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Introduction

Resonant-column devices are popularly used to evaluate
the shear moduli and damping characteristics of soils at small
strain amplitudes. The most popular device is one where the
base platen (pedestal) is fixed to a rigid base and the top
mass is excited rotationally by a sinusoidal excitation force
(Fig. 1). The Hardin-type resonant-column device (Hardin
and Music, 1965) has a torsional spring which connects the
top mass with an unmoving mass, while the Drnevich-type
resonant-column device (Drnevich and Richart, 1970) does
not have this spring.

In general, it is necessary to accurately know the value
of the inertia of the top mass ( J,) of the apparatus in order
to evaluate shear modulus values from resonant frequency
valuse. However, the shape of this top mass is not uniform
and it is very difficult to determine the value of J, precisely
from physical measurements and from values of the density
of the mass. Therefore, this paper describes a new and simple
method for calibrating 7, for a resonant column system such
as illustrated in Figure 1.

Theory

To evaluate shear modulus values of soil specimens, a
resonant-column device with a cylindrical specimen can be
modeled by the system shown in Figure 1. The physical
constants of the apparatus are the rotational inertia of the
top mass (J,), the torsional spring ( K), the sinusoidal
excitation force (M)

M=Moe™*
where M, is the force amplitude, w is the circular frequency,
and ¢ is the time.

The physical constants of the specimen are the ro-
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tational inertia .( /), the density (p ) the shear modulus
(G) and the length (L ). Note that the damping capacity of
both the device and the specimen are not needed to describe
the system shown in Figure 1. 7/2 is the frequency at which
the phase difference between the sinusoidal excitation force
(M=M,ye'“") and the rotational acceleration at the top
mass is not affected by the damping capacity of the device
and/or the damping capacity of the soil specimen. Therefore,
when the resonant-frequency ( ) of the system is identified
by the phase difference of /2, the elastic solution for the
system shown in Figure 1 can be used to evaluate the shear
modulus of a specimen. This elastic solution is (Hardin and
Music, 1965):
G =p2nful /F)? (1)

Jfn is the frequency where the plase difference between the
sinusoidal excitation force and the rotational acceleration at
the top mass reaches 7/2 and F is a dimensionless frequency

factor which is obtained from the following equation:

J R
Ta—K./Qrfn)? 2

The value of K can be related to the resonant frequ-

Ftan F=

ency of the system without a sample ( £, ) as follows (see
Fig. 2).
Sor=~Ks/]a /2 (3)

Equation (2) can be rewritten by using equation (3) as

~ )i
Fan B = 7)) (4)

Calibration Methods for Determining the
Rotational Inertial of the Top Mass (J,)

Drnevich et al. (1978) have proposed a method for
calibrating the rotational inertia of the top mass (J,)
where a metal calibration sample was used. In their method,
a value of J4 was evaluated by measuring the resonant
frequency of the testing system including the calibration
sample (Fig. 3). The top portion of the calibration sample
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was made the same size as the cap used for testing.
A top mass consists of a sample cap, whose inertia is /,,

and a moving mass attached to the device, whose inertia is
4]. Therefore, J, is the summation of J, and 4 /. The
value of /4 can be evaluated from the resonant frequency of '
the system with the calibration sample( f,, )from equations
(1)and (4) as:
_ J

(1= (for/fa1)?)-Fitan Fy

where J is the rotational inertia of rod portion of calibra-

Ja (5)

tion sample, for is the resonant frequency of the system
shown in Fig. 2, /fn, is the resonant frequency of the system
with a calibration sample, and F) is a constant and is
obtained from the following equation:

F1=2”fn1L/~/CW (6)
in which L is length of rod portion of calibration sample,

G and p is the shear modulus and the density of the
calibration rod material, respectively.

As it can be seen from equations (5) and (6), the
accuracy of the value of /4 is based on the accuracy of the
values of / and G determined for the calibration rod
material. The value of J is determined from measurements
of the small diameter of the calibration rod. Therefore,
determination of a value for J is very sensitive to a minor
error in measuring the diameter of the calibration rod.

