N:, the arguments
of which are the area coordinates [, and L:, is borne in
mind in relation to a particular case of triangular element
and node number ¢ . varies from 1 to 6, if quadratic
displacement function is taken into account. Regardless of
plane stress state or plane strain state, any elastic constant
included in [ D ]is assumed deterministic in the subsequent
formulation, and as mentioned earlier, attention is paid to

the case that stochastic nature of stiffness matrix is caused
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by small fluctuation of the nodal coordinates. In the sequel,
the influence of the fluctuating nodal cooridnates appears
through [ B] and the Jacobian matrix related to the
coordinate transformation, as defined as follows.
oz 9z 90y 09y
(1= L, ©OLs; 8L, 0L,

oz _dx  dy _ 9y
0L, 90L; 9L, 0L

b bt
- n 12 +[ 11 2] (17)
[]81 ]gz], Jh T%

The nodal coordinates are assumed to be expressed in the

form of sum of deterministic term as expectation and,
stochastic one as z; =x% +a; and ¥i =% + fi.Consequently,
J% and J%;. are given as linear functions of ., ; and so
on. The superfices 0 and p mean deterministic and
stochastic respectively. The entities of [ B ] are calculated
through the use of appropriate strain-displacement relation
and following terms are needed in doing so.

;i 5. —ONi _ ON;
F] “T3L, ~ L
Fl=rym PO (18)
N, po, = 2Ni _ ON;
dy PUBL: L,

The aim of this formulati-on is to evaluate the stiffness
matrix to the extent of second-order perturbation due to
«i and B in order to be compatible with Eq. (1) in the
preceding chapter. As the essential components of the
stiffness matrix comprise

(a_N,- oN; ONi ON; 3N ON; 9N if\_fz;)

dx Ox’ 8x 0y ' Oy Ox ' oy Oy

det| J | 1))

det| J fand %‘M are evaluated at first. By the use of the
x

definition given in Eq. (17), and neglecting higher product
terms of ¢; andfor f; than third order, we have

det| J | =det| J°| + D1+ D2 20)
where

Do=det I]ol =Jh )= T%]h

Dy =J?1 ]gz _]?ngl —]gx ]{’2 +]ng11’1

‘-“ZA.‘CC;‘ +Z Bifi

D: Z}‘?l]gz _]’11)2]%1 =]Z§C,‘;d,‘ﬂ,’

It is assumed that p—’-< &< 1 holds on the basis of the
Do " Do

postulate of small fluctuation. This enables us to have [ /]
given below by means of the approximation of 1/(1 + x)=

1 —zx+x°® and omitting higher than third order terms of a;
and/or fi.

£ E R 79
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- D1 D, D?)I: ]32 - ?2]
1= 4Lz, L
Doty1=(1 D, Do D3 L-7% 4
Dn) |: J% —]‘1’2]
+(1-2
1 Do _me ]Il)l (21)
The entities of the matrix in Eq. (21) consist of the first
deterministic term and those affected by «; and/or 8, as
given below.
DoJi} =Do (]O)i-}_; mijkak_g Nijefr
+%:;fijkldkdl+ ;; GijriGrB
+;;hijla1/9kﬂl (22)

where i and j take 1 to 2. Substituting Eq. (22) into Eq.
(18), then we have the following expression for the partial

derivatives of the displacement function N; as an example.

ON: bi1 J32 —biz ] —;‘ (biymu g+ Dbizmze) dr

Do5r

-%: (bi1n11k+bi27l12k)ﬂk
+;; (i fir b iz frzrdardy
+§; (bir gurs Fbizgrerdarf 1

+§IZ Birhar +bizhiens) frfs (23)

Any term in Eq. (19) can be calculated by the cyclic use of
Eq. (23) and results in

AN; ON;

1
oz 07 d91|]|=D_D(bnfgz—bizjloz)(bil]gz_bjzjloz)

+§m2ak+§n;ﬂk+¥;ﬂ,aka,
+ 33 guani + X hni fufs ()

and so on, while the higher products of "« andfor g5 than
third are again omitted. When these terms are defined, they
are arranged in accordance with the usual procedures of the
introduction of [ D ] matrix, numerical integration over the
relevant quadrature points and merging of element matrix
into global matrix, giving rise to the general result.

Ki;j=K}; +§: (Kljndts + Kjp80)

+ ;12 (K¥miands + Kindnf + K& 88 (25)

Naturally the first deterministic term of the above expression

‘ agree with the stiffness matrix used in conventional finite

element method, and the second term and the followings are
the embodiment of the stochastic characteristics due to small
fluctuation of the nodal coordinates which is taken into
account to exemplify the concept of stochastic finite
elements.
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4. On Relation between Spectral Representation of
Randomness and Isoparametric Finite Element

In the present methodology, spatial randomness on
nodal coordinates is taken as stochastic process defined by
power spectrum. When the stochastic process is able to be
taken as homogeneous, the well known Wiener-Khintchine
relation is applicable and correlations E [« «;], E [ai §;]
and E[f;4;] emerging in Eqgs. (11), (12), (14) and (15) are

determined as given below in the case™of Fig. 1 as a simple

example.
Elaia; 1=Elai §;1=0 (26)
E[,Bl ﬂi]=Ryy(Ixj _xil)

=2 _[:s”(n cos 2nd|@j— i dA en

where R ,,(-) and S,,(-) denote autocorrelation function
and two-sided power spectrum respectively and A represents
wave number.

The random process is bound to be interpolated se-
quentially by paraboras in case quadratic isoparametric
finite element is applied. Authors have investigated this
problem and have assessed the nodal interval which well
simulates the random-process with given power spectrum in
the case of Fig. 1. The principle of the assessment is based
on Fourier expansion of quasi-cosine wave interpolated
sequentially by paraboras. The Fourier coefficients are
calculated according to Egs. (28) and (29) against various
interpolation intervals and are compared with the amplitude
and phase of the original cosine wave of period 2z.
a7 = —Fﬁﬁz Z (—yivet4yivi—6y; +4yi

,_y,'.g-)cos{ﬁ(lﬁz7z )}-l—zl—;y;%g;(ynz

‘2ym+2yH—y,-Az)sin{ﬁCW?” )} (28)

bi=— i nz S (—yive+ayivi— 6y,~+4y,~-1
"‘fo)} ey Z (Yire

Cyrsin{a(t2E
)} (29

~2yin+2yim—pi-)cos {i(2E
(a5 cos Aix+b7sin fix) (30)

Qo
=+
Y™

s

where 4dn/m and €&, denote interpolation interval and
phase respectively.  Yivr2, Yir1oereoe are evaluated exactly

at the points on original cosine wave.

Authors’ conclusion is that the nodal interval should be
taken to be less than 1/41,, where ,is the highest
wave number which can not be disregarded in S, (1).

Shape to be input in analysis

Imaginary boundary of random contour
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Fig. 1 Image illustrating random shape on boundary in case
=0asa simpleexample.

5. Conclusion

Original concept of stochastic finite element method is
found to be embodied into the formulation with the aid of
second-order perturbation technique.

It is worthy to emphasize that the expectations and
dispersions of displacement, strain and stress at an arbitrary
point in the structure under interest are obtained by solving
the equilibrium equation only once.

Present methodology has wide varieties for the use in the
field of structural safety and reliability, and in addition, it
is supposed that the effect of different discretizations of
finite elements also can be estimated along the present
formulation.
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