There is a notable discrepancy between the plane strain solution and the proposed solution especially in the range below the fundamental vertical frequency of the surface stratum, $\omega_p = \pi v_p/(2H)$, which is assumed to be 3.0 ω_g in the case shown in Fig. 3 because $\omega_p = \pi v_p/(2H) = (v_p/v_s)\omega_g$ = $(1/0.33)\omega_g = 3.0\omega_g$, ω_g is the fundamental horizontal frequency of the surface stratum defined by $\pi v_s/(2H)$. In the range above the fundamental vertical frequency s_{w1} is of the same order as the value by the plane strain solution and S_{w2} is smaller than the value by plane strain solution. The differences both in the region below and above the fundamental vertical frequency ω_p are due to the dynamic response of the surface soil stratum. Below ω_p , the stiffness s_{w1} strongly depends on the frequency, and the damping s_{w2} is very low. The damping in this range is mostly caused by material damping and the radiation damping is absent. Above ω_p , s_{w2} rapidly increases linearly with frequency Sw1 is almost constant because a horizontally progressive wave only appears above this frequency.

Reference

- Novak, M., Nogami, T., and Aboul-Ella, F., "Dynamic Soil Reactions for Plane Sfrain Case". Proc. of ASCE, Vol. 104, No. EM4, 1978, pp. 953-959
- 2) Beredugo, Y. O., and Novak, M., "Coupled Horizontal

- and Rocking Vibration of Embedded Footings". Canadian Geotechnical Journal, Vol. 9, 1972, pp. 477-497
- Novak, M., and Beredugo, Y. O., "Vertical Vibration of Embedded Footings". Proc. of ASCE Vol. 98, No. 5M12, 1971, pp. 1291-1310
- Novak, M., "Dynamic Stiffness and Damping of Piles".
 Canadian Geotechnical Journal, Vol. 11, 1974, pp. 574
 598
- Novak, M., and Aboul-Ella, F., "Impedance Functions of Piles in Layered Media". Proc. of ASCE, Vol. 104, No. EM6, 1978, pp. 643-661
- Hardin, B. O., and Drenvich, V. P., "Shear Modulus and Damping in Soil, Measurement and Parameter Effects".
 Proc. of ASCE, Vol. 98, No. SM6, 1972, pp. 603-624
- Veletsos, A. S., and Verbic, B., "Vibration of Viscoelastic Foundations". Earthquake Eng. and Struc. Dynamics, Vol. 2, 1973, pp. 82-102
- Kolsky, H., "Stress Waves in Solids". Dover Publications, Inc., 1963, pp. 106-112
- Isoda, K., and Ohno, U., editor "Handbook for Numerical Calculation by FORTRAN" (in Japanese).
 Korona Publication Campany
 To Be Continued on No. 10

æ	닭다	主	(9	$H_{\mathcal{A}}$	<u>ا ب</u>
TF .	7	₹ ₹	l 9	ΗЗ	ゴノ

_	頁	段	行	種	別	Œ	誤		
_	607		19	表	3	<u>作</u> 動	<u>差</u> 動		
	610			⊠ 3	(右図)	診断 <u>書</u>	診断 <u>所</u>		
	619	右	↓ 21	数	式	$N_{ij} = -\rho\omega(f_{ij} - f_{ij}^*)/\underline{2i}$	$N_{ij} = -\rho\omega(f_{ij} - f_{ij}^*)/2$		
	628		↓ 5	表	1	-23.0	23.0		