Furthermore, in some cases it is not easy to determine a

P ama
( ) Ks
TOP MASs |~
N
J
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/G\\f,//

shear modulus value for the calibration rod material.

The new proposed method for evaluating the value of
J4 is not based on knowing values of J and G of the
calibration rod. In this method, two calibration samples
are used (Figs. 3 and 4). These two calibration samples are
made of the same material and the rod section of the two
samples must have the same dimensions. However, the top
portions of two calibration samples should have different
sizes as shown in Figures 3 and 4. These two different calib-
ration samples will be called Calibration Sample I and
Calibration Sample II, respectively.

The value of /4 can be obtained from measurements of
the two resonant frequencies for the two calibration samples
as follows:

For the Calibration Sample I, equation (1) becomes:

G=pQafn L/F\)* 7
Jn,is the resonant frequency for the system with Calibration
Sample I. F', is obtained from the following equation which

can be derived from equation (4):

J
G0 —Gorfa ¥y (8D

J1 is the rotational inertia of top portion of calibration

FltanF1=

sample and 4/ is the rotational inertia of moving mass
attached to the device (See Fig. 3).

For Calibration Sample II shown in Figure 4, equation
(1) becomes

G =pQufu,L/F2)* (9)
in ehich fa, is the resonant frequency for the system with
Calibration Sample II. F is obtained from the following
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Fig.1  Schematic figure of the system
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Fig.3  System with calibration sample I Fig.4 System with calibration

Fig. 2 System without sample

]

777 ve

sample II

T e A T T T e T R N TR TR T

24



31#512%5 (1979.12)

& @ Bt R 775

||||X|||||llllllllllIIIIlIIlIIIIIIIIIIIllIlIlIIIIIIIIII[IlllIIIIIlIIII|l|||XIIIIlIIlIIIIIIllllllIIlIIIIlIII1III|l|II|l|I|I|lIIIIl|IIIIIIIIIlllIlIIIIIIIIIXIIIlIIIIIlIIIlIIlIIlIIlIlIIIllIIIIIllIIIIII]lIIIlIIlIlIIlIlIlIQ? ﬁ )é ﬂl

equation which can be obtained from equation (2):

FitanF,= a4 "},{s/(zﬂfnz)z (10)
where J, is the rotational inertia of top portion of the
Calibration Sample II.

From equation (3) and from the expression J,=
J1+4], we obtain

Ks=Q@nfor? Ja=QCrfor)? (Ji+4]) an

From equations (10) and (11), we obtain

J
Fotan o= N (A d ) e 2

From equations (7) and (9) we obtain

Fr/F2=fu/fn2 a3

When the rotational inertia of the calibration rod is
much less than the corresponding values of J,+4/ and
J2+4], values of F and F, become much less than unity.
We then get the following simplified equations:

Fitan Fi =F, Fptan F,=F7 (19

From equations (8), (12), (13), and (14), we obtain:

nfa)? =(F\/F,)* =(F, tan F,) /(F, tan F)

_(]2+Aj)_(]|+4])(for/fnz)z (15)
LiH4DU=Lfor/fm )]

After some calculation and by noting that J,=

J1+ 4], we can obtain the expression

Ta=Ue=I/ S fr)* —1) (16)
Thus, we can obtain the value of the rotational inertia of the
top mass ( /,) from equation (16) from only the values of
the resonant frequencies fa, and fs, for two calibration
samples and from calculated values of J, and J, determined
from their dimensions and densities. It sould be noted that in
this calibration method it is not necessary to know values of
J, L and G for the thin calibration rod. Experience has
shown that it is easier to determine accurate values of J;
and J, for the top portion of the. calibration samples than it
is to determine values of J for the rod portion because
values of J, and J2 and determined from dimensions much
larger than those of the calibration rod.

