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(Continued from No. 10)

5. SOIL REACTION IN ROTATION

The last case that may be treated under the assumptions
adopted is indicated in Fig. 10. All soil particles are assumed
to vibrate in the direction of the cylinder axis in an anti-
symmetrical fashion. Thus, the horizontal displacement u=v
=0 and the equations of motion of the surface soil stratum
written in cylindrical coordinates reduce to

L ON 1 dw, 8w, 1 3w
<G+G 8!)(r ar+012 +72 602)

,ON\otw 8w
+<X+2G +2G a_t)ﬁ_”atz (45)

To solve the above equation, one puts

w=R(r) cos 0~i sin(kq-z), n=1, 3, 5, - (46)

The above expression of w satisfies the boundary conditions
that the shear stresses are zero at z=H and that the dis-
placement vanishes at z =0, Substitution of Eq. (46) into
Eq. (45) gives the ordinary differential equation of R:

T (@i =1 (4n

Quantity «, is given in Eq. (5). The general solution to Eq.
(47) can be obtained by Eq. (20) by changing the argument
Bn to an . Then, the displacement w is

w=f: An K (an7) cos b sinlhy-2) (48)
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Fig. 10 Notation and Displacement in Antisymmetric Mode
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and the shear stress 7,. is :< c 3 \ouw
t..=({G+G Ot> 37
=—G(1+i2D)%. A,.[d,,Ko (an7)
+%K,(a,,r)]-cos 0-sin(haz) (49)

By using the above obtained shear stress r,., the local
moment soil reaction to the motion of the cylinder is
2x
M(z)= —IO Trel r=aa cos 0-a-df

—Gaa?(1+i2D)Y Aﬂ[anxo (@na)

+%K1(ana)]sin(hn'z), (50)
The dynamic displacement of the cylinder may be assumed
as follows:

_ . N
W:%.% .a.cosgz%zzez:a"-cosﬁ (1)

where W is the vertical displacement of the circumference
of the cylinder and —1,/;0 is the rotational amplitude at z=H.

Equating Eq. (48) and Eq. (51) at »=a determines the
constant An and the local moment soil reaction becomes

2. N
M@ =2 (142D) 5 0yva, (52)
n
where
_ Ko(dna)
n=1.0+ana _——Kn o)
Then, the local dynamic stiffness is written as
Ko@=12D _gparimKie 6
At
in which
N N
Ki(2)=Y n-an/2an (54)

Figure 11 shows the vertical distribution of K;(2)
normalized by the static value at z=H. It can be seen that
the local dynamic stiffness is almost constant along the
height of cylinder as observed in the previous cases. Then, the
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Fig. 11 Vertical Distribution of Local
Dynamic Stiffness for Antisym
metric Mode (Eq. (54))

Fig. 12

dymanic stiffness of a unit length of the cylinder is defined:
Ky 2o = L me@az

The expression of Ky is
: o n-1

1\ 2z
(——ln)a— (55)

2 N
K,,,:Bsz (1+12D)Y A,

This expression for the dynamic stiffness to a unit length of
the cylinder can be written as

Ky=Galsp(w/wy, tan 8.vs/vp,a/H)
‘ +isgz(w/wg, tan 8,05/05, a/H)] (56)
‘where Syt and Sy are both real. The variations of Sy and
Sge2- normalized by the ’static values are shown in Fig. 12.

As in the case of torsion, the variations with frequency is

relatively smooth. In this case, however, a horizontally
progressive wave only appears above the fundamental vertical

frequency ®; which is 3.0 @, in the case shown in Fig. 12.

APPENDIX I EQiJATIONS OF MOTION AND FORMING
FOR FUNCTIONS, Ko, 1,

EQUATIONS OF MOTION:

The equations of motion of the viscoelastic medium can
be obtained from the equations of an elastic medium by
introducing the viscosity constants ' .and G’ which are
associated with the Lame’s constants [8].. Thus, .the
equations of motion of the viscoelastic medium in cylindrical

coordinate are
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Variations of Rotational Dimensionless Dynamic
Stiffness with Frequency and the a/H Ratio (Eq.

(55) or (56)). Full Line for the Proposed Solution .

and Dushed Line for the Approximate Solution by
Novak
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FORMING FOR FUNCTIONS K, and K:

The modified Bessel functions of the second kind of
complex argument x can be evaluated from the following

equations:
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Ko(x)=—l:ln%+f + f(%)@—}){z%
*[ln% +T]}
K@ =L+ z %)“"Gl?[%ﬂ(]n%
= 27)]
1-9

in which 7 =0.772.
Approximate formulae for the above equations are seen in a

standard book, for example, [9].

APPENDIX II: DYNAMIC STIFFNESS FOR PLANE
STRAIN CASE

Dynamic stiffness for plane strain case is obtained by
Novak et al. as follows [1]:
(a) VERTICAL VIBRATION
Ku=2rG(1+12D) -8, =Glsw, (ao, tan 8,v,5/v,)
+isuz(as, tan 8,v5/vp) ]

R K\ (apa)

80 Tt Ko (aoa)

where @ is obtained by Eq. (5) putting n =0, and @, is
the dimensionless frequency defined by

as=walvs

(b) TORSION
Ko =2ﬂ602(1+i2D) /L :Gazfsel ((Io, tan 6, Us/Up)
+is62(ao, tan 8,v5/vp)

_ Ko(éod)
n0=2+f.a K (Boa)

where f, is obtained by Eq. (19) by putting # =0
(c) HORIZONTAL VIBRATION
Ku=1Ga*-2y=G[su1(ao, tan 6, v,/vp)
+15 42 (a0, tan 8,v,/v,) ]

[4K;(700)K|(ﬁ00)+ﬁoaK1(Toﬂ)K0(ﬂoa)
2,= +f00K1(ﬂod)Ko(Tcﬂ)J
[Ki\Goad+roaKolroa) LK. (foa)
+40aKo(B0a)]—K(roa)Ki(Boa)
where 70 and G, are obtained by Eqs. (35) and (19) by
putting n=0.
(d) ROTATION

Ky=2Ga*(1+12D)1s=Ga*[sg1(ao, tan 8, v5/v,)
+isg,(a,, tan 8, v:/v )]

K, (doa)
K](doa)

where o is obtained by Eq. (5) by putting #=0.

10:1.0+du0'

Aprroximate values for dimensionless dynamic stiffness,
sjrand Sj2 (j =w,0,4,9) are tabulated in Table 1.

Table 1 Dimensionless Dynamic Stiffness for Plane Strain
Case Approximated by Novak et al [1,2,3]

St Sjez Validity Range
Vertical 2,70 6.70a, 0=ap<12.0
. 124 2.0q, 0<a,=0.2
Torsional 102 5.4a 02=a= 2.0
. 410 1060, |v=04,_ _
Horizontal 3.60 8202, |,=00 0=0,=52.0
Rotational 2.50 1.80¢ 0=g=<1.5
Note @=wa/ys ; Dimensionless Frequency
(Ended)

(Manuscript received, May 23, 1979)

IIHIII!IIIIIIIIIIIIIIllIIll|||||”ll“|l|lllllIIIIII!IIIHIIIlIIIIllIIIHIIIHIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIHIIlIIlIIIIIHIIIHIIIIIIIIHIIIIllllIIIIIHIIIIHIIIHlllllllllllllIIlIIlIIIIllIIIlIlIIlllll!lllllllllIlllIIIIIIIIIIIIIIIlHIIlIIHIlIHII

13