Note that equation (16) is not affected by the value of
Jor or the value of the torsional spring constant, K. There-
fore, equation (6) is valid both for devices without a torsional
spring and for those with a torsional spring having any value
for K. .

Hardin and Music (1965) derived equation (16) for the
case where values of J for both calibration samples I and
I were equal to zero. Therefore, the calibration method

proposed in this paper combines methods proposed by

Hardin and Music (1965) and methods proposed by Drnevich
et al. (1978).

In using this calibration technique, the ratio J 1/ J2
should be chosen so that values of f, and fa, are not
close together. It is preferable to choose a ratio of _[1/]2 S0
that the ratio of (fa,/fs,) isaround 2.

Rotational Intertia of Top Mass (J,)
Measured by the Proposed Method

The methods described above for determining Ja were
used to calibrate a Hardin-type resonant-column device
(Hardin and Music, 1965). Two calibration samples were
machined from high grade aluminum alloy (See Figs.5 and 6).
The resonant frequencies for two calibration samples wel.'e
measured for a wide range of angular displacement values,
6, as shown in Figure 7. The shear strain amplitude v shown
in this figure was obtained from the following equation.

r=D0/(3L) an
in which 8 is the angular single amplitude displacement, D is
the diameter of the solid specimen which was taken to be
equal to 6.1 cm and L is height of a solid specimen which
was equal to 15.0 cm. These values of D and L were selected
to give representative strain values obtained for soil in the
Hardin-type resonant-column device.

It can be seen from Figure 7 that values of fa, and fa,
were fairly constant. Slight decreases in values of fn, and
fnz for strain values larger than around 5 x 107 5 were due
to the non-linearity of K,(See Fig. 8).

Values of J, and J, were determined from calibration
sample dimensions and from their density, p, which was
equal to 2.7 gfem>.

It was determined that

J1 =9.569 X 10% g -cm?
and J:=8.720 X 10° g -cm®

The value of J, was obtained from equation (16) by
using the values of J, and J, shown above and by using the
values of fa, and fa, shown in Figure 7. The results are
shown in Table 1. It can be seen that the value of J, was
fairly constant for a wide range of shear strain amplitude
values, 7.

A value of J, determined by the method proposed by .
Drnevich et al. (1978) was also determined by using the test
data obtained from tests on Calibration Sample I. The
rotational inertia of the calibration rod( J Jin this perticular

Case was:

J :;—ZpD‘L =x/32X2.7X1.359 % 15.0
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Table 1 4 by the method suggested in this paper

v fnl fnz Ja
(Hz) (Hz) (zem?)
1076 136.0 97.9 8.35x 10°
1075 136.0 97.9 8.35x10°
1074 135.8 97.8 8.38 x 10°
5x107* 135.4 97.6 8.40x 10°

Table 2 [, by the method suggested by Drnevich et al?'
(1978)
Y Sfor S, Fy Ja
(Hz)  (Hz) (gcm?)
1076 243 1360 0.04095 8.35x10°
107% 242 136.0 0.04055 8.35x10°
107% 240 1358 0.04077 8.37x10°
5x107% 234 1354 0.04077 8.41x10°
=13.562 g-cm?® (18)

The shear modulus of aluminum was assumed to be 2.70
x 10° kgffem? or 2.646 x 107 kN/m?. Thus, the value of the
dimensionless frequency factor F; was obtained by equ-
ation (6) as
1 =22 X15.0/ 2.7X 108 X 980/2.7X fa,

=3.011X107* fa, a9
in which the value of f, was obtained from Figure 7. The

values of /, were obtained by equation (5) using values of
F, from equation (19), for from Figure 8, fx, from
Figure 7, and J from equation (18). The results are shown
in Table 2. By comparing the values of /4 in Tables 1 and 2,
it can be seen that both methods gave approximately the

same value of J4

Conciusions
This paper describes a new method for evaluating the
rotational inertia of the top mass of resonant-column device
(Ja). By this method, a value of J, can be determined
simply without having to know the material properties of the

calibration specimen.
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